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Abstract

The current state of clinical metabolic activity (MA) imaging is limited. With the few

available options, such as positron emission tomography (PET) and hyperpolarized

13C magnetic resonance imaging, requiring intravenous radioactive or hyperpolarized

tracers and having relatively poor spatial resolution, there exists opportunities for

advancement in the field. Oregon Health & Science University’s Advanced Imaging

Research Center has developed a novel non-invasive, contrast-agent-free, MRI-based

metabolic activity diffusion imaging (MADI) approach providing multiple quantita-

tive parameters and improved resolution over other clinical MA imaging methods.

MADI is rooted in the trans-cytolemmal water exchange, where large contributions

of exchange are stimulated by MA. This exchange is quantified as the homeostatic

(steady-state) cellular H2O efflux rate constant (kio). By matching voxels of diffu-

sion weighted imaging (DWI) b-space decays to a library of simulated decays within

kio, cellular density (ρ), and cellular volume (V ) parameter-space, MADI is able to

extract voxel cellular information and produce parameter maps. Products such as

kio ∗ V and kio ∗ V ∗ ρ can be made to probe MA as kioV is roughly proportional to

activity of the +Na/+K ATPase, the major energy consumer in the cell. Representing

the first study to employ the MADI approach in human brain cancer, four resected

glioma participants with different tumor progression status were investigated: two

tumor progression and two pseudoprogression. Regions of interest (ROI) were cre-

xii
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ated on T1-weighted pre- and post-gadolinium (Gd) contrast images registered to

DWI images and applied to images of DWI and PET, also registered. The ROI of tu-

mor or pseudoprogression were defined by the T1-weighted post-gadolinium contrast

enhancement(s). Probability density functions (PDFs) and Kullback-Leibler (KL)

divergence were used to characterize and analyze MADI parameter distributions. KL

divergence requires consistency of comparison PDFs. The half-brain contralateral

(HBCL) control data was deemed to satisfy this condition with maximum relative

entropy (RE), the output of KL divergence, of 0.0160 ± 0.0076 nat and after visual

inspection of PDFs. The data suggests that kioV was able to differentiate normal

tissue, tumor, and pseudoprogression; RE of tumor and pseudoprogression to HBCL

was 0.293 ± 0.093 and 0.891 ± 0.088 nat, respectively. As a more rudimentary but

accessible representation, the average of kioV medians for HBCL, tumor, and pseudo-

progression were 19.14 ± 0.49, 33.33 ± 4.24, and 54.21 ± 1.12 pL/s/cell, respectively.

Despite having local enhancement of the tumor and pseudoprogression regions, PET

was unable to differentiate tumor progression status in comparison to grey matter.

Although a larger subject population is require to confirm the ability of MADI to

distinguish these tissue states, this preliminary data show promise in MADI’s ability

to probe cellular properties and may provide great value for disease diagnosis and

monitoring.



Chapter 1

Introduction

1.1 Biochemistry of MADI

1.1.1 Transcytolemmal Water Transport

Transcytolemmal water transport refers to how water is transported and exchanged

across a cell membrane. Water transport can occur through multiple pathways and are

categorized as either active or passive depending on the energy of the process. Passive

water transport pathways do not require an input of energy and primarily occur due to

osmosis, i.e. moving with its concentration gradient [3,4]. As an example, Aquaporin-

4 performs crucial roles in regulating ion and volume homeostasis within the brain [5].

Active transport has further primary and secondary categorization depending on

the mechanism of energy input. Transport mechanisms which use chemical energy,

such as from ATP, to transport molecules to overcome their concentration gradient

designates a primary active water transport. As of yet there are no known primary

active water transport mechanisms. However, numerous cotranporters have been

identified which are driven by the Na+ or K+ concentration gradients created by

Sodium-Potassium ATPase (NKA) which are now known to also transport very large

1
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Figure 1.1 Water transport process associated with the NKA pump and
cotransporters (active transport), and aquaporins (passive transport).

stoichiometries of water [4]. These include for example, as seen in Figure 1.1, the

rSGLT1 contransporter which tranports glucose, 2Na+, and 380 H2O into the cell,

and the KCC4 cotransporter which transports K+, Cl−, and 500 H2O out of the

cell. As these are functionally coupled to NKA activity, they constitute secondary

active water transport. This active transport of water is thought to constitute a large

fraction of transcytolemmal water transport hence linking active water transport to

NKA , the major energy consumer in the brain [6–8].

1.1.2 Na+,K+-ATPase Ion Pump

The NKA pump exchanges 3 sodium ions out of the cell and 2 potassium ions into

the cell. As the extracellular concentration of sodium is greater than the intracellu-

lar, and the intracellular concentration of potassium is greater than the extracellular
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concentration, this process necessitates an energy input and is thus an energy de-

pendent pump. Furthermore, this process moves a net positive charge out of the

cell and against the membrane’s electrochemical gradient, which also increases the

energy input [6,9]. To generate this energy, the NKA pump performs ATP hydrolysis

to produce ADP. This step is foundational to cellular metabolic activity (MA), thus

NKA pump activity is directly related to MA [10]. This has been demonstrated in

rats where fasted (glucose-lowered) neurons had a significant reduction in ATP levels

and NKA pump activity than non-fasted neurons [11]. For most cells, the NKA pump

bears a large proportion of the consumption of metabolic energy; for brain tissue it

is estimated to be 55% [12].

1.1.3 MADI

Metabolic activity diffusion imaging (MADI) uses diffusion weighted imaging (DWI),

to characterize cellular water diffusion and tissue composition via four parameters:

kio [units: 1/s], ρ [units: 105 cells/uL], V [units: pL/cell], and vi [units: 1]. kio is

the homeostatic (steady-state) cellular water efflux (unidirectional) rate constant, but

can also be interpreted as the inverse of the mean lifetime of water within a cell. kio

quantifies transmembrane water cycling, which is linked to NKA activity and cellular

energy use, making it a crucial metabolic indicator [13, 14]. ρ and V are cellular

density and cellular volume within a voxel, respectively. Lastly, vi is the fractional

cellular volume describing how much of a voxel is being occupied by cells and is

related to volume and density by vi = ρV . By taking voxel-wise products of MADI

parameters we can convert the kio rate constant to rates of water efflux per cell (kioV ,

units: [pL/s/cell]) and per tissue volume (kioV ρ, units: [pL/s/uL]). A significant

portion of water efflux is linked to NKA activity allowing these rates to estimate

in vivo homeostatic NKA metabolic rate (cMRNKA), which has not been previously
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quantified in vivo. Since active transcellular water flux, proportional to cMRNKA,

is a large part of total transcellular water flux, kioV indirectly measures cMRNKA.

Currently, kioV is the sole non-invasive indicator of NKA activity, representing a

novel metabolic activity biomarker [1, 6–8,15].

