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Abstract 

Molecular phenotypes, or subtypes, can describe cancer as distinct diseases within primary 
tissues-of-origin. Machine learning (ML) can be applied to this molecular taxonomy of cancer 
for classifying newly diagnosed samples in supporting clinical decision making and informing 
development of molecular therapeutics. The Cancer Genome Atlas (TCGA) provides high-
dimensional genomic profiles for solid-tumor cancers where each sample is labeled with an 
intrinsic subtype. ML classifiers can be trained across tumor types to reveal cancer type-specific 
biology and models for use in trials and studies. Although gene-expression signatures are 
frequently used to delineate cancer subtypes, they are the downstream transcriptional effect of 
proteogenomic alterations, including somatic mutations in the exome. To facilitate analysis of the 
relationship between cancer transcriptomic states and their underlying mutation profiles, a 
feature selection method within a sub-sampling framework was developed to identify 
corresponding sets of mutated and expressed genes at subtype resolution. Rare subtypes within 
cancer molecular profile data present challenges due to limited statistical power. To address this, 
a variational autoencoder-based sample generation method was developed and evaluated to 
produce synthetic gene expression data with properties similar to the real training samples. 
Cancer model systems, such as cell lines and organoids, provide a means to obtain empirical data 
on responses of different cancer types to anti-cancer compounds. However, data from these 
model systems suffer from nested batch effects and have substantial differences from in-vivo 
conditions. We propose a phenotype-preserving latent feature representation to remove these 
effects and glean insight into cancer-specific biology. In sum, this dissertation demonstrates 
rationale for ML in cancer genomics and transcriptomics, application of ML in cancer subtyping, 
interpretation of cancer biology with ML, improving ML in cancer molecular profiling, and 
transferring knowledge between domains of cancer genomics and transcriptomics with ML.
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Chapter 1— Introduction to multi-omic cancer subtyping applications of ML  
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Thesis 
 

Machine learning (ML) applied to human and model system cancer molecular profiles, in 

particular molecular subtyping, can advance precision medicine toward the clinic (Chapter 2), be 

used to interpret the molecular biology of cancer (Chapter 3), improve modeling performance via 

synthetic data generation (Chapter 4), and transfer knowledge between data platforms or model 

systems (Chapter 5). 

 

Cancer incidence and epidemiology 
 

Cancer incurs the highest burden of all human diseases as measured by Daily Adjusted Life 

Years1. This corresponds to a global incidence probability of 20% prior to age 75 with 10% 

chance of death2. Cancer is more prevalent in developed countries; this socioeconomic aspect of 

cancer can be quantified with a measure of Human Development Index3. Lung, breast, and 

prostate are among the most common cancers and incidence rate comparisons can be 

standardized by age and are typically reported in terms of sex-specificty4. In the United States, 

incidence has decreased for males while remaining constant for females while mortality has 

decreased for both males and females over the 15-year period from 1999 to 2014 5. These trends 

are attributed to advancements in earlier detection and more effective treatment. 

 

Machine learning in precision oncology 
 

In precision oncology, subtyping of cancer informs prognosis and therapeutic development; for 

example, mutation and expression profiles of individual tumors can be used to develop tailored 

molecular therapeutics6. Early work in the systematic prediction of phenotypic class based on 

molecular features was done for acute leukemias based on gene expression data7. Determination 

of minimum gene sets in prediction tasks subsequently emerged as a research goal to facilitate 

the development of diagnostic tools8. High-throughput sequencing technologies have led to the 

omics datasets that make ML applications possible across detection and diagnosis tasks9. 

Identification of parsimonious feature sets, that are gene-centric, advances clinical 

implementation of precision oncology10. Tissue-of-origin can be predicted based on mutation 
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profiles however driver mutations have been shown to not be the most performant feature type11. 

Additional considerations in the application of ML to cancer genomics are data-specificity of 

models, interpretability of features, and limited sample sizes12. Generative models, such as 

variational autoencoders (VAEs) can be adapted to produce synthetic data in augmenting 

traditional, interpretable ML13.  

 

Cancer as a disease of the genome, epigenome, transcriptome, and proteome 
 

The American Joint Committee on Cancer (AJCC) has indicated precision molecular oncology 

as a complementary approach with which to evolve the utility of the traditional tumor, lymph 

node, metastasis (TNM) cancer patient classification14. High-throughput sequencing technologies 

have enabled comprehensive molecular characterization of cancer with The Cancer Genome 

Atlas (TCGA) project seeking to uncover the genomic roots of cancer via delineation in finer 

categorizations of molecular subtypes15. The TCGA culminated over ten years of pilot and 

production data generation to deliver the Pan-Cancer Atlas of molecular profiles for ~11,000 

patient samples, 7 data types, and resulted in a new taxonomy of cancer that included subtypes 

defined with primary tissues of origin16. TCGA provides a basis for aggregated reports of 

cancer-type specific gene alterations and biological process signalling patterns17 that can be used 

for comparison in subsequent studies. In sum, the TCGA data make it possible to interrogate the 

degree to which molecular profiles can inform clinical decision making, investigate interactions 

between genomic alterations and predictive transcriptomic features, and characterize the 

statistical power effects of limited sample sizes18. Additionally, programs such as the Clinical 

Proteomic Tumor Analysis Consortium19 and the Human Cancer Models Initiative20 provide 

further molecular data coverage in both humans and cancer model systems. 

 

While somatic mutations affecting protein-coding regions of oncogenes and tumor suppressor 

genes are established drivers of tumorigenesis, they represent only one dimension of a complex 

landscape of molecular alterations. The oncogenic phenotype is frequently shaped by a 

confluence of events that extend beyond the exome. Epigenetic dysregulation, for instance, 

including aberrant DNA methylation patterns and histone modifications, can profoundly alter 

gene expression programs, leading to the silencing of critical tumor suppressor genes or the 
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ectopic activation of oncogenic pathways independent of direct sequence mutation. Furthermore, 

the functional non-coding genome plays a significant role; mutations in regulatory elements such 

as enhancers and promoters, or alterations in the expression of non-coding RNAs (e.g., miRNAs, 

lncRNAs), can disrupt entire gene networks and contribute to malignant transformation. These 

processes, coupled with post-translational modifications that modulate protein function and 

stability, create a multi-layered system of oncogenic inputs that collectively define the cellular 

state. 

 

The transcriptome, as measured by mRNA abundance, serves as a critical nexus that integrates 

these diverse molecular inputs. A cell's transcriptional state is not a direct reflection of its 

genomic sequence alone but is rather the net output of its underlying genetic lesions, its dynamic 

epigenetic landscape, the status of intracellular signaling cascades, and post-transcriptional 

regulatory mechanisms. Consequently, a gene expression signature provides a functionally 

coherent and highly informative snapshot of the tumor's biological state. While the analysis of 

the mutational landscape is indispensable for identifying initiating events and potential targets 

for therapy, the transcriptional profile often yields a more powerful and robust signal for 

molecular subtyping. It effectively captures the integrated downstream consequences of myriad 

oncogenic processes, providing a more comprehensive basis for classifying tumors into clinically 

and biologically distinct subgroups. 

 

Cancer molecular profiling technologies and challenges 
 

Molecular omics technologies have been developed to measure mutations and methylation to 

DNA, gene expression levels, and other data types typically using bulk tissue samples21. 

Definition of molecular subtypes within primary tissue-of-origin cancers is made possible by the 

outputs of these data generating technologies sometimes in combination with traditional 

attributes of cancer such as histological features22. Technical artifacts may exist within these data 

due to different platforms used to measure the same biology as with gene expression measured 

by both RNA microarray23 and the more recently developed RNA-seq24. Rescaling data between 

RNA-seq and microarray distributions is essential when re-applying trained models across 

studies or samples. Within sequencing technologies, variations in read length, reference genome 
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alignment, variant calling, and other technical challenges can result in non-biological noise in the 

data25. Challenges in the analysis of genomics and transcriptomics data include limitations of 

clustering techniques for prediction of new samples, risk of overfitting models, and the need for 

interpretation of biological function26. The curse of dimensionality is where the number features 

substantially outnumbers the number of samples and is common in biomedical datasets due to 

the diversity of data sources. In cancer molecular profiles and cell line experiments, there may be 

cancer types with rare subtypes or observations with 10 or less samples and tens of thousands of 

features. Overcoming this curse of dimensionality to locate biological signals within high 

dimensional genomic, epigenomic, and transcriptomic molecular profile data is a common theme 

in the development of clinical ML models. 

