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Abstract 
 
This study evaluated the predictive value of wearable-derived autonomic function metrics 

(WOMAFs) for two important metabolic outcomes: Type 2 Diabetes Mellitus (T2DM) and liver 

fibrosis associated with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). 

Leveraging the AI-READI dataset, which integrates clinical, laboratory, and wearable data, we 

assessed whether autonomic markers from wearable devices and resting electrocardiograms 

(ECGs)—including adjusted heart rate variability (HRV) measures (SDNN, RMSSD), Garmin 

stress scores, pulse-respiratory quotient (PRQ), and sleep efficiency ratio (SER)—could identify 

individuals at risk for T2DM and liver fibrosis, the latter estimated via the Steatosis-Associated 

Fibrosis Estimator (SAFE) score. Participants were categorized into low- and intermediate-high-

risk groups based on SAFE scores. Logistic regression models combining WOMAFs, ECG-

HRV, and anthropometric measures (body mass index, waist-hip ratio, and waist circumference) 

demonstrated moderate accuracy in predicting both outcomes. While WOMAFs alone showed 

limited predictive capacity, their integration with traditional clinical markers improved non-

invasive risk stratification. These findings highlight the potential of combining wearable and 

clinical data to enhance screening for T2DM and MASLD-related liver fibrosis.  
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1. Introduction 
 
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder marked by insulin resistance 

and progressive beta-cell dysfunction, leading to hyperglycemia and widespread systemic 

complications.1 T2DM affects over 38 million Americans—approximately one in ten—and 

accounts for 95% of all diabetes cases.2 Its prevalence continues to grow globally, driven by 

factors such as obesity, sedentary lifestyles, poor diet, environmental exposures, and chronic 

stress, all of which contribute to cardiometabolic dysfunction.3 T2DM significantly increases the 

risk of macro- and microvascular complications, including cardiovascular disease (CVD), 

chronic kidney disease (CKD), neuropathy, retinopathy, and impaired wound healing.4–6  

 

An often-overlooked complication of T2DM is metabolic dysfunction-associated steatotic liver 

disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD).7,8 MASLD 

represents the hepatic manifestation of metabolic syndrome and affects nearly 38% of adults 

worldwide, increasing the risk for cirrhosis, liver cancer, and the need for liver 

transplantation.9,10 MASLD is defined by hepatic steatosis in the absence of significant alcohol 

consumption, typically co-occurring with cardiometabolic risk factors such as obesity, 

hypertension, or dyslipidemia.8 Notably, MASLD can also affect individuals with a normal body 

mass index ("lean MASLD”), likely due to visceral adiposity and insulin resistance.11  

 

While simple hepatic steatosis is often benign, approximately 20% of MASLD cases progress to 

steatohepatitis (MASH) and liver fibrosis, substantially increasing the risk of cirrhosis and 

hepatocellular carcinoma.10 Both MASLD and T2DM independently elevate the risk of CVD, 

CKD, and premature mortality.12,13 Although fibrosis progression may be reversible with lifestyle 

modifications or emerging pharmacotherapies, current diagnostic tools often lack sensitivity for 

early detection.14–16 The presence of T2DM further accelerates fibrotic progression, which points 

to the need for improved risk stratification.17 

 

Dysfunction in the autonomic nervous system (ANS) is increasingly recognized as a shared 

pathophysiological mechanism in both T2DM and MASLD. Autonomic imbalance characterized 

by heightened sympathetic activity and diminished parasympathetic tone is associated with 

insulin resistance, systemic inflammation, and cardiometabolic complications.18,19 Advances in 
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wearable technologies now allow for the non-invasive assessment of autonomic function through 

metrics such as heart rate variability (HRV), pulse-respiratory quotient (PRQ), and sleep 

efficiency.20,21  

 

This capstone project evaluates whether wearable-obtained autonomic metrics (WOMAFs) can 

enhance risk prediction for T2DM and liver fibrosis using clinical and wearable data from the 

NIH-funded AI-READI dataset.22 Specifically, we examine associations between WOMAFs—

including ECG-derived HRV, Garmin stress scores, PRQ, and sleep efficiency—and validated 

indices such as the Steatosis-Associated Fibrosis Estimator (SAFE) score. Logistic regression 

models are used to assess whether these non-invasive, physiological signals can improve 

identification of individuals at risk. This work contributes to a salutogenic digital health 

paradigm, emphasizing early detection and resilience-oriented prevention strategies.23,24  

 

2. Background 
 
2.1 Pathophysiology of T2DM and MASLD Progression 

The rising prevalence of T2DM, MASLD and MASH is largely driven by obesogenic 

environments characterized by high-calorie, ultra-processed diets, sedentary lifestyles, 

urbanization, exposure to environmental toxins, and chronic psychological stress—often 

compounded by disrupted sleep patterns.25,26 T2DM and MASLD are increasingly recognized as 

systemic metabolic disorders, closely linked to insulin resistance, chronic inflammation, and 

dysregulated lipid metabolism.27  

 

In MASLD, progression from simple steatosis to fibrosis is driven by a constellation of 

interconnected mechanisms, collectively described by the “multiple-hit hypothesis.” These 

include genetic predisposition, epigenetic modifications, neuroendocrine-immune dysregulation, 

altered hepatic lipid metabolism, and gut microbiome disturbances.28–30 Together, these factors 

promote hepatic lipid accumulation, immune activation, and fibrogenesis. 

 

Insulin resistance play a central role in the development of MASLD by enhancing hepatic de 

novo lipogenesis and impairing lipid oxidation, leading to excessive buildup of triglycerides and 

free fatty acids within hepatocytes.31,32 This lipid overload promotes the formation of toxic lipid 
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species—such as diacylglycerols (DAGs) and ceramides—which trigger lipotoxicity, oxidative 

stress, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and ferroptosis.33,34 These 

cellular stressors activate the immune system, recruiting both innate (e.g., Kupffer cells, 

macrophages, and natural killer (NK) cells) and adaptive (T and B lymphocytes) immune cells 

that release pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-17A.35,36  

 

This chronic inflammatory state is further exacerbated by gut-liver axis dysfunction. Increased 

intestinal permeability allows endotoxins and microbial metabolites to enter the portal 

circulation, stimulating hepatic immune responses.37 These overlapping inflammatory pathways 

converge to activate hepatic stellate cells (HSCs), promoting their transdifferentiation into 

myofibroblasts that secrete extracellular matrix (ECM) proteins, ultimately leading to fibrosis, 

hepatocellular injury, and progressive liver dysfunction.28,38,39  

 