1.2 Glioma and Pseudoprogression

Glioma is an umbrella term for a primary type of brain tumor which occurs in the

glial cells of the brain or spinal cord and has various classifications and gradings.

For low-grade tumors, such as oligodendroglioma, a patient’s median survival may be

anywhere between 11.6 to 16.7 years, but unfortunately within 5 to 10 years 70% of

cases progress to high-grade tumors [16–18]. High-grade tumors, such as glioblastoma,

are some of the most aggressive with a median overall survival of approximately 3

years. Glioblastoma’s incident rate is 3.19 per 100,000 persons within the United

States with a median age of diagnosis of 64 years [19].

1.2.1 Warburg Effect

In healthy differentiated tissue with ample oxygen supply, cellular metabolism is

driven by oxidative phosphorylation. This process is incredibly efficient producing

roughly 36 ATP molecules per glucose molecule. If the tissue is deficient in oxygen

supply, it will instead metabolize glucose using anaerobic glycolysis. This process only

nets roughly 2 ATP per glucose. In tumorous tissue, metabolism of glucose by oxida-

tive phosphorylation still occurs, but at reduced rates. Instead, a shift occurs causing

glucose to be metabolized by aerobic glycolysis at significantly higher rates. This pro-

cess is also inefficient at roughly 4 ATP per glucose. This inefficient process is thought

to be at the benefit of tumors as it allows for increased cancerous biomass synthesis,
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has a quicker ATP production, and leads to microenvironment conditions suitable for

tumor cells [20–23]. This cellular reprogramming of metabolism is what characterizes

the Warburg Effect; the alteration of ATP production from energy metabolites in

tumor cells.

1.2.2 The Problem of Pseudoprogression

The diagnosis of cancers, including gliomas, is continually evolving with advances

in understanding and technology. The Response Assessment in Neuro-Oncology

(RANO) working group has established criteria for glioma response assessment using

magnetic resonance imaging (MRI) and amino acid positron emission tomography

(PET). A significant challenge, particularly post-surgically and following treatments

like radiation and chemotherapy, is differentiating true tumor progression from pseu-

doprogression. Pseudoprogression, characterized by increased contrast enhancement

on MRI, mimics tumor progression but represents vascular changes and treatment-

related inflammation, potentially leading to misdiagnosis and inappropriate treat-

ment [24,25]. This highlights the need for advanced imaging and integrated diagnos-

tic approaches.

Recent research has focused on the role of 18F fluorodeoxyglucose PET (18F-FDG-

PET) in glioma assessment alongside MRI, especially gadolinium-contrast (Gd) MRI

and diffusion-weighted imaging (DWI). While amino acid PET tracers are increasingly

used, 18F-FDG-PET remains widely available, offering complementary information to

MRI. Studies indicate that combined 18F-FDG-PET and MRI has improved prognos-

tic prediction, recurrence detection, and aids in treatment planning and response

evaluation [26–28].
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1.3 Magnetic Resonance Imaging

MRI is an imaging method, with origins in nuclear magnetic resonance (NMR) spec-

troscopy, where interactions between nuclear spins and magnetic fields are manip-

ulated and measured to create signals that are then reconstructed into images. In

general MRI methods, the nuclear spins being probed are the proton from hydrogen

nuclei of water, i.e. 1H MRI. In the absence of an external magnetic field, proton spins

are randomly oriented. When an external field (B0) is applied, protons can align, de-

fined as spin up (|+⟩), or anti-align, defined as spin down (|−⟩), with B0 creating a

two-level system. The distribution of |±⟩ states are determined by the Boltzmann

distribution, N+

N−
= e

− ∆E
kBT . Here N± are the population in each energy state, ∆E

is the energy difference (E|+⟩ − E|−⟩), kB is the Boltzmann constant (1.1381 ∗ 10−23

J/K), and T is temperature. As ∆E is a negative quantity and the argument of

the exponential is greater than 1, the Boltzmann distribution dictates that the spins

preferentially align with B0 (|+⟩). At equilibrium, the net magnetization vector M

represents the macroscopic net magnetization of spins within the volume of interest,

with M0 being its maximum value. Due to the Zeeman effect, ∆E is directly pro-

portional to B0; therefore, increasing B0 increases M and the available signal (M0).

Mathematically this is described by M0 =
h̄2γ2B0

4kBT
ρ0 where γ is the gyromagnetic ratio,

h̄ is the reduced Planck’s constant (1.055 ∗ 10−34 J/s), and ρ0 is the proton density.

The gyromagnetic ratio (γ) is a fundamental physical constant that relates a nucleus’s

magnetic moment to its angular momentum. It determines the frequency (Larmor

frequency: f0) at which a specific nucleus (like hydrogen) precesses in a magnetic field

(Larmor procession) as defined by f0 = γB0. Each nucleus and isotope has a unique

gyromagnetic ratio, making it a key factor in MRI’s ability to distinguish between

different substances. For hydrogen-1 (1H), γ is 42.58 MHz/T. As common MRI field
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strengths are 1.5 and 3 T, these correspond to water Larmor frequencies of 63.87 MHz

and 127.74 MHz, respectively. To receive signal, the MRI receiver coils are tuned to

these specific frequencies.

Spatial encoding in MRI is achieved through gradients in the readout (frequency),

phase, and slice directions, each with a unique function in defining image space. These

gradients, which generate small magnetic field variations relative to B0, encode loca-

tion by inducing slight alterations in proton phase and Larmor frequency, the latter

being directly proportional to magnetic field strength. This frequency shift is ex-

ploited during readout, allowing signal differentiation based on precession phase and

frequency. Readout pulses then selectively ”listen” for protons precessing at frequen-

cies and phases that correspond to their position along the gradient. This process

isolates signal originating from a specific spatial location.

These gradients operate across all three spatial dimensions. A gradient active during

signal acquisition is designated a frequency-encoding gradient. This gradient spatially

encodes protons along the readout direction by modulating the static magnetic field

in that direction. While theoretically having unlimited resolution, the resolution is

typically matched to the phase-encode direction. Within the same slice, orthogonal

to the frequency-encode direction a phase-encoding gradient spatially encodes signal

by varying precession phase according to proton position. Applied after the initial

90-degree RF pulse but before readout, these gradients temporarily alter B0 in the

phase-encode direction, causing a phase shift dependent on proton location. Finally,

slice-selective gradients encode signal by exciting only those protons within the de-

sired slice, ensuring that only these contribute coherent signal. This is accomplished

by applying the gradient during the RF pulse, varying static B0 strength across the

slice-select direction, which allows the RF pulse to excite only protons within the

frequency bandwidth corresponding to the selected slice [29,30].
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1.3.1 T1-weighted and T2-weighted Imaging

T1-weighted (T1w) and T2-weighted (T2w) scans correspond to the two types of re-

laxation processes within magnetic resonance spin systems: spin-lattice relaxation

and spin-spin dephasing, respectively. Spin-lattice relaxation (T1w) occurs when the

system aligned to B0 receives a perturbation in the form of another external magnetic

field B1. This perturbation causes spins to get ’knocked down’ and undergo preces-

sion as they relax back to alignment with B0. This relaxation emits a radio frequency

(RF) signal that gets collected by the receiver coils. Spin-spin dephasing (T2w) occurs

during the spin-lattice relaxation process where net magnetization in the transverse

plane, perpendicular to B0, decays due to spin interactions with neighboring spins.