 

Information theory in feature selection 
 

Feature selection is a set of methods that aim to reduce the noisy and uninterpretable aspects of 

high-dimensional datasets such as those generated with genomic assays27. Feature selection 

addresses the curse of dimensionality by reducing the ratio of features to samples. Feature 

selection methods are generally binned into four categories: filter methods, wrapper methods, 

embedded methods, and hybrid methods28,29. Feature selection can address specific data 

challenges such as noise reduction, highlighting biological signals, and enhancing interpretability 

by removing irrelevant and redundant features such as co-expressed genes. In cancer, 

identification of mutation patterns of mutual exclusivity and finding subtype-specific mutation 

features is of interest in the context of characterizing functional relationships between genes30. 

Domain knowledge can integrate with computational feature selection techniques, for example in 

cancer molecular subtyping this could be running feature selection across a mixture of different 

data types or or within individual data types. 

 

Entropy and mutual information are important information theory concepts relevant to feature 

selection and feature engineering31. Entropy is the minimum descriptive complexity of a random 

variable. In the context of cancer subtype feature selection, we aim to identify gene-centric 

features that minimize the entropy of the target variable, thereby maximizing the information 

content. Mutual information measures the amount of information shared between two random 
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variables. By maximizing mutual information between features and the target variable, highly 

predictive features can be identified. 

 

Machine learning overview 
 

Learning from data includes supervised and unsupervised methods32. Supervised learning is 

where a series of training cases, such as molecular profiles, with corresponding response 

measurements, such as tissue-of-origin or molecular subtype, are used to learn, or fit, a predictive 

model. The intention is to then apply the fitted model to make the same type of predictions on 

similar data that the model has not previously seen, a process termed generalization. Importantly, 

there is an implicit ground truth in supervised learning that the category labels have been 

assigned a priori as attributes of the training samples. In unsupervised learning, clusters, such as 

groups of tumor samples with similar genomic profiles, are inferred via patterns in the values of 

unlabeled molecular profiles. These clusters of samples can then be used to assign labels to 

samples for subsequent training of supervised models. Unsupervised methods include association 

rules, principal components, and clustering. Clustering methods can be combined i.e. 

clusters-of-clusters; this approach has been applied in designating molecular subtypes within 

breast cancer33. 

 

The diverse array of machine learning methods that have been developed for various types of 

data differ greatly in their underlying algorithms. To find a particular model effective for a given 

data set can thus require empirical search over model types, not just optimizing within a given 

model, when developing a particular ML task34. Types of ML methods can be divided into neural 

network and non-neural network-based methods with the former including canonical model 

types such as decision trees (DT), random forests (RF), logistic regression (LR), and support 

vector machines (SVM), among others35. Neural network ML models work by updating weight 

parameters on a set of interconnected nodes during training and are equivalently diverse in their 

various implementations. Canonical neural network architectures included recurrent neural 

networks (RNNs) for time series modeling and convolutional neural networks with image 

modeling capabilities36. Most neural networks consist of more than one hidden layer of nodes 

thus are considered to be a deep learning (DL) architecture. DL models can be categorized as 
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discriminative or generative and within generative DL models are a class known as autoencoders 

that possess the genomically-useful property of learning dimensionally reduced, or latent, 

representations of data. These latent factors capture the essence of data distributions by means of 

a representative minimal set of composite features that capture most of the variability while 

reducing the effect of unnecessary or redundant features37. 

 

In ML, the class-imbalance problem in labeled data is an important problem with implications 

for how machine learning results are evaluated38. When the ratio of samples in the majority class 

substantially outnumbers the number of samples in minority classes (or minority class in the case 

of binary data where there are only two class labels), a given model may inadvertently 

mis-predict those minority samples disproportionately with respect to the majority class in 

optimizing its accuracy during training. F1 score, or the harmonic mean of precision and recall, 

is a model evaluation metric that protects minority classes from being exploited to boost overall 

accuracy39. F1 is preferred over other metrics, such as balanced accuracy, from a clinical 

perspective of molecular cancer subtyping due to more stringent treatment of false positive 

diagnosis and false negative diagnosis of rare variants — both outcomes that result in substantial 

consequences for patients. 

 

Patient impact 
 

The intention of this research is to translate these computational advancements into tangible 

benefits for patients. The frameworks developed here provide a foundation for a more 

personalized approach to cancer care. By providing the means for molecular subtype 

classifications, this work aids clinicians in selecting the most effective existing therapies and 

offers patients a clearer prognosis and understanding of their tumor's likely progression. Looking 

forward, the ability to correct for differences between preclinical models and human tumors is an 

essential step toward predicting which drugs will be effective for an individual patient. 

Furthermore, by enabling the generation of synthetic data for rare cancer variants, these methods 

provide the potential to develop better predictive models for patients. In sum, this dissertation 

provides foundational tools and insights that can be used for guiding therapy, improving 

prognostication, and ultimately prolonging patients' lives. 
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This introduction chapter has reviewed the salient genomic and transcriptomic concepts of 

cancer as well as machine learning concepts in the context of molecular subtype prediction with 

an emphasis on the inherent challenges of molecular profiling data. Associated concepts in 

information theory, feature selection, and model evaluation have also been introduced providing 

the context for the succeeding chapters. 

 

Concept map 

 
Chapter 2, Implement machine learning — predict TCGA subtype of novel tumors 

●​ Label assignment methods not suitable for class prediction; clinical motivation 

●​ Classifier development process, 26 TCGA tumor types with 106 subtypes 

●​ Transferability of trained models, validate TCGA-trained models with external cohorts 

●​ Inform further collection of data, disentangle biological signal from statistical power 

●​ Library of classifiers and feature sets, resources for trials and studies 

 

Chapter 3, Interpret machine learning — somatic mutations in oncogenes vs mRNA signatures 

●​ Apply TMP findings, sub-sampling threshold and feature selection methods 

●​ Benchmark feature selection, importance, and onco-screening methods 

●​ Subtype-specific mutation-expression interaction networks 

●​ Data type predictive signal comparison: mutation, methylation, and gene expression 

●​ Expression signature performance on cancer samples stratified by detected onco-status 

 

Chapter 4, Improve machine learning — synthetic sample generation  

●​ Review ML applications in biology, genomics, cancer subtyping 

●​ Review DL, transfer learning, latent representations of data 

●​ Review synthetic data concepts and methods 

●​ VAE transfer learning; pretrain and finetune model to prepare encoder and decoder 

●​ Latent variable recombination methods for synthetic sample generation 

●​ Evaluation methods to quantify the quality of synthetic data 

 

Chapter 5, Extend machine learning — cancer model systems batch correction 
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●​ Cancer model systems background 

●​ Concepts of nested batch effects, structuring data to be machine learning ready 

●​ Develop and test evaluation frameworks and batch correction methods 

 

Chapter 6, Conclusions, overall scientific contributions, and individual contributions 

●​ Conclusions specific to each of the results chapters — 2 through 5 

●​ Summary-level description of contributions to science of these experiments 

●​ Chapter-level breakdown of individual contributions to presented herein 

 

Through these concept reviews and experimental results, this dissertation demonstrates how 

machine learning can address fundamental challenges in cancer omics including clinical 

implementation of subtyping for diagnosis and guidance of treatment, generalization of findings 

to other studies, building subtype-specific gene interaction networks, demonstrating the utility of 

expression signatures in the context of mutational state, synthetic data generation of molecular 

profile samples, and approaches to model system correction and evaluation pipelines. The 

interdisciplinary nature of modern scientific publishing afforded the opportunity to practice 

simultaneous collaboration with individual initiative and contribution. Cancer molecular 

subtyping is important because it provides patients and clinicians with both a more-accurate 

prognosis and better-informed decisions in treatment. Additionally, ML applied to subtyping can 

help with connecting molecular features that are specific to different types of cancer with other 

data such as gene-interaction knowledge to advance understanding of the underlying biology of 

the disease.  