2.2 Autonomic Nervous System (ANS) Dysregulation in T2DM and MASLD 

Beyond metabolic disturbances, dysfunction of the autonomic nervous system (ANS) is 

increasingly recognized as a contributor to the progression of both T2DM and MASLD.33 The 

ANS, a key regulator of the gut-liver-brain axis, orchestrates neuroendocrine, immune, and 

metabolic processes through its afferent (sensory) and efferent (motor) pathways. Afferent fibers 

relay visceral signals—such as hormones, cytokines, nutrients—to the hypothalamus, while 

efferent sympathetic (via the celiac ganglion) and parasympathetic (via the vagus nerve) fibers 

modulate hepatic metabolism, immune activity, detoxification, and regeneration.33,40,41 

Disruption of this liver-brain communication, as seen in hepatic denervation following liver 

transplantation, has been linked to obesity, dyslipidemia, and increased incidence of T2DM, 

underscoring the ANS’s essential role in maintaining metabolic homeostasis.33,42,43   

 

Dysautonomia—marked by sympathetic overactivity and diminished vagal tone—is commonly 

observed in both T2DM and MASLD and has been linked to the progression of liver fibrosis.44 

Insulin resistance and obesogenic signals stimulate hypothalamic centers, increasing sympathetic 

nervous system (SNS) activity and norepinephrine release, which in turn exacerbate hepatic 

steatosis, lipotoxicity, inflammation, and oxidative stress.33 In animal models hepatic 

sympathetic denervation reverses obesity-induced steatosis and reduces liver triglyceride 
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accumulation in the context of high-fat diet-induced obesity, highlighting the pathological role of 

SNS overactivation. Conversely, parasympathetic activation—via vagus nerve stimulation or 

cholinergic agonists—attenuates hepatic inflammation and lipid accumulation through the 

cholinergic anti-inflammatory response.45  

 

Sleep disturbances are increasingly recognized as markers of ANS imbalance and are closely 

associated with both T2DM and MASLD.46 Normal sleep architecture is characterized by 

parasympathetic predominance during non-rapid-eye-movement (NREM) sleep—marked by 

reduced heart rate and blood pressure—followed by sympathetic dominance during rapid-eye-

movement (REM) sleep.46 In individuals with T2DM and MASLD, disrupted sleep patterns—

including poor sleep quality, fragmentation, and reduced sleep efficiency—further exacerbate 

ANS dysregulation, contributing to hepatic inflammation and fibrosis.47,48  

 

2.3 Wearable-Obtained Metrics of Autonomic Function (WOMAFs) 

Given the prominent role of autonomic imbalance in the progression of T2DM and MASLD—

characterized by increased sympathetic activity, reduced vagal tone, and disrupted sleep—

physiological markers of autonomic function may offer valuable insight into disease severity and 

fibrosis risk. Advances in wearable technology now allow for continuous, non-invasive 

monitoring of autonomic indicators such as heart rate variability (HRV), pulse-respiratory 

quotient (PRQ), sleep quality. These wearable-obtained metrics of autonomic function 

(WOMAFs) provide a unique opportunity to assess real-time autonomic regulation in both active 

and resting states. Notably, they may serve as early indicators of insulin resistance, hepatic 

dysfunction, and fibrosis progression.  

 

Heart Rate Variability (HRV) 

HRV is a widely used non-invasive index of ANS function, representing the dynamic balance 

between sympathetic (SNS) and parasympathetic (PNS) activity.49 Unlike the regular ticking of a 

metronome, a healthy heart exhibits beat-to-beat variability, indicating a flexible autonomic 

system capable of adapting to internal and external stressors.50,51 Reduced HRV reflects 

diminished adaptability and has been consistently associated with chronic stress, systemic 

inflammation, and autonomic dysfunction in metabolic disease.52,53  
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HRV is derived from variability in the R-R intervals (the time between successive heartbeats) 

and can be quantified using time-domain (e.g., SDNN, RMSSD), frequency domain (e.g., LF, 

HF, LF/HF ratio), and nonlinear methods.50  While clinical and research settings often rely on 

24-hour Holter monitoring, wearable devices enable ultra-short recordings, making HRV a 

scalable tool for population health surveillance.49 In both T2DM and MASLD, reduced HRV—

particularly in parasympathetic indices like RMSSD and HF—is associated with greater insulin 

resistance, elevated fibrosis scores, and worse cardiovascular outcomes.54,55 

 

Sleep Metrics 

Sleep disturbances—including fragmentation, poor efficiency, and circadian misalignment—are 

closely tied to ANS dysregulation and may accelerate progression of MASLD and T2DM. 

Wearables now offer validated proxies for sleep architecture using actigraphy and 

photoplethysmography.56 Patients with MASLD often exhibit increased nocturnal awakenings 

and altered sleep-wake cycles, which promote sympathetic overactivity, hepatic inflammation, 

and fibrotic remodeling.47 Similarly, individuals with T2DM frequently demonstrate abnormal 

sleep patterns, especially reduced REM sleep and increased sleep apnea, which impair glycemic 

control and exacerbate insulin resistance.57  

 

The bidirectional relationship between sleep and autonomic regulation, where poor sleep 

worsens ANS dysfunction and autonomic imbalance disrupts sleep quality, underscores the 

importance of sleep metrics as a core component of WOMAFs for metabolic liver disease risk 

assessment.  