Each process has a time associated with it; T1 and T2 relaxation times. Respectively,

they represent the time taken to restore 63% and dephase 63% of the longitudinal

and transverse signal. These times are characteristic of different tissues allowing for

differentiation depending on the scan parameters repetition time (TR) and echo time

(TE). TR is the time between RF pulses. For spin echo pulse sequences, TE is the

time between the initial 90-degree RF pulse and the 180-degree followup RF pulse

creating an ’echo’. This echo causes rephasing of spins and allows for stronger signal

generation. As an example, a T1w image provides excellent contrast between grey

matter (GM) and white matter (WM) while a T2w image provides tissue contrast

based on water content. In general, a T1w image uses a TR/TE combination of

roughly 500/20 ms while T2w is roughly 4000/100 ms [29,30].

1.3.2 Diffusion Weighted Imaging

Diffusion imaging uses MRI to measure the movement of hydrogen protons in water.

While free water exhibits Brownian motion, tissue water diffusion is constrained by
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cell membranes. Because cell membranes impede water movement, areas with higher

cell density and intracellular volume exhibit greater diffusion restriction, though re-

cent perspectives challenge the validity of this premise. DWI employs diffusion gradi-

ents to track water molecule motion. A typical DWI sequence involves a 90-degree RF

pulse, a 180-degree echo pulse, and diffusion gradients before and after the echo pulse.

The first gradient encodes water molecule location. If a molecule moves significantly

along the gradient direction between the two gradients, it dephases, reducing the

signal. Conversely, limited movement leads to rephasing and signal detection. Con-

sequently, increased diffusion correlates with greater signal loss as gradient strength

increases. The b-value, determined by b = γ2G2δ2
(
∆− δ

3

)
, where gradient strength

(G), diffusion gradient duration (δ), and diffusion gradient spacing (∆), reflects the

sensitivity of signal loss to water molecule motion. Higher b-values increase this sen-

sitivity. Voxels with restricted diffusion retain more signal at higher b-values. An

apparent diffusion coefficient (ADC) map, derived from the slope of the log(signal

intensity) vs. b-value curve, displays unrestricted diffusion as brighter and restricted

diffusion as darker [29].

1.4 Positron Emission Tomography

PET is a widely used imaging technique for tumor staging due to its ability to probe

metabolic activity. While effective, PET’s spatial resolution of approximately 5 mm

and complex logistics involving radiotracer production, shipping, shielding, patient

uptake, and waste management has limitations. PET imaging relies on the princi-

ples of matter-antimatter annihilation. Specifically, a positron-emitting radiotracer

administered to the patient decays, releasing a positron (β+ particle). This β+, the

antimatter of an electron, interacts with an electron, resulting in their annihilation
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and the production of two 0.511 MeV photons. These photons are emitted approx-

imately 180 ± 0.5 degrees relative to each other. The detector system of PET then

discriminates detection events based on coincidence timing along a line of response.

Newer systems allow time-of-flight considerations which allow for greater spatial res-

olution.

To capture and enhance signals, PET scanners rely on scintillation detectors linked

to photomultiplier tubes (PMTs). The visible light emitted by these scintillators is

transformed into electrons by a photocathode within the PMTs. These electrons are

then accelerated and multiplied as they traverse toward the anode, where the accu-

mulated charge is converted into an electrical signal. Scintillation materials in PET,

each with unique advantages and disadvantages, can include NaI(Tl), BGO, LYSO,

or GSO. Crystal dimensions are specifically designed to interact with the 0.511 MeV

photons characteristic of PET. As compared to X-ray systems, which utilize lower-

energy photons, PET requires thicker crystals.

18F-FDG-PET is a widely utilized imaging modality in oncology, fundamentally based

on the Warburg effect. The Warburg effect describes the metabolic shift in cancer

cells towards increased glucose uptake and glycolysis, even in the presence of oxygen,

which is atypical for normal cells. 18F-FDG, a glucose analog, is actively trans-

ported into these cells and trapped intracellularly, reflecting their elevated glucose

metabolism. This metabolic characteristic makes 18F-FDG PET a valuable tool for

tumor detection, staging, and monitoring treatment response across various cancer

types, although its specificity can be limited in certain tissues, such as the brain,

where normal glucose metabolism is also high [27].

To provide quantitative information on radiotracer uptake, the use of standard up-

take values (SUV) are used. SUV allows for the conversion of measured activity from
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the PET system to a per tissue uptake following the Equation 1.1 [30,31].

SUV
[ g

mL

]
=

Activity Concentration
[
Bq
mL

]
∗ Patient Weight [g]

Decay Adjusted Injected Activity [Bq]
(1.1)

Accurately differentiating tumor recurrence from treatment-related changes (TRC),

such as pseudoprogression and radiation necrosis, remain a significant challenge in

glioma management as these conditions often mimic recurrent tumor on standard

MRI [32–35]. Although FDG-PET offers modest utility in this distinction, its ex-

tensive uptake in normal brain tissue and increased signal in inflammatory regions

severely diminish its specificity and tumor-to-background ratio in neuro-oncology

[33–35]. Conversely, amino acid PET tracers, such as 18-fluoroethyl-tryosin (FET)

and L-[Methly-11C]-Methionine (MET), have demonstrated elevated capabilities in

distinguishing TRC from recurrence by more precisely targeting tumor metabolism.

Due to their improved performance, amino acid PET has begun being clinically im-

plemented.

1.5 Motivations for MADI

The current state of in vivo metabolic imaging is based on radiotracers which have

resolution, accessibility, and radiation safety limitations; in contrast MRI does not

have these limitations. For MADI, we aspire to probe in vivo cellular metabolic

activity using imaging biomarkers, kioV and kioV ρ, as an alternative to radiotracer

imaging such as in PET. Beyond biomarkers, MADI provides additional parameters

(kio, ρ, V , and vi) which may provide valuable information for grading and staging

gliomas.
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1.6 Project Goals

This Thesis aimed to achieve three primary objectives: first, to assess MADI’s ability

to differentiate normal tissue from tumor and pseudoprogression; second, to compare

MADI’s established ability to the common MA imaging FDG-PET; and third, to

identify limitations within MADI’s current implementation.