 

 

9 



Chapter 2 — Classification of tumors to TCGA molecular subtypes, model 

validation, and guidance of further data collection 

 

Kyle Ellrott, Christopher K. Wong, Christina Yau, Mauro A.A. Castro, Jordan A. Lee, Brian J. 

Karlberg, Jasleen K. Grewal, Vincenzo Lagani, Bahar Tercan, Verena Friedl, Toshinori Hinoue, 

Vladislav Uzunangelov, Lindsay Westlake, Xavier Loinaz, Ina Felau, Peggy I. Wang, Anab 

Kemal, Samantha J. Caesar-Johnson, Ilya Shmulevich, Alexander J. Lazar, Ioannis Tsamardinos, 

Katherine A. Hoadley, The Cancer Genome Atlas Analysis Network, A. Gordon Robertson, 

Theo A. Knijnenburg, Christopher C. Benz, Joshua M. Stuart, Jean C. Zenklusen, Andrew D. 

Cherniack, Peter W. Laird 

 

Content adapted from: “Classification of non-TCGA cancer samples to TCGA molecular 

subtypes using compact feature sets”, Cancer Cell, 2025 

 

Adaptation in accordance with Elsevier’s permission’s policy: 

https://www.elsevier.com/about/policies-and-standards/copyright/permissions 
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Abstract 
 

Molecular subtypes have been defined in the The Cancer Genome Atlas (TCGA) and delineate a 

cancer’s underlying biology. Subtype discovery methods such as unsupervised clustering and 

histology are not sufficient for classification of new undocumented samples in a clinical setting. 

To address these challenges, five machine learning methods were explored to identify classifiers 

and compact feature sets specific to primary tumor types. These feature sets were derived from 5 

data types of gene-centric genomic, epigenomic, and transcriptomic molecular profiles and were 

often not the same type of features used to define the subtype categories. The most performant 

models frequently selected expression features over the other four data types. External validation 

of classifier subtype prediction concordance was conducted for one cancer type, breast invasive 

carcinoma (BRCA). Biological distinctions between subtypes can be determined via comparison 

of classifier-selected features with signaling pathways. Sample-size effect modeling allows for 

determination of ultimate cohort prediction performance with additional data of the same type. 

The models are accessible in Docker containers as a public resource for non-TCGA patient 

sample classification. In sum, this work is an interdisciplinary approach toward ML-driven 

clinical translation of ‘omics data. 

 

Introduction 
 

The traditional basis for classifying cancers has been anatomic site or organ of origination along 

with AJCC/UICC TNM stage, morphologic grade, and histological features40. Subtyping of 

cancer informs prognosis and guides therapeutic decision making. A classification scheme of 

cancer based upon tissue-of-origin is substantiated by genomic studies where distinct genomic 

and transcriptomic biology is associated with anatomic site41–43. The Cancer Genome Atlas 

(TCGA) provides a database of cancer genome and transcriptome profiles; data to support 

molecular subtyping was an originating goal of the data collection and aggregation project. The 

project originally stemmed from a collaboration between the National Cancer Institute and the 

National Human Genome Research Institute. The concept of distinct transcriptomics, 

epigenomics, and genomics in defining cancer subtypes is supported by previous studies44–50. 

However, methods that were used for assigning labels to training samples are not sufficient for 
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predicting the subtype category for a newly diagnosed sample in a clinical implementation. For 

genome studies and clinical trials to leverage TCGA cancer types, models must be capable of 

prediction of newly diagnosed samples using features amenable to a pre-trained classifier that 

leverages a previously defined classification scheme. In this study, a gene-centric TCGA dataset 

for 8,791 tumors across 26 primary tumor types and 106 subtypes with 5 data types of features 

was prepared and machine learning classifiers spanning 5 ML methods were trained and 

cross-validated with multiple feature selection methods to produce a library of 412,585 models. 

From these results, a set of 737 top models by cancer type and data type were identified and 

made publicly available as a resource. Future work to incorporate the availability of additional 

‘omics may result in refinement of the subtype label assignments to existing and new samples 

and new approaches to clinical screening panel development whereas the underlying direction of 

the field of precision medicine becoming more molecularly driven will remain constant. 

Ultimately, each patient’s tumor is unique to that person and represents an n-of-1 subtype with a 

unique response to therapy. This work of extending coarse definitions of cancer types from 

tissue-of origin to molecular bridges toward that ideal of precision medicine. Lessons learned 

from the present work include data type performance, transfer learning capabilities, guidance of 

further data collection via sample size effect analysis, and pathway biology distinctions of 

subtypes.  

 

Results 

 

Tumor subtypes defined and classifier models developed 
 

Molecular subtypes were defined within primary tumor types following the cancer-type-centric 

approach to patient care based on histopathology and anatomic location. Some TCGA cohorts 

like COADREAD and KIRCKICH were merged based on inter-cancer subtype overlap. Dataset 

preparation included retrieval of subtypes from the PanCancer Atlas resources and assembly of 

the molecular profiles. The five data types comprising the aggregated molecular profile within 

each cancer were DNA mutation, RNA-seq, DNA methylation, micro-RNA, and copy number 

variation. Feature and sample characteristics of the data are shown in Fig 2-1, Panels A and B, 

respectively. The result of preparing ML-ready subtype prediction data was 26 uniformly 
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formatted molecular profiles where each mapped to an anatomical location on the human body 

and included a corresponding cross validation file. 
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Fig. 2-1 TMP subtype feature distributions and subtype-level sample distributions. A Feature counts by 

data type within each primary tumor type. Total raw feature counts on the order of tens of thousands per 

primary tumor type. Expression features comprised approximately half of the total features per tumor 

type. B Sample counts by subtype within primary tumor types. The number of subtype classes varies from 

two to seven per primary tumor type with the number of samples per class asymmetrically distributed on 

the order of tens to hundreds of samples per class 

 

The five classifier methods utilized for subtype prediction model development were Subscope51, 

Scikit Grid52, AKLIMATE53, Cloud Forest54, and JADBio55. Subscope was the neural 

network-based model, AKLIMATE incorporated prior information on biological pathways, 

JADBio was an auto-ML technique, Cloud Forest was a modified random forest method, and 

Scikit Grid searched over ML models in the scikit-learn library. Training of each of the five 

classifier methods was conducted over each of the 26 cancer types and using individual and 

combined datatypes within each cancer type. These combinatorial effects in conjunction with 

Scikit Grid and JADBio both containing embedded method versions resulted in the large number, 

412,585, of models as the aggregate experimental output. To account for the class-imbalance 

nature of the data, all of the raw predictions produced by this developed model set were scored 

with the F1 measure38,56 for subtype prediction performance. These F1 scoring results were 

aggregated into a unified results matrix to facilitate inter-cancer comparisons.  

 

Four primary observations were identified in the analysis of prediction performance, the data 

used to originally define the subtypes, and the feature sets selected by the models. First, in 

cohorts where subtypes were originally defined by multiomics or histology generally yielded 

performant classifiers. Second, the mRNA datatype for model-selected features predominated 

among the higher performing models. Third, for cancers defined by mutation or methylation 

datatypes, such as SKCM and LGGGBM, model-selected data types tended to match the 

defining data type. Fourth, subtypes defined with genome-wide features i.e. mutation load, 

chromosome instability, or CpG island methylator phenotype such as GEA and COADREAD - 

were difficult for gene-centric the classification approach and lower performance was observed 

in these cases. These four observations are summarized with a comparative plot of F1prediction 

performance and datatypes as shown in Fig. 3. 

 
 

15 

https://www.zotero.org/google-docs/?xE4Dz2
https://www.zotero.org/google-docs/?sQwIcq
https://www.zotero.org/google-docs/?opoe2U
https://www.zotero.org/google-docs/?9jKOoF
https://www.zotero.org/google-docs/?2JbQNL
https://www.zotero.org/google-docs/?9cdDsW


 

 

Fig. 2-2 Classifier performance metrics, defining datatypes, and model-selected features. Classifier 

subtype prediction performance, quantified with F1 scores, for highest performing identified model within 

each of the 26 tumor types is shown at the top of the figure. Mean overall weighted F1 score for each 

primary tumor type is shown with a horizontal red bar. Individual subtype performance within each 

primary tumor type is plotted as round markers, numbered by subtype, and colored by the data type(s) 

used originally to define that subtype. The stacked bars at the base of the figure shows the proportion of 

model-selected feature-set data types for the top model in each cohort. Printed at the base of each cancer’s 

stacked bar is the number of gene-based features comprising the set identified by that cohort’s 

most-performant subtype classifier  

 

PAM50 predictions recapitulated in external validation 
 

To assess the generalizability of our classifier development method, we tested whether two of 

our TCGA-trained BRCA gene expression classifiers could recapitulate PAM50 subtype 

predictions in external data sets. The AKLIMATE and Scikit-grid methods were each tested in 

two external data sets - METABRIC57 and AURORA58. The METABRIC cohort used microarray 

gene expression measurements whereas our TCGA training data was based on RNA-seq data. 
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The AURORA dataset samples were prepared using an alternate FFPE (formalin-fixed 

paraffin-embedded) method compared to our fresh frozen TCGA sample prep. 