 

Pulse-Respiratory Quotient (PRQ) 

The PRQ, defined as the ratio of heart rate to respiratory rate, is an emerging biomarker for 

assessing autonomic tone and cardiopulmonary coupling in real time.58 Unlike HRV, PRQ 

responds rapidly to changes in posture and breathing patterns, making it well-suited for capturing 

short-term shifts in sympathetic and parasympathetic balance.58,59  

 

While direct evidence linking PRQ to T2DM or MASLD is limited, its physiological 
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relevance—particularly in detecting acute autonomic fluctuations—positions it as a promising 

candidate for non-invasive fibrosis risk stratification.  In MASLD, sympathetic overactivation 

and reduced vagal tone are central features of fibrotic progression and PRQ may detect these 

changes more dynamically than HRV alone.60 Likewise, in T2DM, where autonomic 

dysregulation exacerbates glycemic variability and inflammation, PRQ could serve as an early 

warning signal of metabolic instability.61   

 

2.4 Assessment of Fibrosis in MASLD 

Fibrosis severity in MASLD is graded histologically from F0 (no fibrosis) to F4 (cirrhosis), with 

stages F2 and above (F2+) representing clinically significant fibrosis.62 F2+ fibrosis is the 

strongest predictor of liver-related complications and cardiovascular mortality.10 Notably, an 

estimated 40–50% of individuals with T2DM exhibit advanced fibrosis, emphasizing the urgent 

need for early detection and accurate risk stratification to reduce morbidity and mortality.63  

 

While liver biopsy remains the diagnostic gold standard for assessing MASLD and MASH, its 

invasiveness, sampling variability, and limited scalability make it impractical for routine or 

large-scale screening.64 These limitations have spurred the development of reliable, non-invasive 

alternatives.   

 

Imaging-Based Modalities 

Vibration-Controlled Transient Elastography (VCTE), commonly performed using FibroScan, is 

widely used for non-invasive fibrosis assessment.65 It measures liver stiffness as a surrogate for 

fibrosis severity and demonstrates strong diagnostic accuracy, with an area under the curve 

(AUC) of 0.83 for detecting F2+ fibrosis.64 Magnetic Resonance Imaging-Proton Density Fat 

Fraction (MRI-PDFF), which quantifies hepatic fat and metabolic dysfunction, achieves even 

higher AUCs (>0.93) in validation studies.64  However, both imaging approaches face barriers to 

routine implementation due to high cost and limited accessibility, limiting their feasibly for 

widespread screening and longitudinal monitoring.   
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Serum-Based Biomarkers 

Serologic models have gained favor for their accessibility, low cost, and scalability. These 

include indirect markers (e.g., APRI, FIB-4, NAFLD Fibrosis Score, and Steatosis-Associated 

Fibrosis Estimator [SAFE]) and direct markers of extracellular matrix turnover and 

fibrogenesis.66  While direct markers may offer mechanistic insights, they are less frequently 

used due to higher costs and limited availability.67 Indirect panels, though more widely used, can 

produce false positives in low-prevalence populations.68   

 

Among these, the SAFE score stands out as a robust multivariable logistic regression model 

designed to estimate the probability of clinically significant fibrosis.69,70 It multiple clinical and 

laboratory variables—including age, BMI (capped at 40), diabetes status, AST, ALT, globulin, 

and platelet count—providing a comprehensive risk estimate. Validation studies report AUCs 

ranging between 0.84 and 0.88, with SAFE scores <0.00 showing strong negative predictive 

value (>90%) for excluding significant fibrosis across diverse populations.70 

 

This study adopts the SAFE score as a non-invasive, scalable tool for fibrosis risk estimation in 

populations at elevated cardiometabolic risk.  By integrating the SAFE score with wearable-

obtained metrics of autonomic function (WOMAFs)—including heart rate variability (HRV), 

stress indictors, and sleep efficiency—this work seeks proposes a novel framework for early 

fibrosis risk stratification.  Such integration may enhance detection of high-risk individuals and 

inform more personalized, preventive strategies for MASLD and its complications.  
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3. Methods 
 
3.1 Study Design and Population 

This retrospective, cross-sectional study involved a secondary analysis of the publicly available 

portion of the AI-READI dataset. The primary objective was to evaluate the association between 

autonomic function metrics—derived from wearable devices and resting ECG recordings—and 

the risk of type 2 diabetes mellitus (T2DM) and clinically significant liver fibrosis in individuals 

with metabolic dysfunction-associated steatotic liver disease (MASLD). 

 

T2DM status was based on documented clinical diagnoses, while fibrosis risk was assessed using 

the Steatosis-Associated Fibrosis Estimator (SAFE) score. No new data collection or participant 

interaction was performed in this analysis. 

 

The AI-READI dataset was developed under the NIH Bridge2AI Program to support artificial 

intelligence and machine learning (AI/ML) research in metabolic health. The publicly accessible 

dataset includes survey data (demographics, lifestyle, environmental exposures), laboratory 

results (blood and urine), wearable-derived metrics (e.g., Garmin stress score, sleep efficiency, 

heart and respiratory rate), 10-second resting ECG recordings, retinal images, and environmental 

air quality data. Restricted-access elements—such as zip codes, detailed demographics (sex, 

race, ethnicity), medication history, and full medical records—were not available. Birth years 

were provided that allowed estimation of participant age within ±6 months. 

 

A total of 1,077 participants were recruited from three U.S. sites by March 2025. Eligible 

individuals were aged ≥40 years, English-speaking, capable of providing informed consent, and 

either diagnosed with T2DM or at elevated risk for developing it. Exclusion criteria included 

pregnancy, gestational diabetes, type 1 diabetes, and missing wearable data. Participants with 

incomplete key variables or physiologically implausible heart rate variability (HRV) values—

defined as SDNN or RMSSD < 100 milliseconds, likely due to ectopic beats in the short ECG 

recordings—were also excluded. The final analytic sample included 740 participants (Figure 1). 

 

Participants were stratified into low- and high-risk groups for both T2DM and liver fibrosis. 

T2DM status was classified based on clinical diagnosis. Fibrosis risk was categorized using the 
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SAFE score: low risk (< 0.00) and high risk (≥ 0.00). Ethical approval and informed consent 

were obtained in the original AI-READI study protocol. 

 

 
 
Figure 1. Flow diagram of participant selection. Of 1,077 participants, those missing values for 
key variables (e.g., waist-hip ratio, waist circumference, Garmin stress score, pulse-respiratory 
quotient, sleep efficiency ratio, HRV metrics [log-transformed SDNN and RMSSD], and SAFE 
score) were excluded (n = 266), yielding 811 participants. After removing records with non-
physiologic HRV values (SDNN and RMSSD < 100 ms), 740 participants remained in the final 
analytic sample. 
 
 
3.2 Data Acquisition, Preprocessing, Variable Calculation 

This study integrated wearable-derived autonomic metrics, ECG-based heart rate variability 

measures, and clinical/laboratory data to evaluate associations with type 2 diabetes (T2DM) and 

liver fibrosis risk. Variables were derived through standardized preprocessing and calculation 

pipelines, detailed below. 

