
 

 

 

Enhancing Generalization of Machine 
Learning Models for Oncology 

Informatics 
 
 
 

By 
 

William Maxwell Schreyer 
 
 
 
 

A DISSERTATION 
Presented to 

 
 
 

The Department of Biomedical Engineering 
School of Medicine 

Oregon Health & Science University 
 

 
 

In partial fulfillment of 
the requirements for the degree of 

Doctor of Philosophy 
September 2025 

  



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

© 2025 by W. Max Schreyer 
  



 iii 

  



 iv 

 

1 Introduction .................................................................................. 4 

1.1 Machine Learning and the Problem of Generalization ....................5 
1.1.1 Machine Learning History and Overview ....................................................... 5 
1.1.2 Defining Generalization ................................................................................. 12 
1.1.3 Strategies for Improving Generalization ...................................................... 14 

1.2 Oncology Informatics ......................................................................... 18 
1.2.1 Overview of Machine Learning Integration ................................................ 18 
1.2.2 Current Challenges in Generalization ........................................................... 20 

1.3 Contributions of this Dissertation .................................................... 24 

2 Predicting Radiation Treatment Courses from VA 
Administrative Data .......................................................................... 26 

2.1 Abstract ................................................................................................. 26 

2.2 Introduction ......................................................................................... 26 

2.3 Results ................................................................................................... 28 

2.3.1 Patient Cohort .................................................................................................. 28 
2.3.2 Trained Models Predict Radiation Course Dates ....................................... 31 
2.3.3 Longitudinal Predictions Enable Radiation Course Assembly ................. 34 
2.3.4 Identification of Radiotherapy Courses Across VA Databases ............... 37 

2.4 Discussion............................................................................................. 39 

2.5 Methods ................................................................................................ 41 
2.5.1 Cohort Construction ....................................................................................... 41 
2.5.2 Date Selection .................................................................................................. 42 
2.5.3 Feature Encoding ............................................................................................ 43 
2.5.4 Machine Learning Model Training ............................................................... 44 
2.5.5 Radiation Course Assembly Algorithm ........................................................ 45 
2.5.6 Evaluation of Date Predictions and Course Assembly .............................. 46 
2.5.7 Predicting Radiation Courses for Cohorts of Unseen Patients ................ 47 
2.5.8 Dimensionality Reduction and Visualization .............................................. 48 

Contents 



 v 

3 Ensemble Uncertainty Estimation with SAGE .......................... 49 

3.1 Abstract ................................................................................................. 49 

3.2 Introduction ......................................................................................... 50 

3.3 Results ................................................................................................... 51 
3.3.1 SAGE Embedding Space for Original and Corrupted Images ................ 51 
3.3.2 SAGE Scoring Separates Transformed Images .......................................... 54 
3.3.3 Removal of Low-Score Data Improves Separate Classifier ...................... 55 
3.3.4 Applying SAGE to RGB Images .................................................................. 57 
3.3.5 SAGE Improves Performance on Regression Task .................................. 58 

3.4 Discussion............................................................................................. 60 

3.5 Methods ................................................................................................ 62 

3.5.1 Datasets ............................................................................................................. 62 
3.5.2 Data Transformations ..................................................................................... 63 
3.5.3 SAGE Model Architecture ............................................................................. 64 
3.5.4 Model Training ................................................................................................. 65 
3.5.5 Model Calibration ............................................................................................ 66 
3.5.6 k-Nearest Neighbors Distance ...................................................................... 66 
3.5.7 SAGE Scoring .................................................................................................. 67 
3.5.8 Evaluation with Pre-trained ResNet Models ............................................... 67 
3.5.9 Random Forest Regression ............................................................................ 68 
3.5.10 Score Thresholding and Performance Visualization ............................. 68 

4 Extending SAGE to Skin Cancer Malignancy Detection .......... 69 

4.1 Abstract ................................................................................................. 69 

4.2 Introduction ......................................................................................... 70 

4.3 Results ................................................................................................... 72 

4.4 Discussion............................................................................................. 85 

4.5 Methods ................................................................................................ 87 

4.5.1 Datasets ............................................................................................................. 87 
4.5.2 SAGE Model Training .................................................................................... 90 
4.5.3 t-SNE Visualization and Plotting .................................................................. 90 
4.5.4 SAGE Scoring .................................................................................................. 91 
4.5.5 Manual Image Annotation and Parallel Coordinates Plot ......................... 91 



 vi 

4.5.6 Image Quality Control and FST Level Comparison .................................. 93 
4.5.7 Malignancy Prediction ..................................................................................... 93 
4.5.8 Overall Malignancy Prediction Performance .............................................. 93 
4.5.9 Prediction Performance on Test Set Malignancies ..................................... 94 

5 Conclusion .................................................................................. 95 

5.1 Future Directions ................................................................................ 95 

5.1.1 Utilizing Predicted Radiation Courses for VA Research ........................... 95 
5.1.2 Standardizing SAGE Model Development ................................................. 97 

5.2 Ethics of ML Generalization in Oncology Informatics .............. 104 

5.3 Summary ............................................................................................. 107 

 

 



 vii 

  



 viii 

List of Figures 

Figure 1.1 – Schematic of perceptron architecture .............................................................. 6 

Figure 1.2 – Feature engineering in machine learning ......................................................... 8 

Figure 1.3 – Autoencoder model overview ........................................................................ 10 

Figure 1.4 – Methods for improving generalization during ML development ............. 15 

Figure 1.5 – Schematic of FDA monitoring plan for radiology AI ................................ 23 

Figure 2.1 – Visual guide to radiation course datasets ...................................................... 29 

Figure 2.2 – t-SNE plots of selected radiotherapy date features .................................... 31 

Figure 2.3 – Performance of radiation course date prediction models .......................... 33 

Figure 2.4 – Prediction probabilities for contiguous date blocks ................................... 34 

Figure 2.5 – Performance of heuristic course assembly algorithm ................................. 35 

Figure 2.6 – Comparison of t-SNE plots for generalization to historical VA data ..... 36 

Figure 2.7 – Predicted radiation courses across VA history ............................................ 38 

Figure 3.1 – SAGE model overview ................................................................................... 52 

Figure 3.2 – Latent heatmaps of SAGE model output measures ................................... 53 

Figure 3.3 – SAGE scoring process .................................................................................... 54 

Figure 3.4 – Filtering images by SAGE score improves separate classifier .................. 55 

Figure 3.5 – Accuracy versus proportion of samples fitlered .......................................... 56 

Figure 3.6 – Training SAGE on CIFAR-10 for classification task ................................. 58 

Figure 3.7 – SAGE for regression with abalone dataset .................................................. 59 

Figure 4.1 – Metadata of skin lesion imaging datasets ...................................................... 73 

Figure 4.2 – Overview of SAGE model training and scoring process .......................... 74 

Figure 4.3 – SAGE score distributions by dataset, diagnosis and metadata ................. 75 

Figure 4.4 – Quantile plots reveal imaging artifacts .......................................................... 77 

Figure 4.5 – Manually-annotated image feature associations with SAGE score .......... 79 

Figure 4.6 – SAGE score by skin type after quality control ............................................ 80 



 ix 

Figure 4.7 – Score filtering improves performance of malignancy prediction ............. 82 

Figure 4.8 – Malignancy prediction by image modality and FST level .......................... 83 

Figure 4.9 – Missing malignant classes are enriched for low SAGE scores .................. 84 

Figure 5.1 – Illustration of Swin Transformer ................................................................... 98 

Figure 5.2 – Knowledge distillation ................................................................................... 102 

 

  



 x 

List of Tables and Algorithms 
Table 1.1 – Machine learning in oncology informatics research studies. ...................... 19 

Table 2.1 – Cohort statistics for radiotherapy patients. ................................................... 30 

Algorithm 2.1 – Pseudocode of course assembly algorithm. .......................................... 46 

Table 4.1 – Features used for manual annotation of skin lesion images. ...................... 92 

 

 

  



 xi 

List of Abbreviations 

 

Abbreviation Definition

AI Artificial intelligence
AP Average Precision
AUC Area Under the Curve
CDRH Center for Devices and Radiologic Health
CDW Corporate Data Warehouse
CE Cross Entropy
CLI Command Line Interface
CMS Centers for Medicare and Medicaid Services
CNN Convolutional Neural Network
CPT Current Procedural Terminology
DL Deep Learning
DDI Diverse Dermatology Images
ECE Expected Calibration Error
EHR Electronic Health Record
FDR False Discovery Rate
FP False Positive
FN False Negative
FST Fitzpatrick Skin Tone
GAN Generative Adversarial Network
GPU Graphics Processing Unit
HAM10000 Humans Against Machine 10000
HCPCS Healthcare Common Procedure Coding System
HIBA Hospital Italiano de Buenos Aires
ICD International Classification of Diseases
ID In-distribution
kNN k-Nearest Neighbors
KS Kolmogorov-Smirnov
MC Monte Carlo
ML Machine Learning
MSP Maximum Softmax Probability
MVP Million Veterans Program
MSE Mean Squared Error
NLP Natural Language Processing
OOD Out-of-distribution
PCA Principal Component Analysis
PR Precision-Recall
RAM Random Access Memory
RGS Radiation Gold Standard
ROC Receiver Operating Characteristic
ROPA Radiation Oncology Practice Accreditation
RMSE Root Mean Squared Error
SAE Supervised Autoencoder
SAGE Supervised Autoencoder for Generalization Estimates
SGD Stochastic Gradient Descent
TP True Positive
UFES Universidade Federal do Esṕırito Santo
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Abstract 
Generalization – the ability of machine learning (ML) models to perform consistently 

when evaluated on new or varied data sources – is a key challenge in the development 

of effective, safe and ethical artificial intelligence (AI) systems. Despite extensive 

methodological research to improve generalization performance and reduce 

generalization error, many applications of AI show degraded capabilities when 

predicting on unseen data. These generalization gaps exist even in areas of intensive 

ML adoption and risk-sensitive settings such as oncology informatics, a field that 

seeks to improve the processes and delivery of cancer care. This work attempts to 

mitigate problems in generalization in three preclinical applications of oncology 

informatics. First, we demonstrate how universal billing and diagnostic coding 

systems enable learning across siloed data sources including Center for Medicare and 

Medicaid Services (CMS) and Veterans Health Administration (VHA) databases. We 

use this approach to predict historical radiation course dates from administrative data 

and assemble radiotherapy treatment history for over one million US veterans. Next, 

we develop a method for robust and interpretable dataset comparison using 

Supervised Autoencoders for Generalization Estimates (SAGE). We demonstrate 

how SAGE improves the performance of downstream classification and regression 

models for benchmark imaging and ecological datasets by removing out-of-

distribution examples from evaluation, even from within the training data itself. 

Finally, we use our ensemble uncertainty estimation method as a comparison tool for 

dermoscopic imaging datasets for the purpose of identifying skin cancer malignancies. 

We automatically find and remove images with artifacts like measuring device 

occlusions and non-skin background and show how we can improve generalization of 

a separate malignancy predictor to a mixed dermoscopy dataset. Future research will 
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work to standardize implementations of SAGE within medical AI pipelines as a real-

time measure of expected generalization error. 

 

  



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 4 

Recent advances in computing hardware and algorithmic design have engendered the 

now flourishing field of oncology informatics which endeavors to build a software 

infrastructure for cancer care. The confluence of human expertise and powerful 

artificial intelligence (AI) systems is now recognized as a pathway to augmenting basic 

research, clinically translating findings and, ultimately, improving patient outcomes in 

cancer. This chapter addresses foundational topics in machine learning and 

applications to oncology that provide context to the remainder of the document. 

Section 1.1. provides a brief overview of the history and design of common machine 

learning models, including those used in subsequent chapters, and introduces the 

problem of machine learning generalization along with methods to remedy gaps in 

performance that are found in the computer science literature. Section 1.2 gives a 

summary of the field of oncology informatics including an overview of how machine 

learning methods have been integrated to improve the efficiency and efficacy of 

various aspects of cancer care pipelines. This section also describes current challenges 

of machine learning generalization in oncology informatics and persistent problems in 

data drift detection. Section 1.4 summarizes the contributions of this dissertation 

regarding the novel research presented and perspectives advanced by our work. 

1 Introduction 
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1.1 Machine Learning and the Problem of 

Generalization 

1.1.1 Machine Learning History and Overview 

Machine learning (ML) is a methodology developed in the mid-20th century that uses 

algorithms to capture statistical patterns in data without explicit programming. The 

learned function represented by a given ML model is then able to automatically 

perform a task such as sorting examples based on preexisting groups. One of the 

earliest implementations of ML in practice was undertaken by the psychologist F. 

Rosenblatt who sought to model the perceptive functions of human neurons, coining 

the term “perceptron”.[1] The perceptron is a simple classification algorithm that 

takes a real-valued vector as input and maps it to an output by taking the dot product 

of the input values and an equal-sized vector of tunable parameters, termed weights. 

(Figure 1.1) In Rosenblatt[1] a final activation function is applied to the product of the 

inputs and weights to produce a binary output. This forms the simplest building block 

of a feed-forward network, where an input is modulated by a series of nodes to 

produce a useful output. 
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Figure 1.1 – Schematic of perceptron architecture. Image reproduced from [2]. 

[2] 

In the case of the perceptron, when the binary output does not match the true label of 

the input vector a weight update procedure is implemented to change the decision 

boundary of the model and “learn” a new linear function. For each input, 𝑥!, weights 

are updated as follows: 

𝑤! ← 𝑤! + η(𝑡 − 𝑦)𝑥!	 for	𝑖 = 0, … , 𝑛 

Where 𝜂 is the learning parameter that scales the rate at which the weight values are 

updated. Note, this process only changes the values of the perceptron weights if the 

output value 𝑦 does not match the target (ground-truth) value 𝑡 in the term (𝑡 − 𝑦). 

Successive rounds of weight updates are described colloquially as “training” a model 

to approximate a function for a series of inputs that better aligns the predicted 

outputs with the targets. 

The discriminant capabilities of the perceptron were later expanded through the 

introduction of multilayer perceptrons, with additional “hidden” layers imbuing these 

neural networks with the ability to approximate any function instead of only linear 

ones.[3] The weight update process was also necessarily modified to allow for 
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calculation of each node’s contribution to the output values using a process called 

backpropagation.[4] Unlike perceptrons, neural networks have a defined loss function 

𝐿 with weight updates occurring during each round of model training. The gradient of 

𝐿 is efficiently calculated and utilized to update weight 𝑤 connecting node 𝑗 in the 

previous layer (𝑙 − 1) to node 𝑖 in the current layer 𝑙: 

𝑤!"
($) ← 𝑤!"

($) − η
∂𝐿

∂𝑤!"
($) 

for	 𝑙 = 1,… ,𝑚, 	 𝑖 = 1, … , 𝑛($), 	 𝑗 = 1, … , 𝑛($&') 

In this way, the gradient of the objective function is distributed backwards to all 

weights connecting nodes across layers and enables learning across larger, fully 

connected networks. 

In tandem with the spread of neural network architectures in the early 21st century, 

two other trends simultaneously developed to lay the groundwork for rapid 

advancements in ML development. First, increasing rates of data generation paired 

with lower costs of data storage vastly expanded the available sources of information 

for use in model training and testing. Fradkov [5] posits the adoption of statistical 

learning methods during this period was in part out of necessity, as there existed a 

fundamental inability to utilize big data sources without the automation capabilities 

afforded by ML. At the same time, the joint effects of increasingly available random-

access memory (RAM) and the emergence of technologies for parallel computation 

like graphics processing units (GPU) both increased efficiency of the serial matrix 

operations required to train deeper neural network models and afforded larger 

quantities of data to remain in active operation. The confluence of these advances led 

to the development of the first truly deep neural networks with many hidden layers 

and up to millions of parameters capable of automatically learning complex and 
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generalizable representations of high-dimensional data. For the first time, general-

purpose models enabled by deep learning (DL) could be trained without exhaustive 

feature engineering or domain expertise.[6] (Figure 1.2) Further improvements to DL 

models for tasks like image recognition were achieved with convolution, where image 

features are abstracted from groups of pixel values in context, building the first 

convolutional neural networks (CNN).[7,8] 

 

 

Figure 1.2 – Feature engineering required in traditional machine learning is bypassed by DL. Image 
reproduced from [9]. DDN – Deep Neural Network 

[9] 

Like the evolution of the perceptron, a similar process of experimentation and 

improvement was undertaken for decision tree classifiers and regressors. These simple 

models tended to overfit training examples, so constraints were applied to the process 

of creating decision trees such as restrictions on depth, the predictors used to 

construct leaves and the subsamples of data used during training. By bundling groups 

of weak trees together to form ensembles, random forests were able to deliver 
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stronger performance by using the average of their uncorrelated predictions.[10] 

Whereas the bootstrap aggregating, or “bagging”, process used in random forest 

creates an independent ensemble, “boosting” grows a tree ensemble sequentially by 

incorporating the residual error in a recursive fashion.[11] During this process, the 

𝑚() tree is added to the previous ensemble 𝑓*&' for input 𝑥 with a shrinkage term 𝜂 

that scales ℎ*(𝑥), the output of the new tree: 

𝑓*(𝑥) = 𝑓*&'(𝑥) + η ⋅ ℎ*(𝑥) 

In applications like AdaBoost (portmanteau of “Adaptive Boosting”), the boosted tree 

ensembles are quickly honed by weighting new inputs based on previous 

misclassifications. For sample 𝑖, the weighted input of the next tree (𝑚 + 1) is given 

as the product of the weight of the current ensemble and the performance of the 𝑚() 

tree: 

𝑤!
(*+') = 𝑤!

(*) ⋅ 𝑒,!⋅.()!(/")01") 

The variable 𝛼* is determined by the inverse of classification error where better 

performance yields a higher value, giving those trees more influence on how the final 

ensemble outputs are calculated. Ensemble methods with variable weighting such as 

AdaBoost are intrinsically capable of handling data issues such as class imbalance and 

are therefore considered robust options for learning from noisy or incomplete 

datasets. 
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Figure 1.3 – Overview of the basic components of an autoencoder model using an image example 
from the MNIST dataset. Figure adapted from [12]. 

[12] 

The examples of ML discussed thus far are from a discipline known as supervised 

learning, where sample labels are known in advance and required for training and 

evaluation. In situations where labeling is difficult or impractical, unsupervised 

learning is employed to model the intrinsic variation within datasets, often learning 

useful separations or representations of the data. A common example of unsupervised 

learning that incorporates neural network components is the autoencoder.[13,14] 

(Figure 1.3) Autoencoders contain an encoding network 𝑔2(∙) and a decoding 

network 𝑓3(∙) joined by 𝑧, a compressed embedding vector. By simultaneously 

training the encoder and decoder parameters (𝜙, 𝜃) to take an input 𝑥 and attempt to 

reconstruct it from 𝑧, the model learns a smaller representation of the data that can be 

used for additional tasks like clustering. In practice, the encoder and decoder 

functions are separate neural networks which learn weights that minimize the 

differences between the reconstructed input 𝑥′ = 𝑓3(𝑔2(𝑥)) and the true input 𝑥 so 
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𝑥′ ≈ 𝑥. A common loss function used to train autoencoder models is the mean 

squared error (MSE): 

𝐿45 	= 	
1
𝑛
H(𝑥! 	− 	𝑥′!)6
7

!8'

 

Like the process of neural network training, fitting an autoencoder involves feeding 

inputs through the network and weight updates via backpropagation. 

