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Abstract 

 

This work investigates the application and refinement of Functional Effort Correction 

(FEC) methods in the longitudinal assessment of radiation-induced lung damage using four-

dimensional computed tomography (4DCT) images. Traditional ventilation imaging approaches 

such as Equivalent Tidal Volume (ETV) and Equivalent Lung Volume (ELV) attempt to correct 

for inter-scan variability in respiratory effort, but may also normalize damaged regions, masking 

radiation induced changes. FEC aims to overcome this limitation by identifying a stable, 

minimally irradiated and unaffected lung subregion and using it as a physiologic reference point 

for normalization. 

The work compares multiple implementations of FEC (FEC1 and FEC2) with ETV and 

ELV. The FEC1 approaches applies a fixed extrapolation volume of 0.75 L scaled to lung-wide 

volume ratios, while FEC2 calculates effort variation using 40% of the tidal volume of the 

selected lobe. Both approaches aim to ensure that pre- and post-treatment Jacobian maps 

represent comparable physiologic states, enhancing sensitivity to real changes in lung function. 

The study uses LERN (Local Expansion Ratio over N phases) as a voxel-level metric of 

ventilation derived from Jacobian determinants over the full respiratory cycle. Lung damage is 

assessed based on LERN ratios and thresholds (e.g., < 0.94), allowing for spatial and temporal 

quantification. The dataset includes multiple timepoints, pre-treatment, and 3, 6, and 12 months 

post-treatment, and was drawn from an earlier clinical trial. Rigorous resampling, deformable 

image registration, and dose alignment were used to ensure voxel consistency across methods. 
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Key findings include that FEC2 yields lower variability and smaller estimates of damage 

compared to FEC1, likely due to its more conservative interpolation limits. Statistically 

significant differences were observed between FEC1 and both ELV and FEC2, particularly in the 

most irradiated lobe. However, FEC2 showed no significant difference from ETV or ELV, 

suggesting that it may be more consistent but less sensitive. No consistent temporal pattern in 

damage progression was observed across the 3, 6, and 12 month timepoints, possibly due to 

segmentation issues, imaging artifacts, or insufficient statistical power. 

Despite lacking conclusive superiority for FEC, the study demonstrates the importance of 

effort correction in ventilation imaging and provides a framework for future research. Custom 

Python scripts and a modular data pipeline were developed for image processing and analysis. 

Limitations include variability in segmentation accuracy, image quality in 4DCT vs. diagnostic 

CT, and exclusion of subjects due to artifacts. The work concludes that further refinement of 

segmentation techniques, broader subject inclusion, and investigation of sublobar normalization 

may enhance the utility of FEC in functional imaging-guided radiotherapy. 
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1. INTRODUCTION 

Lung cancer impacts thousands every year and remains one of the most lethal forms of 

cancer. Radiation therapy is often an effective treatment, but it can lead to serious side effects 

such as radiation pneumonitis and pulmonary fibrosis. Efforts to mitigate these toxicities 

include directing radiation away from high-functioning areas of the lung, a strategy known as 

functional lung avoidance. To improve such approaches, it is necessary to accurately identify 

and quantify radiation-induced lung injury. 

Four-Dimensional Computed Tomography (4DCT) imaging holds promise in this regard 

through the use of ventilation biomarkers derived from deformable image registration. 

However, patients exhibit natural variability in breathing effort, which introduces uncertainty 

into ventilation measurements and can obscure true functional changes. Several methods 

have been proposed to correct for this variability, including Equivalent Tidal Volume (ETV), 

Equivalent Lung Volume (ELV), and more recently, Functional Effort Correction (FEC). 

This work examines the FEC method under different parameterizations and compares its 

performance over time using data from a prior clinical trial. By analyzing its limits and 

potential, this study aims to improve the assessment of lung function after radiation and 

ultimately inform treatment planning to reduce pulmonary toxicity. 
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2.  BACKGROUND 

2.1 Introduction to Lung Function and Injury in Radiation 

Therapy 

Lung cancer remains the leading cause of cancer related death worldwide, accounting for 

approximately 1.8 million deaths annually according to the World Health Organization.[1] In 

the United States alone, over 230,000 new cases of lung cancer are diagnosed each year, with 

non-small cell lung cancer (NSCLC) comprising about 85% of cases. [2] Local tumor control 

through radiation is an essential component for many patients with inoperable diseases. 

Treatment, however, is complicated by the risk of damaging healthy lung tissue, which may 

result in debilitating or even fatal toxicity. As survivorship improves and more patients 

undergo curative radiation treatment, the need to preserve pulmonary function remains a 

priority in thoracic oncology. 

Radiation therapy is a cornerstone in the treatment of non-small cell lung cancer 

(NSCLC), but its curative potential is often constrained by radiation-induced lung injury 

(RILI).  Most significant among these injuries  are radiation pneumonitis and pulmonary 

fibrosis. [3] Historically, the lungs were modeled as functionally uniform in treatment 

planning, despite evidence of substantial regional variability in ventilation and perfusion. [4] 

By considering variable functions of lung components treatment planners can utilize 

functional lung avoidance strategies, in which high functioning regions are preferentially 

spared from high radiation doses.  This preserves more lung function by reducing radiation 

damage to those areas. 
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Advancements in imaging technology allow for improved identification of functional 

region and radiation damage.  In particular, four dimensional computed tomography (4DCT) 

enables imaging of lung function via deformable image registration (DIR), wherein voxel-

level expansion can be quantified using the Jacobian determinant.  The Jacobian determinant 

is a scalar value that represents the amount of compression or expansion for a particular 

volume element in the lung. This approach has proven to be robust and clinically promising 

for defining ventilation maps that inform functional dose metrics such as functional mean 

lung dose. [5] 

Nevertheless, longitudinal use of these biomarkers is limited by inter-scan variability in 

breathing effort. To address this, Bethard introduced a functional effort correction (FEC) 

method, which normalizes voxel-level Jacobian values using sublobar regression models fit 

to normal expansion curves, improving consistency and enhancing sensitivity to therapy-

induced changes. [4]  The FEC approach is being tested and revised and is the primary 

subject of this work.  By correcting for breathing effort a clearer indication of radiation 

damage can be drawn and a better treatment planning steps can be made to minimize RILI. 

2.2 Pulmonary Anatomy and Functional Heterogeneity 

The lungs are anatomically divided into five lobes, three in the right lung and two in the 

left.  Figure 1 illustrates these lobes, separated by visible fissures, and major branches of the 

airway tree.  Fissures are composed of elastin and collagen fibers.  Each lobe may be further 

subdivided into bronchopulmonary segments. These segments are defined by the tertiary bronchi 

and represent functionally discrete units used in both surgical planning and physiologic 

modeling. [6-7]  
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Figure 1:  General pulmonary anatomy identifying lobes and fissures with airway distribution. 

Reprinted with permission from Flakus. [3] 

These anatomical boundaries are not merely structural, they map onto differences in 

regional compliance, airway resistance, and ventilation.[8]   Throughout this work, the term 

sublobe is used to describe tertiary bronchial segments.  Twenty sublobe designations are shown 

in Figure 2 in mode lateral and medial views. 
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Figure 2:  Diagram of lung airways and sublobe.  Kabir [9] 

Lung function is highly heterogeneous, influenced by patient posture, gravitational 

gradients, airway tree architecture, and underlying pathology. Gravity-dependent perfusion and 

ventilation gradients result in higher function in dependent (posterior and basal) regions when 

supine [8]. Disease processes such as fibrosis or emphysema further exacerbate spatial variation, 

often disproportionately affecting specific lobes or segments [10]. These considerations 

challenge the traditional paradigm of treating the lung as a homogeneous organ in radiation 

therapy. 
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To resolve this, recent approaches incorporate anatomical segmentation with functional 

imaging. Bethard, for example, used VIDA Diagnostics tools and a combination of virtual 

bronchoscopy and manual editing to segment sublobes based on third-generation bronchi, an 

approach grounded in the structure described by Weibel and others. These sublobes serve as the 

spatial framework for functional effort correction and longitudinal comparison. Similarly, Flakus 

emphasized the role of regional anatomy in refining dose-function models and improving 

predictive accuracy of functional decline. The convergence of anatomical and functional models 

offers a foundation for personalized radiotherapy, where both dose and risk are allocated based 

on regional function.   

