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Disserta9on Abstract 
The microenvironment plays a criCcal role in determining cellular phenotype, yet the mechanisms 
through which combinaCons of extracellular signals drive specific phenotypic and molecular changes 
remain incompletely understood. Growth factors, cytokines, and extracellular matrix proteins are key 
microenvironmental components that mediate cellular communicaCon and drive processes such as 
proliferaCon, migraCon, and differenCaCon. DysregulaCon of these signals is implicated in a wide range 
of diseases, including cancer, fibrosis, and immune disorders. Developing a deeper understanding of how 
cells respond to individual and combinatorial signals is essenCal for uncovering the molecular 
underpinnings of these pathologies and for idenCfying potenCal therapeuCc targets. This dissertaCon 
aims to elucidate how mammary epithelial cells integrate and respond to diverse microenvironmental 
cues, using MCF10A cells as a model system. By integraCng transcriptomic, proteomic, and phenotypic 
data, I aim to reveal the dynamic interplay between signaling pathways and cellular behaviors, providing 
a framework for understanding epithelial cell plasCcity. 

In Chapter II, I present the LINCS Microenvironment (ME) perturbaCon dataset, a comprehensive 
resource cataloging the transcripConal, proteomic, epigenomic, and phenotypic responses of MCF10A 
cells to a panel of extracellular ligands, including EGF, HGF, OSM, IFNG, TGFB, and BMP2. This dataset 
systemaCcally characterizes how each ligand influences molecular states and phenotypic outcomes, 
capturing both conserved and ligand-specific effects. Through illustraCve analyses, I demonstrate how 
this dataset can uncover funcConal relaConships between molecular features and specific cellular 
phenotypes, such as moClity and proliferaCon. AddiConally, the dataset provides a valuable resource for 
the broader scienCfic community to explore molecular perturbaCons, compare signaling pathways, and 
develop novel computaConal methods for integraCve data analysis. 

In Chapter III, I focus on understanding the molecular mechanisms underlying collecCve cell migraCon 
(CCM) and how the cytokine OncostaCn M (OSM) induces this phenomenon in MCF10A mammary 
epithelial cells. CCM is a criCcal biological process wherein groups of cells migrate together as a cohesive 
unit, retaining intercellular juncCons while navigaCng through the extracellular environment. This 
behavior is pivotal in normal and disease processes such as Cssue repair, embryonic development, and 
cancer metastasis. To dissect the molecular networks driving CCM, I applied a systems-biology approach, 
integraCng transcriptomic, proteomic, and network analyses. Through these methods, I idenCfied 
molecular subnetworks acCvated by OSM and evaluated their phenotypic contribuCons using high-
throughput experimental approaches and idenCfied HIF1A as a criCcal regulator of OSM-induced CCM. 
Further analysis using single-cell RNA sequencing (scRNA-seq) and experimental approaches revealed 
that the complement acCvaCon pathway plays a key role in OSM-induced CCM. This chapter advances 
our understanding of how epithelial cells respond to extracellular signals to drive collecCve migraCon 
and idenCfies key molecular networks that could serve as therapeuCc targets in diseases characterized 
by aberrant migraCon, such as metastaCc cancer. 

In Chapter IV, I invesCgate how combinaCons of ligands shape cellular phenotypes and transcripConal 
programs in MCF10A epithelial cells. Using cytokines OncostaCn M (OSM), Transforming Growth Factor 
Beta 1 (TGFB), and Epidermal Growth Factor (EGF), I demonstrate that combinatorial treatments produce 
emergent phenotypes, including changes in moClity, proliferaCon, and clustering, disCnct from individual 
ligand effects. Transcriptomic and proteomic analyses idenCfied synergisCc upregulaCon of genes and 
pathways, including CREB signaling, driving phenotypic changes such as increased cell moClity via CXCR2 
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acCvaCon. This work highlights the importance of combinatorial signaling in reprogramming epithelial 
behaviors and provides a framework for understanding how cells integrate microenvironmental signals 
to produce disCnct molecular and phenotypic outcomes. 

In summary, this dissertaCon provides a deep exploraCon of how mammary epithelial cells respond to 
microenvironmental signals. Through a progression of increasingly complex models and integraCve 
experimental approaches, we idenCfied key regulatory networks and molecular mechanisms that link 
extracellular cues to cellular behavior. From cataloging transcripConal, proteomic, and phenotypic 
responses to uncovering the role of HIF1A in OSM-induced CCM and elucidaCng the synergisCc effects of 
ligand combinaCons, this work advances our understanding of cellular signal integraCon.  

1. Chapter I: Introduc9on  
1.1 The breast microenvironment 
1.1.1 The architecture of mammary 1ssue 
The mammary gland is a highly specialized Cssue with a complex organizaCon that supports its primary 
funcCon: milk producCon and delivery[1]. It consists of mulCple cell types arranged into disCnct 
compartments that work together dynamically. These compartments are broadly categorized into the 
epithelial and stromal regions, each contribuCng uniquely to the organ’s structure and funcCon. 

At the core of the mammary gland’s funcConality is the epithelial compartment, which is organized into 
ducts and lobules (Figure 1-1A) [2]. The ducts form a branching network that transports milk from its 
producCon sites to the nipple. This network is lined by a bilayer of epithelial cells. Luminal epithelial 
cells, posiConed on the inner layer facing the ductal lumen, are directly involved in milk secreCon during 
lactaCon [2]. Surrounding these luminal cells are myoepithelial cells, which provide structural support 
and facilitate milk ejecCon [3]. The terminal ends of the ductal system expand into lobules, which house 
clusters of alveoli. These alveolar structures are the primary sites of milk synthesis during lactaCon [1]. 
During periods of acCve ductal elongaCon, such as puberty, specialized structures known as terminal end 
buds form at the Cps of growing ducts. These terminal end buds are dynamic, mulClayered structures 
containing two key populaCons of cells: cap cells, which reside at the outer layer and give rise to 
myoepithelial cells, and body cells, which populate the interior and can differenCate into luminal cells 
[4]. The epithelial structures are anchored to a basement membrane, a thin layer of extracellular matrix 
proteins that provides mechanical support and acts as a barrier between the epithelium and the 
surrounding stroma. 

The stromal compartment encompasses the connecCve Cssue that supports and interacts with the 
epithelial structures. Fibroblasts within the stroma produce extracellular matrix (ECM) proteins which 
form a scaffold for the epithelium and regulate biomechanical and biochemical signals [5]. Adipocytes, or 
fat cells, are also abundant in the stroma, serving as an energy reservoir. Immune cells, such as 
macrophages, lymphocytes, and mast cells, are dispersed throughout the stroma, playing vital roles in 
Cssue maintenance, remodeling, and defense [6], [7]. AddiConally, vascular endothelial cells form the 
vascular networks essenCal for oxygen and nutrient delivery, as well as immune cell trafficking.  

The development of the breast architecture unfolds across disCnct life stages, each marked by hormonal 
and cellular changes (Figure 1-1B). During fetal development, the basic ductal structures begin to form 
under the influence of geneCc programming and maternal hormones [2]. These iniCal epithelial 
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structures arise from a populaCon of mammary progenitor cells, which have the capacity to differenCate 
into either luminal or myoepithelial and basal lineages [2]. At puberty, estrogen and growth hormone 
drive the elongaCon and branching of the ductal system, accompanied by increased stromal Cssue 
deposiCon [8]. During pregnancy, the breast undergoes extensive remodeling, characterized by the 
proliferaCon and differenCaCon of alveolar cells to prepare for lactaCon [8]. This phase involves 
significant expansion of the epithelial compartment, supported by changes in the stroma to 
accommodate the increased funcConal demands. Following lactaCon, the breast enters a process of 
involuCon, during which alveolar cells undergo apoptosis, and the Cssue returns to a baseline state 
through stromal remodeling and immune cell-mediated clearance [9]. 

The mammary gland is a complex and dynamic Cssue, with diverse cell types interacCng in intricate ways 
to fulfill its funcConal roles. Studying this ecosystem presents unique challenges, as it requires 
understanding the intricate signals that govern its organizaCon, maintenance, and remodeling across 
different life stages. These signals, which coordinate interacCons between epithelial, stromal, and 
immune components, are essenCal for the Cssue's ability to adapt to physiological demands and 
maintain its funcConal integrity. 

 

Figure 1-1: The architecture and cell types that comprise the mammary gland throughout development 

Le/: 1ssue architecture of a mammary terminal end bud. Right: mammary 1ssue morphology changes drama1cally 
throughout development and pregnancy. Figure adapted from [2] and [10]. 

1.1.2 Mammary ductal epithelial cells and their role in normal and pathological physiology  
Mammary ductal epithelial cells (MDECs) are the primary structural and funcConal components of the 
mammary gland’s ductal system. They are highly dynamic cells that undergo significant differenCaCon 
and remodeling during various physiological states and stages of development [10]. These processes 
contribute to their plasCcity and ability to adapt to the funcConal demands of the mammary gland. 
However, this plasCcity also renders them suscepCble to pathological alteraCons, including cancer and 
other diseases [11]. MDECs originate from mammary epithelial stem cells which differenCate into 
progenitor cells. Progenitor cells then differenCate into two main lineages: luminal and 
basal/myoepithelial cells [10], [12]. Luminal epithelial cells line the ducts and alveoli, serving criCcal roles 
in milk producCon and secreCon during lactaCon, while basal cells provide structural support and 
contracCle funcCon, aiding milk ejecCon (Figure 1-2).  



6  Chapter I: IntroducCon 
 

MDECs are central to the development of breast cancer, one of the most common malignancies 
worldwide [12]. GeneCc mutaCons, epigeneCc changes, and microenvironmental factors can disrupt the 
Cghtly controlled processes of differenCaCon and proliferaCon, leading to malignant transformaCon. 
Luminal epithelial cells are the most frequent origin of breast cancer, giving rise to luminal A and B 
subtypes, which vary in their hormonal receptor status (estrogen receptor (ER), progesterone receptor 
(PR), and HER2 receptor) and responsiveness to therapy [13]. Basal-like or triple-negaCve breast cancers 
(TNBC), onen more aggressive and challenging to treat, may arise from basal progenitor cells [14] (Figure 
1-2). 

Beyond cancer, MDECs are implicated in other pathological condiCons, such as masCCs, an inflammatory 
disease onen associated with lactaCon. MasCCs involves infecCon or injury-induced inflammaCon, 
leading to swelling, pain, and impaired milk secreCon [15]. The epithelial barrier funcCon of MDECs plays 
a crucial role in prevenCng pathogen invasion, and its disrupCon can exacerbate disease severity. 
AddiConally, hormonal imbalances or geneCc predisposiCons can lead to hyperplasia or benign breast 
diseases, further emphasizing the importance of maintaining epithelial cell homeostasis. 

 

Figure 1-2: Mammary epithelial cell differen<a<on and rela<onships to breast cancer subtypes 

Mature luminal and basal/myoepithelial lineages arise from a common progenitor. It is hypothesized that breast 
cancer subtypes, dis1nguished by hormone and HER2 receptor expression, arise from dis1nct mammary epithelial 
cell lineages. Figure adapted from [16].  

1.1.3 Communica1on to and from mammary epithelial cells is required for normal 
development and func1on 
EffecCve communicaCon between mammary epithelial cells and their surrounding microenvironment is 
essenCal for the proper development and funcCon of the mammary gland. This communicaCon is 
mediated through a complex network of biochemical and mechanical signals that facilitate cell-to-cell 
and cell-to-matrix interacCons. These interacCons regulate processes such as proliferaCon, 
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differenCaCon, and Cssue remodeling, ensuring the coordinated development and funcCon of the gland 
[17]. 

The stromal compartment of the mammary gland provides criCcal support to mammary epithelial cells. 
Growth factors such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF), and insulin-
like growth factor (IGF) are secreted by stromal cells and influence epithelial cell behavior [18]. These 
signals are parCcularly crucial during puberty, when ductal elongaCon and branching morphogenesis 
depend on epithelial-stromal crosstalk. Similarly, during pregnancy, stromal-derived factors coordinate 
with systemic hormonal signals to drive alveolar differenCaCon and milk producCon [18]. 

Hormonal signaling plays a pivotal role in orchestraCng communicaCon within the mammary gland. 
Estrogen, progesterone, and prolacCn act on both epithelial and stromal cells to regulate ductal 
elongaCon, branching morphogenesis, and alveologenesis [18]. These hormones induce the expression 
of paracrine factors such as amphiregulin, which mediates epithelial-stromal crosstalk [19]. During 
pregnancy, prolacCn is especially criCcal for inducing milk-producing alveolar cells, while estrogen and 
progesterone prepare the ductal network [18]. Hormonal withdrawal during involuCon triggers apoptosis 
and remodeling (Figure 1-3). 

Mechanical cues, such as those arising from Cssue sCffness and extracellular matrix tension, also 
contribute to mammary epithelial cell funcCon. Changes in ECM sCffness, onen mediated by stromal 
remodeling, influence epithelial cell differenCaCon and proliferaCon through mechanotransducCon 
pathways involving integrins and focal adhesion complexes [5]. During puberty, mechanical forces guide 
ductal elongaCon and branching, while during lactaCon, ECM remodeling ensures glandular expansion 
[5].  

The intricate communicaCon between mammary epithelial cells and their surrounding 
microenvironment is fundamental to the normal development and funcCon of the mammary gland. 
Specific environmental cues, including growth factors, hormonal signals, and mechanical forces are 
essenCal at disCnct stages of development, such as puberty, pregnancy, and involuCon.  

1.1.4 Changes to microenvironmental signaling contributes to pathological 1ssue states 
AlteraCons in the microenvironmental signaling pathways that regulate mammary epithelial cell 
behavior can significantly contribute to pathological Cssue states. These changes may arise from geneCc 
mutaCons, epigeneCc modificaCons, chronic inflammaCon, or external factors such as exposure to 
environmental toxins [12]. Such disrupCons not only impair normal glandular funcCon but also create a 
permissive environment for disease development. 

One major pathological consequence of altered signaling is the development of fibrosis, characterized by 
excessive deposiCon of extracellular matrix (ECM) components [15]. Fibrosis onen results from chronic 
inflammaCon, during which acCvated fibroblasts secrete elevated levels of collagen and other ECM 
proteins [15]. Increased Cssue sCffness can disrupt normal epithelial cell differenCaCon and promote a 
pro-tumorigenic phenotype [20]. For instance, in breast cancer, elevated ECM sCffness enhances 
epithelial cell proliferaCon and invasion through mechanotransducCon pathways involving YAP/TAZ 
signaling [21]. 

Chronic inflammaCon and immune cell dysfuncCon are criCcal contributors to pathological states in the 
mammary gland [22]. Persistent acCvaCon of immune cells, such as macrophages and neutrophils, leads 



8  Chapter I: IntroducCon 
 

to the release of pro-inflammatory cytokines and reacCve oxygen species [22]. These factors can cause 
DNA damage and impair epithelial barrier funcCon, thereby increasing suscepCbility to infecCons and 
cancer. In the context of tumor progression, immune cells can adopt tumor-promoCng roles by secreCng 
growth factors that support angiogenesis and metastasis[23]. 

DisrupCons in hormonal signaling also play a significant role in pathological Cssue states. For example, 
excessive or prolonged estrogen exposure is associated with an increased risk of breast cancer [24]. 
Estrogen drives the proliferaCon of luminal epithelial cells and, when dysregulated, can lead to 
hyperplasia or malignant transformaCon. Similarly, hormonal imbalances can contribute to benign 
proliferaCve disorders, such as fibroadenomas or cysCc changes, which may predispose the gland to 
further abnormaliCes [25]. 

The tumor microenvironment in breast cancer exemplifies how changes to microenvironmental signaling 
can promote pathological states (Figure 1-3). Cancer-associated fibroblasts (CAFs), reprogrammed from 
normal fibroblasts, secrete growth factors, chemokines, and ECM proteins that support tumor growth 
and invasion [26]. AddiConally, metabolic alteraCons, such as hypoxia and acidosis within the tumor 
microenvironment, further drive malignant progression by promoCng epithelial-mesenchymal transiCon 
(EMT) and immune evasion [27]. 

Exosomes, small extracellular vesicles secreted by both normal and cancerous epithelial cells, play a 
pivotal role in tumor progression and metastasis. These vesicles carry proteins, lipids, and nucleic acids 
that can reprogram recipient cells in the tumor microenvironment [28]. For instance, exosomes from 
cancer cells can promote angiogenesis by delivering pro-angiogenic factors such as VEGF to endothelial 
cells [29]. They also facilitate immune evasion by modulaCng the acCvity of immune cells, including T 
cells and macrophages [28]. AddiConally, exosomes can prepare distant metastaCc sites by altering the 
local microenvironment to support tumor cell colonizaCon [30]. 

Vascular changes are another criCcal aspect of the microenvironment in breast cancer. The formaCon of 
abnormal, leaky blood vessels within tumors not only provides nutrients and oxygen to cancer cells but 
also facilitates the intravasaCon and disseminaCon of tumor cells into the bloodstream [31]. This 
process, known as the angiogenic switch, is driven by factors such as VEGF, secreted by both cancer cells 
and stromal components [32]. These vascular changes also contribute to creaCng hypoxic regions within 
the tumor, which further drive malignant progression and therapy resistance [27]. 

Immune cells play a dual role in the progression of breast cancer, serving both anC-tumorigenic and pro-
tumorigenic funcCons depending on the context. Tumor-associated macrophage (TAMs), for example, 
are onen reprogrammed by cancer cells to adopt an M2-like phenotype, which promotes tumor growth 
and suppresses immune responses [23], [33]. These TAMs secrete cytokines, chemokines, growth 
factors, and proteases that enhance angiogenesis, matrix remodeling, and metastasis. Similarly, 
regulatory T cells (Tregs) within the tumor microenvironment suppress cytotoxic T cell acCvity, enabling 
immune evasion [23]. Neutrophils, another immune cell type, can release neutrophil extracellular traps, 
which facilitate tumor cell migraCon and colonizaCon at distant sites [34]. Understanding these immune 
interacCons is criCcal for developing immunotherapeuCc strategies aimed at reacCvaCng anC-tumor 
immunity. 
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Figure 1-3: Modula<on of the breast microenvironment contributes to cancer progression 

The breast microenvironment is altered during breast cancer ini1a1on and progression. Changes in stromal cell 
composi1on and phenotype, 1ssue architecture, and oxygen content can contribute to cancer progression and 
metastasis. Figure adapted from [35]. 

1.1.5 Therapeu1cs targe1ng microenvironmental signaling can improve outcomes in 
disease 
TherapeuCc strategies targeCng microenvironmental signaling have shown significant promise in 
improving outcomes in both cancer and non-cancer diseases of the mammary gland [36]. By modulaCng 
interacCons within the tumor microenvironment or restoring normal signaling pathways, these therapies 
aim to halt disease progression and promote Cssue recovery. In non-cancerous diseases, such as masCCs 
or fibroCc disorders, targeCng the inflammatory and fibroCc components of the microenvironment has 
yielded promising results. AnC-inflammatory drugs, such as non-steroidal anC-inflammatory agents, can 
reduce inflammaCon and improve epithelial barrier funcCon in masCCs, thereby restoring normal 
glandular funcCon[37].  

In cancer, immune checkpoint inhibitors targeCng PD-1/PD-L1 or CTLA-4 pathways have revoluConized 
treatment by reacCvaCng cytotoxic T cells against tumor cells [36]. These therapies have shown promise 
in triple-negaCve breast cancer (TNBC), where immune evasion is a hallmark of disease progression. 
AddiConally, therapies targeCng CAFs and Tregs are being developed to counteract the 
immunosuppressive microenvironment and restore effecCve immune surveillance [38]. 

Therapies targeCng exosome producCon or uptake are emerging as a novel approach to disrupCng 
cancer progression. Exosome inhibitors, such as GW4869 or neutralizing anCbodies against exosome 
surface proteins, can prevent the transfer of oncogenic signals between cells [39]. Similarly, anC-
angiogenic therapies targeCng vascular endothelial growth factor (VEGF) or its receptors can normalize 
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tumor vasculature, reducing nutrient supply to tumors and limiCng metastasis [40]. These strategies 
complement exisCng treatments by addressing criCcal microenvironmental drivers of cancer progression. 

Despite the promising advances, challenges remain in developing microenvironment-targeted therapies. 
The heterogeneity of the tumor microenvironment, combined with the potenCal for off-target effects on 
normal Cssues, necessitates a precision medicine approach. Moreover, understanding how 
microenvironmental signals influence epithelial cell behavior—such as proliferaCon, migraCon, and 
resistance to treatment—will enable the development of more effecCve therapeuCc strategies. 

 

Figure 1-4: Microenvironmental therapeu<c targets approved and currently in development for the treatment of 
breast cancer treatment 

Overview of key microenvironmental targets under inves1ga1on or in use for trea1ng breast cancer. The illustra1on 
highlights cri1cal components, including cancer-associated fibroblasts (CAFs), macrophages, and angiogenesis 
pathways. Therapeu1c strategies such as immune checkpoint inhibitors are approved for use in breast cancer to 
normalize the breast microenvironment. Figure adapted from [41] 

1.2 Cellular communica6on 
Cellular communicaCon is fundamental for the regulaCon of physiological processes, including growth, 
differenCaCon, and homeostasis. Ligands, such as growth factors, cytokines, and hormones, bind to 
specific receptors on target cells, iniCaCng intracellular signaling cascades that modulate cellular 
behavior. This chapter provides a comprehensive overview of key signaling ligands—Epidermal Growth 
Factor (EGF), Transforming Growth Factor-beta (TGF-β), and OncostaCn M (OSM)—that play criCcal roles 
in mammary gland physiology. While extensive research has been conducted to understand how these 
ligands signal and influence normal physiology and disease, significant gaps remain in our understanding, 
parCcularly regarding the cellular context of their acCons and their roles in cancer progression. 

1.2.1 Modes of cellular communica1on 
Cellular communicaCon is a cornerstone of biological systems, enabling individual cells to coordinate 
their behavior with their neighbors and the surrounding environment. This communicaCon is essenCal 
for maintaining Cssue homeostasis, orchestraCng developmental processes, and responding to 
environmental cues [42]. Cells generally communicate through three primary classes of mechanisms: 
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interacCons with the extracellular matrix (ECM), direct physical interacCons with other cells, and 
signaling mediated by soluble ligands [42] (Figure 1-5).  

InteracCons between cells and the ECM are fundamental for providing structural support and 
transmirng biochemical and mechanical signals. Cells aGach to the ECM via transmembrane receptors, 
such as integrins, which connect the cytoskeleton to ECM components like collagen, fibronecCn, and 
laminins [43]. These interacCons regulate key cellular processes, including migraCon, differenCaCon, and 
proliferaCon. Integrin-mediated signaling can acCvate downstream pathways, such as focal adhesion 
kinase (FAK) and MAPK, which influence gene expression and cellular responses [44]. Mechanical 
properCes of the ECM, such as sCffness, also play a role in direcCng cell behavior through 
mechanotransducCon [5].  

Direct physical interacCons between cells are mediated by specialized structures such as cadherin-based 
adherens juncCons, Cght juncCons, and desmosomes [42]. These connecCons enable mechanical 
coupling between cells and facilitate the transfer of signals that regulate Cssue organizaCon and 
funcCon. Cadherins, a family of calcium-dependent adhesion molecules, play a criCcal role in 
maintaining Cssue integrity by linking the acCn cytoskeleton of adjacent cells [45]. Tight juncCons, 
formed by claudins and occludins, regulate paracellular transport and maintain barriers in epithelial and 
endothelial Cssues [46]. AddiConally, gap juncCons, composed of connexins, allow the direct exchange of 
ions and small molecules between cells, facilitaCng electrical and chemical coordinaCon [47].  

Soluble ligand signaling involves the secreCon of signaling molecules that bind to receptors on the same 
cell (autocrine signaling) or nearby cells (paracrine signaling). This mode of communicaCon enables cells 
to regulate both their own behavior and that of their local environment. Growth factors, cytokines, and 
hormones are common mediators of soluble signaling. For example, in autocrine signaling, a cell may 
secrete epidermal growth factor (EGF) to sCmulate its own proliferaCon [48]. In paracrine signaling, 
fibroblasts in the stromal microenvironment may release transforming growth factor-β (TGF-β) to 
influence adjacent epithelial cells [49]. Signal transducCon pathways iniCated by these ligands onen 
involve receptor tyrosine kinases (RTKs), G-protein-coupled receptors (GPCRs), or other specialized 
receptors, leading to the acCvaCon of intracellular cascades that modulate gene expression and cellular 
funcCon [50].  

These three primary mechanisms of cellular communicaCon—cell-ECM interacCons, direct physical cell-
cell interacCons, and soluble ligand signaling—are integral to the regulaCon of cellular behavior and 
Cssue funcCon. By leveraging these diverse communicaCon strategies, cells and Cssues can adapt to 
complex and dynamic environments, ensuring the proper funcConing of mulCcellular organisms.  
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Figure 1-5: Illustra<on of the three primary mechanisms of cellular communica<on 

Cells can communicate with the microenvironment via cell-ECM interac1ons mediated by integrins, physical cell-
cell interac1ons via cadherins and junc1onal complexes, and soluble ligand signaling, encompassing both autocrine 
and paracrine pathways. Figure created with Biorender.  

1.2.2 Classes of microenvironmental ligands 
Soluble ligands represent a diverse group of molecules capable of mediaCng cellular communicaCon 
over short or long distances. These ligands can be secreted into the local extracellular environment or 
into systemic circulaCon, such as the bloodstream, to reach distant target cells. AddiConally, some 
ligands funcCon in juxtacrine signaling, remaining membrane-bound to directly engage receptors on 
adjacent cells [51]. Ligands influence cell behavior through a three-stage process: 1) binding to cell 
surface or intracellular receptors, 2) signal transducCon and acCvaCon of complex signaling cascades, 
and 3) acCvaCon of cellular response that is onen accompanied by changes in gene transcripCon and cell 
behavior [52] (Figure 1-6). 

Cytokines are small proteins that play crucial roles in regulaCng immune responses, inflammaCon, and 
cell differenCaCon [53]. They are secreted by a wide range of cells, including immune cells, epithelial 
cells, and stromal cells. Cytokines typically signal through cytokine-specific receptors, such as the IL-6 
receptor, which acCvates the JAK-STAT pathway [54]. Through these signaling cascades, cytokines 
influence processes such as cell proliferaCon, apoptosis, and immune cell recruitment. 

Chemokines are a subset of cytokines that primarily regulate cell migraCon by establishing chemical 
gradients [55]. These gradients direct the movement of cells, such as leukocytes, during immune 
surveillance and inflammatory responses. Chemokines are categorized into four main subfamilies (CXC, 
CC, CX3C, and C) based on the arrangement of conserved cysteine residues [55]. Examples include CXCL8 
(IL-8), which recruits neutrophils, and CCL2 (MCP-1), which aGracts monocytes [55]. Chemokine signaling 
is mediated by G-protein-coupled receptors (GPCRs), which acCvate intracellular pathways like FAK, PI3K-
AKT and MAPK to orchestrate cellular responses [56].  

Growth factors are essenCal molecules that regulate cell proliferaCon, survival, differenCaCon, and 
migraCon [57]. They include a diverse array of proteins such as epidermal growth factor (EGF), vascular 
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endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β). Growth factors bind to 
receptor tyrosine kinases (RTKs) like EGFR and VEGFR, iniCaCng signal transducCon pathways such as 
RAS-RAF-MEK-ERK and PI3K-AKT [50]. These pathways lead to changes in gene expression and cellular 
behavior. Growth factors are criCcal during development and Cssue repair, and their dysregulaCon is a 
hallmark of cancer, contribuCng to tumor growth, angiogenesis, and metastasis[58]. 

Hormones are systemic signaling molecules that influence a wide range of physiological processes, 
including growth, metabolism, and reproducCon [18]. Steroid hormones such as estrogen and 
progesterone are parCcularly relevant in the context of breast physiology, as they play crucial roles in 
mammary gland development and funcCon. Estrogen, for instance, binds to nuclear receptors like the 
estrogen receptor (ER), modulaCng the transcripCon of genes involved in cell proliferaCon and 
differenCaCon [59]. Similarly, progesterone acts through its receptor (PR) to influence mammary 
epithelial cell growth and ductal branching [59]. DysregulaCon of hormone signaling is a key factor in 
hormone-dependent cancers, such as certain subtypes of breast cancer, where therapies targeCng ER or 
PR have shown significant clinical efficacy [60]. 

In addiCon to cytokines, chemokines, growth factors, and hormones, several other classes of soluble 
ligands contribute to cellular communicaCon. NeurotransmiGers are key mediators of neuronal signaling 
and influence processes beyond the nervous system, including immune regulaCon [61]. Leukotrienes, 
lipid-based signaling molecules derived from arachidonic acid, play roles in inflammaCon and allergic 
responses by binding to GPCRs like BLT1 and CysLT1 [62]. These diverse signaling molecules highlight the 
complexity and versaClity of ligand-mediated communicaCon in biological systems.  

 

Figure 1-6: Mechanism of ligand-mediated cellular communica<on 

Microenvironmental ligands signal through cell-surface receptors or nuclear receptors and ac1vate signal 
transduc1on processes to alter cellular transcrip1on and behavior. Figure adapted from[52].  

1.2.3 Signaling pathways of induced by select microenvironmental ligands 
In the context of mammary gland physiology, ligand-mediated signaling plays a pivotal role in regulaCng 
cellular processes such as proliferaCon, differenCaCon, and survival [57]. Three key ligands—epidermal 
growth factor (EGF), transforming growth factor-beta (TGF-β), and OncostaCn M (OSM)—are chosen for 
this analysis due to their significant involvement in mammary epithelial cell funcCon [63], [64], [65]. EGF, 
primarily secreted by cells such as fibroblasts and keraCnocytes, promotes mammary epithelial cell 
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proliferaCon and survival [66]. TGF-β, secreted by a variety of cell types including fibroblasts and immune 
cells, has a dual role in both inhibiCng mammary epithelial cell growth and regulaCng differenCaCon 
[64]. OSM, produced by several cell types including macrophages, fibroblasts, and endothelial cells, is 
involved in the regulaCon of mammary epithelial cell differenCaCon and inflammatory responses [63].  

EGF exerts its effects through binding to the epidermal growth factor receptor (EGFR), a receptor 
tyrosine kinase [67]. Upon ligand binding, EGFR undergoes dimerizaCon and autophosphorylaCon on 
tyrosine residues, acCvaCng downstream signaling pathways such as the Ras/Raf/MEK/ERK pathway, 
which promotes cell proliferaCon and survival[68]. AddiConally, the PI3K/Akt pathway is acCvated, 
contribuCng to cell survival and metabolic regulaCon [68]. The acCvaCon of these canonical pathways 
leads to changes in gene expression that support epithelial cell growth. Non-canonical signaling, such as 
the acCvaCon of Src family kinases, has also been shown to influence cellular responses to EGF, 
parCcularly in the context of cell migraCon and metastasis [69].  

TGF-β signals through its type I and type II serine/threonine kinase receptors, which upon ligand binding 
iniCate the phosphorylaCon of Smad proteins, parCcularly Smad2 and Smad3 [70]. These 
phosphorylated Smads form a complex with Smad4 and translocate to the nucleus, where they regulate 
the transcripCon of target genes involved in cell cycle arrest, apoptosis, and extracellular matrix 
producCon [71]. In the mammary epithelium, TGF-β funcCons as a potent inhibitor of cell proliferaCon 
and is criCcal for maintaining Cssue architecture [64]. TGF-β signaling also plays a crucial role in 
epithelial-to-mesenchymal transiCon (EMT), which is vital during both development and tumorigenesis 
[72]. While canonical Smad-dependent pathways dominate, non-canonical signaling pathways, including 
those involving MAPKs and Rho GTPases, also contribute to the diverse cellular outcomes driven by TGF-
β [73]. 

OncostaCn M signals through the OncostaCn M Receptor (OSMR) and has a weaker affinity to the 
Leukemia Inhibitory Factor Receptor (LIFR) which both form a heterodimer with the gp130 receptor, 
which is shared with other cytokines like interleukin-6 [74]. Binding of OSM to its receptor acCvates the 
JAK/STAT3 signaling pathway, leading to the phosphorylaCon and dimerizaCon of STAT3, which 
translocates to the nucleus and regulates gene expression related to inflammaCon, differenCaCon, and 
cell survival [74]. In addiCon to the JAK/STAT3 axis, OSM has been shown to acCvate the MAPK and 
PI3K/Akt pathways, contribuCng to the regulaCon of cell survival and inflammaCon [63]. Non-canonical 
pathways involving Src family kinases and NF-κB can also be acCvated, influencing processes such as 
immune response and epithelial remodeling [75]. 
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Figure 1-7: Canonical signaling pathways of OSM, EGF, and TGFB 

EGF ac1vates the AKT and MAPK pathways, TGFB induces SMAD signaling, and OSM canonically signals through 
JAK/STAT3 pathway. All three ligands can also ac1vate non-canonical pathways, and poten1al crosstalk can occur 
between the signaling pathways. Figure created with Biorender. 

1.3 Epithelial cell phenotypes and modula6on by microenvironmental ligands 
The mammary gland, like other epithelial Cssues, relies on a diverse array of cellular phenotypes to 
maintain its structure and funcCon [2]. Epithelial cells exhibit remarkable plasCcity, dynamically adjusCng 
their behavior in response to cues from their microenvironment [11]. Key phenotypes, including 
proliferaCon, migraCon, and epithelial-to-mesenchymal transiCon (EMT), contribute to criCcal processes 
such as development, Cssue remodeling, and repair. These same mechanisms, however, are onen co-
opted during disease states such as cancer, contribuCng to tumor growth, invasion, and metastasis. 
Understanding the cellular phenotypes of epithelial cells and the molecular and environmental factors 
that regulate them is therefore essenCal for elucidaCng both normal mammary gland biology and the 
pathogenesis of diseases such as breast cancer. 

This chapter explores the mulCfaceted nature of epithelial cell phenotypes, beginning with proliferaCon, 
the process by which cells divide to support Cssue expansion and renewal. We then delve into migraCon 
and EMT, mechanisms criCcal for Cssue remodeling and, in pathological contexts, cancer disseminaCon. 
AddiConally, we examine the concept of parCal EMT and its implicaCons for tumor progression, as well 
as other phenotypes such as differenCaCon, which play pivotal roles in Cssue funcCon and architecture.  

1.3.1 Prolifera1on 
Cellular proliferaCon is a fundamental process in both normal and pathological contexts of the mammary 
gland. During normal development, proliferaCon drives the expansion and remodeling of the mammary 
epithelium, facilitaCng processes such as ductal elongaCon, branching morphogenesis, and 
alveologenesis [1]. These Cghtly regulated events ensure proper development and funcCon of the gland, 
parCcularly during puberty, pregnancy, and lactaCon. Conversely, in cancer, unchecked proliferaCon 
underlies tumor growth and progression, contribuCng to the formaCon of malignant masses and 
metastases [58].  
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ProliferaCon occurs through the cell cycle, a Cghtly orchestrated sequence of events that ensure the 
accurate duplicaCon and division of cellular contents [76]. The cell cycle is divided into four main phases: 
G1 (growth and preparaCon for DNA synthesis), S (DNA replicaCon), G2 (preparaCon for mitosis), and M 
(mitosis and cytokinesis) [76]. Mitosis itself is a complex process involving the segregaCon of 
chromosomes into two daughter cells through prophase, metaphase, anaphase, and telophase, followed 
by physical cell division during cytokinesis (Figure 1-8A) [77]. CriCcal to the fidelity of the cell cycle are 
several checkpoints that monitor and control progression [78]. The G1/S checkpoint ensures that the cell 
has sufficient resources and proper signals to enter DNA synthesis. The G2/M checkpoint verifies that 
DNA replicaCon is complete and free of damage before mitosis begins. During mitosis, the spindle 
assembly checkpoint ensures proper chromosome alignment and aGachment to spindle fibers to prevent 
errors in chromosome segregaCon. Errors in checkpoint regulaCon onen led to genomic instability, a 
hallmark of cancer [58]. 

The cell cycle is governed by a network of intrinsic regulators, including cyclins, cyclin-dependent kinases 
(CDKs), and CDK inhibitors (CKIs) [78]. Cyclins bind to and acCvate CDKs, driving progression through 
specific cell cycle phases. For example, cyclin D-CDK4/6 acCvity promotes the G1 to S phase transiCon, 
while cyclin B-CDK1 regulates entry into mitosis [79]. These acCviCes are modulated by CKIs such as p21 
and p27, which inhibit CDK acCvity under stress or DNA damage condiCons, providing checkpoints to 
prevent uncontrolled proliferaCon [80]. DysregulaCon of these intrinsic controls, onen through 
mutaCons or alteraCons in gene expression, is a common feature in breast cancer. 

The proliferaCon of mammary epithelial cells is profoundly influenced by signals from the surrounding 
microenvironment. Components such as the extracellular matrix (ECM), stromal fibroblasts, and immune 
cells secrete ligands that modulate proliferaCon [10]. For instance, insulin-like growth factor (IGF), 
secreted by stromal cells, promotes epithelial proliferaCon by binding to its receptor IGF-1R, acCvaCng 
downstream signaling pathways like PI3K-AKT and MAPK [81]. Mechanical cues, such as ECM sCffness, 
also regulate proliferaCon by modulaCng pathways like FAK and YAP/TAZ signaling [5]. 

Epidermal growth factor (EGF) exemplifies the role of microenvironmental ligands in regulaCng 
proliferaCon. EGF binds to the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, 
triggering dimerizaCon and autophosphorylaCon of the receptor [82]. This acCvates downstream 
signaling cascades, including the RAS-RAF-MEK-ERK and PI3K-AKT pathways, which promote cell cycle 
progression and proliferaCon [66], [83]. Key transcripCon factors such as MYC and FOS are acCvated 
through these pathways, driving the expression of genes involved in DNA synthesis and mitoCc 
entry[84]. In the mammary gland, EGF signaling is criCcal for ductal elongaCon and branching 
morphogenesis during development. Aberrant EGFR acCvaCon, whether through overexpression or 
mutaCon, is frequently observed in breast cancer, driving tumorigenesis and resistance to therapy [36]. 
This makes EGFR a criCcal target for therapeuCc intervenCon. 

A variety of techniques are employed to measure cell proliferaCon. Common methods include labeling 
proliferaCng cells with thymidine analogs such as BrdU or EdU, which incorporate into newly synthesized 
DNA during the S phase [85]. Immunostaining for proliferaCon markers, such as Ki-67 or PCNA, provides 
addiConal insights into cell cycle acCvity [86]. Advanced techniques like live-cell imaging allow for real-
Cme monitoring of cell division, and computaConal pipelines are increasingly used to analyze imaging 
datasets [87]. These pipelines enable quanCtaCve assessments of cell division dynamics, tracking 
individual cells over Cme to provide high-resoluCon insights into proliferaCon.  
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Figure 1-8: Cellular prolifera<on is controlled by the cell  

Prolifera1on occurs through the cell cycle which is divided into phases controlled by molecular checkpoints. Figure 
panel A adapted from [77].   

1.3.2 Migra1on 
Cellular migraCon is required for normal development and physiology in the mammary gland. During 
development, migraCon orchestrates ductal elongaCon and branching, enabling the formaCon of the 
Cssue architecture required for lactaCon [1]. In cancer, migraCon is a key step in metastasis, allowing 
tumor cells to traverse Cssue barriers, invade surrounding stroma, and disseminate to distant organs 
[88].  