Other variations of the autoencoder were introduced to accomplish tasks related to 

input reconstruction, such as remedying data corruption with a denoising 

autoencoder.[15] Iterations based on variational Bayesian methods like the variational 

autoencoder (VAE) use a probabilistic latent space instead of a fixed latent vector (𝑧 

above).[16] By fitting the parameters of the latent space distributions to the training 

data, one can sample from this space to generate synthetic outputs that are similar to 

the training dataset. In this sense, VAEs can be considered an early example of deep 

generative models that now see widespread use in applications such as text-to-image 

creation, image enhancement, dataset augmentation, and more. 

Finally, the flexible nature of the autoencoder architecture allows for applications of 

semi-supervised learning which combines the label-free training of a traditional 

autoencoder with a supervised task such as classification. These models, termed 

supervised autoencoders (SAE), typically contain a classifier function ℎ9(∙) taking the 

compressed embedding vector as input and can be trained simultaneously with the 

decoder function.[17] A simple weighted loss equation used to optimize the encoder, 

decoder and classifier components during training can thus be constructed as follows: 

𝐿:45 = α ⋅ MSE M𝑥, 𝑓3 N𝑔2(𝑥)OPQRRRRRRSRRRRRRT
Reconstruction	Loss

+ β ⋅ CE M𝑦, ℎ9 N𝑔2(𝑥)OPQRRRRRRSRRRRRRT
Classification	Loss
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Here, the cross entropy (CE) loss uses the distribution of the classifier prediction for 

the training example 𝑥 compared to the example’s one-hot encoded label 𝑦. The loss 

terms are summed after applying weighting variables (𝛼, 𝛽) which determine the 

strength of the contribution of each SAE component during training. In Le et al.[17], 

inclusion of a reconstruction error term with a small weight (𝛼= 0.01) during SAE 

training was shown to yield higher test accuracy than a strict neural network of a 

similar size trained on the same data, thus demonstrating how adding an unsupervised 

regularization term such as MSE loss can enhance performance on a supervised task 

like classification. 

1.1.2 Defining Generalization 

After a ML model is trained it can be externally validated on a new dataset, sampled 

from some unknown distribution, to determine how the model performs on unseen 

data. The problem of machine learning model generalization is thus defined as the 

ability of a model, trained on data sampled from a source domain 𝒟:, to perform 

similarly on data sampled from a target domain 𝒟K. Ben-David et al.[18] establish the 

conceptual bounds of ML model generalization where they define a hypothesis 

function ℎ(∙) tasked with learning the true labeling function 𝑓(∙) over the source 

domain with some error (or “risk”) 𝜖:(ℎ). The generalization error for the target 

domain is thus: 

𝜖K(ℎ) ≤ 𝜖:(ℎ) + 𝑑(𝒟:, 𝒟K) + 𝜆 

where 𝑑(𝒟:, 𝒟K) is the divergence between the source and target distributions, and 𝜆 

is the minimum error for the true labeling functions. The source domain error is 

effectively minimized by a training algorithm while the difference between the source 

and target labeling functions is expected to be small so 𝐸𝒟#[|𝑓: − 𝑓K|] ≈

𝐸𝒟$[|𝑓: − 𝑓K|]. The primary impediment to successful generalization of machine 
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learning models is therefore determined by the divergence between source and target 

distributions. 

Differences in the target distribution that cause divergence are commonly referred to 

as distribution shifts and can arise from several phenomena including shifts in the 

covariates, labels or concepts underlying a given model.[19] Covariate shift is the most 

commonly studied form of data drift and occurs when the marginal distribution of 

input features, 𝑃(𝑥) differs between the training and test data, which does not 

necessarily alter the feasibility of a task like classification but can cause performance to 

suffer because the learned relationship between the labels and features 𝑃(𝑦|𝑥) has 

changed. Sampling biases, data corruption and changes to the methods of data 

collection such as the collection device can all affect input feature distributions and 

cause covariate shift. Conversely, a changing relationship between ground-truth 

classes 𝑃(𝑦) with mostly invariant input features 𝑃(𝑥|𝑦) is termed label shift and can 

similarly be caused by sampling biases or human labeling errors. For instance, a 

diagnostic algorithm may lack sufficient samples of a disease class in its training 

dataset because of some difficulty in sourcing the data. If the disease is more prevalent 

in the test patient population, the model experiences a label shift scenario causing a 

rift between predicted and actual ground truth labels. The third form of drift, concept 

shift, occurs when the relationships between the feature distributions and labels 

change and may cause the model to decay or become invalid over time. Concept shift 

is observed when assumptions about the data are violated such that the relationship 

between the label given the underlying input feature distributions 𝑃(𝑦|𝑥) is no longer 

true. For example, a hypothetical recession that affects website activity on e-

commerce sites can invalidate a purchase prediction model based on pre-recession 

online behaviors. Other changes to the data related to concept shift can affect model 

generalization such as the introduction of new ground-truth data classes during 
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evaluation. This can occur when evaluating on populations beyond the scope of the 

model’s expertise, such as evaluation of a taxonomic classification model on a new 

species that remained undiscovered at the time of model training and can lead to 

confident yet incorrect predictions. 

The presence of the above phenomena and their effects on divergence lead to the 

formation of generalization gaps. Methods for the identification and amelioration of 

drift scenarios are discussed in the next section. 

1.1.3 Strategies for Improving Generalization 

Techniques for improving machine learning generalization have been developed in an 

attempt to reduce performance gaps when models are evaluated on new datasets and 

are enacted at different stages of model development, from data-centric interventions 

like augmentation and regularization during training to model-centric approaches like 

the recognition of data drift and post-deployment monitoring. (Figure 1.4)  

The first data-centric strategy for improvement of generalization is geared towards 

making the training data itself more robust through augmentation, or the modulation 

of the input features via the addition of noise and other perturbations. By applying a 

composite of different image augmentations to the training dataset, Hendrycks et al. 

[20] show that DL methods can reduce their generalization error when tested on 

corrupted benchmarking datasets. Pre-training on adversarial examples, where 

imperceptible amounts of random noise are added to image vectors, also results in the 

reduced generalization error and improved model robustness compared with normal 

or adversarial training approaches alone.[21] 

 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 15 

 

Figure 1.4 – Interventions to improve generalization of machine learning models during various 
stages of development. Figure adapted from [22]. 

[22] 

Next, training time interventions such as regularization reduce the likelihood of 

overfitting, where a model is highly tuned to spurious patterns in the training data at 

the cost of test performance. This can occur when a mismatch exists between model 

complexity and the target function of the training data, such as a deep neural network 

containing many more parameters than the number of training examples. A simple 

method to explicitly limit complexity of large neural networks and force them to learn 

simpler solutions is to penalize the growth of weight sizes during training. [23] Adding 

the L1 or L2 norm of the weight vector to the model’s error function, also called 

“weight decay”, is a simple and common regularization technique applicable to a 

variety of ML models, from linear regression (LASSO[24], Ridge [25]) to adaptive 

optimization algorithms for deep neural networks[26]. 

Another explicit regularization method is ensembling, where several (ideally 

uncorrelated) models are averaged together to yield a more robust output than any of 
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its members alone. A related idea is that of “dropout” in neural networks, where 

connections between nodes on the forward pass are randomly silenced during training 

to “thin” the network.[27] The trained model then approximates the ensemble of the 

thinned networks, which are prevented from co-adapting groups of neurons, and 

improves generalization performance. 

Other forms of regularization are implemented implicitly in the model training 

schema, such as tracking the loss of a separate validation sample and “early stopping” 

the process once the validation loss begins to increase.[28] Interestingly, even the 

optimization algorithms commonly used in DL training have been demonstrated to 

have implicit regularization effects such as Stochastic Gradient Descent (SGD)[29] 

which uses an approximation of the gradient of the loss function from a random 

subsample of the data to reduce the computation burden of training. The choice to 

randomly sample the training data and optimize the approximation of the gradient 

causes models trained with SGD to generalize well even without other explicit 

regularization techniques.[30] 

Turning to model-centric interventions, a key consideration for improving 

generalization performance is the identification and removal of test examples that are 

beyond the scope of the training data, or out-of-distribution (OOD), with respect to 

the input feature distributions. Intrinsic methods for OOD detection at the time of 

evaluation exist and attempt to quantify how “confident” a model is in its prediction. 

A popular approach for intrinsic uncertainty quantification (UQ) is to apply a softmax 

function to the raw logit output values of a DL classifier as a measure of 

confidence.[31] Maximum softmax probability (MSP) also stacks well with model 

calibration methods that reduce overconfidence in class estimates, such as 

temperature scaling, by making the MSP value match the percentage of the time that 

value is correct (e.g. MSP=0.8 means 80% of predictions are accurate).[32,33] More 
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recently, the use of the negative maximum unnormalized logit output, MaxLogit, has 

garnered more usage because of its simplicity and inherent ability to avoid 

overconfident predictions when classes are semantically related.[34] Hybrid 

perturbation and calibration methods have also been proposed such as ODIN [35] 

which increases the confidence disparities between in-distribution (ID) and OOD 

samples, improving identification of the latter.   

Other methods for UQ combine the advantages of well-developed mathematical 

frameworks of Bayesian inference with the strengths of deep networks, such as Monte 

Carlo (MC) dropout proposed by Gal and Ghahramani.[36] Interpretations of MC 

dropout as a form of model ensembling also inspired the creation of deep ensembles 

for UQ, where the prediction confidence is averaged across 𝑀 simultaneously-trained 

networks.[37] Additionally, some methods use DL as a form of dimensionality 

reduction enabling comparison of statistical distances of embedded test datapoints to 

groups of embeddings from the training data. Examples include calculation of 

Euclidean distance to the k-Nearest Neighbors (kNN)[38] in the latent embedding 

space or the calculation of Mahalanobis distance of a test datapoint embedding to 

multivariate Gaussian representations of the training data[39,40]. 

These UQ methods for drift detection allow for labeling individual test samples as 

OOD, either with or without augmentation, model calibration and the use of model 

ensembles. Simple methods are also implemented at the sample level or dataset-wide 

by using robust statistical measures for drift detection. Rabanser et al. [41] rigorously 

explore the use of two-sample testing with various forms of dimensionality reduction 

to detect distribution shift, finding that both multiple univariate and multivariate 

Kolmogorov-Smirnov (KS) tests worked well to discriminate groups of OOD images 

when they reached between 100 – 1000 examples. 
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Two-sample tests for OOD detection are frequently employed as a method for 

monitoring input data changes over time and evaluating ML models in production. If 

test samples are determined to have statistically significant drift which yields lower 

performance, the test data is flagged and the original model may be re-trained with 

newer data that is a better representation of the current deployment environment. 

1.2 Oncology Informatics 

1.2.1 Overview of Machine Learning Integration  

Oncology informatics is a branch of information technology research that applies 

computational tools to cancer research, prevention, diagnosis and treatment.[42] Over 

the last several decades this interdisciplinary field has grown in response to the 

meteoric increase in cancer datasets generated using new molecular and imaging 

technologies as well as the widespread adoption of electronic health records (EHR). 

The evolution of database infrastructure as well as recognition of the value of 

retaining key clinical and administrative data were the primary drivers behind the 

surge in big data in medical research in general, and in oncology in particular.[43] 

Furthermore, collaborative consortiums have built online databases that facilitate 

sharing of cancer datasets such as tumor DNA, RNA and epigenomic sequencing 

datasets[44], diverse imaging data including computed tomography, digital 

radiography, and magnetic resonance scans[45], and combinations of genomic and 

lifestyle data[46], greatly increasing the resources available to researchers across the 

globe. With expanded access to vast troves of cancer data, practitioners of oncology 

informatics quickly turned to ML algorithms; the insights once distilled in rules-based 

systems of explicitly coded logic[47] were now overwhelmed by the flood of new 

information which only automated statistical learning processes could integrate.  
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Sensibly, incorporation of machine learning models into aspects of clinical and pre-

clinical oncology has been undertaken as limited, task-specific AI “touchpoints” 

rather than general purpose decision-making tools, each linked to its own use case in 

the continuum of cancer care.[48] Table 1.1 provides a non-exhaustive list of 

examples from the literature where ML tools have been introduced to address a key 

problem in oncology. 

Table 1.1 – Examples of research studies involving machine learning methods in the oncology 
informatics literature. Studies are organized by the oncology task they address. 

Oncology Task Tissue Data Source Modality Model Type Output Ref. 

Risk Determination Breast BCAC Consortium Genotyping Array LASSO 
Regression 

Polygenic Risk 
Score [49] 

Risk Determination Prostate PRACTICAL Consortium Genotyping Array Cox 
Regression 

Polygenic Hazard 
Score [50] 

Risk Determination Multiple UK Biobank Whole-body MRI CNN Future Cancer, 
binary  [51] 

Screening Breast 
Digital Database for 
Screening 
Mammography 

Breast 
mammography CNN Tumor Presence, 

binary  [52] 

Screening Colon UC Irvine Colonoscopy 
video CNN Polyp Presence, 

binary  [53] 

Diagnosis Skin ISIC Archive, Dermofit, 
Stanford Univ. 

Dermoscopic 
imaging CNN Taxonomic 

Disease Group [54] 

Diagnosis Brain National Center for 
Tumour Diseases 

Long read DNA 
methylation 

Neural 
Network 

CNS Tumor 
Diagnosis [55] 

Tumor Subtyping Breast Various (n=5 academic 
centers) 

Gene expression 
microarray 

Nearest 
Shrunken 
Centroids 

Tumor Subtype 
Label [56] 

Tumor Subtyping Various 
(n=26) 

The Cancer Genome 
Atlas Multi-omics Various 

(n=737) 
Tumor Subtype 
Label [57] 

Treatment 
Response 
Prediction 

Breast Univ. Cambridge 

Clinical, 
Pathology, 
Genomic, 
Transcriptomic 

Model 
Ensemble 
(n=3) 

Complete 
Response, binary [58] 

Adverse Event 
Prediction 

Various 
(n=8) Stanford Univ. EHR-derived 

features 
Logistic 
Regression 

Acute Care Use, 
binary  [59] 

Adverse Event 
Prediction 

Lung, 
Skin, 
Kidney 

CancerLinQ EHR-derived 
features XGBoost Cardiac Adverse 

Event HR [60] 

Clinical Data 
Extraction Breast Peking Union Medical 

College Hospital 
Free text clinical 
notes BERT Named Entry 

Recognition [61] 

Clinical Data 
Extraction Breast Partners HealthCare Free text clinical 

notes 
Conditional 
Random Field Sentiment Analysis [62] 
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For example, the ability to identify which people are at an elevated risk of developing 

cancer due to genetic and lifestyle factors holds the potential to improve screening 

protocols and allow for faster enactment of preventative measures. As such, 

multivariate regression models are constructed using genotype data with the goal of 

enabling interventions that could prevent cancer from arising in high-risk 

individuals.[49,50] Further areas of oncology undergoing targeted improvements with 

ML assistance include cancer screening[52,53], diagnosis[54,55], molecular 

subtyping[56,57] therapy response prediction[58], and data extraction from clinical 

notes[61,62]. Despite the many thousands of academic oncology studies utilizing ML 

methods, relatively few technologies have received clearance by the Federal Drug 

Administration (FDA) in the United States, with 736 unique device authorizations as 

of December 31, 2024.[63] The majority of approvals (84.4%) have been for devices 

that utilize imaging data as their core input with nearly 90% of those having radiology 

review panels. Thus, while the early promise of AI-assisted oncology tools is widely 

confirmed by the research, the tools receiving regulatory approval are ones which 

utilize highly standardized input data sources with objective interpretations like 

radiology scans and few others. The challenge in translating ML models from 

oncology research into clinical settings therefore largely stems from lack of consistent 

and generalizable performance with heterogenous real-world datasets, an obstacle 

seldom encountered in controlled academic settings. 

1.2.2 Current Challenges in Generalization 

The assumption that datasets are comprised of independent and identically distributed 

samples is often violated when ML approaches utilize medical datasets to address 

problems in oncology like those surveyed above. In such potentially risk-sensitive 

settings, a clear delineation of how and when these models fail is needed. 
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An initial illustration of this point is the current widespread use of benchmark datasets 

for developing oncology ML applications like tools for image-based diagnosis and 

natural language processing.[64–67] As Doerrich et al.[68] describe, academic ML and 

DL research is still heavily focused on incremental performance improvements on 

few influential benchmarking datasets, forgoing considerations of computational 

complexity or translational relevance that may limit future clinical adoption. Although 

important for establishing standardized evaluations and advancing theoretical 

performance gains, the use of benchmarking datasets does little to address the main 

difficulties in producing robust and generalizable algorithms and may worsen existing 

biases.[69] 

A key reason why models trained on benchmarked data fail in practice is due to their 

brittleness when evaluating new samples that are poorly represented or completely 

absent from the training data. Important work has studied the effects of real-world 

distribution shifts on pretrained ML models, revealing that gains in accuracy on ID 

datasets are decoupled from robustness on OOD samples.[70] Such findings have 

been confirmed by studies like Schömig-Markiefka et al. [71] who discovered that a 

DL model trained on high-quality digital pathology images for detecting prostate 

cancer experienced a loss in performance when encountering commonly-occurring 

artifacts that were omitted from the training data, demonstrating the disconnect 

between training in controlled environments and evaluation in more heterogenous 

settings. Similarly, Petrie et al. [72] found that slightly degraded quality in curated 

dermoscopic skin lesion images through pixel-level perturbations like color shift or 

blur caused rapid drops in performance when assessing DL diagnostic tools.  

Data augmentation techniques can be used to synthetically supplement imaging data 

and preempt sensitivity to distribution shifts by including geometric transforms like 

flips and rotations, random crops, masking and noise injection.[73] Others have gone 
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further and introduced wholesale synthetic training examples through the use of 

generative unsupervised learning methods like VAEs and Generative Adversarial 

Networks (GAN), which are particularly promising for correcting dataset 

imbalance.[74] However, the possible augmentation space is vast with little 

standardization outside of imaging data. The introduction of complex generative 

methods sufficient to create high-quality synthetic data also significantly increases the 

computational cost of training. 

Even with the use of augmentation techniques, the most theoretically reliable 

approach to avoiding performance degradation from distribution shift is for a model 

to have the ability to accurately report its uncertainty: that is, to tell users what it 

knows confidently and to avoid trusting predictions from what it does not. The reality 

of current best practices for quantifying predictive uncertainty is ironically quite 

ambiguous. 

As discussed in Section 1.1.3, the most common measure of predictive uncertainty in 

DL methods is softmax confidence.[31,32] Although only 3 of the 14 models 

displayed in Table 1.1 provide an analysis of predictive uncertainty, all use a version of 

calibrated MSP likely due to its simple calculation at time of inference.[53,55,57] 

Nevertheless, a 2019 study by Ovadia et al. demonstrated that most popular UQ 

methods at the time including vanilla softmax confidence and various calibration 

techniques like temperature scaling increasingly failed to produce accurate measures of 

predictive uncertainty and experienced higher expected calibration error (ECE) as 

images became more corrupted.[75] They found the most resilient measures were 

derived from models that considered epistemic uncertainty, like stochastic Bayesian 

methods or deep ensembles, although there was a tradeoff with computational cost 

(deep ensembles used 𝑀 = 10 neural networks). More recent studies in image 

diagnosis in oncology settings have separately converged on the finding that robust 
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UQ is best achieved by ensemble methods, further demonstrating that the use of 

single point estimates of uncertainty like MSP or MaxLogit should be eschewed in 

risk-critical settings.[76,77] As it currently stands there is no consensus on which UQ 

methods to adopt for OOD detection, leaving practitioners of oncology informatics 

without a reliable framework for interpretable estimates of ML generalization failures. 