Chapter 2

Methods

2.1 Population

The human studies were conducted on informed and consenting participants inline

with the project design approved by the Oregon Health & Sciences (OHSU) Institu-

tional Review Board (IRB). Participants were eligible if they had glioma and were

undergoing a PET-MR exam. Due to current OHSU protocols, this restricted the

population to participants who have undergone tumor resection. All participant data

was anonymized and stored in a Microsoft OneDrive folder. Table 2.1 contains partic-

ipant tumor type and radiologist determined response assessment: tumor progression

(tumor) or pseudoprogression. For the pseudoprogression population, subsequent

followup imaging was radiologist-evaluated for conformation of progression status.

To assess progression, radiologist utilize various imaging techniques: T1pre, T1post,

PET, ADC, cerebral blood volume (CBV), cerebral blood flow (CBF), arterial spin

labeling (ASL), and dynamic susceptibility contrast (DSC). They also rely on estab-

lished literature like the Response Assessment in Neuro-Oncology (RANO) criteria

for MRI and amino acid PET.

13
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Participant # Tumor Type Progression
1388 Glioblastoma Pseudo
1803 Glioblastoma Tumor
1820 Oligodendroglioma Pseudo
1950 Glioblastoma Tumor

Table 2.1 Collection of participants’ tumor type and designation of tumor
or pseudoprogression.

Figure 2.1 A single slice of a spin echo DWI image of participant 1388.
Image contains b values 50, 360, 670, 980, 1290, 1600, 1910, 2220, 2530,
2840, 3150, 3460, 3770, 4080, 4390, and 4700 s/mm2.

2.2 Image Acquisitions

All images were acquired on a GE Signa PET/MR system featuring a 3.0 T MRI

and time of flight (TOF) PET imaging. The 2 dimensional spin echo DWI was

acquired with the following parameters: FOV of 24.0 cm x 24.0 cm, voxel dimensions

of 0.9375 mm x 0.9375 mm x 3.3 mm, 46 slices, TR of 4256 ms, TE of 111.5 ms, and

b values of 50, 360, 670, 980, 1290, 1600, 1910, 2220, 2530, 2840, 3150, 3460, 3770,

4080, 4390, and 4700 s/mm2. Recon-DL was used for denoising. Figure 2.1 depicts

a single slice of a DWI image across each 16 b values. The T1w scans were acquired
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using MP-RAGE sequence with the following parameters: FOV of 24.0 cm x 24.0 cm,

voxel dimensions of 0.5 mm x 0.5 mm x 0.5 mm, a range of 344 to 376 slices, TR

of 7.7 ms, TE of 3.1 ms, inversion time 417 ms, flip angle of 8.0 degrees. The T1w

post-gadolinium contrast (T1post) scan, used Gadoterate Meglumine 0.5 mmol/mL

contrast. Figure 2.2 depicts slices of a T1post image. The PET scans were acquired

with voxel dimensions 1.17 mm x 1.17 mm x 2.78 mm. Each participant was injected

with 7.25 to 8.91 mCi of 18F-FDG intravenously and were imaged 45 to 60 minutes

post-injection. Figure 2.3 depicts slices of a 18F-FDG-PET image.

2.3 MADI Map Creation

The MADI maps are generated using raw DWI images spanning b values 50, 360,

670, 980, 1290, 1600, 1910, 2220, 2530, 2840, 3150, 3460, 3770, 4080, 4390, and 4700

s/mm2. On a per voxel basis, the b value decay is compared to a library of curves

for kio, ρ, V , and vi and matched to best fit. The best fit is found computing the

mini

∣∣∣∣∣∣∣ sx
sx,0

− li
li,0

∣∣∣∣∣∣∣ where sx is the signal intensity at b = x, sx,0 is the signal intensity

at b = 0 s/mm2, i is the iteration of the library being compared to, li is the library

value at b = x, and li,0 is the library value at b = 0 s/mm2. Figure 2.4 is an example

of each MADI map for participant 1388.

The library curves were generated by Monte-Carlo random-walk simulations com-

puted on water-filled, water-immersed, randomly-size, and randomly-shaped Voronoi

cells with a key assumption that the main barrier of diffusion are the cell mem-

branes [1, 15].

Beyond MADI, various advanced DWI approaches have been developed to quantita-

tively characterize cellular volume and size within heterogeneous biological tissues.

These techniques commonly employ specialized acquisition schemes, typically com-
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Figure 2.2 (Top) Slices of a T1post image of participant 1388. (Bottom)
Individual slice from participant 1388’s T1post image.
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Figure 2.3 (Top) Slices of a 18F-FDG-PET image of participant 1388. (Bot-
tom) Individual slice from participant 1388’s 18F-FDG-PET image.
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bining pulsed gradient spin echo (PGSE) and oscillating gradient spin echo (OGSE)

DWI scan protocols. A common assumption in many of these models is a simplified

spherical cell geometry, which, while offering computational simplicity, may not fully

capture the irregular morphology prevalent in many biological cell population [36–39].

In contrast to these approaches, MADI separates itself by incorporating a more so-

phisticated microstructure model with the random-size and randomly-shaped Voronoi

cell structure which better models the diverse cellular shapes and packing arrange-

ments found in tissue. Unlike MADI, which can quantify metabolic parameters, e.g.,

kio, these various DWI approaches do not possess this capability.
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Figure 2.4 A Slice of maps of all MADI parameters of participant 1388: a) kio [1/s], b) kioV [pL/s/cell], c) kioV ρ
[105 pL/s/µL], d) ρ [105 cells/µL], e) V [pL/cell], and f) vi [1]. pROI-Hollow is outlined in red. Images depicted
underwent 20 pL/cell filtering.
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2.4 Image Registration

Using Xinapse Systems Ltd Jim 9’s image registration tool, all images were registered

together and manually inspected. Each image was registered to an ADCmap. As both

ADC and MADI maps were generated from DWI images, no registration was required.

The PET and T1w pre-gadolinium contrast (T1pre) images were registered directly

to the ADC map and the T1pre transform file was saved. T1post was registered to

the unregistered T1pre, inspected, and then had the T1pre transform file applied.

2.5 Image Analysis

2.5.1 Regions of Interest

The primary region of interest (pROI) was defined to be the location of T1post en-

hancement signifying a region of tumor or pseudoprogression. As seen in Figure

2.5, three different subsets of pROI were created: the entirety of the region con-

tained within the perimeter of the T1post enhancement, a more central T1post non-

enhancing region, and only the T1post enhancement. These regions will be referred

to as the entire, core, and hollow ROIs, respectively. The pROI ranges over multiple

slices within an image.

For the control data, ROIs were created on either the T1pre or T1post images.