 

Wearable-Obtained Autonomic Metrics (WOMAFs) 

Autonomic data were obtained from the Garmin Vivosmart 5 device, which uses the proprietary 

Firstbeat Analytics algorithm. The following metrics were extracted and averaged across days: 
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- Garmin Stress Score: Quantifies autonomic balance on a scale from 0 to 100, with 

scores >25 indicating increased sympathetic activity. Values of -1 or -2, representing 

motion or uncertainty artifacts, were excluded. 

 

- Pulse Respiratory Quotient (PRQ): Calculated as the daily average ratio of heart rate to 

respiratory rate. Higher PRQ values indicate sympathetic predominance while lower 

values suggest increased parasympathetic tone.  

 

- Sleep Efficiency Ratio (SER): Computed from actigraphy-based sleep staging using the 

following formula: 

 

SER = [(Light + Deep + REM) / (Light + Deep + REM + Awake)]×100 

 

Higher SER values reflect improved sleep quality and increased parasympathetic activity. 

 

Wearable JSON data were parsed using Python’s orjson library (v3.10.15). Participants with 

fewer than two valid days of data were excluded. Multi-day averages were used to reduce intra-

individual variability. 

 

ECG-Derived Metrics  

Resting ECG data were recorded using the Philips PageWriter TC30 system in a supine or 30° 

semi-reclined position. Raw XML files were converted to WFDB format and analyzed using 

wfdb (v4.1.2) and NeuroKit2 (v0.2.10) Python libraries. Lead XI was selected for analysis based 

on signal consistency.  

 

SDNN and RMSSD were computed from the 10-second ECG segments, with the final second 

excluded to minimize motion artifacts. Values >100 ms—likely due to ectopic beats or signal 

noise—were removed. Both measures were log-transformed and normalized to resting heart rate 

to approximate a Gaussian distribution. 
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Liver Fibrosis Risk Estimation (SAFE Score) 

The Steatosis-Associated Fibrosis Estimator (SAFE) score was calculated the following 

validated formula:  

 
SAFE = 2.97(age) + 5.99(BMI) + 62.85(diabetes) + 154.85ln(AST) – 58.23ln(ALT) + 

195.48ln(globulin) – 141.61ln(platelets) -75 
 
Participants were categorized as either low risk (<0.00) or intermediate-to-high risk (≥0.00) for 

clinically significant fibrosis. 

 

Summary of Variables 

Table 2 outlines all predictor and outcome variables used in this analysis, including their data 

sources and definitions. 

 
 
Table 2: Predictor and Target Variables  
 
Variable Source Type Description 
Garmin Stress Score Wearable device Predictor Average daily HRV-derived stress score 

 
Pulse Respiratory Quotient 
(PRQ) 
 

Wearable device Predictor Average HR-to-respiratory rate ratio 
 

Sleep Efficiency Ratio  
(SER) 
 

Wearable device Predictor Sleep efficiency percentage 

SDNN  
(log-normalized) 
 

Resting ECG Predictor Standard deviation of NN intervals  
 

RMSSD  
(log-normalized) 
 

Resting ECG Predictor Root mean square of successive NN 
intervals 
 

T2DM Diagnosis Medical record 
 

Target 
(outcome) 
 

Presence or absence of T2DM diagnosis  

SAFE Score Clinical/lab 
measures 
 

Target 
(outcome) 

Estimated liver fibrosis risk  
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3.3 Statistical Analysis 

All analyses were conducted to ensure data quality, reduce bias, and explore associations 

between autonomic function metrics and metabolic outcomes. After excluding participants with 

missing key variables or invalid sensor data (see Figure 1), the final analytic sample included 

740 participants. 

 

Descriptive statistics were generated for all variables. Continuous variables were summarized as 

means and standard deviations; categorical variables were presented as frequencies and 

percentages. Group comparisons were stratified by T2DM status (diagnosed vs. non-diagnosed) 

and liver fibrosis risk (SAFE score < 0.00 vs. ≥ 0.00). 

 

Distributions of continuous variables—including body mass index (BMI), waist-hip ratio 

(WHR), waist circumference, Garmin stress score, pulse-respiratory quotient (PRQ), sleep 

efficiency ratio (SER), and log-transformed SDNN and RMSSD—were visualized using 

histograms overlaid with kernel density estimates. Target outcomes such as hemoglobin A1c 

(HbA1c) and SAFE score were similarly assessed for distributional characteristics and normality. 

 

Bivariate relationships between predictors and continuous outcomes (HbA1c, SAFE score) were 

assessed using simple linear regression. Multivariable logistic regression was used to evaluate 

associations between predictors and binary outcomes (T2DM diagnosis and SAFE risk category), 

adjusting for relevant clinical covariates where applicable. Model performance was evaluated 

using the area under the receiver operating characteristic curve (ROC-AUC), as well as 

classification metrics including accuracy, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). 

 

To minimize overfitting and improve generalizability, we applied an 80/20 train-test split 

followed by 5-fold stratified cross-validation. Outcome class imbalance was addressed through 

stratified sampling within each fold to preserve class proportions.  

 

All analyses were conducted in Python (v3.9.21) using the following libraries: NumPy (v26.4), 

pandas (v2.2.3), SciPy (v1.13.1), scikit-learn (v1.6.0), statsmodels (v0.14.4), and matplotlib 
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(v3.9.2). Statistical significance was defined as two-tailed p < 0.05. All analyses were 

exploratory in nature and intended to inform future hypothesis-driven studies.    

 

4. Results 
 
4.1 Participant Characteristics  

Table 1 presents the summary of participant characteristics stratified by Type 2 Diabetes Mellitus 

(T2DM) and liver fibrosis risk, as determined by the SAFE score. The final analytic sample 

included 740 participants, with 39% classified as having Type 2 Diabetes Mellitus (T2DM) and 

49% classified as having high liver fibrosis risk based on the SAFE score. 

 

Participants with T2DM were slightly older (61.4 ± 11.0 years vs. 59.4 ± 10.8 years, p = 0.013), 

exhibited higher rates of obesity (52.1% vs. 31.2%, p < 0.001), metabolic syndrome (61.5% vs. 

26.1%, p < 0.001), and hypertension (73.6% vs. 38.9%, p < 0.001) compared to those without 

T2DM. Anthropometric measures, including BMI (33.0 ± 8.5 kg/m² vs. 29.2 ± 7.0 kg/m²), waist-

hip ratio (0.94 ± 0.08 vs. 0.90 ± 0.10), and waist circumference (108.3 ± 16.9 cm vs. 97.0 ± 16.7 

cm), were significantly higher in the T2DM group (all p < 0.001). 