Despite the lack of a consistent approach for UQ, the need for infrastructure 

governing AI model deployment and monitoring has been clearly identified. As of 

June 2024, the FDA was actively developing guidelines for radiology AI system 

monitoring as part of its postmarket surveillance program within the Center for 

Devices and Radiological Health (CDRH).[78] As Figure 1.5 depicts, the proposed 

monitoring steps would require unspecified data and model-level analyses of drift 

detection with subsequent alerts tied to model updates including retraining. 

 

Figure 1.5 – FDA schematic of proposed radiology AI system monitoring including data and model-
level analyses of drift. Image adapted from [78]. 

[78] 
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Although the FDA has acknowledged the importance of such monitoring 

frameworks, as of August 2024 less than half of approved devices have taken 

intermediate steps to assess generalizability such as publishing studies on post-

deployment clinical performance.[79] 

In the meantime, health care organizations have begun developing their own 

governance systems for AI monitoring with significant variations in design choices 

such as monitoring criteria and the statistical methods employed to detect data 

drift.[80] While analyzing changes to input features and model prediction distributions 

are common, they typically utilize sample-level testing (Wasserstein distance, KS two-

sample test, chi-squared, etc.) or methods from control charts, a methodology 

originally developed for quality control in industrial manufacturing processes and of 

questionable suitability for complex medical datasets.[81] Furthermore, these analyses 

of data drift are implemented either after deployment or without the ability to discern 

which examples are causing drift that triggers alerts, demonstrating a lack of 

interpretability at the level of individual test examples. 

 

1.3 Contributions of this Dissertation 

This dissertation directly addresses the challenges of ML generalization in oncology 

informatics settings and is organized into three chapters based on works of original 

research. A final chapter proposes future directions and offers concluding thoughts 

on the ethical implications of this work. Chapter 2 details a data mining and feature 

extraction approach to retrospectively predict radiotherapy courses using universal 

billing and diagnostic coding systems as a basis for ML training and testing. Chapter 3 

proposes a standardized method for using supervised autoencoders for generalization 

estimates (SAGE) and shows how an ensemble metric of predictive uncertainty is 
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robust to varying degrees of data perturbation and corruption. Chapter 4 extends 

SAGE to the challenge of adapting the task of skin cancer malignancy prediction to 

new and heterogenous lesion images. We successfully identify image artifacts and 

demonstrate how filtering images with high uncertainty scores leads to improved 

predictive performance of a pretrained convolutional neural network model. 

Chapter 2 is adapted from the following manuscript under review at JCO Cancer 

Clinical Informatics: 

W. Max Schreyer*, Ryan Melson*, Christopher Anderson, Cecilia Madison, 

Evangelia Katsoulakis, Reid F. Thompson, “Automated identification of radiotherapy 

courses from US Department of Veterans Affairs administrative data”, manuscript 

under review at JCO Cancer Clinical Informatics (2025), * equal contributors. 

Chapter 3 is based on a manuscript under review at IEEE Transactions on Artificial 

Intelligence: 

W. Max Schreyer, Christopher Anderson, Reid F. Thompson, “Generalization is not 

a universal guarantee: Estimating similarity to training data with an ensemble out-of-

distribution metric”, manuscript under review at IEEE Transactions on Artificial 

Intelligence (2025). 

Chapter 4 is based on the following manuscript in preparation: 

W. Max Schreyer, Ravi Samatham, Elizabeth Berry and Reid F. Thompson, 

“Ensemble uncertainty estimation improves skin cancer malignancy prediction”, 

manuscript in preparation (2025). 
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2.1 Abstract 

Radiotherapy is a critically important cancer treatment; however, its details are often 

not well represented in electronic health record datasets. We present a supervised 

machine learning model that utilizes billing and diagnostic codes from Veterans 

Health Administration (VHA) and Center for Medicare and Medicaid Services (CMS) 

databases to predict radiation course dates with compelling accuracy (micro-average 

of 0.974 across classes). The retrospective application of our model to 1,331,342 

patients coupled with a heuristic algorithm for assembling radiation courses identified 

1,526,660 predicted courses of radiotherapy. The identified courses were collected 

into a shared resource to facilitate future VHA-based studies, and our predictive 

model is available for application to a wider range of non-VHA datasets, particularly 

those leveraging CMS data. 

2.2 Introduction 

Radiotherapy is a well-studied and robustly established pillar of cancer treatment, with 

over 60% of cancer patients receiving radiotherapy at some point over the course of 

their disease.[82] Radiotherapy can provide a targeted adjuvant and alternative to 

systemic therapies or surgical interventions to control tumor growth and metastasis, 

and in many cases serves as the primary curative treatment.[83–89] Furthermore, 

combination therapies that prescribe the coupling of radiation with chemotherapy and 

2 Predicting Radiation Treatment 
Courses from VA Administrative Data 
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immunotherapy treatments have shown additive beneficial effects for cancer 

patients.[90–93] Beyond treatment of cancer, radiotherapy is indicated for many 

benign diseases such as trigeminal neuralgia and acoustic neuroma.[94] Overall, 

modern radiotherapy methods depend upon extensive planning and imaging 

procedures, and encompass a wide range of treatment options, each with its own 

potential variations in dose, frequency and other parameters tailored to the patient 

and their disease.  

The Veterans Health Administration (VHA) reports nearly 50,000 new cancer 

diagnoses per year, the majority of which will undergo radiotherapy treatments.[95] 

Registered veterans are eligible to receive care at any of the 172 VHA hospitals or 

1,138 outpatient treatment centers, which together comprises the single largest 

integrated healthcare system in the United States.[96] Nationwide, there are currently 

41 facilities that deliver radiotherapy for cancer within the VHA, while approximately 

60% of veterans receive radiotherapy at non-VHA centers, with their care paid for in 

whole or in part through the VHA. Records of radiation courses, the period over 

which a radiotherapy treatment is delivered, are maintained in siloed radiation 

oncology databases that do not integrate with a patient’s health record. Furthermore, 

records for treatments delivered in a non-VHA setting are absent from these 

databases, even though they are the largest source of radiation courses for the veteran 

population. We therefore sought to develop a generalizable system for identifying 

radiation courses using a combination of Centers for Medicare and Medicaid Services 

(CMS) and VA Corporate Data Warehouse (CDW) administrative data, which co-

locate with other health record information and allow for analyzing the full scope of 

past radiotherapy treatments. 

Our initial attempts to identify prior radiation courses were manually coded and used 

rules-based heuristics from billing and diagnostic codes, showing promise in 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 28 

identifying clusters of days with radiation data but lacking key course date labels (e.g. 

“start” or “end”) that would be necessary for richer analyses. To improve the 

identification of specific radiation course dates, we sought to augment our efforts with 

the introduction of supervised machine learning (ML) models. The past two decades 

have seen an exponential rise in the number of oncology studies using ML methods 

and electronic health records (EHR) to extract or supplement key information from 

patient files.[97] Several approaches have successfully used ML models to classify 

patient phenotypes from a combination of diagnostic and billing codes, both of which 

are available within the VHA’s CDW and CMS databases.[98,99] We therefore aimed 

to train a multiclassifier model on retrospective administrative data and assemble past 

course dates into full radiotherapy treatments. Our goal was to formulate a tool that 

could clearly define radiation courses across the available history of VHA health 

records and generalize to other radiotherapy centers using the same billing and 

diagnostic code systems. 

2.3 Results 

2.3.1 Patient Cohort 

We selected a cohort of 1,982 patients for training and testing our machine learning 

models (Figure 2.1A) — 419 from manual chart review alone (RGS) and 1,563 from a 

prior study of VA-wide radiation practices (ROPA). For each radiation course we 

extracted a subset of all course days, up to eight per course, with one of five labels 

assigned to each selected course date. (Figure 2.1B) A set of 304 features was 

calculated for each course date using a combination of administrative procedure and 

diagnostic code usage patterns over specified time windows. (Figure 2.1C) 
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Figure 2.1 – Visual guide to the development of data sets used by the radiation course date prediction 
models. A) Overview of ML cohort selection and data extraction. B) Visual description of the 
sampling process used to select course dates from complete, incomplete and single-day radiation 
courses. C) Expanded depiction of the feature encoding process. 
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To broadly compare the review sources used for our ML cohort, we calculated 

summary course and patient demographic statistics for both RGS and ROPA. (Table 

2.1) Approximately 97% of patients were male across both data sources and the 

average age was 67.25 years, in line with demographic statistics for US veterans 

overall. ROPA patient diagnoses consisted of lung and prostate cancers receiving 

either external beam therapy or brachytherapy, while RGS patients were specifically 

chosen to cover a wider spectrum of diseases and radiation treatments. To this end, 

we observed differences in measures of average complete course length (33.44 vs. 

49.96 days), the range of courses per patient ([1 - 23] vs. [1 - 3]) as well as the range of 

complete course lengths between the RGS and ROPA datasets. In total we identified 

2,147 radiation courses, 476 from RGS patients and 1,671 from ROPA. 

 

Table 2.1 – Cohort statistics for patients utilized for machine learning training and testing. 

 

 

We further compared the distribution of features in our final RGS and ROPA 

datasets after dimensionality reduction, observing that RGS not only encompassed 

but significantly expanded the ROPA feature space when visualizing the combined 

data. (Figure 2.2) This confirmed the increased diversity in cases with the introduction 

Cohort RGS ROPA

Patients 419 1,563
Average Age 66.52 67.46
% Male 92.39% 98.46%
Courses 476 1,671
Average Complete Course Length (days) 33.44 49.96
Range Complete Course Length (days) [2 – 126] [5 – 103]
Median Courses/Patient 1 1
Average Courses/Patient 1.13 1.07
Range Courses/Patient [1 – 23] [1 – 3]

1



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 31 

of RGS — plotting ROPA data alone showed distinguishable clusters of radiation 

course date labels whereas RGS clustering patterns were diffuse. The complete ML 

dataset with course date labels also showed distinct clusters with clear separation 

between dates within a radiation course and those outside of a course, qualitatively 

indicating the feasibility of our proposed classification task. 

 

 

Figure 2.2 – Summary visualizations of radiation dates after feature encoding process projected into 
t-SNE space. A) Points labeled by cohort show inter-dataset differences of encoded radiation dates. 
B) Points labeled by radiation date class. 

 

2.3.2 Trained Models Predict Radiation Course Dates 

We split our combined feature set into training and test groups by patient and trained 

out-of-the-box random forest, AdaBoost, and neural network ML models (Methods). 

Each of the models achieved high overall accuracy when applied to the held-out dates 

(minimum 96.3%), and results were averaged across predicted classes. The majority of 

correct predictions were attributed to dates outside of a radiation course 

(‘NotCourse’) or dates within a course (‘Interior’). AdaBoost and random forest 

models shared the highest prediction accuracy for these classes with 99% and 98% 
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respectively and shared the highest overall accuracies at >97%. (Figure 2.3A, D) Our 

neural network was effective at predicting radiotherapy course start and end dates 

(94% and 95% accuracy) but achieved slightly lower performance overall. (Figure 

2.3H) All models struggled to accurately predict dates corresponding to single-day 

radiotherapy courses (‘Both’) with a maximum 77.8% accuracy for AdaBoost. 

In addition to measures of accuracy, we calculated Receiver Operating Characteristic 

(ROC) curves. These showed extremely high areas-under-the-curve (AUC) both 

overall and on a per class basis but were heavily skewed by the consideration of true 

negative rates. (Figure 2.3B, E, I) We therefore generated Precision-Recall (PR) curves 

to refocus performance evaluation on positive predictive ability. PR curves showed 

high average precision (AP) values for all models (average = 0.99), with our random 

forest model giving the highest AP measures for each class individually and overall. 

(Figure 2.3C) The random forest’s AP values for minor classes including radiation 

start and end dates (AP = 0.99) and single-day courses (AP = 0.82) demonstrated the 

model’s ability to maintain performance when tasked with differentiating less 

common radiation course events. The AdaBoost model performed similarly to 

random forest when measuring positive predictivity of majority classes but yielded 

slightly lower precision when predicting start dates (AP = 0.97) and single-day courses 

(AP = 0.77). (Figure 2.3F) Our neural network model, although the weakest predictor 

of single-day courses (AP = 0.53), could detect dates within the bounds of standard 

radiation courses (‘Interior’ AP = 0.99). (Figure 2.3J) Overall, our random forest 

model demonstrated the best overall performance among the three architectures 

tested and was therefore utilized in all subsequent analyses. 
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Figure 2.3 – Performance of trained random forest, AdaBoost and neural network models when 
evaluated on holdout radiation course dates. Confusion matrices (A, D, H) demonstrate classification 
accuracy. ROC curves (B, E, I) demonstrate label-wise classification performance across prediction 
thresholds. Precision recall curves (C, F, J) showcase positive predictive performance across 
thresholds. 
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2.3.3 Longitudinal Predictions Enable Radiation Course Assembly 

 

 

Figure 2.4 – Prediction probabilities for contiguous blocks of unseen dates. A) Complete radiation 
course, B) Multiple complete courses, C) Single day radiation course, D) Combination of complete 
and single day courses. 

 

To ascertain whether our ML approach could be used to identify complete courses of 

radiation de novo, we applied it to a group of previously unseen, manually reviewed VA 

patients. We found that output probabilities for different course labels were well-

behaved with clear agreement between predicted and actual classes over time. Our 

model was able to correctly identify course intervals from standard multi-day courses, 

single-day courses, multiple courses in succession and courses gapped by a many 

month hiatus with high confidence. (Figure 2.4) 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 35 

 

 

Figure 2.5 – Results of course assembly with heuristic algorithm after procedure date predictions for 
unseen patients. A) Summary table of performance metrics. B) Trend lines in Sensitivity and FDR 
metrics of course assembly with increasing error window for ‘start’ and ‘end’ date matching. 

 

To test our ability to assemble radiation courses, we extracted only days with 

procedure codes for ML holdout patients and encoded features for each of the 

selected dates. We used our pretrained random forest model to predict radiation 

course dates for this dataset and assembled courses from predictions by matching 

start and end dates within a specified 105-day window (Methods). Our assembly 

algorithm showed a sensitivity of 0.9 and an F1 score of 0.84 when results were 

compared to the exact ground-truth start and end dates for holdout courses. (Figure 
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2.5A) We then expanded criteria for complete course matches by using error windows 

on either side of the ground-truth course dates (range +/- [1 - 60] days), further 

increasing sensitivity to a value of 0.97 and decreasing our false discovery rate (FDR) 

to a value of 0.16. (Figure 2.5B) 

 

 

Figure 2.6 – Comparison of clustering patterns for VA-wide and holdout test datasets after 
dimensionality reduction with t-SNE. 20,000 sampled data points from all VA radiation procedure 
dates were joined with 10,000 sampled procedure dates from holdout test patients to create the 
combined dataset. 

 

To assess the potential generalizability of our approach to a broader sample of 

patients, we randomly extracted 20,000 dates with radiation procedure codes from the 

VHA and combined this with 10,000 randomly sampled ML holdout procedure dates. 
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We calculated features for these dates and repeated our dimensionality reduction 

protocol, observing a high degree of overlap between clustering patterns for the two 

datasets (Figure 2.6). This led us to believe that application of our methodology to the 

full range of VHA administrative data could capture the vast majority of prior 

radiotherapy treatments. 

2.3.4 Identification of Radiotherapy Courses Across VA Databases 

We next applied our random forest model and course assembly algorithm to all 

known dates with radiation procedure codes available from within the CDW and 

CMS administrative databases. In total we extracted 32,406,809 procedure code dates 

for 1,331,342 patients which were processed using the previously described steps. 

Assembly of predicted course dates resulted in 1,526,660 radiotherapy courses from 

1,152,310 unique patients, representing 92.8% of the possible pool of veterans with 

radiation procedure code data. The majority of predictions constituted complete 

courses (n = 1,191,110) followed by single-day courses (n = 292,462), with only 1.78% 

of start or end dates being classified as an incomplete course. (Figure 2.7A) Yearly 

counts of predicted complete courses showed a substantial uptick starting in the late 

1990’s and peaking during 2015-2018. We note that CMS data post-2018 was not 

available at the time of analysis resulting in a decrease in the number of predicted 

courses between the years 2019-2022. (Figure 2.7B) We next calculated the average 

length of complete courses per year, finding an increase between the years 2000-2010 

before a notable decline lasting until the end of the study time frame. (Figure 2.7C) 

Additionally, we calculated the densities of complete course lengths finding the data 

conformed to a bimodal distribution: one sharp peak occurred at 15 days and another 

flatter peak emerged for 45-60 day courses. Finally, we determined the day of the 

week for all start and end dates, finding that only 0.15% of predicted start dates and 

0.13% of end dates occurred on a Sunday. 
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Figure 2.7 – Radiation courses predicted from all patient procedure dates (n = 32,480,062) across the 
available history of VA administrative data. A) Bar plots of radiation course predictions between the 
years 1991 to 2022 by course type. B) Bar plots during same period labeled by database source. C) 
Line plot of average complete course length per year. Dot size and color corresponds to the number 
of predicted complete courses for a given year. 
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2.4 Discussion 

Our machine learning models, trained using administrative procedure and diagnosis 

data from 1,982 US Veterans, demonstrated excellent performance at identifying 

distinct radiotherapy courses from retrospective data. To the best of our knowledge, 

this is the first study to summarize radiotherapy treatment across the entire VHA 

system, as well as the first to provide a patient-specific resource of radiation course 

dates for the VHA. Moreover, using our random forest model and course assembly 

algorithms, we identified the largest cohort of radiotherapy treatments published to-

date (n = 1,526,660), providing clear potential for future research. We believe our 

approach may successfully extend to other healthcare systems as our training data was 

sampled from all 41 radiotherapy-providing VA facilities and other non-VA sources, 

all of which use universal coding systems. Extension of these methods would simply 

require the extraction of the listed radiation codes per given date (Supplemental Table 

2) and the generation of ML features as specified above (Supplemental Table 3) for 

input into our pretrained models. 

In addition to predicting retrospective radiation courses, our chronological analysis of 

radiotherapy treatments allowed us to uncover trends in the administration of 

radiotherapy which are mirrored in other peer-reviewed studies. For example, efforts 

to limit radiotherapy adverse events and over-irradiation of patients lead to the 

adoption of hypofractionation and shorter average courses overall in the years post-

2010.[100,101] The same patterns were observed in our data for predicted complete 

courses where the average course length dropped from a peak of >37 days in 2010 to 

about 30 days in 2022. We assessed the potential viability of these predicted courses 

by checking the proportion of course dates falling on a Sunday, a technique used 

previously as an indication of false positives for procedure data in the clinical 

radiation oncology setting, finding that only a tiny percentage of predictions matched 
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this condition (average 0.14% for predicted start and end dates).[102] Further 

refinement of radiation course data could uncover more granular treatment trends 

filtered down to individual healthcare centers or patient demographic groups. 

There are, however, several limitations to this study. Both the methodologies and 

patient cohorts we reported here are specific to the VHA, and we did not further 

extend our approach to non-veteran data. While VHA cohorts represent substantial 

diversity in some respects, we note that women are highly underrepresented, and 

pediatric cohorts are entirely absent. Furthermore, the date range of our predictions 

was limited by the availability of EHR and radiation courses delivered before the 

widespread adoption of computer systems in VHA hospitals (pre-1986) are missing, 

which also impacted the quality of administrative data during the transitional years of 

EHR adoption. Finally, while our method for classifying course dates relies on open-

source ML packages, we used custom heuristics for broadly determining complete 

radiation courses, capturing the majority of common course lengths but potentially 

missing rare instances of treatment. This extends to the identification of single-day 

courses which comprise a wide range of treatment options (e.g. brachytherapy, 

stereotactic radiosurgery, palliative dose) and may not be faithfully captured by this 

multi-classification approach. 