Epithelial cells adopt disCnct migraCon modes depending on cell type, cellular context, and 
microenvironmental cues (Figure 1-9A) [89]. Amoeboid migraCon involves rounded cells that navigate 
through ECM pores using actomyosin contracClity and low adhesive interacCons [90]. In contrast, 
mesenchymal migraCon relies on elongated cell morphology, strong adhesion to the ECM, and the 
formaCon of acCn and integrin rich protrusions called lamellipodia and filopodia [91]. This mode requires 
ECM degradaCon via matrix metalloproteinases (MMPs) to facilitate movement through Cssue barriers 
[92]. CollecCve cell migraCon (CCM), where groups of cells move cohesively while maintaining cell-cell 
juncCons, is parCcularly significant in the mammary gland [93]. During branching morphogenesis, CCM is 
required for coordinated epithelial remodeling. In cancer, CCM may serve as a primary mechanism by 
which clusters of cells invade Cssues and enter the vasculature. Evidence suggests that CCM is more 
efficient than single-cell migraCon for metastaCc colonizaCon (Figure 1-9B) [94]. 

MigraCon and invasion, while related, represent disCnct processes. MigraCon refers to the movement of 
cells within or through a Cssue, whereas invasion involves breaching and remodeling Cssue barriers, 
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onen accompanied by ECM degradaCon [95]. Both processes contribute to metastasis, but their 
mechanisCc differences highlight the complexity of cancer cell disseminaCon. The transiCon from 
localized migraCon to systemic metastasis is a hallmark of cancer progression [58]. CCM, in parCcular, 
has been implicated in enhancing metastaCc efficiency. Clusters of cancer cells exhibit improved survival 
during intravasaCon and extravasaCon out of blood vessels, potenCally due to the retenCon of 
intercellular signaling and adhesion molecules that protect against anoikis [96]. AddiConally, these 
clusters may carry supporCve stromal or immune cells that facilitate colonizaCon at distant sites [97], 
[98], [99]. Studies have shown that collecCve migraCon, rather than single-cell disseminaCon, onen 
predominates during early metastaCc events [100]. 

Cell migraCon is orchestrated by intricate molecular networks that regulate cytoskeletal dynamics, cell 
polarity, and adhesion. Rho family GTPases, including Rho, Rac, and Cdc42, are central to these processes 
(Figure 1-9C) [89]. Rho promotes actomyosin contracClity, driving the mechanical forces needed for 
amoeboid migraCon [101]. Rac facilitates the formaCon of lamellipodia, criCcal for mesenchymal 
migraCon, while Cdc42 coordinates filopodia formaCon and establishes front-rear polarity [102]. These 
GTPases act through downstream effectors, such as ROCK, formins, and the Arp2/3 complex, to 
modulate acCn and microtubule organizaCon [103]. AddiConally, GPCRs, including those acCvated by 
chemokines, can directly influence the RHO/ROCK axis, further modulaCng actomyosin contracClity and 
migraCon dynamics [104]. Beyond the Rho family, integrins play a pivotal role in mediaCng adhesion to 
the ECM, translaCng external signals into intracellular pathways that regulate migraCon [105]. 
DysregulaCon of these molecular pathways can enhance migratory capabiliCes, contribuCng to tumor 
invasiveness and metastasis. 

The mammary microenvironment provides both biochemical and physical cues that shape epithelial cell 
migraCon [5]. ECM components such as collagen and fibronecCn offer structural guidance, while 
mechanical properCes like sCffness modulate integrin-mediated adhesion and downstream signaling 
pathways [5]. Stromal fibroblasts secrete growth factors, including hepatocyte growth factor (HGF) and 
EGF enhance epithelial cell moClity (Figure 1-9D) [55], [66], [83]. Immune cells such as macrophages 
contribute by releasing matrix-degrading enzymes and pro-migratory chemokines, creaCng permissive 
tracks for migraCon [106].  

Chemokines are criCcal regulators of epithelial cell migraCon, exerCng their effects through G protein-
coupled receptors (GPCRs) [55], [107]. CXCL12 (SDF-1) and its receptor CXCR4 represent a well-studied 
axis in mammary epithelial and cancer cell migraCon [107]. CXCL12 gradients guide cells during 
development and tumor metastasis by acCvaCng pathways such as PI3K-AKT and MAPK, which promote 
cytoskeletal reorganizaCon and direcConal movement. AddiConally, CXCR2 acCvaCon has been 
implicated in driving epithelial and cancer cell migraCon. CXCR2, responding to ligands like CXCL1 and 
CXCL8 (IL-8), enhances acCn remodeling and promotes migratory phenotypes through similar 
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intracellular signaling cascades [108]. CXCR2 and other GPCRs also acCvate the RHO/ROCK axis, further 
regulaCng cytoskeletal contracClity and cell moClity.  

 

Figure 1-9: Modes and mechanisms driving cellular migra<on and metastasis 

A) Cells can migrate through three modes which involve dis1nct ac1n, integrin and cell-junc1on dynamics. B) 
Organoids derived from transgenic murine mammary tumors invade via CCM when cultured in collagen. The 
leading cells of the invading strands require expression of KRT14. C) Ac1va1on of Rho, Rac, and Cdc42 in fibroblast 
cells demonstrate the roles of each protein in control ac1n localiza1on and contrac1lity. D) EGF treatment induces 
cell migra1on in MCF10A mammary epithelial cells. Figure panel A adapted from [89]. Figure panel B adapted from 
[94]. Figure panel C adapted from [58]. Figure panel D adapted from [83]. 

1.3.3 The epithelial-to-mesenchymal transi1on 
Epithelial-to-mesenchymal transiCon (EMT) is a fundamental biological process wherein epithelial cells 
lose their characterisCc polarity and intercellular juncCons to acquire a more mesenchymal phenotype, 
characterized by increased moClity and invasiveness [58]. In normal physiology, EMT is pivotal during 
embryonic development, contribuCng to processes such as gastrulaCon, neural crest migraCon, and 
organogenesis [109], [110], [111]. In these contexts, the reversible nature of EMT allows cells to adopt 
transient migratory states before differenCaCng into specific lineages. In the mammary gland, EMT 
contributes to ductal remodeling and branching morphogenesis during development, as well as Cssue 
repair and regeneraCon following injury. Despite its essenCal roles in normal physiology, aberrant 
acCvaCon of EMT is implicated in pathological states, parCcularly in cancer progression and metastasis 
[58]. 

The inducCon of EMT involves a network of transcripCon factors and signaling pathways that orchestrate 
the phenotypic shin from epithelial to mesenchymal states. Central to this process are transcripCon 
factors such as Snail, Slug, Twist, and members of the ZEB family (ZEB1 and ZEB2) [112]. These factors 
repress the expression of epithelial markers, including E-cadherin, a criCcal component of adherens 
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juncCons, while promoCng the expression of mesenchymal markers such as vimenCn and N-cadherin. 
The downregulaCon of E-cadherin disrupts cell-cell adhesion, facilitaCng cellular detachment and 
migraCon [113]. 

Key signaling pathways regulaCng EMT include the Wnt/β-catenin, Notch, and Hedgehog pathways [114]. 
AcCvaCon of the Wnt/β-catenin pathway stabilizes β-catenin, which translocates to the nucleus to drive 
the transcripCon of EMT-promoCng genes. Similarly, Notch signaling enhances the expression of Snail 
and Slug, further promoCng the mesenchymal phenotype [115]. Crosstalk among these pathways 
amplifies the EMT program [114]. 

The microenvironment plays a criCcal role in modulaCng EMT through both biochemical and 
biomechanical cues. Among the most potent and well-studied inducers of EMT is transforming growth 
factor-β (TGF-β) [72]. TGF-β signaling, through its canonical SMAD-dependent pathway, acCvates 
transcripCon factors like Snail and ZEB, driving the downregulaCon of epithelial markers and 
upregulaCon of mesenchymal genes [70]. Non-canonical TGF-β signaling pathways, including those 
mediated by p38 MAPK and Rho/ROCK, further enhance cytoskeletal remodeling and moClity, 
reinforcing the mesenchymal phenotype [73]. TGF-β-induced EMT is not limited to cancer cells but also 
occurs in stromal and immune cells, shaping the tumor microenvironment to favor invasion and 
metastasis [64]. AddiConally, components of the extracellular matrix (ECM), such as collagen and 
fibronecCn, contribute to EMT by engaging integrin receptors and acCvaCng downstream signaling 
cascades [5]. Mechanical properCes of the ECM, including sCffness, further modulate TGF-β signaling, 
emphasizing the interplay between biochemical and physical cues in driving EMT [116]. 

It is believed that EMT is not a binary process, but rather a conCnuum of cell states [117]. ParCal EMT 
refers to an intermediate state in which cells exhibit both epithelial and mesenchymal characterisCcs 
[118]. Unlike complete EMT, where cells fully transiCon to a mesenchymal state, parCal EMT allows for 
enhanced plasCcity, enabling cells to dynamically adapt to environmental cues. Hypoxia, a common 
feature of the tumor microenvironment, is a significant driver of parCal EMT [118]. Hypoxia-inducible 
factors (HIFs) stabilize under low oxygen condiCons and acCvate genes associated with mesenchymal 
traits while preserving certain epithelial features [119]. This hybrid phenotype is parCcularly relevant in 
cancer, as cells undergoing parCal EMT retain some cell-cell adhesion properCes, allowing collecCve 
migraCon [120]. Such plasCcity enhances metastaCc potenCal by enabling cells to adapt to varying 
microenvironmental condiCons during disseminaCon and colonizaCon. 

EMT is a criCcal driver of cancer metastasis, enabling epithelial tumor cells to invade surrounding Cssues 
and enter the bloodstream. During metastasis, EMT facilitates the detachment of cancer cells from the 
primary tumor, degradaCon of ECM barriers, and intravasaCon into the vasculature [109]. Once in 
circulaCon, mesenchymal-like cells exhibit increased resistance to anoikis, promoCng survival during 
transit to distant sites [121]. Notably, EMT is onen reversible, allowing cells to undergo mesenchymal-to-
epithelial transiCon (MET) at metastaCc sites to establish secondary tumors [122]. CollecCve migraCon, 
onen driven by cells in a parCal EMT state, further enhances metastaCc efficiency by preserving 
intercellular communicaCon and cooperaCve invasion [118]. 

In breast cancer, aberrant acCvaCon of EMT is associated with poor prognosis, increased tumor 
aggressiveness, and resistance to therapy [123]. TargeCng EMT and its associated signaling pathways 
represents a potenCal strategy for miCgaCng metastasis and improving clinical outcomes. 
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Figure 1-10: The con<nuum of the epithelial-mesenchymal transi<on 

A) Cells undergo EMT through downregula1on or repression of epithelial state markers (par1cularly cell junc1on 
proteins) and upregula1on of mesenchymal markers (notably Vimen1n). Complete EMT results in epithelial cells 
dissocia1ng from the cohesive 1ssue and adop1ng a more migratory cell state. The process is reversable, and a 
mesenchymal-epithelial transi1on can occur. B) EMT is a con1nuum of cell states. Par1al EMT can occur where cells 
take on mesenchymal characteris1cs while retaining an epithelial iden1ty. Adop1on of a par1al EMT cell state can 
lead to CCM. Hypoxia has been observed to induce a par1al EMT state, mediated through the ac1va1on of the 
HIF1A transcrip1on factor. Figure panel A adapted from [56]. Figure panel B adapted from [118]. 

1.3.4 Other types of phenotypic modula1on 
Epithelial cells exhibit a wide array of phenotypes and behaviors beyond proliferaCon, moClity, and 
epithelial-to-mesenchymal transiCon (EMT), each contribuCng uniquely to Cssue funcCon. Among these, 
differenCaCon is parCcularly significant, shaping cellular idenCty and behavior in ways that are essenCal 
for maintaining the structure and funcCon of the mammary gland [4].  

DifferenCaCon refers to the process by which cells acquire specialized characterisCcs, enabling them to 
perform specific funcCons within a Cssue (Figure 1-11). In the mammary gland, differenCaCon allows the 
gland to fulfill its role in lactaCon and Cssue maintenance [4]. During pregnancy and lactaCon, mammary 
epithelial cells undergo extensive differenCaCon to form secretory alveoli capable of producing and 
secreCng milk [124]. This process involves both structural and funcConal changes, such as the expansion 
of cytoplasmic volume to accommodate secretory organelles and the clustering of cells into funcConal 
units [125]. DifferenCaCon also establishes polarity within epithelial cells, enabling the direcConal 
secreCon of milk components into the ductal system [126] . 

The microenvironment plays a criCcal role in driving differenCaCon. Signals from the extracellular matrix 
(ECM), such as laminin and collagen, interact with integrins on the epithelial cell surface to acCvate 
intracellular pathways that promote differenCaCon [5]. Hormonal cues, parCcularly from prolacCn, drive 
the expression of genes necessary for milk producCon and secreCon [126]. Stromal fibroblasts and 
adipocytes contribute by releasing growth factors like insulin-like growth factor (IGF) and vascular 
endothelial growth factor (VEGF), which further support differenCaCon and Cssue remodeling [2].  
Soluble factors such as transforming growth factor-beta (TGF-β) and Wnt ligands also play pivotal roles in 
addiCon to ECM and soluble factors, cell-cell interacCons are crucial [127]. E-cadherin-mediated 
juncCons facilitate the transmission of differenCaCon-promoCng signals, ensuring that epithelial cells 
maintain their cohesive and polarized architecture [45]. 
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Beyond differenCaCon, epithelial cells exhibit a range of phenotypes that influence their behavior and 
Cssue funcCon. These include senescence, a state of irreversible growth arrest associated with aging and 
Cssue repair, and apoptosis, which maintains Cssue homeostasis by removing damaged or unnecessary 
cells [128]. Secretory acCvity, as seen in mammary epithelial cells during lactaCon, represents another 
specialized phenotype [126]. Furthermore, epithelial cells can transiently adopt stem-like properCes, 
enabling Cssue regeneraCon and repair [129]. These phenotypes, shaped by intrinsic programs and 
microenvironmental signals, enable epithelial cells to meet the diverse funcConal demands of the Cssues 
they comprise. 

 

Figure 1-11: Mammary epithelial cells differen<ate into three main lineages which can be dis<nguished through 
scRNAseq 

A) Dimensional reduc1on of single-cell RNAseq data collected from human mammary 1ssue cells reveals three 
main lineages: Basal, Luminal1, and Luminal2. B) Gene expression markers that define the three lineages of 
mammary epithelial cells. Figure adapted from [130].  

1.4 Models and methods for exploring microenvironmental perturba6ons 
Biological phenotypes arise from a complex and mulCscale network of interwoven processes. Recent 
developments in sequencing technology, mulCplexed imaging methods, and computaConal power have 
enabled the simultaneous measurement of dozens to thousands of features in a single assay with single 
cell resoluCon. These ‘high dimensional’ methods for characterizing biological systems necessitate the 
development of advanced analyCcs that scale adequately with the number of measured features or cells 
without loss in signal. 

1.4.1 Experimental models 
The study of microenvironmental perturbaCons and their impact on epithelial cells relies on a variety of 
experimental models. Each system offers unique advantages and limitaCons, which make them suitable 
for addressing specific biological quesCons. Commonly used models include immortalized cell lines, 
primary cells, organoids, and animal models, among others [131]. 

Immortalized cell lines, such as MCF10A, are widely used to study mammary epithelial cell biology [132]. 
MCF10A cells are non-tumorigenic mammary epithelial cells derived from human breast Cssue. They are 
parCcularly valuable because they can be cultured in both two-dimensional (2D) monolayers and three-
dimensional (3D) systems, allowing researchers to invesCgate how microenvironmental factors influence 
cell phenotype in different contexts [133]. In 2D cultures, MCF10A cells grow as a flat, single layer of 
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cells, in a characterisCc cobblestone paGern, providing a simplified environment to study cell signaling 
and proliferaCon (Figure 1-12A) [134]. In 3D culture, these cells form acinar structures that beGer 
recapitulate in vivo Cssue architecture, enabling studies of cell polarizaCon, differenCaCon, and 
interacCon with the extracellular matrix (ECM) (Figure 1-12B) [135], [136], [137]. However, cell lines like 
MCF10A lack the complexity of primary Cssue and may not fully mimic in vivo condiCons [134]. 

Organoids are 3D culture systems derived from primary cells or stem cells that self-organize into 
structures resembling the Cssue of origin [138]. For mammary epithelial cells, organoids can model the 
branching morphogenesis and funcConal differenCaCon observed in vivo [139]. Organoids retain key 
cellular heterogeneity and microenvironmental interacCons, making them powerful tools for studying 
ligand signaling, epithelial-to-mesenchymal transiCon (EMT), and other phenotypic changes [140]. 
Despite their advantages, organoids are technically demanding to culture and onen lack the immune and 
stromal components present in the naCve Cssue. 

Mouse models are indispensable for studying microenvironmental perturbaCons in the context of a 
living organism [141]. GeneCcally engineered mouse models (GEMMs) allow for Cssue-specific 
manipulaCon of genes involved in epithelial-microenvironment interacCons, while xenogran models 
enable the study of human cells in vivo [142]. These systems provide insights into the systemic effects of 
microenvironmental changes, such as immune cell recruitment and vascular remodeling [143]. However, 
species-specific differences and the high cost of animal studies are significant limitaCons. 

InterpreCng epithelial cell funcCon and phenotype relies on a diverse collecCon of tools and 
technologies. Microscopy is a cornerstone for analyzing cell phenotypes across experimental models 
[144]. The choice of imaging technique depends on the specific model and the biological quesCons being 
addressed. Confocal microscopy is commonly used in 2D and 3D cultures to visualize cell morphology, 
juncCons, and protein localizaCon with high spaCal resoluCon [145] . Live-cell imaging enables the study 
of dynamic processes such as cell migraCon and division in real Cme. For example, Cme-lapse imaging of 
MCF10A cells in 3D culture can reveal how microenvironmental cues drive acinar formaCon or invasive 
behavior [146], [147]. Super-resoluCon microscopy provides enhanced detail for studying nanoscale 
structures, such as focal adhesions and cytoskeletal organizaCon [148]. MulCphoton microscopy is 
parCcularly useful for imaging deeper into 3D organoids or Cssue samples, capturing cellular interacCons 
within the ECM [149]. AddiConally, cyclic immunofluorescence (cycIF) allows for mulCplexed imaging of 
numerous biomarkers, offering a powerful tool to study cellular heterogeneity and signaling dynamics 
within Cssues [150]. 

QuanCfying imaging data to assess cellular phenotypes presents significant challenges, parCcularly in 
complex systems such as 3D organoids or Cssue secCons [87]. ComputaConal tools have become 
essenCal for extracCng meaningful insights from these datasets. Advanced algorithms for cell 
segmentaCon and tracking enable precise quanCficaCon of cell shape, movement, and division over Cme 
[87], [151]. Machine learning and deep learning approaches are increasingly being employed to idenCfy 
paGerns and classify phenotypes in high-dimensional datasets [152]. These tools are evolving rapidly, 
enabling researchers to address quesCons about cellular behavior and microenvironmental interacCons 
with greater precision and scalability.  
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Figure 1-12: MCF10A cells cultured in 2D and 3D condi<ons 

A). MCF10A cells cultured in 2D form a cobblestone pahern as they reach confluency. B). MCF10A cells can also be 
cultured in matrigel to inves1gate 3D structural organiza1on of the mammary gland. Twenty days ajer cell seeding, 
MCF10A acinar structures form surrounded by a basement membrane (red) and hollow lumen. Cells are 
immunostained for laminan V (red), DAPI (blue) and ac1vated caspase 3 (green). Bar = 25µm. Figure adapted from 
[133] 

1.4.2 Classical biochemical techniques  
Biochemical approaches grounded in prior knowledge are fundamental to unraveling the molecular 
mechanisms underlying cell phenotype modulaCon. These methodologies onen begin with hypothesis-
driven invesCgaCons that uClize classical techniques to isolate and characterize signaling pathways and 
molecular interacCons. For example, protein interacCon studies using co-immunoprecipitaCon (Co-IP) 
and Western blorng enable the idenCficaCon of signaling complexes, while kinase assays provide 
insights into pathway acCvaCon and downstream targets [153]. 

One of the most impacwul applicaCons of these approaches in mammary biology involves the study of 
transforming growth factor-beta (TGFβ) [127]. TGFβ is a pivotal microenvironmental ligand that 
influences epithelial cell behavior, parCcularly in the context of EMT and cancer progression. Classic 
studies using mammary epithelial cells demonstrated that TGFβ signaling is mediated by its receptor 
complexes, which phosphorylate SMAD proteins to regulate gene transcripCon [70]. Biochemical 
techniques, such as SMAD-binding assays and transcriptomic profiling, have revealed how TGFβ-induced 
changes in gene expression drive the loss of cell-cell adhesion and the acquisiCon of migratory 
phenotypes [154]. These biochemical approaches have also led to translaConal advances, such as the 
development of small-molecule inhibitors targeCng the TGFβ/SMAD pathway [155]. By blocking key 
steps in this signaling cascade, these inhibitors hold promise for limiCng tumor progression and 
metastasis.  

Through these classic biochemical experiments, researchers can begin to piece together the puzzle of 
how cells respond to their microenvironment and alter their behavior. However, this task is monumental. 
Cells can express over 20,000 proteins, each potenCally modified by complex interacCons, acCviCes, and 
post-translaConal changes such as phosphorylaCon [156]. Each piece of evidence from these 
experiments offers valuable hints about how a protein or pathway fits into the broader signaling 
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network. Nevertheless, integraCng these pieces into a comprehensive model of cellular behavior 
remains a significant and ongoing challenge for the field. 

1.4.3 Unbiased high-throughput assays 
Understanding how cells respond to microenvironmental perturbaCons requires methods capable of 
addressing the immense complexity of cellular signaling. Each cell expresses tens of thousands of 
proteins, many of which interact dynamically with one another and are influenced by extracellular cues 
[156]. Classical approaches, while powerful, onen target individual proteins or pathways, leaving vast 
regions of the signaling network unexplored. To overcome these limitaCons, researchers have developed 
high-throughput, unbiased methodologies that can simultaneously assess numerous molecular 
interacCons and cellular responses [157]. These approaches have become indispensable for uncovering 
how cells sense and adapt to their environments. 

Among the most transformaCve advances in biological research has been the development of 
sequencing technologies [158]. High-throughput sequencing enables researchers to study gene 
expression, mutaCons, and epigeneCc modificaCons across the enCre genome. Bulk RNA sequencing 
(RNA-seq) analyzes average gene expression in a populaCon of cells, providing insights into cellular 
responses to specific sCmuli. However, bulk approaches mask the heterogeneity within cell populaCons. 
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address this challenge [159]. 
By analyzing gene expression in individual cells, scRNA-seq reveals how cells within a Cssue or tumor 
differ in their signaling states, phenotypes, and interacCons. 

Single-cell sequencing has relevance to understanding microenvironmental perturbaCons in cancer. For 
example, scRNA-seq can uncover how immune cells interact with epithelial cells within the tumor 
microenvironment, revealing communicaCon networks that drive tumor progression or immune evasion 
[160]. The generaCon of large-scale scRNA-seq atlases, such as The Cancer Genome Atlas (TCGA), has 
made it trivial to ask previously difficult quesCons, such as which cells express specific ligands in breast 
tumors, and which cells express the cognate receptors capable of responding to those ligands (Figure 1-
13A-B) [161]. When combined with spaCal transcriptomics, which retains the physical context of cells 
within Cssues, researchers gain insights into how the microenvironment shapes cellular behavior in situ. 
These approaches allow for unprecedented resoluCon in studying complex cell-cell interacCons and 
Cssue organizaCon. 

The typical workflow for single-cell RNA sequencing involves several key steps: isolaCng individual cells, 
capturing and sequencing their RNA, and analyzing the resulCng data [159]. This process begins with 
dissociaCng Cssues into single cells, onen using enzymaCc digesCon. Isolated cells are then encapsulated 
in microfluidic devices or sorted into individual wells, where their RNA is captured and reverse-
transcribed into complementary DNA (cDNA) [159]. The cDNA is then amplified, sequenced, and 
analyzed using bioinformaCcs pipelines. 

Once the sequencing data is generated, a series of analysis steps are undertaken to interpret the gene 
expression profiles of individual cells [162]. First, the raw data is filtered to remove low-quality cells, such 
as those with poor RNA integrity or low sequencing depth. Next, the data undergoes normalizaCon to 
account for differences in sequencing depth between cells, followed by dimensionality reducCon 
techniques like principal component analysis (PCA) or t-SNE (t-distributed stochasCc neighbor 
embedding) [163]. These methods allow for the reducCon of high-dimensional gene expression data into 
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a smaller number of principal components, making it easier to visualize and interpret. Aner 
dimensionality reducCon, clustering algorithms such as k-means or graph-based methods (e.g., Louvain 
or Leiden clustering) are applied to idenCfy subpopulaCons of cells with similar gene expression profiles 
[164]. The resulCng clusters can be mapped onto known cell types or novel cell states, depending on the 
research quesCon. DifferenCal gene expression analysis is onen performed to idenCfy genes that are 
upregulated or downregulated in specific clusters, providing insights into the underlying biology of 
different cell types and states [165]. 

Despite its power, single-cell analysis presents numerous challenges. Cell dissociaCon can alter the 
transcriptome, introducing arCfacts. AddiConally, the stochasCc nature of RNA capture leads to dropout 
effects, where some transcripts are undetected, complicaCng data interpretaCon [166]. The analysis of 
single-cell datasets also requires advanced computaConal tools to cluster cells, infer signaling pathways, 
and idenCfy rare subpopulaCons [166].  

Beyond RNA sequencing, a variety of high-throughput methodologies are used to probe cellular 
responses and molecular mechanisms. ChromaCn accessibility assays, such as ATAC-seq (Assay for 
Transposase-Accessible ChromaCn using sequencing), provide insights into the regulatory landscape of 
cells by idenCfying regions of open chromaCn [167]. In ATAC-seq, transposases insert sequencing 
adapters into accessible regions of the genome, enabling the idenCficaCon of acCve promoters and 
enhancers. Single-cell adaptaCons, like sci-ATAC-seq, allow researchers to study chromaCn accessibility in 
individual cells, offering a deeper understanding of how epigeneCc states influence cellular behavior 
[168]. Mass spectrometry-based proteomics represents another high-throughput approach, enabling the 
idenCficaCon and quanCficaCon of thousands of proteins within a sample [169].  

While these high-throughput assays are incredibly powerful, they generate vast datasets that must be 
carefully interpreted to uncover physiologically relevant signals. The ability to measure nearly all genes, 
proteins, or regulatory elements in a cell or Cssue is a significant achievement, but idenCfying which 
components are criCcal for specific phenotypic outcomes remains a major challenge. PrioriCzing signals 
for further invesCgaCon onen rely on integraCng data from mulCple assays, leveraging computaConal 
models, and validaCng findings through focused biochemical or geneCc experiments.  
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Figure 1-13: Single cell Oncosta<n M gene expression in murine mammary tumors 

A). OSM is exclusively expressed by myeloid cells in mammary tumors harvested from MMTV-PyMT mice. Color bar 
represents scaled expression. B). The cognate receptor for OSM (OSMR) is expressed by the basal and luminal 
lineages of epithelial cancer cells, fibroblasts, pericytes, and endothelial cells, sugges1ng these cell types can 
respond to OSM secreted in the tumor microenvironment. Data represented in the figure adapted from [170]. 

1.4.4 Systems biology approaches 
Systems biology approaches aim to understand the molecular mechanisms underlying changes in cell 
phenotype by integraCng data from mulCple layers of biological informaCon [171]. Unlike tradiConal 
reducConist methods that focus on single molecules or pathways, systems biology seeks to capture the 
complexity of cellular systems. This approach acknowledges that biological systems are highly 
interconnected, where small perturbaCons in one part of a network can lead to large-scale changes in 
cellular behavior. Systems biology, therefore, focuses on modeling the intricate networks of interacCons 
between genes, proteins, and other biomolecules, ulCmately providing a more holisCc view of cellular 
responses to microenvironmental cues [171]. 

General strategies in systems biology onen involve aGempts to unite prior knowledge with high-
throughput data to build comprehensive models of cellular behavior [172]. One common approach is the 
use of network analysis, where prior knowledge of molecular interacCons is integrated with data from 
high-throughput assays such as RNA-seq, proteomics, or metabolomics (Figure 1-14).  [173]. This allows 
researchers to generate network models that map how genes, proteins, and other molecules interact in 
response to perturbaCons. For instance, integraCng gene expression data with known protein-protein 
interacCon (PPI) networks can help idenCfy key signaling hubs or pathways that drive changes in cell 
phenotype [174]. Another approach involves single-agent modeling, where the response of a cell to a 
single perturbaCon factor (like a drug, gene knockout, or environmental change) is modeled to predict 
how it will affect the behavior of individual cells or Cssues [83]. TranscripCon factor (TF) enrichment 
analysis is also commonly employed, allowing researchers to idenCfy which transcripCon factors are 
acCvated or repressed in response to specific sCmuli [175].  
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One example of a systems biology approach is causal pathway analysis, which is designed to uncover the 
causal relaConships between molecular components in complex biological systems [176]. Causal 
pathway analysis integrates data from high-throughput assays with prior knowledge of molecular 
interacCons and network structures derived from literature sources to generate hypotheses about causal 
relaConships within the system. This approach uses computaConal models to infer the direcConality and 
strength of causal links between genes, proteins, and other molecular factors. By idenCfying key driver 
nodes and predicCng how they influence cellular phenotypes, causal pathway analysis can provide 
deeper insights into the molecular underpinnings of cellular phenotypes. 

 

Figure 1-14: General workflow for elucida2ng molecular mechanisms through network-based analysis 

Raw data from high-throughput experimental assays is filtered to iden1fy markers that define a perturbed 
condi1on or diseased state. Filtered data is then computa1onally analyzed using an unbiased approach (Top) or 
using known biological cell signaling networks (Bohom) to iden1fy modules of molecular ac1vity that are altered.   
Figure adapted from [177].  

1.4.5 Microenvironmental signals in combina1on 
Cells in vivo are not exposed to a single signal at a Cme. Instead, they exist within a complex 
microenvironment filled with diverse biochemical and biophysical cues, including growth factors, 
extracellular matrix components, cytokines, and mechanical forces. These inputs are not isolated; cells 
must process and integrate mulCple signals simultaneously to generate coherent responses. 
Understanding how cells combine and integrate mulCple perturbaCons is criCcal to unraveling the 
mechanisms underlying cellular behavior. Is there crosstalk between signaling pathways acCvated by 
different inputs, or do these pathways operate independently? Do the effects of mulCple signals exhibit 
synergy, producing outcomes greater than the sum of their individual effects? Conversely, are there 
cases of antagonism, where the combined effect is less than expected? Addressing these quesCons 
requires both experimental and computaConal approaches capable of disentangling the complexiCes of 
mulC-signal integraCon. 

One area where synergy has been studied extensively is in drug responses [178]. Phenotypic synergy, 
parCcularly in the context of drug combinaCons, refers to cases where the combined effect of two or 
more drugs exceeds what would be predicted based on their individual effects [179]. Several quanCtaCve 
frameworks have been developed to define and measure drug synergy. The highest single agent (HSA) 
model compares the combined effect of two drugs to the effect of the most potent single drug in the 



29  Chapter II: A mulC-omic analysis of MCF10A cells 
provides a resource for integraCve assessment of ligand-mediated molecular and phenotypic responses 
 
combinaCon [179]. Synergy is observed if the combined response exceeds the response of the best-
performing drug alone. The Bliss independence model, on the other hand, assumes that two drugs act 
independently and calculates the expected combined effect based on this assumpCon [180]. Excess over 
Bliss quanCfies the deviaCon of the observed combined effect from the expected effect under Bliss 
independence, with posiCve deviaCons indicaCng synergy. Another common framework is Loewe 
addiCvity, which assumes that two drugs with similar mechanisms of acCon should have addiCve effects, 
and deviaCons from this baseline are used to infer synergy or antagonism [181]. Each of these models 
provides a unique lens through which to study drug combinaCons, helping researchers idenCfy 
synergisCc interacCons with therapeuCc potenCal. 

While these frameworks are well-established for understanding synergy in simple phenotypic outcomes 
such as cell survival or death, they do not generalize easily to more complex cellular phenotypes. For 
example, how do we define synergy in processes like epithelial-to-mesenchymal transiCon, changes in 
cell morphology, or shins in cellular signaling states? Similarly, there is no standardized framework for 
understanding molecular synergy—synergisCc effects observed at the level of gene expression, protein 
acCvity, or signaling pathway acCvaCon. Yet, molecular synergy is highly relevant because it has been 
shown to correlate with phenotypic synergy in mulCple studies [182]. Developing quanCtaCve and 
conceptual frameworks to study molecular synergy is an important fronCer in systems biology. Such 
frameworks could provide deeper mechanisCc insights into how mulCple inputs are integrated within 
cells and ulCmately drive complex phenotypic changes. 

2. Chapter II: A mul9-omic analysis of MCF10A cells provides a 
resource for integra9ve assessment of ligand-mediated molecular 
and phenotypic responses  

The following chapter has been adapted from Gross et al (2022), 10.1038/s42003-022-03975-9. 
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1. Analysis and phenotypic quanCficaCon of CycIF and live-cell imaging datasets  
2. Assessment of assay variance 
3. Comparisons between assays 
4. ExaminaCon of module acCvity to elucidate the molecular basis of ligand-induced phenotypic 

responses 
5. OSM validaCon experiments 
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2.1 Abstract 
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, 
including growth factors, hormones, and extracellular matrix proteins. While these signals are normally 
Cghtly controlled, their dysregulaCon leads to phenotypic and molecular states associated with diverse 
diseases. To develop a detailed understanding of the linkage between molecular and phenotypic 
changes, we generated a comprehensive dataset that catalogs the transcripConal, proteomic, 
epigenomic and phenotypic responses of MCF10A mammary epithelial cells aner exposure to the ligands 
EGF, HGF, OSM, IFNG, TGFB and BMP2. SystemaCc assessment of the molecular and cellular phenotypes 
induced by these ligands comprise the LINCS Microenvironment (ME) perturbaCon dataset, which has 
been curated and made publicly available for community-wide analysis and development of novel 
computaConal methods (synapse.org/LINCS_MCF10A). In illustraCve analyses, we demonstrate how this 
dataset can be used to discover funcConally related molecular features linked to specific cellular 
phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scienCfic 
community to mine for biological insights, to compare signals carried across disCnct molecular 
modaliCes, and to develop new computaConal methods for integraCve data analysis. 

2.2 Introduc6on 
The funcCon of cells and their organizaCon into Cssues is controlled by interacCons between cell-intrinsic 
molecular networks and cell-extrinsic signals, while dysregulaCon of these signals is associated with 
various diseases [183]. Extracellular ligands acCvate cell surface receptors to modulate chromaCn, RNA, 
and protein networks that induce changes in mulCple cellular phenotypes including viability, growth rate 
[184], moClity [185], polarizaCon, and differenCaCon state [186]. Disease-specific studies—especially 
those focused on cancer—have concentrated on understanding phenotypes related to disease 
progression, resistance mechanisms, therapeuCc vulnerabiliCes, and molecular predictors of response 
[187], [188], [189], [190], [191], [192], [193]. Several canonical signaling pathways have been linked to 
disCnct normal and disease-associated cellular phenotypes, including MAPK [194], JAK/STAT, WNT [195], 
and TGFB [196]. However, a detailed mapping of the linkage between mulC-modal molecular and 
phenotypic responses underlying cell state regulaCon, developmental processes and diverse diseases is 
lacking. 

Two general approaches have been used to explore the role of extracellular signals in modulaCng cellular 
and molecular phenotypes. One approach involves systemaCc large-scale perturbaCon of panels of 
immortalized cell lines, which has yielded libraries of response signatures [187], [189], [190], [191], 
[192], [194], [197], [198], [199]. The other approach involves more focused assessment of phenotypic 
and molecular changes in more complex model systems, including engineered organoids[198], [199], 
flies [200], [201], worms [201], fish [202] and mice [203]. Together these studies indicate that 
comprehensive mulC-omic assessment of perturbaCon responses are criCcal for gaining insights into 
molecular-phenotype relaConships. From this work, module analysis of mulC-omic molecular data has 
proven a powerful approach to idenCfy co-regulated molecular features associated with normal [204], 
[205], [206] and disease-associated [207] phenotypes. Such data-driven approaches require 
comprehensive, systemaCcally generated datasets, and in recogniCon of this, mulCple data generaCon 
consorCa have emerged over the past 20 years, including ENCODE [208], TCGA [209], GTEx [210], and 
HuBMAP [211].  

https://www.synapse.org/LINCS_MCF10A
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The Library of Integrated Network-based Cellular Signatures (LINCS) consorCum study presented here is 
a large-scale, cell line-based perturbaCon experiment designed to examine the molecular and 
phenotypic responses of normal cells to perturbaCons. Its uniqueness lies in the coordinated 
measurements of many different cellular and molecular responses to biologically relevant ligands that, 
when studied together, can be used for systems-level analysis of microenvironmental responses. Here 
we focused on the well-characterized human mammary epithelial MCF10A cell line [132], which is a non-
transformed cell line that exhibits many of the key hallmarks of epithelial biology, including migraCon 
[212], [213] and organoid formaCon [214], [215]. It is also easily manipulated in a variety of assays 
including live-cell imaging [216], knock-down [217], and chemical perturbaCon [217], and therefore is 
commonly used for cell biology studies. The combinaCon of molecular and cellular properCes, as well as 
its wide adopCon in the biomedical research community, provided the raConale for using MCF10A in 
these studies. Importantly, the focus on a single cell line provided a controlled cell-intrinsic geneCc 
context, which afforded molecular and temporal density in experimental measurements and assessment 
of mulCple perturbaCons across a variety of assays. We studied responses to six ligands that acCvate 
different canonical signaling pathways of biological and clinical relevance, enabling comparison of 
disCnct molecular and phenotypic effects. These data are publicly available for community study at 
synapse.org/LINCS_MCF10A. The following secCons describe and evaluate the informaCon content of 
the LINCS ME perturbaCon dataset and present illustraCve analyses showing how the dataset can be 
used to (a) elucidate molecular and cellular phenotypes that are influenced by the binding of specific 
ligands, (b) idenCfy ligand-induced signatures that can be mined for biological insights, (c) discover 
candidate causal or funcConal relaConships between molecular features with module analysis, and (d) 
idenCfy molecular programs that control specific cellular phenotypes.   

2.3 Methods 
General Considera8ons 

The technical reproducibility of a data resource such as the one we described here is paramount. To 
support the development of a robust resource, we carefully planned all experiments to minimize 
technical arCfacts and batch effects. Some aspects of the design of this data generaCon exercise were 
piloted in an earlier LINCS-wide study of reproducibility that we published jointly with co-authors of this 
manuscript (Niepel, et al. Cell Systems 2019 [218]). Specifically, in this study, we considered the 
following, which are described in more detail in the subsequent secCons: (1) Cell line evoluCon (drin): 
Whenever possible, cell culture was performed at OHSU to minimize technical variaCon. Given the 
nature of the CyCIF assay, it was necessary for HMS to perform cell culture at their site. To control for cell 
line evoluCon, several cell aliquots were frozen down at OHSU prior to the start of the experiment. These 
aliquots were shared with HMS for CyCIF data generaCon. For each sample collecCon (described below), 
we used a fresh aliquot of cells and ensured that cells were minimally passaged during sample 
generaCon. (2) Reagent batch-to-batch variaCon: To minimize variaCon due to reagents, common stocks 
of media and ligands were used for all sample generaCon at OHSU and HMS. (3) Cell culture protocols: 
OHSU and HMS used common cell culture protocols to minimize technical and biological differences. (4) 
Experimental collecCons: The large number of cells required for each assay necessitated that we split the 
gathering of samples into different collecCons to ensure feasibility of cell culture, treatment, and 
harvest. Each collecCon had at least three biological replicates that took approximately a month to 
generate. Details about which assays were included in each collecCon are shown in Figure 2-1E. To test 
for consistency across collecCons, we performed funcConal analyses on each of the biological replicates 

https://www.synapse.org/LINCS_MCF10A
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and found that they were broadly similar. Results of comparison from collecCons 1 and collecCons 2 are 
shown in Figure 2-2 and indicate concordant responses.  