The half-brain contralateral ROI encompasses the contralateral side of the cerebrum

to the pROI. Spatially direct contralateral ROIs were avoided as they’re susceptible

to variation in tissue composition. Additionally, resection can affect how the brain

occupies space within the skull reducing the symmetry on both sides and accuracy

of direct contralaterals. GM and WM ROIs were created on the contralateral side of

the brain on an image slice that is most conducive to ROI creation.
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Figure 2.5 Participant 1388’s T1post image with pROI regions depicted.

All ROIs were generated using the ‘ROI Analysis’ toolkit within Xinapse Systems Ltd

Jim 9 using the ‘contour following’ function with ‘Pixel Snap’ deactivated. Manual

edits were made on a case-by-case basis.

For PET, using the Xinapse Systems Ltd Jim 9 ROI function ’Dilate’, an ROI of

pROI-Entire’s local surroundings were created. This included three ROI dilation

operations and was performed to quantify the pROI’s local PET enhancement.

2.5.2 Data Collection

Each ROI was applied to each image and a printout of pixel intensity was generated

using Xinapse Systems Ltd Jim 9 as a .txt file. The organization of the .txt files have

columns corresponding to pixel location and their intensity. These .txt files were

compiled into Microsoft Excel spreadsheets.
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Figure 2.6 Plots of ADC vs V on linear (left) and logrithmic (right) scales
demonstrating scope of ill-fitting pixels. Orange and red line corresponds to
10 and 20 pL, respectively. Bifunctional behavior of data shown; exponential-
like and linear-like. Data is reflective of participant 1950.

2.5.3 Data Processing

Using Python 3.9.13, codes were created to import, process, and export data. The

following Python packages were used: NumPy 1.21.0, Matplotlib 3.4.2, pandas 1.3.0,

SciPy 1.7.0.

For all MADI-based datasets it was necessary to perform two layers of data filtra-

tion. First, each pixel passed through a volume filter where if cellular volume was

greater than 20 pL/cell it was removed from the dataset. As seen in Figures 2.6,

A.1, A.2, and A.3 there exists a systematic ill-fitting of voxels with cellular volumes

reaching up to 180 pL. From previous MADI imaging, the median cellular volumes of

cortical GM and WM were found to be 6.0 and 0.91 pL/cell, respectively [1]. There

appears to be two distinct functions contained within the data: an exponential-like

function containing the non-physical points and a linear-like function assumed to be

true uncorrupted data. As a result, a 20 pL threshold was found to be sufficient

to preserve all true data, remove as much ill-fitted points, and maintain availability

for possible large cell volume to be included. An additional feature the 20 pL filter
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had was removal of all cerebrospinal fluid (CSF) spaces contained within ROIs. The

second filter applied to MADI data was to remove extreme outliers that don’t get

removed with the 20 pL filter by taking only the 0th to the 95th percentiles. This

became crucial in assuring the Kullback-Leibler divergence worked properly.

Using SciPy, a gaussian kernel density estimation (KDE), using Scott’s rule for band-

width, was calculated on each parameters dataset to produce an unnormalized prob-

ability density function (PDF). PDFs behave similar to histograms, but without the

impact of bin width and allow for the transformation of a discrete set to an estimated

continuous set [40].

2.5.4 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence primarily has its applications in information

and computer sciences. As an example, in machine learning the KL divergence is

used for its utility in comparing models and evaluating performance. Currently, there

have been no applications of KL divergence for direct image analysis, constituting a

novel method of analysis. For normally distributed dataset, a mean and standard de-

viation may be sufficient to fully characterize the dataset. Once a distribution starts

to become skewed or multi-modal, the characterization becomes more challenging.

This is where the strength of the KL divergence lies; its ability to compare the en-

tirety of a distribution. The KL divergence is defined by Equation 2.1, where p(x)

is a normalized PDF that q(x), another normalized PDF, is being compared to and

{xmin, xmax, dx} describes the parameter grid being integrated over.

Relative Entropy [nat] =

∫ xmax

xmin

p(x) ln

(
p(x)

q(x)

)
dx (2.1)

For MADI-based data, the parameter grid per parameter was constructed to range
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Parameter Minimum Maximum Step Size
kio [1/s] 0 120 0.1

kioV [pL/s/cell] 0 150 0.1
kioV ρ [105 pL/s/uL] 0 800 0.1

ρ [105 cells/uL] 0 25 0.01
V [pL/cell] 0 12 0.01

vi [1] 0.5 1 0.001

Table 2.2 Characterization of parameter grids use for normalization and KL
divergence calculations.

from 0 to the maximum value across all datasets in step sizes of a thousandths of

the maximum value’s order of magnitude, see Table 2.2. vi used a minimum value

of 0.5 as that is MADI’s current lowest limit. For PET-based data, the parameter

grid was constructed to range from the minimum to the maximum value across a

participant’s dataset in step sizes of a thousandths of the order of magnitude of the

maximum value. All unnormalized PDFs were normalized over their parameter grid.

The method of integration performed used the trapezoidal rule. To assess and group

participant data by a single PDF, averaged PDFs were used. To calculate this, at

each point in the parameter grid the mean of each participant’s PDF value (grouped

by progression status or all together) was taken.

The KL divergence is a statistical distance which outputs a measure of relative en-

tropy (RE) in natural units. This value is always positive and can be likened to a

likelihood or surprise factor. If RE is zero, then both distributions are the same. The

larger RE gets, the more q(x) differs from p(x). RE does not have an absolute scale

to compare against, but rather is used to compare two different PDFs to the same

p(x). This is a critical condition: the consistency of p(x). Suppose two measurements

of RE were made, REi and REj. In order to compare REi and REj to each other it

necessitates that pi(x) ≃ pj(x).

Measures of RE were averaged together based on tumor and pseudoprogression diag-



2.6 PET 25

nosis quoted with a standard error (SE).

2.6 PET

As determined in Section 3.2.2 with Figure 3.6, PET is ineligible for KL divergence

analysis. To analyze the images, measurements of degree of enhancement were made

instead. Given the approximately normal distribution of the data, the mean and

standard deviation were used to characterize its distribution. To quantify local en-

hancement visible in the images, a ratio of SUVmean of the pROI-Entire to its sur-

roundings was calculated. To quantify global enhancement, the ratio of SUVmean

of the pROI-Entire to contralateral GM was calculated. Error was propagated in

quadrature.