Radiation treatment dates and assembled courses from our retrospective analysis are 

available for use within the VA network – these predictions can be utilized to better 

understand delivery of radiotherapy at the VA nationwide, and enable data-focused 

policy guidance for future improvements to oncology care. Integrating our VA 

radiotherapy resources with patient health records would allow for the creation of 

patient cohorts that should rival or exceed the largest groups from retrospective meta-

analyses of dose fractionation as well as intraoperative and post-surgical radiotherapy 

applications in different disease contexts.[103–105] Additionally, our radiotherapy 
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course determinations could enhance predictions of radiotherapy outcomes including 

survival, tumor control and normal tissue toxicity by providing additional training 

data.[106–108] Given the unique access to paired health records and genomic data 

provided through the VA’s Million Veterans Program (MVP), our work could also 

facilitate the future study of genetic links to radiotherapy outcomes like secondary 

malignancy at the site of radiation.[109] 

2.5 Methods 

2.5.1 Cohort Construction 

To identify patients having received radiotherapy within (or paid for by) the VHA, we 

leveraged 307 radiotherapy procedure billing codes from the Current Procedural 

Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) as 

well as 2,580 procedure codes from the International Classification of Diseases (ICD-

9, ICD-10) systems. We queried the CDW (November 22, 1985 - October 31, 2022) 

using custom SQL scripts (Microsoft SQL Server Management Studio v18.11.1) with 

additional queries performed in SAS (Enterprise Guide 9.4_M6) on CMS data housed 

within the VHA (January 1, 1997 - December 31, 2018). We identified 1,333,286 

patients with at least one radiotherapy-related procedure code. 

From this set, we randomly-selected 217 patients for manual chart review to confirm 

radiation treatment along with course start and end dates, where relevant. We selected 

another 220 patients as representative edge cases for chart review to provide a richer 

and more diverse dataset. Edge cases included patients whose radiation courses 

utilized rare procedure code categories or those lacking procedure codes entirely. 

After dropping patients with unconfirmable radiation histories or mismatching 

identifiers (n = 18), the randomly selected and edge case supplemented groups were 

combined to form our Radiation Gold Standard (RGS) cohort of 419 patients. We 
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then incorporated an independent dataset of 1,563 individuals from a prior study of 

nationwide practice variation and quality assessment (“ROPA”), having removed one 

patient for overlap with our RGS cohort and another for only having approximate 

radiation treatment dates.[110] We conducted additional chart review for 785 ROPA 

cohort individuals to confirm the accuracy of radiation course dates. Chart reviews 

were conducted by R.M. and C.M. under the supervision of R.F.T., with radiotherapy 

start and end dates recorded as first and last days of treatment delivery for a course, 

respectively. Single-day courses were encoded with start and end dates occurring on 

the same date. If additional treatment course start dates were initiated prior to the end 

of another, they were considered part of a single compound course whose start date 

was the first occurring start date and whose end date was the last occurring end date. 

2.5.2 Date Selection 

We selected a subset of dates from radiotherapy course timelines to be used for the 

feature encoding process and the subsequent training and testing of our ML models. 

For all patients with procedure codes, a random date was selected before the first and 

following the last procedure code. Patients with a radiotherapy start and end date 

confirmed by chart review had up to eight dates chosen per course. These complete 

course timepoints consisted of 1) a random date 1-14 days preceding the start date, 2) 

the start date, 3-6) up to four randomly selected interim dates between the start and 

end dates (two with procedure data and two without), 7) the end date, and 8) a 

random date 1-14 days following the end date. Courses bearing a single confirmed 

start or end date were included as: 1) the start or end date and 2) a random date 1-14 

days preceding or following the confirmed start or end date determined by manual 

chart review. For instances of single-day radiotherapy courses, time points consisted 

of 1) a random date 1-14 days preceding the single-day course, 2) the single-day 

course date, and 3) a random date 1-14 days following the single-day course. Where 
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the gap between radiation courses was less than 28 days, the interval for selecting 

random dates preceding or following a course was calculated as half the distance to 

the closest course. Courses where both the start and end dates were ambiguous or 

unconfirmed were dropped from further consideration. For patients without 

procedure code data or with unknown/unconfirmed radiotherapy administration, four 

random dates were selected from the interval between their first and last neoplasm 

diagnosis code. Additional non-course dates with procedure code data were selected 

as follows: 4 random procedure dates between the first and last procedure code for 

patients confirmed to have not received radiotherapy, and 2	 +	(2	 ×

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒	𝑐𝑜𝑢𝑟𝑠𝑒𝑠) for confirmed RGS radiotherapy recipients. Every time 

point was assigned one of five class labels: “Not Course” (n = 6099), “Start” (n = 

2011), “Interior” (n = 7907), “End” (n = 2020), or “Both” (n = 115) for instances of 

single-day radiotherapy courses. In total we extracted input feature sets and 

corresponding class labels for 18,152 patient-dates used in model training and testing. 

2.5.3 Feature Encoding 

To develop a dataset appropriate for subsequent modeling, we constructed a set of 

date-specific quantitative features using 2,887 radiotherapy procedure codes, 3,432 

neoplasm diagnosis codes and 5 radiotherapy encounter ICD diagnostic codes. We 

grouped procedure codes into 30 categories according to distinct aspects of the 

radiotherapy workflow (e.g. “Simulation”, “Treatment - External Beam”). We created 

nine features for each procedure code category, reflecting the presence and density of 

code usage over past, present and future time windows, as follows: 1) a binary flag 

recording the occurrence or absence of at least one code on the given date, 2) the 

number of days between the specified date and the most recent past occurrence of a 

code in that category, 3) the number of days between the specified date and the next 

occurrence of a code in that category, 4) the number of days with at least one code 
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occurring in the preceding 1-7 days from the selected date, 5) in the preceding 8-15 

days, 6) and in the preceding 16-30 days, as well as 7) in the following 1-7 days from 

the selected date, 8) in the following 8-15 days and 9) in the following 16-30 days. 

This resulted in a total of 270 procedure code features, 9 for each of the 30 categories. 

For neoplasm diagnosis codes, we identified the 10 most used codes over a 29-day 

period with the selected date in the center of the time window. We then tallied the 

number of times each of the 10 codes was used and divided this number by the total 

number of neoplasm diagnosis codes to get a percentage value for three time 

windows: 1) the selected date, 2) 1-14 days before and 3) 1-14 days after the selected 

date. This resulted in 30 neoplasm diagnostic features, one for each of the top 10 

codes over specified windows. For radiotherapy encounter diagnostic codes, we 

created a binary flag recording the presence or absence of a code over the same time 

windows as neoplasm diagnosis codes. This resulted in three encounter code features, 

one per window. For the final feature, we recorded the day of the week for the 

selected date numerically. In total, we generated 304 features for each selected date 

and used this feature set as input into our machine learning models. 

2.5.4 Machine Learning Model Training 

Final feature sets were generated on VA Informatics and Computing Infrastructure 

(VINCI) secure servers and loaded using Python (v. 3.10.11), NumPy (v. 1.21.5) and 

pandas (v. 1.4.2).[111,112] We randomly partitioned dates from 80% of patients into a 

training dataset using the scikit-learn (v. 1.2.2) package.[113] The remaining 20% of 

patients’ data were held out as a final test set, while ensuring the approximate ratio of 

dates corresponding to each class was preserved between partitions. We normalized 

features using the ‘StandardScaler’ class fit to the training dataset. After scaling, we 

upsampled minor classes corresponding to radiation start days, end days and single-

day courses by 100%, 100% and 300% respectively to reduce class imbalances. We 
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implemented AdaBoost and random forest models from scikit-learn’s ensemble 

methods and constructed a neural network model using TensorFlow (v. 2.11.0).[114] 

Using a grid-search with five-fold cross-validation from scikit-learn’s 

‘StratifiedGroupKFold’ function, we selected the following model hyperparameters 

yielding highest average validation accuracy: AdaBoost [tree depth = 10, number 

estimators = 200, learning rate = 0.1], random forest [tree depth = 15, number 

estimators = 300, maximum number features = 75], neural network [layers = [150, 

75], dropout = [0.2, 0.3], learning rate = 0.001]. We then re-initialized and trained all 

models on the entire training dataset with the selected parameters. We simultaneously 

trained and calibrated our AdaBoost and random forest models using the 

‘CalibratedClassifierCV’ function with default options. 

2.5.5 Radiation Course Assembly Algorithm 

To assemble radiation courses from ML model predictions, we devised a heuristic 

algorithm using a patient’s predicted course dates organized by label. (Algorithm 2.1) 

In words, we sorted all predicted start and end dates chronologically for each patient 

and paired the first available start date with the last available end date – if this period 

was less than 105 days the pairing was considered a match. If the pairing was 

unsuccessful, we then tested the given start date with the patient’s remaining end dates, 

assessing the end dates in reverse chronological order. This process was repeated until 

a match had been attempted for all predicted end dates. Successful matches were 

designated as predicted complete radiation courses, while any additional start and end 

dates that fell between matched course dates were removed from further consideration. 

We then tallied the number of consecutive predicted interior dates occurring within 

each complete course. This process was repeated until no start dates remained, with any 

surviving start or end dates recorded as incomplete courses. All dates with a predicted 

‘Both’ label were assigned as single-day radiation courses. 
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Algorithm 2.1 – Pseudocode of heuristic algorithm for assembling treatment courses from predicted 
radiation course date labels. 

 

2.5.6 Evaluation of Date Predictions and Course Assembly 

We evaluated our re-trained models on the holdout test dataset and built confusion 

matrices to show overall model performance and accuracy by label with scikit-learn’s 

‘confusion_matrix’ class. We calculated precision, recall and specificity using the 

‘metrics’ module. Sensitivity and specificity values were used to generate Receiver 

Operating Characteristic curves, and Precision-Recall curves were created using 

corresponding measures using the default number of threshold values 

(#	𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑐𝑜𝑟𝑒𝑠	 + 	1). We calculated Area-Under-the-Curve and Average Precision 

values for each model and class. Additionally, we calculated micro-averaged curves for 

Require: predicted dates (per patient), each labeled as Start, End, or Both
Ensure: complete courses, incomplete courses, single day courses
1: Initialize complete courses → ↑
2: Initialize incomplete courses → ↑
3: Initialize single day courses → ↑
4: for each patient do
5: Separate predicted dates into start dates, end dates, both dates
6: Sort start dates in ascending order
7: Sort end dates in ascending order
8: Add all both dates to single day courses
9: while start dates is not empty do

10: s → first element in start dates
11: for all e ↓ end dates in reverse chronological order do
12: if e ↔ s and (e↗ s) ↘ 105 days then
13: Add (s, e) to complete courses
14: Remove s from start dates
15: Remove e from end dates
16: Remove any start or end dates strictly between s and e
17: break
18: if no match was found for s then
19: Remove s from start dates
20: Add s to incomplete courses

21: for all e ↓ remaining end dates do
22: Add e to incomplete courses

23: return complete courses, incomplete courses, single day courses

1
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each plot, giving equal weight to predictions across class labels for each of the three 

models. All plots used in model evaluation were generated using the corresponding 

built-in scikit-learn class. 

To evaluate our radiation course assembly algorithm, we manually labeled ML holdout 

patient course dates and used them as the ground-truth for testing predicted 

complete, incomplete and single-day courses. We compared predicted courses to 

ground-truth by exactly matching course start and end dates, calculating true positive 

(TP), false positive (FP) and false negative (FN) predictions. From these metrics we 

determined precision, sensitivity and F1 scores as well as the false discovery rate 

(FDR) for each course type. Additionally, we re-calculated complete course metrics by 

matching dates to a specified error window both before and after the true start and 

end dates, with windows of 1, 3, 5, 10, 15, 20, 25, 30, 35, 40 and 60 days. We then re-

assessed precision, sensitivity, F1 score and FDR for each error window and recorded 

results. 

2.5.7 Predicting Radiation Courses for Cohorts of Unseen Patients 

An additional cohort of 26 manually validated radiotherapy patients that did not 

feature in our ML cohort was created to test the potential for our random forest 

model to identify whole courses of radiotherapy de novo from individual date 

classifications. These patients represented an array of radiation course types including 

conventional courses, single-day courses, and multiple successive courses with varying 

interval lengths in addition to numerous modalities of radiotherapy delivery (e.g. 

external beam, stereotactic body, brachytherapy). We extracted dates for all 

occurrences of radiation procedure codes, as well as 15-day flanking windows before 

and after each code instance, collapsing overlapping windows to form a single 

contiguous time block. We encoded features for all time block dates as previously 

described and generated class probabilities using each of our pre-trained ML models. 
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Line plots corresponding to the predicted probability of each multiclassifier output 

were created in Matplotlib. 

For our broader analysis of radiotherapy courses across CDW and CMS databases, we 

extracted all dates between November 22, 1985, and October 31, 2022, with at least 

one radiotherapy procedure code for all patients, excluding those from the ML cohort 

(n = 1,331,342). We encoded features for the extracted dates (n = 32,406,809) and 

applied our trained random forest model and course assembly algorithm, tallying 

predicted courses by type. All subsequent plots were created with seaborn (v. 

0.13.2).[115] 

2.5.8 Dimensionality Reduction and Visualization 

We performed principal component analysis (PCA) using the scikit-learn 

‘decomposition’ module for 100 components in the ROPA and RGS feature sets and 

125 components in the combined (RGS and ROPA) dataset, accounting for >80% of 

variance. We then randomly-sampled 20,000 radiation procedure code dates from the 

VA-wide dataset and 10,000 procedure code dates from our holdout patients, and 

repeated PCA using 50 components. We used the resulting matrices to perform t-

SNE for each data source using the manifold module with a random initialization state 

and a perplexity of 40. Course and data source labels were subsequently applied to 

data points before plotting with Matplotlib (v. 3.5.1).[116]  
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3.1 Abstract 

Failure of machine learning models to generalize to new data is a core problem 

limiting the reliability of AI systems, partly due to the lack of simple and robust 

methods for comparing new data to the original training dataset. We propose a 

standardized approach for assessing data similarity in a task-aware, model-agnostic 

manner by constructing a Supervised Autoencoder for Generalization Estimates 

(SAGE). We compare points in a low-dimensional embedded latent space, defining 

empirical probability measures for k-Nearest Neighbors (kNN) distance, 

reconstruction of inputs and task-based performance. As proof of concept for 

classification tasks, we use MNIST and CIFAR-10 to demonstrate how an ensemble 

output probability score can separate deformed images from a mixture of typical test 

examples, and how this SAGE score is robust to a battery of transformations of 

increasing severity. As further proof of concept, we extend this approach to a 

regression task using non-imaging data (UCI Abalone). In all cases, we show that out-

of-the-box model performance increases after SAGE score filtering, even when 

applied to data from the model’s own training and test datasets. Our out-of-

distribution scoring method can be introduced during several steps of model 

construction and assessment, leading to future improvements in responsible deep 

learning implementation. 

3 Ensemble Uncertainty Estimation with 
SAGE 
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3.2 Introduction 

The presence of generalization gaps, where machine learning performance degrades 

when a trained model encounters previously-unseen data, represents a critical ongoing 

challenge in the implementation of AI systems.[117,118] Model performance may 

suffer when the underlying distributions of input features for new data shift away 

from those learned during the training process. A baseline method for monitoring 

predictive uncertainty in neural networks without retraining is the maximum softmax 

prediction probability[31], where the highest output node value may decrease for out-

of-distribution data points. While this technique has been improved with calibration 

of the softmax probabilities via temperature scaling[35,119], the approach has proved 

unreliable with increasingly-deformed input features and can be erroneously 

overconfident when predicting on unrecognizable images.[75,120] Ensemble methods 

have been proposed to improve the reliability of uncertainty measures, but this 

requires the simultaneous training of m networks instead of a single model, increasing 

computational overhead.[37]  

Whereas neural network prediction confidence is a black box measure of data 

similarity, there exist simple-to-understand visualization methods such as UMAP[121] 

and t-SNE[122], allowing users to examine similarity of points in high-dimensional 

space by localization patterns in two or three dimensions. While the resulting plots are 

appealing and easy to digest, the local and global structure of the data can become 

distorted by these methods of compression, limiting the effective use of distances as 

an “all-in-one” measure of data similarity.[123] Furthermore, these dimensionality-

reduction techniques are not reproducible without degrading algorithmic performance 

(i.e. no multi-threading) or perpetuating the random initialization state.[124] Rabanser 

et al. introduce a method for quantifying dataset differences via dimensionality-

reduction by embedding both a reference and novel dataset before statistically 
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comparing the resulting distributions.[41] Other recent approaches use deep 

embeddings to calculate a latent distance metric for identifying out-of-distribution 

data, a key advantage of which is the ability to discriminate individual samples instead 

of reporting whole dataset statistical differences.[38,125] 

The tradeoffs between explainability, quantifiability and robustness have thus far been 

barriers to a consensus approach to determining which individual samples are 

appropriate to use for a given machine learning model. We therefore propose the use 

of Supervised Autoencoders for Generalization Estimates (SAGE) as a standardized 

approach to uncertainty estimation that draws from the strengths of previously-

described methods.[17] SAGE scoring is introduced as a dataset companion which 

allows for the uncoupling of uncertainty estimation from downstream prediction tasks 

with separate, more complex models. We calculate a combined out-of-distribution 

score using three model-intrinsic measures of uncertainty and show examples of 

outlier detection for classification tasks using MNIST and CIFAR-10 and a regression 

task using the UCI Abalone dataset. Finally, we show how filtering outliers using the 

combined out-of-distribution score improves generalization to separate, stronger 

classification and regression models, even with perturbed and corrupted data. 

3.3 Results 

3.3.1 SAGE Embedding Space for Original and Corrupted Images 

We demonstrate a supervised autoencoder (SAE) framework for faithfully encoding 

MNIST training data images in two dimensions (Figure 3.1A), with low error in image 

reconstruction across held-out test images (∆ mean squared error = 0.005, n = 8,000). 

(Figure 3.1B) Designed in part to capture digit identity in the latent space through 

multitask learning, the model also demonstrates excellent classification performance 

on held-out test images (f1 = 97.9). (Figure 3.1C) Moreover, the latent space 
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distribution of MNIST training data is closely approximated by encoded MNIST test 

data, which is drawn from the same original image distribution. (Figure 3.1D) Note 

that we observed local differences in data density across the embedded latent space, 

along with local differences in average reconstruction error and calibrated 

classification confidence (Figure 3.2). 

 

Figure 3.1 – SAGE model overview. A) Schematic of SAGE architecture with example MNIST input. 
B) Decoder reconstructions of MNIST images. C) Confusion matrix of SAGE classifier accuracy on 
MNIST test images. D) Overlayed scatter plots of 2D latent embedding space for MNIST train and 
test images, colored by image class. E) Examples of transforms applied to MNIST test images and 
subsequent embedding locations overlayed with train data latent space. Brown star indicates original 
image. F) Box plots showing MNIST test kNN distance changes after application of image transforms. 