Methodological Ra8onale 

A comprehensive study of how cells modulate their cellular and phenotypic responses to extracellular 
signals is criCcally important for understanding a variety of biological processes including cell state 
control, development, and diseases such as cancer. This includes idenCficaCon of the molecular 
networks that are directly modulated, the duraCon and extent of modulaCon, how one perturbaCon 
compares to another, and idenCficaCon of feedback mechanisms. AddiConally, idenCficaCon of the 
molecular networks that underlie phenotypic responses such as cell migraCon or proliferaCon remains 
challenging; for example, a TGFB network is not synonymous with a proliferaCon network despite TGFB 
treatment modulaCng proliferaCon.  

These quesCons on ligand and phenotype networks have been difficult to address because they require 
idenCfying a sufficient range of perturbaCons that modify mulCple phenotypes in a single cell type and 
then using experimental and quanCtaCve approaches that can isolate the underlying networks from 
secondary responses (feedback) and mulCple complex phenotypic responses (migraCon and proliferaCon 
are both sCmulated by EGF). Furthermore, these experiments are difficult to conduct across cells lines 
because a ligand perturbaCon in one cell type may not be equivalent to a ligand perturbaCon in a second 
cell type due to differences in the receptors that are expressed, the abundance of those receptors, 
downstream signaling components, transcripCon factors, and the underlying state of the cell. In addiCon, 
without a large reference dataset it remains unclear the number and type of perturbaCons to analyze, 
the opCmal Cme points to collect, the type of assays to measure, and what bioinformaCc tools are 
necessary to integrate all this informaCon idenCfy these networks. An addiConal challenge is that it is 
inherently difficult to generate comprehensive mulC-omic data as it requires experCse in the collecCon 
and analysis of each individual data type as well as development of methods to integrate data types 
together.  

MoCvated by this, we leveraged the LINCS consorCum, comprised of mulCple laboratories with diverse 
experCse, to create a comprehensive dataset on a single cell type that would be of broad use to the 
research community to mine for biological insights, develop novel computaConal analyses, and to serve 
as a guide of consideraCons for building mulC-omic perturbaCon data sets. To maximize the richness of 
the resultant data resource, we decided to test mulCple perturbaCons in a single cell line, which provides 
several advantages over tesCng fewer perturbaCons in mulCple cell lines. First, this increases 
experimental tractability as perturbagens and assay growth condiCons need only be opCmized for a 
single sample, and second, the starCng state of cells is the same in all samples, which enables a range of 
responses to be compared and leveraged against each other to isolate individual networks associated 
with different phenotypic responses. One disadvantage of using a single cell line is that it is not possible 
to directly address what porCon of a perturbaCon response is cell type specific compared to the porCon 
that is conserved across mulCple cell types. Balancing these consideraCons with available resources, we 
chose to use a single cell type for this study. Our approach enabled isolaCon of primary from secondary 
response; for example, we were able to idenCfy molecular changes specific to EGF and separate these 
from changes associated with secondary effects such as proliferaCon. This type of approach has been 
deployed for deep analysis of other model systems, including drosopholia [189] and c.elegans [201], 
[202].    
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Cell Culture Methods 

To decrease unwanted biological variaCon and ensure comparable results across data types, MCF10A 
cells were frozen in a single batch at the MD Anderson Cancer Center and used by both OHSU and HMS 
from the frozen batch with limited passaging. Cell idenCty was confirmed by short tandem repeat (STR) 
profiling and cells tested negaCve for mycoplasma.   

Two media formulaCons were used in these experiments. For rouCne growth and passaging cells were 
cultured in growth media (GM) composed of DMEM/F12 (Invitrogen #11330-032), 5% horse serum 
(Sigma #H1138), 20 ng/ml EGF (R&D Systems #236-EG), 0.5 µg/ml hydrocorCsone (Sigma #H-4001), 100 
ng/ml cholera toxin (Sigma #C8052), 10 µg/ml insulin (Sigma #I9278), and 1% Pen/Strep (Invitrogen 
#15070-063). For perturbaCon experiments, we used growth factor free media—which we termed 
experimental media (EM)—that was composed of DMEM/F12, 5% horse serum, 0.5 µg/ml 
hydrocorCsone (Sigma #H-4001), 100 ng/ml cholera toxin (Sigma #C8052), and 1% Pen/Strep (Invitrogen 
#15070-063). For each experiment, MCF10A cells were grown to 50-80% confluence in GM and detached 
using 0.05% trypsin-EDTA (Thermo Fisher ScienCfic 25300-054). Following detachment, 75,000 cells were 
seeded into collagen-1 (Cultrex #3442-050-01) coated 8-well plates (Thermo Fisher ScienCfic 267062) in 
GM.  Six hours aner seeding, cells were gently washed with PBS and EM was added.  Following 18 hours 
of incubaCon in EM, cells were treated with ligand in fresh EM media as follows: 10 ng/ml EGF (R&D 
Systems #236-EG), 40 ng/ml HGF (R&D Systems #294-HG), 10 ng/ml OSM (R&D Systems #8475-OM), 20 
ng/ml BMP2 (R&D Systems #355-BM) + 10 ng/ml EGF, 20 ng/ml IFNу (R&D Systems #258-IF) + 10 ng/ml 
EGF, 10 ng/ml TGFβ (R&D Systems #240-B) + 10 ng/ml EGF. The addiCon of ligand started the 
experimental clock. Samples were then collected at 1, 4, 8, 24 or 48H following ligand addiCon as shown 
in Figure 2-1.  

Eight-well plates were coated with 20 µg/cm2 collagen-1 in a mixture that mimicked the buffering and 
structural characterisCcs of MEMA spots: 200 µg/ml collagen-1 (Cultrex #3442-050-01), 10% v/v glycerol 
(Sigma G5516), 5 mM EDTA pH 8 (Invitrogen 15575), and 100 mM Tris-HCl pH 7.2 (Sigma T2069) in PBS. 
Plates were rocked at RT for 1 hour. Remaining coaCng mixture was gently aspirated, and plates were 
washed twice with sterile PBS.  Wells were allowed to dry completely by leaving the plate uncovered in a 
laminar flow hood before being stored in a benchtop desiccator for a minimum of three days and 
maximum of six months before use. 

Aner idenCficaCon of the 6 ligand treatments, samples were generated over three collecCon periods. 
The first collecCon was completed at OHSU in the Fall of 2017 when RPPA, RNAseq, ATACseq, L1000, and 
IF samples were collected. The second collecCon was completed at OHSU in the Winter of 2018 and 
included GCP, L1000, and IF samples. The third collecCon was collected at HMS in the Summer of 2018 
and included CyCIF and L1000 samples.  

Microenvironment Microarray (MEMA)  

We used previously established high-throughput MEMA screens to idenCfy microenvironmental factors 
that strongly influence growth [192], [219]. The key aspects of the MEMA assay are comprised of a set of 
printed insoluble proteins and a panel of soluble ligands. In brief, a panel of 48 insoluble proteins were 
printed into 8-well cell culture plates with an Aushon printer, forming 350 um diameter spots on which 
cells can grow. Each matrix protein was mixed with collagen I to improve prinCng and cell aGachment 
and printed in ∼15 replicate pseudo-random locaCons. 22,000 cells per well were added to replicate 
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arrays and grown in experimental media for 18H. Following this, the media was exchanged and 
appropriate concentraCons of a panel of 63 soluble ligands were added to each well. To account for the 
influence of EGF on MCF10A proliferaCon, we tested one set of arrays with 10 ng/ml EGF and the other 
without added EGF. Arrays were returned to the incubator for 71 hours, aner which 1uM EdU was added 
to the medium for 1 hour. Cells were then fixed in 2% PFA at RT and stored at 4°C in PBS. Aner fixaCon, 
cells were permeabilized with 0.3% Triton X-100 for 25 minutes at RT. Array-bound cell staining was 
performed with KRT14 (Abcam, 1:200), CellMask, and DAPI (ThermoFisher, 1:10,000).  

Arrays were imaged on a customized automated high content fluorescence microscope plaworm (Nikon 
HCA) and resultant image data was output to an OMERO image database [220]. Cells were segmented 
and intensity levels were calculated using CellProfiler [221]. The resulCng MEMA data was preprocessed 
and normalized using open-source R sonware available from (hGps://github.com/MEP-
LINCS/MEP_Processing). The spot cell count was based on the DAPI stained nuclei. EdU intensity was 
auto gated to label cells as EdU+ and the proporCon of EdU+ cells in each spot was reported to measure 
proliferaCon. Each intensity and morphology signal was independently RUV normalized in a series of 
matrices with arrays as the rows and spots as the columns [222]. The RUV controls were the residuals 
created by subtracCng the replicate median from each spot value. Aner RUV normalizaCon, bivariate 
LOESS normalizaCon was applied to the normalized residuals using the array row and array column as 
the independent variables. Aner normalizaCon, the ∼15 replicates of each condiCon were median 
summarized to the MEP level.  

MCF10A Dose Op8miza8on 

We used a three-step process to idenCfy ligands and opCmize doses for this large-scale perturbaCon 
experiment. Importantly, rather than use the same dose concentraCon for each ligand, we ran pilot 
studies to idenCfy funcConally relevant concentraCons. First, we used a high-throughput MEMA screen 
to idenCfy ligands that modulated proliferaCon. Second, we prioriCzed hits from the MEMA screen by 
selecCng a panel of ligands that target diverse receptor classes (cytokine, growth factor, TGFB family) and 
which targeted highly expressed receptors. Third, for each of the 6 candidate ligands, we performed 
dose-response studies to idenCfy the relaConship between ligand dose and change in cell numbers aner 
perturbaCon. MCF10A cells were plated on collagen coated 24-well plates in full growth media for 7 
hours at which point the media was exchanged for experimental media. Following 18 hours in 
experimental media, fresh experimental media was added with 7 doses of OSM, EGF, and HGF 
individually, or with seven doses of BMP2, IFNG, and TGFB in combinaCon with 10ng/ml EGF. Aner 72 
hours in ligand containing media, cells were fixed, stained with DAPI, and imaged on the ScanR 
microscope. Cell counts from the images were quanCfied using Cell Profiler and normalized based on the 
number of cells present in the 10ng/ml EGF condiCon. These dose-response experiments were 
performed in biological triplicate. From the resultant curves, we chose supramaximal doses for each 
ligand treatment, reasoning that this would ensure robust changes in cell number and minimize effects 
due to ligand depleCon over the course of the 48H assay. 

OSM valida8on experiments 

To assess responses to JAK/STAT inhibiCon MCF10A cells were plated in 24-well collagen coated plates. 
Following the media changes, cells were treated with 10 ng/ml OSM, 10 µM ruxoliCnib (Selleck 
Chemicals #S1378) and Nuclight Rapid Red Dye (Essen Bioscience #4717) to label nuclei and count cells 
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across Cme. Cells were then placed in the IncuCyte S3 and imaged every 30 minutes for 48 hours using 
phase contrast and red fluorescent filter sets. Cell number was quanCfied in Cell Profiler by counCng the 
number of fluorescent nuclei in each frame and normalizing counts to Cme 0H.  

To assess cell responses to protease inhibitors cells were plated in 24-well collagen coated plates, 
underwent the standard media changes and then at Cme 0H treated with 10 ng/ml OSM and either a 
protease inhibitor cocktail at a 1:400 diluCon (Sigma-Aldrich #P1860), 40 µM bestaCn (Sigma-Aldrich # 
B8385), 800 nM aproCnin (Sigma-Aldrich # A1153), 10 µM E-64 (Sigma-Aldrich # 324890), 1.45 µM 
pepstaCn (Sigma-Aldrich # P5318 ). Cells were then placed in the IncuCyte S3 and imaged every 30 
minutes for 48 hours.  

Phase contrast images were registered using a custom ImageJ script and then imported into the Baxter 
Algorithms cell tracking sonware [223]. Clusters of cells with an area greater then 1000 pixels (~5 cells) 
were tracked using default parameters. Cell cluster tracks were then analyzed to quanCfy migraCon. 
Speed, displacement, mean squared displacement, and the cumulaCve distance traveled was calculated 
for cell clusters.  

Live-cell imaging 

Well plates were placed in the IncuCyte FLR and phase contrast images were acquired every 30 minutes 
for 48 hours. Individual cells were manually tracked using the Fiji [224] plugin MtrackJ. Custom R scripts 
were used to quanCfy the migratory behavior of individual cell lineages. In brief, starCng at the last Cme 
slot of each lineage, one cell was randomly selected and traced back through mitoCc events unCl T0. 
MigraCon distance for each lineage was then calculated as the sum of the distances in pixels along the 
path between each image. To compare migratory behavior across different ligand treatments, we 
performed an ANOVA followed by Tukey’s Honestly Significant Difference test in R. Ligand treatments 
with p-value < 0.05 were deemed significantly different. 

Immunofluorescence 

Prior to fixaCon, cells were pulsed with 10 µM EdU (Thermo Fisher ScienCfic C10357) for 1 hour under 
standard culture condiCons. Cells were then fixed for 15 minutes with 2% paraformaldehyde (Electron 
Microscopy Sciences #15710) and permeabilized for 15 minutes with 0.01% Triton X-100 in PBS. Cells 
were then stained with CellMask (Thermo Fisher ScienCfic #H32713) for 30 minutes at RT, followed by 
fluorescent labeling of incorporated EdU for 1 hour at RT (Thermo Fisher ScienCfic C10357). Finally, cells 
were stained with a keraCn 5 polyclonal anCbody (BioLegend #905501) at 1:800 overnight at 4°C, 
followed by an anC-rabbit 488 secondary anCbody (Thermo Fisher ScienCfic A21206) at 1:300 and Dapi 
(PromoKine PD-CA707-40043) at 0.5 µg/µL for 1 hour at RT. 

Fixed cells were imaged on an Olympus ScanR microscope. DAPI channel images were imported into 
IlasCk for pixel classificaCon [221], [225]. A set of 20 images per plate were randomly selected and used 
for training. Pixels were classified as either nuclei or background using all default intensity, edge, and 
texture features, and with smoothing filters ranging from 0.3 – 10 pixels. Probability maps were then 
exported from IlasCk into CellProfiler version 3.1.8 for object segmentaCon [221], [226].  Nuclei were 
idenCfied using the global Otsu method with a threshold smoothing scale of 1.35. Clumped nuclei were 
separated based on intensity with a smoothing filter of 12 pixels. Cytoplasm compartments were 
assigned to nuclei by a 10-pixel donut expansion from each nucleus. Cytoplasm and nuclear Intensity, 
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size, and morphology data was then exported into RStudio (RStudio Team, 2015).  The values are 
analyzed as populaCons that have been median summarized from the cell-level data to the image or field 
level. The field level data are then median summarized to the well level. The EGF Cme course normalized 
values are the raw values divided by the corresponding EGF value at the same Cme point within the 
same replicate set. The preprocessing and QA script is at hGps://github.com/MEP-
LINCS/MDD/tree/master. All samples passed qualitaCve QC inspecCon that the integrated DAPI intensity 
has the expected bimodal distribuCon. 

Phenotype analysis 

All phenotypic quanCficaCons were derived from immunofluorescent cell-level data. Cell cycle phase was 
determined by analysis DAPI intensity: each cell was classified into either G1 or G2M cell cycle phase by 
clustering cells into two groups based on total nuclear DAPI intensity. The Forgy k-means algorithm was 
used for clustering (R stats package), with the number of centers set to two. DAPI thresholds for 
classificaCon were manually inspected, and mulCnucleated and poorly segmented cells were removed 
from further cell cycle analysis. KRT5 intensity was calculated as the mean intensity value of KRT5 in the 
cytoplasmic cell compartment. 

Three spaCal metrics were computed to quanCfy treatment induced changes in cell clustering and 
dispersal. The number of neighbors for each cell was calculated by quanCfying the number of cell 
centroids within 100 pixels of a cell’s centroid. Cells with coordinates less than 100 pixels from the image 
border were excluded. Nearest neighbor distances were determined by measuring the pixel Euclidean 
distances of each cell centroid to the centroids of the four nearest cells in the imaging field. To account 
for variaCons in image cell count, the mean nearest neighbor distances for each image were normalized 
by the expected mean distance to the nearest neighboring cell if the cells were distributed randomly 
[226]. The number of cells per cluster was computed in a two-step process: first performing mean shin 
clustering on the cell centroid coordinates for each image, using the R package LPCM (v 0.47), and then 
compuCng the mean number of cells per cluster. 

To compare phenotypic responses across treatments, we analyzed quanCficaCons of the 
immunofluorescent images 48 hours aner treatment. The Kruskal-Wallis test was used to test for overall 
treatment dependent differences. Pairwise comparisons between treatments were then conducted 
using Pairwise Wilcoxon Rank Sum Tests followed by an FDR mulCple comparisons correcCon. A stringent 
significance threshold of q-value < 0.05 was used to aid in idenCficaCon of the most differenCally 
induced phenotypic features. 

Reverse Phase Protein Array sample prepara8on 

Cells were washed twice with ice-cold PBS followed by collecCon by manual scraping in 50-100 µL of lysis 
buffer (1% Triton X-100, 50mM HEPES pH 7.4, 150mM NaCL, 1.5mM MgCL2, 1mM EGTA, 100mM Na 
pyrophosphate, 1mM Na3VO4, 10% glycerol, 1x cOmplete EDTA-free protease inhibitor cocktail (Roche 
#11873580001), 1x PhosSTOP phosphatase inhibitor cocktail (Roche #4906837001)).  Lysates were 
incubated on ice for 20 minutes with gentle agitaCon every 5 minutes and then centrifuged at 14,000 
rpm for 10 minutes at 4°C.  Supernatant was collected into a fresh tube, quanCtated by BCA assay, and 
the appropriate volume was combined with 4X SDS sample buffer (40% glycerol, 8% SDS, 0.25M Tris-HCl, 
10% �-Me, pH 6.8), boiled for 5 minutes, and stored at -80°C. Three sets of replicates were collected over 
three weeks and submiGed to MD Anderson Cancer Center for RPPA tesCng. 
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Reverse Phase Protein Array pre-processing and QC 

Samples underwent standard pre-processing using methods developed at the MD Anderson Cancer 
Center RPPA core [227]. In brief, the processing steps include the following: 1) Convert raw data from 
log2 value to linear value. 2) Determine median for each anCbody across the sample set. 3) Calculate the 
median-centered raCo by dividing each raw linear value by the median for each anCbody. 4) Assess 
sample quality by compuCng a correcCon factor (CF.1) for protein loading adjustment for each sample as 
the median of the median-centered raCo values from Step 3 for all anCbodies. Samples with correcCon 
factors above 2.5 or below 0.25 are considered outliers and discarded. 5) Compute the normalized linear 
value by dividing the median-centered raCo from Step 3 by CF.1. All samples passed MDACC’s quality 
checks and are included in the dataset. The normalized RPPA log2 values are joined with their 
experimental metadata and stored on Synapse as level 3 data. Replicates are median summarized and 
stored as Level 4 data. 

RNAseq sample prepara8on and sequencing  

Following treatment protocols described, at the appropriate Cme point wells were aspirated and cells 
were harvested by scraping in 600 µl of RLT Plus buffer (Qiagen) plus 1% β-ME. Samples were flash 
frozen in liquid nitrogen and stored at -80°C prior to RNA extracCon. Total RNA was extracted from 
frozen using a Qiagen RNeasy Mini kit. Columns were DNAse treated following the recommended 
protocol of the manufacturer.  

RNA concentraCon and purity was determined by UV absorpCon using a Nanodrop 1000 
spectrophotometer. All samples had 260/280 absorpCon raCos of at least 2.0, indicaCng successful 
isolaCon of RNA from other nucleic acids. RNA integrity was assessed using an Agilent 2100 Bioanalyzer 
with an RNA 6000 Nano Chip. RNA integrity numbers (RIN) were calculated from Bioanalyzer 
electropherograms using the “EukaryoCc Total RNA Nano” program of the Bioanalyzer 2100 Expert 
sonware (B.02.08.SI648). RIN values were in the 8.5-10 range, indicaCng high-quality RNA, with one 
excepCon (TGFB_48_C1_B; RIN = 6.9). UV absorpCon measurements and RIN values are available on 
Synapse (hGps://doi.org/10.7303/syn12550434). 

cDNA libraries were prepared from polyA-selected RNA using an Illumina TruSeq Stranded mRNA library 
preparaCon kit. 100-bp single-end reads were sequenced on an Illumina HiSeq 2500 Sequencer, with a 
target of 60M reads per sample.  

RNAseq pre-processing and QC  

Sequence preprocessing and alignment was performed using a Docker-based pipeline105. 100-bp single-
end reads were trimmed of Illumina adapter sequences using TrimGalore (v. 0.4.3), a wrapper for 
CutAdapt (v. 1.10) and FastQC (v. 0.11.5). A minimum of 1-bp overlap with the adapter sequence 
(AGATCGGAAGAGC) was required for trimming. Aner trimming, reads with a length < 35 bp were 
discarded. Trimmed reads were aligned to the GENCODE V24 (GRCh38.p5) assembly of the human 
genome using the Kallisto pseudo-alignment sonware (v. 0.43.0). Kallisto, using the following 
parameters: --bias -b 30 --pseudobam. 
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Gene-level quanCficaCons were produced from transcript-level abundance esCmates using the R (v. 
3.5.0) package tximport (v. 1.8.0). Mapping between gene/transcript idenCfiers was done using the 
biomaRt package (biomaRt v. 2.36.1) with the ENSEMBL_MART_ENSEMBL biomart and the 
hsapiens_gene_ensembl dataset. Gene-level quanCficaCons were imported to DESeq2 (v. 1.24.0) [228]. 
The fpkm funcCon of DESeq2 was used to normalize data for library size and gene length differences, and 
fpkm values were log2 transformed with an added pseudocount of 1. 

Transcrip8on Factor enrichment scores  

Single-sample enrichment scores were calculated for 297 transcripCon factor target gene sets obtained 
from the CHEA3 ReMap_ChIP-seq [229] using the R package GSVA (v. 1.32.0) [230]. A minimum 
expression filter was used for expressed genes; genes were retained only if expressed at a minimum of 
0.5 log2(fpkm + 1) in a minimum of 3 samples. Enrichment scores were calculated from filtered RNAseq 
data, in units of log2(fpkm + 1), using the argument “method = ‘ssGSEA’”.  

Iden8fica8on of differen8ally expressed genes 

For each ligand treatment, we performed a differenCal expression analysis on the RNAseq gene-level 
summaries with the R package DESeq2 (1.24.0), with shrunken log2 fold change esCmates calculated 
using the apeglm method. We used the Benjamini-Hochberg method to correct p-values for mulCple 
comparisons and set a threshold of q-value < 0.01 and shrunken log2 fold change > 1.5 or < -1.5 to 
indicate significance.  

Pathway enrichment of ligand-induced signatures  

We used Gene Set Enrichment Analysis (GSEA) to idenCfy the pathways enriched by each ligand 
treatment. Specifically, we used Gene Set Enrichment Analysis 4.1.0 downloaded from 
hGps://www.gsea-msigdb.org/gsea/index.jsp to assess enrichment of the MSigDB Hallmark Pathways in 
the Level 3 data. For each 24H ligand treatment sample, we computed log2 fold-change against CTRL_0 
from the Level 3 RNAseq data. 

ATACseq sample prepara8on and sequencing 

ATACseq samples were collected following the Omni-ATAC protocol [231]. Briefly, MCF10A cells were 
washed once with PBS and detached from the plate using trypsin. Cells were then counted using a 
Countess (Invitrogen), and 50,000 cells per condiCon were distributed to 1.5 ml centrifuge tubes and 
spun at 500 RCF for 5 min. The supernatant was removed, and the cell pellet was resuspended in 500 µl 
of PBS and spun again at 500 RCF for 5 min. The supernatant was removed again, and the cell pellet was 
resuspended in 50 µl of cold ATAC resuspension buffer (RSB) containing 0.1% NP40, 0.1% Tween-20, and 
0.01% digitonin by piperng up and down three Cmes. Aner 3 min on ice, 1 ml of cold RSB containing 
0.1% Tween-20 was added, and the tube was inverted three Cmes to mix. The nuclei were then pelleted 
by centrifugaCon at 500 RCF for 10 min at 4°C. The supernatant was then carefully aspirated, and the 
nuclei were resuspended in 50 µl of transposiCon buffer (25 µl 2x TD buffer (Illumina), 2.5 µl transposase 
(Illumina), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20, and 5 µl H2O). Samples were then 
placed in a pre-warmed (37°C) thermomixer and mixed for 30 min at 100 RPM. Transposed fragments 
were then purified using a Qiagen MinElute column and frozen at -80°C for further processing.  

https://www.gsea-msigdb.org/gsea/index.jsp
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The remaining steps of the Omni-ATAC protocol were performed by the OHSU Massively Parallel 
Sequencing Shared Resource. Transposed fragments were pre-amplified with 5 rounds of PCR. 
Anerward, 5 µl of the pre-amplified mixture was used for a qPCR reacCon to determine the 
concentraCon of tagmented DNA. Aner calculaCng the concentraCon of tagmented DNA, pre-amplified 
samples were diluted with eluCon buffer to a final concentraCon of 5 µM. Six samples had an undiluted 
DNA concentraCon below 5 µM and were not diluted. 5 µM pre-amplified samples were amplified for 3 
addiConal PCR cycles. 

Tagmented DNA was pre-amplified with 5 rounds of PCR (72ºC for 5 min, 98ºC for 30 seconds, then 5 
cycles of [98ºC for 10 sec, 63ºC for 30 sec, 72ºC for 1 min]). PCR reacCons contained 20 µl eluate, 25 µl 
NEBNext 2x MasterMix, 2.5 µl 25 µM i5 primer and 2.5 µl 25 µM i7 primer.  

The DNA concentraCon of the pre-amplified samples was assessed by qPCR. 5 µl of pre-amplified mix 
was added to 3.76 µl sterile water, 0.5 µl 25 µM i5 primer, 0.5 µl 25 µM i7 primer, 5 µl 2x NEBNext 
master mix, and 0.24 µl 25x SYBR Gold (in DMSO). Samples were amplified for 20 cycles of [98ºC for 10 
sec, 63ºC for 30 sec, 72ºC for 1 min]. DNA concentraCon was calculated, and pre-amplified samples were 
diluted to a final concentraCon of 5 µM. Six samples had an undiluted DNA concentraCon below 5 µM 
and were not diluted. 5 µM pre-amplified samples were amplified for 3 addiConal PCR cycles. 100bp PE 
reads were sequenced on an Illumina HiSeq 2500 Sequencer by the OHSU Massively Parallel Sequencing 
Shared Resource with a target of 20M reads per sample.  

ATACseq pre-processing and QC  

ATACseq files were processed and aligned using the ATACseq (1 -> 3) workflow on the AnswerALS Galaxy 
server (answer.csbi.mit.edu). Reads were trimmed of adapter sequences and low-quality bases using 
TrimmomaCc (Galaxy version 0.36.5). Reads were trimmed of low-quality bases (Phred score < 15) at the 
read start or end, and Nextera adapter sequences (CTGTCTCTTATA) were trimmed from read ends 
(minimum of a 2-bp overlap required for trimming). Reads were aligned to the human genome (hg38) 
using BowCe2 (Galaxy version 2.3.4.1) in paired-end mode with otherwise default serngs. BAM files 
were filtered to remove secondary alignments, unmapped reads, and mitochondrial DNA alignments 
using ngsuCls bam filter (Galaxy version 0.5.9). PCR duplicates were detected and removed using Picard 
MarkDuplicates (Galaxy version 2.7.1.2). The de-duplicated, filtered BAM file was used for peak calling 
and quanCficaCon. Peaks were called using MACS2 (Galaxy Version 2.1.1.20160309.5) using the 
following parameters: -format BAMPE -nomodel -extsize 200 -shin -100 -qvalue 0.01. 

ATACseq sample quality was assessed by calculaCng the fracCon of reads in peaks (FRiP). Before 
calculaCng FRiP, a consensus peakset was generated for all samples by taking the union of all peaks 
called in all samples and merging any overlapping peaks, using the R (v. 3.6.1) package DiffBind (v. 2.12.0) 
[232]. For each sample, FRiP was then calculated by counCng the proporCon of reads in the de-
duplicated, filtered BAM file that align within the consensus peakset. A minimum FRiP threshold of 0.15 
was applied to remove samples with low levels of chromaCn enrichment. Thirteen ATACseq samples did 
not pass the QC due to low FRiP scores; the fragment length distribuCons of these samples also lack the 
periodic peaks caused by nucleosome paGerning. These low-quality samples likely are the result of 
fragment over-transposiCon due to a high Tn5-transpose-to-cell raCo [233], [234]. 

Construc8on of chroma8n accessibility matrix 
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DiffBind (v. 2.12.0) was used to generate a peak accessibility matrix for the QC-passing samples. First, a 
consensus peakset was re-generated aner removal of low-FRiP samples. The dba.count funcCon was 
then used to count the number of reads in the de-duplicated, filtered BAM files that overlap with each 
peak in the consensus peakset. The dba.count argument "score = DBA_SCORE_TMM_READS_EFFECTIVE" 
was used to output TMM counts normalized to each sample's effecCve library size, which is equal to the 
de-duplicated, filtered library size mulCplied by the FRiP. A peak accessibility matrix in units of 
unnormalized counts was also generated using the dba.count funcCon with the argument "score = 
DBA_SCORE_READS". 

Mo8f Enrichment 

TranscripCon factor moCf enrichment scores were generated from the TMM-normalized chromaCn 
accessibility data using the R package chromVAR (v. 1.6.0) [235]. ATACseq peaks were annotated with GC 
content using the addGCBias funcCon of chromVAR and the BSgenome.Hsapiens.UCSC.hg38 genome 
annotaCon package. TranscripCon factor moCf posiCon frequency matrices were obtained from the 
“JASPAR CORE 2018 Homo sapiens” set of moCfs [236]. ATACseq peaks were matched to JASPAR moCfs 
using the R package moCfmatchr (v. 1.6.0). The expected fracCon of reads per ATACseq peak was 
calculated using the chromVAR funcCon computeExpectaCons, with the argument “norm = TRUE”. Each 
sample’s deviaCon from the expected fracCon of peaks in each annotated category was calculated using 
the funcCon computeDeviaCons, and deviaCons were converted to Z-scores using the funcCon 
deviaConScores. Enrichment scores of individual transcripCon factors were mean summarized to the 
“family” level as annotated in JASPAR 2018. 

Global Chroma8n Profiling 

The GCP assay was performed as previously described in Creech et al [237] and LiCchievskiy et al [189] 
Cells were washed with ice-cold PBS, then collected by manual scraping in 200 µl of cold PBS. Cells were 
then pelleted by centrifugaCon at 1500 RCF at 4°C for 5 min, resuspended in 1mL of cold PBS, and spun 
again as specified.  The resultant cell pellets were then flash frozen in liquid nitrogen and stored at -80°C 
unCl further processing. Pellets were thawed and lysed with nucleus buffer, followed by histone 
extracCon by sulfuric acid and precipitaCon using trichloroaceCc acid. Sample input was normalized to 
10 µg of histone in H2O before being propionylated, desalted (Oasis HLB 5mg Plate) and digested by 
Promega trypsin overnight. A second round of propionylaCon, followed by desalCng using C18 Sep-Pak 
cartridges (Waters) was employed aner digesCon. PropionylaCons and digesCon were done in an 
automated fashion on an LT-Bravos system (Agilent). Isotopically labeled syntheCc pepCdes from 
histones H3 and H4 were added as a reference to each sample prior to MS analysis. PepCdes were 
separated on a C18 column (EASY-nLC 1000, Thermo ScienCfic) and analyzed by MS in a PRM mode (Q 
ExacCveTM-plus, Thermo ScienCfic) [237]. Detailed protocols of sample preparaCon steps can be found in 
hGps://panoramaweb.org/labkey/wiki/LINCS/Overview%20InformaCon/page.view?name=sops. 

GCP data was merged with the experimental metadata and stored as level 3 data on Synapse. Replicates 
were median summarized and stored as level 4 data. 

L1000 sample prepara8on 

L1000 samples were collected as part of three collecCons. The first L1000 sample collecCon was 
generated in parallel to the ATACseq samples. MCF10A cells were washed once with PBS and detached 
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from the plate using trypsin. Cells were then counted using a Countess (Invitrogen) and 50,000 cells per 
condiCon were distributed to 1.5 ml centrifuge tubes and spun at 500 RCF for 5 minutes. The 
supernatant was removed, and the cell pellet was resuspended in TCL buffer (Qiagen) containing 1% β-
Me. For the second and third collecCons, cells were washed with PBS followed by the addiCon of TCL 
buffer (Qiagen) containing 1% β-Me. The cell and buffer mixture was allowed to sit for 30 minutes and 
then frozen at -80°C for further processing. Samples from the first and second sample collecCons were 
frozen in 1.5ml tubes. Samples from the third data collecCon were frozen in their original 96-well plates. 
In total there were eighteen plates from the third HMS collecCon, which contained 21 samples per plate, 
and there were 190 samples from the first two OHSU collecCons. All samples were shipped to the 
BROAD for simultaneous processing on the L1000 plaworm. The source plates containing original 
samples were re-arrayed into six 96-well master plates. These master plates contained 21 samples from 
each of three original source plates, and 32 samples plated directly from tubes. In each of the six master 
plates, well A1 was len empty to accommodate for internal technical control spike-ins. The six 96-well 
master plates were then re-arrayed into the final 384 well v-boGom PCR Plates (Eppendorf #951020702). 

L1000 Liga8on Mediated Amplifica8on 

For L1000 LigaCon Mediated AmplificaCon [238] crude cell lysates were transferred from source plates to 
384 well v-boGom PCR Plates (Eppendorf #951020702) assay plates. Oligo dT coated magneCc parCcles 
(GE Healthcare #38152103010150) were added to capture mRNA. Plates were then incubated at room 
temperature on shaker tables for 10 minutes. The beads were then spun down onto flat magnets and 
unbound lysate was evacuated by centrifuging upside down on magnet to 800RPM for 30 seconds. 15µl 
of reverse transcripCon master mix containing SuperScript IV reverse transcriptase was added to the 
plates and the plates were incubated at 55 °C for 10 minutes. Plates were again spun down, beads were 
pelleted on a flat magnet, and the remaining master mix was spun out. Probes were annealed to the 
first-strand cDNA by addiCon of 15µl of Probe Bind master mix, containing 100 fmole of each probe and 
Taq ligase buffer. Samples were denatured at 95 °C for 5 minutes, then transferred to a ramping water 
bath that decreased temperature from 70 °C to 40 °C over six hours. The following day, beads were again 
spun down on a flat magnet and master mix was evacuated. To ligate probe pairs, 15 µL of LigaCon 
Master Mix was added, containing Taq DNA ligase and ligase buffer. Plates were sealed and incubated at 
45°C for 60 minutes. Plates were spun down on magnets and ligaCon master mix was evacuated as with 
previous steps. 15µl PCR master mix containing 0.5 mmole of each primer (T3 and 50-bioCnylated T7 
universal primers), dNTPs, and PlaCnumTaq polymerase in reacCon buffer was added to each well, and 
plates were subjected to 29 cycle PCR. This process yielded bioCnylated gene and bead (barcode) specific 
amplicons.  

Each barcode corresponds to a complementary sequence on a Luminex bead, allowing the PCR product 
to be hybridized to a mixture containing per well ~100 each of 500 Luminex analyte colors. The plate was 
then denatured at 95°C for 5 minutes and incubated at 45°C for 18 hours. Beads were pelleted and 
stained with streptavidin R-phycoerythrin conjugate for ten minutes. Finally, plates were read on 
Luminex FlexMap 3D Flow cytometers that detected analyte color (transcript idenCty) and fluorescence 
intensity (transcript abundance) for all analytes detected in all wells.  

L1000 pre-processing  



43  Chapter II: A mulC-omic analysis of MCF10A cells 
provides a resource for integraCve assessment of ligand-mediated molecular and phenotypic responses 
 
To account for differences across the various cell collecCons, we adapted our standard data processing 
pipeline in several ways. L1000 data typically use a populaCon-based normalizaCon scheme, known as 
plate control, as described in Subramanian et al [238]. Here, the EGF treated wells served as the vehicle 
when conducCng vehicle normalizaCon. The standard data processing pipeline was followed, except for 
the changes at Level 1 and Level 4, described below. L1000 uClizes 10 sets of invariant genes, similar to 
‘housekeeping’ genes, to assess quality and in later normalizaCon steps. These gene sets, each 
containing 8 genes, represent control values that span the spectrum of gene expression, and are ordered 
according to their overall level of expression, the first level corresponding to the lowest expressing 
genes, and the 10th corresponding to the highest expressors. 

Plates were computaConally split at Level 1 (LXB) into subpopulaCons of wells, each containing only 
samples from a given Cme-point and collecCon combinaCon. The fluorescence intensity values 
associated with each bead color were subjected to the peak deconvoluCon step, which separates the 
two genes associated with each bead color (Level 2). Data were then normalized via L1000 invariant set 
scaling (LISS), which scales the expression levels of the 978 measured landmarks in each well to the 80 
control genes in the invariant gene set (Level 3). Next, we calculated differenCal expression using EGF as 
the vehicle control. Robust z-scoring was used to calculate differenCal expression values for each gene, 
where gene x is compared only to the vector of normalized gene expression of gene x across all EGF 
samples in that collecCon/Cme-point populaCon (Level 4). Finally, individual biological and technical 
replicates were collapsed into a consensus signature by compuCng a pairwise Spearman correlaCon 
matrix between each replicate signature. The weights for each replicate were calculated by the sum of 
their correlaCons to the remaining replicates, summing to 1. The consensus signatures were generated 
by the linear combinaCon of the replicate signatures using each signature’s weight as the coefficient 
(Level 5). 

L1000 QC 

We used several approaches to assess data quality. First, to assess the quality in each detecCon plate, we 
visually inspected and measured the slope of the invariant gene calibraCon curve for each sample; 
outliers were omiGed. Second, to assess plate effects, we ploGed median fluorescence intensity and 
interquarCle range of invariant set 10 across the enCre plate. This allowed idenCficaCon of failed (low 
signal) wells, Cssue culture related plate effects, or wells with abnormally wide ranges in expression 
across each gene set. Third, to assess the efficacy of the deconvoluCon algorithm, we determined the 
number of well/analyte combinaCons where two peaks were clearly discernible.  

In addiCon, we computed a transcripConal acCvity score (TAS) as a composite measure of L1000 
transcripConal response. Here signature strength (SS) was computed as the number of genes with a z-
score greater than or equal to 2 for each sample, and replicate correlaCon (CC) was computed as the 7th 
quanCle of the spearman correlaCon between all pairwise combinaCons of replicates. TAS is calculated 
as the geometric mean of SS and CC for a signature and scaled by the square root of the number of 
landmark genes, yielding a final score between 1 and 0. QC metrics are available on Synapse 
(hGps://doi.org/10.7303/syn19416843.1). 2 L1000 samples (1 from C1 and 1 from C3) failed these QC 
metrics and were removed. Finally, within each sample collecCon (C1, C2, and C3), we clustered samples 
based on the Euclidian distances between expression of the 978 measured landmark genes in the Level 3 
data, using the R funcCon hclust. Each collecCon had a small number of outlier samples that showed 
markedly aberrant expression of the 978 landmark genes and clustered apart from all other samples, in a 
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paGern that was not explained by sample treatment; these 17 samples (3 from C1, 1 from C2, and 13 
from C3) were removed. AddiConally, 25 samples from CollecCon 2 lacked an appropriate EGF-treated 
control on the same 384-well plate and therefore were omiGed from the final dataset. In total, 44 L1000 
samples (4 from C1, 26 from C2, 14 from C3) were removed from the dataset. 