 

In the METABRIC validation, the BRCA subtype prediction performance was conducted in the 

context of sample-level silhouette scores59. Briefly, silhouette scores are the similarity of each 

sample to its own subtype distribution vs the next-closest subtype distribution. Positive silhouette 

scores indicate samples that are more similar to their own subtype class and negative for more 

similar to another class. Both the AKLIMATE and Scikit-grid models were first trained on the 

full TCGA BRCA sample set then used to predict each sample in the METABRIC set; prediction 

results are shown as aggregate bars in the Sankey diagram shown in Fig. 2-3. Highly concordant 

calls were observed for both models with the majority of calls being concordant within each 

model-subtype combination except for HER2 with Scikit-grid. Both models showed similar 

behavior in discordant calls for LumB as LubA with similar proportions of samples. Scikit-grid 

miscalled HER2 as Basal more frequently than the AKLIMATE model. The central horizontal 

bars in Fig. 2-3 depict the silhouette scores for each sample. Samples with lower Silhouette 

similarities were more likely to be called discordantly. 

 

The greater GDAN-TMP experiment included a multi-class pairs analysis and sub-experiments 

on sub-setting of samples by silhouette, that was work beyond the scope covered here and those 

results are detailed in our team’s publication10; Ellrott (2025). 
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Fig. 2-3 Sample-level concordance analysis of model validation on external cohort for BRCA. Original 
METABRIC PAM50 calls to SK Grid (left) and AKLIMATE (right) classifications. Center horizontal bars 
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represent silhouette scores — the similarity of each sample to its own subtype distribution vs next-closest 
subtype distribution. Positive silhouette scores indicate samples more similar to their own subtype class 
and negative for samples more similar to another class 
 
The results of the METABRIC external validation are summarized in a Venn diagram with Fig. 
2-4.  
 

 
Fig. 2-4 Venn diagram illustrating agreement and disagreement of the classifiers on the METABRIC 
cohort. Intersection and relative compliments of concordant and discordant predictions for METABRIC as 
ground truth labels against calls of TCGA-trained classification models 
 
A correlation between classifier confidence and Silhouette score was hypothesised. To test this, 
we leveraged the confidence scores emitted from the AKLIMATE model. The calls that are more 
confident would be expected to have a greater difference in confidence between the first and 
second calls. Conversely, the less confident calls would have a relatively lower difference in 
confidence between first and second calls. We observed this correlation to hold to a degree that 
varied by subtype as shown in Fig 2-5. Luminal A (Spearman Rho = 0.69, p =53 1067) and 
basallike (Spearman Rho = 0.60, p =1012) subtypes exemplified this relationship. 
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Fig. 2-5 Sample silhouette scores vs. classifier confidence. The confidence score is defined by the 
difference in confidence between the best and second-best sample prediction confidence calls for 
AKLIMATE. Circles indicate samples with concordant calls and triangles indicate samples with 
discordant calls. Linear regression trend lines for each subtype with 95% confidence intervals 
 

Similar validation results were obtained for our TCGA-trained classifiers on the external Aurora 
cohort where a quantile rescaling to correct for distributional differences between FFPE and 
fresh-frozen60 TCGA training samples was critical. 
 

Number of samples needed to train classifiers 
 

We applied our feature sets and classifiers to predict the number samples needed to achieve 

adequate prediction performance in a given tumor type. This extrapolation of performance can be 

affected by the type of classifier used, the feature sets used, and the fidelity of the original labels 

used for training61–63. In alignment with Figure 2-2, the main performance and data type 

comparison figure, discrepancies in individual cohort performances can be attributed to 

differences in the recapitulation nature of this work where supervised models here are attempting 
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to predict subtype labels based on specifically curated gene-centric features whereas the labels 

may have been assigned in the previous project with other gene-centric features or genome-wide 

feature not present in these data. A power-law function was fit to prediction scores made with 

subsets of samples within cancer types. The same general trend in power law curves captures the 

behavior of learning curves held across cancer types, Fig 2-6. Predictive performance was 

observed to plateau at around 150 samples for cohorts with at least that many samples. 

 

Fig. 2-6 Power law curves fit to subtype prediction performance as a function of sample size. 

Sub-sampling was repeated 100 times with corresponding performance averaged at each sample size 

increment 

 

A method was developed to fit a Burr statistical distribution to a set of 100 power law function 

projections each fit to a sub-sampling derived learning curve in the range of 35 to 70 samples. 
 

21 



The method was developed on the cancer types with at least 250 samples by optimizing against 

the mean squared error over the 15 cohorts. These results are presented as actual vs. projected 

performance in Fig. 2-7. 

 

Fig. 2-7 Predicted vs actual subtype classification score for 15 cancer cohorts with at least 250 samples. 

Performance projections based on fitting power law curve to sub-sampling range of 35 to 70 samples in 

increments of 5 

 

The performance extrapolation method was applied to adrenocortical carcinoma to model an 

approximate doubling of the cohort’s sample count to 150 samples. This prediction performance 

extrapolation for adrenocortical carcinoma is shown in Fig. 2-8. 
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Fig. 2-8 Adrenocortical carcinoma performance projection to 250 samples. Projections with error based 

on repeated fitting of power law curve within 35 to 70 sample range sub-sampling framework 

 

Common features, tumor biology, and pathways 
 

Reproducibility in feature set selection can be difficult within a given ML method64 especially in 

the case of redundant features such as coregulated genes. Given this, a set of core genes based on 
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features that were selected by two or more methods were identified within cancer type. 

Biological themes were evident in these gene-sets such as BRCA oncogenes ESR1 and FOXC1 

and COADREAD and SKCM feature data types matching their respective defining data types, 

methylation and mutation. 

 

The presence of equivalently predictive genes in the feature sets of our subtype prediction ML 

models potentially resulted from co-membership in biological signal pathways in a comparison 

with Pathway Commons65. The oncogene status of the identified feature sets contained genes 

both associated and unassociated with the COSMIC oncogene database. 

 

Discussion 
 

Model interpretability was an intent of the gene-centric dataset design. The core concept of this 

study was that certain methods for label assignment, such as unsupervised clustering on 

genome-wide features like chromosome or microsatellite instability, are not sufficient for 

predicting the subtype label of a newly diagnosed sample. By identifying cancer type-specific 

gene-centric feature sets with corresponding classifiers, this study provides a basis for further 

interpretation of biological distinctions between cancer in other studies as well as the basis for 

development of clinical screening panels that would rely on cancer type-specific genes that 

probabilistically define molecular subtypes within those primary tumor types. 

 

Classifier prediction performance was evaluated across 26 TCGA primary types comprising 106 

tumor subtypes. With a model defined as the combination of a classifier and a feature set, a 

model specific to each of the 26 primary tumor types was identified. For more than half the 

tumor types, model performance exceeded 90% and for the remaining tumor types, model 

performance exceeded 80%. Measuring performance with the F1 score provided a more realistic 

assessment of the classifiers given the class-imbalances of the data. 

 

The relationship between the features used to define the subtypes and the features selected by the 

classifiers as predictive of subtype, as shown in Figure 3, was one of the main overall learnings 

of the study. The most frequent data type selected was gene expression. This indicates that for 
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gene-centric measurements, transcriptomic features are generally the most information-efficient 

data type with which to construct minimal feature sets. 

 

Generalizability in machine learning is a fundamental concern. An external validation was 

conducted with the METABRIC cohort. Two types of models - Scikit Grid and AKLIMATE - 

from our study recapitulated the four main BRCA subtype labels with remarkable concordance. 