 

Laboratory biomarkers demonstrated worse glycemic profiles among participants with T2DM, 

including higher glucose (128.6 ± 56.9 mg/dL vs. 94.1 ± 25.2 mg/dL) and hemoglobin A1c (6.73 

± 1.32% vs. 5.63 ± 0.57%) levels (p < 0.001 for both). Similarly, participants with high fibrosis 

risk had older age (64.3 ± 10.4 years vs. 56.2 ± 10.0 years, p < 0.001), higher rates of obesity 

(51.2% vs. 27.9%, p < 0.001), and worse cardiometabolic profiles. 

 

Regarding autonomic function, participants with T2DM exhibited significantly higher Garmin 

stress scores (58.5 ± 18.7 vs. 49.3 ± 15.9, p < 0.001) and lower sleep efficiency ratios (74.9% ± 

10.5 vs. 78.2% ± 9.5, p < 0.001). Both SDNN and RMSSD (log-normalized) were markedly 

lower in the T2DM and high fibrosis risk groups (p < 0.001 for all comparisons), indicating 

impaired heart rate variability among individuals with adverse metabolic profiles. 
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SAFE scores were notably higher among participants with T2DM (53.8 ± 78.1 vs. –32.5 ± 

74.3, p < 0.001) and in those with high fibrosis risk compared to those with low fibrosis risk 

(72.1 ± 56.1 vs. –67.2 ± 46.7, p < 0.001). 
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Table 1: Summary of Participants Grouped by T2DM and SAFE Scores 
 T2DM Category SAFE Score Category 
 

No T2DM1 T2DM1 p-value2 Low Fibrosis 
Risk1 

High Fibrosis 
Risk1 

p-value2 

Counts (Total n = 740) 452 (61%) 288 (39%) 
 

377 (51%) 363 (49%)  

General Characteristics  

Age (years) 59.38 (10.82) 61.40 (10.96) 0.013 56.23 (9.95) 64.26 (10.36) <0.001 

Systolic BP (mmHg) 127.84 (15.22) 129.29 (17.06) 0.341 125.03 (14.86) 131.90 (16.33) <0.001 

Diastolic BP (mmHg) 77.33 (9.21) 75.95 (8.84) 0.042 76.39 (8.88) 77.21 (9.28) 0.149 

Obesity 141 (31.19%) 150 (52.08%) <0.001 105 (27.85%) 186 (51.24%) <0.001 

Metabolic Syndrome 118 (26.11%) 177 (61.46%) <0.001 95 (25.20%) 200 (55.10%) <0.001 

Hypertension 176 (38.94%) 212 (73.61%) <0.001 149 (39.52%) 239 (65.84%) <0.001 

Type 2 Diabetes3 0 (0.00%) 288 (100.00%) <0.001 68 (18.04%) 220 (60.61%) <0.001 

Insulin Use 2 (0.44%) 82 (28.47%) <0.001 16 (4.24%) 68 (18.73%) <0.001 

Anthropomorphic Metrics       

BMI (kg/m²) 29.17 (6.98) 33.03 (8.51) <0.001 28.05 (6.34) 33.39 (8.30) <0.001 

Waist-Hip Ratio 0.90 (0.10) 0.94 (0.08) <0.001 0.89 (0.09) 0.94 (0.09) <0.001 

Waist Circumference (cm) 96.96 (16.66) 108.25 (16.93) <0.001 94.14 (15.57) 108.85 (16.50) <0.001 

Laboratory Biomarkers 

Glucose (mg/dL) 94.13 (25.20) 128.57 (56.91) <0.001 99.28 (32.03) 116.11 (52.20) <0.001 

Hemoglobin A1c (%) 5.63 (0.57) 6.73 (1.32) <0.001 5.78 (0.89) 6.35 (1.18) <0.001 

Insulin (ng/mL) 0.89 (1.06) 1.13 (1.14) <0.001 0.82 (0.90) 1.16 (1.25) <0.001 

hs-CRP (mg/L) 2.87 (4.94) 4.99 (8.49) <0.001 2.70 (4.85) 4.74 (7.95) <0.001 

Total Cholesterol (mg/dL) 185.83 (39.48) 153.07 (41.89) <0.001 183.12 (41.90) 162.65 (42.62) <0.001 

Triglycerides (mg/dL) 144.45 (83.16) 163.71 (130.50) 0.092 147.25 (102.99) 156.82 (105.99) 0.213 

HDL-Cholesterol (mg/dL) 59.43 (16.41) 50.22 (13.90) <0.001 58.50 (16.11) 53.09 (15.66) <0.001 

LDL-Cholesterol (mg/dL) 101.14 (33.49) 75.05 (34.24) <0.001 99.04 (35.45) 82.63 (34.84) <0.001 

NT-proBNP (pg/mL) 227.71 (3303.25) 149.82 (591.54) 0.719 264.82 (3621.40) 127.38 (493.05) <0.001 

Blood-Urea Nitrogen (mg/dL) 15.44 (5.03) 17.84 (7.98) <0.001 15.21 (5.49) 17.58 (7.11) <0.001 

Creatinine (mg/dL) 0.86 (0.35) 1.00 (0.49) <0.001 0.87 (0.40) 0.97 (0.43) <0.001 

Wearable-Obtained Autonomic Metrics 

Garmin Stress Score 49.26 (15.92) 58.53 (18.73) <0.001 51.43 (16.89) 54.37 (18.30) 0.025 

Pulse-Respiratory Quotient (PRQ) 5.28 (0.60) 5.46 (0.67) <0.001 5.37 (0.58) 5.33 (0.68) 0.382 

Sleep Efficiency Ratio (SER) (%) 78.21 (9.52) 74.92 (10.52) <0.001 78.66 (9.44) 75.13 (10.34) <0.001 

SDNN (Log-Normalized) -1.09 (0.72) -1.52 (0.84) <0.001 -1.12 (0.76) -1.40 (0.82) <0.001 

RMSSD (Log-Normalized) -1.09 (0.75) -1.52 (0.86) <0.001 -1.15 (0.78) -1.36 (0.85) <0.001 

Fibrosis Metric 

SAFE Score -32.46 (74.28) 53.82 (78.09) <0.001 -67.19 (46.74) 72.07 (56.11) <0.001 
1Mean (SD); n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test 
3 T2DM status determined by using the clinical record 
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4.2 Ranges and Distributions of Predictor and Outcome Variables 

The distributions of the predictor and outcome variables were assessed for normality using the 

Shapiro-Wilk test (table 3) and are plotted as histograms (figure 2). For the anthropometric 

metrics, all variables—Body Mass Index (BMI), Waist-Hip Ratio, and Waist Circumference—

showed significant deviations from normality (p < 0.0001). The Garmin Stress Score, Sleep 

Efficiency Ratio (SER), SDNN (log-normalized), and RMSSD (log-normalized) also exhibited 

non-normal distributions with p-values less than 0.05. In contrast, the Pulse-Respiratory Quotient 

(PRQ) was normally distributed (p = 0.172). 