2.7 Water Glucose Index

The water glucose index (WGI), a ratio of cellular metabolic rates of active water

cycling (cMRAWC) and glucose uptake (cMRglc), is a measure of shifts in energy pro-

duction between oxidative phosphorylation and glycolysis. kioV is a direct measure

of cMRAWC [µLwater/s/cell]. Using a conversion factor, SUV can become a measure of

metabolic rate of glucose uptake per tissue (tMRglc) by
tMRglc

[
pmolglc/s/µLtissue

]
=

3.2 ∗ SUVmax [41]. Dividing by ρ [cells/µLtissue],
tMRglc becomes cMRglc. For compu-

tation of WGI, the following equation was used,

WGI [µLwater/pmolglc] =
med (kioV ) [µLwater/s/cell] ∗med (ρ) [cells/µLtissue]

3.2 ∗ SUVmax [pmolglc/s/µLtissue]
(2.2)

where med(kioV ) represents the median of kioV . WGI is an example of how MADI

can couple with other imaging to provide additional information. Here, MADI cou-
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ples with FDG-PET to create a measure of how cellular metabolism biases to either

oxidative phosphorylation and aerobic glycolysis, probed by active water cycling and

glucose uptake respectively.



Chapter 3

Results

3.1 Control Data

3.1.1 Grey and White Matter

As MADI is still a novel approach with little data on human brains, data on GM and

WM was collected to verify results. Figure 3.1, compares collected data to existing

data. In previous healthy human brain data, cellular volumes for WM were found

to be fairly localized around 0.9 pL while GM was bimodal with a localized peak

at roughly 0.5 pL and a broad distribution from 3 to 12 pL. In measurements made

from contralateral tissues, the same distributions were observed. The WM peaks were

centered within 0.5-1.0 pL and GM showed bimodal behavior around 0.5 and 9 pL.

The differences in GM and WM distributions suggest there should be some degree

of visual differentiation between each tissue using a cellular volume map. By using

a T1pre image, which provides excellent soft tissue contrast, direct comparison of

regions can be made. In Figure 3.2, cellular volume is visually less enhancing in WM

than most regions within GM.

KL divergence was calculated to quantify the difference between GM and WM on

27
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Figure 3.1 Comparison of GM and WM distributions from modified Figure
5 of Springer et al [1] (top) and each participant’s contralateral (bottom).
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Figure 3.2 Comparison of a T1pre (left) and V (right) image for visual
differentiation of GM and WM.

a per participant basis. The RE values per participant were averaged together and

presented in Figure 3.3. For cellular volume, RE was found to be third highest of all

MADI parameters with a value of 0.454 ± 0.236 nat.

3.1.2 p(x) Consistency

In order to use KL divergence, establishing consistency of the comparison PDF is

needed. Figure 3.4 contains the summary of the average RE of half-brain control

per participant to the average half-brain PDF for MADI. The best case (lowest RE)

parameter is ρ at 0.00228 ± 0.00163 nat and the worst case (highest RE) parameter

kioV at 0.0160 ± 0.0076 nat. figure 3.5 shows the best and worst case sets of com-

parison PDFs. Visually, the difference in distributions aligns with ρ being a more

consistent set of PDFs in comparison to kioV .

The same process was performed for PET. In Figure 3.6, visually it is clearly

demonstrated that the comparison PDFs are not consistent and thus PET is ineligible
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Figure 3.3 The average RE of per participant WM to GM distributions.

Figure 3.4 The average RE of per participant half-brain contralateral PDF
to the population’s average PDF.
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Figure 3.5 Comparison of per participant half-brain contralateral PDF to
population averaged PDF. ρ (left) is the lowest RE parameter while kioV
(right) is the highest.

for KL divergence analysis. The average RE was calculated to be 0.798 ± 0.433 nat.

3.2 MADI

3.2.1 pROI Selection

The KL divergence was calculated across the three different pROIs to their HBCL

and then averaged by progression status. Using Figure 3.7 it was decided to use just

the Entire pROI as in some participants it was too difficult to define a Core ROI, the

Entire and Hollow pROIs were similar to each other, and simplicity of ROI creation.

3.2.2 Tumor & Pseudoprogression & Half-Brain

The KL divergence was calculated for the Entire pROI to HBCL for each participant

and averaged by progression status. As seen in Figure 3.8, the RE is on the order

of magnitude of 0.1 to 10 nat with V showing the greatest difference between both



3.2 MADI 32

Figure 3.6 Comparison of per participant GM contralateral PDF to popu-
lation averaged PDF.

Figure 3.7 The grouped population’s average RE of pROI to HBCL. Tumor
group (left), pseudoprogression group (right).
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Figure 3.8 The grouped population’s average RE of pROI-Entire to half-
brain contralateral.

groups and their HBCL. Additionally, ρ has the greatest difference between tumor and

pseudoprogression REs. Accounting for error bars, while kioV may have some of the

lowest pROI to HBCL, there is no overlap between groups. The REs for kioV tumor

and pseudoprogression are 0.293 ± 0.093 nat and 0.891 ± 0.088 nat, respectively.

As seen in Figure 3.9, by directly comparing the tumor and pseudoprogression

groups both kioV and ρ show the greatest RE at 0.151 and 0.173 nat, respectively.

The parameter with the smallest RE, 0.0860 nat, was kio. The order of magnitude

for RE across all parameters was about 0.1 nat.

Figure 3.10 shows the weakest and strongest parameter for pROI to HBCL and tu-

mor to pseudoprogression differentiation. For kioV , the three PDFs are fairly distinct

and moderately separated. On median, there is roughly 20 pL/s/cell differentiation

between each distribution. In contrast, kio only provides roughly 15 1/s separation

between pROI and HBCL, but absolutely no differentiation between tumor and pseu-

doprogression.

As a more rudimentary but accessible representation of the dataset, averaged
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Figure 3.9 The RE of the averaged pseudoprogression PDFs to the averaged
tumor PDFs for pROI-Entire.

Figure 3.10 Plots of group averaged PDFs for kioV (left) and kio (right)
to represent the weakest and strongest cases for tumor-pseudoprogression-
halfbrain differentiation. Vertical dashed lines represent each PDF’s median
value.
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Figure 3.11 Plots of averaged medians with SE for all MADI parameters.

medians with SE for each MADI parameter across all ROIs were collected and plotted

in Figure 3.11.

3.3 PET

Figure 3.12 depicts the quantification of the Entire-pROI relative enhancement present

in PET imaging. All pROIs had greater SUVmean than their local surroundings (rang-

ing from 7% to 30% increase), but there was less uptake than in GM (ranging from
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Figure 3.12 The relative enhancement (SUVpROI
mean/SUV

comparison
mean ) occurring

within each participant’s PET image.

20% to 66% decrease). No trend observed between tumor and pseudoprogression

groups.

3.4 WGI

Figure 3.13 looks at the type of MA occurring within the Entire-pROI, GM, and WM

for each participant. Per the same glucose uptake, the Entire-pROI had elevated

transcytolemmal water efflux to GM, but decreased to WM.
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Figure 3.13 Comparison of pROI-Entire’s WGI to GM and WM.