The silhouette score of how well a given training sample fits within its assigned class can be an 

indicator of how well that sample will be predicted. The validation experiment on METABRIC 

shows a relatively high degree of concordance in the transferability of our models. Future work 

could investigate the poor outcome observed in HER2 with the SK Grid model via inclusion of 

additional feature sets, additional confidence and distribution comparison metrics, and direct 

inclusion of the original BRCA subtype definition methods to evaluate the fidelity of the label 

assignments taken as the ground truth. 

 

In considering how our library of models could be implemented in another study or in a clinical 

trial whether data is pre-existing and the type of data available drives the decision flow. 

 

 

Fig 2-9 Workflow to select model for predicting subtype status of a new sample. The decision criteria is 

‘omics data existence and type of new sample. TMP project Table S5 available via the supplemental 

information of that resource10 

 

In a study setting where an understanding of statistical power vs. predictive signal is required, a 

learning curve analysis on the existing sample set can yield insight in the relationship between 

sample size and predictive performance. Secondarily, a projection of prediction performance 

improvement can be cast from the learning curve to inform decisions on data collection. 
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In the full GDAN TMP project results, it was observed that the redundancy of biological 

pathway membership of classifier-selected features yields confidence that these features that 

were identified from multiple methods are of biological relevance to their respective cancer 

types. Interchangeability of features within different feature sets of similar predictive power was 

explored; these results are available for review in the full project manuscript. 

 

Conclusions 
 

By determining a combination of feature set and classifier specific to primary tumor types, ML 

models can be developed that rely on minimally-sized feature sets for efficient prediction of the 

molecular subtype of a given sample. This capability scaled across TCGA solid tumors brings 

molecular medicine closer to clinical implementation and provides a basis for further inquiry into 

the molecular biology of cancer subtypes. Standardized cross validation and performance scoring 

appropriate for multi-class predictions can enable comparisons across diverse feature selection 

and classification methods to support machine learning model development programs. Transfer 

learning for models and features is possible between studies if care is taken in rescaling data as 

seen with the microarray to RNA-seq BRCA experiment. The constraint of limited sample sizes 

in cancer genomics data can be characterized with learning curves. These learning curves can 

also be used to predict ultimate predictive performance upon addition of more samples with the 

same molecular profiling. 

 

A potential limitation of our method is in the case of a new or undocumented subtype, the 

capability of a trained classifier is constrained by the validity of the original subtype definitions. 

Compared with ensemble methods, which would require feature sets with potentially little or no 

overlap for each of the constituent models, our method of model building via classifier-feature 

set search preserves the parsimonious feature set goal. Although our dataset, with less than 

10,000 samples, is far too small for training a large language model, the results of our study 

could potentially be used for fine-tuning of large models. 

 

Methods 
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This work on model development and evaluation was part of a larger project conducted by the 

Tumor Molecular Pathology (TMP) Analysis Working Group of the Genomic Data Analysis 

Network (GDAN). Informed consent of samples used was covered under the local Institutional 

Review Boards of the TCGA Research Network. 

 

Gene-centric molecular profiles for 26 primary tumor types spanning 106 subtypes were 

obtained from the project’s controlled Synapse repository66. Five data types comprised these 

profiles: mRNA-seq, DNA mutations, DNA methylation, copy number variation, and 

micro-RNA. These data were tabular in format and contained no missing values. So that cross 

validation was applied consistently across the five machine learning modeling methods, each 

cancer had a pre-designated 100-repeat, 5-fold cross validation file in addition to its molecular 

profile file. One cancer type, LIHCHOL, required a rebuild of its molecular profile and 

corresponding cross-validation file due to post-hoc changes in the included samples. To rebuild 

these project files, raw files were obtained from each of the five data sources and processed into 

a unified format then concatenated to the final .tsv project file format. To remove missing values, 

an iterative process of removing 20% of samples with missing values alternated with removing 

20% of features with missing values was applied. The 100-repeat, 5-fold cross validation file 

creation method was reverse engineered from the other cancer types and implemented with 

scikit-learn train-test split. The completed set of subtype-balanced repeated cross-validation folds 

utilized as training and testing sets for model development. 

 

Of the 5 total ML methods utilized in this study, Scikit Grid was the one developed at OHSU by 

the Ellrott Lab and is the focus here. The Scikit Grid models that were developed for this study 

consisted of a feature set and corresponding scikit-learn classifier. The feature sets for this work 

were prepared by Jordan Lee of the Ellrott Lab with two methods - RFE within Scikit-learn and 

the forward-backward early dropping algorithm with the R package MXM. The classifiers 

utilized were: Adaboost, Bernoulli Naive Bayes, Decision Tree, Extra Trees, Gaussian Naive 

Bayes, Gaussian Process, K Nearest Neighbors, Logistic Regression, Multi-layer Perceptron, 

Multinomial Naive Bayes, Passive Aggressive, Random Forest, Stochastic Gradient Descent, and 

Support Vector Machine. 
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To develop each grid of hyperparameter configurations for the Scikit-learn classifiers, common 

ranges of hyperparameter settings were determined via online resources for each specific 

hyperparameter, such as learning rate or number of estimators, within each specific model. A 

survey of common hyperparameter settings specific to each of the scikit-learn classifiers and 

from this a config file was created to support deployment of models and hyperparameter 

combinations over the feature sets via OHSU’s cluster, Exacloud. The Scikit-grid component of 

the experiment was deployed in conjunction with GDAN-TMP co-author Kyle Ellrott. 

 

Crisp, or individual sample predictions within each repeat cross-fold, prediction results were 

scored with Scikit-learn’s function F1 score: 

 

 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑓1_𝑠𝑐𝑜𝑟𝑒()

 

This ML-performance metric is defined as the harmonic mean of precision and recall and 

functions to address the class imbalance characteristic of these data as outlined in the 

introduction. Prediction results aggregated with classifier-selected features were sorted by 

highest prediction score, lowest prediction standard deviation, then lowest feature count. These 

results were aggregated with subtype-defining data integrated to produce Fig. 3. 

 

For the external validation on BRCA, raw instrument microarray gene expression data were 

obtained from the METABRIC experiments57. Probe values were averaged by gene and 

distributionally-scaled to the TCGA mRNA data. Sample silhouette scores59 were first calculated 

for the METABRIC cohort. Then AKLIMATE and Scikit-Grid models were pre-trained on the 

full set of TCGA samples and used to predict each METABRIC sample to produce the results 

visualized in Fig 2-2. Crucially, a quantile rescaling of the expression values in the METABRIC 

microarray data was performed to align the distribution of expression values with those of the 

TCGA training set to facilitate the transferability of classifiers. Overcoming an FFPE sample 

preparation artifact was the focal challenge for the AURORA experiment. The METABRIC and 

AURORA external validations were conducted in collaboration with Jordan Lee of the Ellrott 

Lab at OHSU and Chris Wong of the Stuart Lab at University of California, Santa Cruz. 

 

 

28 

https://www.zotero.org/google-docs/?tD3Dvy
https://www.zotero.org/google-docs/?9bkSmD


Python packages in addition to Scikit-learn utilized for analysis and plotting: Scipy, Numpy, 

Matplotlib, and Seaborn. 

 

Table 1 TCGA demographics41 

Statistic Value 

Age at Diagnosis  

Median (years) 60 

Range (years) 10 - 90 

Sex  

Female 52% 

Male 48% 

AJCC pathologic tumor stages for TCGA 
cancers, source DOI:  
https://doi.org/10.1038/s41416-018-0140-8 

Table of TCGA 
stages: 
https://www.nature.co
m/articles/s41416-018
-0140-8/tables/1 
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Abstract 
 

Gene expression signatures, such as the PAM50 breast cancer signature, are frequently used as 

molecular definitions of cancer subtypes. While these transcriptomic measurements of 

protein-coding genes provide the ability to differentiate between different cancer subtypes, they 

do not necessarily correspond to the putatively initiating mutational landscapes. We hypothesized 

that some of the mRNA signatures instead represent the integrated effects of many layers of 

regulation and their predictive utility would hold over the 26 GDAN-TMP primary TCGA tumor 

types encompassing 106 molecular subtypes. To decipher these complex relationships, we first 

utilized a memo-sort algorithm - based on the fundamental information theory concept of 

memoization - to identify mutated genes at subtype resolution, with a characterization of mutual 

exclusivity. Next, feature selection within a repeated sub-sampling framework was applied to 

mRNA-seq gene abundance measurements to identify corresponding expression signatures. Gene 

networks were built by mapping these oncogene and mRNA feature sets using gene-to-gene 

interactions reported in Pathway Commons with widely variable results over both subtypes and 

primary tumor types. In testing four onco-screening approaches, cancer samples were stratified 

by whether each set of oncogenes would have detected their cancer or not; gene expression 

signatures are shown to perform equivalently well between these sample cohorts. Gene 

expression incorporates multiple initiating molecular processes of cancer of which a tumor’s 

mutational landscape is one component — the results of these experiments comprise coherent 

evidence in support of the utility of gene expression signatures toward clinical panel 

development and biological interpretation. 