Cyclic Immunofluorescence (CyCIF) sample prepara8on and imaging  

MCF10A cells were seeded 4000 cells/well in 200 µl of GM in collagen coated (as described above) 96 
well plates (NUNC, 165305) in technical (mulCple wells on the same plate) and biological (experiments 
separated by a minimum of one cell passage) triplicates. Eight hours aner seeding, the cells were washed 
once with PBS using an EL405x plate washer (BioTek), and 200 µl of EM was added per well. Following an 
addiConal 16 hours (24 hours aner iniCal plaCng), one plate was fixed (Cme = 0 hours) and EM was 
aspirated from all wells in the remaining plates using the plate washer and replaced with 200 µl of the 
appropriate ligand or control treatment. 

The treated plates were fixed following incubaCons of 1, 4, 8, 24, and 48 hours. Cells were fixed in 4% 
formaldehyde for one hour at room temperature and washed with PBS. Plates were sealed and stored at 
4°C unCl all replicates were collected. Next, cells were permeabilized with ice cold methanol for ten 
minutes, blocked in Odyssey buffer (LI-COR) for one hour, pre-stained with secondary anCbodies, 
bleached, and imaged to register background intensiCes prior to beginning CyCIF [150], [239]. For each 
cycle, cells were stained with three conjugated anCbodies, unless otherwise specified, and Hoechst 
33342 overnight at 4°C, washed with PBS, and imaged with an IN Cell Analyzer 6000 (nine fields of view 
per well, 20x/0.45NA air objecCve, 2x2 binning) (GE Healthcare Life Sciences). Following image 
acquisiCon, fluorophores were chemically inacCvated as described [150], [239], and cells then entered 
the next staining cycle. Refer to Supplementary Data 21 for anCbody metadata. 

CyCIF pre-processing and image analysis 

A flat field correcCon profile, generated from all fields on one plate using the BaSiC ImageJ plugin [240], 
was normalized to a mean value of one and each image was then divided by it. Image registraCon was 
performed with a custom ImageJ script. SegmentaCon of the nuclei (based on Hoechst staining), and 
cytoplasm (based on β-catenin staining) was performed with a custom MATLAB (MathWorks) script. Each 
cell was then divided into four subcellular masks: nucleus, peri-nuclear ring, cytoplasm, and cell 
membrane for feature extracCon, a finh region including all the cytoplasm (peri-nuclear ring, cytoplasm, 
and cell membrane together) was also defined. SegmentaCon was performed on the images acquired in 
cycle 4 only; the masks were then overlaid on all other cycles for feature extracCon. Intensity, texture, 
and morphology features were extracted for each mask, as appropriate (see Supplementary Data 22 for 
feature definiCons). 

CyCIF QC  

Quality control was performed in two steps. In the first step, cells that were washed away over the 
course of the experiment and those near the edges of the imaging fields that were incompletely 
captured cycle to cycle due to microscope stage drin were idenCfied and excluded from subsequent 
analyses. These cells were idenCfied by their high variaCon in nuclear Hoechst signal between successive 
cycles (hGps://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/SecCon2.1_Intensity%20based%20QC.ipynb). If 
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more than 90% of the cells in a field of view failed this QC step, the enCre field was removed. The 
median fracCon of lost cells was ~15 % for fields 1-8 whereas an average of 60% of cells were lost from 
field 9, with a significant number of instances where the fracCon of lost cells exceeded 90%. Field 9 was 
therefore excluded enCrely from subsequent analyses. AddiConally, for unknown reasons, most of the 
wells occupying row E on plate 18 exhibited cell loss in excess of 90% leading to the exclusion of all data 
from those wells in downstream analyses. In the second quality control step, cells with failed cytoplasm 
segmentaCon as idenCfied by mulCnucleaCon were removed. MulC-nucleated cells were idenCfied by 
re-segmenCng each mask using the Python implementaCon of Opencv 
(hGps://github.com/skvark/opencv-python) and counCng the nuclei; cells with two or more nuclei were 
excluded from downstream analyses (hGps://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/SecCon2.2_image_based_qc.ipynb). Although 
masks with two nuclei can represent failed segmentaCon or truly binucleated cells, visual inspecCon led 
us to conclude that these cases were primarily segmentaCon errors and were therefore excluded from 
downstream analyses.  

Measuring associa8on between variance and covariates   

We applied the Measuring AssociaCon between VaRIance and Covariates method to systemaCcally 
assess the fracConal variance explained by each experimental covariate of ligand, Cme, and replicate 
[241]. Briefly, each dataset was normalized by winsorizaCon at 99% to remove extreme outliers and then 
median centering within replicate. Next, we performed principal component analysis to reduce the 
dimensionality of each data set while preserving the variability. A subspace of principal components 
(PCs) significantly associated with each covariate (ligand, Cme, replicate) was determined by lasso 
regression for conCnuous covariates and silhoueGe coefficient for categorical covariates. We then 
quanCfied the total variance explained by each covariate by summing the weighted variances of all 
principal components (PCs). Low variance PCs with an eigenvalue of less than 0.7 were unlikely to 
significantly correlate to any covariates and these discarded PCs were not included in the analysis. 

L1000 drug signature comparison  

To compare our results to exisCng L1000 transcripConal drug signatures we used the L1000 FWD tool 
[238] available at hGps://maayanlab.cloud/L1000FWD/. We used as input the top 200 most significantly 
up-regulated and top 200 most significantly down-regulated genes at 24 H relaCve to CTRL_0. We 
considered drug signatures with Fisher exact test q-values < 0.2 to be significantly correlated or anC-
correlated with our ligand signatures. Finally, we summarized the number of drugs with similar 
mechanisms of acCon to idenCfy common paGerns. 

Comparison of RNAseq and RPPA assays  

To examine the relaConship between gene expression and protein abundance, we compared Z-scores 
calculated from our Level 3 RNAseq and RPPA data for the 222 genes/proteins measured by both assays. 
We also characterized the relaConship between these assays by examining the concordance of genes 
and protein idenCfied as differenCally expressed (compared to Cme 0) aner ligand treatment. Genes 
meeCng an absolute fold-change threshold of 1.5 and an FDR-adjusted q-value of 0.01 were considered 
differenCally expressed (as described in RNAseq methods). RPPA anCbodies meeCng an absolute log 
fold-change threshold of 0.5 and an FDR-adjusted q-value of 0.01 were considered differenCally 
expressed. For this analysis, we used a more stringent alpha of q = 0.01 (rather than q = 0.2 used 

https://github.com/skvark/opencv-python
https://maayanlab.cloud/L1000FWD/
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elsewhere) to focus on the strongest and most robust signals in each assay. Measurements with 
differenCal expression in both assays were considered concordant. We visualized the concordance 
between these assays with paired heatmaps displaying upregulated and downregulated measurements. 
We summarized these results with a Euler diagram showing set relaConships between upregulated and 
downregulated measurements across all ligand treatments. 

Comparison of RNAseq and L1000 assays  

To assess the concordance between gene expression profiles generated by both the RNAseq and L1000 
assays, we first filtered CollecCon 1 Level 3 data from both datasets to contain only samples and 
transcripts directly measured by both assays, then z-transformed the filtered datasets. We calculated the 
Pearson’s correlaCon between the RNAseq and L1000 z-scores for all pairwise combinaCons of samples, 
then compared the distribuCons of treatment-matched and treatment-mismatched samples. Samples 
with the same ligand treatment and Cme point were considered treatment matched. We used a Mann-
Whitney U test was used to test for differences in mean correlaCon between the treatment-matched and 
-mismatched groups. 

Comparison of ATACseq and RNAseq assays  

To compare gene expression to chromaCn accessibility at the respecCve transcripConal start site (TSS), 
we quanCfied chromaCn accessibility using bedtools mulCBamCov (v. 2.26.0). ChromaCn accessibility 
was quanCfied in windows ±500 bp from TSS coordinates provided by the R package 
TxDb.Hsapiens.UCSC.hg38.knownGene [PMID 20110278]. The most-accessible TSS was selected for 
genes with mulCple TSS. Integer counts were transformed using the variance-stabilized transformaCon 
from the R package DESeq2 (v. 1.24.0). Genes within the MHC region of chromosome 6 (chr6: 28510120-
33480577) were excluded from this analysis; ATACseq data from this region had poor alignment due to 
alternaCve conCgs for this region in the hg38 genome assembly. Median VST-transformed TSS 
accessibility was compared to median Level 3 RNAseq data for the EGF_48 condiCon. 

We also compared the 10 most-variant ATACseq TF moCfs (by standard deviaCon) to single-sample gene 
set enrichment scores computed for the same TFs from Level 3 RNAseq data, using the R package GSVA 
(v 1.32.0) and the TF-gene target mappings from the ReMap ChIP-seq library (as described above). 

Mul8-omic module detec8on  

To idenCfy coordinately regulated mulC-omic modules, we performed normalizaCon, data scaling, 
feature selecCon and cluster analysis on molecular features induced by ligand treatments. For the GCP, 
RPPA and CyCIF datasets we used limma to normalize to CTRL_0, summarize across the replicates and 
calculate adjusted p-values using Benjamini-Hochberg correcCon; we used DESeq2 to analyze the 
RNAseq data in a similar manner. We used chromVAR to aggregate chromaCn accessibility peaks that 
share common moCfs and then the individual moCf enrichment scores of transcripCon factor families. 
We applied the rrscale transformaCon to each assay data set to minimize differences in the assay-specific 
data distribuCons [242]. In brief, each assay’s T0 CTRL-normalized data was rrscaled independently with 
Box Cox negaCve and asinh transformaCons using an infinite z score cutoff. This transformaCon yields 
data matrices for each assay that have symmetrical Gaussian-shaped distribuCons, making them suitable 
for parametric staCsCcs. We selected a subset of highly variant and biologically interpretable features 
from the 24H and 48H samples from each assay. In GCP and RPPA assays, features in the lowest variance 
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quarCle were removed. For the CyCIF, RNAseq, and GCP assays, features were retained if, for any 
condiCon, the absolute log fold change was greater than 1.5 and the p-value was less than 0.05.  For the 
RPPA assay, we used a log fold-change threshold of 0.75 to account for differences in the RPPA data 
distribuCon. All ATACseq moCf family scores were retained.  

We performed k-means clustering using parCConing around medoids and a gap staCsCc analysis using 
the firstSEmax method to idenCfy the opCmal number of clusters (R package cluster, version 2.1.2). In 
brief, the gap staCsCc method runs PAM clustering on the integrated data matrix once for each k value, 
where k=2:25. Then for each k, we performed PAM clustering on 100 randomized permutaCons of the 
data that have structure similar to the actual data. At each k, the gap is calculated as the difference in 
the log of the within-groups sum of squares of the actual versus randomized data. To cluster the 
features, we use parCConing around medoids (PAM) clustering for the opCmal number of clusters 
defined in the previous step (k=18), with seeds randomly selected from the dataset. We repeated this 
100 Cmes to form an ensemble of parCCons, then calculated consensus clusters from the ensemble 
using a hard euclidean (HE) method and 5 internal runs. We repeated this enCre procedure 25 Cmes and 
then calculated a final consensus clustering with the HE method from these 25 consensus clusters. We 
further refined these clusters by idenCfying and collapsing highly correlated clusters. In brief, we 
calculated the mean expression of features in each cluster for each condiCon and then computed 
Pearson correlaCons between all pairs of clusters. Next, we then used the R hclust funcCon and the 
dendextend cutree funcCon on the distance matrix of the correlaCons to idenCfy highly correlated 
clusters. This resulted in combining 4 pairs of clusters to yield a final set of 14 modules for further 
analysis. 

Consensus Principal Component Analysis  

To explore how our method compares against other published mulComics approaches [243], we 
performed a Consensus Principal Component Analysis (CPCA) using the R package MoCluster [244] and 
then compared the clusters to the refined molecular modules described above. In brief, the same 
features used in the consensus PAM clustering were input as separate blocks to the CPCA algorithm. For 
each Joint Latent Variable (JLV), the principal components of each assay (block) are calculated as the 
block latent variables (BLVs), normalized to 1, sonly thresholded using a sparsity parameter (0.9) that 
controls the number of non-zero values and used to iteraCvely converge on a joint latent variable, which 
maximizes the correlaCon between the BLVs.  Based on knee analysis of the CPCA pseudoeigenvalues, 
we kept the first 8 JLVs.  

Module TF enrichment analysis  

We idenCfied transcripCon factors enriched in the integrated modules by submirng all RNAseq features 
from each integrated module to the ChEA3 web-based transcripCon factor enrichment tool ChEA3 [229], 
which idenCfies transcripCon factors enriched for a list of genes using Fisher’s exact test. We limited our 
analyses to transcripCon factor targets in the ReMap ChIP-Seq library and considered transcripCon 
factors significantly enriched if the FDR-corrected q-value was less than 0.2.  

Module pathway enrichment analysis  

To idenCfy pathways enriched in each module, we used the Reactome pathway enrichment analysis tool 
(hGps://reactome.org/) to analyze the genes in each module. In brief, this analysis performs a binomial 

https://reactome.org/
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test of each gene set of 2516 curated pathways in the Reactome database. We idenCfied significantly 
enriched pathways as those with FDR q-values (Benjamini-Hochberg method) < 0.2, gene raCos > 0.1, 
and pathways that included a minimum of 5 and maximum of 500 genes. To aid visual interpretaCon, 
only the top three pathways for each module sorted by FDR and descending gene raCo are shown in 
Figure 2-5B. 

Module expression scores  

To calculate the expression of modules across different samples in our MCF10A dataset, we computed 
the mean expression of features in each module. To assess expression of the modules in external 
datasets (e.g. GTEx), we focused on the RNAseq features in each module and computed their mean 
expression. For our analysis of Module 10 gene expression in a panel of breast cancer cell lines, we 
processed and aligned raw sequence data using the Docker-based RNA-seq pipeline [245] described in 
RNAseq pre-processing and QC, then normalized the data using the variance-stabilizing transformaCon 
in the R package DESeq2 [228]. We used a Mann-Whitney U test to test for differences in mean Module 
10 gene expression between groups. 

Set analysis  

Set analysis was used to idenCfy features significantly induced by a single ligand (ligand-specific) or 
mulCple ligands (shared). The input to the set analysis was the integrated and scaled matrix of log fold 
change values derived from the mulC-omic module analysis. Each feature in the mulC-omic matrix was 
labelled either ‘Unique’ or ‘Shared’. Features were defined as ‘Unique’ if they were significantly 
perturbed by only a single ligand, with log fold change greater than or equal to |1.5| and Benjamini-
Hochberg adjusted p-value less than .05, relaCve to Cme 0. Features that were significantly regulated by 
two or more ligands were labelled ‘Shared.’  

Sta8s8cs and Reproducibility 

When tesCng for staCsCcal significance, we adjusted for mulCple tesCng using the Benjamini-Hochberg 
method. Assays were performed on samples in biological triplicate, as described in Cell Culture Methods. 
We used a threshold of q = 0.01 for individual analyses of assay datasets (RNAseq and RPPA) and q = 0.05 
for phenotypic behavior comparisons to idenCfy only the largest and most robust responses in the data, 
and a less stringent alpha of q = 0.2 for all other analyses. The significance of list-based enrichment 
analyses (CHEA3, L1000 FWD) was evaluated using Fisher’s exact tests. We used the nonparametric 
Mann-Whitney U test to test for between-group differences in RNA-L1000 correlaCon coefficients and 
Module 10 gene expression. 

2.4 Results 
2.4.1 Approach to generate a LINCS ME perturba1on dataset    
Eight laboratories supported by the NIH LINCS program contributed to the creaCon and analysis of an 
MCF10A perturbaCon dataset to enable community study of the molecular mechanisms engaged by 
microenvironmental signals to modulate specific cellular phenotypes (Figure 2-1). Figure 2-1B shows the 
experimental and computaConal steps involved in the creaCon of the database. The process began with 
screening and selecCon of ligands that strongly modulated phenotype. Both phenotypic and molecular 
responses to ligands were then measured over Cme and integrated computaConally to idenCfy the 
phenotypes and molecular modules engaged by each ligand. Figure 2-1C shows the experimental design 
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in which mulCple endpoints were measured at several Cme points aner the introducCon of ligands. The 
ligands and experimental assays are summarized in Figure 2-1D.  

The elucidaCon of phenotype-associated molecular networks requires study of mulCple ligands that 
modulate cell behaviors through varied signaling pathways. To idenCfy a panel of high-impact ligands, we 
performed two high-throughput microenvironment microarray (MEMA) screens of 3024 combinaCons of 
63 soluble ligands and 48 insoluble extracellular matrix proteins [219]; one screen with and another 
without EGF, a typical component of MCF10A growth medium [132]. We focused on collagen-1 as the 
insoluble extracellular matrix component and idenCfied EGF, HGF, and OSM as ligands that increased 
growth in the absence of EGF, while BMP2, IFNG, TGFB decreased growth in the presence of EGF 
(Supplementary Figure 2-1A-B). These ligands target highly expressed receptors that are members of 
different canonical receptor classes (Supplementary Figure 2-1C). Dose-response experiments idenCfied 
the ligand doses necessary to yield maximal changes in cell numbers (Supplementary Figure 2-1D-E). 
Inclusion of EGF in combinaCon with BMP2, IFNG, and TGFB ensured sufficient cell numbers for 
molecular profiling. 

The parCcipaCng LINCS consorCum laboratories performed systemaCc and large-scale analyses of 
epigenomic, transcriptomic, proteomic and phenotypic responses to each ligand at several Cme points 
during a 48H period aner treatment (Figure 2-1B,D,E). Experiments were carefully planned to minimize 
technical arCfacts that are someCmes associated with large-scale experiments, such as cell line drin, 
variaCon in reagents, and protocol differences; a detailed descripCon of consideraCons can be found in 
Methods. Cells for all analyses were grown and treated at OHSU and the treated cells or lysates were 
distributed to parCcipaCng laboratories for analyses, except for those analyzed using cyclic 
immunofluorescence (CyCIF) [150], [239]. Cells for CyCIF were grown and treated at HMS using cells, 
culture media and ligands supplied by one laboratory at OHSU to minimize experimental variaCon [218] 
(Figure 2-1E). For each assay, MCF10A cells were plated on collagen-1-coated cell culture dishes in their 
standard growth medium, which contains the growth factors EGF and insulin [132]. Aner aGachment, 
the growth medium was replaced with medium lacking EGF and insulin, and cells were then treated with 
the ligand panel at opCmized concentraCons (Figure 2-1D).  

Samples were collected before and aner treatment over the 48H Cme period beginning with a Cme 0H 
sample (referred to as control: CTRL, Figure 2-1D). Cellular responses were measured using live-cell 
imaging, four-color fluorescence imaging and CyCIF [150], [239].  Molecular responses were assessed for 
changes in protein expression with reverse phase protein arrays (RPPA)[227]; chromaCn profiling using 
an Assay for Transposase-Accessible ChromaCn using sequencing (ATACseq) and global chromaCn 
profiling (GCP) [237]; RNA expression using RNAseq and the L1000 [238] transcriptomics panel designed 
to assess the levels of 1000 RNA transcripts. Samples for the different assays were collected in three 
experimental collecCons of at least three biological replicates each (Figure 2-1E). LogisCcal and cost 
constraints resulted in some assays being applied to only a subset of Cme points. Rigorous quality 
assessment (see methods) of all data led to the eliminaCon of ~5% of samples (44/814). The resultant 
data and metadata are available at: synapse.org/LINCS_MCF10A.  

https://www.synapse.org/LINCS_MCF10A
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Figure 2-1: Overview of experimental approach to assess the impact of microenvironmental factors. 

A) Map of LINCS data genera1on and analysis centers.  

B) Schema1c illustra1ng the experimental and analy1cal approaches to link molecular and cellular phenotypes. 

C) Schema1c of the experimental design, cell culture protocol, and sample harvest 1me points. 

D) The experimental treatments, dosages, and assays deployed to generate the LINCS ME perturba1on datasets.  

E) Summary of the assays, 1me points, and features for the three experimental collec1ons.  
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Supplemental Figure 2-1: Experimental and bioinforma<c approaches to iden<fy high impact ligands. 

A) Microenvironmental assay (MEMA) to iden1fy ligands that modulate MCF10A cell numbers. Cells were treated 
with ligands in experimental media lacking EGF and cell numbers were counted ajer 72H. In the boxplots, lower 
and upper hinges correspond to the first and third quar1les. The median is shown as the center line. Whiskers 
extend to no further than +/- 1.5 * IQR from the hinge, where IQR is the inter-quar1le range, ordistance between 
the first and third quar1les. 

B) MEMA assay results for MCF10A cells treated with ligands in experimental media containing EGF.Boxplots draw 
as described in a. 

C) MCF10A transcript expression from three receptor classes: Tyrosine kinase, cytokine, and TGFB/BMP. Transcript 
values are drawn from RNAseq measures for untreated cells in exponen1al growth. The primary receptors for the 
six ligands are highlighted HGF: MET (Blue), EGF:EGFR/ERBB2 (Red), BMP2:BMPR1B/BMPR1A (Green), TGFB: 
TGFBR1/TGFBR2 (Yellow), OSM: IL6ST/OSMR (Orange), and IFNG:IFNGR1/IFNGR2 (Purple). 
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D) Cell count dose-responses ajer treatment with EGF, HGF, and OSM. Cell counts at 72H were normalized to the 
10 ng/ml EGF condi1on.  

E) Cell count dose responses for TGFB1, IFNG, and BMP2. Each of the ligands were supplemented with 10 ng/ml 
EGF. Cells counts at 72H were normalized to the EGF condi1on with no secondary ligand.  

2.4.2 Overview of the ligand-induced cellular and molecular responses that comprise the 
LINCS ME perturba1on dataset 
Cellular responses. We quanCfied four-color immunofluorescence images from cells 24 and 48 hours 
aner ligand treatment to assess cell clustering, cell density, shape, DNA content, and expression of 
proteins related to differenCaCon state, which revealed a constellaCon of changes following each 
treatment that were quanCfied with image analysis (Figure 2-2A-B). CyCIF collected at all Cme points 
revealed addiConal changes in cell state and pathway acCvity. Consistent with our MEMA screen, HGF, 
OSM and EGF increased cell numbers and EdU incorporaCon (a measure of proliferaCon). BMP2 and 
TGFB significantly suppressed growth relaCve to the EGF condiCon; IFNG also reduced growth (Figure 2-
2C-D). HGF, OSM, and IFNG+EGF upregulated KRT5 expression, a marker of basal differenCaCon state in 
mammary epithelial cells [246] (Figure 2-2E). OSM caused cells to form Cght clusters (Figure 2-2F). Lastly, 
TGFB+EGF induced evenly distributed cells with increased size, quanCfied as an increase in the distance 
to neighboring cells (Figure 2-2G). Together, these ligands consCtute a powerful set of perturbaCons to 
probe molecular and phenotypic networks. 

Analysis of live-cell images showed the emergence of each phenotype following ligand treatment. OSM 
induced cells to undergo collecCve migraCon, a unique phenotype among the tested ligands. We 
assessed cell migraCon by tracking individual cells across the 48 hour Cme period and quanCfied 
migraCon as the total distance traversed by each cell lineage (Figure 2H). In all ligand condiCons, cell 
migraCon increased compared to the PBS condiCon, but to varying degrees: HGF-treated cells migrated 
the least while TGFB+EGF induced the greatest migraCon (Tukey’s HSD, p-value < 9x10-7). Together, the 
live cell imaging and migraCon analyses show the dynamic emergence of disCnct phenotypic responses 
by each of the ligand treatments. 
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Figure 2-2: Ligand treatments induce diverse phenotypic responses. 

A) Representa1ve immunofluorescent images of ligand-induced cellular phenotypes at 48H. MCF10A cells were 
stained with Cell Mask to visualize cytoplasm.  

B) Cartoon showing the image-based cellular phenotypes assessed from the immunofluorescence and live cell 
imaging assays. 

C-G) Boxplots summarizing cellular phenotypes at 1me 0H (CTRL) and 48H ajer ligand addi1on from 8 biological 
replicates. Individual datapoints represent well-level means normalized to 0H. Circles are from collec1on 1 and 
triangles are from collec1on 2. The interquar1le range is indicated by the box, with whiskers extending to no 
further than 1.5 1mes the interquar1le range. Note that EdU posi1ve propor1on was not measured at 0H.  

H) Accumulated cell migra1on (colored lines) from 0-48H for 25 cell lineages (individual cells and one of their 
progeny if they divided). Circles indicate mito1c events. The solid black lines indicate the popula1on average; the 
dohed gray line shows the average TGFB + EGF induced migra1on at 48H, which was the treatment that induced 
the greatest increase in cell migra1on.  

Molecular responses. The responses to ligands involved numerous features in each of the molecular 
datasets. Here we demonstrate some of our key observaCons through analysis of the RPPA proteomic 
dataset as an exemplar use-case. We assessed the modulaCon of canonical signaling proteins 
downstream from each ligand (Figure 2-3A). These included: IRF1, a transcripConal target of STAT1 
downstream of IFNG; pSTAT3, a signaling pathway component for OSM; and phosphorylaCon of MET, the 
receptor for HGF. PAI-1 provided an assessment of SMAD transcripConal acCvity, which is downstream of 
TGFB and BMP2. AddiConally, phospho- HER2 provided a readout for condiCons that contained EGF in 
the media. Each of these features were modulated as expected based on prior literature, validaCng the 
robustness of the dataset. 
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Unsupervised hierarchical clustering of the RPPA data set revealed dynamic changes in the protein 
landscape over Cme, with some responses shared by mulCple ligands and others that were uniquely 
induced (Figure 2-3B). All treatments that included EGF induced proteins related to growth factor 
signaling (e.g. pS6). The PBS condiCon, which lacks added growth factors, showed protein changes 
associated with reduced proliferaCon (e.g. decreased pRB) and inducCon of apoptosis (e.g. cleaved 
caspase 7), indicaCng that absence of growth factor signals strongly modulates phenotypic and 
molecular state.  

To gain a high-level view of the six molecular assays, we performed Uniform Manifold ApproximaCon and 
ProjecCon (UMAP) dimensionality reducCon for all ligand-induced responses (Figure 2-3C). Most assays 
showed ligand-specific effects, as observed by samples from the same ligand treatment tending to group 
near one another. In addiCon, most datasets showed evoluCon over Cme from the starCng state to 
another disCnct state, captured by early Cme points clustering near the center of the UMAP and later 
Cme points for each ligand appearing in different UMAP regions. Principal Component Analysis revealed 
similar findings, though the variance was manifest in mulCple components. 

Assessment of assay variance. We applied the Measuring AssociaCon between VaRIance and Covariates 
method to systemaCcally assess the fracConal variance explained by ligand, Cme, and replicate [241]. In 
brief, we first performed principal component analysis to reduce the dimensionality of each data set 
while preserving the variability. Next, we quanCfied the total variance explained by each covariate 
(ligand, Cme, replicate) by summing the weighted variances of all staCsCcally significant principal 
components (PCs). For example, in the RPPA dataset, the signal in the first PC was dominated by ligand 
while the second PC was dominated by Cme point (Figure 2-3D). We reasoned that PCs with an 
eigenvalue of less than 0.7 were unlikely to significantly correlate to any covariates and discarded these 
from the analysis. Summing across all significant PCs from the RPPA dataset revealed that 35% of the 
variance could be aGributed to ligand and 13% to Cme point (Figure 2-3E). Variance explained by 
mulCple co-variates is represented by overlap in the Venn diagram. Overall, 44% of the variance in the 
RPPA dataset could not be explained by one of these factors, suggesCng signal in the data aGributable to 
other factors, such as changes shared by mulCple ligands. Similarly, all other assays carried signal 
aGributable to ligand treatment, although to varying degrees: RNAseq (63.1%) and ATACseq (43.3%) 
contained the greatest ligand-associated signal while GCP (0.1%) contained the least (Figure 2-3F). 
Datasets with both early and late Cme points (RPPA, GCP, CyCIF) carried signal aGributable to Cme. There 
was limited variaCon aGributable to replicates across all assays, indicaCng modest biological and 
technical variaCon. 
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Figure 2-3: Six molecular assays reveal diverse dynamic responses to treatments. 

A) Line graphs show dynamic responses for 12 proteins measured in the RPPA assay under the different ligand 
treatments.  

B) Heatmap of protein abundances as measured by RPPA. Rows represent abundance of 295 (phosphor)proteins 
and are median-centered and hierarchically clustered. Columns represent individual replicate samples, ordered by 
treatment and 1me. Callouts show the 12 proteins from panel A. 

C) UMAPs for each of the six molecular assays. Each dot represents data from an individual sample and is the 2-
dimensional embedding of all features measured in the assay. Color indicates ligand treatment and size indicates 
1me point. 

D) Plot of the first two principal components (PCs) of RPPA assay. Variance in PC1 and PC2 is largely driven by ligand 
treatment and experimental 1me point, respec1vely.  

E) Analysis of RPPA covariates reveals the propor1on of variance explained by sample replicate, experimental 1me 
point, and ligand treatment for each of the top seven principal components of the RPPA dataset.  

F) Stacked bar graph shows a comparison of the informa1on content contained within each molecular assay.  

2.4.3 Iden1fica1on and analysis of ligand-induced molecular signatures 
Here we present a systematic assessment of molecular signatures induced by each ligand and 
provide examples of how these signatures can be analyzed and mined. Specifically, we focus 
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on IFNG+EGF to examine the temporal evolution of responses across modalities and to identify 
immune-related molecular features. 
 
Identification of ligand-induced signatures. To create molecular signatures of ligand responses, 
we identified features from each of the 6 data types that were differentially expressed at 24H 
and 48H time points relative to the CTRL sample (q-value < 0.01, |logFC| ≥ 1.5) (Figure 2-4A). 
Features were classified as unique if they were modulated by a single treatment or shared if 
they were induced by more than one treatment. All treatments induced both unique and shared 
molecular responses. IFNG+EGF, TGFB+EGF and OSM induced the greatest shift in molecular 
state, as measured by the total number of features induced across the RNAseq, ATACseq, GCP, 
CyCIF and RPPA assays. In contrast, EGF, HGF and BMP2+EGF showed more modest effects, 
consistent with maintenance of MCF10A cells in a pre-treated state. Cross-correlation analysis 
of the molecular responses revealed that 24H and 48H responses were strongly correlated for 
each ligand and that responses to ligands from related families (BMP2/TGFB, OSM/IFNG, 
EGF/HGF) were more similar to one another than to other family classes (Figure 2-4B).  
 
Motivated by our observation that the ATACseq and RNAseq datasets carried the strongest 
ligand signals, we more deeply interrogated these responses. We analyzed ATACseq 
transcription factor binding motif enrichment, a measure of transcription factor activity, and 
found that IFNG+EGF and TGFB+EGF induced the greatest number of enriched motifs. For 
example, TGFB+EGF induced SMAD, TEF-1, MAF and CREB motifs, while TGFB+EGF and 
OSM both induced changes in RUNT (Figure 2-4C). Gene set enrichment (GSEA) analysis 
[247] of the RNAseq dataset revealed a unique complement of gene programs associated with 
response to each ligand treatment (Figure 2-4D). 
 
Ligand signatures that are strongly anti-correlated with drug-induced transcriptional signatures 
suggest environmental conditions that a therapeutic inhibitor could reverse and therefore may 
serve as a sensitizing signal, for example by inhibiting a ligand-activated pathway. Alternatively, 
if a ligand activates a pathway not affected by drug, this could serve as a possible bypass 
pathway to mediate resistance, which is captured as non-correlated responses.  
To test this, we compared our ligand signatures against the LINCS L1000 database [248], [249] 
of drug and other chemical response signatures (Fisher exact test, q-value<0.2). While some 
therapeutic inhibitor signatures were correlated with multiple ligands, the responses to most 
ligands were associated with a unique complement of inhibitor signatures (Supplementary 
Figure 2-2). For example, TGFB+EGF, BMP2+EGF, and EGF were negatively correlated with 
SRC inhibition, indicating that these ligands induce similar pathway activation along the SRC 
signaling axis. EGFR/JAK inhibitors were negatively correlated with OSM, suggesting that cells 
grown in OSM-rich environments may be particularly sensitive to JAK inhibition. All together, 
these findings indicate that extracellular ligands activate some of the same molecular programs 
as therapeutic inhibitors and that the impact of environmental signals on cellular and molecular 
state is an important consideration for identification of effective therapeutic regimens.  
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Figure 2-4: Assessment of ligand-induced molecular change. 

A) Barplot showing the number of features significantly modulated by each ligand treatment at 24H or 48H. 
Shading indicates whether induced features are unique to a par1cular treatment (dark) or induced by mul1ple 
treatments (light). Numbers above bars indicate the number of features uniquely induced over the total number of 
features induced.  

B) Heatmap showing pairwise correla1ons between molecular features induced by each ligand. Ligand responses 
from similar families are more highly correlated than those from unrelated families. 

C) UpSet plot showing overlaps of induced transcrip1on factor mo1fs among ligand treatments calculated from 
ATACseq data at 24H or 48H. Column heights represent the number of transcrip1on factor mo1fs induced by the 
ligand(s) indicated with filled dots. 

D) Hallmark Geneset enrichment scores computed from RNAseq data at 24H.  
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Supplemental Figure 2-2: Comparison of ligand and small molecule inhibitor signatures. 

We leveraged the LINCS L1000 database of drug response signatures to iden1fy targeted inhibitors that are shared 
by each ligand signature. Heatmap represents the number of compounds that have correlated (red) or an1-
correlated (blue) signatures with each ligand (Fisher exact test,q-value < 0.2). The ligand panel ac1vated many of 
the same signatures as small molecule inhibitors, indica1ng that shared molecular responses can be elicited by 
these dis1nct perturbagen classes. 

Identification of molecular features induced by IFNG. We analyzed responses to IFNG+EGF to 
illustrate how the LINCS ME perturbation dataset can be used to study the molecular 
mechanisms associated with ligand responses across time. IFNG is a soluble cytokine secreted 
by cells of both the innate and adaptive immune systems and has become increasingly 
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scrutinized, owing to interest in understanding the role of the immune system in diverse 
pathophysiologies [249] as well as cancer immunotherapies. IFNG+EGF treatment induced 
dynamic changes in canonical IFNG signaling molecules measured across assays and time, 
including: rapid nuclear translocation of STAT1, the resultant induction of IRF1 followed by 
upregulation of PDL1 at the membrane as well as associated epigenetic changes 
(Supplementary Figure 2-2, 2-3A-F). These findings indicate that the LINCS ME perturbation 
dataset enables the encoding of a stimulus to be traced across time and molecular modalities.  

We observed that 66/202 Pathcards Reactome IFNG superpathway features [250] were among 
the most strongly modulated by IFNG+EGF treatment, indicating the induction of multiple known 
signaling responses (Supplementary Figure 2-3G). To gain deeper insight into the ability of 
IFNG to influence both adaptive and innate immune responses through altering cytokine 
production by malignant cells, we compared the MCF10A IFNG+EGF signature, the IFNG 
superpathway, and a curated cytokine gene list [251]. This comparison identified 15 cytokines 
not already included in the IFNG superpathway, suggesting additional cytokines produced by 
malignant cells in response to IFNG that may interact with various immune cell subsets, 
including: CSF1 [252], [253], IL15 [254], IL12A [255], CCL2 [256], and CXCL2 [257]. This 
demonstrates how the LINCS ME dataset can be mined to gain biological insights into immune-
related signaling and to prioritize molecular features for future study.  



60  Chapter II: A mulC-omic analysis of MCF10A cells 
provides a resource for integraCve assessment of ligand-mediated molecular and phenotypic responses 
 

 

Supplemental Figure 2-3: IFNG responses are dynamically encoded across mul<ple molecular modali<es. 

A) Cartoon of canonical STAT pathway ac1va1on ajer treatment with IFNG ligand.  

B) Line graphs show induc1on of pSTAT1, IRF1 and PDL1 protein expression following IFNG treatment, as measured 
by CyCIF and RPPA assays. Error bars represent the standard devia1on from the median value. Values from each 
replicate are plohed as individual data points. 

C-D) Cyclic immunofluorescence images show changes in STAT1 and PDL1 protein abundance and localiza1on 
induced by IFNG+EGF treatment. 

E) Line graphs show enrichment of STAT-family and IRF-family mo1fs inferred from ATACseq chroma1n accessibility 
data for IFNG+EGF and EGF condi1ons. Error bars represent standard devia1on. Low quality EGF+IFNG samples 
were removed, yielding only two replicates for this treatment. 

F) Chroma1n accessibility near the IRF1 (chr5:132390440-191020960) and PDL1 (chr2: 190908460-191020960) 
gene loci. The local gene region for IRF1 showed a new peak in the promoter region and a large accessibility change 
in the 3’ region. IFNG did not induce new ATACseq peaks in PDL1, however IFNG induced a new peak in the 
adjacent PDL2 gene (PDCD1LG2). DNA regions with changes in accessibility are marked with a red background. g 
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Venn diagram showing the overlap between the Reactome IFNG pathway, curated cytokine gene lists and, and 
genes induced by IFNG+EGF treatment. The 15 cytokines induced by IFNG+EGF are listed on the right. 

2.4.4 Discovery of candidate func1onal rela1onships between molecular features  
We reasoned that the paGerns of robust mulC-omic molecular changes induced across the panel of 
ligands could be analyzed together to discover coordinately regulated molecular programs. Importantly, 
our use of mulCple ligands that perturb cells along various phenotypic and molecular axes enabled 
disCnct molecular programs to be disentangled. Below we summarize our assessment of the 
relaConships between different modaliCes, our approach to idenCfy coordinately regulated biological 
modules, and also illustrate the uClity of the modules to provide insights into the molecular programs 
acCve across diverse Cssues. 

IdenMficaMon of coordinately regulated modules. We assessed coordinated responses in the RPPA, 
RNAseq, L1000, and ATACseq datasets by comparing molecular cognates across datasets that could be 
mapped through gene names (e.g. Cyclin B1 in RPPA and CCNB1 in RNAseq). This revealed broad 
concordance, indicaCng conserved responses across molecular modaliCes (Supplementary Figure 2-4). 
For example, the relaConships between RPPA and RNAseq showed several paGerns: linear correlaCon 
(CCNB1, DUSP4); ligand-specific effects (PDL1, JAK2); or no associaCon, which typically reflected only 
modest ligand-induced changes in abundance (RPS6, RB1). We assessed response concordance, which 
we defined as similar inducCon (up- or down-regulaCon) as compared to the CTRL samples, which 
revealed 40/207 features were concordantly up-regulated and 30/187 features were concordantly down-
regulated in the RNAseq and RPPA datasets. Importantly, we also observed that 2717/3035 features 
were concordantly unchanged. Next, we measured Pearson correlaCon of RNAseq and L1000 gene 
expression measurements for matched and unmatched samples and found that matched samples were 
on average significantly beGer correlated than gene expression profiles from unmatched samples (Mann-
Whitney U test; p < 2.2*10-16, Supplementary Figure 2-4D). In a third cross assay comparison, we found 
that chromaCn accessibility was bimodal and that promoter accessibility was associated with 
transcripConal expression, consistent with prior studies [258] (Supplementary Figure 2-4E). Finally, we 
compared the 10 most-variant ATACseq transcripCon factor moCfs to single-sample gene set enrichment 
scores for the same transcripCon factors from CyCIF data and found that they were generally concordant 
(Supplementary Figure 2-4F). 
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Supplemental Figure 2-4: Comparison across assays reveals concordance in response to ligand treatment 

A) Scaher plots of paired RPPA and RNAseq measurements, showing three classes of observed rela1onships: linear, 
ligand-specific, and no change.  