 

Regarding the outcome variables, both Hemoglobin A1c and the SAFE Score did not follow a 

normal distribution, with p-values indicating significant departures from normality (p < 0.05). 

In summary, while the PRQ was normally distributed, most other predictor and outcome 

variables showed significant deviations from normality. 
 
 
Table 3: Distributions of Predictor and Outcome Variables  
 

Missing 
(n) 

Minimum Maximum Shapiro-Wilk  
p-value 

Normal 
Distribution 

Anthropomorphic Metrics      

Body Mass Index (kg/m2) 0 17.88 74.53 0.0000 No 

Waist Hip Ratio 0 0.37 1.79 0.0000 No 

Waist Circumference (cm) 0 41.00 190.00 0.0000 No 
      

WOMAFs      

Garmin Stress Score 0 15.38 94.95 0.0000 No 

Pulse-Respiratory Quotient (PRQ) 0 3.44 7.52 0.1720 Yes 

Sleep Efficiency Ratio (SER) 0 32.32 99.42 0.0000 No 

SDNN (Log-Normalized) 0 -3.97 0.59 0.0000 No 

RMSSD (Log-Normalized) 0 -4.00 0.80 0.0055 No 
      

Outcome Variables      

Hemoglobin A1c 6 3.80 13.90 0.0000 No 

SAFE Score 0 -277.08 382.86 0.0057 No 
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Figure 2: Distributions of Predictors (WOMAFs) and Target Variables 
 

 

 
 
4.3 Linear Regression 

Figure 3 displays the associations between various anthropomorphic and wearable-obtained 

autonomic function metrics (WOMAFs) and glycated hemoglobin (HbA1c) using simple linear 

regression models. The R² values indicate the proportion of variance in HbA1c explained by 

each predictor, with regression lines (in red) and 95% confidence intervals (gray shaded areas) 

included. 

 

Among the anthropomorphic predictors, waist circumference demonstrated the highest R² value 

(0.097), followed by body mass index (BMI) with an R² of 0.063, while waist-hip ratio explained 

only 3.3% of the variance (R² = 0.033). Similarly, Garmin Stress Score (R² = 0.067) was the 

strongest autonomic predictor of HbA1c, albeit with modest explanatory power. Other autonomic 

metrics, including Pulse-Respiratory Quotient (PRQ), Sleep Efficiency Ratio (SER), log-

normalized SDNN, and log-normalized RMSSD, demonstrated minimal associations with 

HbA1c, with R² values ranging from 0.021 to 0.026. 
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Overall, these findings highlight weak associations between HbA1c and both anthropomorphic 

and autonomic predictors, suggesting that these metrics, while relevant, explain only a small 

proportion of the variability in glycemic control. The relatively low R² values underscore the 

complexity of factors influencing HbA1c and suggest the need for incorporating additional 

clinical and behavioral covariates to improve model performance. 

 
 
Figure 3: Scatterplots of Wearable-Derived Metrics vs. hba1c 
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Figure 4 presents the results of simple linear regression models examining the relationships 

between various anthropomorphic and autonomic predictors with the Steatosis-Associated 

Fibrosis Estimator (SAFE) score. Each scatter plot depicts the distribution of data points (blue 

dots) for a given predictor relative to the SAFE score, overlaid with a red regression line and a 

shaded 95% confidence interval (CI). The R² values, shown in the top-left corner of each plot, 

indicate the proportion of variance in the SAFE score explained by each predictor. 

 

Among the anthropomorphic predictors, waist circumference demonstrated the strongest 

association with the SAFE score, explaining 17.0% of the variance (R² = 0.170), followed by 

body mass index (BMI) with an R² of 0.108. Waist-hip ratio exhibited a weaker association, 

accounting for only 5.8% of the variance. Conversely, most autonomic predictors showed 

minimal associations with the SAFE score. Garmin Stress Score (R² = 0.002), Pulse-Respiratory 

Quotient (PRQ) (R² = 0.005), and log-normalized RMSSD (R² = 0.011) all exhibited negligible 

explanatory power. Sleep Efficiency Ratio (SER) and log-normalized SDNN demonstrated 

slightly stronger but still weak associations, with R² values of 0.042 and 0.024, respectively. 

 

Overall, these results suggest that anthropomorphic metrics, particularly waist circumference and 

BMI, have stronger associations with SAFE scores compared to autonomic metrics, which 

displayed minimal explanatory power. The weak associations observed with autonomic 

predictors reinforce the complexity of the pathophysiological mechanisms underlying liver 

fibrosis and emphasize the need for incorporating additional clinical and molecular covariates to 

enhance predictive model performance. 
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Figure 4: Scatterplots of Wearable-Derived Metrics vs. SAFE Score 
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4.4 Logistic Regression Analysis 

Logistic regression models were developed to evaluate predictors of Type 2 Diabetes Mellitus 

(T2DM) and liver fibrosis risk (as measured by the SAFE score) in the study population (n = 

740) (Table 4). In the T2DM model, 39% of participants had T2DM, while 61% did not, with a 

McFadden’s R² of 0.144, indicating modest model fit. For liver fibrosis risk, 49% of participants 

were classified as high risk and 51% as low risk, with a McFadden’s R² of 0.175. 