 

Background 

 

The coding region of the genome - sections of DNA directly associated with production of 

functional proteins - has generally been the focus in studies aiming to determine onco-driver 

genes67,68. This focus resulted from the lower cost of whole exome sequencing (WES) compared 

with whole genome sequencing (WGS) in the effort to translate mutational signatures to the 

clinic69,70. Next-generation sequencing technologies have since emerged and include single-cell 

sequencing, immunophenotyping, epigenetic profiling, and transcriptomics71. While somatic 
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mutations, typically instantiated with WES oncogene measurements, are widely understood as 

one of the major drivers of tumor differentiation72, our research, Ellrott et al. (2025), has shown 

that alterations in the coding transcriptome provide the best source of information for defining 

molecular subtypes10. Machine learning (ML) methods consistently identify gene expression 

measurements over mutational profiles as more performant in delineating cancer subtypes. This 

reinforces the concept that mRNA portraits of the transcriptome are of utility in capturing how 

cancer changes complex proteogenomic interactions73. The set of experiments in this work 

focused on the GDAN-TMP MUTA (MC3 oncogene filtered mutation) and GEXP (mRNA-seq 

expression) data with one experiment here including the datatype METH (DNA methylation) as 

a control. 

 

Feature selection algorithms are used to overcome the curse of data dimensionality - where the 

number of features is extensively more than the number of samples. Feature importance methods 

score the values of individual features relative to other features74 for the purpose of interpreting 

what factors drive model performance. Feature importance in ML can be conceptualized 

similarly to the weights in a regression model - the sign and magnitude of the coefficients in an 

equation indicate how independent variables affect the dependent variable. For analysis of high 

dimensional genome-transcriptome data, these feature interpretation capabilities are essential to 

building ML pipelines of clinical utility75. 

 

Several findings from the GDAN-TMP project were relevant to the design of this study. First, 

different ML methods applied to a given cancer type can yield divergent results such as different 

sets of features selected that lead to both variability in biological interpretations and differences 

in prediction performance. We applied this lesson of methodological benchmarking in this work 

in comparing multiple onco-screening methods over the 8,791 TCGA cancer samples included in 

these data. We also applied a benchmarking approach in the comparisons of mRNA-seq feature 

selection methods and feature importance methods. Next, a threshold of 70 samples had been 

observed in the TMP study as the sample size where predictive performance markedly improved 

model performance across the cohorts; this observation was used to determine the sub-sampling 

threshold in the feature selection framework in this work. In another example - the external 

METABRIC cohort validation in the TMP project - a silhouette score was utilized to characterize 
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goodness-of-fit of individual samples to their respective classes; we extended that concept here 

with feature importance scores applied to the selected mRNA features as a means to inform 

feature engineering and feature set analysis. Additionally, the GDAN-TMP  mutation profiles 

utilized in these experiments included four mutation types: LOF (loss-function76,77), nons 

(non-synonymous78), HOTS (hot-spot79,80), and COMP (composite81). Briefly, LOF mutations 

result in partial or complete loss of protein function, nons includes gain-of-function and neutral 

mutations such as nonsense and read-through with missense as the most-common type of nons 

mutation, HOTs represent unusually high mutation frequency across different tumors or patients, 

and COMP indicates more than one single nucleotide variant within a single gene. 

 

Gene interaction networks have been cataloged and indicate what other genes a given gene may 

interact with82,83. Oncogene lists have been established that can be used to identify the mutational 

status of individual samples84,85. Investigation of expressed gene sets that correspond with 

mutated gene states can be done at both the primary tumor and molecular subtype levels. These 

data on gene interactions may also include directionality and the type interaction such as 

“controls expression of”. Mutual exclusivity and co-occurrence of somatic driver mutations have 

been previously characterized in the MC3 project by Ellrott et al. (2018) for TCGA samples86 in 

the context of signal transduction pathways. 

 

Results 

 

To facilitate direct gene-to-gene comparisons, the mutation feature values were first aggregated 

by gene - each unique gene in the mutation data was given an overall designation of mutated if 

that gene was indicated as mutated for any of the four mutation types within any feature. The 

mutation and expression molecular profiles were mapped within each primary tumor type via the 

Pathway Commons gene-interaction .sif file. This was done by taking the three-way intersection 

of the mutation genes, known interactions, and expression genes. This gene-list filtering was 

done to control for equivalent probability in support of permutation tests. Corresponding 

mutation and expression feature sets within each primary tumor type were then identified from 

these mapped gene sets. For the mutation data, a de novo implementation of a memo-sort mutual 

exclusivity algorithm87,88, based on the concept of memoization, was developed and applied at 
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subtype resolution. For the expression data, the MXM89 forward-backward early-dropping 

(FB-ED) feature selection was run within a repeated subsampling framework, with replacement, 

which produced a compendium feature set that was then sorted by frequency to reveal a ranked 

set of the most commonly selected expression features for each cancer type. Directed 

gene-network interaction graphs were then constructed from these feature sets; a representative 

example of these analytical processes is shown in the flow chart in Fig. 3-1. 

 

 

Fig. 3-1 Pipeline overview for mRNA and mutational feature set identification and interaction analysis. 

Within each primary tumor type, mutation status was aggregated over mutation types at the gene level. 

After taking the intersection with known interactions, our memo-sort algorithm was applied to the 

mutation features whereas for the expression profiles, the MXM forward-backward early-dropping 

selection algorithm was applied within a repeated sub-sampling framework. From this, gene-interaction 

graphs with primary, subtype, or mixed resolution can be built from the engineered feature sets 

 
Memo-sort algorithm applied to mutation profiles 
 

 

34 

https://www.zotero.org/google-docs/?2ni4Th


The memo-sort algorithm revealed the most-frequently mutated genes within each cancer type 

and the degree to which these mutations co-occurred, Fig. 3-2. For most subtypes, mutations in 

only two or three genes cover the majority of the samples within that subtype. For example, in 

ACC subtype 2 (ACC_2), mutations in ERBB2, the first most-frequently mutated feature, or 

C5NK1D, the third most-frequently occurring gene, would be indicative of this subtype for 

almost all the samples. 

 

 

Fig. 3-2 Mutual exclusivity and co-occurance of mutations at subtype resolution. Waterfall plots of the 

memo-sorted of mutation genes characterized by the memo-sort algorithm within TCGA molecular 

subtypes showing the general patterns of mutual exclusivity within each subtype with simultaneous 

overlap of genes between subtypes. These observed patterns held for most of the 26 GDAN-TMP primary 

tumor types 

 

We next validated the application of the memo-sort algorithm to the raw data of mutated genes 

by first running the MXM forward-backward early-dropping feature selection method within a 

sub-sampling framework and then applying the memo-sort. The results of this sequential process 

reveal both similarities and differences to the direct application of the memo-sort, as shown in 

Fig. 3-3. For example, the gene ERBB2 was still the predominant feature for ACC_2 whereas a 
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divergence from the raw data was observed with BCL2 emerging as a potentially predictive gene 

in selected genes for ACC subtypes 1 and 2. 
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Fig. 3-3 Benchmarking of mutation memo-sort with prior feature selection. Statistical feature was run to 

down-select predictive features prior to application of the memo-sort for comparison with the direct 
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application of the memo-sort algorithm shown in Fig. 3-2 Both similarities and differences in mutational 

patterns across cancer types are revealed 

 

mRNA feature selection within a subsampling framework 

 

To identify mRNA features relevant to primary tumor types, we focused on the MXM 

forward-backward early-dropping feature selection algorithm that was identified as relatively 

performant in the GDAN-TMP project. To produce a quantification of relative feature 

importance and counteract over-fitting, we utilized a sub-sampling-with-replacement strategy 

where the feature selection was repeated 250 times for each primary tumor-type at a threshold of 

70 samples. This sub-sampling threshold was previously determined in an experiment on 

statistical power-analysis in the GDAN-TMP project10, Ellrott et al. (2025). The selection 

frequency across the 250 repeats of the top-10 most-often selected expression features at primary 

tumor resolution are shown in the main panels of Fig. 3-4 with inset panels showing the full 

distributions of selected mRNA-seq features over the 250 selection replicates.  
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Fig. 3-4 The 10 most-frequently selected expression features at primary tumor resolution. 