B) Heatmaps show genes and proteins with significantly up- or down-regulated expression ajer ligand treatment. 
Genes were defined as significantly up- or down-regulated from RNAseq (q-value < .01: log2FC > 1.5), while 
proteins were defined from analysis of RPPA (q-value < .01: log2FC > 0.5). 
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C) Euler diagram showing intersec1ons of differen1ally expressed RPPA proteins and RNAseq genes. The majority of 
features that were induced in both assays showed concordant responses, defined as both modali1es induced in the 
same direc1on. 

D) Distribu1ons of Pearson’s correla1on coefficients from RNAseq and L1000 gene expression profiles of treatment-
matched and treatment-mismatched samples. Both datasets were z-transformed ajer filtering to overlapping 
genes and samples. Transcrip1onal profiles from treatment-matched samples were significantly more correlated 
than were transcrip1onal profiles from nonmatched samples matched samples were significantly more correlated 
than were transcrip1onal profiles from nonmatched samples. 

E) Dot plot showing the rela1onship between ATACseq transcrip1onal start site (TSS) accessibility and gene 
expression in the EGF 48H samples. Note the switch-like rela1onship between gene expression and accessibility at 
the TSS, as has been described previously. The horizontal dohed line indicates the threshold for a gene defined as 
being expressed. 

F) Comparison of ATACseq and RNAseq data for the 1- most-variant transcrip1on factor mo1fs (by standard 
devia1on). Mo1f enrichment scores (x axis) represents the devia1on in mo1f chroma1n accessibility from an 
expecta1on based on the average accessibility of the mo1f across all samples, while ssGSEA scores (y axis) 
represent the degree of coordinated expression of the TF target gene expression. 

We next used a systemaCc approach to idenCfy modules comprised of coordinately regulated molecular 
features measured in the different assays (CyCIF, RPPA, GCP, and RNAseq, and ATACseq). Specifically, we 
examined all molecular features that were induced by at least one ligand (see Figure 2-4A) and then 
scaled each assay dataset with rrscale, which is a transformaCon that normalizes feature distribuCons, 
removes outliers, and z-scales feature values [242]. We used gap analysis [259] to idenCfy the opCmal 
number of clusters, and then used consensus clustering with parCConing around medoids (PAM) to 
idenCfy stable clusters. To further ensure that the clusters represented unique expression paGerns, we 
calculated their pairwise correlaCons and combined highly correlated pairs, which yielded a final set of 
14 molecular modules for interpretaCon (Supplementary Figure 2-5A-C).  

Each module represents a unique complement of co-regulated proteomic, transcripConal, and chromaCn 
features (Figure 2-5A). Features from each assay were distributed across modules, indicaCng that our 
analyCcal approach enabled integraCon of features measured in diverse assays (Supplementary Figure 
2-5D). Each module showed disCnct modulaCon paGerns across the ligands; most modules were induced 
by more than one ligand while a few were ligand-specific, consistent with the findings in Figure 2-4. 
Reactome pathway enrichment analysis demonstrated that each module induced an array of 
transcripConal programs (Figure2-5B). TranscripCon Factor enrichment via ChEA3 [229] idenCfied key 
molecular drivers associated with these modules (Figure 2-5C). To explore how our clustering method 
compared against other published mulComics approaches [243], we performed a Consensus Principal 
Component Analysis (CPCA) using the R package MoCluster [244], which showed similar ligand-specific 
expression paGerns (Supplementary Figure 2-5E-I). 
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Figure 2-5: Integrated analysis iden<fies co-regulated molecular modules 

A) Heatmap showing the 14 integra1ve molecular modules for each ligand at 24H and 48H. Features are grouped 
by cluster. Biological interpreta1on for modules is indicated on the lej; feature callouts for RPPA (R), CyCIF (C), 
ATACseq (A) are shown to the right.  

B) Bubble plot shows the top enriched Reactome pathways in each module, computed from RNAseq features. Dot 
size indicates the gene ra1o; dot color indicates FDR value. 
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C) Heatmap showing the five top-ranked ChEA3 transcrip1on factor enrichments computed from the RNAseq 
features in each module (pink). Red border indicates transcrip1on factor enrichments with a q-value below 0.2 
(FDR-adjusted Fisher’s exact test). 

D-G) Scaherplots show the rela1onships between module ac1vity and quan1ta1ve phenotypic responses for 
selected pairs. Dot color indicates the ligand treatment and dot size indicates the 1me point. The black dohed line 
shows the linear fit, and the q-value of the fit is shown at the bohom of the plot. 

 

Supplemental Figure 2-5: Iden<fica<on and characteriza<on of integra<ve molecular modules 
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A) Bar plot showing the number of features for each assay included in the integra1ve modules; note log 10 scale.  

B) Gap analysis used to iden1fy the op1mal number of modules. Error bars show +/- the standard error from the 
simula1ons. 

C) Module correla1on matrix showing Pearson correla1on values. Highly correlated cluster pairs 2+8, 5+6, 9+18 and 
14+16 were combined to yield 14 clusters. 

D) Bar plot showing the distribu1on of features for each assay across modules. 

E) Bar plot showing the mean module expression for each of the ligand treatments. 

F) Consensus Principal Component Analysis iden1fies mul1omic modules, and analysis of the resultant eigenvalues 
for the joint latent variables (JVLs) shows a knee at 8 modules. 

G) Heatmap showing expression of the top 8 JLVs for each treatment condi1on. Heat color indicates CPCA score. 

H) Heatmap showing the mean expression of the op1mized modules across the treatment condi1ons. 

I) Heatmap showing the correla1on in expression paherns for JLVs and module scores shown in g and h. There is 
high correla1on between the first 4 JLVs and the consensus module scores. 

Assessment of molecular modules across diverse Mssues. ElucidaCng the molecular programs operable 
across different Cssue types is criCcal for understanding normal organ development and funcCon and for 
idenCfying molecular programs that may go awry in the case of disease. We assessed RNA expression of 
the 14 integrated modules in the GTEx normal Cssue dataset [210] to idenCfy molecular programs that 
may be most acCve in parCcular Cssue types (Supplementary Figure 2-6). We observed Cssue-specific 
acCvaCon of the modules. For example, Module 14+16 included features associated with epithelial cell 
idenCty such as cytokeraCn-7, E-cadherin, claudin-7, and EGFR, and was upregulated in vagina, 
esophagus, and skin. These Cssues are comprised principally of straCfied squamous epithelial cells which 
undergo rapid terminal differenCaCon as they migrate from a basal zone to cornified surfaces [260], 
[261], [262]. This suggests that deeper analysis of the molecular features coordinately regulated by 
module 14+16 may shed light on key molecular programs important for differenCaCon and maintenance 
of epithelial cell state across diverse Cssues. Module 2+8 was enriched in extracellular matrix 
organizaCon and collagen formaCon pathways. This module was highly expressed in artery samples, 
consistent with the observaCon that the arterial wall produces a rich and complex extracellular matrix 
that defines the mechanical properCes of the vessel [260], [261]. AddiConal features included in each of 
these modules may provide addiConal insights into their roles in normal and diseased processes in 
different Cssues. 
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Supplemental Figure 2-6: GTEx expression analysis 

Heatmap showing GTEX 1ssue expression of the 14 integra1ve molecular modules reveals 1ssue-specific 
expression, sugges1ng molecular programs that may be par1cularly important for media1ng normal and diseased 
func1ons across 1ssues. 

2.4.5 Inves1ga1on of the rela1onship between molecular modules and cellular phenotype 
ElucidaCon of the molecular mechanisms that control cellular phenotype remains a difficult problem in 
systems biology. We illustrate here how the LINCS ME perturbaCon dataset can be analyzed to gain 
insights into mechanisms of phenotype control by linking cellular and molecular responses. We present 
two examples: a data-driven discovery of associaCons between phenotypic responses and module 
acCvity, followed by a detailed analysis of Module 4 to uncover molecular features associated with the 
cell clustering and collecCve moClity phenotype induced by OSM. 

Data-driven discovery of phenotype-module associaMons. We performed correlaCon analysis to idenCfy 
molecular modules that were significantly associated with cellular phenotypes measured by imaging 
(Figure 2-5D-G). For example, Module 2+8 was posiCvely correlated with ‘Normalized Second Neighbor 
Distance’, a metric that reflects both cell size and cell-cell spaCal organizaCon (Figure 2-5D, p-value = 
0.014). Several features of this module suggest molecular correlates of this phenotypic response, 
including pathway enrichments in Extracellular matrix organizaCon and Collagen formaCon. AddiConally, 
the transcripCon factor RUNX2, which was enriched in this module, has been implicated in modulaCng 
cell morphology and cell spreading [263]. 

We also idenCfied a specific and robust correlaCon between Module 10 expression and the fracCon of 
EdU posiCve cells, a measure of cell proliferaCon (Figure 2-5G, p-value = 0.012). To explore the putaCve 
regulatory components of Module 10, we annotated genes that code for transcripCon factors, kinases, 
non-coding RNA, and epigeneCc regulators (Figure 2-6A). This analysis revealed a suite of factors 
previously shown to play key roles in regulaCng cell cycle progression, including the transcripCon factors: 
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E2F1, FOXM1, MYB, and TFDP1; and the kinases: AURKA, CDK1, PLK1, and BUB1. Module 10 RPPA 
features cyclin B, Wee1, and phosphorylated RB are canonical cell cycle proteins that showed temporal 
dynamics consistent with changes in proliferaCon, as well as lesser linked features including FOSL1 [264], 
[265], [266] and PASK[267], [268] (Figure 2-6B). ChEA3 transcripCon factor enrichment [229] idenCfied 
mulCple cell cycle-associated transcripCon factors including FOXM1, TFDP1 and E2F isoforms (Figure 2-
6C). Among the most significantly enriched Reactome pathways were Cell Cycle, DNA replicaCon, and 
DNA repair (Figure 2-6D). We analyzed the top 5 sub-pathways within each of these Reactome pathways 
and found the highest enrichment for G1/S specific transcripCon, PCNA-dependent base excision repair, 
and unwinding of DNA (Figure 2-6E). AddiConally, Module 10 included 86% (37/43) of the genes in a 
funcConally-annotated G1/S gene set, with expression paGerns consistent with changes in EdU 
incorporaCon (Figure 2-6F). There is also evidence for DNA damage and potenCally for replicaCon stress 
in the inducCon base-excision repair, the G2M checkpoint and acCvaCon of DNA damage checkpoint 
associated kinases. In sum, Module 10 contains cell cycle-associated molecular features from mulCple 
modaliCes. 

To test if the link between Module 10 and cell cycle control generalized beyond MCF10A cells, we 
analyzed two publicly available independently generated breast cancer cell line data sets. First, we 
quanCfied mean Module 10 gene expression scores from 7 breast cancer cell lines treated for 24 hours 
with a panel of CDK4/6 inhibitors[269] . As expected, this showed robust down-regulaCon of Module 10 
in response to each of the three CDK4/6 inhibitors in the five sensiCve cell lines, while the two resistant 
cell lines showed only modest changes in Module 10 expression (Mann-Whitney U test, p-value = 0.028, 
Figure 2-6G). In a second analysis, we compared Module 10 expression for a panel of 65 breast cancer 
cell lines10 against cell doubling Cme, which revealed a significant correlaCon, consistent with the 
interpretaCon that Module 10 is funcConally associated with the cell cycle (Figure 2-6H, Pearson R = -
0.428). All together, these analyses indicate that our data-driven approach to module detecCon can 
idenCfy coordinately regulated molecular features associated with quanCtaCve phenotypic responses 
and that these findings generalize to independent data sets. 
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Figure 2-6: Module 10 is associated with cell cycle progression 

A) Donut plot showing distribu1on of Module 10 features across assays. Transcrip1on factors and kinases in the 
RNA gene set are called out to the right of the plot.  

B) Line plot showing 6 of the Module 10 RPPA features. 

C) Plot of the top 10 most significantly enriched transcrip1on factors inferred from the Module 10 RNAseq gene 
set. 

D) Bar plot shows the enrichment of Reactome superpathways from the Module 10 RNA gene set. 

E)  Bubble plot showing the top 5 enriched Reactome subpathways from the Reactome Cell Cycle, DNA Repair, and 
DNA Replica1on superpathways. Dot color indicates q-value; dot size indicates the number of genes in Module 10 
that are found in each gene set. 

F) Heat map showing expression of Seurat G1/S cell cycle genes in Module 10 (37 of 43 genes shared), sorted based 
on the EdU posi1ve propor1on. 
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G) Boxplot of mean Module 10 gene expression for a panel of breast cancer cell lines treated with three CDK4/6 
inhibitors for 24H or an untreated control. Cell lines are ordered by abemaciclib GR50 (increasing). The interquar1le 
range is indicated by the box, with whiskers extending to the minimum and maximum values. Data from Hafner, et 
al. 

H) Dot plot of mean Module 10 gene expression from 65 human breast cancer cell lines graphed against their mean 
doubling 1me. Cell lines are colored based on their breast cancer subtype classifica1on. The line indicates the 
linear fit across all cell lines, with the 95% confidence interval represented by the gray shaded area. Data from 
Heiser et al. 

2.4.6 Examina1on of module ac1vity to elucidate the molecular basis of ligand-induced 
phenotypic responses 
In our final analysis, we illustrate how the modules can be examined to provide insights into the 
molecular basis of complex phenotypic responses. Here, we focused on OSM, a member of the IL6 
cytokine family implicated in immune funcCon, developmental processes, and Cssue remodeling [270]. 
OSM sCmulated proliferaCon and was the only ligand in our panel that induced collecCve migraCon, a 
complex phenotype in which individual cells form Cght clusters that undergo migraCon (Figure 2-7A). To 
date, the molecular correlates of collecCve cell migraCon are not well understood, and our dataset 
provides a unique opportunity to study this behavior. 

To gain insight into the molecular features underlying this unique phenotype, we focused on modules 
that were strongly induced by OSM, including Modules 4, 12 and 13 (Supplementary Figure 2-5E). 
Features in Module 4 were of parCcular interest, as this module was selecCvely induced by OSM (Figure 
2-7B). Module 4 includes RPPA features pSTAT3, P-Cadherin, Connexin-43, and Hif-1-alpha as well as top-
ranked transcripCon factors ELF3, STAT3, TP63, and FOS from ChEA3 analysis (Figure 2-7C). P-Cadherin 
and Connexin-43 are intriguing, as they are implicated in the cell adhesion contacts required for 
mediaCng the observed clustering phenotype [271], [272]. Based on the coordinated changes in STAT3 
across modaliCes, we tested the funcConal importance of this axis with RuxoliCnib, a JAK/STAT inhibitor. 
We found that addiCon of RuxoliCnib in the presence of OSM strongly inhibited both the growth of cells 
and cell migraCon, confirming the importance of JAK/STAT signaling in mediaCng responses to OSM 
(Figure 2-7D). 

To probe more deeply into the Module 4 RNAseq features and augment our Reactome enrichment 
findings, we tested for enriched pathways using BioPlanet [273] (Figure 2-7E). One of the top pathway 
hits in this analysis was ‘OSM’, which serves as a validaCon of the module approach. The most enriched 
pathway was ‘complement and coagulaCon cascades’, two linked processes driven by a series of 
proteases to sCmulate innate immunity and blood clorng [274].  This suggested that protease acCvity 
may be criCcal for mediaCng OSM-induced cluster migraCon. To examine the role that proteases play in 
cluster migraCon, we treated MCF10A cells with OSM in the presence of a cocktail of five protease 
inhibitors and found reduced cluster migraCon, indicaCng the importance of protease acCvity in 
mediaCng this phenotype (Figure 2-7F). We next tested individual components of the protease cocktail 
and found limited effects of aproCnin, E-64, and pepstaCn A. However, with bestaCn, an aminopepCdase 
inhibitor, we observed formaCon of cell clusters but a failure of these clusters to migrate and merge 
(Figure 2-7G). Thus, these funcConal studies developed from the module analysis implicate 
aminopepCdase acCvity as a criCcal mediator of OSM-induced collecCve cell moClity in MCF10A cells. 
Overall, our approach to leverage responses to mulCple perturbaCons enabled idenCficaCon of 
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molecular programs associated with complex phenotypic responses including cluster migraCon and cell 
proliferaCon. 

 

Figure 2-7: Analysis of molecular modules iden<fies func<onal rela<onships between molecular and phenotypic 
responses to OSM 

A) OSM induces the forma1on of cell clusters that undergo collec1ve migra1on and merge to form large clusters. 
Representa1ve tracks of OSM-induced cluster migra1on are shown from 24H to 48H ajer OSM treatment. Cluster 
outlines are colored by experimental 1me point. All images are set to the same scale.  

B) Boxplot shows the mean expression of molecular features in Module 4 for each of the six ligand treatments. The 
boxplots’ lower and upper hinges correspond to the first and third quar1les. The median is shown as the center 
line. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge 
(where IQR is the inter-quar1le range, or distance between the first and third quar1les). The lower whisker extends 
from the hinge to the smallest value at most 1.5 * IQR of the hinge. 

C) Barplot showing the top 5 enriched transcrip1on factors inferred for the Module 2 genes in Chea3. 

D) The JAK/STAT inhibitor Ruxoli1nib inhibits cell growth in the presence of OSM. Line graph shows the rela1ve 
number of cells across 1me. PBS (phosphate buffered saline) treatment serves as a control. 

E)  Barplot of the top 10 enriched pathways in Bioplanet using the module 4 RNAseq gene set. 

F) OSM-induced collec1ve migra1on is mediated by protease ac1vity. Line graph shows the accumulated cluster 
migra1on distance ajer OSM + /− a protease inhibitor cocktail and its individual components including besta1n, E-
64, aprotonin, and pepsta1n A. Solid lines show the popula1on average and gray shaded regions indicate 95% 
confidence intervals of the mean distance travelled at each 1me point. 
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G) False color phase contrast images at 48H show that besta1n inhibits the forma1on of large cell clusters when 
given in conjunc1on with OSM. Cells are colored red and the background is colored gray. 

2.5 Discussion 
We leveraged the LINCS ConsorCum framework to systemaCcally quanCfy the phenotypic and molecular 
responses of MCF10A mammary epithelial cells aner treatment with a diverse panel of ligands. Analysis 
of this dataset revealed robust molecular and phenotypic responses and enabled idenCficaCon of ligand-
specific signatures, integrated molecular modules, and linkage of phenotypic and molecular 
responses. These data support the idea that deeply examining a single model system subjected to a 
range of perturbaCons with measurements across mulCple modaliCes is crucial to understanding 
complex biological phenomena.  

The robust, mulCmodal dataset enabled a range of computaConal analyses. For instance, the 
coordinated use of a diverse panel of molecular assays facilitated comparisons of the informaCon carried 
by each assay and revealed that RNAseq and ATACseq assays had the greatest ligand-associated signal. 
Differences in informaCon content between assays may be due to: intrinsic differences in molecular 
modaliCes, the signal available in a parCcular assay, or differences in the number and diversity of 
biologically meaningful features in each assay. These findings suggest that comprehensive assays such as 
RNAseq are well-suited for discovery-based screens or experiments that examine large panels of 
perturbagens, whereas targeted assays such as CyCIF—which can be adapted through inclusion of 
different biomarkers—would be expected to excel in more focused hypothesis-driven studies [150], 
[239]. 

In our integrated analysis, we joined epigenomic, transcripConal and proteomic changes into co-
regulated modules. CriCcal for this analysis was the use of ligands that sCmulate diverse and parCally 
overlapping pathways, as this enabled idenCficaCon of molecular features that were subtly and variably 
induced by mulCple ligands. We analyzed the modules to idenCfy linkages between molecular features 
and phenotypic responses. For instance, we idenCfied a set of co-regulated molecular features strongly 
associated with cell cycle, including both canonical transcripConal factors, pathways, and proteins as well 
as features that have been implicated but not confirmed in cell cycle regulaCon, such as PASK [267], 
[268]. Importantly, we showed that this cell cycle module, which was derived from integraCng all 6 ligand 
perturbaCons, could generalize to independent datasets comprised of mulCple cell lines. Some modules 
were semi-correlated and contained similar biological programs, as indicated by enrichment of shared 
pathways and TF programs. Alternate methods to idenCfy modules that permit parCal membership of 
individual features may allow a more nuanced idenCficaCon of the relaConship between molecular 
features and phenotypic responses [275].  

Our findings support the idea that systemaCcally tesCng mulCple perturbaCons of a single model system 
can idenCfy molecular programs that are operable in disCnct cellular contexts. We assert that 
idenCficaCon of these generalizable programs was possible precisely because we used mulCple 
perturbaCons in a single model system. However, there are also limitaCons to this approach. For 
example, a molecular or phenotypic response to a perturbaCon could be context dependent and may 
not be observed in other cell lines or model systems. Further exploraCon of addiConal cell lines using a 
panel of perturbaCons could facilitate idenCficaCon of the context dependence of the responses we 
observed and also would enable refinement of the underlying regulatory networks. Indeed, in the 
disease serng, the assessment of molecular and funcConal responses in panels of cell lines has proven a 
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powerful approach to idenCfy biological mechanisms common to different disease states. AddiConally, 
an expanded set of perturbaCons, including ligands, small molecule inhibitors or siRNAs that target other 
signaling pathways could help to refine the modules we idenCfied here and could also lead to 
idenCficaCon of addiConal funcConal modules and molecular networks.  

Our live-cell imaging studies revealed the inducCon of phenotypic responses in response to ligand 
perturbaCon. OSM uniquely induced MCF10A cells to form Cght cell clusters that underwent collecCve 
migraCon. We used our module analysis to explore the molecular basis of this complex phenotypic 
response and examined modules that were uniquely induced by OSM. Experimental validaCon idenCfied 
funcConal links between OSM-induced molecular and phenotypic responses: protease acCvity was 
required for collecCve cell migraCon while STAT acCvaCon was required for proliferaCon. Our findings 
add to the substanCal literature that implicates proteases in modulaCng interacCons between cellular 
and extracellular signals [143]. Future studies that examine the role of other Module 4 features will be 
needed for a complete understanding of the molecular basis of OSM-induced collecCve migraCon. For 
example, addiConal complex phenotypic responses could be invesCgated by growing MCF10A cells as 3D 
organoids [133]. 

Together, our findings indicate that this LINCS ME perturbaCon dataset will serve as a robust and 
valuable resource for community-wide analysis and exploraCon. This resource can be uClized by the 
broader community to gain deeper insights into biological processes such as the molecular basis of 
different phenotypes, the molecular and phenotypic impact of parCcular ligands, and how specific 
molecular features are modulated by perturbaCon. AddiConally, these data can serve as a resource for 
computaConal scienCsts to examine relaConships between different molecular modaliCes, to develop 
methods for idenCfying molecular networks, or to elucidate the temporal relaConships between 
different types of molecular changes. We also envision expansion of the dataset to include addiConal 
molecular measurements (e.g. single-cell RNAseq, single-cell ATACseq, and single-cell proteomics) and 
perturbaCon with different ligand combinaCons. Finally, while MCF10A represents a robust model of 
epithelial cell biology, analysis of the phenotypic and molecular responses observed in other cell models 
will be important for establishing broad generalizability of different findings. Our study provides a 
blueprint of the consideraCons for generaCng large-scale, high-quality mulC-omic perturbaCon data, and 
serves as a reference set against which other cell types could be compared. In addiCon, our results could 
be used to help guide future studies by informing the opCmal assay, perturbaCon or Cme point for more 
hypothesis-driven studies. 

2.6 Addi6onal Informa6on 
2.6.1 Data Availability 
Data, metadata and addiConal analysis reports are available at: synapse.org/LINCS_MCF10A. 

Raw RNAseq and ATACseq data generated for this study can be accessed from the Gene Expression 
Omnibus (GSE152410). Primary source data for Figure 2-6G from GSE99116. Primary source data for 
Figure 6h is hosted on Synapse.org with Synapse ID: syn2346643 
(hGps://www.synapse.org/#!Synapse:syn2346643/wiki/232048). Supplementary Data 23 contains 
metadata for the experimental samples and can be merged with each assay’s level 3 data. All other data 
are available from the corresponding author on reasonable request.  

https://www.synapse.org/LINCS_MCF10A
https://www.synapse.org/#!Synapse:syn2346643/wiki/232048
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2.6.2 Code Availability 
Unless otherwise stated, analyses were performed in R (hGps://www.R-project.org). R packages used in 
analyses included: Cdyverse116 (version 1.3.1), ComplexHeatmap (version2.8.0), hGr (version 1.4.2) and 
rmarkdown (version 2.9). A complete list of packages and their versions can be found in analysis scripts 
available at hGps://github.com/MEP-LINCS/MDD. The DOI is 
hGps://zenodo.org/badge/latestdoi/189112490. Supplementary Data 24 contains a mapping of figures 
and tables in this paper to the scripts that created them. 

2.6.3 Contribu1ons 
ConceptualizaCon: L.M.H., J.W.G., A.P., and A.L. Study coordinaCon and supervision: L.M.H. Cell culture: 
S.M.G., K.L.D., R.L.S., T.A.L., M.L., J.W.G., L.M.H., and J.E.K. Immunofluorescence: S.M.G., K.L.D., R.L.S., 
I.C.M., M.A.D., and L.M.H. Live-cell imaging: S.M.G., I.C.M., C.S.-A., M.A.D., and L.M.H. CyCIF: C.E.M., K.S., 
Y.W., C.J., C.Y., M.C., and P.K.S. MEMA: K.L.D., R.L.S., D.F.K., M.A.D., and J.E.K. RPPA: Y.L., M.A.D., and 
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3.1 Abstract 
The cellular microenvironment profoundly influences epithelial cell behavior, yet the mechanisms by 
which specific ligands orchestrate phenotypic transiCons remain incompletely understood. OncostaCn M 
(OSM), a cytokine in the interleukin-6 family, plays pivotal roles in both normal Cssue homeostasis and 
pathological processes, including wound healing, inflammaCon, and cancer progression. We previously 
discovered that OSM induces collecCve cell migraCon (CCM) in MCF10A cells, a coordinated movement 
of cell clusters that contributes to Cssue repair but also facilitates cancer metastasis. Here, we 
invesCgated how OSM drives CCM and phenotypic reprogramming in mammary epithelial MCF10A cells. 
By comparing OSM-induced responses to those elicited by epidermal growth factor (EGF) and interferon 
gamma (IFNG), we characterized ligand-specific phenotypes and dissected the molecular networks 
underpinning OSM-induced CCM. OSM treatment uniquely induced cohesive cell clustering and CCM, 
disCnct from the behaviors observed under EGF or IFNG condiCons. IntegraCve transcriptomic and 
proteomic analyses idenCfied HIF1A and STAT3 as central regulators of OSM-specific responses. 
FuncConal validaCon revealed that HIF1A drives transcripConal programs associated with hypoxia 
signaling, metabolic reprogramming, and immune pathways. Complement signaling was idenCfied as a 
downstream effector of HIF1A, with its inhibiCon disrupCng OSM-induced clustering and migraCon. 
These findings establish a novel mechanisCc link between OSM signaling, HIF1A acCvaCon, and collecCve 
migraCon, offering insights into the regulaCon of epithelial cell behavior by the microenvironment. 

3.2 Introduc6on 
CollecCve cell migraCon (CCM) is a highly coordinated process in which groups of cells migrate together 
while maintaining cell-cell juncCons and collecCve polarity [276]. Unlike single-cell migraCon, which 
occurs independently, CCM depends on sustained intercellular communicaCon and mechanical coupling 
between cells to maintain collecCve integrity and direcConality [277] . This process enables cohesive 
cellular groups to respond to environmental cues as a unit, facilitaCng complex behaviors essenCal for 
Cssue morphogenesis, wound healing, and immune responses. 

In developmental contexts, CCM plays a pivotal role in shaping organ architecture. For example, during 
the formaCon of neuronal streams in the developing brain, chains of neuroblasts migrate collecCvely 
from the subventricular zone to the olfactory bulb [278]. Similarly, during mammary gland 
morphogenesis, epithelial cells undergo branching morphogenesis, a process driven by collecCve 
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migraCon that ensures the proper organizaCon of ducts and alveoli [93]. In wound healing, keraCnocytes 
at the wound margin migrate collecCvely, closing the wound while preserving the integrity of the 
epithelial sheet [279].  

The molecular underpinnings of CCM involve diverse signaling networks and cytoskeletal dynamics [277]. 
CCM onen involves the maintenance of adherens juncCons and coordinated cytoskeletal remodeling 
[280]. Cell-cell adhesion molecules, such as E-cadherin, ensure physical cohesion among migraCng cells, 
while integrins mediate interacCons with the extracellular matrix, providing tracCon and direcConal 
guidance [281]. Rho family GTPases regulate cytoskeletal rearrangements, enabling cells to generate the 
mechanical forces required for migraCon [282]. Furthermore, growth factors and cytokines in the 
microenvironment, such as transforming growth factor-beta (TGF-β) and epidermal growth factor (EGF), 
have been shown to provide spaCal and temporal cues that guide CCM [283], [284]. These signaling 
molecules acCvate downstream pathways, including MAPK, PI3K-AKT, and JAK-STAT, to modulate cellular 
polarity, adhesion, and moClity [82], [285]. 

Beyond its roles in normal physiology, CCM has been implicated in cancer progression, parCcularly in 
metastasis. In breast cancer, tumor cells can adopt a collecCve migratory mode to invade surrounding 
Cssues and disseminate to distant sites [286]. Unlike single-cell migraCon, which requires a complete loss 
of cell-cell juncCons, collecCvely migraCng tumor cells retain parCal juncConal integrity, facilitaCng 
coordinated movement through the stroma [287], [288]. Clusters of cancer cells exhibit improved 
survival during intravasaCon and extravasaCon into and out of blood vessels, potenCally due to the 
retenCon of intercellular signaling and adhesion molecules that protect against anoikis [96]. AddiConally, 
these clusters may carry supporCve stromal or immune cells that facilitate colonizaCon at distant sites 
[97], [98], [99]. Molecularly, collecCve migraCon in cancer is associated with parCal epithelial-to-
mesenchymal transiCon (EMT), characterized by the parCal downregulaCon of epithelial markers (e.g., E-
cadherin) and the upregulaCon of mesenchymal markers (e.g., vimenCn) [118]. Environmental cues such 
as the cytokine interleukin-6 (IL-6) and hypoxia further promote collecCve invasion by enhancing tumor 
cell moClity and stromal remodeling [289], [290]. 

CCM is modulated by mulCple extracellular signals, including hypoxia, SDF-1, PDGF, and OncostaCn M 
(OSM) [147], [291], [292], [293]. OSM is an interleukin-6 family cytokine that is secreted by various cell 
types, including macrophages, neutrophils, and T cells [54], [294]. OSM signals through a heterodimeric 
receptor composed of OSMRβ and gp130, acCvaCng downstream pathways such as JAK-STAT, MAPK, and 
PI3K-AKT [74]. In normal physiology, OSM regulates diverse processes, including hematopoiesis, 
inflammaCon, and Cssue remodeling [294]. For instance, OSM has been shown to modulate mammary 
gland development by influencing involuCon and epithelial differenCaCon [63]. 

In cancer, OSM plays a dual role, promoCng tumor progression in some contexts while exhibiCng anC-
tumor effects in others [295]. AlteraCons in the OSM signaling pathway have been observed in various 
cancers, including breast, lung, and ovarian cancers, and are associated with increased tumor cell 
proliferaCon, invasion, and immune evasion [296], [297], [298]. Notably, OSM induces striking 
phenotypic changes in epithelial cells, including the alteraCon of juncConal stability and enhanced 
moClity, suggesCng a potenCal role in CCM [147]. The JAK-STAT signaling pathway, acCvated by OSM, is a 
key mediator of these effects, driving transcripConal programs that regulate cell proliferaCon, survival, 
and migraCon [299]. 
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In this study, we invesCgate the role of OSM in inducing CCM in mammary epithelial cells. To model this 
phenomenon, we used MCF10A cells, a non-tumorigenic human mammary epithelial cell line that 
recapitulates many features of normal mammary gland biology, including exhibiCng typical epithelial cell 
morphology, polarity, and geneCc stability [132], [134]. MCF10A cells are widely used as a model system 
to study epithelial cell behavior due to their ability to form organized structures in 3D culture and 
respond dynamically to various ligands and environmental cues [134]. 

Our study integrates live-cell imaging, transcriptomics, and funcConal assays to uncover the molecular 
mechanisms underlying OSM-induced CCM. We show that OSM acCvates a disCnct transcripConal 
program in MCF10A cells, characterized by the upregulaCon of pathways associated with hypoxia and 
immune signaling. Among the key regulators idenCfied, hypoxia-inducible factor 1-alpha (HIF1A) 
emerged as a central mediator of OSM-induced transcripConal changes. FuncConal validaCon revealed 
that HIF1A plays a criCcal role in driving the clustering and coordinated migraCon of MCF10A cells in 
response to OSM.  These findings provide insight into the intersecCon of HIF1A signaling, immune-
related pathways, and CCM, and delineate a novel molecular mechanism underlying cell migraCon. 

3.3 Methods 
MCF10A Cell Culture 

Cell culture and ligand perturbaCon experiments were carried out according to the methods described 
by Gross et al. 2022 [147]. Briefly, for rouCne cell growth and passaging, MCF10A cells were maintained 
in a growth medium consisCng of DMEM/F12 (Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 
20 ng/ml EGF (R&D Systems #236-EG), 0.5 µg/ml hydrocorCsone (Sigma #H-4001), 100 ng/ml cholera 
toxin (Sigma #C8052), 10 µg/ml insulin (Sigma #I9278), and 1% Pen/Strep (Invitrogen #15070-063). For 
perturbaCon studies, a growth factor-free medium was used, which included DMEM/F12, 5% horse 
serum, 0.5 µg/ml hydrocorCsone, 100 ng/ml cholera toxin, and 1% Pen/Strep. 

MCF10A cells were cultured unCl they reached 50-80% confluence in growth medium, followed by 
detachment using 0.05% trypsin-EDTA (Thermo Fisher ScienCfic #25300-054). Aner detachment, 6,000 
cells were seeded into collagen-1 (Cultrex #3442-050-01) coated 24-well plates (Thermo Fisher ScienCfic 
#267062) with growth medium. Six hours later, the cells were washed with PBS, and growth factor-free 
medium was added. The cells were then incubated for 18 hours in the new medium. Anerward, cells 
were treated with either 10 ng/ml EGF (R&D Systems #236-EG), 10 ng/ml OSM (R&D Systems #8475-
OM), or 20 ng/ml IFNG (R&D Systems #258-IF) + 10 ng/mL EGF. 

Live Cell Imaging 

Live-cell imaging was conducted using the Incucyte S3 microscope (Essen BioScience, #4647), with 
images captured every 30 minutes for a duraCon of up to 48 hours. The resulCng live-cell image stacks 
were processed by first registering them with a custom Fiji script and then segmented using CellPose 
v3.01 [152], [224]. Image tracking was performed using the Baxter Algorithms pipeline [151]. 

Subsequent analysis of the cell tracking data was conducted within RStudio [300]. Cell counts were 
calculated by determining the number of cells per field, normalized by the iniCal T0 count for each field. 
Nearest neighbor distances were computed by measuring the Euclidean distances in pixels from the 
centroid of each cell to the centroid of the second nearest cell within the imaging field. To adjust for 
variaCons in cell count, the average nearest neighbor distances for each image were normalized by the 
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expected mean distance to the nearest neighboring cell under a random cell distribuCon model [226]. 
Cytoplasmic size was determined as the average size of the cytoplasm 24 hours post-ligand addiCon. Cell 
moClity was assessed by excluding tracks with jumps greater than 200 pixels in a 30-minute interval. 
MoClity was quanCfied as the slope of the mean squared displacement (MSD) over Cme intervals 
ranging from 30 minutes to 6 hours [301]. This slope was determined by construcCng a linear model 
comparing MSD to Cme intervals, and it serves as a proxy for the diffusion coefficient associated with 
Brownian moCon [301]. Finally, CCM was esCmated by calculaCng the Cosine Similarity between 
displacement vectors of the 10 nearest cells every 30 minutes. StaCsCcal comparisons of phenotypic 
scores between ligand condiCons was performed using DunneG’s test, with EGF serving as the control 
[302].  

Immunoflourescent Imaging 

For all immunofluorescent experiments, cells were fixed in 4% formaldehyde aner 48 hours of ligand 
treatment. Cells were blocked for 1 hour in a PBS soluCon (5% Normal Goat Serum (Cell Signaling 
#5425), 0.3% Triton X (Thermo Fisher ScienCfic #85111)), then incubated overnight with the primary 
conjugated anCbody (Cell Signaling #2677) at a 1:500 diluCon. Cells were washed thorough then 
counterstained with 0.5 µg / µL DAPI (PromoKine PD-CA707-40043). Imaging was performed using 
the InCell 6000 (GE Healthcare). 

RNAseq, RPPA Data, and Cyclic IF 

The RNA sequencing (RNAseq), reverse phase protein array (RPPA) data, and cyclic immunofluorescence 
(cycIF) data were generated in a prior invesCgaCon [147]. For detailed informaCon on the methodologies 
used for data generaCon, normalizaCon, and integraCon, please refer to the original publicaCon. 

Causal Pathway Analysis and Network Analysis 

Causal Pathway was uClized to construct gene and protein interacCon networks [176]. The algorithm 
received integrated features from RNAseq, RPPA, and cyclic IF datasets, focusing on those from the OSM 
and IFNG condiCons. Data from proteomic assays were favored for features shared between assays. Only 
features with a log-fold change (LFC) of 1 or greater compared to the Cme zero control were included in 
the analysis. Default parameters were applied for the causal pathway analysis. The generated networks 
were subsequently integrated and analyzed in Cytoscape [303]. 

To idenCfy gene/protein nodes for experimental tesCng, a comparaCve analysis was performed between 
the IFNG and OSM networks. Each node was assigned a score based on network rewiring, which 
compared the OSM network to the IFNG network using Dynet [304] . This score was then scaled 
according to the LFC in the OSM condiCon. The fourteen nodes with the highest comparaCve network 
importance scores were selected for experimental validaCon. 

siRNA Screen and Drug Experiments 

Reverse transfecCon of MCF10A cells was performed according to DharmaFECT TransfecCon vendor 
protocols. Cells were seeded in collagen coated 24-well plates with growth media as previously 
described (see methods: MCF10A cell culture). Aner 6 hours in culture, media was replaced with 25 nM 
siRNA and 0.5 µL Lipofectamine™ RNAiMAX TransfecCon Reagent (Thermo Fisher ScienCfic #13778075) 
per well in anCbioCc free media. Aner 48 hours of transfecCon, cells were washed thoroughly with PBS 



79  Chapter III: The cytokine OncostaCn M induces 
HIF1A dependent collecCve cell migraCon in mammary epithelial cells 
 
and replaced with assay media and indicated ligand treatments. The siRNA screen was run in triplicate. A 
full list of siRNAs used in the study is included (Supplemental Table 1). Immediately aner ligand 
treatment, live-cell imaging and phenotypic quanCficaCon was performed as described previously (see 
methods: Live Cell Imaging). StaCsCcal comparisons between phenotypic scores were performed by 
pairwise student’s t-tests between knockdown condiCons and the siSCR condiCon for each ligand 
treatment [305].  