Chapter 4

Discussions

4.1 Grey and White Matter - Reference and Scale

The purpose for analysis of GM and WM was twofold: confirm previous measure-

ments, but primarily to develop a sense of scale for the KL divergence. Figure 3.1

establishes that our measurements of GM and WM were not only consistent, but in

agreement with previous measurements in Springer et al [1] for cellular volume. Based

off these distributions, there should be some level of visual differentiations between

GM and WM; this was demonstrated in Figure 3.2. The KL divergence was found

for V to be on a 0.1 nat order of magnitude, as seen in Figure 3.3. While direct com-

parisons of RE are only valid for the same comparison PDF (p(x)), a sense of scale

can be developed. The visual differentiation between GM and WM can be attributed

to a RE on the order of 0.1 nat.

Additionally, Figure 3.1 demonstrates MADI’s ability to characterize a tissue’s phys-

ical properties. Here the V distributions are showing that WM is a tissue comprised

of a fairly homogeneous assortment of cells with similar volumes. In contrast, GM

is a tissue comprised of cells with great variaition in cellular volume. These tissue
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properties are supported with in vitro and in vivo measurements [42–44].

4.2 MADI

4.2.1 HBCL Control

Before the KL divergence can be applied to the patient population, it is necessary

to show that their comparison PDFs are sufficiently similar / equivalent. That is,

in order to compare a RE from one participant to another, say participants i and j,

the condition pi(x) ≃ pj(x) must be met. In Figure 3.4, ρ and kioV were identified

as the best and worst case for the condition being met. By looking at ρ and kioV ’s

PDFs, Figure 3.5, it can be observed that the distributions deviated little from the

average, even in the worst case. It was decided that this constitutes the pi(x) ≃ pj(x)

condition to be met. Additionally, this further establishes a sense of scale for RE that

can be compared against; a RE on the order of 0.01 nat is considered to be similar

enough to each other.

4.2.2 pROI Selection

As seen in Figure 3.7, there was little differences between the Hollow and Entire

pROIs across all parameters despite the Core occasionally being very different, e.g.,

ρ in pseudoprogression. This can be attributed to the Core only contributing a small

fraction of the total pixels. It was decided to move forward with only the Entire

pROI for two reasons: simplicity of pROI creation and the similarity of the Hollow

and Entire pROIs.
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4.2.3 pROI to HBCL

From Figure 3.8, the average REs from comparing the Entire pROIs to the HBCLs is

on the order of 0.1 to 1 nat. In comparison to the previous established RE scales, this

is 10 to 100 time greater than the HBCL controls and 1 to 10 times greater than the

GM and WM controls. This demonstrates that MADI has the ability to differentiate

normal tissue, represented by the HBCL, and the pROI.

Additionally, since the tumor and pseudoprogression populations are comparing against

the same PDF, we can also use Figure 3.8 to assess progression status. In all param-

eters the pseudoprogression group had greater RE than the tumor group. While ρ

appears to be a stand out parameter, there exists a level of caution due to large vari-

ation in the data, i.e. large SE. The smaller error bars indicate that kioV presents

the best opportunity for differentiation between tumor and pseudoprogression due to

reduced overlap. The KL divergence was performed to assess the differences in the

tumor and pseudoprogression groups, as seen in Figure 3.9. It was found that kioV

and ρ have the greatest potential for progression status differentiation with RE on

the order of 0.1 nat. Within context of ρ having great variation, kioV again becomes

the best parameter for progression status differentiation.

While KL divergence allowed for a rigorous analysis of the distributions, it is often

desirable to quote a single value for a parameter. For this, a more rudimentary ap-

proach was taken by characterizing each parameter by averaging medians for each

progression group and tissue ROI, see Figure 3.11 and Table A.1. Through this ap-

proach, the differentiation between tumor, pseudoprogression, and HBCL can still be

observed in kioV ρ. This suggests that, despite not being a rigorous approach, quoting

the average of medians may prove to a simpler and viable way to characterize the

dataset.
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4.3 PET

PET was determined to not be eligible for KL divergence analysis due to great varia-

tion in comparison PDFs as seen in Figure 3.6. To analyze the data, ratios of SUVmean

to the local environment and GM were collected as seen in Figure 3.12. While there

was local enhancement of the pROI from its surroundings, the pROI was less intense

than GM. For the tumor group this constitutes a false negative for progression sta-

tus, while the pseudoprogression group was a true negative. Despite this, no trend

was observed between progression groups; that is, FDG-PET failed to differentiate

tumor and pseudoprogression. This demonstrates FDG-PET’s clinical limitation of

diminished sensitivity in gliomas. Within this study population, the data suggests

that MADI may have greater ability in the assessment of tumor progression than

FDG-PET.

4.4 Considerations of Previous Works

This initial MADI study in human brain cancer requires consideration of prior rat

research, which primarily compared tumors to contralateral ROIs which were primar-

ily GM. Our approach, conversely, analyzes pROIs against a composite GM and WM

HBCL ROI where WM constitutes majority of the tissue type. From Schlegel [2],

kioV in rat brain tumor was significantly lower than in contralateral normal tissue

(primarily GM). Additionally, from preliminary rat data yet not published, the WGI

in tumor was lower than in normal tissue. These finding demonstrate the alteration of

cellular metabolism from oxidative phosphorylation, probed by active water cycling,

to aerobic glycolysis which is supported by the Warburg effect. In contrast, this

behavior was not found in the human data. Figures 3.10 and 3.11 demonstrate the

the pROI showed elevated kioV levels in comparison to both GM, WM, and HBCL.
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From Figure 3.13, the WGI of pROI-Entire is at minimum 4 times greater than in

GM. These results are not consistent with the Warburg effect, though this is not well

understood.

4.5 Clinical Implementation

The current protocols in evaluating tumor progression begin by establishing baseline

MRI imaging. Pretreatment MRI is used to define the baseline for patients with re-

current glioma. It is recommended that baseline scans be acquired as near as possible

to the start of therapy, with a maximum interval of 14 days, particularly for glioblas-

tomas. Followup imaging is performed every two to three months after baseline [25].

That is, progression assessment requires two different time-points. Within MADI’s

current construction, MADI shows value in assessing tumor progression status with

kioV within a single time-point. As patients already undergo MRI imaging, including

DWI, the addition of a MADI imaging protocol would add little to patient in-clinic

time.

As MADI maps may not demonstrate the greatest visual differentiation, as seen in

A.4, their power lies in distribution differentiation. Thus, this works to provide two

methods which may be used to track progression status in resected glioma patients.

First, requires software development to perform the analysis. A radiologist could

create an ROI corresponding to the T1post imaging enhancement and to generate a

PDF of kioV to compare to reference normal tissue (GM, WM, or HB), tumor, and

pseudoprogression PDFs for tumor progression status evaluation. This would require

development of tissue libraries and fitting conditions, such as using KL divergence.

Second, a radiologist could create an ROI corresponding to the T1post imaging en-

hancement and take the median kioV to compare to reference values for evaluation
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of progression status.