2.3 Quantifying Lung Function 

Quantitative assessment of lung function is essential in the diagnosis and treatment 

planning for pulmonary diseases, particularly when balancing tumor control with preservation of 

healthy lung tissue. Lung disease is often diagnosed with pulmonary function tests(PFT) that 

include spirometry, and assessments of Total Lung Capacity (TLC), Residual Volumes (RV), 

diffusing capacity, and Maximal Voluntary Ventilation (MVV).  among others.  These provide 

informative metrics but lack spatial resolution and sensitivity to regional damage.[11] To address 

this, several imaging modalities have been developed that enable visualization and quantification 

of regional lung function. 

Single-photon emission computed tomography (SPECT) and positron emission 

tomography (PET) offer functional imaging based on radiotracer distribution. These modalities 

can map regional ventilation and perfusion and are widely used for detecting ventilation-

perfusion mismatch, especially in chronic obstructive pulmonary disease (COPD) and pulmonary 
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embolism[12].  Hyperpolarized gas MRI (Hp-MRI), using helium-3 or xenon-129, provides 

high-resolution, non-ionizing functional imaging of ventilation patterns, though it remains 

largely limited to research settings due to equipment and isotope availability. [13] Ultrasound is a 

common imaging modality used for pleural assessments of effusions or pneumothorax but is 

poorly suited to measure internal parenchymal function.  Computed Tomography (CT) uses 

multiple X-ray projections to reconstruct a three-dimensional image with high spatial resolution, 

surpassing many other imaging modalities. However, imaging of the lungs is complicated by 

respiratory motion, which introduces artifacts and blurring. This limitation is addressed in four-

dimensional CT (4DCT), which acquires images over time throughout the breathing cycle. The 

resulting data are retrospectively sorted into respiratory phases, allowing reconstruction of 

motion-resolved image sets. These phase-specific volumes enable visualization and 

quantification of lung function across the respiratory cycle. 

CT creates cross-sectional images of the body by rotating an x-ray source and detector 

array around the patient, collecting multiple projection images at different angles. These 

projections reflect x-ray attenuation, which arises primarily from Compton scattering and 

photoelectric absorption in tissue. A sinogram is generated from the set of projections, and cross-

sectional images are reconstructed using algorithms such as filtered back projection or iterative 

reconstruction. The resulting volumes have excellent spatial resolution, making CT a mainstay of 

thoracic imaging and radiation therapy planning. 

During a 4DCT scan, the patient breathes freely while respiratory motion is tracked using 

an external surrogate, such as infrared markers, pressure belts, spirometers, or surface-tracking 

systems.  The CT data are retrospectively sorted into discrete respiratory phases, typically ten 

evenly spaced bins ranging from full exhale (0EX) to full inhale (100IN). Each phase is 
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reconstructed into its own 3D volume, yielding a time-resolved set of images that captures 

anatomical deformation throughout the breathing cycle.  Figure 3 depicts aspects of tracking a 

breathing cycle, visualizing changes in chest movements and scan progression through regions of 

the lung. 

 

 

Figure 3:  Helical 4DCT acquisition. (A) Ten reconstructed breathing phase images are shown 

with white and black lines across all images identifying full exhale (0EX) and inhale (100IN) 

diaphragm positions, respectively. (B) A respiratory trace with 8 periods (each a unique color) is 

shown. Due to helical acquisition, the corresponding anatomical region is slightly inferior in 

each subsequent phase image. (C) Individual breathing phase images are generated from data 

acquired over multiple respiratory periods. Reprinted with permission from [3]. 
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This dataset enables the calculation of regional lung ventilation using deformable image 

registration (DIR). [4] DIR computes a voxel-wise displacement field between two respiratory 

phases, most commonly from 0EX to a selected inhale phase. A B-spline transformation model is 

typically used, optimized via similarity metrics that incorporate intensity differences and spatial 

regularization. [14]From this deformation field, the Jacobian determinant is derived at each 

voxel, representing local volume change. A Jacobian of 1 indicates no change, values >1 indicate 

expansion, and values <1 indicate contraction. The Jacobian thus serves as a surrogate for 

ventilation, forming the basis of the Local Expansion Ratio (LER) maps, discussed below. 

Although Jacobian ventilation mapping provides high-resolution spatial information, it is 

sensitive to variability in respiratory effort between imaging sessions. If the tidal volume (TV)—

the difference in lung volume between exhale and inhale—varies across longitudinal scans, the 

resulting ventilation maps may reflect effort changes rather than physiological alterations. To 

address this, an Equivalent Tidal Volume (ETV) matching approach is employed. [18] This 

involves identifying inhale phases in both scans that produce similar global TV when paired with 

a common exhale phase (e.g., 0EX). Selecting these matched pairs improves the repeatability of 

Jacobian-based ventilation estimates and enhances the detection of true biological changes. [4] 

The major advantage of 4DCT-based ventilation imaging is its integration into existing 

clinical workflows. Because 4DCT is often acquired for radiation treatment planning, it enables 

functional imaging without additional scanning, cost, or patient dose. This makes it an attractive 

modality for developing functionally guided radiotherapy strategies, such as dose painting or 

functional avoidance, where spatial knowledge of lung function can inform treatment decisions. 
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2.4 Local Expansion Ratio 

In 4D computed tomography (4DCT) ventilation imaging, the Jacobian determinant is a 

widely recognized estimate for regional lung ventilation. It is derived by performing deformable 

image registration (DIR) between two phases of the breathing cycle. The Jacobian determinant is 

a scalar-valued function of the Jacobian matrix.  The vector matrix is comprised of first order 

partial differential equations.  The term “Jacobian” is often used to refer both to the matrix and to 

its determinant.  Equation 1 describes the Jacobian matrix in the present context of partial 

differential equations for physical space.   

 

   (1) 

 

The determinant of this provides then a scalar value representing the amount of local 

expansion or contraction, at the voxel level, between lung scans that are registered to each other.  

A mapping of these values provides a way to assess lung damage.  Impaired lung tissue generally 

shows a loss of elasticity which negatively impacts ventilation and gas oxygenation. The 

expression for Jacobian determinant is given by 
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𝑑𝑒𝑡(𝐽)  =  (1 +  𝑢_{𝑥, 𝑥})((1 +  𝑢_{𝑦, 𝑦})(1 +  𝑢_{𝑧, 𝑧})  −  𝑢_{𝑦, 𝑧} 𝑢_{𝑧, 𝑦})  

− 𝑢_{𝑥, 𝑦}(𝑢_{𝑦, 𝑥}(1 +  𝑢_{𝑧, 𝑧})  −  𝑢_{𝑧, 𝑥} 𝑢_{𝑦, 𝑧})     (2) 

+ 𝑢_{𝑥, 𝑧}(𝑢_{𝑦, 𝑥} 𝑢_{𝑧, 𝑦}  −  (1 +  𝑢_{𝑦, 𝑦}) 𝑢_{𝑧, 𝑥}) 

 

This technique enables voxel-level quantification of tissue deformation and has become a 

common surrogate for ventilation imaging in radiation therapy planning and functional lung 

assessment. [15] 

Two phase Jacobian methods assume that each region of the lung reaches maximum 

expansion and minimum contraction at the same global time points, an assumption often violated 

due to regional ventilation heterogeneity and asynchronous breathing mechanics. [16] As a 

result, errors in ventilation estimation can arise, particularly in diseased lungs or in patients with 

irregular respiratory patterns, where different regions may reach their peak expansion at different 

moments in the cycle [16]. 