Cells were cultured and plated for drug experiments as previously described (see methods: MCF10A cell 
culture). Concurrent to ligand treatment, cells were incubated with either vehicle, or 25 µMol - 75  µMol 
CompstaCn (Selleckchem #S8522).  

shRNA Integra8on 

Plasmic constructs for non-targeCng SMARTvector LenCviral shRNA and shRNA sequences targeCng 
HIF1A were purchased from Horizon Discovery (Horizon Discovery # VSC11287, #3SH11243-02EG3091). 
Expression of the shRNA was driven by the EF1A promoter and contained Puromycin resistance and 
TurboGFP elements to ensure proper integraCon. E. Coli containing the plasmid constructs were 
inoculated into LB broth medium containing 100 µL/mL carbenicillin and incubated at 37 C for 18 hours 
with shaking. Plasmids were extracted using the HiSpeed Plasmid Midi Kit (Qiagen #12643). 

Plasmids were then packaged into lenCviral parCcles by transfecCng 293T human embryonic kidney cells 
(ATCC # CRL-3216) with the shRNA plasmid construct and lenCviral package plasmids (Addgene #8454, 
#12263) using LF2000 transfecCon reagent (Invitrogen #11668019). Virus containing media was collected 
through a 0.45 µm low-protein binding filter (Sterlitech #PES4547100). MCF10A cells were then 
transduced with virus containing media and 10 µg / mL polybrene. Aner a four-hour transducCon, media 
was replaced with growth media, and shRNA containing cells were selected with 0.5 µg/mL puromycin. 
Expression of shRNA was confirmed using fluorescent imaging of GFP on the Incucyte S3 microscope 
(Essen BioScience, #4647). 

Immunoblobng 

HIF1A was detected in cells transduced with shRNA through immunoblorng. Aner 24 hours of 
treatment with OSM EGF, or CoCl2 cells were lysed in hot Laemmli buffer (Santa Cruz Biotechnology #sc-
286962). Cell lysates were boiled fat 95C for 10 minutes, then total protein concentraCon was 
determined and normalized through BCA assay (Thermo Fisher ScienCfic #23225). 25 µL of cell lysate 
and HIF1A lysate control (Novus Biologicals #NBP2-04440) was loaded onto gels (Invitrogen 
#NP0321BOX) and proteins were separated at 200V for 45 min then transferred at 30V overnight at 4C. 
Aner transfer the membrane was bloGed with TBST and 5% dry milk for 1 hr., then probed for HIF1A at a 
primary anCbody concentraCon of 1:1000 (BD Biosciences #610959) and secondary anCbody 1:10000 
(Jackson Immunoresearch #715-035-150). Chemiluminescence was imaged on the Alpha Innotech 
FluorChem Imaging System (#22424). 

scRNA-seq Library Prepara8on and Sequencing 

All cell lines and ligand condiCons were mulCplexed using Hashtag OligonucleoCde barcoding (TotalSeq-
B, Biolegend #399904) according to the vendor’s recommendaCons. The mRNA library was created using 
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the Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 (10X Genomics #1000092) and then 
sequenced using an Illumina NovaSeq for 800 million reads. 

scRNA-seq Data Processing and Analysis 

Raw files were converted to FASTQ format with bcl2fastq (version 2.20.0.445). Cellranger count was used 
to align reads to the GRCh38 transcriptome (GCF_000001405.40). The R package deMULTIplex was used 
to demulCplex the hash-tagged samples and assign cell lines and treatments to cells [306]. Seurat (4.0.5) 
was used to perform variable feature idenCficaCon, dimensionality reducCon, unsupervised clustering, 
visualizaCon, and differenCal gene expression [307]. DifferenCal expression analysis was performed using 
the FindMarkers funcCon of Seurat with default parameters. GSEA was performed with the R package 
clusterProfiler on Gene Ontology Biological Process gene sets using significantly upregulated genes 
compared to the shSCR control (LFC > 0.5, p-value < 0.05) [308]. 

3.4 Results 
3.4.1 OSM treatment ini1ates MCF10A epithelial collec1ve cell migra1on  
In this study, we examined the phenotypic effects and molecular mechanisms acCvated by OncostaCn M 
(OSM) treatment on MCF10A cells and compared them to those elicited by epidermal growth factor 
(EGF) and interferon gamma (IFNG). Prior studies demonstrated that OSM treatment induces striking 
changes in cell morphology and behavior, disCnct from those observed under typical EGF condiCons or 
with IFNG, another acCvator of JAK-STAT signaling [249]. 

MCF10A cells were treated with OSM, EGF, or EGF + IFNG for 48 hours, and their phenotypic responses 
were assessed through live-cell imaging and immunofluorescent microscopy. As expected, EGF-treated 
cells displayed the characterisCc cobblestone paGern typical of MCF10A epithelial sheets (Figure 3-1A) 
[133]. In contrast, OSM-treated cells exhibited a disCnct phenotypic shin, forming Cght clusters that 
were significantly more compact than those observed in the EGF condiCon (Figure 3-1A). Notably, these 
clusters retained robust cell-cell juncCons while displaying collecCve migratory behavior. Time-lapse 
imaging revealed that OSM-induced migraCon occurred as cohesive clusters, a hallmark of collecCve cell 
migraCon (CCM) (Figure 3-1B). This phenotype was absent in both EGF and IFNG condiCons. 

The live-cell imaging data was quanCfied to compare cell phenotype across condiCons: Cell Count to 
esCmate proliferaCon, Mean Squared Displacement to esCmate moClity, Nearest Neighbor Distance to 
assess cell clustering, and Cosine Similarity of displacement vectors to assess collecCve migraCon (Figure 
3-1C-F). StaCsCcal comparisons of OSM and IFNG treatments to EGF using DunneG’s test (p < 0.05) 
demonstrated that neither ligand significantly influenced proliferaCon compared to EGF (Figure 3-1C, 
Supplemental Figure 3-1) [302]. It is noteworthy that OSM-treated cells exhibited comparable 
proliferaCon rates to those observed under EGF treatment, highlighCng its ability to drive mitogenic 
effects through non-RTK mechanisms [147]. 

IFNG-treated cells did not form clusters or exhibit an increased CCM score, despite acCvaCng the JAK-
STAT pathway, as confirmed in prior studies [147]. QuanCtaCvely, IFNG induced greater moClity, as 
evidenced by a higher mean squared displacement compared to EGF-treated cells (Figure 3-1D).  

IFNG slightly reduced Nearest Neighbor Distance, suggesCng mild clustering, while OSM significantly 
decreased this metric, indicaCng strong clustering (Figure 3-1E, Supplemental Figure 3-1). Most notably, 
Cosine Similarity increased significantly in the OSM condiCon, indicaCng collecCve cell migraCon, but not 
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in the IFNG condiCon (Figure 3-1F, Supplemental Figure 3-1). The disCncCon between IFNG-induced 
moClity and OSM-induced CCM demonstrate the differenCal downstream effects of JAK-STAT acCvaCon 
by these two ligands: IFNG drives a more dispersed, single-cell migratory phenotype, whereas OSM 
promotes Cghtly clustered collecCve cell migraCon. This phenotypic contrast moCvated us to further 
explore the potenCal of OSM as a tool for dissecCng the molecular mechanisms underlying CCM in 
epithelial cells. 

 

Figure 3-1: Treatment of MCF10A cells with OSM but not IFNG ini<ates cell clustering and collec<ve cell 
migra<on 

A) MCF10A cells were treated with EGF, OSM, or IFNG for 48 hours and stained for DAPI (blue) and B-Catenin (red).  

B) Representa1ve migratory tracks derived from cell tracking data during 24-48 hours of ligand treatment. 
Individual tracked cells are represented by different colors. The opacity of each circle represents increase in 
experimental dura1on. 

C-F) Quan1fica1on of cell phenotype from live-cell imaging.  
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Supplemental Figure 3-1: Sta<s<cal comparison of phenotypic scores 

Sta1s1cal comparison of the quan1fica1ons of cellular prolifera1on, mo1lity, cell clustering / spreading, and 
collec1ve migra1on. Phenotypic scores have been normalized to the EGF condi1on. Dunneh’s test was employed to 
compare phenotypic scores to the EGF control. Significance is shown as follows: (* - p-value < .05, ** - p-value < 
.01, *** - p-value < .001). 

3.4.2 Compara1ve network analysis iden1fies OSM-specific molecular regulators 
To elucidate the molecular mechanisms driving OSM-induced collecCve cell migraCon (CCM), we 
analyzed publicly available data from the Library of Integrated Network-based Cellular Signatures (LINCS) 
[147]. Bulk RNA sequencing (RNA-seq) and two proteomic assays—cyclic immunofluorescence (cyclic IF) 
and reverse-phase protein array (RPPA)—were performed on MCF10A cells treated with either OSM or 
IFNG for 48 hours [227], [309]. Our approach was specifically designed to idenCfy molecular signatures 
unique to OSM-induced phenotypes, parCcularly in contrast to the IFNG condiCon, which also acCvates 
the JAK-STAT pathway but does not elicit similar phenotypic responses. By examining the differences 
between the two condiCons, we aimed to tease apart the molecular mechanisms underlying OSM-
induced CCM, offering new insights into its disCnct regulatory landscape. 

To achieve a systems-level understanding of CCM, transcripConal and proteomic datasets were 
integrated for each condiCon (Figure 3-2A, Supplemental Figure 3-2). CausalPath analysis was applied to 
infer protein-protein interacCon networks supported by the omics data, and the resulCng networks were 
visualized using Cytoscape (Figure 3-2B) [176], [303]. We reasoned that molecular nodes that exhibited 
the highest degree of deviaCon between the OSM and IFNG condiCons could represent potenCal key 
drivers of the OSM-induced CCM phenotype. To idenCfy these nodes, a rewiring metric was calculated 
for each node to quanCfy the number of edges that must be added or removed to transiCon a node’s 
connecCvity from one condiCon to the other [304]. This metric was weighted by the log-fold change 
(LFC) induced by OSM for each node, prioriCzing nodes that were both highly rewired and upregulated 
under OSM treatment. By comparing the networks derived from OSM and IFNG condiCons, we sought to 
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idenCfy regulators uniquely associated with OSM-induced CCM and disCnguish them from general JAK-
STAT pathway components. 

STAT3 ranked second on the ranking of nodes with the highest combined rewiring and OSM-specific 
upregulaCon scores, despite its acCvaCon under both OSM and IFNG condiCons (Figure 3-2C). This 
highlights the value of a network-based approach: while STAT3 acCvaCon occurs under both treatments, 
the effect of its upregulaCon differs significantly. This approach helps pinpoint downstream effectors 
uniquely modulated under OSM-induced condiCons, offering insights into the disCnct phenotypic 
divergence observed, where OSM induced clustering and CCM while IFNG did not, despite both 
acCvaCng STAT3 (Figure 3-1B). Eight of the fourteen top-rewired nodes were centered around the STAT3 
subnetwork, consistent with the pivotal role of STAT3 in cytokine signaling and cellular phenotypic 
transiCons (Figure 3-3D). 

This analysis also idenCfied several general transcripConal regulators, including SP1, JUN, JUNB, FOSL2, 
and CTNNB1. These nodes are well-established mediators of cytokine signaling and have been implicated 
in diverse cellular processes such as proliferaCon, differenCaCon, and migraCon [310], [311], [312], 
[313]. TP73, another highly rewired node, has been linked to epithelial cell plasCcity and tumor 
suppression [314], [315]. We also idenCfied CEBPB and CEBPD, two transcripCon factors known to 
regulate epithelial lineage commitment [316], [317].  

Nodes associated with hypoxia signaling, such as HIF1A, VEGFA, TIMP1, and EPAS1, were highly rewired. 
HIF1A, a master regulator of hypoxia, is parCcularly notable as prior research has demonstrated its 
acCvaCon by OSM in normal and cancerous cellular contexts [318], [319]. Hypoxia-related pathways are 
well-documented to contribute to modulaCng migratory phenotypes, including collecCve cell migraCon 
[118], [120], [290]. The presence of hypoxia-associated nodes in the OSM network suggests a potenCal 
link between OSM signaling and parCal epithelial-to-mesenchymal transiCon (EMT), a process onen 
implicated in enhanced migratory and invasive capaciCes of epithelial cells. ParCal EMT is characterized 
by retained cell-cell juncCons alongside increased moClity, aligning with the observed CCM phenotype in 
OSM-treated MCF10A cells [118]. These findings provide a potenCal mechanisCc link between OSM 
signaling and the hypoxia-associated promoCon of migratory phenotypes. 
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Figure 3-2: Compara2ve network analysis of omics data reveals puta2ve drivers of OSM-induced CCM 

A) Workflow for the compara1ve network analysis to iden1fy molecular subnetworks and nodes perturbed by 
OSM. Integrated molecular data collected from OSM and IFNG treated cells was analyzed using CausalPath. 

B) Combined molecular network of OSM and IFNG ac1vated nodes. Each node in the combined network was 
evaluated for rewiring between condi1ons. 

C) The top scoring 14 nodes in the network rewired by OSM treatment.  

D) The majority of top rewired nodes are centered around the STAT3 subnetwork. 
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Supplemental Figure 3-2: Integrated and filtered molecular data collected from OSM and IFNG treated cells 

Proteomic (RPPA, CycIF) and transcrip1onal (RNAseq) data was collected from MCF10A cells treated with OSM or 
IFNG for 24 and 48 hours. The data from each assay was normalized to the Time 0 control, filtered for differen1ally 
expressed features (LFC > 1, p-value < .05) and then integrated into a combined dataset. Features from the RPPA 
assay are called out in the heatmap. 

3.4.3 Func1onal Valida1on Reveals OSM-Specific Phenotypic Regulators 
We hypothesized that knockdowns yielding OSM-specific phenotypic effects would help idenCfy nodes 
criCcal for mediaCng OSM-induced CCM, disCnguishing them from general MCF10A cellular responses. 
To test this, we validated the funcConal and phenotypic significance of the rewired nodes idenCfied in 
our network analysis using siRNA knockdown. MCF10A cells were subjected to siRNA-mediated 
knockdown of the 14 nominated nodes under three experimental condiCons: OSM, EGF, and IFNG 
treatments. The inclusion of EGF and IFNG condiCons allowed us to evaluate the specificity of 
phenotypic changes associated with OSM-induced responses. The siRNA screen was conducted in 
triplicate to ensure robust and reproducible findings. Dynamic phenotypic changes were monitored 
through live-cell imaging over 48 hours. We calculated the same phenotypic metrics described in SecCon 
1. These metrics were normalized to the scramble condiCon for each ligand treatment, enabling 
assessment of how each knockdown altered the phenotype under OSM, EGF, and IFNG condiCons 
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(Figure 3-3A-D). To evaluate the staCsCcal significance of these changes, we applied Student’s t-test to 
compare raw phenotypic metrics from knockdown condiCons to the scramble control for each ligand 
treatment [305]. AddiConally, fixed-cell immunofluorescent (IF) imaging was employed to capture 
detailed phenotypic alteraCons (Figure 3-3E).  

The siRNA experiment revealed a diverse array of phenotypic effects, including both condiCon-specific 
changes and those shared across condiCons. This diversity reflects the broad biological roles of the 
nodes targeted by the knockdowns. Shared effects across all condiCons reflect MCF10A intrinsic 
molecular funcCons and provided validaCon of knockdown. For example, knockdown of SP1 and JUNB 
inhibited cell count across all treatments, consistent with their known roles in promoCng cell 
proliferaCon [320], [321] (Figure 3-3A, 3-3E). InteresCngly, STAT3 knockdown increased cell moClity in all 
condiCons, an unexpected finding that contrasts with reports in the literature that primarily suggest that 
STAT3 acCvaCon can enhance migratory and invasive cell behavior [322] (Figure 3-3B, 3-3E). Knockdown 
of CEBPB decreased proliferaCon across all condiCons and disrupted epithelial cell morphology, a finding 
that is parCcularly intriguing given CEBPB’s role as a regulator of epithelial differenCaCon [317](Figure 3-
3A, 3-3E). These effects further emphasize its potenCal role in maintaining epithelial integrity. 

When focusing on OSM-specific regulators, several nodes emerged as unique phenotypic mediators. 
Knockdown of EPAS1 (HIF2A) uniquely increased proliferaCon in OSM-treated cells (Figure 3-3A). This 
observaCon contrasts with prior reports suggesCng that HIF2A promotes cell cycle progression and 
proliferaCon in hypoxic environments and may indicate a context dependent relaConship between HIF2A 
and cellular proliferaCon [323]. JUN knockdown specifically decreased moClity under OSM treatment, 
suggesCng a role in modulaCng OSM-driven migratory behavior (Figure 3-3B).  

STAT3, HIF1A, and CTNNB1 knockdowns decreased nearest-neighbor distances and disrupted clustering 
under OSM condiCons (Figure 3-3C). CTNNB1, a core juncConal protein, plays a well-established role in 
maintaining cell-cell adhesion, making this finding parCcularly relevant to the observed clustering 
phenotype [324] (Figure 3-3E). The regulaCon of clustering and moClity similarity by STAT3 was 
expected, given its central role in OSM signaling, and confirms STAT3 as a key driver of OSM-induced cell 
clustering and CCM (Figure 3-3D). InteresCngly, HIF1A knockdown specifically reduced cosine similarity 
and disrupted cluster formaCon under OSM treatment, suggesCng a criCcal role for HIF1A signaling in 
OSM-induced CCM. HIF1A has been linked to migratory and invasive phenotypes, parCcularly through its 
regulaCon of genes involved in cytoskeletal dynamics and extracellular matrix remodeling [325], [326]. 
The co-regulaCon of clustering and moClity similarity by HIF1A knock-down highlights its potenCal as a 
key regulator of OSM-induced CCM. 

We performed principal component analysis (PCA) of phenotypic scores across all treatments to idenCfy 
siRNA perturbaCons that most strongly influenced changes in OSM-induced cellular phenotype (Figure 
3-3F). The PCA plot revealed disCnct clustering of knockdowns based on their effects, with nodes such as 
SP1 and CEBPB separaCng from others due to their pronounced impact on cell count and morphology 
disrupCon. Notably, STAT3 and HIF1A formed a separate group, highlighCng their roles as OSM-specific 
regulators. Supplementary scaGerplots comparing phenotypic scores further supported these findings, 
idenCfying nodes with unique effects on OSM-induced phenotypes (Supplemental Figure 3-3A-B). 
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Figure 3-3: Quan<fica<on and visualiza<on of siRNA screen to iden<fy drivers of OSM-induced CCM 

A-D) Quan1fica1on of cell phenotype induced by knockdown of nominated nodes.  Phenotypic scores have been 
normalized to the siSCR condi1on for each ligand treatment. Sta1s1cal comparisons were performed using 
Students T-Test. Significance is shown as follows: (* - p-value < .05, ** - p-value < .01, *** - p-value < .001).  

E) Representa1ve immunofluorescent images from select knockdowns taken 48 hours ajer ligand and siRNA 
treatment. 

F) Principal component analysis of phenotypic metrics across all ligand treatments. 

 

Supplemental Figure 3-3: Integrated and filtered molecular data collected from OSM and IFNG treated cells 

A-B) Comparison of the phenotypic effects of knockdown on OSM and IFNG (A) or EGF (B) treated cells. 
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Supplemental Figure 3-4: OSM molecular network of phenotypic perturba<ons 

Integrated molecular network of OSM treated cells. Nodes nominated for siRNA screening are labelled by the 
phenotypic effect of knockdown. Non-significant changes in phenotype are colored white. 

3.4.4 HIF1A as a Key Mediator of OSM-Induced CCM 
Given its known role in parCal epithelial-to-mesenchymal transiCon (EMT) and collecCve cell migraCon 
(CCM), HIF1A was prioriCzed for further invesCgaCon [118]. Analysis of RPPA data and RNA-seq data 
revealed a sustained upregulaCon of HIF1A protein and gene expression during the 48 hours of OSM 
treatment (Figure 3-4A, Supplemental Figure 3-5A). This upregulaCon was unique to the OSM condiCon 
compared to EGF and IFNG treatments. These findings concur with previous literature demonstraCng 
that OSM upregulates HIF1A in a transcripConal manner, independent of oxygen concentraCon [318]. 
While previous studies have linked HIF1A to CCM, the molecular mechanisms by which it induces CCM in 
epithelial cells remain unclear, presenCng an opportunity to explore how HIF1A orchestrates these 
complex behaviors. 

HIF1A is a transcripCon factor, so we hypothesized that its downstream transcripConal effectors may be 
criCcal for mediaCng CCM. To idenCfy transcripConal programs that HIF1A is acCvaCng in OSM-treated 
cells, we engineered shRNA MCF10A cells with HIF1A knocked down. Knockdown was confirmed by 



90  Chapter III: The cytokine OncostaCn M induces 
HIF1A dependent collecCve cell migraCon in mammary epithelial cells 
 
Western blot (Supplemental Figure 3-5B). We then subjected shHIF1A and shSCR cells treated with 
OSM, EGF, or IFNG to scRNA-seq. UMAP projecCon of the resulCng data showed that ligand treatment 
predominately separated the condiCons (Figure 3-4B). Assessment of HIF1A transcript also confirmed 
that HIF1A was effecCvely knocked down in shHIF1A cells (Figure 3-4C). 

To invesCgate the mechanisms underlying OSM-induced CCM, we sought to compare the transcripConal 
signatures induced by OSM acCvaCon of HIF1A to those elicited by other ligands, hypothesizing that 
OSM-specific changes would idenCfy candidate drivers of CCM. DifferenCal gene expression analysis 
comparing shSCR and shHIF1A lines for each treatment revealed significant overlap (27 genes) between 
EGF and IFNG HIF1A-regulated genes, which may represent consCtuCve low-level transcripConal acCvity 
of HIF1A (Figure 3-4D). In contrast, the majority of HIF1A-regulated genes in the OSM condiCon (79 
genes) were unique to OSM, indicaCng a disCnct molecular program acCvated by HIF1A under these 
condiCons. Because CCM is exclusive to the OSM condiCon, we focused our subsequent analysis on 
these unique OSM-HIF1A-regulated genes. Comparison of these unique genes to literature-derived 
Hallmarks and ChIP-Seq-derived (ChEA3) gene sets of hypoxia or HIF1A transcripConal targets revealed 
overlap with canonical hypoxia-related genes, such as NDRG1 and CA9 [229], [327], [328], [329] (Figure 
3-4E, Supplemental Figure 3-5C-D). However, OSM-HIF1A also uniquely upregulated addiConal genes 
not typically associated with hypoxia or canonical HIF1A transcripConal regulaCon, suggesCng the 
acCvaCon of a specialized transcripConal program driving OSM-induced CCM.  

We next sought to examine the biological processes represented in the unique OSM-regulated HIF1A 
gene set (Figure 3-4F). Gene set enrichment analysis (GSEA) using Gene Ontology biological process 
annotaCons revealed that HIF1A, in OSM-treated cells, acCvates transcripConal programs associated 
with the Gene Ontology terms glycolysis and metabolic reprogramming, including terms such as 
“glycolyCc process”, “carbohydrate catabolic process”, and "pyruvate metabolic process” (Figure 3-4G) 
[330]. AddiConally, we observed enrichment of hypoxia-related gene sets, including "cellular response to 
hypoxia" and "cellular response to decreased oxygen levels." These findings align with HIF1A's well-
documented role in promoCng glycolysis and mediaCng the cellular response to hypoxia, confirming that 
HIF1A retains its canonical funcConality in the OSM condiCon [331]. Furthermore, the glycolysis-related 
pathways suggest a metabolic shin that may be uniquely Ced to OSM-induced phenotypes, providing 
addiConal insight into how HIF1A contributes to the molecular program underlying the OSM-induced 
phenotype. 

InteresCngly, we also idenCfied gene sets associated with immune processes, including "anCmicrobial 
humoral response," "neutrophil chemotaxis," and "neutrophil migraCon." The enrichment of terms 
related to neutrophil migraCon and chemotaxis was parCcularly intriguing, as neutrophils undergo 
collecCve cell migraCon to reach sites of infecCon [332], [333], [334]. This led us to hypothesize that 
some of the genes involved in this pathway might also contribute causally to the CCM phenotype 
observed in OSM-treated cells. To further invesCgate, we examined the neutrophil chemotaxis gene set 
and idenCfied HIF1A-regulated genes in this context (Supplemental Figure 3-5E-F). Many of these genes 
were related to complement pathway acCvaCon, a finding of great interest given that complement 
signaling has been shown to be essenCal for cell adhesion and various forms of CCM [335], [336], [337]. 
This overlap between HIF1A-mediated hypoxic signaling, neutrophil migraCon processes, and 
complement acCvaCon suggests a potenCal mechanisCc link by which HIF1A orchestrates OSM-induced 
CCM in epithelial cells. 
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We then sought to experimentally determine if complement signaling contributes to OSM-induced CCM. 
We treated cells concurrently with OSM and CompstaCn, an inhibitor of C3, the convergence point of all 
modes of complement acCvaCon and performed live-cell imaging to assess any changes in phenotype 
[338]. Cells treated with CompstaCn exhibited reduced clustering and moClity similarity, resembling 
phenotypes observed in HIF1A knockdown condiCons (Figure 3-4H). This strongly suggests that 
complement signaling plays a funcConal role in mediaCng OSM-induced CCM. 

These findings establish a novel mechanisCc link between OSM signaling, HIF1A acCvaCon, and 
complement pathway involvement in driving collecCve cell migraCon. By connecCng the well-
documented role of HIF1A in hypoxia responses and metabolic reprogramming with the unique 
transcripConal programs induced by OSM, we reveal how HIF1A mediates phenotypic outcomes criCcal 
for CCM. Furthermore, the idenCficaCon of complement signaling as a downstream effector may indicate 
a novel and non-canonical role of HIF1A in influencing cell behavior. 

 

Figure 3-4: scRNAseq reveals HIF1A transcrip<onal program driving OSM-induced CCM 

A) OSM uniquely upregulates the HIF1A protein over 48 hours of ligand treatment. Error bars represent standard 
devia1on.  

B) UMAP projec1on of scRNAseq data indicates that transcrip1onal signals separate primarily by ligand treatment. 
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C) HIF1A expression is significantly reduced in shHIF1A cell lines compared to shSCR. 

D) We iden1fied HIF1A-regulated genes for each ligand condi1on by performing differen1al gene expression 
analysis between shSCR vs shHIF1A. Venn diagram represents a comparison of HIF1A-regulated gene sets for each 
treatment.  

E) Comparison of unique OSM-HIF1A regulated genes to literature derived gene sets represen1ng hypoxia and 
HIF1A transcrip1on factor ac1vity.  

F) Rela1ve expression of the top 20 differen1ally expressed unique OSM-HIF1A regulated genes.  

G) We performed gene set enrichment analysis to iden1fy Gene Ontology terms enriched in OSM treated shSCR 
cell vs shHIF1A cells. Top ten most enriched gene sets are shown. 

H) Complement inhibi1on reduces CCM in OSM treated cells. 
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Supplemental Figure 3-5: scRNAseq supplemental figures 

A) Bulk RNAseq demonstrates that OSM uniquely upregulates HIF1A transcrip1onally.  

B) Western blot confirming HIF1A knockdown in shHIF1A cell lines. 

C-D) Rela1ve gene expression of NDRG1 and CA9: genes that are canonically ac1vated by HIF1A.  

E) Gene set enrichment analysis of OSM treated shSCR vs. shHIF1A cells.  

F) Genes in the neutrophil chemotaxis Gene Ontology gene set that are upregulated in OSM treated shSCR cells. 

3.5 Discussion 
Cell migraCon is a key process in various physiological and pathological contexts, including Cssue 
development, wound healing, and cancer metastasis. CollecCve cell migraCon (CCM), where groups of 
cells move together as a cohesive unit, plays a criCcal role in maintaining Cssue architecture and 
facilitaCng invasion during cancer metastasis [276]. The mechanisms driving CCM are complex, involving 
complex interacCons between signaling pathways, cytoskeletal dynamics, and cell-cell communicaCon. In 
this study, we sought to explore how the cytokine OSM drives CCM in MCF10A cells. Through high-
throughput screening and transcriptomic analysis, we idenCfied HIF1A and STAT3 as central regulators of 
OSM-induced CCM, shedding light on the molecular pathways that drive this complex cellular behavior. 

Our results demonstrate that OSM induces a unique transcripConal program that drives CCM, and we 
pinpoint HIF1A and STAT3 as key transcripCon factors that regulate this program. By using a siRNA-based 
screen, we mapped the funcConal role of these nodes in both general cellular phenotypes and OSM-
specific phenotypes. Knockdown of HIF1A significantly impaired OSM-induced CCM, confirming its 
criCcal role in this process. Similarly, STAT3, which is known to mediate cellular responses to cytokine 
signaling, was also found to be essenCal for the promoCon of CCM in response to OSM [322]. These 
findings suggest that the interplay between OSM, HIF1A, and STAT3 drives a unique program that 
governs CCM, which could have significant implicaCons for understanding the mechanisms of metastasis 
and Cssue remodeling in cancer. 

HIF1A has long been recognized as a key regulator of cellular responses to hypoxia, where it mediates 
processes such as metabolic reprogramming, cell survival, and moClity [326]. More recently, HIF1A has 
been implicated in parCal epithelial-to-mesenchymal transiCon (EMT), a process that is onen associated 
with cancer metastasis [118], [119]. In our study, we found that HIF1A was upregulated in OSM-treated 
cells and was crucial for the inducCon of CCM. This is consistent with prior work suggesCng that HIF1A is 
involved in regulaCng the migratory behavior of cancer cells under various condiCons [339], [340]. To 
further invesCgate the transcripConal program regulated by HIF1A in OSM-treated cells, we performed 
single-cell RNA sequencing, which revealed disCnct changes in gene expression compared to cells 
treated with other ligands such as EGF or IFNG. Specifically, gene set enrichment analysis (GSEA) showed 
that HIF1A-regulated genes were enriched for pathways related to glycolysis, hypoxia, and immune 
responses. These findings suggest that HIF1A plays a pivotal role not only in promoCng cellular moClity 
but also in modulaCng immune-related signaling pathways, which may contribute to the collecCve 
migraCon observed in OSM-treated cells. 

An unexpected finding in our study was the enrichment of complement-related immune pathways in 
HIF1A-regulated genes. Given that complement signaling is involved in a variety of cellular behaviors, 
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including migraCon, we hypothesized that complement acCvaCon could contribute to OSM-induced 
CCM. To test this, we used CompstaCn, a complement inhibitor, and observed a reducCon in both 
clustering and moClity of OSM-treated cells, similar to the effects seen with HIF1A knockdown. This 
suggests that complement signaling is a downstream effector of HIF1A in driving CCM. This novel 
connecCon between OSM signaling, HIF1A acCvaCon, and complement-mediated moClity provides new 
insights into the molecular mechanisms that regulate CCM and could have important implicaCons for 
understanding cancer invasion and metastasis. 

While our results provide a robust characterizaCon of OSM-induced CCM in MCF10A cells, several 
limitaCons warrant further exploraCon. First, our study was conducted exclusively in MCF10A cells, a 
non-cancerous human mammary epithelial cell line [132]. To beGer understand the broader relevance of 
our findings, future studies should invesCgate the role of CCM in other epithelial cell lines and cancer-
derived models. These include primary cells and paCent-derived organoids, which more closely 
recapitulate the in vivo microenvironment and may provide insights into how CCM mechanisms are 
altered in cancerous condiCons. Expanding the cell line repertoire will help determine the 
generalizability of our results across different Cssue types and cancer models.  

AddiConally, while we performed single-cell RNA sequencing to capture the transcripConal response to 
OSM-induced signaling, our analysis focused primarily on the transcripConal consequences of HIF1A 
acCvaCon. It is important to note that HIF1A modulates various cellular pathways that could influence 
CCM. Pathways like mTOR signaling, integrin-mediated adhesion, and autophagy, which are also 
regulated by HIF1A, may contribute to CCM by affecCng cellular moClity, adhesion, and metabolic 
support for migraCon [341], [342], [343]. Further invesCgaCon into how HIF1A coordinates these 
signaling pathways will provide a more comprehensive understanding of its role in CCM and potenCally 
uncover addiConal therapeuCc targets. 

Finally, while our study focused on transcripConal changes, other factors such as post-translaConal 
modificaCons, cellular localizaCon, and crosstalk with other signaling networks could play criCcal roles in 
regulaCng CCM. Future research could address these aspects by incorporaCng proteomic analysis and 
real-Cme imaging techniques to track signaling events in live cells.  

In conclusion, this study provides a detailed analysis of the signaling pathways and transcripConal 
networks involved in OSM-induced CCM. By expanding our understanding of how OSM and its 
downstream effectors regulate cellular migraCon, we lay the groundwork for future invesCgaCons into 
how CCM can be modulated for therapeuCc purposes in cancer and Cssue regeneraCon. 

3.6 Addi6onal Informa6on 
4.6.1 Data Availability 
Raw live-cell images of MCF10A cells treated with ligands, siRNA, and drug are deposited on …. 

All molecular data analyzed in this study and a detailed descripCon of experimental and analyCcal 
methods are available at synapse.org/LINCS_MCF10A. 

4.6.2 Contribu1ons 
ConceptualizaCon: L.M.H., and I.C.M. Study coordinaCon and supervision: L.M.H. Cell culture: I.C.M. 
Live-cell imaging: I.C.M. IF-imaging: I.C.M. scRNAseq: I.C.M. Data analyses: I.C.M. WriCng: I.C.M and 
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4.1 Abstract 
The microenvironment surrounding cells plays a criCcal role in determining cellular phenotype. Key 
components of the microenvironment include the diverse milieu of ligands and cytokines that bind cell 
surface receptors to iniCate changes in molecular programs. While the responses to extracellular signals 
have been extensively studied in isolaCon, liGle is known about the effects of combinaCons of signals on 
phenotypic and transcripConal responses. In this study, we used a coordinated approach to 
systemaCcally invesCgate the combinatorial effects of the cytokines OncostaCn M (OSM) and 
Transforming Growth Factor Beta 1 (TGFB), and the growth factor Epidermal Growth Factor (EGF) on 
MCF10A mammary epithelial cells. QuanCtaCve analysis of live-cell imaging data revealed a complex 
array of phenotypic responses aner ligand treatment, including changes in proliferaCon, moClity, cell 
clustering, and cytoplasmic size. We observed that all ligand combinaCons produce emergent phenotypic 
responses disCnct from the maximal effects of individual ligands, suggesCng inducCon of new molecular 
programs. Companion RNA sequencing studies revealed synergisCc upregulaCon of genes involved in cell 
migraCon, epithelial differenCaCon, and chemotacCc signaling. Notably, these included the chemokines 
CXCL3, CXCL5, and PPBP, which are known drivers of epithelial proliferaCon and migraCon. AddiConally, 
transcripCon factor enrichment analyses and Reverse Phase Protein Array (RPPA) studies highlighted 
disCnct changes in transcripCon factor acCvity and pathway uClizaCon following combinaCon treatment, 
including enhanced acCvaCon of MAP kinase and CREB signaling. Using parCal least squares regression, 
we idenCfied robust transcripConal signatures associated with quanCtaCve cellular phenotypes. We 
validated these signatures in independent datasets, confirming that they generalize across cellular 
contexts. Finally, an in-depth funcConal analysis of cell moClity with RNA interference and pathway 
inhibiCon revealed that synergisCc upregulaCon of CXCR2 signaling, mediated by CREB transcripCon 
factor acCvaCon, contributes to increases in cell moClity across ligand condiCons. These findings 
demonstrate the importance of combinatorial signaling in reprogramming epithelial phenotypes and 
reveal potenCal therapeuCc targets for disrupCng synergisCc pathways in disease contexts such as cancer 
progression. Together, this study provides a framework for understanding how complex ligand 
interacCons shape phenotypic and molecular landscapes. 

4.2 Introduc6on 
The intricate interplay between cells and their microenvironment is a fundamental determinant of 
cellular behavior and funcCon. Central to this dynamic relaConship is the diverse array of ligands, 
cytokines, and extracellular matrix proteins that can iniCate myriad intracellular responses that 
ulCmately shape cellular phenotype. While the impacts of individual extracellular signals have been 
extensively studied, our understanding of how cells integrate and respond to combinaCons of 
extracellular signals remains limited. 

In this study, we invesCgate the combinatorial effects of three ligands: OncostaCn M (OSM), 
Transforming Growth Factor Beta 1 (TGFB), and Epidermal Growth Factor (EGF), on the phenotypic and 
molecular responses of MCF10A mammary epithelial cells. These ligands hold pivotal roles in the normal 
development and funcCon of mammary Cssue, and their dysregulaCon is associated with disease [63], 
[64], [344]. EGF canonically acCvates the MEK/ERK and PI3K signaling pathways [67], OSM signals 
through JAK/STAT pathways [74], and TGFB orchestrates SMAD-mediated processes [70]. The signaling 
pathways acCvated by EGF regulate the moClity, proliferaCon, and invasion of normal and malignant 
breast epithelial cells [67]. TGFB induces epithelial-to-mesenchymal transiCon (EMT) in breast epithelial 
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cells, achieved through the inducCon of EMT-associated transcripCon factors including SNAI1 and SNAI2, 
resulCng in stereotyped changes in cell morphology and moClity [285]. TGFB also influences breast 
epithelial cell proliferaCon by acCvaCng p21 and suppressing key cell cycle transcripCon factors such as 
MYC, leading to cell cycle arrest [345]. AcCvaCon of JAK/STAT signaling downstream of OSM and other 
IL6 family cytokines modulates invasive properCes and induces changes in modes of migraCon [147], 
[346]. Despite their well-defined molecular consequences, the interplay between these signaling 
pathways and their combined impact on cellular behavior remains poorly understood. 

Prior invesCgaCons into the combinatorial effects of perturbaCons have primarily focused on exploring 
and predicCng the interplay of therapeuCc inhibitors [347]. ComputaConal modeling approaches have 
demonstrated that synergisCc drug interacCons can be parCally predicted from the transcripConal 
profiles of cells treated with individual agents [178], [348], [349], [350]. In addiCon, there is evidence 
indicaCng a strong correlaCon between synergisCc gene expression paGerns and the degree of drug 
synergy, demonstraCng a robust associaCon between combinatorial transcripConal dynamics and 
resultant phenotypic responses [182]. However, the exploraCon of combinatorial effects and 
relaConships between transcripCon and phenotype have typically been confined to a single phenotypic 
response, notably viability, without extending to more complex phenotypes such as cell moClity, 
morphology or spaCal arrangement. Expanding our understanding of combinatorial effects beyond drug 
perturbaCons and viability holds great promise for uncovering mechanisms of signal integraCon at 
molecular and phenotypic levels. 

Employing live-cell imaging and RNA-seq, here we systemaCcally invesCgate the phenotypic and 
transcripConal responses of MCF10A mammary epithelial cells to combinaCons of EGF, TGFB, and OSM. 
MCF10A is a well-characterized model system that has been uClized extensively to invesCgate Cssue 
development, migraCon, and proliferaCon [133], [351], [352], [353], [354]. We found that all 
combinaCons of ligands induce phenotypic responses that differ significantly from their respecCve single 
ligand phenotypes, suggesCng acCvaCon of addiConal molecular programs. MoCvated by this finding, we 
performed comprehensive transcriptomic analysis to idenCfy synergisCc transcripConal programs in each 
combinaCon condiCon, which revealed specific transcripConal programs modulated in response to 
combinaCon treatments. We used ParCal Least Squares Regression (PLSR) [355] to decipher the complex 
relaConship between transcripConal programs and cellular phenotype. Our comprehensive analysis 
revealed that when combined, EGF and OSM synergisCcally amplify molecular programs associated with 
leukocyte chemotaxis and CXCR2 acCvaCon, resulCng in increased cell moClity. FuncConal validaCon 
demonstrated that synergisCc upregulaCon of CXCR2-associated chemotacCc factors is mediated by 
CREB transcripCon factor acCvaCon.  