 

Importantly, modified test images (i.e. transformed data that intentionally deviate 

from native MNIST examples) mapped to different areas of the latent space, with 

increasing severity of transform mapping to lower density, lower confidence regions 
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of the latent space. (Figure 3.1E) Indeed, each transformation of test images results in 

measurable deviations from the original latent space encoding, with increased distance 

to the k-nearest training points (Figure 3.1F), increased image reconstruction error, 

and decreased calibrated classifier confidence. We found that minimally transformed 

images (e.g. “low” elastic deformation) tend to map closely to the original image set, 

whereas larger deformations (e.g. “high” elastic deformation) are significantly more 

distinct in their latent space embedding. (Figure 3.1E, F). We identified a small 

minority of so-called “imposter” transformations, where vertical or horizontal 

geometric transforms resulted in effective misclassification (e.g. vertically-flipping a ‘5’ 

will be read as ‘2’) (Figure 3.1E) and removed such imposters from subsequent 

analysis. 

 

Figure 3.2 – Binned output measures of a SAGE model trained on MNIST images. Latent dimensions 
were split into 100 x 100 blocks with bin color intensity depicting key SAGE output metrics. 
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3.3.2 SAGE Scoring Separates Transformed Images 

Recognizing that latent space density (as assessed by kNN distance), reconstruction 

error, and classifier confidence are all distinct and largely independent phenomena, we 

created an ensemble score using the combined exceedance probabilities of new test 

data with respect to the training data distributions of SAGE output measures. (Figure 

3.3A, Methods) 

 

Figure 3.3 – SAGE scoring process and calculated values for train, test and transformed test MNIST 
images. A) Example of train image SAGE output distributions converted into exceedance curves. For 
any image, its score is calculated as the geometric mean of the three SAGE output exceedance 
probabilities w.r.t training distributions. B) Violin plots of SAGE scores for MNIST train, test and 
transformed test images. C-E) Line plots show SAGE score values across dataset quantiles sorted 
from low to high. Image examples and score values are displayed above each decile. 

 

This ensemble approach clearly separated original MNIST train and test sets from 

transformed data (mean SAGE score train = 0.444, test = 0.441 and transformed = 

0.075). (Figure 3.2B) We found that the lowest SAGE scores identify outlier images 

among MNIST training and testing data (Figure 3.2C-D), and are particularly 
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discriminative for transformed images, where the majority of scores were zero or 

near-zero. Milder image transforms of MNIST, such as “low” elastic deformation, are 

prominent only towards the 90th percentile of SAGE scores for the transformed test 

dataset, where scores begin to increase appreciably. (Figure 3.2E) The lowest 

probability scores were associated with high degrees of pixel intensity changes 

including pixel inversions and heavy Gaussian noising. 

3.3.3 Removal of Low-Score Data Improves Separate Classifier 

 

Figure 3.4 – Effects of SAGE score filtering on performance of a separate ResNet18 MNIST 
classifier. A-C) Line plots of proportion of MNIST images remaining after filtering examples below 
6 SAGE score threshold values. D-E) Precision-recall curves plotted for train, test and transformed 
test datasets after filtering images at 6 SAGE score thresholds. 

 

To improve out-of-the-box performance of an independent ResNet18 model trained 

on MNIST, we sought to leverage SAGE score as a data filter to ensure similarity of 

input data to the model’s own training data. We first demonstrate that our combined 

score succeeds as a tunable filter selectively distinguishing outliers (transformed data) 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 56 

while preserving original training and testing data (Figure 3.4A-C), with filter 

threshold values corresponding inversely to anticipated original dataset retention (e.g. 

threshold of 0.1 retains 93.7% of the train dataset). 

We next note that the independent ResNet18 model performs exceedingly well on 

MNIST held-out test data (f1 = 0.99) but shows degraded performance on 

transformed data as expected (f1 = 0.76); whereas, transformed dataset performance 

improves significantly with even mild SAGE score filtering (e.g. f1 = 0.90 for 

threshold of 0.05). (Figure 3.4D-F) We also note that out-of-the-box model 

performance can be improved even for data used during the training process, with 

increasing filter stringency improving observed accuracy. (Figure 3.5). 

 

 
Figure 3.5 – Prediction accuracy improvement as train, test and transformed samples are removed 
below a series of SAGE score thresholds. A-C) MNIST, D-E) CIFAR-10, G-I) UCI Abalone. 
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3.3.4 Applying SAGE to RGB Images 

Given the relative simplicity of MNIST as a use case, we next sought to apply our 

approach to a more complex image classification task using the CIFAR-10 dataset, 

which contains three color-channel data (3,072 RGB pixel values per image). We 

applied a panel of image perturbations of different intensities to the original CIFAR-

10 test dataset (Figure 3.4A) and demonstrate that a 2-dimensional latent space 

embedding, in this case using a deeper architecture and introducing a contrastive loss 

term, can faithfully encode distinct image clusters in this dataset. (Figure 3.6B) 

Reasoning that increasing dimensionality of the latent space could further improve 

performance, we demonstrated a reduction in overall training loss up to 16 

dimensions, after which performance plateaued. Applying the trained 16-dimensional 

SAGE model to the train, test and transformed test CIFAR-10 image sets, we 

reproduce our findings from MNIST, where increasing SAGE score identifies 

increasing severity of image transformation, while minimal transformations (e.g. 

horizontal flip) behave similarly to untransformed test data. (Figure 3.6C-E) 

Importantly, SAGE score-based filtering improved performance of a separate out-of-

the-box ResNet34 model pre-trained on CIFAR-10, particularly when applied to 

transformed images (average precision (AP) of 0.86 with SAGE and 0.44 without 

SAGE, 0.2 threshold value. (Figure 3.6F-H) 
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Figure 3.6 – Training and evaluating SAGE on CIFAR-10 images in RGB color channels. A) Image 
examples CIFAR-10 image of class ‘Horse’ with test transforms applied. B) Scatter plot of 2D latent 
embedding space of CIFAR-10. C-E) Line plots of proportion of CIFAR-10 images after filtering 
images below 6 SAGE score threshold values. SAGE scores calculated from 16D latent embeddings. 
F-H) Precision-recall curves corresponding to train, test and transformed test CIFAR-10 images after 
thresholding at six score values. 

 

3.3.5 SAGE Improves Performance on Regression Task 

Finally, we sought to explore the potential of this approach for regression tasks. For 

proof-of-principle, we fit an SAE model to the UCI Abalone dataset, compressing the 

input feature space down to a single latent dimension. (Figure 3.7A) As before, SAGE 

scores for most transformed data points revealed significantly lower values compared 
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with the training data set distribution (Figure 3.7B), and filtering based on score 

demonstrated favorable exclusion of transformed data with relative retention of 

training and testing data. (Figure 3.7C-E) Finally, we applied score-based filtering of 

input data to a separate random forest regression model trained on the original 

training dataset, demonstrating improved root mean squared error (RMSE) of 

predictions with increasing threshold values, including for samples within the original 

train and test sets. (Figure 3.7F-H) 

 

Figure 3.7 – Analysis of SAGE with a regressor module for predicting the inner-shell rings of Haliotis 
rubra. A) Scatterplots of 1D latent embeddings for train, test and transformed test phenotype data. 
Color gradient indicates ground-truth number of inner-shell rings. B) Box plots of SAGE scores for 
train, test and transformed test samples. C-E) Line plots show proportion of samples remaining after 
application of 6 SAGE score thresholds. F-H) Scatter plots of predicted rings versus actual values 
using separate regression model. Root mean-squared error (RMSE) of regression shown beside each 
SAGE score threshold.  
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3.4 Discussion 

We present here a flexible, model-agnostic, dataset-focused approach for prospective 

detection of out-of-distribution data points. We demonstrate the SAGE score’s 

potential use as a selective filter of input data prior to model application, with several 

advantages over existing techniques. Moreover, SAGE is applicable to different 

datasets and tasks, including both classification and regression, and has potential 

implications for model development (e.g. via outlier identification and model 

refinement), refining or adapting existing models to new data, and supporting 

regulatory review and post-market surveillance. To our knowledge, this is the first 

approach that standardizes generalizability estimation across modalities and tasks 

while prioritizing interpretability and remaining sensitive to covariate shifts in the 

underlying data.  

We chose a supervised autoencoder as the backbone of the SAGE approach because 

of its ability to yield an interpretable, class-separable latent space and due to its 

relatively small compute requirements which should improve scalability compared to 

bulkier approaches like the variational autoencoder (VAE). The SAGE score is an 

ensemble metric that combines three independent measures of out-of-distribution 

estimation, compensating for the relative weaknesses of each component. For 

example, the model encoder outputs latent embeddings which allow for visualization 

in a low-dimensional space but does not exclusively rely on compressed distances as a 

measure of similarity, an attribute that has been shown to be problematic for popular 

methods like t-SNE and UMAP. Data reconstructions, assessed by mean squared 

error, can also yield misleading results as is the case when CIFAR-10 images are 

subjected to a Gaussian blur transform. While blurring results in a lower overall 

reconstruction error than that of original train images, higher kNN distance to 

training points in the embedding space and lower classification confidence allow these 
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images to be recognized as out-of-distribution. Furthermore, unrecognizable images 

such as unnormalized Gaussian noise in RGB color channels exhibit perfect classifier 

confidence but are easily detected and removed by a combination of reconstruction 

error and kNN distance. 

Despite these strengths, we note several limitations to our work. First, we do not 

perform exhaustive benchmarking of SAGE against datasets featuring realistic or 

naturally-occurring distribution shifts. We furthermore do not compare our approach 

against state-of-the-art practices for uncertainty quantification from the machine 

learning literature or employ SAGE as a binary out-of-distribution vs. in-distribution 

classifier that could be useful in automated decision-making pipelines. Our study 

focuses on classification and regression with benchmark imaging and biological 

datasets as our primary machine learning tasks, neglecting any number of other 

common problems and data modalities (e.g. image segmentation or time-series 

forecasting). We also concede the potential to further improve SAGE performance 

through increasing model size, complexity, and encoder pretraining, as well as 

alternative or additional architectures. For instance, the inclusion of Bayesian dropout 

for neural network classifiers could improve variational inference without the need for 

retraining pre-existing models.[36,126] Other approaches for Bayesian inference have 

been suggested for neural network regression, and could be similarly applied.[127] 

Furthermore, we do not perform data augmentation before training and our method 

can therefore be considered a form of normative modeling.[128] Prior work by 

Hendrycks et al.[129] has shown that inclusion of few augmented examples during 

training can improve the robustness of subsequent classifier confidence measures to 

outliers, a simple method that negates the use of more expensive generative models to 

create synthetic data.[130] Upsampling training data that has a low similarity score to 

itself could further augment the training process and improve generalization in a 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 62 

complementary manner, however, these iterations are considered out-of-scope in this 

proof-of-principle study.   

We further note that SAGE scoring is unable to distinguish “imposter” data examples 

(e.g. where a vertical flip of a ‘5’ in MNIST may be mistakenly recognized as a ‘2’). We 

did not observe any such instances within our transformed test sets of CIFAR-10 and 

therefore expect this phenomenon to be rare in real-world applications as images 

increase in complexity. Importantly, we also note that SAGE may expose sensitive, 

private, and/or proprietary details about a model’s training dataset through the 

retention of both encoder and decoder elements in addition to the full latent space 

embedding. We envision the possibility of privacy-preserving implementations of this 

work but note that these are out-of-scope in the current study. Future work will focus 

on the extension of out-of-distribution estimation to a wider range of tasks and 

modalities, including more complex biomedical imaging datasets, and the inclusion of 

improved measures of intrinsic uncertainty. 

3.5 Methods 

3.5.1 Datasets 

The MNIST[131] dataset was downloaded using the torchvision package (version 

0.17.2). MNIST consists of 28 x 28-pixel grayscale images of handwritten digits (0 - 9) 

and comes pre-split into training (n = 60,000) and testing (n = 10,000) sets, with 6,000 

and 1,000 images per class respectively. We randomly divided the test set into class-

balanced, held-out test (n = 8,000) and validation (n = 2,000) sets in order to set aside 

images for classifier calibration.  

The CIFAR-10[132] dataset was downloaded using torchvision and consists of 32 x 

32 pixel RGB color images of ten vehicle and animal classes. Like MNIST, CIFAR-10 

is pre-split into a training (n = 50,000) and testing (n = 10,000) set which we randomly 
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subdivided further into held-out test (n = 8,000) and validation (n = 2,000) sets, 

ensuring class balance. The image classes consist of: ‘Airplane’, ‘Automobile’, ‘Bird’, 

‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’, ‘Horse’, ‘Ship’, and ‘Truck’. Importantly, ‘Automobile’ and 

‘Truck’ vehicle classes consist of only cars and tractor-trailers, respectively, to reduce 

label overlap, whereas ‘Airplane’ and ‘Ship’ consist of different grades of planes (e.g. 

commercial passenger jets, military jets) and watercraft (e.g. leisure boats, commercial 

shipping vessels). All animal classes include multiple species or breeds. CIFAR-10 

images also exhibit a variety of naturally occurring viewer perspectives and subject 

color patterns, lending to the increased complexity of this dataset. 

The UCI Abalone dataset was downloaded from the UC Irvine Machine Learning 

Repository website (https://archive.ics.uci.edu/dataset/1/abalone) and is included in 

our project repository as a CSV file. The dataset was adapted from a 1994 technical 

report[133] and consists of 4,177 examples of 8 animal phenotypes and body 

measurements including Sex, Length, Diameter, Height, Whole Weight, Shucked 

Weight, Viscera Weight, and Shell Weight, with the number of inner-shell rings 

representing the ground-truth labels. We split examples into training (80%), held-out 

test (16%) and validation (4%) datasets. 

3.5.2 Data Transformations 

We built and applied a panel of image transformations to MNIST and CIFAR-10 

held-out test images using the v2 transform module of torchvision’s library. The panel 

included a 100% horizontal flip, 100% vertical flip, 100% pixel value inversion, 

Gaussian blur (kernel size = 5, sigma = 2), Gaussian noise (“low”, sigma = 0.2; 

“high”, sigma = 0.8) and elastic stretching (“low”, alpha = 50; “high”, alpha = 200). 

For CIFAR-10 we included two additional photometric transformations: a 100% 

solarize filter (threshold = 0.75) and 100% posterize filter (bits = 2). All MNIST and 

CIFAR-10 images were converted to torch float32 data types, scaled and normalized 

https://archive.ics.uci.edu/dataset/1/abalone
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using the following values before use in training and analysis: MNIST (mean = 

[0.1307], std dev = [0.3081]), CIFAR-10 (mean = [0.4914, 0.4822, 0.4465], std dev = 

[0.247, 0.243, 0.261]). 

For the UCI Abalone dataset, we introduced custom transformations of the testing 

data including the random addition of Gaussian noise (Low σ = 0.05, High σ = 0.5), 

inverting features (1 - feature value), randomly dropping feature columns (Low n = 1, 

High n = 3) and multiplying the features by a factor of 2.0 or 0.5 to simulate abalone 

species with larger (factor of 2) or smaller (factor of 0.5) body proportions while 

keeping the number of rings constant. All features were standardized by removing the 

train set mean and scaling to unit variance before training and testing our model. 

3.5.3 SAGE Model Architecture 

All supervised autoencoder models consisted of a neural network encoder, a neural 

network decoder and third task-focused neural network module. All models were built 

using PyTorch (version 2.2.2) and python (version 3.10.14).  

For MNIST, we constructed an encoder module with two convolutional layers (kernel 

size = 3, stride = 1, padding = 1) followed by 2D batch normalization and max 

pooling (kernel size = 2). The last two layers of our encoder were fully connected 

from the flattened output of max pooling. The classifier module consisted of a two-

layer fully connected network using the encoder’s latent embedding as its input, with 

20 and 10 layers respectively. The decoder architecture for MNIST mirrored the 

encoder, with two fully connected layers followed by unflattening and max un-pooling 

(kernel size = 2), after which two de-convolutional layers (kernel size = 3, stride = 1, 

padding = 1) return the original image size ([batch, 1, 28, 28]). All layers are followed 

by a Leaky RELU activation function, and we use dropout (p = 0.2) between 

convolutional/de-convolutional layers. 
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For CIFAR-10, we instantiated a ResNet18 model from PyTorch with default 

ImageNet pre-trained weights as the encoder module. We re-initialized the last fully 

connected encoder layer before training. The classifier module consisted of two fully 

connected layers using dropout (p = 0.2), with 20 and 10 layers respectively. The 

decoder contained a fully connected layer with 1,024 nodes followed by unflattening 

and three de-convolutional layers (kernel size = 4, padding = 1, stride = 2). Like 

MNIST, we use Leaky RELU activation for all three modules. 

The UCI Abalone model features a four layer, fully connected encoder and decoder 

module each followed by Leaky ReLU activation and dropout (p = 0.2) with 64, 32, 

16 and 1 nodes respectively. The regressor module consists of three fully connected 

layers with a single output node and no activation function using 32, 16, 8 and 1 node 

layers. All non-final layers of the encoder, decoder and regressor use Leaky RELU 

activation. 

3.5.4 Model Training 

Training was performed on a laptop with a 6-core CPU and 32GB of RAM. For 

MNIST, we trained our supervised autoencoder model over 20 epochs with early 

stopping. We used an Adam optimizer with a learning rate of 3x10-4 and batch size of 

64. Decoder loss was measured using mean squared error (MSE) loss and 

classification loss was measured using cross-entropy loss. The total loss was calculated 

as the unweighted sum of the decoder and classifier loss terms. We utilized the pre-

split MNIST training set (n = 60,000) to fit the model without inclusion of any image 

transformations. 

For CIFAR-10, we implemented a two-stage training process, each occurring over 10 

epochs (20 epochs total) with a batch size of 64. The first stage only involved training 

the encoder and classifier weights with an Adam optimizer with a learning rate of 

3x10-4. We used cross entropy loss to quantify classification error and included a 
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center loss term down-weighted by a coefficient (𝛼	= 0.1). We randomly-initialized a 

cluster center coordinate for each of the 10 classes. The first training phase 

maximized the distance between cluster centers, yielding improved latent separation 

of the image classes. For the second stage, we trained the encoder, decoder and 

classifier using a second Adam optimizer and learning rates of 1x10-4, 3x10-4 and 1x10-

5 respectively. We used different learning rates within the stage two optimizer to allow 

for the simultaneous training of the decoder and preservation of the latent embedding 

structure established during the first stage. The decoder and classifier loss terms were 

quantified using the MSE loss and cross entropy loss respectively. The total loss for 

stage two was calculated as the unweighted sum of decoder and classifier error. 

Our UCI Abalone model was trained over 100 epochs with an Adam optimizer and a 

learning rate of 3x10-4. We used MSE for both the decoder and regressor loss 

functions, and the total loss was the unweighted sum of these terms. 

3.5.5 Model Calibration 

After the training process for MNIST and CIFAR-10, we calibrated the autoencoder 

classifier modules with temperature scaling. For each dataset, we classified all 

validation set images using the trained models and divided the raw logits by a tunable 

parameter, T, in order to align model predictions with the true likelihood of correct 

predictions. We used cross entropy loss and a L-BFGS optimizer (learning rate = 

0.01, batch size = 64) to tune T over one epoch for each model. 

3.5.6 k-Nearest Neighbors Distance 

The training split for each dataset was designated as the ‘reference’ embedding for 

both classification and regression analyses. The reference data was compressed using 

the trained model encoder and a Balltree[134] was fit to the resulting latent space. 