 

In the T2DM model, higher Garmin Stress Score (OR = 1.022, p = 0.003), lower Sleep 

Efficiency Ratio (OR = 0.983, p = 0.041), and lower SDNN (log-normalized) (OR = 0.573, p = 

0.049) were significantly associated with higher odds of T2DM. Waist circumference showed a 

borderline association (p = 0.067), while Body Mass Index (BMI), Waist-Hip Ratio, Pulse-

Respiratory Quotient (PRQ), and RMSSD were not significantly associated. 

In the liver fibrosis risk model, higher Waist Circumference (OR = 1.053, p = 0.001), lower 

Sleep Efficiency Ratio (OR = 0.975, p = 0.004), lower SDNN (log-normalized) (OR = 0.359, p < 

0.001), and higher RMSSD (log-normalized) (OR = 1.919, p = 0.022) were significantly 

associated with high SAFE scores. Garmin Stress Score and PRQ were not significantly 

associated with liver fibrosis risk in this model. 

 

Overall, measures of autonomic function, particularly stress, sleep efficiency, and HRV metrics, 

demonstrated modest but significant associations with metabolic and liver health outcomes 
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Table 4: Logistic Regression Analysis  
 T2DM  SAFE Score 

 Total Samples: 740 
- No T2DM: 452 (61%) 
- T2DM: 288 (39%) 
 
McFadden’s R2: 0.144 

 Total Samples: 740 
- Low Liver Fibrosis Risk: 377 (51%) 
- High Liver Fibrosis Risk: 363 (49%) 
 
 McFadden’s R2: 0.175 

 
Odds 
Ratio 

95% CI p-value Odds  
Ratio 

95% CI p-value 

Intercept 0.004 [0.00, 0.08] < 0.001 0.021 [0.00, 0.50] 0.017 

Anthropomorphic Metrics       

Body Mass Index 0.999 [0.95, 1.05] 0.959 1.011 [0.95, 1.07] 0.723 

Waist-Hip Ratio 16.958 [0.79, 365.79] 0.071 3.766 [0.15, 95.00] 0.421 

Waist Circumference (cm) 1.027 [1.00, 1.06] 0.067 1.053 [1.02, 1.09] 0.001 

WOMAFs       

Garmin Stress Score 1.022 [1.01, 1.04] 0.003 0.998 [0.98, 1.01] 0.839 

Pulse-Respiratory Quotient 0.891 [0.61, 1.31] 0.557 0.778 [0.53, 1.15] 0.205 

Sleep Efficiency Ratio (%) 0.983 [0.97, 1.00] 0.041 0.975 [0.96, 0.99] 0.004 

ECG-Derived HRV       

SDNN (log-normalized) 0.573 [0.33, 1.00] 0.049 0.359 [0.20, 0.63] < 0.001 

RMSSD (log-normalized) 1.01 [0.58, 1.75] 0.971 1.919 [1.10, 3.35] 0.022 
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4.5 Logistic Regression Prediction Models 

Logistic regression models were developed to predict T2DM status and liver fibrosis risk (SAFE 

score category) using different sets of predictors: anthropomorphic metrics alone, wearable-

obtained metrics of autonomic function (WOMAFs) alone, ECG-derived HRV metrics alone, and 

a combined model incorporating all predictors (Table 5, Figure 5). Models were evaluated using 

5-fold stratified cross-validation with an 80%/20% train-test split.  

 

In models using only anthropomorphic metrics (BMI, waist-hip ratio, and waist circumference), 

prediction performance was moderate for both T2DM (accuracy = 0.643; ROC-AUC = 0.692) 

and liver fibrosis risk (accuracy = 0.700; ROC-AUC = 0.743). 

 

Models using WOMAFs alone (Garmin stress score, PRQ, and sleep efficiency ratio) 

demonstrated lower predictive performance, with an accuracy of 0.618 (ROC-AUC = 0.656) for 

T2DM and 0.597 (ROC-AUC = 0.622) for liver fibrosis risk. 

 

Similarly, models using ECG-derived HRV metrics alone (log-normalized SDNN and RMSSD) 

achieved moderate but slightly lower predictive performance (T2DM accuracy = 0.628; ROC-

AUC = 0.655 and liver fibrosis risk accuracy = 0.592; ROC-AUC = 0.610). 

 

The combined model, incorporating all metrics, yielded the best performance across outcomes. 

For T2DM prediction, the combined model achieved an accuracy of 0.672 and a ROC-AUC of 

0.743. For liver fibrosis risk, the model achieved an accuracy of 0.712 and a ROC-AUC of 

0.760. These results suggest that integrating wearable-derived autonomic function metrics with 

anthropomorphic variables modestly improves prediction compared to using either type of data 

alone. 

 

These findings suggest that wearable-derived autonomic function metrics alone offer modest 

predictive value for identifying risk of T2DM and liver fibrosis. However, combining these 

metrics with traditional anthropomorphic measures substantially improves model performance, 

highlighting the potential utility of integrated, multimodal approaches for risk stratification in 

clinical and digital health settings. 
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Table 5: Logistic Regression Prediction Models1 Results  
Total Samples 
 

T2DM 
No 

T2DM 
Yes 

Liver Fibrosis Risk 
Low 

Liver Fibrosis Risk 
Intermediate-High 

740 452 (61%) 288 (39%) 377 (51%) 363 (49%) 
 

Model 1: Anthropomorphic Metrics Only 
Predictors: BMI (kg/m2), Waist-Hip Ratio, Waist circumference 

 Accuracy Sensitivity Specificity PPV2 NPV3 ROC-AUC4 

T2DM Category 
 

0.643 0.667 0.628 0.534 0.748 0.692 

Liver Fibrosis Risk 
(SAFE Score Category) 

0.700 0.705 0.695 0.692 0.710 0.743 

 

Model 2: WOMAFs Only  
Predictors: Garmin Stress Score, PRQ, Sleep Efficiency Ratio (%) 

 Accuracy Sensitivity Specificity PPV2 NPV3 ROC-AUC4 

T2DM Category 
 

0.618 0.597 0.631 0.509 0.710 0.656 

Liver Fibrosis Risk 
(SAFE Score Category) 

0.597 0.576 0.618 0.593 0.601 0.622 

 

Model 3: ECG-HRV Metrics Only  
Predictors: SDNN (log-normalized), RMSSD (log-normalized) 

 Accuracy Sensitivity Specificity PPV2 NPV3 ROC-AUC4 

T2DM Category 
 

0.628 0.601 0.646 0.522 0.717 0.655 

Liver Fibrosis Risk 
(SAFE Score Category) 