To address these limitations, the Local Expansion Ratio over N phases (LERN) approach 

was developed. [15] LERN builds upon Jacobian-based ventilation by incorporating data from 

all respiratory phases within a 4DCT acquisition, rather than relying on a single inhale and 

exhale pair. At each voxel, the Jacobian determinant is computed for every respiratory phase and 

the maximum and minimum values across the cycle are used to calculate a ratio. 
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Figure 4:  A depiction of LER-N method developed by Shao.  Each breathing phase is 

represented and a Jacobian determinant is calculated for each phase. 

 

  This ratio, the LERN value, reflects the full extent of local volumetric change over time 

and is mathematically defined as LERₙ(x) = maxⱼ Jⱼ(x) / minⱼ Jⱼ(x), where Jⱼ(x) is the Jacobian 

determinant at voxel x during phase j. [16] By considering the entire respiratory cycle, LERN 

captures regions that expand asynchronously with global lung motion and is more robust to 

errors caused by suboptimal phase selection. 

The benefits of LERN have been demonstrated in both simulation and clinical settings. 

Shao showed that LERN reduces sensitivity to phase selection bias, improves inter-scan 

reproducibility, and better detects localized ventilation defects compared to conventional two-
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phase Jacobian analysis. [16] In particular, LERN avoids underestimating expansion in regions 

that may not reach their maximum volume during the end of the inhale phase, improving the 

physiological accuracy of ventilation maps. Additionally, LERN avoids the need for phase pair 

selection heuristics, which are often unstable in longitudinal imaging where breathing effort may 

vary between sessions [16]. By anchoring the ventilation calculation to the actual temporal 

behavior of each voxel, LERN supports more consistent voxel-level comparisons across 

timepoints.  The LERN approach won the AAPM Grand Challenge in 2019 for accurately 

estimating regional lung ventilation. 

LERN is typically applied in conjunction with standard DIR workflows, requiring only 

that multiple respiratory phases be available. It has been successfully integrated with B-spline 

algorithms, and the resulting maps have shown promise in studies of lung function after radiation 

therapy [16]. This multiphase framework provides an important step toward physiologically 

meaningful ventilation imaging and may complement or enhance newer correction approaches 

such as Functional Effort Correction. 

2.5 Functional Effort Correction 

Jacobian ventilation maps derived from 4DCT are sensitive to variability in respiratory 

effort between imaging sessions. Small differences in tidal volume, caused by inconsistent 

breathing patterns, can lead to large changes in computed ventilation, even in the absence of true 

physiological change. This presents a major challenge in longitudinal studies, where the goal is 

to quantify regional damage or functional loss due to therapy. 

Several strategies have been proposed to correct for this variability. Guerrero introduced 

a method to derive ventilation images form 4DCT using deformable image registration.  They 
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then calculated regional lung variation at the voxel level by using Hounsfield units to estimate 

the fraction of air present in a region. [17] A more systematic solution was proposed by Du, et. 

al, who introduced what would later be called Equivalent Tidal Volume (ETV) and Equivalent 

Lung Volume (ELV) methods. These techniques identify inhale phases in each scan that produce 

similar total lung volumes when paired with the same exhale phase. When applied to Jacobian-

based ventilation mapping, ETV and ELV showed markedly improved reproducibility, with 

correlation coefficients approaching 0.97 in repeat scans. [18] Bethard proposed the idea of using 

stable, uninvolved lobes as internal references, assuming that function in those lobes remained 

constant between timepoints. [4] 

 

Figure 5:  Illustration of Equivalent Tidal Volume (ETV) correction applied to two 4DCT scans 

with equal tidal volumes (2.2 L), but different starting lung volumes due to variable respiratory 

effort. ETV aligns the dynamic phases across both scans to a common tidal volume range, 

enabling consistent voxelwise comparison. [4]  
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Figure 6:  Illustration of Equivalent Lung Volume (ELV) correction applied to 4DCT scans with 

differing respiratory efforts. Although Scan A (blue) and Scan B (red) begin at different fixed 

phases, in ELV the Jacobian is calculated using only those phases that overlap in absolute lung 

volume across both scans. This ensures matched anatomical inflation, improving deformable 

registration fidelity. [4]  

  

Global normalization approaches, such as ETV and ELV, are limited because they 

effectively mask RILI by normalizing on regions that have received high dose. To address this, 

regional effort correction methods have been proposed. One such approach involves identifying 

anatomically distinct, low dose sublobes that exhibit consistent expansion between scans, and 

using these as local volume references. The objective is to isolate and preserve true functional 

decline while correcting for global breathing differences. 

It has been shown that Jacobian based ventilation estimates are highly sensitive to small 

uncertainties in deformable image registration. This supports the idea that both deformable 

registration and functional effort normalization should be anchored to stable anatomical 

substructures, such as the central airways or diaphragm, rather than relying solely on global tidal 
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volume. [19] Such spatially localized control regions may enhance reproducibility and improve 

sensitivity to real physiological changes. To enable robust effort correction without obscuring 

true regional damage, Bethard’s Functional Effort Correction (FEC) method begins by selecting 

a stable sublobe as a normalization reference. The process identifies the lowest-dose sublobe 

(typically receiving <5 Gy) and evaluates its suitability using two criteria: (1) the sublobe’s 

volume between scans must remain within ±15% (i.e., volume ratio between 0.85 and 1.15), and 

(2) the correlation between sublobe volume and total lung volume across breathing phases must 

exceed 0.9. If these conditions are not met, the next lowest dose sublobe is evaluated, continuing 

iteratively until a qualifying region is found. This ensures that the selected reference region is 

minimally affected by therapy and reliably reflects physiological breathing effort. 

Figure 7 provides an example of FEC using an unaffected sublobe region as a basis for 

normalizing changes due to effort.  An extrapolation region is computed for expanding the 

volumes and therefore breathing phases that are available for proper comparison for damage 

calculation. 

Once a suitable sublobe is identified, Jacobian values are computed for all candidate 

inhale phases registered to a common exhale phase (0EX). The average Jacobian value within the 

sublobe is plotted against sublobe volume, producing a volume–ventilation curve for each 

timepoint. ΔV refers to the difference in the selected inhale-phase volumes between two 

timepoints, specifically within the reference sublobe. After fitting the volume–ventilation curves 

at each scan, the FEC method selects inhale phases whose sublobe volumes are as close as 

possible. The difference in those volumes is ΔV. 
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Figure 7: Illustration of Functional Effort Correction (FEC) applied to sublobe ventilation 

analysis. The upper panel shows the volume-time curves for a representative sublobe (Sub-3) 

from pre- and post-RT 4DCT scans, with the post-RT curve demonstrating reduced effort. The 

lower panel depicts anatomical sublobes at end-expiration (0EX), with the post-RT scan showing 

reduced Sub-3 volume due to both treatment and decreased effort. FEC extrapolates post-RT 

Sub-3 to its pre-treatment volume (0.18 L), enabling voxelwise comparisons at matched effort.  

Reprinted with permission from Bethard. 

 

Keeping ΔV ≤ 0.83 L ensures that the resulting Jacobian comparison occurs between 

anatomically equivalent states, minimizing interpolation error when estimating functional 
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change. Bethard empirically demonstrated that maintaining ΔV ≤ 0.83 L keeps Jacobian 

interpolation error below 1%. Using this strategy, FEC revealed significantly greater functional 

loss in 13 out of 18 subjects compared to uncorrected methods, indicating enhanced sensitivity to 

radiation-induced damage while controlling for inter-scan variability. 