4.3 Methods 
MCF10A Cell Culture 

Cell culture and ligand perturbaCon experiments were conducted as previously detailed [147]. Briefly, for 
rouCne growth and passaging, cells were cultured in growth media containing DMEM/F12 (Invitrogen 
#11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D Systems #236-EG), 0.5 µg/ml 
hydrocorCsone (Sigma #H-4001), 100 ng/ml cholera toxin (Sigma #C8052), 10 µg/ml insulin (Sigma 
#I9278), and 1% Pen/Strep (Invitrogen #15070-063). For perturbaCon experiments, growth factor-free 
media was used, composed of DMEM/F12, 5% horse serum, 0.5 µg/ml hydrocorCsone, 100 ng/ml 
cholera toxin, and 1% Pen/Strep. 
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MCF10A cells were grown to 50-80% confluence in GM and detached using 0.05% trypsin-EDTA (Thermo 
Fisher ScienCfic #25300-054). Post-detachment, 5,000 cells were seeded into collagen-1 (Cultrex #3442-
050-01) coated 24-well plates (Thermo Fisher ScienCfic #267062) in growth media. Six hours aner 
seeding, cells were washed with PBS and growth factor-free media was added. Aner an 18-hour 
incubaCon in the new media, cells were treated with single ligand or combinaCons of ligands in fresh 
growth factor-free media: 10 ng/ml EGF (R&D Systems #236-EG), 10 ng/ml OSM (R&D Systems #8475-
OM), and 10 ng/ml TGFβ (R&D Systems #240-B). 

Live-Cell Imaging and Image Analysis Pipeline  

Live-cell imaging was performed using the Incucyte S3 microscope (Essen BioScience, #4647). Images 
were captured every 30 minutes for up to 48 hours. Live-cell image stacks were then registered using a 
custom Fiji script [224] and segmented with CellPose [152]. Image tracking was carried out using the 
Baxter Algorithms pipeline [151].  

All analysis of cell tracking data was performed in RStudio [300]. The cell count metric was determined 
by counCng the number of cells per field and normalizing this count by the T0 count for that field. 
Nearest neighbor distances were measured by calculaCng the pixel Euclidean distances from each cell 
centroid to the centroid of the second nearest cell in the imaging field. To account for variaCons in cell 
count, the mean nearest neighbor distances for each image were normalized by the expected mean 
distance to the nearest neighboring cell if the cells were distributed randomly [226]. Cytoplasmic size 
was calculated as the average cytoplasmic size 24 hours aner ligand addiCon. Cell moClity was quanCfied 
by first removing tracks with distance jumps greater than 200 pixels in 30 minutes. MoClity was 
esCmated as the slope of the mean squared displacement (MSD) [301] over Cme intervals ranging from 
30 minutes to 6 hours. The slope of the MSD for each treatment was derived by construcCng a linear 
model comparing MSD to the Cme interval. This value is proporConal to the diffusion coefficient for 
Brownian moCon [301] 

To assess the staCsCcal significance of the deviaCon in combinaCon ligand phenotypes from single ligand 
condiCons, ANOVA was used followed by Tukey's Honest Significant Differences test for post-hoc 
comparisons. For phenotype comparisons with EGF and PBS, ANOVA followed by DunneG’s test for post-
hoc comparisons was performed using the DescTools package in RStudio [356]. A p-value of less than 
0.05 was considered significant for all tests. 

RNAseq Genera8on and Analysis 

MCF10A cells were transferred into RLT Plus buffer (Qiagen) containing 1% β-ME, flash-frozen in liquid 
nitrogen, and stored at −80°C unCl RNA extracCon. Total RNA was isolated from the frozen samples using 
the Qiagen RNeasy Mini Kit. cDNA libraries were prepared from poly(A)-selected RNA using the Illumina 
TruSeq Stranded mRNA Library PreparaCon kit. The Illumina HiSeq 2500 plaworm to generate 100-bp 
paired-end reads. Short read sequencing assays were performed by the OHSU Massively Parallel 
Sequencing Shared Resource. 

RNAseq data was preprocessed and aligned using a pipeline adapted from Tatlow, et al [245]. TrimGalore 
(v. 0.4.3) was used to trim adapter sequences and low-quality bases using CutAdapt (v. 1.10) and to 
generate FASTQ quality reports using FastQC (v. 0.11.5). Aner adapter trimming, reads were filtered to 
have a minimum length of 30 bp. Trimmed reads were pseudo-aligned to the GENCODE V24 
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transcriptome (GRCh38.p5) using Kallisto (v. 0.46.2). Gene-level quanCficaCons were obtained from 
transcript-level abundance esCmates using the R package tximport (v. 1.8.0) in R (v. 3.5.0). 

We performed mulCple differenCal gene expression analyses, comparing each ligand condiCon to Cme 
zero controls (Figure 4-2A, B, D, E, F) and comparing each two-ligand combinaCon condiCon to the 
respecCve single ligand condiCons (Figure 4-3). Both sets of analyses were conducted using RNA-seq 
gene-level summaries with the R package DESeq2 (version 1.24.0) [228]. For all analyses, significantly 
induced genes were defined as genes with a LFC > 1.5 or LFC < -1.5 and a p-value < .05, adjusted using 
the Benjamini and Hochberg method [357]. 

TranscripCon factor enrichment scores were calculated using Priori with default serngs, using TPM 
values as input [175]. Gene modules were idenCfied through K-means clustering of the top 200 most up-
regulated and top 200 most down-regulated genes, employing the ComplexHeatmap package [358]. The 
number of clusters was determined by gap analysis. StaCsCcal comparisons of differenCally expressed 
genes within each module were performed using chi-squared analysis, followed by examinaCon of 
standardized residuals. A p-value of less than 0.05 was considered significant. 

Gene set enrichment analyses were conducted using the Gprofiler package, focusing on Gene Ontology 
categories for Biological Process, Molecular FuncCon, and Cellular Component [359]Gene sets were 
considered staCsCcally significant if the adjusted p-value was below 0.01. The most enriched gene sets 
for each analysis were selected for visualizaCon by ranking the gene sets first by the smallest p-value and 
subsequently by the highest odds raCo. P-value adjustments for mulCple comparisons were made using 
the g:SCS method from the Gprofiler package [360] 

Par8al Least Squares Regression  

PLSR models were built using replicate-level gene expression data as the independent variable to predict 
the replicate phenotypic metrics as the dependent variable. This pairing of replicates allowed us to 
uClize biological variaCon in both phenotypic and transcripConal responses. To exclude low-variance 
genes from the model, we used the VST method in the Seurat RStudio package (Version 3) to select the 
top 2,500 most variable genes for input [361]. Gene expression for each condiCon was normalized to T0 
and scaled, and phenotypic metrics were scaled as well. The PLSR models were constructed using the 
PLS package in RStudio [362]. The number of components in each model was determined by idenCfying 
the elbows in the relaCve root mean squared error plots. Leave-one-out analysis was conducted to 
assess robustness. Genes were ranked by importance in the model by calculaCng the Variable 
Importance in ProjecCon (VIP) scores [363]. The top 100 VIP scoring genes, either posiCvely or negaCvely 
correlated with the first component of the model, were used as input for gene set enrichment analyses. 
The enrichment was performed using the Gprofiler package, focusing on Gene Ontology categories for 
Biological Process, Molecular FuncCon, and Cellular Component [364], [365]. 

Par8al Least Squares Regression Model Valida8on 

Orthogonal validaCon was conducted for the PLSR models predicCng cell count and moClity. This 
involved analyzing publicly available datasets containing RNAseq data paired with proliferaCon rates 
from 34 breast cancer cell lines [366] and moClity esCmates from 28 breast cancer cell lines [367]. We 
input the log2-normalized gene abundance data from these cell lines into our models to predict cell 
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count or moClity for each line. Pearson correlaCon was then calculated to compare the predicted 
phenotypes to the experimentally determined metrics. 

AddiConally, we validated the PLSR model predicCng cell count using the Project Achilles dataset for 
breast cancer cell lines from the Cancer Dependency Map Portal (DEPMAP) [368], [369]. We compared 
VIP scores to Gene Effect scores calculated by DEPMAP from CRISPR screens and invesCgated the 
staCsCcal significance of the relaConship between VIP and Gene Effect scores using chi-squared analysis. 

CXCR2 Inhibi8on 

Cells were cultured in 24-well plates following previously established protocols. Aner cell aGachment 
and subsequent culture in assay media, 5 nM AZD5069 (MedChemExpress, #19855) or DMSO was added 
along with the ligand treatments. Cell imaging and moClity assessments were performed as previously 
described. To determine the staCsCcal significance of changes in moClity, we first fiGed an ordinary least 
squares linear model to the data using the esCmatr package in RStudio [370]. Then, we esCmated 
marginal means with the emmeans package and computed pairwise contrasts to compare moClity across 
all ligand condiCons for inhibitor-treated versus DMSO-treated cells [371]. P-values were adjusted using 
Tukey’s method for mulCple comparisons, and a p-value < 0.05 was considered significant. 

Reverse Phase Protein Array Sample Prepara8on 

Cells were lysed and collected by manual scraping into 50-100 µL of lysis buffer (1% Triton X-100, 50 mM 
HEPES pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 100 mM Na pyrophosphate, 1 mM Na3VO4, 
10% glycerol, 1x complete EDTA-free protease inhibitor cocktail (Roche #11873580001), 1x PhosSTOP 
phosphatase inhibitor cocktail (Roche #4906837001)). The lysates were incubated on ice for 20 minutes, 
followed by centrifugaCon at 14,000 rpm for 10 minutes at 4°C. The supernatant was collected, 
quanCfied using a BCA assay, and then mixed with 4X SDS sample buffer (40% glycerol, 8% SDS, 0.25 M 
Tris-HCl, 10% β-mercaptoethanol, pH 6.8). The mixture was boiled for 5 minutes and stored at -80°C. 
Three sets of biological replicates were submiGed for RPPA tesCng. The samples underwent standard 
pre-processing using protocols established at the MD Anderson Cancer Center RPPA core [372]. 
StaCsCcal significance in anCbody intensity between the EGF+OSM condiCon and both single ligand 
condiCons was determined using ANOVA followed by DunneG’s test using the DescTools package [356]. 
The RPPA data used in this study were part of a larger panel of condiCons and perturbaCons assessed in 
MCF10A cells. The full dataset is available in Supplementary Table 1.  

SiRNA Assay and QPCR 

Cells were seeded in growth media at a density of 25,000 cells per well in a 6-well plate. Seven hours 
aner seeding, the cells were transfected with either a commercially validated siRNA pool targeCng 
CREB1 (Horizon Discovery #L-003619-00-0005) or a negaCve control siRNA (Horizon Discovery #L-
003619-00-0005) using Lipofectamine RNAiMAX TransfecCon Reagent (Invitrogen #13778100) at a 
concentraCon of 25 nM siRNA. Aner 48 hours, the cells were treated with EGF, OSM, or a combinaCon of 
EGF and OSM for an addiConal 24 hours. Each treatment condiCon was performed in triplicate. 

To evaluate the changes in mRNA levels following siRNA-mediated CREB knockdown, we extracted total 
RNA from treated cells using the RNeasy Mini Kit (Qiagen # 74104) as per the manufacturer's protocol. 
We synthesized cDNA using the iScript cDNA Synthesis Kit (Bio-Rad #1708891). The mRNA expression 
levels were quanCfied through real-Cme qPCR with SYBR green chemistry on the Bio-Rad CFX Opus 384 
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Real-Time PCR System (Bio-Rad #12011452). The results were normalized to Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) levels using the 2-ΔΔCt method [373]. StaCsCcal significance 
between expression levels was determined by student’s T-test performed on ΔCt values [305]. The 
primer sequences for the target mRNAs are provided in Supplementary Table 2.  

4.4 Results 
4.4.1 EGF, OSM and TGFB treatment combina1ons induce emergent phenotypic responses  
 We nominated for study a panel of three ligands (EGF, OSM and TGFB) that canonically acCvate disCnct 
signaling pathways and that have been shown to induce strong phenotypic responses in MCF10A 
mammary epithelial cells [147] (Figure 4-1A). Although the effects of these individual ligands have been 
examined in various cellular contexts including MCF10A [147], [374], [375], [376], [377], predicCng how 
cells will respond to dual treatment at the molecular or phenotypic level is challenging due to the 
complex responses elicited by single ligands. 

MCF10A cells cultured in growth factor free media were exposed to EGF, OSM, and TGFB independently, 
or in pairwise or triple combinaCon, and subjected to live-cell imaging every 30 minutes for 24 hours. 
EGF is typically included as a supplement in MCF10A culture media, so this condiCon serves as a posiCve 
control for our study [132]; PBS serves as a growth-factor-starved negaCve control. We employed 
quanCtaCve image analysis to assess changes in cell count, moClity, cell clustering and cell spreading, 
and cytoplasmic size (Figure 4-1B). In our iniCal analyses, we describe the quanCtaCve responses to each 
single ligand compared to PBS control. Consistent with previous studies (Gross et al., 2022), we found 
that independent treatment with EGF strongly induced proliferaCon, whereas TGFB and OSM induced 
only modest increases in cell count compared to PBS (Figure 4-1C, Supp Fig 4-1A). Cell moClity was 
evaluated by calculaCng the mean squared displacement (MSD) over all cells for each treatment and 
deriving the diffusion coefficient from the MSD curves (Figure 4-1D). Like cell proliferaCon, EGF 
treatment significantly increased cell moClity compared to PBS control, while OSM induced a modest 
increase in moClity, and TGFB showed no change in moClity compared to PBS (Figure 4-1D, Supp 4-1A). 
The calculaCon of the distance to the nearest neighboring cell revealed changes in cell clustering 
(decreased neighbor distance) and cell spreading (increased neighbor distance). EGF and TGFB treatment 
did not significantly affect the nearest neighbor distance compared to PBS control; however, OSM led to 
a decrease in this metric, indicaCng Cght cell clustering (Figure 1E, Supp Fig 4-1A). Lastly, we observed 
that EGF treatment led to an increase in cytoplasmic size compared to the PBS control, whereas TGFB or 
OSM alone had no effect (Figure 4-1F, Supp Fig 4-1A). Notably, the addiCon of TGFB to EGF further 
amplified the increase in cytoplasmic size beyond that induced by EGF alone (Supp Fig 4-1B). In total, 
these analyses demonstrate that each treatment regime induced a disCnct constellaCon of phenotypic 
changes. 

Given the disCnct phenotypic responses associated with each ligand, we hypothesized that the 
phenotypic responses to combinaCon treatments would adhere to the Highest Single Agent (HSA) model 
[179]. The HSA model, used to study drug combinaCon synergy, posits that the expected phenotypic 
response for a combinaCon treatment is equal to the maximal effect of any single agent. Using this 
framework, we anCcipated that the phenotypic responses to combinaCon ligand condiCons would 
primarily reflect the influence of the single ligand with the most significant impact on each aspect of cell 
phenotype. To test this hypothesis, we compared the quanCfied phenotypic metrics for each 
combinaCon condiCon to those of each respecCve single ligand condiCon. A phenotype was considered 
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emergent (i.e., it did not mirror either single ligand response) if we detected a significant change that 
deviated from each single ligand condiCon, assessed using a one-way analysis of variance (ANOVA) 
followed by post-hoc Tukey's honest significant difference test (p-value < 0.05). 

Consistent with the HSA model, cell count observed under EGF+TGFB and EGF+OSM+TGFB treatments 
remained unchanged compared to EGF alone. However, EGF+OSM and OSM+TGFB treatments resulted 
in a cell count greater than their individual ligand treatments (Figure 4-1G, H, I, J). This finding suggests 
an interacCon between OSM and the other ligands that influences changes in cell proliferaCon. We also 
observed emergent phenotypic changes in cell moClity, distance to nearest neighboring cells, and 
cytoplasmic size when ligands were applied in combinaCon. Treatment with OSM and TGFB individually 
resulted in decreased cell moClity when compared to EGF treated cells (Supp Fig 4-1B). However, 
combinaCon treatment with EGF+OSM, EGF+TGFB, and EGF+OSM+TGFB resulted in an emergent 
increase in cell moClity compared to all single ligand condiCons (Figure 4-1G, H, J). Finally, combinaCon 
treatment with EGF+TGFB resulted in an emergent phenotypic increase in both nearest neighbor 
distance and cytoplasmic size, indicaCng cell spreading (Figure 4-1H). Our findings indicate that across 
various ligand combinaCon treatments and mulCple phenotypic responses, combinaCon treatment 
induces emergent behavior that deviates from that of individual ligand treatments. This suggests that 
combinaCon treatments induce molecular programs not induced by single ligand treatments.  

 

Figure 4-1: Combina<on treatments induce diverse and emergent phenotypic behavior 
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A) Overview of the signaling pathways ac1vated by each treatment, highligh1ng the canonical pathways associated 
with each ligand. Schema1c representa1ons depict the poten1al phenotypic outcomes (e.g., prolifera1on, mo1lity, 
and clustering/spreading) influenced by these pathways.  

B) Representa1ve images of MCF10A cells under different ligand treatments at 24 hours, demonstra1ng changes in 
cell phenotype. 

C-F) Quan1fica1on of cell phenotype from 0-24 hours (cell count normalized to T0, MSD, nearest neighbor 
distance) or at 24 hours (cytoplasmic area). 

G-J) Quan1fied phenotypic responses for each combina1on condi1on were compared to each single ligand 
condi1on comprising that combina1on. ANOVA followed by post-hoc Tukey's honest significant difference test was 
used to assess significance, with p-value < 0.05 considered significant.  

 

Supplemental Figure 4-1: Sta<s<cal comparison of phenotypic responses to control condi<ons 

A) Quan1fied phenotypic metrics for all ligand treatments normalized by and compared to PBS. Sta1s1cal 
significance was determined using Dunneh's test with a p-value <.05 considered significant. 

B) Quan1fied phenotypic metrics for all ligand treatments normalized by and compared to EGF. Sta1s1cal 
significance was determined using Dunneh's test with a p-value <.05 considered significant. 

4.4.2 Iden1fica1on of molecular programs induced by single and combina1on ligand 
treatments 
We next used RNA sequencing to examine the molecular mechanisms driving response to ligand 
combinaCons. Cells were harvested aner 24 hours of ligand treatment and subjected to bulk RNA 
sequencing. We posited that treatments leading to the strongest changes in cell phenotype compared to 
the PBS control would likewise display the greatest change in transcripConal responses. To test this 
hypothesis, we first assessed the overall transcripConal perturbaCon for each ligand condiCon by 
quanCfying the number of differenCally expressed genes as compared to PBS control (LFC > 1.5 or LFC < -
1.5 and q-value < .05). 

Comparison of differenCally expressed genes revealed that treatments modulate gene expression 
programs to different extents; the EGF+OSM treatment induced the greatest number of differenCally 
expressed genes, while independent treatment with TGFB had only modest impact on transcripCon 
(Figure 4-2A, Supp Fig 4-2A, B). To assess the overall change in cell phenotype for each condiCon, we 
calculated the total magnitude of the four phenotypic metrics relaCve to the PBS control. This was done 
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by represenCng the phenotypic metrics as a four-dimensional vector, where the origin indicates no 
change from PBS control, and then compuCng overall change in cell phenotype as the vector magnitude 
across these four dimensions. Then, for each treatment, we directly compared the overall change in cell 
phenotype to the number of differenCally expressed genes (Figure 4-2B). We found a strong correlaCon 
between number of differenCally expressed genes and overall change in phenotype (R2 = 0.75, p-value = 
.012). The treatments that provoked the most significant changes in gene expression also corresponded 
to the most substanCal overall changes in cell phenotype (EGF+OSM+TGFB, EGF+OSM, and EGF+TGFB). 
Conversely, treatments that exerted a minimal change on cell phenotype led to the fewest changes in 
gene expression, highlighCng a clear relaConship between gene expression alteraCons and phenotypic 
outcomes across different treatment condiCons. 

To further invesCgate the transcripConal programs modulated by single and combinaCon treatments, we 
next performed transcripCon factor enrichment on the RNAseq dataset using Priori, an approach that 
leverages prior biological informaCon to infer the acCvity of 223 transcripConal regulators [175]. Priori 
evaluates the acCvaCon levels of canonical transcripCon factors and enables data-driven idenCficaCon of 
key signaling proteins that may play a crucial role in mediaCng phenotypic and combinaCon responses. 
Analysis of the relaCve enrichment for canonical transcripConal regulators associated with EGF, OSM, 
and TGFB signaling with single-ligand treatments recapitulates established signaling pathways. Namely, 
EGF enriches AKT and MAPK transcripConal processes, OSM induces STAT3, while TGFB induces SMAD4 
programs, respecCvely (Figure 4-2C, Canonical Signaling). RelaCve to EGF alone, EGF+TGFB increases 
MAPK enrichment, EGF+OSM increases AKT enrichment, and the three-ligand combinaCon condiCon 
increases enrichment for both pathways. This suggests that acCvaCon of the MAPK and PI3K signaling 
cascade may contribute to the high level of proliferaCon observed in these condiCons. Conversely, 
EGF+OSM diminishes STAT3 enrichment relaCve to the OSM condiCon (Figure 4-2C, Canonical Signaling). 
We also compared the top decile of transcripCon factors most strongly induced by each treatment 
condiCon (Figure 4-2C, Transcrip8on Factors), which revealed that approximately half of the 
transcripConal regulators enriched in single ligand treatments are also acCve in their respecCve 
combinaCon condiCons (16/33) (Figure 4-2E, Supp Fig 4-2C). However, 28 (28/44) transcripConal 
regulators show enrichment only in combinaCon treatments and not in single ligand condiCons. These 
factors comprise a diverse array of transcripConal regulators including growth factor signaling molecules 
(EGFR, IGF1, IGF1R, MAPK1, VEGFA) and regulators of epithelial and immune cell differenCaCon (APP, 
BACH1, CEBPG, CREB1, CTNNB1, RELA). This may indicate that a common molecular program is induced 
in response to treatment with mulCple ligands. 

We next sought to idenCfy coordinated molecular programs associated with the observed phenotypic 
responses. Focusing on the subset of genes most strongly induced relaCve to the T0 control, we filtered 
for the top 200 most up-regulated and top 200 most down-regulated genes for each treatment (p-value 
< 0.05, LFC > 1.5). Pairwise correlaCon of the log fold changes revealed that the combinaCon treatments 
share transcripConal similariCes with at least one of the individual ligands in each pair (Pearson 
correlaCon > 0.7) (Figure 4-2D). To further explore what may be driving the disCnct phenotypic 
responses in the combinaCon condiCons, we applied K-means clustering [378] and gap analysis [259], 
which idenCfied 10 coordinated gene modules (Supp Fig 4-2D). Gene module scores, calculated as the 
median expression for each module, were not exclusively up- or downregulated in any combinaCon 
condiCon suggesCng that combinaCon responses do not acCvate unique transcripConal gene modules 
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disCnct from single ligand condiCons, but rather modulate exisCng transcripConal programs (Figure 4-2C, 
Module Scores).  

We further explored the molecular programs in each module through gene set enrichment analysis, 
focusing on curated Gene Ontology categories (Figure 4-2F) [360], [364], [365]. Gene modules 1, 2, 3, 
and 4 are enriched for terms related to epithelial cell and keraCnocyte differenCaCon and development. 
These modules are downregulated across all treatments except for the TGFB condiCon. AddiConally, 
Modules 1 and 2 are more strongly downregulated by the EGF+OSM and EGF+OSM+TGFB condiCons as 
compared to their respecCve single ligand treatments (Supp Fig 4-2E, H). These two treatments also 
show the most significant increase in moClity compared to the PBS control, suggesCng that 
downregulaCon of these gene modules corresponds to dedifferenCaCon associated with cell moClity 
(Figure 4-1C, D).  

Module 7 is enriched for cell cycle-related terms, with its expression highest under the EGF and 
EGF+OSM condiCons, consistent with the increased cell count observed in these condiCons. Gene 
Ontology terms associated with general cell moClity (locomoCon) are significantly enriched in modules 6 
and 8, while specific mechanisms of cell moClity (granulocyte chemotaxis) are enriched in modules 8 and 
10. Module 6 is upregulated by EGF+TGFB, OSM+TGFB, and EGF+OSM+TGFB compared to all single 
ligand responses, suggesCng an underlying amplificaCon of general cell moClity transcripConal programs 
when these signals are combined (Supp Fig 4-2F, G, H). Conversely, module 10 is only upregulated by 
condiCons containing OSM, indicaCng that a unique chemotaxis program is acCvated only when OSM is 
included in the treatment. 

 

Figure 4-2: Transcrip<onal programs induced by single and combina<on ligand treatments 

A) Number of differen1ally expressed genes (LFC > 1.5 or < -1.5, q-value < 0.05) across treatments rela1ve to PBS 
control, showing the greatest response in EGF+OSM treatment.  
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B) Correla1on between the number of differen1ally expressed genes and overall changes in cell phenotype (R² = 
0.75, p = 0.012). 

C) Enrichment analysis of canonical transcrip1onal regulators (Canonical Signaling, top heatmap), the top decile of 
transcrip1on factors (Transcrip1on Factors, middle heatmap), and median LFC for gene modules (Module Score, 
bohom heatmap) ac1vated in response to each treatment condi1on.  

D) Pairwise Pearson correla1ons of gene expression log fold changes compared to T0 between all treatments.  

E) Venn diagram comparing transcrip1onal regulators enriched in single versus combina1on treatments.  

F) Enrichment of Gene Ontology terms for each gene module iden1fied. 

 

Supplemental Figure 4-1: Detailed transcrip<onal analysis of single and combina<on ligand treatments 

A) Number of upregulated differen1ally expressed genes (LFC > 1.5, q-value < 0.05) for each treatment rela1ve to 
PBS control. Genes unique to each treatment are shown with solid transparency, while those shared with at least 
one other condi1on are shown with lighter transparency. 
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B) Number of downregulated differen1ally expressed genes (LFC < -1.5, q-value < 0.05) for each treatment rela1ve 
to PBS control, with transparency represen1ng unique versus shared genes, as in panel A. 

C) Upset plot showing the overlap of transcrip1onal regulators ac1vated by single and combina1on treatments, 
highligh1ng the shared and unique regulatory programs across condi1ons. 

D) Gap analysis iden1fies 10 op1mal gene modules across treatments, based on clustering of transcrip1onal data. 

E-H) Comparisons of gene module scores for each combina1on treatment versus the respec1ve single ligand 
condi1ons. Sta1s1cal significance was determined by Chi-squared analysis, comparing the number of differen1ally 
expressed genes in each treatment rela1ve to T0 for each module. P-value < .05 was considered significant. 

4.4.3 Combina1on treatments result in specific synergis1c transcrip1onal programs  
The previous analyses suggest that combinaCon treatments primarily amplify the transcripConal 
programs induced by single ligand responses. To further invesCgate this observaCon, we compared the 
transcripConal responses in combinaCon treatments to predicCons made using a simple addiCve model. 
Previous studies have shown that upregulated gene responses to ligand combinaCons typically follow 
either addiCve or mulCplicaCve paGerns [379]. To determine if this applies to our dataset, we developed 
a simple model by summing the fold changes in expression relaCve to the T0 control for upregulated 
genes (LFC > 0.5) from single ligand condiCons and compared these predicted values to the observed 
expression levels in the combinaCon treatments. Using this model, our analysis revealed a strong 
correlaCon between the predicted and actual responses for all ligand combinaCon condiCons (EGF+OSM 
- R² = 0.73, p-value < .001; EGF+TGFB - R² = 0.70, p-value < .001; OSM+TGFB - R² = 0.76, p-value < .001; 
EGF+OSM+TGFB - R² = 0.66, p-value < .001), suggesCng that the combinaCon responses can largely be 
explained by a simple addiCve model (Supp Fig 4-3A-D). These findings indicate that ligand combinaCon 
responses predominantly recapitulate the transcripConal responses of the individual ligands. 

The observaCon that the transcripConal responses to combinaCon treatments predominantly reflect the 
effects of individual ligands was unexpected, considering the complex phenotypic changes we observed 
in each combinaCon condiCon. We hypothesized that these emergent phenotypic effects might arise 
from specific synergisCc transcripConal paGerns not captured in our previous analysis. Here we more 
deeply explore that observaCon by borrowing frameworks developed in drug combinaCon studies to 
idenCfy synergisCc gene expression programs by applying HSA modeling to molecular quanCficaCon 
[182]. For each combinaCon treatment, we calculated the log fold change in expression for all genes 
compared to each respecCve single ligand condiCon, then visualized the changes in expression in x-y 
scaGerplots (Figure 4-3A-C). We designated a gene as posiCvely synergisCc if the log fold change in 
expression aner combinaCon treatment exceeded 1.5 compared to each of the single ligand condiCons 
(adjusted p-value < 0.05) (Figure 4-3A-C). Similarly, we defined negaCvely synergisCc genes as those with 
a log fold change of at least -1.5 compared to both respecCve single ligand condiCons. This 
comprehensive analysis revealed that for each pairwise combinaCon, there exist subtle yet significant 
synergisCc transcripConal programs. The number of posiCvely synergisCc genes per combinaCon 
condiCon ranged from 17 to 110, while negaCvely synergisCc genes ranged from 27 to 148. To evaluate 
how the range of synergisCc modulaCon in our ligand combinaCons compares to previous studies using 
drug combinaCons, we performed the same analysis on MCF7 malignant breast epithelial cells treated 
with Tamoxifen, Mefloquine, and Withaferin individually and in combinaCon (Supp Fig 4-3E-G) [182]. 
These drugs were selected based on their phenotypic synergy in reducing cell viability when combined. 
When comparing our results, we found that although the degree of transcripConal synergy in our ligand 
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combinaCons was far surpassed by the level of synergy observed in the Mefloquine and Tamoxifen 
combinaCon (2235 genes), it was comparable to the two other combinaCon condiCons (50 genes, 137 
genes). InteresCngly, even in the Mefloquine and Withaferin combinaCon, which showed relaCvely small 
transcripConal synergy, there was sCll substanCal phenotypic synergy. This suggests that while a limited 
number of genes may be synergisCcally expressed in our ligand combinaCon treatments, their strong 
modulaCon may have funcConal importance. 

We performed gene set enrichment analysis of the posiCve and negaCve synergisCc gene sets idenCfied 
for each combinaCon treatment using Gene Ontology Biological Process, Molecular FuncCon, and 
Cellular Component gene sets [360], [364], [365]. PosiCvely synergisCc genes induced by the 
combinaCon of EGF and OSM resulted in the upregulaCon of chemotacCc transcripConal programs 
(Figure 4-3D). CombinaCons containing TGFB exhibited a large overlap of posiCvely synergisCc genes 
(EGF+TGFB = 32/110, OSM+TGFB = 32/65) (Figure 4-3E). These combinaCons also synergisCcally induced 
transcripConal programs related to ECM remodeling and cell moClity, consistent with TGFB's known role 
in promoCng epithelial-to-mesenchymal transiCon and the emergent enlargement of cell cytoplasm in 
this condiCon [72]. Notably, these EMT-related programs were not strongly induced by TGFB treatment 
alone and required either OSM or EGF in combinaCon. This aligns with the observaCon from live-cell 
imaging that TGFB only induces migraCon and alteraCons in cell morphology in the presence of OSM or 
EGF (Figure 4-1D, E). Consistent with the live-cell image data, EGF+OSM and EGF+TGFB both 
downregulate epithelial differenCaCon processes (epithelium development, skin development). 
Epithelial cells that undergo transdifferenCaCon and loss of epithelial idenCty, notably through epithelial-
to-mesenchymal transiCon, exhibit increased moClity and changes in cell morphology, which we 
observed in both treatment combinaCons [380]. NegaCvely synergisCc gene sets for EGF+OSM and 
EGF+TGFB had a large overlap, with 35 genes in common (Figure 4-3F), suggesCng that these shared 
repressive transcripConal programs contribute to these processes (Figure 4-1D, E).  
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Figure 4-3: Synergis<c transcrip<onal programs induced by ligand combina<on treatments 

A-C) Scaherplots showing log fold change in gene expression for combina1on treatments versus each respec1ve 
single ligand condi1on (EGF+OSM, EGF+TGFB, OSM+TGFB). Genes exhibi1ng posi1ve synergy (LFC > 1.5, adjusted p-
value < 0.05 compared to both treatments) are shown in green, and genes with nega1ve synergy (LFC < -1.5, 
adjusted p-value < 0.05 compared to both treatments) are shown in orange.  

D) Gene Ontology enrichment analysis of posi1vely and nega1vely synergis1c gene sets. 

E) Venn diagram showing overlap of posi1vely synergis1c genes between combina1on condi1ons.  

F) Venn diagram depic1ng nega1vely synergis1c genes between combina1on condi1ons 
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Supplemental Figure 4-3: Addi<ve modeling of ligand combina<ons and transcrip<onal synergy analysis of drug 
treatments 

A-D) Scaherplots depic1ng the correla1on between the observed log2 fold change (LFC) for upregulated genes (LFC 
> 0.5) in each ligand combina1on condi1on (EGF+OSM, EGF+TGFB, OSM+TGFB, and EGF+OSM+TGFB) and the 
predicted LFC based on a purely addi1ve model summing the LFC of the individual ligands. Pearson correla1on 
coefficients (R²) are reported for each comparison, demonstra1ng strong correla1ons (R² values ranging from 0.66 
to 0.76, p-value < .001), indica1ng that ligand combina1on responses are predominantly addi1ve. 

E-G) Transcrip1onal synergy analysis applied to a published dataset of MCF7 cells treated with Tamoxifen, 
Mefloquine, and Withaferin individually and in combina1on. Scaherplots highlight the number of synergis1c genes 
(posi1ve and nega1ve) induced by each drug combina1on, providing a comparison to ligand-induced 
transcrip1onal synergy. 

4.4.4 Par1al Least Squares Regression uncovers transcrip1onal signatures driving cellular 
phenotype 
We next sought to more directly link image and RNAseq data to uncover molecular drivers of complex 
cellular phenotypes. To achieve this goal, we uClized ParCal Least Squares Regression (PLSR), an efficient 
staCsCcal predicCon tool that is especially appropriate for small sample data with many possibly 
correlated variables [355]. We constructed PLSR models to idenCfy gene signatures to predict each of 
the four phenotypic metrics derived from live-cell imaging data (Figure 4-1). The three biological 
replicates of imaged cells shown in Figure 1 were harvested for the RNA sequencing described above, 
enabling direct linkage of image and RNAseq data for each experimental sample. This design leveraged 
biological variaCon in both phenotypic and transcripConal responses across replicates. The inputs for 
each model consisted of replicate-level phenotypic metrics and replicate-level Log Fold Change (LFC) 
gene expression compared to T0 control. Leave-one-out analysis was used to determine the opCmal 
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number of latent variables in each model and to evaluate model robustness [381]. The RelaCve Root 
Mean Squared Error of PredicCon (RRMSEP) for the four models ranged from 0.205 to 0.563, indicaCng 
good fit. 

For each PLSR model, we idenCfied the gene signature most strongly associated with phenotypic 
changes by calculaCng Variable Importance in ProjecCon (VIP) scores [363]. VIP scoring esCmates the 
overall significance of each feature in the model without disCnguishing between posiCvely and 
negaCvely correlated features. To further refine the top-scoring genes in each model, we categorized 
them based on their correlaCon with the phenotype of interest. For each model, we selected for further 
analysis the top 100 genes with the highest VIP scores and a posiCve correlaCon to the model's first 
component and the top 100 genes with a negaCve correlaCon to the first component. There were 
varying degrees of overlap among the highest-scoring VIPs from different phenotypic signatures. The 
largest overlap was observed between the Nearest Neighbor Distance and Cytoplasmic Size signatures, 
likely due to the inverse relaConship between cell spreading and cell clustering (Figure 4-4A, B). Similarly, 
there was overlap between the Cell Count and MoClity signatures, which is expected as these biological 
processes have been shown to be driven by similar molecular mechanisms [367]. Despite these overlaps, 
a significant number of genes were uniquely idenCfied as VIPs for each phenotype, indicaCng that the 
PLSR regression idenCfies disCnct biological mechanisms associated with each phenotype. We 
conducted gene set enrichment analysis for each signature to invesCgate the underlying cellular 
processes [360], [364], [365]. Enrichment for the top negaCvely correlated VIPs for Nearest Neighbor 
Distance include terms related to inflammatory response (acute-phase response, complement 
acCvaCon) (Supp Fig 4-4A, B). The top posiCvely correlated VIPs associated with cytoplasmic size are 
enriched in terms related to synthesis processes for cell membrane components (isoprenoid biosyntheCc 
process, cholesterol biosyntheCc process, phospholipid biosyntheCc process) and cell-substrate 
interacCons (cell-substrate juncCon, focal adhesion), indicaCng a shared transcripConal program involved 
in membrane and cytoskeletal remodeling that regulates cytoplasmic size (Supp Fig 4-4C, D). 

We next focused on exploring and validaCng the Cell Count PLSR model, a well-studied phenotype that 
serves as an excellent test case of our approach to link image and molecular data. Genes posiCvely 
correlated with cell count exhibited enrichment for gene sets canonically associated with proliferaCon, 
including mitoCc cell cycle, DNA replicaCon, and cyclin E2-CDK2 complex (Figure 4-4C, D). Among the 
posiCvely correlated VIPs are essenCal components of mitosis, including several cell cycle checkpoint 
genes (CDK2, CDC6, CDCA4) [382], [383], [384], microtubule regulaCon genes (TUBB, TUBB4B, TUBG1) 
[385], and growth-regulaCng secreted factors (AREG, IL1A, CSF3) [386], [387], [388]. Conversely, the top 
negaCvely correlated VIPs associated with cell count were enriched for cellular component terms such as 
vacuolar lumen and lysosomal lumen, implying an upregulaCon of autophagy components in the 
absence of proliferaCon, potenCally due to cellular stress [389]. These findings suggest that the Cell 
Count PLSR model captures expected biologically relevant pathways and processes associated with 
proliferaCon.  

Assessing computaConal models using orthogonal approaches is crucial to ensure their robustness and 
reliability. Here, we leveraged independent, publicly available datasets to assess model generalizability 
and to validate our Cell Count model. First, we invesCgated whether the cell count signature idenCfied 
genes essenCal for viability across a panel of diverse cancer cell lines. To achieve this, we uClized the 
Project Achilles dataset from the Cancer Dependency Map Portal (DEPMAP), which used high-
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throughput CRISPR Cas9 to experimentally determine gene essenCality across thousands of cancer cell 
lines [368], [369]. The Gene Effect score quanCfies the impact of gene knockout on cell viability. The 
more negaCve the experimentally determined Gene Effect score, the greater its impact on viability. A 
Gene Effect score less than -0.5 indicates cell depleCon, while a score less than -1 indicates strong cell 
killing. In contrast, a Gene Effect score of 0 signifies that a gene is not implicated in viability.  

We examined the essenCality of the highest scoring VIPs included in our PLSR signature by analyzing 
their experimentally determined Gene Effect scores for the 94 breast cancer cell lines included in the 
DEPMAP database (Figure 4-4E). VIP genes that showed the highest posiCve correlaCon with cell count 
were significantly more likely to have a Gene Effect score ≤ -0.5 as compared to genes with negaCvely 
correlated VIP scores (χ² = 902.41, p-value < 2.2e-16). Moreover, across all genes included in our Cell 
Count PLSR model, those idenCfied as high-scoring VIPs were more frequently associated with a Gene 
Effect score ≤ -0.5 than were genes with low-scoring VIPs (χ² = 3841.6, p-value < 2.2e-16), demonstraCng 
the predicCve capability of our model in assessing gene essenCality across diverse breast cancer cell lines 
(Supp Fig 4-4E). Notably, genes with high VIP scores in the PLSR model that also had large Gene Effect 
scores include canonical cell cycle components (CDC20, PLK1, GINS1) [385] as well as recently discovered 
regulators (ALYREF) [390] and prognosCc markers of breast carcinogenesis (GINS2) [391]. This 
underscores that analyzing transcripCon and phenotype in a single cell line across mulCple perturbaCons 
offers insights into mechanisms governing cell viability across diverse biological, while also revealing 
recently discovered genes involved in cell proliferaCon and potenCally idenCfying novel, undiscovered 
ones. 