0.592 0.587 0.597 0.583 0.601 0.610 

 

Model 4: All Metrics 
Predictors:  
• Anthropomorphic Metrics: BMI (kg/m2), Waist-Hip Ratio, Waist circumference 
• WOMAFs: Garmin Stress Score, PRQ, Sleep Efficiency Ratio (%) 
• ECG-HRV Metrics: SDNN (log-normalized), RMSSD (log-normalized) 

 Accuracy Sensitivity Specificity PPV2 NPV3 ROC-AUC4 

T2DM Category 
 

0.672 0.632 0.697 0.574 0.749 0.743 

Liver Fibrosis Risk 
(SAFE Score Category) 
 

0.712 0.716 0.708 0.703 0.722 0.760 

1Models employed 5-fold stratified cross-validation, with 80%/20% train-test split 
2 PPV = Positive Predictive Value | 3 NPV = Negative Predictive Value |  
4 ROC-AUC = Receiver Operating Characteristic – Area Under the Curve 
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Figure 5: ROC-AUC Curves for Logistic Regression Models 
 

 
Anthropomorphic Measures Only 

 

 
WOMAFs Only 

 
ECG-HRV Only 

 

 
All Predictors Combined 
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5. Discussion 
 
5.1 Principal Findings 

This study evaluated whether wearable-derived autonomic function metrics (WOMAFs) could 

predict two key metabolic outcomes: Type 2 Diabetes Mellitus (T2DM) and liver fibrosis risk. 

The principal findings were as follows: (1) WOMAFs alone demonstrated limited predictive 

capacity; (2) predictive performance improved substantially with the addition of anthropometric 

measures; and (3) combined models achieved moderate discrimination. These results highlight 

both the emerging utility and current limitations of wearable-based approaches in 

cardiometabolic and hepatic risk assessment. 

 

Predictive Performance of WOMAFs Alone 

Logistic regression models using only wearable-derived and ECG-based heart rate variability 

(HRV) metrics—Garmin stress score, pulse-respiratory quotient (PRQ), sleep efficiency ratio 

(SER), and log-transformed SDNN and RMSSD—yielded modest performance. The WOMAF-

only model yielded ROC-AUCs of 0.656 for T2DM and 0.622 for liver fibrosis risk, with 

corresponding accuracies of 61.8% and 59.7%. These results suggest that while autonomic 

function metrics capture physiologically relevant variation, they may be insufficient on their own 

for reliable clinical risk stratification.  

 

Impact of Adding Anthropometric Measures 

Incorporating anthropometric predictors—BMI, waist-hip ratio (WHR), and waist 

circumference—significantly enhanced model performance. ROC-AUC values increased to 

0.692 for T2DM and 0.743 for fibrosis risk. Waist circumference emerged as a particularly strong 

predictor of liver fibrosis, consistent with prior research linking central adiposity to hepatic 

steatosis and fibrosis.71 These gains underscore the continued value of conventional clinical 

markers that reflect underlying metabolic dysfunction, including chronic inflammation and 

insulin resistance.72 

 

Combined Models and Overall Predictive Capacity 

The strongest models combined WOMAFs with anthropometric measures. The T2DM model 

achieved an ROC-AUC of 0.743 and 67.2% accuracy, while the fibrosis model reached an ROC-
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AUC of 0.760 with 71.2% accuracy. While these results are encouraging, they remain moderate, 

suggesting that meaningful gains in predictive performance may require integration with 

additional modalities—such as biochemical, genomic, or imaging data—to build clinically 

actionable tools.   

 

5.2 Limitations and Strengths 

This study has several important limitations. First, the cross-sectional study design precludes 

causal inference. Second, some wearable-derived variables rely on proprietary algorithms with 

limited validation. For example, the Garmin stress score depends on accurate detection of rest 

periods and lacks benchmarking against established HRV measurement protocols, which 

typically require seated, resting assessments lasting ≥ 1 minute.51 Third, the use of ultra-short 

(10-second) ECG recordings may reduce the reliability of HRV estimates due to susceptibility to 

motion artifacts and ectopic beats. Longer recordings (≥ 5 minutes) would enable more robust 

frequency-domain analysis, yielding more information about autonomic function.73 Fourth, 

potential inaccuracies in wearable-derived sleep staging algorithms may have affected the 

validity of the sleep efficiency ratio (SER).74 Finally, liver fibrosis categorization using the SAFE 

score without confirmatory imaging may have led to misclassification.75 

 

Nonetheless, the study has notable strengths. It leverages a large, demographically diverse cohort 

(AI-READI), incorporates a range of autonomic function metrics, and applies rigorous analytic 

methods including cross-validation, enhancing both generalizability and model robustness. 

 

5.3 Clinical Implications and Future Directions 

The modest standalone performance of WOMAFs suggests that they are not yet suitable for use 

in isolation for clinical risk stratification of metabolic or hepatic disease. However, when 

combined with standard clinical variables, they enhance predictive accuracy, supporting their 

integration into multi-modal risk models.  Future research should prioritize longitudinal 

validation, incorporate additional biomarkers of inflammation and neuroendocrine function (e.g., 

hs-CRP, cortisol, DHEA-S, melatonin),76–78 and explore wearable technologies with higher 

fidelity and continuous monitoring capabilities. The application of machine learning may further 
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enable the synthesis of wearable, clinical, and biochemical data to facilitate early identification 

of individuals at elevated cardiometabolic and hepatic risk.   

 

In sum, this study highlights the potential role of wearable-derived autonomic metrics in clinical 

informatics.  Realizing their full utility will require continued advances in data quality, 

integration with complementary biomarkers, and the development of sophisticated modeling 

frameworks within a precision medicine paradigm.   

 

 

Conclusion 
 
This study highlights the emerging potential of wearable-derived autonomic function metrics in 

cardiometabolic and hepatic risk assessment. While these metrics alone offer limited predictive 

value for Type 2 Diabetes Mellitus and liver fibrosis risk, their integration with established 

anthropometric measures modestly improves model performance. These findings support the 

value of wearables as complementary tools within multi-modal, personalized risk frameworks. 

Realizing their full clinical utility will require continued advances in wearable sensor fidelity, 

standardized measurement protocols, and integration with clinical, biochemical, and 

computational tools. As such, wearables hold promise as a scalable component of precision 

health—particularly when embedded in robust, data-driven models of disease risk. 
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