2.6 Functional Lung Avoidance 

Functional lung avoidance radiation therapy (FLART) is an advanced radiotherapy 

approach that integrates functional imaging data into treatment planning to minimize radiation-

induced lung injury (RILI).[20] Unlike conventional radiotherapy, which treats the lung as a 

homogeneous organ, FLART leverages imaging modalities such as 4DCT, SPECT, and MRI to 

identify and spare regions of the lung with higher functional capacity, thereby preserving 

pulmonary function and reducing toxicity. [21] 

The rationale for FLART stems from the recognition that lung function is 

heterogeneously distributed and that damage to highly functional regions can lead to significant 

morbidity. By incorporating functional imaging into the planning process, clinicians can tailor 

radiation doses to avoid these critical areas. For instance, studies have demonstrated that FLART 

can significantly reduce the mean dose to high-functioning lung tissue without compromising 

tumor control. [22] 

Recent advancements have focused on automating the FLART planning process. Xiong  

(2024) developed an automatic planning framework that integrates function-guided beam angle 

selection and plan optimization. This approach effectively redirects doses from high-functional 

lung (HFL) to low-functional lung (LFL), achieving significant reductions in HFL mean dose 

and volume receiving 20 Gy (V20) and 5 Gy (V5).[22] 
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Clinical trials have also explored the benefits of FLART. The FLAIR trial investigated 

whether functional lung avoidance based on He3- MRI could improve quality of life for patients 

undergoing chemoradiotherapy. Although the trial did not reach full accrual, it provided insights 

into the feasibility and potential benefits of incorporating functional imaging into radiotherapy 

planning. [23] Moreover, FLART has been applied to esophageal cancer treatment. Integrating 

4DCT ventilation function images into radiotherapy planning could effectively reduce the dose 

to functional lung regions while maintaining target coverage. [22] 

FLART is a significant advancement in personalized radiotherapy, offering the potential 

to reduce pulmonary toxicity and preserve lung function by incorporating functional imaging 

into treatment planning.  

2.7 Motivation 

The primary objective of this study was to evaluate the effectiveness of Functional Effort 

Correction (FEC) compared to Equivalent Tidal Volume (ETV) and Equivalent Lung Volume 

(ELV) methods in quantifying radiation-induced lung damage over time. Assessments were 

conducted at 3, 6, and 12 months post-radiation therapy to determine if FEC provides improved 

sensitivity and specificity in detecting functional impairments. 

To quantify lung damage, two primary metrics were employed: the LERN ratio and the 

percentage of lung voxels exhibiting Jacobian values below a threshold (e.g., 0.94). These 

metrics aimed to capture both the extent and severity of ventilation deficits. By analyzing these 

parameters across different time points, the study sought to identify patterns of injury 

progression or resolution. 
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Furthermore, the study aimed to investigate indirect effects of radiation therapy on lung 

function. Emerging evidence suggests that radiation can impair perfusion in lung regions not 

directly exposed to high doses but supplied by irradiated vasculature. This phenomenon indicates 

that vascular injury can lead to downstream functional deficits, emphasizing the need to consider 

vascular pathways in treatment planning. [24] 

An additional focus was to observe temporal patterns in patients exhibiting clinical 

symptoms such as radiation pneumonitis or fibrosis. For instance, some patients may 

demonstrate increased lung damage at 3 months due to acute inflammatory responses, which 

could subsequently recede by 6 months. Conversely, fibrotic changes might not be apparent at 

early time points but could manifest at 12 months post-treatment. Understanding these patterns is 

crucial for timely intervention and management of radiation-induced lung injuries (RILI). [24] 
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3.  METHODS 

 The effort correction methods described above were applied to a set of scans obtained 

from a prior clinical trial.  This chapter describes aspects of that trial and the image processing 

workflows necessary for analysis.  Modifications to the FEC method led to two different 

variations of that model that tested, which are also described, in addition to approaches to 

identify an appropriate damage metric and potential sources of uncertainty. 

3.1 Clinical Trial Overview and Data Utilization 

This study utilized imaging and dosimetric data from a clinical trial under a Data Sharing 

Agreement from with  University of Iowa, focusing on patients undergoing thoracic radiation 

therapy for non-small cell lung cancer (NSCLC). [25]The trial aimed to investigate the 

relationship between radiation dose and subsequent changes in lung function, employing 4DCT 

imaging to capture these dynamics. 

Participants were selected based on specific inclusion criteria, including a confirmed 

diagnosis of NSCLC, eligibility for curative-intent radiation therapy, and the ability to undergo 

serial imaging studies. Exclusion criteria encompassed prior thoracic radiation, significant 

comorbidities affecting lung function, and contraindications to imaging procedures. 

Imaging data were collected at multiple time points: pre-treatment, and at 3, 6, and 12 

months post-treatment. Each imaging session included 4DCT scans to assess lung ventilation and 

perfusion. Patients were scanned twice at each timepoint, within approximately five minutes.  

This provides a way to test variability of the measurements, as well as giving an additional 

measurement to mitigate the occurrence of artifacts.  Patients were given breathing prompts in an 
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attempt to maintain a consistent breathing pattern.  Radiation dose distributions were obtained 

from treatment planning systems, providing spatial maps of delivered dose across the lung 

parenchyma. 

3.2 Image Processing and Analysis Workflow 

The analytical pipeline developed for this study processes four primary input files per 

patient to assess lung damage following radiation therapy. These files include the Local 

Expansion Ratio over N phases (LERN) map, the warped post-treatment image, the lobe mask, 

and the radiation dose distribution. 

Initially, 4DCT scans were acquired and stored in Digital Imaging and Communications 

in Medicine (DICOM) format and then converted to Neuroimaging Informatics Technology 

Initiative (NIFTI) format. This conversion is useful because NIFTI files are more compatible 

with various image processing libraries and facilitate easier manipulation and analysis within 

Python-based environments. DICOM metadata also encompasses unwanted and unneeded meta 

data such as personally identifiable patient information. Prior to conversion the image phase 

information was extracted from the DICOM metadata and used to sort the images into their 

respective phases. 

The LERN map is generated through deformable image registration (DIR), aligning the 

post-treatment scan to the pre-treatment scan. This process computes the Jacobian determinant of 

the deformation field obtained from DIR, resulting in a map that quantifies voxel-wise local 

volume changes. The warped post-treatment image is created by applying the deformation field 

to the post-treatment scan, transforming it to align with the pre-treatment scan. This alignment 

allows for direct voxel-wise comparison between pre- and post-treatment scans. 
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Lung lobe segmentation is then applied to the aligned scan using methods developed by 

Dr. Sarah Gerard's lab at the University of Iowa. Their approach employs deep learning 

techniques, such as FissureNet and LobeNet, to detect pulmonary fissures and segment the lungs 

into lobes, even in cases with incomplete fissures or diseased lungs. This method has 

demonstrated robustness and accuracy across various pulmonary diseases, including COPD, IPF, 

lung cancer, and COVID-19.[26, 27] The resultant lung mask is then aligned with the image scan 

so particular voxels can be associated with individual lobes.  NIFTI files assign lobes with a 

bitmask identifier using powers of two.  Conventionally these are 8, 16, 32, 64, 128.  Table 1 lists 

the particular values associated with individual lobes in our work. 

Table 1: Identification of NIFTI imaging data tags with particulars lobes used in this study. 

Identifier 

Lobe 

code Lobe description 

8 LUL Left Upper Lobe 

16 LLL Left Lower Lobe 

32 RUL Right Upper Lobe 

64 RML Right Middle Lobe 

128 RLL Right Lower Lobe 

 

The radiation dose distribution is extracted from the Treatment Planning System (TPS) as 

a DICOM RT Dose file. This file contains the radiation dose delivered to lung tissues and is 

converted and resampled to align with the coordinate space of the LERN map and lobe mask. 

Resampling is a critical step to ensure all input files have consistent voxel spacing and 

dimensions for accurate voxel-wise analysis. In this context, resampling involves interpolating 
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image data to a new grid that matches a reference image's spatial parameters. Third-order spline 

(cubic) interpolation is used for this purpose, balancing computational efficiency with 

smoothness and preserving anatomical details. This process is vital when combining images 

from different sources or modalities, as it standardizes the data for accurate analysis and 

comparison. 

Custom scripts, developed in Python, computes the ratio of LERN values between post-

treatment and pre-treatment scans for each voxel. Table 2 describes the particular software 

packages used to create different data structures used in the analysis.  This LERN ratio indicates 

relative functional changes over time. Voxels with LERN ratios below a certain threshold are 

identified as indicative of potential damage. Paired Student's t-tests are performed to compare 

LERN ratios and the percentage of damaged voxels across different time points (e.g., 3, 6, and 12 

months post-treatment). 