Each test example underwent the same encoding process, and the tree was queried 
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using the latent coordinates to determine the average distance to the point’s k-Nearest 

Neighbors (kNN). For MNIST and CIFAR-10 datasets, 𝑘 = 100 whereas for the 

UCI Abalone dataset 𝑘 = 20. 

3.5.7 SAGE Scoring 

Let 𝑥	 = 	 (𝑥!, 𝑥", 𝑥#) represent the observed output values for a given image, 

corresponding to the three SAGE model measures: 

1. 𝑥!: L1 latent embedding distance to the 𝑘 nearest training neighbors 

2. 𝑥": Softmax classifier confidence (argmax) 

3. 𝑥#: Reconstruction error 

Let 𝑋$ be the random variable denoting the distribution of the model’s output for 

measure 𝑖 across the training data and let 𝐹$(𝑥) 	= 	𝑃(𝑋$ ≤ 𝑥$) denote the cumulative 

distribution function (CDF) of 𝑋$.  

We define the exceedance probability for measure 𝑖 as: 

𝐸$(𝑥$) = 𝑃(𝑋$ 	> 𝑥$) 	= 1	 − 𝐹$(𝑥$) 

The SAGE score for an image is then computed as the geometric mean of the three 

exceedance probabilities:  

𝑆𝐴𝐺𝐸(𝑥) 	= 	FG𝐸$(𝑥$)
#

$%!

H

!/#

 

 

3.5.8 Evaluation with Pre-trained ResNet Models 

Pre-trained ResNet models for MNIST and CIFAR-10 were initialized using the 

timm[135] (version 1.0.12) library and incorporated into our workflow for assessing 
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the effects of filtering data points based on SAGE score thresholds. We did not make 

any modifications to these models which were used as out-of-the-box classifiers on 

the train, test and transformed datasets. 

3.5.9 Random Forest Regression 

The UCI Abalone training set was used to train a separate random forest regressor 

model from scikit-learn[113] (version 1.4.2). We performed grid search cross-

validation to determine the best model parameters, testing a variable number of 

estimators ([25, 50, 75, 100]), tree depths ([5, 10, 15, 20, 40]) and maximum features 

([2, 4, 6, 8]). The best model had 50 estimators, a tree depth of 15 and used a 

maximum of 2 features. Regression error was assessed as the root mean square error 

(RMSE) between the number of inner-shell rings and predicted values for the train, 

test and transformed test sets. 

3.5.10 Score Thresholding and Performance Visualization 

SAGE scores were calculated for all examples in the MNIST, CIFAR-10 and UCI 

Abalone datasets as described above. For each set, data was filtered at six SAGE score 

values ([0.0, 0.01, 0.05, 0.1, 0.15, 0.2]) where samples greater than or equal to the 

threshold were retained and all others were discarded. Retained samples were passed 

to the separate, ResNet or random forest regression models and predictions were 

recorded. For MNIST and CIFAR-10 we used the scikit-learn ‘LabelBinarizer’ to one-

hot encode labels and ‘PrecisionRecallDisplay’ to create micro-averaged precision-

recall curves from ResNet predictions. We repeated this process for the training, test 

and transformed test data separately, calculating average precision at each score 

threshold. Abalone predictions were assessed using sci-kit learn’s 

‘root_mean_square_error’ function and visualized as matplotlib scatterplots. 
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4.1 Abstract 

Widespread access to imaging technologies and stronger machine learning (ML) 

architectures for dermatology tasks such as malignancy prediction have spurred a race 

to develop models to assist in the automated diagnosis of skin cancer. However, high 

diagnostic performance on benchmarking datasets quickly deteriorates when models 

are challenged with data from disparate clinical sources. Generalization gaps stem 

from the high variability in skin lesion images due to lighting, capture angle, imaging 

technology and patient phenotype among other factors, impeding the safe application 

of diagnostic ML models in practice. In this study, we apply a novel ensemble 

uncertainty-estimation approach to detect out-of-distribution skin lesion images from 

four publicly available datasets across five countries. Using our method, Supervised 

Autoencoders for Generalization Estimates (SAGE), we quantify likeness of images 

from patients in Argentina, Brazil and the United States to the popular HAM10000 

benchmarking dataset and identify problematic image artifacts that affect the reliability 

of predictions in a teledermatology setting. We show how filtering images based on 

SAGE score thresholds can improve the performance of a separate malignancy 

prediction model and how our approach is robust to variations in image modality and 

the introduction of new diagnostic classes, providing users with a powerful tool for 

interrogating key differences between their data and the training distribution of an ML 

model before clinical implementation. 

4 Extending SAGE to Skin Cancer 
Malignancy Detection 
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4.2 Introduction 

Skin cancers are the most commonly-diagnosed malignancy worldwide, with deadly 

melanomas accounting for over 330,000 new cases per year with steadily rising 

incidence rates.[136,137] However, malignancies represent only a fraction (22%) of all 

index skin lesions referred to dermatologists for biopsy and review, resulting in a 

clinically significant tension between diagnostic sensitivity and specificity.[138] 

Moreover, there are surprising gaps in diagnostic ability between primary care 

physicians and dermatology specialists, and between dermatologists of varying skill 

levels or experience, amplified by the use of dermoscopy.[139] Further barriers to skin 

cancer detection such as low socioeconomic status and rural location combine to yield 

worse outcomes and exacerbate pre-existing health disparities.[137,140] Fortunately, 

the combination of widely available imaging technologies and automated detection 

through machine learning (ML) have the potential to revolutionize skin cancer 

diagnosis and improve global health equity as a result.[141,142] 

Many ML models have been trained to identify cutaneous malignancies within skin 

imaging datasets.[143–148] However, there are notable differences between highly-

curated benchmarking datasets used to train and evaluate ML models and the images 

encountered in real world clinical settings, often leading to reduced model 

effectiveness in practice.[139] Even state-of-the-art models suffer from these 

performance drops; the top 25 entries from the ISIC 2019 Grand Challenge 

misclassified nearly 50% of previously-unseen skin lesion images despite stellar 

performance on benchmarking datasets.[149] Ambitious ML-assisted dermatology 

smartphone phone apps have also been shown to have low accuracy and can 

therefore pose a harm to users attempting to self-diagnose potentially life-threatening 

diseases without expert oversight.[150–152] One major source of difficulty in 

automating skin cancer diagnosis is the variability in imaging technologies like 
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dermoscopes which cannot properly standardize inputs to predictive algorithms – 

outputs can vary based on whether or not the dermatoscope is polarized and the type 

of light source.[153,154] Indeed, even the presence of modest artefacts such as blur or 

blue/red shifted-pixel intensities showed marked decreases to ML performance for 

both diagnostic and disease management tasks when compared to control images.[72] 

Beyond device or light-induced inconsistencies, changes in patient phenotypes such as 

skin phototype have been shown to affect ML model accuracy and represent an 

ethical dilemma in the deployment of dermatological algorithms to underrepresented 

populations when trained on benchmarked datasets.[155] It is therefore critically 

important to assess the similarity of new dermatological images with a model’s 

training data on a case-by-case basis, in order to reduce disparities and identify 

potentially problematic samples before a model is used in any treatment pipeline. 

Some diagnostic dermatology models have attempted to remove corrupted or low-

quality samples through out-of-distribution (OOD) detection or by building inherent 

measures of uncertainty into the prediction task.[156–158] This typically combines 

uncertainty estimation with another primary task, lacking flexibility in adapting to 

different tasks or pairing with stronger models as they become available. Other single-

pronged approaches to measuring uncertainty such as calibration of classifier softmax 

outputs can be intrinsically measured at time of prediction, but fail silently under 

scenarios of data drift.[75] Our previous work has introduced an ensemble approach 

(Supervised Autoencoder for Generalization Estimates [SAGE]) for image uncertainty 

estimation that is robust to corruptions and perturbations missed by singular OOD 

metrics, and can be paired with any downstream model’s training data.[159] In this 

study we implement SAGE to assess the generalization potential of skin cancer 

detection algorithms across dermatology images from five countries and multiple 

imaging modalities. We use our SAGE scoring system to improve performance of a 
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pre-trained malignancy predictor, enriching for images that are appropriate versus 

problematic for ML-assisted diagnosis.[155] 

4.3 Results 

We obtained four publicly-available skin lesion imaging datasets (HAM10000[160], 

HIBA[161], UFES[162] and DDI[155]) each with distinct characteristics and metadata 

(Table 1; Methods 4.5.1). HAM10000, the most widely used dataset for 

benchmarking, contains only one image size ([600 x 450] pixels) whereas images from 

other datasets vary in resolution and dimensions (range: [147 x 147] - [4,128 x 3,176] 

pixels). (Figure 4.1A) HAM10000 features lesions with seven diagnostic classes, five 

considered benign (actinic keratosis, benign keratosis, dermatofibroma, melanocytic 

nevi, and vascular skin lesion) and two considered malignant (basal cell carcinoma, 

melanoma). (Figure 4.1B) Notably absent from the HAM10000 dataset are examples 

of squamous cell carcinoma, a common form of keratinocytic malignancy that 

comprises a significant minority of the images present in the HIBA (9.78%) and 

UFES (8.12%) datasets. Even more substantially, nearly half of all lesions in the DDI 

dataset (45.12%) represented 36 other diagnoses not present in the HAM10000 

dataset. Both dermatoscope and clinical smartphone imaging modalities are included 

in the HIBA and UFES datasets where the ratio of dermoscopic to smartphone 

images is 3.67:1 for HIBA and not provided for UFES. (Figure 4.1C) 

Using HAM10000 as a primary reference dataset, we trained a SAGE model to 

simultaneously encode an image into a 32-dimensional compressed latent space 

vector, reconstruct the original image and predict its diagnostic class from the 

compressed embedding. (Figure 4.2) We found that the SAGE classifier module 

performed well on HAM10000 holdout test images (weighted F1 score = 0.842) while 

the decoder was able to coarsely reconstruct lesion size, shape and pigmentation 

color. 
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Additionally, the SAGE encoder latent space could distinguish variation within and 

between different image sets (e.g. HAM10000, training and testing distributions are 

highly similar whereas HIBA, UFES, and DDI occupy areas of training data paucity). 

To quantify conformity between the training and test images, we calculated each 

image’s SAGE score – an ensemble metric for assessing similarity based on the 

reference distributions for the model’s latent embedding distance, classifier 

confidence and reconstruction error. 

 

 

Figure 4.1 – Overview of skin lesion imaging datasets. A) Four randomly-selected image examples 
from the four main datasets including original photo perspectives. B) Bar charts showing the ratios of 
diagnostic classes for each dataset. C) Bar charts depicting image modality composition for datasets. 
(ak –actinic keratosis, bcc – basal cell carcinoma, df – dermatofibroma, nevi – melanocytic nevi, mel 
– melanoma, vasc – vascular skin lesion)  
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Figure 4.2 – Overview of SAGE model training and scoring process. Images from the HAM10000 
training split are used to fit the encoder, decoder and classifier modules. SAGE score is calculated 
from the train dataset distributions of latent kNN distance, classifier confidence and reconstruction 
error. The trained model is subsequently used to generate similarity scores for test images, and a filter 
is applied before predicting with a separate malignancy recognition model. 
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Figure 4.3 – SAGE scores reveal differences between and within dataset categories. A) Distributions 
of SAGE scores for imaging datasets calculated using the trained model are shown as boxplots. B) 
Boxplots displaying SAGE score by diagnostic category split by dataset. C) Boxplots of test images 
from HAM10000, HIBA and DDI showing SAGE score by imaging modality. D) Images from 
HIBA, UFES and DDI are split according to three FST groupings (I-II, III-IV and V-VI), with 
SAGE score distributions shown as boxplots. (ak –actinic keratosis, bcc – basal cell carcinoma, df – 
dermatofibroma, nevi – melanocytic nevi, mel – melanoma, vasc – vascular skin lesion) 

 

The distributions of SAGE scores for HAM10000 testing and non-HAM10000 

datasets (i.e. HIBA, UFES, DDI) were significantly lower than the train score 

distribution, with the HAM10000 test images showing the highest median score 

(median = 0.50) and DDI the lowest (median = 0.06). (Figure 4.3A) These dataset-

level differences were largely consistent across diagnoses. (Figure 4.3B) However, we 
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observed that images associated with diagnoses missing from the HAM10000 dataset 

had a lower average SAGE score than those corresponding to diagnoses present in 

the training data (mean = 0.12 vs. mean = 0.22). When we removed images of lesions 

with diagnoses absent in the HAM10000 dataset from HIBA, UFES and DDI, we 

expected that differences in SAGE score might be clearly delineated by metadata such 

as imaging modality and skin phototype. However, we found a surprising degree of 

overlap in these distributions (Dermoscopic, IQR: [0.09 - 0.32]; Smartphone, IQR: 

[0.04 - 0.16]; FST I-II, IQR: [0.07 - 0.26]; FST III-IV, IQR: [0.07 - 0.24]; FST V-VI, 

IQR: [0.03 - 0.14]) pointing to the presence of other distinguishing image attributes 

that were unidentifiable from the metadata or lesion type alone. (Figure 4.3C-D) 

We note that HIBA, UFES and especially the DDI dataset are laden with low SAGE 

scoring images with many out-of-distribution features not present in the HAM10000 

data, such as measuring devices (e.g. rulers), dense hair, skin coverings and other 

markings. (Figure 4.4C-E) Even within the HAM10000 training and test data we 

identify uncommon edge cases with low SAGE scores such as lesions cropped by the 

image frame or bubbles resulting from a lapsed contact between the dermoscope lens 

and skin. (Figure 4.4A, B) To establish how the presence and severity of out-of-

distribution features affect SAGE score, we manually-annotated 12 independent 

features for all HIBA, UFES and DDI images (n = 4,527). (Methods 4.5.5, Table 4.1) 

Some features had clear negative correlations with SAGE score such as the presence 

of a ruler or use of camera flash which showed 51.4% and 10.7% reductions 

compared to baseline, respectively. Similarly, the presence of non-skin background in  



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 77 

 

Figure 4.4 – Quantile plots show imaging artifacts associated with low SAGE scores. Images are sorted 
by SAGE score (y-axis) and plotted by image quantile (x-axis) for the A) HAM10000 Train (n = 9,013), 
B) HAM10000 Test (n = 600), C) HIBA (n = 1,616), D) UFES (n = 2,255) and E) DDI (n = 656) 
datasets. For each quantile plot a scatter point marks decile intervals and a vertical dotted line leads to 
the two nearest SAGE score values and the corresponding lesion images after resizing and center crop 
transforms have been applied. 
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an image had a severe negative effect on SAGE score even at low (-44.4%) and 

medium (-74.5%) intensities. Linking multiple features together with a SAGE score 

overlay gives a concise description of what constitutes a typical “high-quality” image, 

such as having no or low amount of hair, high contrast between the lesion and skin 

and little to no non-skin background. (Figure 4.5A) To that end, we frequently 

observed compounding negative effects when detrimental image features were stacked 

such as the 94.7% reduction to SAGE score when both dense hair and non-skin 

background are co-present (mean = 0.01) vs. a 63.2% decrease for dense hair only 

(mean = 0.07) and a 68.4% decrease for majority non-skin background alone (mean = 

0.06). (Figure 4.5B) We also noted that the presence of some image features did not 

affect patients with different skin phenotypes equally. For instance, inclusion of a 

ruler had a 38.9% reduction to average SAGE score in patients with light skin (FST I-

II) whereas this decreased by 75.0% for patients with dark skin (FST V-VI), possibly 

resulting from the higher contrast between the illuminated measuring devices and 

darker skin. (Figure 4.5C) Intriguingly, score differences between FST levels for test 

images were largely ablated after low-quality images were removed, illustrating that 

some extraneous image features are possibly a larger detriment to image quality than 

changes to patient skin phototypes. (Figure 4.6) 
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Figure 4.5 – Manually-annotated image feature associations with SAGE score. A) Parallel coordinates 
plot for test images (n=3,889) with select image features shown along the x-axis with normalized 
feature level plotted on the left y-axis. Right y-axis shows SAGE score from low (top) to high (bottom). 
B) Heatmap of SAGE score by hair density (y-axis) and non-skin background (x-axis) feature severity. 
C) Heatmap of SAGE score by FST level and presence of a measuring device (ruler). 
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Figure 4.6 – Comparison of SAGE score distributions for HIBA, UFES and DDI datasets after 
controlling for image quality. Brackets show statistical significance between distributions calculated 
using the Wilcoxon rank-sum test (α = 0.05). SAGE score differences are not significant (n.s.) between 
FST levels I-II and V-VI (p = 0.06) and levels III-IV and V-VI (p = 0.19) and significant between 
levels I-II and III-IV (p= 0.03). 

 

We next evaluated the ability of SAGE score to improve model performance when 

deployed as a prospective filter. Using a mild SAGE score threshold (0.2), we 

observed that HAM10000 images were retained at high rates (train = 83.9%, test = 

87.2%), whereas the majority of images from other datasets were identified as outliers 

(e.g. DDI retained only 8.4% of its data). (Figure 4.7A-B) This selective filtering 

demonstrated significant improvements to overall performance of a pre-trained open 

source predictor[155] as assessed by area-under the ROC curve (AUC) in both the 

training (original AUC = 0.96, filtered AUC = 0.98) and mixed test datasets (original 

AUC = 0.82, filtered AUC = 0.95), with progressively larger performance 
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improvements as SAGE threshold increased to 0.4 (Figure 4.7C-D). Positive 

predictivity of the mixed test set also improved to equal the average precision (AP) 

performance of the training data at the highest threshold level tested (AP = 0.87, 

threshold = 0.4) (Figure 4.7E-F). Importantly, we found that SAGE score filtering 

improved malignancy prediction performance for both smartphone and dermoscopic 

images and all skin types, with patients at the highest FST levels (V-VI) seeing the 

largest improvements to model performance (Figure 4.8). 

Using SAGE, we find that images of previously unseen lesion types such as squamous 

cell carcinoma, cutaneous T-cell lymphomas, kaposi sarcoma and metastatic 

carcinoma have substantially lower overall score distributions than e.g. melanoma and 

basal cell carcinoma, demonstrating how new disease classes can be isolated by their 

dissimilarity to the training data. (Figure 4.9A) Additionally, we discovered that new 

disease images had poor zero-shot performance when evaluated on the pre-trained 

malignancy prediction model, and that performance for these classes was poor across 

all SAGE score thresholds – accuracy for squamous cell carcinoma, cutaneous T-cell 

lymphomas, kaposi sarcoma and metastatic carcinoma declined by 3.6% whereas 

melanoma and basal cell carcinoma accuracy increased by 19.6% after thresholding at 

a SAGE score of 0.2. (Figure 4.9B, C) For each disease class, we also identified false 

negative (FN) instances where malignant lesions fell below the predictor’s decision 

boundary (0.733) and analyzed the spread of points above and below a conservative 

SAGE score cutoff (0.151) where 90% of the training data is retained. This revealed 

an enrichment of FN images falling below the score cutoff for all malignant classes, 

with unseen malignancies showing a high proportional capture of FN examples (mean 

= 0.88). (Figure 4.9D) 

 

 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 82 

 

 

Figure 4.7 – SAGE score filtering improves performance of a pre-trained malignancy prediction model. 
A-B) Line plots for HAM10000 train and a balanced sample of test images (n=500 per test dataset) 
show retention rates as images below SAGE score thresholds are removed. C) Receiver Operating 
Characteristic (ROC) curve shows overall malignancy prediction performance after SAGE score 
thresholding at five levels for train images. D) ROC curves for sampled test dataset. E) Precision 
Recall (PR) curves show positive predictive performance after SAGE score thresholding for train 
images. F) PR curves for sampled test dataset. 
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Figure 4.8 – SAGE thresholding improves performance of malignancy prediction across key metadata 
categories. A-C) ROC curves for three FST level groupings after filtering test images below five 
conservative SAGE score thresholds. D-E) ROC curves for test examples separated by imaging 
modality. Images below SAGE score thresholds are removed at same five threshold values. 
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Figure 4.9 – Malignant classes missing from HAM10000 are enriched for low SAGE scores. A) SAGE 
score distributions are plotted as boxplots for each group. B) Line plots show the proportional loss 
of images as they are filtered at a series of SAGE score thresholds [0.0 - 0.2] for each malignant class. 
C) Line plots show changes to malignancy prediction accuracy across SAGE score thresholds. D) 
False negative (FN) predictions for malignancy classes show enrichment for SAGE scores below 
cutoff of 0.151, where 90% of train examples are retained. (bcc – basal cell carcinoma, mel – melanoma, 
scc – squamous cell carcinoma, tcl – T-cell lymphomas, ks – kaposi sarcoma, mcar – metastatic 
carcinoma)  
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4.4 Discussion 

In this study we demonstrate the successful application of our novel uncertainty 

estimation method to enhance the reliability of downstream skin cancer malignancy 

detection. Our work uses the most popular benchmarking dataset of dermoscopic 

lesion images, HAM10000, as a reference to quantify out-of-distribution test images 

and identify detrimental image attributes without selection bias or requiring a 

classification label. To our knowledge, this is the first study to apply ensemble 

uncertainty estimation to dermatology imaging datasets in a model-agnostic manner. 