Forward-backward early-dropping statistical feature selection was run in a repeated sub-sampling 

framework to identify predictive expression features. Main panels show the top-10 features selected for 

the first-four primary tumors; inset panels show the full set of selected features over the 250 selection 

replicates. The observed patterns generalized over all 26 tumor types 

 

To benchmark the performance of the MXM feature selection algorithm within the sub-sampling 

framework, recursive feature elimination (RFE) feature was also run on the expression features 

in the same 250-repeat 70-sample threshold framework. Again interpreting the frequency of 

selection as a measure of biological relevance of individual genes to specific cancer types, the 

RFE method was observed to return a lesser degree of separation in rate of selection for 

individual features, Fig. 3-5. 

 

 

Fig. 3-5 Recursive feature elimination (RFE) feature selection method benchmark for the MXM-based 

selection shown in Fig. 3-4 
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The relative compactness of the most-frequently-selected features MXM sets was quantified with 

an area-under-the-curve calculation for the first four cancers, Fig. 3-6. The MXM 

forward-backward early-dropping method selects features with significantly (Mann-Whitney 

test, p-value 0.029) sharper drop-off in frequency of less-often selected features over the 

selection replicates. This pattern held across the 26 TCGA cancers under investigation. 

 

Fig. 3-6 Area-under-curve (AUC) comparison of feature selection rates by method. For the aggregated 

sets of expression genes for MXM, as shown in Fig 3.4 and RFE shown in Fig 3.5, MXM converges on a 

narrower set of frequently-selected features as seen in the sharper spikes of selection frequency at the 

taller end on the left-hand side of the mRNA (expression) histograms for the MXM and RFE feature 
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selection methods. This effect is quantified here with an area-under-the-curve (AUC) calculation showing 

how MXM selects significantly (Mann-Whitney test, p-value 0.029) more-parsimonious feature sets for 

the first four TCGA cancers; this pattern holds in general over the remaining cancer types 

 

mRNA feature importance benchmarking 

 

These comparatively-performant MXM feature sets were carried forward for downstream 

interaction analysis of mutated genes specific to subtypes and analysis of mRNA signature-based 

onco-status. Interpretability of these mRNA feature sets was quantified with two feature 

importance methods at subtype resolution - scikit-learn decision tree (DT) Gini and SHAP. Better 

separation of individual features within subtypes was observed for the scikit-learn feature 

importance method; feature importance quantifications with error bars for the standard deviation 

over 30 replicates of the importance calculations are shown in Fig. 3-7 and Fig. 3-8 

Supplemental. This comparison of subtype-specific feature importances can inform development 

of subtype-specific clinical panels as well as elucidate subtype-specific cancer biology. For 

example, for the first-ranked feature for ACC_1, both methods identify PDHA1 as the most 

important feature; however only the scikit-learn method does so with statistical significance as 

determined by the error bars of standard deviation. For ACC_2, TNSF13B is identified by 

scikit-learn as the most important by a wide margin; although SHAP identifies this feature in the 

top three, it does so with no significance across the entire set of 10 features. This observation 

reinforces the theme of applying multiple methods for ML applications in molecular subtype 

analysis for validation and robust interpretation of results. 
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Fig. 3-7 Subtype-specific feature importance calculations with scikit-learn Gini method. Error bars are 

standard deviation over 30 importance calculation replicates 

 

 

Fig. 3-8 SHAP implementation of class-specific feature importances. Error bars standard deviation; for 

comparison with scikit-learn Gini importances shown in Fig. 3-7 
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Mutation-expression interaction graph 

 

Next, network interaction graphs were constructed for mutation and expression genes within 

each primary tumor type. The two most-mutated genes identified in the mutual-exclusivity 

analysis for each subtype within each tumor type were selected and the union of these mutation 

features composed the upstream component of the graphs. Any expression genes occurring more 

frequently than the p-value 0.01 (binomial test, alternative = greater) threshold were then added 

and interactions reported in Pathway Commons with the mutation genes as the source and the 

expression genes as the target were used to construct the graphs. Examples of increasingly 

complex graphs are shown in Fig. 3-9. 

 

The same MC3 oncogene was among the two most-mutated for more than one subtype within 22 

out of the 26 primary cancer types. Increasing the threshold to the strictest possible level of only 

the single most-mutated gene for each subtype within each primary tumor type still resulted in 

overlap of the same gene being the most-frequently mutated for more than one subtype within 18 

out of the 26 primary cancers. The average number of mRNA features occurring more frequently 

than expected at the 0.01 p-value selection significance for each cancer was 105 with a standard 

deviation of 41. This was out of an average 445, standard deviation 253, total unique mRNA 

features per cancer selected over the 250 MXM sub-sampling runs. The redundancy in common 

mutations at subtype resolution shows potential overlap in biological processes between cancer 

subtypes. Combined with the cross-relationships between subtype-specific mutations and 

expression genes of importance, this highlights the need for minimal feature sets that capture the 

interplay of initiating processes and are capable of robust probabilistic prediction of subtypes.  
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Fig. 3-9 Gene interaction graphs at primary tumor resolution. Union of the top 2 most-frequently mutated  

subtype-specific MC3 oncogenes mapped to mRNA genes significant at the primary tumor level; 

binomial test, p-value 0.01  

 

Annotated versions of these interaction graphs could be built with the subtype-specific ranking 

of the mutation genes, the selection frequency and corresponding p-value of the expression 

genes, and the interaction type. An example of this annotation is shown in Fig. 3-10.  

 

 

Fig. 3-10 Annotated interaction graph for adrenocortical carcinoma. The rank order of the ten-most 

frequently mutated genes within each subtype, the interaction type, and the selection frequency and 

corresponding p-value for the expression genes are reported 
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Datatype prediction performance benchmarking 

 

To compare the differences in predictive signal over data types, a random forest (RF) classifier 

was trained using the top feature sets identified in the GDAN-TMP project for three data types 

within each cancer type. DNA methylation (METH) was included with the mutation (MUTA) 

and gene expression (GEXP) feature sets as a control. Gene-expression signatures and DNA 

methylation signatures differentiate cancer subtypes with ML models generally better than 

mutation signatures as shown in Fig. 3-11. 

 

 

Fig. 3-11 Comparison of data types in predicting subtypes within primary tumor types. The same random 

forest (RF) classifier was trained and tested over 30 data-splits using the GDAN-TMP top-model feature 

sets for the MUTA, METH, and GEXP data types. Gene expression (mRNA) signatures frequently 

outperform other data types across TCGA cancers 

 

Transcriptional signature performance stratified by oncogene screenings 

 

We then hypothesized that mRNA signatures could differentiate molecular subtypes equivalently 

well for these TCGA samples that either would have been detected as cancerous or not according 

to known oncogene mutations and clinically-implemented onco-screening gene sets. To test this, 

four oncogene lists were used to screen the mutational status for these 8,791 TCGA cancer 

samples within each primary tumor type. These oncogene screening lists were the COSMIC 
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oncogenes, the OHSU Knight Diagnostic Lab (KDx) oncogenes, the Ampliseq50 genes, and 

primary tumor-specific onco-lists derived from our memoization-based sorting algorithm87: Our 

memo-screen gene sets were composed of the union of the top-10 most-frequently mutated genes 

in each subtype for that primary tumor type. Similar but not concurrent onco-status was 

determined with these four methods across the 26 GDAN-TMP cancer types as shown in Fig. 