Table 2:  Software and packages used 
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The output of the script includes a structured array or DataFrame containing voxel-wise 

information, including lobe designation, dose, LERN ratio, and damage status.  Arrays for each 

subject, each time point, and each correction model (FEC, ETV, ELV) were created.  Subjects 

were filtered out and excluded because some patients did not complete the study, the presence of 

severe artifacts, and the absence of proper dose information.  Plots are generated using these 

arrays to visualize the lobar distribution of lung damage and its correlation with radiation dose. 

3.3 Functional Effort Correction (FEC) Methodology 

The original Functional Effort Correction (FEC) method was applied to account for 

variations in patient effort during imaging. This approach involved normalizing ventilation 

measurements to a standard effort level. Modifications to the original FEC method were 

implemented to improve accuracy, including adjustments for baseline ventilation heterogeneity. 

Reference volumes were originally tertiary bronchi, or sublobes, but uncertainty around 

segmentation methods, specially around the use arterial tree data, prompted a revised approach.  

Identified lobes were used in place of sublobes as the fissures separating lobes promote increased 

certainty in region identification.  First, the lowest irradiated lobe is selected as a candidate 

reference lobe.  Second, the volume of the lobe is tracked through all phases of the scan (0EX to 

100IN) and plotted against the overall increase in lung volume.  Through a linear regression 

analysis the correlation coefficient is determined.  The criterion is R2<.6m or a negative slope 

results in the rejection of the candidate.  If a lobe is not inflating and deflating similarly enough 

with the lung there is little confidence in the segmentation and therefore the candidate is 

unsuitable. Additional filtering is done by comparing the absolute difference in lobe volume pre- 

and post-radiation across all phases, expressed as a percentage. If this average percent deviation 
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exceeds 1.2%, the lobe is also excluded. Among the remaining lobes, the one with the lowest 

average dose is selected as the FEC lobe.  

Once the FEC lobe is identified, the next step is to calculate the lobe-specific ΔV, which 

defines the maximum allowed interpolation range.  This is computed by first averaging the lung 

volume across all phases, then dividing it by the average volume of the selected FEC lobe across 

the same phases. This was done in two different methods described as FEC1 and FEC2.  The 

first, FEC1,  was as Bethard originally described, taking the ratio and multiplying by a constant 

lung ΔV (0.75 L).  It has been shown that a extrapolation volume of up to 0.83 L  was possible 

without sacrificing accuracy due to noise. [4].  After reviewing outlier data and accounting for 

unrealistic LERN values, a more conservative scaling factor of 0.75 L was selected. 

The FEC model contemplates sublobe regions, defined around tertiary bronchi, with the 

goal of achieving finer resolution for the reference region, and thereby increasing the likelihood 

of scaling on an undamaged region.  A sublobe segmentation model using AirQuant open source 

tool was trained on a set of CT images.  However, the ability to distinguish proper sublobe 

regions on our 4DCT data set was limited.  Table 3 highlights the relative loss of airway 

segmentations that were unusable when switching from CT training data to the 4DCT used in the 

clinical trial.  4DCT data provides the temporal resolution necessary for respiration imaging but 

comes with the tradeoffs of motion artifacts, lower SNR, and lower spatial resolution as 

compared to standard CT. 

Table 3:  Comparison in airway segmentations between CT training data and 4DCT data.  

Statistically fewer airways can be identified on 4DCT data 
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4DCT images suffer from lower spatial resolution than standard diagnostic CT.  There are 

fewer acquisitions and faster acquisitions leading to reduced signal to noise.  Fewer visible 

airways result in fewer control point to determine sublobar volumes with accuracy.  In particular 

the issue is most pronounced in the LLL where multiple artifacts are often present.  Furthermore, 

there is a lack of arterial tree knowledge in the segmentation model, making sublobe 

identification more difficult.  For these reasons the FEC reference region chosen to be at the 

lobar level.  Anatomically distinct and separated by fissures, lobes provide more robust and 

reproducible segmentation, enabling better consistency in volume tracking across phases. 

The FEC lobe volumes from both pre- and post-treatment scans are then passed to the 

Equivalent Volume Matching function. This function identifies overlapping phases between the 

two scans. To match beyond this overlap, the algorithm attempts to predict expansion toward a 

larger volume. It evaluates whether additional phases can be included within the computed lobe 

ΔV and selects the phase in the opposing scan that results in the largest possible expansion. The 

difference between the largest original volume and this new candidate phase defines the 

"expansion volume larger." This expansion is then translated from lobe volume to lung volume 

using a fitted conversion function, another known error source. The same process is repeated in 

the direction of contraction to predict toward a smaller volume. 

After determining the matched phases and predicted lung volumes, these are used to 

guide image registration. The lowest-volume lung phase serves as the fixed image, and all other 
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phases become moving images. Deformable image registration is performed, and Jacobian 

determinant maps are generated for each transformation. 

In the scan being expanded to a larger volume, the Jacobian map from the phase with the 

largest lung volume is selected. This Jacobian is scaled by the ratio of the predicted expansion 

volume to the lung volume at that phase, yielding a predicted Jacobian at the target volume. The 

same process is carried out in the reverse direction for contraction. 

To generate the final LERN maps, the maximum and minimum Jacobian values are 

extracted voxel-wise across all respiratory phases and the predicted expansion/contraction 

volumes. The LERN is computed as the voxel-wise ratio of maximum to minimum Jacobian 

values. To standardize across comparisons, all Jacobians are renormalized by dividing by the 

predicted Jacobian from the lowest-volume image.   

The final output has two LERN maps, one from post-RT and one from pre-RT.  They are 

compared via DIR to generate a transformation from the postRT- to the pre-RT space.  The Post-

RT map is then warped using this transformation to the pre-RT scan.  The ratio of these two 

LERN maps, now combined into a single frame, provides the measure of lung damage on a voxel 

basis. 

The Functional Effort Correction (FEC) method was originally developed to account for 

variability in patient respiratory effort during 4DCT imaging. By normalizing ventilation 

measurements to a standardized volume state, the method enables meaningful comparison of 

lung function across timepoints and treatment conditions. Over time, the implementation of FEC 

has undergone several important revisions, driven by practical constraints in segmentation 

accuracy and the desire to reduce interpolation error. 
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The FEC lobe is selected through a multi-step filtering process. First, the lobe receiving 

the least about of dose is chosen as a candidate lobe.  It is tested for linear inflation behavior by 

plotting their volume across all phases (from 0EX to 100IN) and fitting a linear regression. 

Lobes with a poor correlation (R² < 0.6) or negative slope are excluded. Additional filtering 

eliminates lobes whose average absolute volume deviation between pre- and post-treatment 

exceeds 1.2% . If the candidate fails, the lobe with the next least amount of dose is selected and 

the process is repeated until the FEC lobe is identified. 

As described earlier, FEC1 scales based on a set factor of .75L.  A second approach, 

called FEC2 was also defined.  Rather than scaling a fixed lung ΔV, this approach calculates ΔV 

as 40% of the tidal volume of the lobe itself. This threshold was determined empirically.  First, 

the top 15% of observed lobe tidal volume changes using paired scans at the same time point 

were analyzed, outliers excluded, and the resulting values were found to range from 38% to the 

low 50s. A conservative 40% limit was chosen to reflect plausible effort-related variation due to 

unconscious changes in breathing depth. This method avoids the indirect assumptions involved 

in translating lung-to-lobe volume ratios and bases the interpolation threshold directly in lobe-

specific physiology. 

Once the ΔV is defined, the pre- and post-treatment lobe volumes are passed to the 

Equivalent Volume Matching function. This identifies overlapping phases and determines 

whether expansion toward larger or smaller predicted volumes is possible within the allowed ΔV. 

Expansion predictions are converted from lobe volume to lung volume using a fitted phase-wise 

lung-to-lobe mapping function. The resulting target volumes are used to guide deformable image 

registration. The lowest-volume phase serves as the fixed image, and others become moving 

phases. Jacobian determinant maps are computed for each registration. In scans requiring 
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extrapolation to a larger volume, the Jacobian from the phase with the largest lung volume is 

scaled by the ratio of predicted volume to that phase's actual lung volume. The same logic is 

applied for contraction to a smaller volume. Finally, LERN maps are generated as voxel-wise 

ratios of maximum to minimum Jacobians across all observed and predicted phases. 