4.6 Limitations

4.6.1 MADI Library

In the current state of MADI, the tissue library is configured for vi to go as low as

0.5. This limit was set because lower vis becomes difficult to simulate and were not

expected in common applications. When the library matching occurs within MADI,

if a tissue that had a true vi less than 0.5 it would be matched to its closed curve of

0.5 referred to as vi pegging. Unfortunately resected areas tend to be very ’watery’

and diffuse corresponding to a low vi. Figure 4.1 demonstrates the scope of vi pegging

encountered in these resected areas. At best, 35% of all pixels in a pROI were pegged

at vi. In worst case, 84% of all pROI pixels were pegged. Due to the reproducibility

of MADI results, we estimate that despite up to 83% of pixels being pegged, that a

vi of 0.5 is an acceptable approximation for these pixels. We recommend that future

MADI improvements should include tissue library curves for vi less than 0.5.

Additionally within the tissue library, the density of possible matching parameter

value tends to decreases as parameter value increase. This can be observed in Figure

3.10 for kio greater than 40 1/s. Here, signal contributions from 47.525, 55.45, 63.375,

71.3, and 95.66 1/s can be resolved, especially for the average HBCL PDF. The only

possible kio values within 40 to 100 1/s that can be assigned from the library matching

process are these values. As the parameter value density is poorer at higher values,

the ability to accurately and precisely characterizes the pixels decreases.
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Figure 4.1 Histograms of vi within the Entire pROI for all participants.



4.6 Limitations 45

4.6.2 Ill-Fitting Pixels

In looking at the raw ROI data, we had encountered a systematic ill-fitting of pixels,

or ’blow-up’, as seen in Figures 2.6, A.1, A.2, and A.3. With V s on the order of 1

pL/cell for GM and WM, this problem skewed the raw data significantly. As V s up

to 180 pL/cell were deemed non-physical, the entirety of the exponential-like curve

was deemed an artifact of the MADI computation. Suggestions of methods to remove

the artifact data was discussed internally with the MADI-group. We were advised

against creating methods that systematically removed the exponential-like function

from the datasets as we would need to fully characterize why that exponential-like

function exists. This is currently not well understood. A simple 20 pL/cell filter was

decided to be adequate for the scope of this Thesis as it prevented extreme skewing

and preserved the ’true’ data while maintaining the possibility for larger V within

the pROI.

An investigation into a previous MADI study was conducted to determine the scope

of the ill-fitting pixels problem. Figure A.3 represent the issue present in rat brains

from Schlegel [2]. This suggests the problem is an artifact of the MADI approach and

is not unique to this study.

As seen in Figure 4.2, there is no correlation between vi pegging and ill-fitting pixels.

4.6.3 Sample Size

In this study, there were 4 participants total with 2 in each tumor progression group.

This is a result of two main factors: project design and institutional protocol change.

As outlined in our project design approved by the OHSU IRB, we were to consider

imaging exams from the GE Signa PET/MR - 3.0 T. This restricted the population
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Figure 4.2 Plot of ADC vs. V for pegged (red) and non-pegged (blue) vi
pixels. Data is reflective of participant 1950.

to resected glioma participants only, to which there were few eligible participants.

Additionally, OHSU had changed their response assessment of glioma from FDG-

PET to amino acid PET, which was outside of the project design. While the sample

size was very limited, this work serves as a proof of concept and shows the value of

MADI.

4.7 Future Work

Opportunities for future work of MADI are currently in planning. As an extension to

this Thesis, a continuation of human glioma investigations with the inclusion of prior

resection imaging, histological considerations, and inclusion of amino acid PET is in

discussion. Within the field of current MA imaging, preliminary discussions on cou-

pling MADI with 13C MRI imaging would allow for conversion of per tissue quantities

to per cell are being explored. In novel applications of MADI, investigations into how
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changes in metabolic parameters (kio, kkioV , kioV ρ) within tissue affected areas of

Alzheimers, vascular cognitive impairment (VCI), and stroke for mouse studies are

in process.



Chapter 5

Conclusions

Representing the first study to employ MADI with human brain cancer, preliminary

data was obtained suggesting that MADI has the ability and versatility to probe MA

and physical tissue quantities within the human brain and resected gliomas as a non-

invasive, contrast-agent-free imaging method. Specifically, MADI demonstrated the

ability to differentiate normal tissue, tumor, and pseudoprogression and thus was able

to assess tumor progression status. In comparison, FDG-PET, a common MA imager,

did not demonstrate this ability. Additionally, preliminary data on the coupling of

PET and MADI shows promise on probing the type of metabolism occuing within a

cell.

This is an exciting frontier as in underserved and rural populations access to current

MA imaging, e.g. PET, may be limited in comparison to DWI-MRI. Beyond tumor

progression assessment, by providing both metabolic and cytometric, MADI may

provide physicians with additional information to assist in the grading and staging of

gliomas.
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Figure A.1 Plots of ADC vs V for all participants. Orange and red lines
are 10 and 20 pL/cell, respective. Plots correspond to participants 1388 (top
left), 1803 (top right), 1820 (bottom left), and 1950 (bottom right).
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Figure A.2 Plots of ADC vs ln(V ) for all participants. Orange and red lines
are 10 and 20 pL/cell, respective. Plots correspond to participants 1388 (top
left), 1803 (top right), 1820 (bottom left), and 1950 (bottom right).
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Figure A.3 Plots of ADC vs V in both linear and logarithmic scales for
mice BIP-1 and BIP-4 used in Schlegel [2]. Orange and red lines are 10 and
20 pL/cell, respective.



⟨median⟩ ± SE kio [1/s] kioV [pL/s/cell] kioV ρ [105 pL/s/uL] ρ [105 cells/uL] V [pL/cell] vi [1]
Tumor 33.73 ± 0 36.33 ± 4.24 179.2 ± 10.5 4.210 ± 0.124 1.274 ± 0.186 0.566 ± 0.066

Pseudoprogression 36.67 ± 2.93 54.21 ± 1.12 183.3 ± 14.7 3.065 ± 0.359 1.698 ± 0.150 0.531 ± 0.031
HBCL 22.00 ± 0 19.14 ± 0.49 121.0 ± 4.36 4.897 ± 0.263 1.081 ± 0.0426 0.712 ± 0
GM 16.42 ± 4.26 24.10 ± 0.28 100.1 ± 15.9 1.909 ± 0.299 3.480 ± 0.678 0.811 ± 0.010
WM 23.47 ± 1.47 16.53 ± 1.56 148.5 ± 9.28 8.597 ± 0.639 0.8307 ± 0.0647 0.698 ± 0.014

Table A.1 Collection of average medians for each MADI parameter for tumor and pseudoprogression groups and
in different locations in the brain.
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Figure A.4 Maps of kioV for all participants with pROI-Hollow.
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