We also assessed the generalizability of the Cell Count PLSR model to predict proliferaCon in other cell 
line models. We analyzed publicly available datasets comprised of paired RNAseq and proliferaCon rates 
from 34 breast cancer cell lines [366]. For each cell line, we input the log2-normalized gene abundance 
data into our model to predict cell count. The model’s predicted cell count was significantly correlated 
with experimental measures of proliferaCon (R² = 0.44, p-value < .001) (Figure 4-4F). These results 
demonstrate that the Cell Count model generalizes across diverse cellular contexts beyond MCF10A and 
showcases the power of our approach to link molecular and image-based measurements. Taken 
together, these findings demonstrate the robustness of our approach in idenCfying funcConal molecular 
programs that govern complex phenotypic responses 
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Figure 4-4: Par<al Least Squares Regression (PLSR) links transcrip<onal signatures to phenotypic metrics 

A-B) PLSR models were used to link RNA sequencing data to phenotypic metrics derived from live-cell imaging 
(Cytoplasmic Size, Nearest Neighbor Distance, Mo1lity, and Cell Count). Overlap in top posi1ve VIP genes for each 
PLSR model is visualized in (A), while overlap for top nega1ve VIPs is shown in (B).  

C) Z-scored gene expression of the top 100 posi1ve VIPs and top 100 nega1ve VIPs for the cell count PLSR model. 

D) Gene set enrichment analysis of the top VIPs for the Cell Count model.  

E) Valida1on of Cell Count PLSR model using the DEPMAP Cancer Dependency Map (Project Achilles). Genes 
posi1vely correlated with Cell Count show significant enrichment for essen1ality in 94 breast cancer cell lines (χ² = 
902.41, p-value < 2.2e-16). 

F) Generaliza1on of the Cell Count PLSR model to other cellular contexts. The model was applied to RNAseq data 
from 34 breast cancer cell lines and showed significant correla1on (R² = 0.44, p-value < .001) with experimental 
prolifera1on rates. 
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Supplemental Figure 4-4: Gene Set Enrichment Analysis and Expression of VIP Genes from PLSR Models 

A) Z-scored expression of the top VIP genes associated with the Nearest Neighbor Distance phenotype in the PLSR 
model. 

B) Gene set enrichment analysis of the top VIP genes associated with Nearest Neighbor Distance. 

C) Z-scored expression of the top VIP genes associated with Cytoplasmic Size from the PLSR model. 

D) GSEA of the top VIP genes associated with Cytoplasmic Size. 

E) Evalua1on of the Cell Count PLSR model using the DEPMAP dataset, where all genes in the model were analyzed 
for their Gene Effect scores across breast cancer cell lines. VIP genes that were posi1vely correlated with cell count 
exhibited significantly lower Gene Effect scores (χ² = 902.41, p-value < 2.2e-16), suppor1ng their role in regula1ng 
cell viability and prolifera1on. 

4.4.5 Synergis1c transcrip1onal upregula1on of CXCR2 chemotac1c signaling molecules via 
CREB ac1va1on promotes increased cell mo1lity 
To invesCgate the molecular mechanisms driving cell moClity, we analyzed our Cell MoClity model and 
the associated gene signature (Figure 4-5A). Gene set enrichment analysis revealed that genes posiCvely 
correlated with cell moClity are significantly enriched in pathways related to responses to external and 
bioCc sCmuli, signaling receptor acCvator acCvity, and CXCR chemokine receptor binding (Figure 4-5B). 
To assess the generalizability of this model, we used the approach described above, but here leveraged 
our Cell MoClity PLSR model to predict cell moClity from publicly available RNAseq profiles from 28 
breast cancer cell lines and compared this to experimentally determined migraCon rates [366], [367]. 
The predicted cell moClity values were strongly correlated with the experimentally measured migraCon 
rates, providing confidence that our model captures relevant biological programs driving cell moClity (R² 
= 0.49, p-value < .001) (Figure 4-5C). 
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Having established the validity of our Cell MoClity model, we next more deeply explored it to uncover 
novel biological mechanisms driving this phenotypic response. Among the top most important genes are 
CXCL3, PPBP (CXCL7), and CXCL5, ranking first, second, and finh in VIP scores (Figure 4-5D). These genes 
encode chemotacCc ligands that signal through the CXCR2 chemokine receptor, a pathway known to 
enhance mammary epithelial cell migraCon [257]. Furthermore, our previous RNAseq analysis showed 
that CXCL3, CXCL5, and PPBP are posiCvely synergisCcally upregulated under the EGF+OSM condiCon, 
which produced the most significant increase in cell moClity among all condiCons tested (Figure 4-1D, 
Figure 4-5D). MoCvated by this, we focused on the EGF+OSM combinaCon condiCon to funcConally 
invesCgate the mechanism by which this combined treatment synergisCcally enhances moClity as 
compared to the individual effects of EGF and OSM. 

 

Figure 4-5: Expression of CXCR2 Agonists Correlates with Cell Mo<lity 

A) Z-scored expression for the top 100 VIP genes posi1vely and nega1vely with Cell Mo1lity. 

B) Gene set enrichment analysis of top VIPs, showing significant enrichment in pathways related to CXCR 
chemokine receptor binding. 

C) Correla1on between predicted cell mo1lity values from the Cell Mo1lity PLSR model and experimentally 
measured migra1on rates from 28 breast cancer cell lines. A significant correla1on (R² = 0.49, p-value < .001) 
between predicted mo1lity and experimental migra1on rates supports the relevance of the model in capturing 
mo1lity-associated biological pathways.  
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D) LFC values compared to T0 control for the EGF+OSM combina1on condi1on and respec1ve single ligand 
condi1ons show the synergis1c upregula1on of CXCR2 agonists (CXCL3, CXCL5, and PPBP). 

We hypothesized that the upregulaCon of CXCL3, CXCL5 and PPBP (CXCL7) contributes to the increased 
cell moClity observed in the EGF+OSM condiCon compared to EGF and OSM single ligand condiCons. To 
test this hypothesis, we first experimentally tested whether CXCR2 acCvaCon (the common receptor for 
CXCL3, CXCL5, and PPBP) influences cell moClity in the EGF+OSM condiCon. We treated MCF10A cells 
with the ligand panel in the presence of AZD5069, a small molecule inhibitor of CXCR2 receptor 
acCvaCon, and then assessed cell moClity. CXCR2 inhibiCon significantly suppressed cell moClity in the 
EGF+OSM+TGFB, EGF+OSM, and OSM condiCons, with the most substanCal decrease observed in the 
EGF+OSM condiCon (23.9% median decrease across three biological replicates) (Figure 4-6A, Supp Fig 4-
5A).  

We then sought to idenCfy the transcripConal regulators involved in the synergisCc upregulaCon of 
CXCL3, CXCL5, and PPBP in the EGF+OSM condiCon. Given that this upregulaCon is synergisCc in the 
EGF+OSM condiCon, and considering the emergent increase in cell moClity observed with this 
combinaCon treatment compared to either ligand alone, we hypothesized that the acCvaCon of 
transcripConal regulators would also exhibit a synergisCc paGern in this context. To idenCfy 
transcripConal regulators synergisCcally acCvated by EGF+OSM, we assessed proteomic changes with 
Reverse Phase Protein Array (RPPA) analysis 1 hour aner ligand treatment [227]. StaCsCcal analysis of the 
RPPA data idenCfied 3 proteins with staCsCcally significant change (p-value < .05) in expression between 
the EGF+OSM condiCon and both single ligand condiCons: P70 S6 Kinase (pThr389), S6 (pSer240/244), 
and CREB (pS133) (Figure 4-6B, Supp Fig 4-5B). CREB is a transcripCon factor known to enhance CXCL3, 
CXCL5, and PPBP expression [392], and its upregulaCon is consistent with our hypothesis that 
enhancement of chemotacCc signaling contributes to the increased moClity in the EGF+OSM condiCon.  

We funcConally validated CREB's role in moClity by performing siRNA knock-down in the presence of 
EGF, OSM, and EGF+OSM treatments followed by assessment of cell moClity. CREB inhibiCon had 
minimal impact on EGF treated cells, a modest impact on OSM treated cells, and the greatest impact on 
EGF+OSM treated cells, mirroring the effects of CXCR2 inhibiCon (Figure 4-6C). Knockdown of CREB was 
confirmed through qPCR (Supp Fig 4-5C). We next sought to confirm the relaConship between CREB 
acCvaCon and chemokine expression via qPCR analysis of CREB knockdown cells. Under EGF+OSM 
treatment, the expression of CXCL3 and CXCL5 was reduced, confirming that CREB indeed regulates the 
expression of these chemotacCc ligands (Figure 4-6D, Supp Fig 4-5D). 

In summary, our findings reveal that EGF+OSM promotes a synergisCc increase in cell moClity compared 
to the single ligand condiCons. RNAseq analysis revealed that CXCL3, CXCL5, and PPBP are strongly 
correlated to cell moClity and synergisCcally upregulated under the EGF+OSM condiCon. InhibiCng 
CXCR2 significantly reduced cell moClity, and RPPA analysis indicated a synergisCc increase in CREB 
phosphorylaCon, which enhances the expression of CXCL3, CXCL5, and PPBP. CREB knockdown 
experiments confirmed its crucial role, demonstraCng that CREB acCvaCon drives the upregulaCon of 
these chemokines. These results collecCvely suggest that the synergisCc acCvaCon of CREB, in response 
to combined EGF and OSM sCmulaCon, drives the transcripConal upregulaCon of key chemokines, 
thereby promoCng increased cell moClity (Figure 4-6E). 
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Figure 4-6: Synergis<c Transcrip<onal Upregula<on of CXCR2 Chemotac<c Signaling Molecules via CREB 
Ac<va<on Promotes Increased Cell Mo<lity 

A) Cell mo1lity assays following treatment with single and combina1on ligand panel in the presence or absence of 
AZD5069, a CXCR2 inhibitor. CXCR2 inhibi1on significantly decreased cell mo1lity in the EGF+OSM, EGF, and OSM 
condi1ons. Data shown as median change in mo1lity with standard devia1on from three biological replicates. P-
value < .05 was considered significant.  

B) Reverse Phase Protein Array (RPPA) analysis 1 hour ajer treatment with EGF, OSM, and EGF+OSM. Sta1s1cally 
significant changes in protein expression (p-value < .05) were assessed using Dunneh’s test. 

C) Effects of CREB knockdown on cell mo1lity of cells treated with EGF, OSM, or EGF+OSM. Mean Squared 
Displacement (MSD) is shown in the top panel and change in mo1lity is shown in the bohom.  

D) qPCR analysis of chemokine expression in CREB knockdown cells following EGF+OSM treatment. Barplots depict 
fold change in expression compared to the EGF control. Student’s t-test was used to assess significance (p-value < 
.05). 

E) Puta1ve mechanism of synergis1c ac1va1on of CREB in response to combined EGF and OSM s1mula1on drives 
the upregula1on of CXCL3, CXCL5, and PPBP, leading to increased cell mo1lity via CXCR2 ac1va1on. 
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Supplemental Figure 4-5: Cell Mo<lity Assays, CREB Knockdown Efficiency, and RPPA Data 

A) Cell mo1lity assay data showing the effects of CXCR2 inhibi1on (AZD5069) on MCF10A cell mo1lity in the 
EGF+OSM, EGF, and OSM condi1ons, across all three biological replicates. The data depict the mean squared 
displacement, with CXCR2 inhibi1on significantly reducing mo1lity in the EGF+OSM condi1on. 

B) Reverse Phase Protein Array (RPPA) data from cells treated with EGF, OSM, and EGF+OSM. Dunneh’s test was 
used to compare the single ligand condi1ons to the EGF+OSM combina1on, revealing sta1s1cally significant 
changes (p-value < .05) in CREB ac1va1on in the EGF+OSM condi1on. 

C) qPCR confirma1on of CREB knockdown in MCF10A cells, with treatment condi1ons for siRNA targe1ng CREB. 

D) Full qPCR analysis of chemokine expression in CREB knockdown MCF10A cells treated with EGF, OSM, and 
EGF+OSM. The data show fold change of gene expression compared to EGF and normalized to GAPDH. 

4.5 Discussion 
Cells operate within a complex microenvironment in which signals from the local environment are 
conCnuously changing. These signals are integrated by cells, impacCng transcripCon and signaling 
processes and thus significantly affecCng cellular funcCons. While prior research has primarily 
invesCgated how individual signals combine to affect phenotypic and transcripConal outcomes, onen in 
the context of drugs and a limited number of phenotypes like cell survival and proliferaCon, this study 
seeks to expand these concepts to the more intricate realm of ligand interacCons. Here we explored the 
interacCons between the ligands EGF, OSM, and TGFB and their effects on molecular and cellular 
responses. By analyzing the outcomes of both single-ligand and combined treatments, we reveal how 
these signals drive disCnct transcripConal programs that impact cell moClity, proliferaCon, and 
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differenCaCon. Our findings show that combining ligand treatments can lead to unexpected phenotypic 
behaviors. For example, certain ligand combinaCons resulted in greater cell counts (EGF+OSM, 
OSM+TGFB), enhanced moClity (EGF+OSM, EGF+TGFB, EGF+OSM+TGFB, OSM+TGFB), and altered both 
cell morphology and spaCal arrangement (EGF+TGFB, OSM+TGFB, EGF+OSM+TGFB) as compared to their 
single-ligand treatments. These results demonstrate that the combined effects of ligand treatments can 
exceed the sum of their individual parts, emphasizing the challenge of predicCng phenotypic responses 
from single-ligand data alone. 

DisCnct signaling pathways acCvated by EGF, OSM, and TGFB each play unique roles in cellular 
responses[67], [71], [393]. Our RNA sequencing data reveal that combinaCon treatments mimic the gene 
expression profiles of one or both single-ligand condiCons. An addiCve model of single-ligand gene 
expression showed a strong correlaCon with gene expression paGerns observed in combinaCon 
treatments, with the magnitude of transcripConal changes aligning with corresponding phenotypic 
effects. Notably, gene programs associated with epithelial differenCaCon are downregulated aner nearly 
all treatment paradigms tested, with the notable excepCon of TGFB. This finding is intriguing given 
TGFB's well-studied role in epithelial-to-mesenchymal transiCon (EMT) [72]. This suggests that EGF might 
be necessary for TGFB to trigger the convenConal EMT in MCF10A cells, highlighCng the dependence of 
well-studied ligand-induced phenotypes (e.g. EMT induced by TGFB), on the presence of other ligands in 
the microenvironment. 

Moreover, we idenCfied unique transcripCon factors enriched across all combinaCon condiCons, 
including regulators of epithelial differenCaCon such as APP, BACH1, and CTNNB1. The shared 
enrichment of these transcripCon factors suggests that the combinaCon of these ligands converges on 
similar signaling pathways to influence differenCaCon state. Building on prior research showing that 
small degrees of transcripConal synergy can influence phenotypic synergy [182], we uClized an HSA-
based modeling approach to define synergisCc transcripConal programs. This approach uncovered subtle 
but significant synergisCc gene sets specific to each ligand combinaCon. While most studies have focused 
on phenotypic synergy, extending these frameworks into molecular synergy provides valuable insights 
into the underlying mechanisms driving combined ligand effects. Our studies support the adopCon of 
exisCng frameworks designed for drug-induced changes in viability to gain insights into complex 
phenotypic responses. With the advent of spaCally resolved assays [394], we envision that these 
frameworks could be applied to a broad array of data types and biological quesCons. 

The use of ParCal Least Squares Regression (PLSR) to connect transcripConal data with phenotypic 
outcomes is a significant strength of this study. IdenCfying gene signatures linked to cell count, moClity, 
spaCal organizaCon and cytoplasmic size offers insights into the molecular drivers of these processes. 
ValidaCon of the PLSR model with publicly available datasets and the Cancer Dependency Map 
underscores the robustness and generalizability of our PLSR models, with potenCal applicaCons for 
idenCfying criCcal regulators of cell proliferaCon and survival [366], [367], [368], [369]. Furthermore, this 
approach holds significant promise for uncovering novel regulators of cell phenotype by linking 
previously uncharacterized genes to specific cellular behaviors. However, alternaCve machine learning 
approaches such as random forests or neural networks could be employed in future studies to capture 
more complex non-linear relaConships between transcripConal data and phenotypic outcomes [395], 
[396], [397], [398]. These methods may offer complementary insights and help further refine our 
understanding of the complex signaling networks governing cellular behavior. AddiConally, expanding 
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the analysis to include Cme-course transcripConal data could provide a dynamic view of how these 
programs evolve over Cme in response to ligand treatments. 

Our analysis of CXCR2 chemotacCc signaling and CREB acCvaCon provides important mechanisCc insights 
into molecular drivers of cell moClity. The synergisCc upregulaCon of CXCL3, CXCL5, and PPBP in the 
EGF+OSM condiCon, along with the effects of CXCR2 inhibiCon and CREB knockdown, highlights a key 
signaling axis involved in cell moClity. CREB's role in promoCng chemokine expression further clarifies 
the molecular mechanisms underlying the observed changes. We demonstrated that EGF+OSM, only 
when applied in combinaCon, phosphorylates and acCvates CREB transcripCon factor, leading to the 
transcripConal upregulaCon of CXCR2 receptor agonists. AcCvaCon of CXCR2 then contributes to 
increased cell moClity.   

Previous studies have established CREB's role in promoCng chemokine acCvity in malignant epithelial 
cells, transgenic mice, and other cell lines [392], [399], [400]. While EGF is known to acCvate CREB in 
various contexts, including in breast Cssue [401], we reveal that in MCF10A cells, this pathway is 
uniquely acCvated by the combined presence of OSM and EGF. AddiConally, prior research has shown 
that CXCR2 is overexpressed in breast cancer epithelial cells and enhances malignant cell migraCon 
[402], [403]. Here, we provide evidence for an autocrine signaling mechanism achieving similar 
outcomes in cell moClity. However, it is important to note that the observed phenotypic changes likely 
also involve protein and signaling-driven mechanisms. While this study focused on the CREB-CXCR2 axis, 
future research should invesCgate other interacCng pathways to provide a more comprehensive view of 
these regulatory networks on changes in moClity. For instance, idenCfying which CXCR2 agonists acCvely 
bind to the receptor and exploring the roles of other transcripCon factors or co-regulators in chemokine 
expression and moClity could offer deeper insights into these processes. 

This study has several limitaCons that should be addressed in future research. First, while we focused on 
specific quanCtaCve changes in cellular phenotype, many other aspects remain unexplored, such as 
metabolic acCvity, apoptosis, and differenCaCon status. Examining these phenotypes could provide 
criCcal insights into how ligand combinaCons influence cellular behavior. For instance, changes in 
metabolic acCvity could elucidate the energeCc requirements for moClity [404], apoptosis assays might 
reveal how ligand signaling impacts cell survival [405], and differenCaCon markers could help determine 
whether ligand combinaCons push cells toward specific lineages [406]. AddiConally, invesCgaCng 
chromaCn remodeling and transcripConal dynamics could uncover upstream regulatory mechanisms 
driving the observed phenotypic changes[407].  

Second, our research was conducted using MCF10A cells, though we validated our results with external 
cancer cell datasets containing thousands of paired RNA-seq and phenotypic profiles to address this 
limitaCon. Future studies could expand the range of cell lines used, incorporaCng primary cells that more 
closely mimic the physiological state of cells in vivo [408]. AddiConally, using paCent-derived organoids, a 
more complex model system that includes addiConal cell-cell contacts and extracellular matrix, could 
help determine the generalizability of our findings across different biological contexts [409].  

Lastly, while our study observed various types of cell moClity, we did not differenCate between disCnct 
moClity behaviors. Understanding the differences between random moClity, directed migraCon, and 
collecCve movement could offer deeper insights into the regulaCon of these processes by ligand 
combinaCons [410]. To address this, future experiments could include chemotacCc gradient assays to 
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evaluate directed migraCon [411], scratch assays to study wound healing-like behavior [412], and 3D 
model systems to invesCgate the contribuCons of the ECM [413]. Such approaches would provide a more 
nuanced understanding of how specific signaling pathways influence disCnct moClity types. 

Overall, this study offers a comprehensive analysis of how EGF, OSM, and TGFB signaling pathways 
interact to influence cellular responses through complex transcripConal programs. The integraCon of 
transcriptomic and phenotypic data using machine learning approaches enhances our understanding of 
the molecular mechanisms governing cell behavior, with potenCal implicaCons for developing targeted 
therapeuCc strategies to modulate cell moClity and proliferaCon in cancer and other diseases. 

4.6 Addi6onal Informa6on 
4.6.1 Data Availability 
Raw live-cell images of MCF10A cells treated with single and combinaCon ligands are deposited on 
Zenodo 10.5281/zenodo.14261795. 

RNA sequencing data and processed counts data generated for this study can be accessed from the Gene 
Expression Omnibus: GSE282654.  
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5. Chapter V: Conclusions and future work 
5.1 Summary of contribu6ons 
5.1.1 Three dimensional organoid experiments 
One limitaCon of the research presented in this dissertaCon is that it has been primarily restricted to 
work done in MCF10A cells. While MCF10A cells are a widely used model system for studying normal 
mammary epithelial cell behavior, they are inherently a simplified representaCon of the mammary gland 
in vivo. These cells lack several key characterisCcs of the mammary microenvironment, including 
extracellular matrix (ECM) components, interacCons with immune cells, and the three-dimensional 
architecture that defines the mammary gland [134]. As such, MCF10A cells serve as a powerful 
reducConist tool but do not fully capture the complexity of mammary Cssue in vivo. Recognizing this 
limitaCon, part of this graduate research involved establishing more complex model systems in the lab to 
validate the findings obtained from MCF10A cells, parCcularly those related to the OncostaCn M (OSM)-
induced collecCve cell migraCon (CCM) phenotype. 

To address this, MCF10A cells were cultured in a three-dimensional (3D) matrix using Matrigel to beGer 
mimic in vivo Cssue architecture. When embedded in Matrigel, MCF10A cells formed organoid structures 
that recapitulated aspects of mammary gland morphology, including lumen formaCon and polarized 
epithelial architecture [133]. Using this system, I treated MCF10A organoids with OSM and control 
condiCons, such as epidermal growth factor (EGF). I observed that OSM treatment induced an invasive 
phenotype in these organoids, which was imaged using confocal microscopy (Figure 5-1A). These results 
suggest that OSM induces phenotypic changes in 3D organoid systems consistent with CCM observed in 
2D culture models, providing further evidence that this phenotype is relevant in more complex Cssue 
contexts. 

Thus far, this dissertaCon has focused on normal mammary epithelial Cssues; however, CCM also plays a 
criCcal role in cancer metastasis [100]. Previous studies in the literature, such as those from Andy Ewald’s 
group, have demonstrated that breast cancer metastases occurs more efficiently via CCM [96]. One 
seminal study found that in mouse models of tumors, metastaCc sites were exclusively seeded by 
polyclonal lineages of breast cancer cells [286]. This implies that a collecCve process occurred during the 
metastaCc cascade. Given the link between CCM and metastases, microenvironmental signaling 
acCvaCng this process could be important to understanding the factors that influence paCent prognosis. 

To invesCgate whether the OSM-induced CCM phenotype observed in normal mammary cells extends to 
cancerous Cssues, I used a method to culture tumor-derived organoids from MMTV-PyMT mice. These 
mice develop mammary tumors driven by the polyoma middle T anCgen (PyMT), a model that closely 
mimics human luminal breast cancer [414]. Tumors were enzymaCcally digested into small fragments 
and cultured within collagen matrices to recreate a 3D microenvironment. Previous work has shown that 
under certain condiCons, tumor-derived organoids can invade the surrounding collagen matrix in either 
a single-cell or collecCve manner [94]. Using this system, I assessed whether OSM induces an invasive 
phenotype in tumor-derived organoids. Confocal microscopy revealed that OSM treatment resulted in 
invasive strands of collecCvely migraCng cells, demonstraCng that the CCM phenotype observed in 
normal epithelial organoids is also present in cancer-derived systems (Figure 5-1B). 

Altogether, these findings suggest that the OSM-induced CCM phenotype exists in more complex model 
systems, including those of cancer origin. This is significant because previous studies and data collected 
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from paCent breast cancer tumors have linked OSM receptor expression to breast cancer progression, 
metastasis, and poor paCent prognosis, but the mechanisCc basis for these associaCons remains unclear 
(Figure 5-1C). The results presented here provide a potenCal mechanisCc link between OSM and breast 
cancer progression, centered around the iniCaCon of CCM processes and the promoCon of metastasis. 
However, it is important to note that these results are preliminary, and addiConal work is required to 
confirm and further characterize these findings. 

 

Figure 5-1: OSM-induced CCM in 3D model systems of normal and malignant mammary 2ssue 

A) MCF10A organoids were grown in Matrigel and collagen for 2 weeks then treated with OSM or EGF for 72 hours. 
OSM treatment induced invasion into the surrounding matrix. Organoids are imaged using a confocal microscope 
and a live-cell fluorescent die. 

B) Organoids derived from MMTV-PyMT mammary tumors were embedded in collagen gel and treated with OSM 
or PBS. Ajer 1 week of ligand treatment, OSM treated organoids exhibited a prolifera1ve and invasive phenotype, 
while PBS treated organoids adopt a non-migratory and apopto1c state. Organoids were imaged using light sheet 
microscopy. 
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C) Survival analysis of basal breast cancer pa1ents stra1fied for OSM receptor expression. Data and analysis were 
derived from Kaplan Meir Ploher [415]. 

5.1.1 Collabora1ve works not discussed 
Beyond the core research projects presented in this dissertaCon, I have had the opportunity to 
collaborate on a range of interdisciplinary studies. The publicaCons listed below reflect addiConal 
contribuCons that, although not covered in this work, have played a key role in shaping my development 
as a researcher 

In review or preparaCon: 

• Copperman J, McLean I, Heiser L, Gray J, Zuckerman D. Single-cell morphodynamical trajectories 
enable predicCon of gene expression accompanying cell state change. 
hGps://www.biorxiv.org/content/10.1101/2024.01.18.576248v2.  (In Review) 

• Johnson, J. A. I., Stein-O’Brien, G. L., Booth, M., Heiland, R., Kurtoglu, F., Bergman, D. R., Bucher, 
E., Deshpande, A., Forjaz, A., Getz, M., Godet, I., Lyman, M., Metzcar, J., Mitchell, J., Raddatz, A., 
Rocha, H., Solorzano, J., Sundus, A., Wang, Y., McLean I, … Macklin, P., et al. DigiCze your biology! 
Modeling mulCcellular systems through interpretable cell behavior. 
hGps://www.biorxiv.org/content/10.1101/2023.09.17.557982v3. (Accepted with Revisions: Cell) 

• Eric B. Berens, Sokchea Khou, Elaine Huang, Amber Hoffman, Briana Johnson, Nell Kirchberger, 
Sam Sivagnanam, Nicholas Calistri, Daniel Derrick, Tiera Liby, Ian McLean, Aryn A. Alanizi, E. 
Shelley Hwang, Pepper Schedin, Hugo Gonzalez, Zena Werb (deceased), Laura M. Heiser, Lisa M. 
Coussens. “NeoplasCc immune mimicry is a generalizable phenomenon in breast cancer and 
epithelial CD69 enables early tumor progression”. (In PreparaCon) 

5.2 Biological conclusions  
Understanding how microenvironmental signals influence cell behavior is criCcal for unraveling the 
complex dynamics of cellular processes in both normal and pathological states. These signals operate 
within a vast network of interacCons, and their molecular consequences are challenging to decipher due 
to the sheer diversity and context dependency. However, every piece of new informaCon adds clarity to 
this puzzle, potenCally revealing pathways of therapeuCc relevance in pathological processes. By 
systemaCcally exploring these signals, we can beGer understand how cells respond and adapt to their 
environments, advancing both fundamental biology and applied medicine. 

This dissertaCon invesCgates the interplay between microenvironmental signals and cellular behavior, 
emphasizing the role of combinatorial signaling, collecCve cell migraCon (CCM), and systemaCc data 
generaCon. By focusing on MCF10A mammary epithelial cells as a model system, we have provided 
novel insights into how disCnct ligands and their combinaCons drive phenotypic and molecular changes. 
The following secCons summarize the major contribuCons of this work and place them within the 
broader context of systems biology and current research trends. 

The LINCS Microenvironment Perturba8on Dataset 

Large-scale genomics iniCaCves, such as The Cancer Genome Atlas (TCGA), have revoluConized our 
understanding of cancer biology by providing comprehensive datasets that connect geneCc alteraCons to 
clinical outcomes [158]. These resources have profoundly impacted both therapeuCc strategies and the 
broader research community, enabling data-driven approaches to precision medicine. Inspired by the 
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success of such iniCaCves, the LINCS Microenvironment (ME) perturbaCon dataset represents a 
conCnuaCon of an effort to catalog cellular responses to extracellular signals. This dataset provides a 
systemaCc resource for exploring how diverse ligands drive transcripConal, proteomic, epigenomic, and 
phenotypic changes. 

This resource serves as an invaluable tool for researchers aiming to understand how specific ligands 
influence cellular behavior on a molecular level. By systemaCcally cataloging cellular responses across a 
wide range of signals, the dataset provides a foundaCon for exploring the complex network of 
interacCons that regulate cell behavior. While the LINCS dataset has the potenCal to guide therapeuCc 
development by pinpoinCng key pathways involved in cellular responses, its broader contribuCon lies in 
providing a model for large-scale, comprehensive efforts to catalog cellular responses in different 
contexts. Alongside this effort, other ongoing iniCaCves, such as DEPMAP, are also working toward 
similar goals, focusing on mapping the geneCc and pharmacological dependencies of a variety of cancer 
models [368]. As more ligands, cell types, and physiological condiCons are included in both the LINCS 
and other collaboraCve datasets, these efforts will strengthen our ability to understand how cells 
interpret and integrate microenvironmental signals. 

Insights into Collec8ve Cell Migra8on 

The molecular foundaCons of CCM have been extensively studied, with a growing body of literature 
elucidaCng key signaling pathways that govern this process. Studies have idenCfied various growth 
factors, cytokines, and extracellular matrix components that influence CCM, including TGFB, EGF, HGF, 
and CXCL12 [416], [417], [418], [419]. These molecules regulate several aspects of CCM, such as acCn 
cytoskeleton rearrangement, intercellular juncCon remodeling, and polarity establishment. The Hippo, 
Wnt, and Notch pathways, among others, have been implicated in controlling the balance between 
collecCve and individual cell movement [420]. Recent work has also highlighted the role of immune 
signaling in guiding CCM, emphasizing how the inflammatory microenvironment influences both normal 
and pathological migraCon [421]. Despite these advances, many details regarding the regulaCon of CCM, 
especially in cancerous contexts, remain to be fully understood. 

In this dissertaCon, we demonstrate that OncostaCn M (OSM) is a potent inducer of CCM in mammary 
epithelial cells, primarily through the acCvaCon of HIF1A. OSM-induced HIF1A signaling drives a 
transcripConal program that includes hypoxia-related genes and immune response pathways, such as 
complement acCvaCon. These findings align with previous research linking hypoxia-driven processes to 
invasive behaviors in cancer cells, while also introducing a novel connecCon between OSM signaling and 
immune responses in the context of migraCon. 

The role of OSM in cancer progression is of parCcular interest. Growing evidence indicates that OSM, 
along with other cytokines such as IL-6 and TNF-alpha, plays a criCcal role in metastasis [422]. OSM has 
been associated with poor prognosis in various cancers, including breast and ovarian cancers, where its 
expression correlates with increased metastaCc spread and fibroblast acCvaCon [297], [298]. OSM’s 
ability to promote collecCve migraCon suggests that its influence on metastasis may involve complex 
interacCons between tumor cells and the tumor microenvironment, making it a promising target for 
further invesCgaCon. 

Advancing the Understanding of Combinatorial Signaling 
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Cells are embedded in a dynamic microenvironment and constantly receive mulCple signaling cues 
simultaneously. While canonical pathways acCvated by individual ligands have been widely studied, 
much less is known about how different signals interact and the emergent behaviors they induce. This 
dissertaCon explores the significance of combinatorial signaling, parCcularly through the interacCons 
between EGF, OSM, and TGFB. These combinaCons resulted in disCnct molecular and phenotypic 
outcomes that were not predictable based on the effects of each individual ligand alone. 

The study of combinatorial signaling is increasingly viewed as a criCcal approach in both basic cellular 
biology and therapeuCc development. In clinical serngs, combinaCon therapies, such as those used in 
chemotherapy, have been shown to enhance treatment efficacy and reduce the risk of resistance [423]. 
The success of these therapeuCc strategies stems from the understanding that mulCple molecular 
pathways must be targeted to effecCvely treat diseases like cancer. Similarly, in cellular signaling, the 
interplay between different ligands can significantly amplify or modulate specific cellular responses, 
potenCally revealing novel pathways that are criCcal for developmental processes, immune responses, 
and disease progression [424]. The importance of combinaCons lies in the realizaCon that cells do not 
respond to signals in isolaCon. Rather, they funcCon in a milieu of concurrent signals, each influencing 
the others in a network of complex interacCons. These combinatorial inputs shape cellular behavior and 
are integral to maintaining cellular homeostasis and adapCng to environmental changes. By studying 
these interacCons, we uncover new dimensions of signaling biology that extend beyond the well-
characterized canonical pathways, shedding light on previously unexplored mechanisms of cellular 
communicaCon. 

Understanding ligand combinaCons and their integraCon is essenCal not only for providing insights into 
basic cellular processes but also for developing more effecCve and nuanced therapeuCc strategies. Cells 
in vivo are constantly exposed to mulCple signals from their microenvironment, and the responses they 
generate depend on how these signals are integrated. The interplay between ligands can alter the 
balance between cell survival, differenCaCon, and migraCon, with far-reaching implicaCons for disease 
states such as cancer, fibrosis, and immune disorders. By unraveling the complexiCes of these 
interacCons, we can gain a deeper understanding of how cells process signals in a collecCve manner and 
how this influences physiological outcomes. 

Toward a Systems Biology Framework for Cellular Communica8on 

A recurring theme throughout this dissertaCon is the importance of systems biology approaches in 
addressing complex biological quesCons. By integraCng high-throughput experimental data with 
computaConal analyses, systems biology offers a powerful framework for understanding how biological 
Cssues behave.  

Looking toward the future, systems biology aims to provide a holisCc understanding of cellular behavior 
by in part integraCng diverse data types. These integrated datasets offer unprecedented insights into 
how cells respond to environmental cues, revealing the complex interacCons between individual 
signaling pathways and broader cellular networks. As we conCnue to develop computaConal tools and 
algorithms to link data across modaliCes, we move closer to creaCng predicCve models that can guide 
experimental research and therapeuCc intervenCons. 

In our own work, we have employed these systems biology approaches to study cellular responses to 
various ligands and to explore the emergent behaviors that arise from combinatorial signaling. By 
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expanding this approach, we aim to provide a unified understanding of how cells, Cssues, and organisms 
respond to their environments. In the future, systems biology will be criCcal for deciphering how 
complex signaling networks govern Cssue development, homeostasis, as well as how they malfuncCon in 
disease states. Expanding experimental datasets, refining computaConal models, and integraCng data 
across mulCple scales—from molecular interacCons to Cssue dynamics—will be essenCal to realize this 
vision, ulCmately providing new opportuniCes for the development of therapeuCc strategies targeCng 
complex signaling networks in disease. 

5.3 Future direc6ons 
The work in Chapter 2 developed the LINCS Microenvironment (ME) perturbaCon dataset, cataloging the 
molecular and phenotypic responses of MCF10A cells to diverse ligands. This resource demonstrated the 
potenCal of systemaCc profiling to uncover relaConships between microenvironmental signals and 
cellular phenotypes. Future efforts should expand this approach to deeply profile addiConal ligands and 
cellular contexts, including different cell types, such as stromal or immune cells, and physiological 
environments. Extending these datasets will enhance our ability to model Cssue-level processes and 
predict outcomes of microenvironmental perturbaCons. AddiConally, frameworks for analyzing and 
integraCng these large datasets are needed to synthesize informaCon and build comprehensive models 
of cellular communicaCon and Cssue dynamics. 

Chapter 3 focused on the role of OSM in inducing collecCve cell migraCon (CCM) in MCF10A cells. This 
process was mediated by HIF1A, which regulated a transcripConal program consisCng of hypoxia-related 
pathways and immune signaling. Notably, complement acCvaCon was linked to OSM-induced CCM, 
suggesCng a novel interplay between immune pathways and epithelial cell migraCon. Future studies 
could explore whether OSM-induced CCM is conserved across other model systems, such as MMTV-
PyMT organoids or xenogran models [219], [414]. Understanding the role of OSM in cancer metastasis is 
parCcularly important, given its associaCon with poor clinical outcomes [297], [298]. OSM’s effects on 
fibroblast acCvaCon, ECM degradaCon, and tumor progression warrant deeper invesCgaCon. The 
involvement of HIF1A in this process raises further quesCons about whether its acCvaCon is driven by 
general hypoxia-related mechanisms or specific cytokine-induced transcripConal changes. AddiConally, 
the connecCon between complement signaling and CCM should be dissected, focusing on whether this 
pathway involves integrin regulaCon, signaling cascades, or other mechanisms. Finally, studying the 
contribuCons of cell juncCon proteins, such as P-cadherin, will provide insights into how cell adhesion 
supports CCM. 

The work presented in Chapter 4 explored the combinatorial effects of the cytokines OSM and 
Transforming Growth Factor Beta 1 (TGFB), and the growth factor Epidermal Growth Factor (EGF) on 
MCF10A mammary epithelial cells. Analyses revealed a signaling axis of synergisCc upregulaCon of genes 
involved in migraCon and chemotacCc signaling, mediated by CREB acCvaCon and CXCR2 signaling. 
Future research could extend these findings by invesCgaCng combinatorial signaling effects in other 
cellular contexts and model systems. For example, addiConal ligand combinaCons or different cell types, 
such as immune or mesenchymal cells, may reveal broader principles of signal integraCon. Assays could 
be performed to probe signaling pathways upstream of CREB, like p38 kinase, to determine how the 
combinaCon of EGF and OSM promotes synergisCc acCvaCon [425]. Furthermore, general frameworks 
for understanding phenotypic synergy, commonly applied in drug studies, are not easily transferable to 
complex behaviors like migraCon or molecular synergy. Expanding experimental datasets to include more 
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ligands and diverse cellular contexts will provide a systemaCc understanding and quanCficaCon of 
synergy, ulCmately leading to a beGer understanding of combinatorial effects on cellular behavior. The 
development of high-throughput approaches to study combinatorial effects systemaCcally will enhance 
our understanding of how diverse signals influence cellular behavior. Applying computaConal 
frameworks to integrate transcripConal, proteomic, and phenotypic data will help elucidate the 
mechanisms underlying emergent behaviors induced by complex signaling interacCons.  

By advancing these lines of invesCgaCon, we can deepen our understanding of how microenvironmental 
signals orchestrate cellular behavior and idenCfy new therapeuCc targets for pathological processes, 
including cancer progression and metastasis. 
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