Additionally, the predicted Jacobians are now computed without converting lobe volumes 

into lung volumes. Instead, once a predicted lobe volume is selected, the algorithm simply 

computes the ratio of the predicted volume to the end-of-range volume in the scan. This ratio is 

applied directly to the Jacobian map from the endpoint phase, scaling it to the target predicted 

state. This change eliminates the uncertainty introduced by phase-wise lung-to-lobe fitting 

models and simplifies the process. 

The LERN combined with dose arrays described in section 3.2 were generated with both 

FEC1 and FEC2, and then compared.  Analysis was restricted to those subjects for which a valid 

reference lobe could be identified for both methods.  Two measures of damage, the LERN ratio, 

and the number of voxels below a threshold amount of damaged, are used to compare effort 

correction methods with ETV, ELV, FEC1 and FEC2 at different timepoints. 

3.4 Data Structuring and Statistical Analysis 

Processed data were organized into structured NumPy arrays (.npy files), with each voxel 

annotated with corresponding lobe designation, radiation dose, and Local Expansion Ratio over 

N phases (LERN) values. This structured format facilitated efficient analysis of regional lung 

function changes and their association with radiation doses. 

Statistical comparisons were conducted using Stata/BE v. 18 (StataCorp, College Station, 

Texas), Python scipy package,  and Microsoft Excel.  Employing paired Student's t-tests to 
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evaluate differences in LERN ratios and the percentage of lung voxels exhibiting Jacobian values 

below a variety of LERN thresholds.  Testing for potential bimodal distribution was done using 

the Bimodality Coefficient (BC) defined in Equation 3. 

𝐵𝐶 =
𝑔2+1

𝑘
     (3) 

where g is skewness and k is kurtosis. 

Once a damage score was determined, a longitudinal analysis was performed to compare 

the effort correction methods at 3, 6, and 12 months. Statistical differences were evaluated using 

paired Student’s t-tests. 

3.5 Damage Score 

The LERN ratio serves as the primary metric to define lung damage but defining a 

precise range with that metric presents a challenge.  There is no ground truth to validate the 

extent to which damage has occurred.  A LERN value of less than one indicates a lung region is 

ventilating less than it did prior to radiation therapy serving a surrogate for damage. Developing 

a clear picture of damage requires examining the entire distribution of LERN ratios. 

Two scans were taken, five minutes apart, prior to treatment.  It is assumed there is no 

appreciable change in lung function over so short of time.  Differences in LERN between these 

scans therefore are attributable only to measurement uncertainty and random errors.  The 

distribution of change in LERN, when computed as a ratio of values, can then be considered as 

Gaussian with a central peak of LERN ratio = 1.000, or no change.  It has been found that the 

standard deviation in this comparison is ±6%, indicating that LERN ratio values of < 0.94 are 

more likely due to actual damage. [4] 
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It was unknown whether the LERN distribution would appear to be a Gaussian 

distribution when comparing post-RT scans to pre-RT scans, wherein we expect radiation 

damage.  Overall damage is most accurately described as the summation of integral damage of 

all the voxels revealing an LERN ratio < 1.000.  It was hypothesized that there might be a 

bimodal distribution of LERN ratios, with a peak in the damaged range.  If true, employing a 

simple threshold may obscure meaningful information about the damage and an integral damage 

score would provide insight. 

To evaluate damage score for effort correction methods, the distributions of LERN were 

examined by constructing histograms from the multidimensional NumPy arrays.  A distribution 

was examined for each subject, lobe, effort correction method, and time point.  The Bimodality 

Coefficient was calculated and tabulated using Python scipy package. 

3.6  Measuring with and without Interscan Registration 

 The multidimensional NumPy arrays are designed for analysis of lung damage on a 

voxelwise basis.  All the images, lobe masks and dose distributions are aligned in the same 

coordinate system and resampled to allow for this voxelwise analysis.  By warping one image or 

LERN map from one timepoint to another, the scans must be registered.  Any registration process 

will introduce a degree of uncertainty in the matched image alignment. 

 To assess the degree of uncertainty introduced the FEC2 method was studied with and 

without the interscan registration process.  Instead of using the NumPy arrays, which include a 

single lobe mask for the chosen coordinate system, two separate masks are needed, one from pre-

RT and one for post-RT.  Each LERN map is then paired with the appropriate mask.  An average 

LERN for each lobe is then easily calculated.  The two averages, one pre-RT LERN and the other 
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post-RT LERN, and the calculated as a ratio, provided the LERN ratio average, and thus 

measured damage, for the lobe.  Equations 4 and 5 contrast the two approaches.  The interscan 

registration process is an average of the LERN ratio values, based on a per voxel approach.  To 

avoid registration uncertainty it must be a ratio of LERN averages. 

 

     (4) 

 

    (5) 

 

These two difference approaches were used to calculate average LERN ratio values for each 

subject, lobe and time point for the FEC2 method in order to assess the effect of registration. 

  

4. RESULTS 

4.1  Damage Distribution 

Each effort correction methodology determines whether a subject can be included or 

excluded, meaning that a proper set of pre-RT and post-RT LERN maps can be generated and 

warped through DIR into a common coordinate system.  To achieve the most comprehensive 
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comparison, the subjects analyzed were limited to those subjects for which LERN maps could be 

generated for all effort correction methods.  This limited the number to 24 for the 3-month time 

period, 19 for the 6-months, and 32 for the 12-month period, as shown in Table 4. 

 

 

Table 4: Change in qualifying subjects in various FEC modes 

Number of subjects 

 FEC1 FEC2 Change 
3 months 43 24 -44% 
6 months 37 19 -49% 

12 months 38 32 -16% 
 

The LERN ratio of 0.94 or serves as a threshold for determining when a particular 

volume of the lung is considered damaged.  In assessing overall damage to a larger volume such 

as a lobe, a distribution of voxel based LERN ratios must be considered.  Figure 8 shows the 

correction effort methods (ETV, ELV, FEC1, FEC2)  and the extent of damage revealed over a 

range of thresholds. 
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Figure 8:  The relationship between a damage threshold and the amount of lobe that meets that 

threshold for four different effort correction approaches, along with linear fit lines. 

 Below .90 LERN the amount of damage is within a standard deviation of zero. Although 

it was initially hypothesized that the distribution might exhibit bimodal characteristics or 

secondary peaks near the tail, the observed data revealed a strongly unimodal, centrally peaked 

distribution. The region under investigation demonstrated a nearly linear ascent toward the 

central maximum, fitting well to a linear model. The results of the Bimodal Coefficient revealed 

an average value of 0.34 ± 0.07.  This is approximately three standard deviations below the 

unimodal threshold value of BC > .555, indicating a strong unimodularity. [28]  Of all the lobes 

only 1.3% were above the threshold that might indicate bimodality.   As a result, there is no 

compelling need to apply continuity corrections to the metric. Within this region, the area under 
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the curve closely approximates the average value, supporting the use of straightforward 

averaging without further transformation. 

Table 5:  Damage amounts based on different thresholds at the 12-month time period. (n=32)  

Data is for the most irradiated lobe for each subject 

 

. Table 6:  Damage amounts based on different thresholds at the 12 month time period. (n=31)  

Data is for the reference lobe for each subject, typically the lobe that receives the least amount of 

dose. 