By incorporating four datasets from five countries in our analysis, we also address the 

critical need to reduce generalization gaps when applying skin cancer prediction 

models across global populations. Our method can pair with any dermatology ML 

task so long as the training data is known, which will improve integration of robust 

uncertainty estimation into more trustworthy automated pipelines. We envision 

SAGE as a powerful extension to or replacement for the concept of model cards, 

where users can view detailed information about a model’s training data.[163] In our 

case, we not only quantify the differences between training data and prospective test 

data but also encourage users to interactively probe examples to see where and how 

they might differ from distributions of training image features. 

However, this analysis has several limitations. Despite sourcing images from four 

independent datasets, the vast majority of images pertain to patients with lighter skin 

(FST I-IV) and lack significant representation from Asian and African populations. 

We also note that the FST scale itself has been shown to vary based on environmental 

conditions.[164,165] The data in this study consists of a relatively small cohort of 

~15,000 training and test examples; inclusion of larger imaging datasets or pre-

training on dermatological images could strengthen encoder fine-tuning and yield 

more relevant embeddings instead of initializing on default ImageNet weights from 
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PyTorch. We are also unable to assess the influence of identifiable markings such as 

scars or tattoos, as these were explicitly removed by the authors of each 

benchmarking dataset for patient de-identification purposes. We did not manually-

annotate features for HAM10000 images due to the large dataset size and the 

incidence of these features in the SAGE training data was not analyzed. Furthermore, 

other image features that have been shown to affect ML model performance on skin 

imaging datasets such as color balance (e.g. blue or red pixel intensity shifts) were not 

annotated or assessed. Additionally, we did not study the effects of anatomical 

location on SAGE scoring which could provide additional guidance to users of the 

downstream malignancy prediction model. 

While our model architecture and encoder embedding size of 32 dimensions was 

selected to lower overall training loss, we did not explore larger latent spaces >100 

dimensions or other model architectures which might facilitate improved image 

reconstructions and better classification performance. As hardware support for 

training large ML models continues to decrease in cost, our work could expand to 

encompass larger foundational encoders and more complex latent space embeddings. 

Future work will also seek to pair SAGE with more difficult image segmentation, skin 

cancer diagnosis and lesion monitoring tasks across patient groups and will test a 

larger array of downstream models to develop an interval of task improvement 

facilitated by SAGE. Finally, while this work was explicitly focused on skin cancer 

detection using dermoscopy and clinical photography, SAGE could be broadly 

applicable for a wide array of clinical and non-clinical use cases. 
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4.5 Methods 

4.5.1 Datasets 

Humans Against Machine (HAM10000)[160] consists of 10,015 dermoscopy 

photos sourced from the Rosendahl dermatological practice in Australia and the 

ViDIR Group in Austria. We downloaded files from the Harvard Dataverse 

(https://doi.org/10.7910/DVN/DBW86T) containing JPEG images and associated 

metadata as a CSV file. The metadata file contains columns detailing lesion and image 

identifiers, patient age at time of image capture (median = 50 years old), body site of 

the lesion and diagnostic method. All images are of pigmented lesions and ground-

truth labels are included in the metadata with six diagnostic classes: actinic keratosis 

(ak), basal cell carcinoma (bcc), benign keratosis (bk), melanocytic nevus (nevi), 

melanoma (mel) and vascular skin lesion (vasc). For the purposes of this study, only bcc 

and mel classes were considered malignant; all other classes were considered benign, 

although ak is known to progress to cancer in certain cases. All malignant lesions were 

histologically confirmed. Images have an original size of 600 x 450 pixels and were 

resized using bilinear interpolation where the smaller dimension of height or width 

was resized to 299 pixels, preserving aspect ratio. Images were cropped to 299 x 299 

pixels after resizing to ensure consistency across datasets and compatibility with open-

source ML architectures. Authors include multiple images of the same lesion with 

differing perspectives as a form of natural data augmentation and perform quality 

control to remove out-of-focus images and images with insufficient zoom of small 

lesions. We randomly split HAM10000 into training and test sets stratified by 

diagnostic class and removed any images of lesions from the test set that were also 

present in the training set, leaving 9,013 images for training and 600 for testing.   

The Hospital Italiano de Buenos Aires (HIBA)[161] dataset contains 1,616 JPEG 

images of mixed dermoscopic and clinical smartphone images from Argentina which 

https://doi.org/10.7910/DVN/DBW86T
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were downloaded from the ISIC archive (https://doi.org/10.34970/587329). The 

metadata file contains a row for each image which includes a unique image and lesion 

ID as well as an anonymized patient identifier. Separate metadata columns are also 

included for age (median = 65 years old), sex, family history of skin cancer, Fitzpatrick 

Skin Tone (FST) and image type differentiating between clinical smartphone and 

dermoscopic imaging technologies. 93% (n=566) of the 623 patients had skin 

phototype data and age and sex were recorded for over 99% of patients. Each image 

is assigned a ground-truth label from one of 10 diagnostic classes, 9 of which overlap 

with HAM10000 categories with the exception of squamous cell carcinoma (scc), an 

additional malignancy not included in the training data. The remaining image classes 

were basal cell carcinoma (bcc), melanoma (mel), melanocytic nevus (nevi), actinic 

keratosis (ak), dermatofibroma (df), vascular skin lesion (vasc), solar lentigo (bk), 

seborrheic keratosis (bk) and lichen planus-like keratosis (bk). All malignancies for bcc, 

scc and mel lesions were biopsy-confirmed. Images from the HIBA dataset vary in size 

between a maximum of 4,128 x 3,096 pixels and a minimum of 162 x 152 pixels. All 

files were preprocessed by converting to 8-bit RGB color channels, resized with 

bilinear interpolation and center-cropped to 299 x 299 pixels before use in our study. 

The dermatology program at the Universidade Federal do Espírito Santo 

(UFES)[162] in Brazil published a dataset in 2020 containing 2,298 dermoscopic and 

clinical smartphone images with 6 diagnostic classes: basal cell carcinoma (bcc), 

squamous cell carcinoma (scc), actinic keratosis (ak), melanoma (mel), melanocytic 

nevus (nevi) and seborrheic keratosis (bk). All bcc, scc and mel images were considered 

malignant and lesions were biopsy-confirmed. We downloaded images in PNG format 

and the metadata CSV file from the Mendeley Data Commons link provided by the 

authors (https://doi.org/10.17632/zr7vgbcyr2.1). The metadata file contains patient, 

lesion and image identifiers as well as detailed lifestyle and living condition 

information such as access to piped water and sewage systems, smoking, drinking and 

https://doi.org/10.34970/587329
https://doi.org/10.17632/zr7vgbcyr2.1
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exposure to pesticides. 100% of images have a skin type using the FST scale while 

only 65% of images contain patient sex. The median patient age is 62 years old with a 

minimum age of 6. During manual review of UFES data, we found 43 images with 

inconsistent or mixed labeling (e.g. duplicate images assigned to different ground-

truth diagnoses: 6 instances where the ground-truth label switches between scc and bcc 

and 7 other instances where the label change impacts designation of the lesion as 

benign/malignant. All mislabeled examples were removed prior to analysis. Images 

from the UFES dataset have varying sizes with a maximum of 3,474 x 3,476 pixels 

and a minimum of 147 x 147 pixels. All files were converted to 8-bit RGB color 

channels, resized using bilinear interpolation and center-cropped to 299 x 299 pixels 

before use. 

The Diverse Dermatology Images (DDI)[155] dataset consists of 656 images from 

Stanford dermatology clinics in the US captured between 2010 and 2020. All photos 

were taken on a clinic-issued smartphone and extracted retrospectively from 

electronic health records. We downloaded images and the associated metadata file 

from the Stanford AIMI Datasets Azure link 

(https://stanfordaimi.azurewebsites.net/datasets/35866158-8196-48d8-87bf-

50dca81df965). The DDI dataset features over 40 unique diagnoses, including 

examples from all HAM10000 classes, but 36 others with low incidence in the general 

population and not contained in the other imaging datasets included in our analysis. 

(Supplementary Table 1) Metadata for DDI images is sparse with only a unique image 

identifier, diagnosis, malignancy and skin type information included for each lesion. 

Notably, sex and unique patient or lesion identifiers were absent. Images had varying 

sizes with a maximum of 1,914 x 1,424 pixels and a minimum of 163 x 79 pixels. We 

preprocessed DDI by converting images to 8-bit RGB color channels, resizing using 

bilinear interpolation and center-cropping to 299 x 299 pixels before use. Authors of 

DDI performed additional data augmentation including random rotation and vertical 

https://stanfordaimi.azurewebsites.net/datasets/35866158-8196-48d8-87bf-50dca81df965
https://stanfordaimi.azurewebsites.net/datasets/35866158-8196-48d8-87bf-50dca81df965


Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 90 

flipping of images before training their malignancy prediction model, however we 

were unable to replicate this process due to lack of access to the model’s training 

code. 

4.5.2 SAGE Model Training 

We first normalized all input pixel values using mean and standard deviations from 

the ImageNet dataset. All image preprocessing was completed using pillow (v.10.3.0) 

and the torchvision (v0.17.2) transforms library. The SAGE model architecture was 

written in python (v3.10.14) using pytorch[166] (v2.2.2) and consists of an encoder as 

well as decoder and classifier modules that take the encoder’s compressed embedding 

as input. The decoder contains 6 fully-connected layers, 6 deconvolutional layers and a 

learned upsampling layer while the classifier contains 5 fully-connected layers. We 

used a ResNet50 SAGE model encoder using the pre-trained ‘IMAGENET1K_V1’ 

weights available through the torchvision model library with an embedding size of 32 

dimensions. The model was trained using the train split (90%) from the HAM1000 

dataset in two stages with a balanced batch sampler and a batch size of 63. An initial 

warmup stage trained the encoder and classifier using the combined center loss of the 

latent space embedding and cross-entropy loss of classification until center loss no 

longer improved (maximum of 150 epochs). The second stage trained the encoder, 

decoder and classifier for 150 epochs and used cross-entropy loss as well as the 

decoder’s mean-squared error (MSE) of reconstruction. We utilized a learning rate of 

1x10-4 and a weight decay of 1x10-5 with the AdamW optimizer and trained models 

using two Nvidia A40 GPUs. 

4.5.3 t-SNE Visualization and Plotting 

We generated the latent space embeddings of size 32 for images in all datasets using 

the trained SAGE model. For visualization purposes only, these embeddings were 

mapped to t-stochastic neighbor embedding (t-SNE) space using scikit-learn’s 
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manifold library, labeled according to the dataset of origin and plotted as scatterplots 

using matplotlib[116] (v3.9.0). To explore cluster identities, we plotted HAM10000 

train and test images together and colored scatter points according to their diagnostic 

category. All plots were created using a combination of matplotlib and seaborn[115] 

(v0.13.2), and figures were assembled using BioRender. 

4.5.4 SAGE Scoring 

An identical scoring process was used to that described in Section 3.5.7 of this 

document. For this study, we calculated reference distributions of kNN distance, 

classifier confidence and reconstruction error using the HAM10000 dataset. 

4.5.5 Manual Image Annotation and Parallel Coordinates Plot 

We manually-annotated 12 independent image features (e.g. lesion contrast to skin, 

presence of non-skin background) that could impact quality and reliability of 

malignancy prediction as detailed in Table 4.1 for HIBA, UFES and DDI datasets. 

Images were reviewed by a single consistent observer (W.M.S.) with clinician 

oversight (E.B. and R.F.T.). Biasing information such as diagnosis, FST and 

malignancy status were removed prior to annotation. All annotations were appended 

to the metadata accompanying each dataset. After annotation was completed, we 

normalized the observed levels of 5 image features (lesion contrast, camera flash, hair 

level, presence of ruler and non-skin background) and plotted a line for each test 

image with the color denoted by the image’s calculated SAGE score. We plotted 

images in order from low to high-scoring examples and added random jitter of 1.25% 

to improve visibility of line overlays. 
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Table 4.1 – Description of features used for manual annotation of test images. 

Attribute Description Variable Level 0 Level 1 Level 2 Level 3 

Size Lesion size w.r.t. 
cropped image 
frame 

Ordinal No discernable 
lesion 

Very small to 
small size, nearly 
all skin 

Majority of 
image is skin, 
lesion clearly 
visible 

Majority of 
image is lesion, 
skin barely visible 

Contrast Lesion contrast 
with skin 

Ordinal No contrast Lesion barely 
visible, blends 
with skin 

Lesion clearly 
visible 

Lesion starkly 
visible against 
skin  

Hair Level Hair density 
covering skin 

Ordinal No hair Some hair visible Denser hair (arm, 
chest, partial 
scalp) 

Very dense hair 
(scalp) 

Skew Off-center position 
of lesion in image 

Ordinal Lesion centered Some off-center 
skew 

Lesion on 
periphery of 
image or cropped 

– 

Non-skin 
Background 

Background visible 
in image 
(dermoscope 
border, floor, etc.) 

Ordinal No non-skin 
background 

Any non-skin 
visible in image 
background 

¼ - ½ of image 
consists of non-
skin background 

Over ½ of image 
is non-skin 
background 

Cover Cloth or bandage 
covering of skin 
(hospital gown, 
bandage, etc.) 

Ordinal No skin covering Any skin 
covering visible 

¼ - ½ of skin is 
covered 

Over ½ of skin 
in image is 
covered 

Marking Colored marker on 
skin denoting lesion 
location 

Binary No marking Marking present – – 

Ruler Measuring device in 
image 

Binary No ruler Ruler present 
(white, black, 
green) 

– – 

Flash Camera flash used Binary No flash Flash used – – 

ENEM Eyes, nose, ear or 
mouth visible in 
image 

Binary Not present Present – – 

Blurry Unfocused image Binary Image focused Image unfocused – – 

Multiple More than one 
lesion of similar 
size present 

Binary One lesion Multiple lesions – – 
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4.5.6 Image Quality Control and FST Level Comparison 

Using the manually annotated image features, we removed images from the entirety of 

the HIBA, DDI and UFES datasets (n=3,889) with low lesion pigmentation (contrast 

≤ 1), camera flash, measuring devices, high hair density (hair level ≥ 2) and any non-

skin background (background ≥ 1) leaving 2,168 high-quality images. We then 

partitioned these images into groups according to skin-tone levels (FST I-II, III-IV, 

V-VI) and compared the pairwise distributions of SAGE score values using a two-

sided Wilcoxon rank-sum test and a significance threshold of 0.05. 

4.5.7 Malignancy Prediction 

We used a binary (i.e. malignant v. benign) deep-learning predictor from Daneshjou et 

al.[155] pre-trained on HAM10000 images and implemented in python according to 

instructions on the project’s GitHub repository, as this was the only model from the 

paper with a publicly-available training dataset (https://github.com/DDI-

Dataset/DDI-Code). Preprocessing steps used before malignancy prediction were the 

same as for training and evaluating our SAGE model. Only basal cell carcinoma and 

melanoma classes were considered malignant for HAM10000 images whereas HIBA 

and UFES also contained examples of malignant squamous cell carcinoma lesions. 

The DDI dataset came pre-annotated with histologically confirmed malignancies 

which were used as ground truth labels. All images with an output greater than or 

equal to the predetermined threshold of 0.733 were classified as malignant, with those 

falling below classified as benign lesions for all datasets. 

4.5.8 Overall Malignancy Prediction Performance 

After SAGE scoring and malignancy prediction, a random sample of images (n = 500) 

was taken from the HAM test, HIBA, UFES and DDI datasets and merged to form a 

mixed test set. Each random sample contained malignant and benign images in a 1:3 

https://github.com/DDI-Dataset/DDI-Code
https://github.com/DDI-Dataset/DDI-Code
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ratio mirroring that of the training data and what is encountered in clinical 

practice.[138] We used a series of progressive SAGE score values ([0.0, 0.1, 0.2, 0.3, 

0.4]) and removed images falling below these thresholds from the HAM train and 

mixed test sets, plotting the proportions of each dataset remaining. At each threshold 

we calculated the area under the receiver operating characteristic (AUC) curve using 

scikit-learn[113] (v1.4.2) to visualize changes to overall performance. To measure 

changes to positive predictivity, we used the PrecisionRecallDisplay command to plot 

precision recall (PR) curves and calculate average precision (AP) values after SAGE 

score thresholding. For score thresholding on image type and FST levels, this process 

was repeated using SAGE thresholds of [0.0, 0.01, 0.05, 0.1, 0.2] and all (unsampled) 

test images after removal of rows with missing metadata values. 

4.5.9 Prediction Performance on Test Set Malignancies 

We grouped images in the sampled test dataset with a ground-truth malignant 

diagnosis by disease. For each diagnostic group, we repeated the process of SAGE 

score thresholding using a progressive set of values [0.0, 0.01, 0.05, 0.1, 0.2] and 

removed images falling below each level, plotting the proportion of images remaining. 

We plotted changes to malignancy prediction accuracy over the same thresholds, with 

each diagnostic group represented by a distinct line. We then plotted a joint grid of 

the raw malignancy prediction values against the calculated SAGE scores, isolating the 

false negative (FN) predictions falling below the malignancy predictor’s threshold of 

0.733. We used a split bar plot to show enrichment of FN examples for each test 

diagnostic group below a conservative SAGE score threshold (0.151) where 90% of 

the HAM10000 training dataset is retained.  
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5.1 Future Directions 
5.1.1 Utilizing Predicted Radiation Courses for VA Research 

The radiation course prediction project presented in Chapter 2 affords several 

promising directions for continued radiotherapy research within the VA network. 