 

 

 Tables 5 and 6 presents the amount of damaged voxels in a lobe, either the highest dosed, 

or the reference lobe for effort correction.  A Student-T test results are displayed to compare the 

four methods (ETV, ELV, FEC1, and FEC2).  A statistically significant difference at the  α = 0.05 

level is found between FEC1 and ELV as well as FEC1 and FEC2.  At all thresholds FEC2 

reveals  less damage than FEC1. 
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4.2  Damage over Time with FEC and ETV 

For the first set of results the FEC1 and FEC2 are compared with ETV.  Each plot 

includes timepoints of 3, 6, and 12 months.  Two sets of comparison are made.   The first 

compares the most irradiated lobe for all the subjects.  The most irradiated lobe varies between 

subject but the point of comparison is that these are the lobe that received the most amount or 

dose and therefore should suffer the greatest amount of radiation induced injury.  The second 

comparison is with the reference lobe.  This is typically, but not always the lobe receiving the 

least amount of radiation.  This is particularly meaningful for the FEC method since it is based 

on examining a relatively unaffected region of the lung to account for change related to effort.  

Furthermore, both change in LERN and amount of volume of lung damage (defined as % of 

voxels where LERN ratio < 0.94) are compared. 
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FEC v. ETV ( most irradiated lobe) 

 

Figure 9:  Box plot showing the distribution of LERN ratio at different time points.  FEC1, 

FEC2 and ETV are compared for the most irradiated lobe, where damage is expected to be 

greatest. 
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Figure 10:  Box plot showing the distribution of amount of lobe damage at different time points.  

FEC1, FEC2 and ETV are compared for the most irradiated lobe, where damage is expected to 

be greatest. 

 

Table 7:  Comparison at LERN ratio at 3 months between FEC1, FEC2 and ETV for most 

irradiated lobe 

 



 

40 
 

Table 8:  Comparison at LERN ratio at 6 months between FEC1, FEC2 and ETV for most 

irradiated lobe 

 

 

Table 9:  Comparison at LERN ratio at 12 months between FEC1, FEC2 and ETV for most 

irradiated lobe 
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For the most irradiated lobe there is a statistically significant difference between FEC1 

and ETV at all time points.  There is no difference between FEC2 and ETV at any of the points.  

There is a significant decrease in damage between FEC1 and FEC2.  Overall there is no 

noticeable trend over the three time points. 

FEC v. ETV ( Reference lobe) 

In the following plots (Figures 11 and 12) and tables (Tables 10-12) the comparison 

between FEC methods and ELV is done by examining the reference lobe.  The particular lobe 

may vary between subjects but they are selected because it is believe they have suffered the least 

amount of radiation damage and are large enough to make a good comparison. 

 

Figure 11:  Box plot showing the distribution of LERN ratio at different time points.  FEC1, 

FEC2 and ETV are compared for the reference lobe, where damage is expected to be least. 



 

42 
 

 

Figure 12:  Box plot showing the distribution of amount of lobe damage at different time points.  

FEC1, FEC2 and ETV are compared for the reference lobe, where damage is expected to be 

least. 
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Table 10:  Comparison at LERN ratio at 3 months between FEC1, FEC2 and ETV for reference 

lobe. 

 

 

Table 11:  Comparison at LERN ratio at 6 months between FEC1, FEC2 and ETV for reference 

lobe. 
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Table 12:  Comparison at LERN ratio at 12 months between FEC1, FEC2 and ETV for reference 

lobe. 

 

 

For the reference lobe there is a statistically significant difference between FEC1 and 

ETV at all time points.  There is no difference between FEC2 and ETV at any of the points.  

There is a significant decrease in damage between FEC1 and FEC2.  Overall there is no 

noticeable trend over the three time points. 

4.3  Damage over Time with FEC and ELV 

For the first set of results the FEC1 and FEC2 are compared with ELV.  Each plot 

includes time points of 3, 6, and 12 months.  Two sets of comparison are made.   The first 

compare the most irradiated lobe for all the subjects.  The most irradiated lobe varies between 

subject but the point of comparison is that these are the lobe that received the most amount or 

dose and therefore should suffer the greatest amount of radiation induced injury.  The second 

comparison is with the reference lobe.  This is typically, but not always the lobe receiving the 

least amount of radiation.  This is particularly meaningful for the FEC method since it is based 
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on examining a relatively unaffected region of the lung to account for change related to effort.  

Furthermore, both change in LERN and amount of volume of lung damage (defined as % of 

voxels where LERN ratio < 0.94) are compared. 

FEC v. ELV ( most irradiated lobe) 

 

Figure 13:  Box plot showing the distribution of LERN ratio at different time points.  FEC1, 

FEC2 and ELV are compared for the most irradiated lobe, where damage is expected to be 

greatest. 



 

46 
 

 

Figure 14:  Box plot showing the distribution of amount of lobe damage at different time points.  

FEC1, FEC2 and ELV are compared for the most irradiated lobe, where damage is expected to be 

greatest. 

Table 13:  Comparison at LERN ratio at 3 months between FEC1, FEC2 and ELV for most 

irradiated lobe. 
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Table 14:  Comparison at LERN ratio at 6 months between FEC1, FEC2 and ELV for most 

irradiated lobe. 

 

 

Table 15:  Comparison at LERN ratio at 12 months between FEC1, FEC2 and ELV for most 

irradiated lobe. 

 

For the most irradiated lobe there is a statistically significant difference between FEC1 

and ELVV at all time points.  There is no difference between FEC2 and ETV at any of the points.  
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There is a significant decrease in damage between FEC1 and FEC2.  Overall there is no 

noticeable trend over the three time points. 

FEC v. ELV ( Reference lobe) 

 In the following plots (Figures 15 and 16) and tables (Tables 16-18) the comparison 

between FEC methods and ELV is done by examining the reference lobe.  The lobe may vary 

between subjects but they are selected because it is believe they have suffered the least amount 

of radiation damage and are large enough to make a good comparison. 

 

Figure 15:  Box plot showing the distribution of LERN ratio at different time points.  FEC1, 

FEC2 and ELV are compared for the reference lobe, where damage is expected to be least. 
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Figure 16:  Box plot showing the distribution of amount of lobe damage at different time points.  

FEC1, FEC2 and ELV are compared for the reference lobe, where damage is expected to be 

least. 
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Table 16:  Comparison at LERN ratio at 3 months between FEC1, FEC2 and ELV for reference 

lobe. 

 

 

Table 17:  Comparison at LERN ratio at 6 months between FEC1, FEC2 and ELV for reference 

lobe. 
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Table 18:  Comparison at LERN ratio at 12 months between FEC1, FEC2 and ELV for reference 

lobe. 

 

 

For the reference lobe there is a statistically significant difference between FEC1 and 

ELV at all time points.  There is no difference between FEC2 and ELV at any of the points.  

There is a significant decrease in damage between FEC1 and FEC2.  Overall there is no 

noticeable trend over the three time points. 

4.4  Results of Avoiding Interscan Registration 

 The results of processing the FEC2 dataset by applying separate pre-RT and post-RT lobe 

masks and then calculating lobe average LERN ratios is displayed in Figure 18 with the 

tabulated averages in Table 20.  These results are also compared to the FEC1 voxelwise results.  

This information provides a direct contrast based on the removal of registration uncertainty.  The 

data is based on the reference lobe.  We expect to see LERN ratios near unity for the reference 

lobe since it selected precisely because it is not expected to have undergone radiation injury. 
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Figure 18.  LERN ratio for FEC1, FEC2 and FEC2 (No Interscan Registration).  The most 

relevant comparison  is between the purple and yellow bars.  Without registration uncertainty the 

same base scans reveal a tighter grouping and LERN ratio values closer to 1.000. 
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Table 20:  Show the average, standard deviation, and median LERN ratio for lobes based 

on FEC1, FEC2 and FEC2 (No Interscan Registration).  Both average and median values 

for FEC2 (No Interscan Registration) are closer to 1.000 than FEC2 using Interscan 

Registration. 

.  
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5.  DISCUSSION 

The primary objective of this study is to evaluate FEC at different time periods post-RT 

and to determine if it is more effective at revealing radiation induced lung damage than prior 

methods of ETV and ELV.  Different parameters of the FEC model were altered (FEC1 and 

FEC2) allowing for a comparison between approaches.  The Python scripts developed provide a 

compact and easily analyzed set of data structures that can be employed to test different FEC 

algorithms with dose at the lobar level. 

First a set damage threshold of LERN ratio < 0.94 was established based on prior studies 

and an analysis of LERN distributions.  The value of 0.94 is calculated from the variance in 

nearly contemporaneous pre-RT scans, revealing a 6% standard deviation from 1.000.  Based on 

a Gaussian distribution, approximately 68% of LERN ratio measurements would be expected to 

fall within that 6% standard deviation.  Values below 0.94 would only occur through random 

uncertainty about 16% of the time.  Most values below this point could be attributed to radiation 

damage. 

Prior to this study it was uncertain whether an FEC approach would result in a unimodal 

distribution of damage.  If the distribution matched a non-Gaussian or multi-modal profile, then 

using a simple threshold may not be as revealing as other measures.  A damage score metric was 

proposed that might be more informative, based on an integral approach.  An accumulated 

damage score may indicate a greater extent of damage than a simple count of damaged voxels 

based on a single threshold. 
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The results, however, indicate that the distributions are unimodal and that the amount of 

damage fits with a linear profile over LERN ratios less than unity.  Figure 8 shows a clear linear 

pattern without bimodalism.  This profile could mask a uniform distribution of bimodal peaks 

through the damage range of 0.90-0.98 LERN, so it was necessary to analyze distributions 

individually.  Employing the statistical approach of Bimodal Coefficients (BC), the average 

value of BC was 0.34 ± .07, well below an expected unimodal value of approximately 0.555.  A 

bimodal distribution is only suspected above that value.  98.3% of all lobes analyzed had a value 

below this, strongly indicating unimodal behavior 

With a linear relationship between LERN ratio and damage, and no indications of 

bimodalism, the utility of an integrated damage score is obviated.  A straightforward inequality 

metric suffices to inform the amount of damage being measured.  There is no ground truth for 

damage with this data, making an accurate selection of a threshold an uncertain process.  Based 

on the previous study on pre-RT reproducibility the value of 0.94 was selected for the rest of the 

analysis in this work.  The multidimensional histograms used, however, require no alterations 

based on the threshold selection.  It is a simple matter to generate results based on any threshold 

desired which will support future investigations. 

FEC2 relies on a smaller extrapolation volume and results in a reduced amount of 

damage found.  This is a useful result and can guide further refinements of the algorithm.  

Noticeably, the change in methods resulted in a change from FEC showing significantly higher 

damaged volume in FEC1, to showing statistically higher LERN ratio (less damage) in FEC2.  

FEC hypothesizes that damage is masked in ETV and ELV due to scaling on regions of the lung 

based on damaged regions of the lung.  Finding less damage with FEC2 as compared to FEC1 is 

somewhat unexpected but it is revealing as to the sensitivity of the FEC approach.  FEC2 uses 



 

56 
 

smaller extrapolation volumes than FEC1 pointing to a strong correlation between that volume 

and overall measured damage.  However, more scrutiny is needed in assessing these outcomes. 

The range and standard deviations for both LERN and percentage of lobe damage are 

very large in the case of FEC.  7 of the 32 subjects with data at the 12 month timepoint had an 

average LERN of greater than or less 10%  for the reference lobe.  By definition, the reference 

lobe is expected to normalize to near 1.000 LERN.  A systematic review of the subject and 

sources of uncertainty may provide justification for exclusion of these subjects. 

Throughout the course of the FEC reference region identification, extrapolation 

calculations, image registration, and warping of transformation, uncertainty is introduced.  

Although lobe segmentation is more certain than sublobe segmentation, it is still infallible.  

Fissures are not always clear or captured.  In the original FEC, ΔV is scaled for the lobe based on 

lung-wide changes.  This assumes that each lobe expands or shrinks proportionally to its volume 

fraction, but real lung may ventilate unequally due to disease, anatomy, or positioning.  FEC2 

reduces this uncertainty by using actual tidal volume, but the functional threshold value of 40% 

is a conservative estimate and has not been thoroughly tested.  Finally, in the LERN warping 

process there is always a degree of uncertainty that stems from deformable registration 

inaccuracies, interpolation artifacts, and the misalignment of functionally significant regions. 

The comparisons between FEC2 and FEC2 without interscan registrations show a clear 

effect of this introduced uncertainty.  Any registration process introduced uncertainty into the 

results.  Interscan registration is inherently more uncertain than intrascan registration.  Interscan 

occurs months after the subject has undergone radiation therapy.  Anatomy will change from 

RILI, tumor control, or other non-related factors.  The voxel intensities will likely always be less 

similar than a intrascan differences.   
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Table 20 shows that the reference lobe for FEC2 is showing higher LERN ratios while 

using interscan registration, approximately 3-4% above unity.  By removing interscan 

registration uncertainty the medians and average are much closer to unity, around 1%.  That is as 

expected since the FEC reference lobe selection process is designed to identify regions that are 

unaffected by radiation.  Using this approach, however, precludes a voxel level analysis.  One 

area for further study would be to use the no interscan registration procedure on the FEC1 dataset 

and compare. 

Another topic to consider for future work is trying to explain the relatively higher LERN 

ratio values seen with FEC2 by considering the nature of the metric in the presence of 

unchanging tidal volume with decreases lung volumes.  Typically, lung volumes decline after 

radiation therapy and that has been observed with this dataset.  Recent investigations also reveal 

that the tidal volumes are relatively consistent over time even with shrinking volumes.  This may 

result in an augmentation of the LERN ratio without a true reflection of physiological behavior.  

There may be an unaccounted-for modification of the workflow to account for this scenario and 

should be comprehensively examined. 

Quantitative analysis of uncertainties may lead to refinement of the FEC approach.  A 

greater number of subjects may also reduce the standard deviation of results and more useful 

conclusions.  The alteration of the FEC method led to the exclusion of a significant number of 

subjects.  It’s possible that the tighter constraints of FEC2 properly excluded subjects that were 

viable under FEC1’s approach and leads to more certain results.  However, a detailed 

investigation may provide justification for the reintroduction of more patients and thus provide 

more subjects for comparison.  Furthermore, finding additional subjects through the accounting 

of improper segmentation or image artifacts may improve the model’s predictive power. 
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 The original FEC method contemplated sublobe identification for a reference region.  

Current techniques of segmentation down to that level of functional region are inadequate.  

Further development however, may yield more precision in the results as lobar complexities may 

confound the benefits provided by the non-irradiated reference region. 

 No trends over time were observed.  At each time point damage was registered but no 

pattern emerged as to difference between 3, 6, and 12 months.  Lung toxicities such as radiation 

pneumonitis and pulmonary fibrosis manifest and subside on different time scales.  Additionally, 

indirect damage further complicates the analysis.  Radiation induced damage of an airway may 

yield to volume changes and implied damage in a different section of the lung.  When examining 

how damage changed over time there were no discernable trend over time.  The spread of 

damage measured is large and may be refined with more subjects that could tease out time-

related effects.  A further study might be possible if enough subjects with known clinical 

outcomes come be identified and teased out of the larger dataset. 

 There are opportunities for future work to further develop and test FEC.  Improved 

segmentation techniques at both the lobar and sublobar level may yield more certain results.  A 

systemic review of segmentation through direct visualization and examination may lead to a 

rejection or reassessment of candidates that may serve to reduce the range of result, producing 

greater certainty and confidence.  Once there is more confidence in effort correction an analysis 

of airways may lead to better modelling of indirect damage. 
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5.  CONCLUSION 

 This study served as a functional stress test for successive refinements to the FEC method 

and its comparison with existing effort correction techniques such as ETV and ELV. Although the 

current results do not demonstrate a consistent or statistically significant advantage for FEC in 

detecting greater lung damage, they highlight key areas of methodological sensitivity and 

variability. Importantly, the development of flexible Python tools and a structured data output 

format enables streamlined analysis and testing of future algorithmic improvements. These 

resources position the FEC framework for ongoing refinement, deeper integration with dose 

analysis at the lobar level, and potential clinical application as segmentation, registration, and 

subject characterization continue to advance. 
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Appendix  

Script Availability: Scripts for all portions of our work are available upon request from Bayouth 

Lab. 