However, there are a series of steps needed to make radiation course predictions 

operational for future VA research efforts. First, while electronic health record 

adoption within the VA was well underway at the turn of the 21st century there 

remains the question of how universal billing, procedure and diagnostic code usage 

may have changed over time. An unknown issue is whether shifting patterns of usage 

will have affected the reliability of predictions unequally in different periods. To 

estimate confidence, one can calculate the percentage of predicted ‘Interior’ dates 

falling between the start and end dates of a predicted radiation course where higher 

ratios indicate greater confidence that radiotherapy treatment did in fact occur during 

this time. The fraction of #	NOPQ!R(PQ	!7(PO!SO	QT(PU
(S(T$	#	!7(PO!SO	QT(PU

 can be visualized by plotting on a 

per year basis and either a) only using predicted treatments from years with a 

sufficiently large ratios of interior to total dates or b) creating a cutoff value where 

only courses above the chosen value are retained for further analysis. 

With high-confidence predictions identified, the occurrence of treatment during the 

predicted dates must be internally validated. This task will likely require the use of 

natural language processing (NLP) tools to find references to radiation in free text 

5 Conclusion 
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clinical notes that are available within the VA research computing infrastructure. As 

treatments are confirmed, NLP tools could also be used to capture key treatment 

details like site of delivery, fractionation and dosage which can be added to the 

existing radiation resource. Finally, the expanded treatment resource should be 

migrated to a queryable database environment such as SQL instead of living as an 

isolated document. This would improve access for VA researchers wishing to utilize 

our data for studies pertaining to radiation oncology. The VA offers researchers the 

unique advantage of accessing multimodal patient data where clinical notes and 

lifestyle survey data are connected with genetic data like SNP array panels collected as 

part of the Million Veterans Program (MVP). Using the patient IDs included in our 

resource to subsequently identify outcomes like secondary malignancy or immune-

related adverse events from diagnostic codes or NLP searches could enable cohort-

building for genome-wide association studies, the calculation of risk scores or 

treatment response prediction. 

It should be noted that the future work involving our radiation treatment resource 

only pertains to patients with course data living within the VA’s Corporate Data 

Warehouse. The majority of US Veterans are thought to receive radiation treatment 

from community care centers with data accessible through the Centers for Medicare 

and Medicaid services. Currently, the administrative data available for community care 

patients does not hold the same potential for integration with rich patient data like 

clinical text and genomic sequencing found within VHA databases. More detailed 

treatment data are retained by the healthcare organization that delivered radiotherapy 

and would therefore need to be requested and integrated into the VA before use in 

our shared resource. This is a non-trivial problem in aggregation of patient data from 

CMS that would require an automated request to community care providers for 

patients with high confidence predicted radiation courses asking for records in the 

specified date range. An ingestion mechanism would also be needed to process the 
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result of those requests and standardize formatting between the various EHR systems 

for inclusion in our shared resource. The issue of limited access to CMS documents is 

not only a barrier to studying radiation oncology within the VA but affects all other 

aspects of oncology care that could benefit from additional patient data.   

5.1.2 Standardizing SAGE Model Development 

We have demonstrated that uncertainty quantification with SAGE is a flexible for 

adaptation to various downstream tasks like classification and regression, and that it 

can improve the quality of subsequent predictions when test samples with low 

generalization potential are removed. There are several steps needed beyond the 

proof-of-concept and application studies undertaken in Chapters 3 and 4 to 

standardize SAGE model development and accelerate adoption by users.  

Establishing stronger OOD detection benchmarks: In Chapter 3 we showed 

SAGE can be used to identify OOD samples with two popular imaging datasets and 

an ecological dataset, however no test examples used in this chapter represent 

naturally occurring instances of out-of-sample data. The transforms we use are 

inspired by benchmarking studies like [167] which use a panel of artificial 

perturbations thought to represent common causes of data quality loss in 

ImageNet[168] examples. A stronger reflection of true OOD benchmark performance 

would use datasets with real-world examples of distribution shift instead of synthetic 

manipulations of imaging datasets. A prominent example is the WILDS[1] project 

which includes a package for loading various natural datasets containing domain shift 

(e.g. data from one source is used to train and a second source is used to test), 

subpopulation shift (e.g. test dataset class underrepresented in training data) and 

hybrid settings where both domain and subpopulation shift conditions apply. WILDS 

also provides additional data modalities and tasks that we have not included in prior 

SAGE analyses such as sentiment detection from online comment text and image 
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segmentation from pictures of wheat plants. Illustrating how SAGE improves 

identification of OOD samples in a wider range of tasks, modalities and with more 

realistic examples of distribution shift would increase trust in our method. 

Using improved encoder architectures: With a wider range of data modalities, 

SAGE would also need to incorporate new encoder architectures that have been fine-

tuned for extracting high-quality embeddings using specific kinds of inputs. This 

contrasts with our previous work where we use popular convolutional architectures 

like ResNet[169] initialized with general purpose weights from ImageNet pretraining 

as our encoder of choice. 

 

Figure 5.1 – Illustration of Swin Transformer with hierarchical stacking with different levels of 
resolution. In contrast, Vision Transformer resolution remains consistent. Image from [170]. 

[170] 

While this was sufficient for detecting OOD samples, more powerful image encoders 

could better capture variation within the training dataset and provide stronger 

representations of near-distribution examples for delineation. Recent improvements 

to transformer-based architectures like the Swin Transformer[170] create hierarchical 

representations of input images that retain both local and distant relational maps 

between pixels, scaling linearly with image resolution. (Figure 5.1) Using Swin 
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Transformer encoding blocks could improve signal retention for near-distribution 

samples with more subtle feature variations and therefore enhance embedding quality. 

Domain pretraining: Another approach for improving embedding quality is to 

engage in domain-specific pretraining of our encoders. Returning to the use of SAGE 

with dermoscopic images, a dataset of 400,000 skin lesion images was extracted from 

total body scans and recently released as SLICE-3D[171]. If instead of simply 

initializing encoders on default ImageNet weights we undertook a pretraining process 

with a large task-relevant dataset such as SLICE-3D, this could assist our encoder in 

capturing a better representation of the SAGE reference data during the secondary 

fine-tuning process e.g. when we train the SAGE encoder on HAM10000 

dermoscopic images as was done in Chapter 4. A similar kind of transfer learning 

approach was recently proposed by the authors of PanDerm[172], a dermatology 

foundation model pretrained on over 2 million images from four modalities 

(dermoscopic, clinical smartphone, total body photographs, histology slides) who 

showed state-of-the-art performance on diverse dermatology tasks after further fine-

tuning. Beyond skin lesion images, large pretrained models have been developed for 

NLP tasks in electronic health record tasks (Med-BERT[173]) and omics sequence 

data for various tasks such as predicting the effects of gene mutations on expression 

levels (Enformer[174]) and even broader general purpose genomics foundation 

models (Nucleotide Transformer[175]). Incorporating the use of these models as 

encoders for modality-specific applications of SAGE should greatly enrich the 

embedding quality and improve OOD detection. 

An important caveat for inclusion of large foundational encoders is their size: the 

largest ResNet model we use to embed dermoscopic skin lesion images contains ~25 

million trainable parameters whereas BERT models contain a minimum of 100 

million (4x), Enformer contains 250 million (10x) and the smallest Nucleotide 
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Transformer has over 500 million parameters (20x). This poses considerable 

challenges to the scalability of training a SAGE model as a companion to a separate 

downstream task, for example in clinical use or with devices with limited processing 

capabilities like smartphone or tablets. Incorporating robust uncertainty estimation as 

part of a decision-making pipeline is needed to reduce resource burdens, and long 

times to inference and expensive compute could have the opposite effect. A possible 

alternative to our proposed schema of simultaneously training or fine-tuning the 

encoder with the decoder and classifier modules is to produce high-quality 

embeddings with a powerful foundation encoder only once, using the subsequent 

representations to train a decoder and classifier model. Ultimately, the value of using 

large pretrained encoders entails a tradeoff – foundational models could easily surpass 

10 times the size of the largest encoder used in our studies whereas the smallest Swin 

Transformer, Swin-T, has only 28 million parameters and is comparable in size. 

Adapting SAGE to use a stronger modality-specific architectures like Swin-T in 

combination with pretraining on open source, domain-relevant datasets such as 

SLICE-3D could provide a boost in embedding quality that makes near-distribution 

outlier detection feasible while retaining the scalability benefits of our proposed 

design. 

Integrating other methods of uncertainty estimation: Although we focus on the 

inclusion of three diverse measures of uncertainty in our proposed ensemble metric – 

distance to k-Nearest Neighbors, reconstruction error and classification confidence – 

we discuss other methods of uncertainty estimation in Section 1.1.3 that could be 

incorporated into SAGE. There is of course a practical limit to the number of 

uncertainty measures that could be used to generate an ensemble metric, although 

some ML approaches like random forest have been optimized to employ hundreds of 

smaller models and yield a stronger prediction when averaging model outputs 

together. In our case, we choose three measures of uncertainty for feasibility keeping 
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in mind that these components can be mixed and matched to improve diversity of 

uncertainty estimators or to adapt to downstream task as needed. 

For instance, an iteration of SAGE with fewer test samples and with higher 

computing resources could opt to include probabilistic measures of uncertainty like 

Bayesian methods instead of a standard neural network output like normalized 

confidence of class predictions. MC dropout[36] would use multiple forward passes 

from the latent embedding vector through the classifier module to approximate a 

Bayesian posterior. A measure such as variance of the sampled posterior could 

improve the measure of epistemic uncertainty in the combined SAGE score and add 

robustness at the cost of additional compute. A similar idea is to train an ensemble of 

networks using the latent embedding as input and take the average of the confidence. 

This approach would also enable use of alternative OOD metrics like MaxLogit that 

are inherently less prone to overconfidence. 

Tuning SAGE with downstream information: A further consideration in the 

design approach we put forward with SAGE is that calculation of ensemble 

uncertainty scores is task aware but model agnostic. Because of this intentional 

separation, a gap can exist between performance of the downstream model of choice 

and the estimated ID vs. OOD determinations made using SAGE score thresholds, 

causing correctly predicted examples to be erroneously removed. One way to integrate 

information from the downstream model into SAGE training would be to weight 

examples based on accuracy or to penalize them in the latent space by incorporating a 

contrastive term and maximizing the distance to correct vs. incorrect pairs. If separate 

model predictions are available, the logits could also be used as an additional loss term 

(e.g. binary cross entropy loss) during SAGE model training to condition the 

uncertainty estimates to be higher when downstream prediction is incorrect. Another 

idea is distill the larger model’s knowledge into a student learner which mimics the 
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downstream prediction process and is more computationally efficient than using the 

foundation model for inference.[176] (Figure 5.2) 

 

 

Figure 5.2 – Knowledge distillation from large “teacher” model to more computationally efficient 
“student” model. The student is trained to mimic the outputs of the teacher. Figure adapted from 
[176].      

[176] 

If the student model accepts embedding vectors of the training data as input, 

uncertainty estimates from the student model could then be incorporated into the 

ensemble SAGE score metric. In the case of large foundation models like PanDerm, 

student models could focus on distilling knowledge for one specific task (e.g. 

malignancy prediction from histology slide images) which could possibly yield better 

task and modality-aware estimates of uncertainty for the downstream model than 

training a SAGE module (decoder, classifier, etc.) from the general-purpose 

embeddings alone. 

Like our omission of downstream prediction information during training, we also 

chose to avoid further augmentation of the training data during SAGE model 

development. This is a common preprocessing step in image modeling that can 



Enhancing Generalization  W. Max Schreyer 
_____________________________________________________________________________________ 
 

 103 

improve performance on both rote prediction and OOD detection tasks as 

demonstrated by Hendrycks et al. with AugMix[20]. It is unclear if our choice to 

exclude additional augmentations assists in better matching the SAGE model to the 

downstream task or if this limits the ability to discern near-distribution samples. 

Further testing of image augmentation can take place during the establishment of 

stronger OOD benchmarks and will determine our future recommendations to users. 

Towards a SAGE Platform: The code for SAGE is available on the project’s 

GitHub repository (https://github.com/pdxgx/sage), however adapting our python 

scripts to a given use case requires a low level understanding of deep learning 

packages like PyTorch which may be a barrier to those with minimal coding 

experience. Furthermore, even using SAGE for the purpose-built application of 

dermoscopic dataset comparison requires running our scripts via command line 

interfaces (CLI) like the Mac Terminal application or as part of an integrated 

development environment. To improve accessibility to our approach and standardize 

implementation of SAGE, we could create a python package which serves as a 

wrapper to more code-heavy implementations of PyTorch and torchvision. This 

package would provide users with the option to select from several preset encoders 

like vision transformers and CNNs of varying sizes (e.g. ResNet18, 34, 50, 100), a 

manual input of latent dimension sizes, and pair them with several choices for the 

other SAGE components like decoders and classifiers with the inclusion of Bayesian 

approaches like MC dropout. Additionally, we could expand our offerings of the 

approaches used for combining uncertainty measures beyond the conservative 

geometric mean method that we implemented in Chapters 3 and 4 like arithmetic 

mean or coefficients for a weighted average. This package would be offered for use in 

python development environments and integrated into the backend of a web platform 

where users can upload their datasets and choose SAGE model settings without 

needing to write any code themselves. A suite of pretrained, domain-specific encoders 

https://github.com/pdxgx/sage
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would be hosted on a cloud storage system and connected to our web platform via an 

API, with the ability to mix and match encoders with the SAGE components chosen 

by users. Finally, custom development could be expedited by connecting our web 

platform to a high-performance computing cluster where SAGE models are 

efficiently trained, used to generate data embeddings and output an uncertainty score 

for both the uploaded training and test data with the remote use of hardware such as 

GPUs. The outputs of the trained model could then be retained as part of the user’s 

SAGE project for faster inference when new test data are uploaded to the platform 

for evaluation. 

5.2 Ethics of ML Generalization in Oncology 
Informatics 

As a response to George E.P. Box’s aphorism, “All models are wrong, but some are 

useful”, the need for ML advancement can simplistically be formulated as the desire 

to improve the utility of statistical models. With success too often determined by 

metrics like Top-1 or Top-5 accuracy on benchmarking datasets, it is common to 

forego wider discussion about the choices made by developers during model 

development and the implications of such tradeoffs when models are later deployed in 

settings that affect real people. In the field of oncology informatics, we must not only 

acknowledge performance-based definitions of what makes ML “useful” but consider 

the ethics of model imperfections and their consequences for human health. Despite 

the large literature dedicated to improving generalization reviewed in Section 1.1.3, the 

logical result of George Box’s truism is that all models will retain some form of deficit 

in practice. Indeed, an over-emphasis on maintaining model performance in every 

possible deployment situation has even been described as chasing the “myth” of 

generalizability by Futoma et al.[177]: a more principled approach would allocate 
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greater effort to learning how to identify and cope with these inevitable deficiencies 

instead of obsessing over their eradication.  

Considering the ethical questions embodied in such tradeoffs is still in a stage of 

infancy. Prominent issues like underspecification[178], where a population sample is 

missing from a model’s training dataset and therefore underperforms when testing on 

people from that population, are clearly problematic in oncology settings and have 

therefore been discussed in some detail. A 2024 paper by Vandersluis and 

Savulescu[179] considers the problem of underspecification in the context of a breast 

cancer diagnosis model trained only on females which therefore underperforms on 

male patients – should this model be deployed in clinical settings despite its known 

weaknesses? They conclude that the benefit to the majority of patients (females) 

outweighs the exclusion of a small minority group while commenting that the simple 

exclusionary criteria offered by this example (e.g. if male, remove from evaluation) are 

not available when more complicated subpopulations of patient cohorts are silently 

underspecified. Furthermore, they note that the minority group in this instance 

doesn’t bear a history of injustice and medical treatment bias that could change the 

moral calculations of such a dilemma. 

Yet opaque underspecifications exist even in settings where minority patient 

populations are clearly visible and bear such a history of injustice. A 2021 review 

paper[180] highlighted these concerns in automated dermatology diagnosis algorithms 

where only 10% (n = 7) of studies included any information on skin type despite the 

fact that patients with darker skin typically have lower disease detection rates and 

higher mortality in cases of malignant melanoma[181]. Implementing AI systems for 

diagnosis could therefore exacerbate existing health disparities if the same systems are 

used across patients of all skin types.  
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Dismayingly, we have seen the propagation of such biases in high-notoriety projects 

like Google Health’s DermAssist tool[182], where only 0.28% of training cases 

included patients with the darkest Fitzpatrick Skin Type (FST), and DermaSensor, the 

only currently FDA-approved dermatology AI diagnostic tool where 97.7% of 

patients in its DERM-ASSESSIII validation trial[183] identified as white and over 

84% of participants were classified as FST level III or lower. DermaSensor’s 

conditional FDA approval in 2024 came with a requirement to monitor performance 

of their device in underrepresented patient populations. The clinical follow-up study 

timeline remains unknown. While the FDA’s approval requirements are 

commendable, we can’t predict the extent to which such requirements will result in 

the revocation of approval if they are shown to be biased against patients with darker 

skin types. The presence of skin type disparities in DermAssist and DermaSensor 

training data underscores the urgent need for quantification methods that can help 

users determine when a patient sample is inappropriate for AI-assisted diagnosis and 

refrain from making recommendations. Groh et al.[184] demonstrate that even the 

use of “fair” decision support algorithms can exacerbate human diagnostic accuracy 

disparities for non-specialists when reviewing images from light and dark skin 

patients. Furthermore, they show that humans are sometimes influenced by 

automated diagnostic tools to include incorrect predictions in their differential 

diagnoses. We therefore posit that a robust uncertainty estimation tool like SAGE 

(which we show does not suffer OOD detection loss as FST levels vary) must 

accompany diagnostic support tools as indicators of model failure and algorithmic 

bias before testing. 

Ultimately, the gains from developing methods for stronger model generalization and 

efforts to preempt generalization failures are not zero-sum: both are needed to 

prevent the ethical failures of algorithmic bias propagation and silent 
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underspecifications that can diminish the prospect of using ML to achieve better 

outcomes in cancer care settings. 

5.3 Summary 
Enabling machine learning models to generalize safely to diverse samples beyond the 

original training distributions is an exciting prospect for expanding the reach of AI 

systems. Undoubtedly of equal (if not superior) importance is our need to develop a 

keen understanding of where, when and why these systems fail. The significance of 

such failures is epitomized in medical disciplines like oncology where lapses in 

performance are poised to affect quality of care, research efforts and human health 

outcomes. 

To summarize, the contributions presented in the body of this thesis are: 

1. A structured data extraction method for attributing radiology course dates 

using machine learning that takes universal billing, procedure and diagnostic 

codes as input. The method was retrospectively applied to build a resource 

of over 1 million predicted radiation courses linked to US Veteran patients. 

2. A robust, task-aware and model agnostic method (SAGE) for dataset 

comparison based on uncertainty estimation. We use SAGE to detect and 

remove corrupted samples in two benchmark imaging datasets and one 

ecological dataset. 

3. Application of SAGE to real world skin lesion imaging datasets enables the 

identification of artifacts and outliers and improves the generalization of a 

downstream malignancy prediction model. 

Our goal with this work is to advance the adoption of techniques for safe and 

sustainable ML in two oncology settings, namely identifying radiotherapy treatments 

from widely generalizable administrative data and creating a method for standardizing 
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uncertainty estimation and OOD detection to preempt generalization failures when 

using automated diagnostic models. Although limited to these two applications, the 

principles we demonstrate are crucial to advancing model safety in medical 

applications writ large by identifying training features that transfer between medical 

centers and creating stronger measures of OOD detection that are valid even under 

conditions of data drift. Furthermore, we seek to promote uncertainty estimation as a 

key steppingstone to risk-aware machine learning applications not just in healthcare 

but in virtually any setting where a human operator needs to guard against avoidable 

errors in ML decision-making. 
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