3-12. Proportions of onco-negative samples are calculated relative to total sample count within 

each cancer type according to each corresponding onco-screening method. 
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Fig. 3-12 Proportions of TCGA cancer samples designated as onco-negative via mutation screening. 

Sample mutation screening comparison of four oncogene lists: COSMIC, OHSU Knight Diagnostics 

(Knight Dx), Ampliseq50, and the Memo-sort-identified frequently mutated genes (Memo-screen). 

Onco-screens that return a mixture of cancer samples designated onco-positive and onco-negative are 

input to subsequent F1 score and confidence comparisons. Note: all samples screened are in fact 

cancer-positive as derived from the TCGA regardless of status assigned by screening method 

 

An alternate visualization of these onco-screening results for TCGA samples known to be all 

cancerous, in the form of an upset plot of designated onco-status intersections comparing the 

subtype-specific onco-screening results, is shown in Fig. 3-13. For 60 of the GDAN-TMP cancer 

subtypes, more than half of the 106 total, at least one TCGA cancer sample was not detected as 

cancerous according to all four onco-screening methods tested. 

 

 

Fig. 3-13 Subtype-resolution of cancer sample mutation screening. Intersection pattern of subtype 

onco-status according to four onco-screen gene panels for the 106 cancer subtypes defined by the 

GDAN-TMP project. Onco-screens returning a mixture of samples designated as onco-positive and 

onco-negative for at least one subtype within a given primary tumor type are the source of input to 
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subsequent subtype prediction and confidence comparisons by onco-status. 60 subtypes contained one or 

more TCGA diagnosed cancer samples that would have been flagged as non-cancerous according to all 

four screens 

 

Our memo-screen mutation gene lists were comparatively efficient, as measured by the average 

number of genes comprising each list. This analysis was inline with a primary theme of the 

GDAN-TMP project – finding compact feature sets. Despite the comparable cancer detection 

rates, the memo-sort algorithm utilized 23.6 genes per primary tumor type compared with 753 

for the COSMIC, 281 for the KDx, and 50 for the Ampliseq screens, Fig. 3-14. 

 
Fig. 3-14 Onco-screen gene count comparisons. The yellow bar shows the average gene count of our 

memo-sort-derived, cancer-specific lists compared with the COSMIC gene list, Knight Diagnostic Labs 

(KDx), and the Ampliseq50 genes. With respect to potential clinical implementation, this shows the 

relative efficiency of memo-sort derived oncogene lists for mutation-based cancer screening  

 

To test the consistency of gene-expression-based feature sets in making subtype predictions on 

cohorts of cancer samples stratified by designated onco-status, predictions were made over the 

26 cohorts – each using 157 different GEXP feature sets – where the designated onco-status was 

 

49 



tracked and used to bin each of the 8,971 cancer samples by putative onco-status. This test was 

replicated for each of the four onco-screening methods. Expression mRNA signatures were 

found to consistently return similar performance, as measured by F1 score and confidence, for 

cancer samples designated as either onco-positive or onco-negative across cancer types, specific 

GEXP feature sets, and screening methods as shown in Fig 3-15.  

 

 

50 



 

Fig. 3-15 mRNA-seq signatures predict subtypes in cancer samples regardless of mutation-based 

screening results. Primary tumor-level F1 scores and sample-level confidence scores are concordant for 

cancer samples designated either onco-positive or onco-negative using gene expression feature sets for the 

prediction of subtypes within each primary tumor type. This trend holds across cancer types, onco-screens 
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and expression feature sets with exceptions that align with the findings of the GDAN-TMP project, such 

as skin cutaneous melanoma (SKCM) 

 

Discussion 

 

This study sought to demonstrate how feature engineering, supervised categorical prediction, and 

feature importance methods can combine to interpret the utility of different data types in the 

context of molecular subtype prediction. The results show the clinical utility of mRNA-based 

transcriptomic signatures in leveraging integrated information from the various initiating 

processes of cancer to delineate subtypes. Our approach focused on two of the five datatypes 

from the GDAN-TMP project – the mutation and expression profiles. We applied methodologic 

benchmarking across these experiments in identifying cancer-specific gene-sets for both data 

types, quantifying the importance of individual expression features, and characterizing the 

interactions of these identified mutation and expression genes to interpret the utility of different 

TCGA data types in molecular subtype prediction. This rigor was further applied in a summary 

recapitulation of the GDAN-TMP results where multiple feature sets within each of the MUTA, 

METH and GEXP datatypes were used for comparing the difference in predictive signal between 

datatypes with gene expression generally most performant. Noted exceptions were reproduced 

with GEA and LGGGBM where DNA methylation was used in determining the ground truth 

label assignment in the training data and SKCM which was originally defined by mutations. In 

the final experiments in this work, testing multiple screening methods for determination of 

cancer detectability rates of these cancer samples combined with the subsequent subtype 

prediction by stratification of detection or not demonstrated the unique utility of gene expression 

data. The overall result of these analyses show how mRNA-seq captures the interplay of 

cancer-initiating processes, of which mutational profiles are a component, in determining TCGA 

molecular subtypes. 

 

The memo-sorted mutation profiles, aggregated from feature level to gene level, showed that the 

most-frequently mutated genes often occur in more than one subtype for most primary tumor 

types. This presents a limitation of genomic (DNA-based) measurements for delineating cancer 

subtypes with ML. At the same time, the memo-sort waterfall plots showed that mutations in 
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typically two or three genes often occurred with a pattern of mutual exclusivity and covered the 

majority of samples within subtypes – this sub-analysis yields a lens of interpretation toward the 

specific molecular biology of individual subtypes based on mutation data. However, the 

memoization-based analysis that is possible because of the binary format of the mutation profile 

values could not be directly compared with the continuous values comprising the expression data 

necessitating alternate integrative approaches. 

 

Our previous research in the GDAN-TMP project had identified the performant 

forward-backward early-dropping algorithm within the R package MXM. By running this feature 

selection algorithm in a subsampling replicate framework, compendium feature sets of 

expression genes could be built yielding feature selection frequencies analogous to the mutation 

rates by genes used in the mutation analysis. This allowed for ranking the expression genes by 

selection frequency to identify the most relevant genes for predicting subtypes, building the 

expression-mutation interaction plots, and conducting the subtype-specific expression feature 

importance analysis. Each of these contributed toward interpretability of datatype utility and 

subtype-specific biology. Limitations, however, of the MXM feature selection algorithm 

included its non-python implementation and substantial computational expense compared with 

RFE. The early-dropping component of the algorithm halts further search upon diminished 

returns in prediction performance is intended to improve computational efficiency. However, 

when input with raw feature sets on the order of tens of thousands of features as were these gene 

expression data, deployment with parallelization on a compute cluster is necessary which, when 

combined with its implementation in R, adds overhead to the tractability of the experiment. 

Testing python-ported versions of the FB-ED algorithm, implemented by means of recently 

emerged versions of advanced AI-based coding tools, could improve the iterative capacity of 

these types of feature engineering analyses.  

 

The two main themes of the preceding GDAN-TMP project explored here were parsimonious 

feature sets and benchmarking of multiple ML methods. For the practical consideration of cost of 

implementation in the clinic, a minimum set of genes to screen for in determining onco-status 

and predicting subtypes is desirable. Both the memo-sorted mutation data and the ranked 

frequency selection-based expression feature sets provided a means to derive compact feature 
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sets via designation of arbitrary cutoff feature count values at both the primary tumor and 

subtype levels. While not at the consortia-project scale of GDAN-TMP, this study extended the 

theme of method comparisons throughout. The inclusion of the RFE selection method as a 

baseline for the MXM method with both methods run in the identical subsampling framework 

yielded a quantifiable comparison via the area-under-curve comparison. Testing the memo-sort 

algorithm with and without prior feature selection on the mutation data showed how combining 

methods can reveal both similarities and differences in feature identification and provide a route 

to interpretability of machine learning. The SHAP importance calculation modified for subtype 

specificity allowed for a characterization of performance for the scikit-learn feature importance 

method. For the onco-status detection analysis of the TCGA cancer samples, utilization of every 

TMP top-performing expression feature set in addition the the MXM sub-sampling-derived 

mRNA sets developed in this work resulted in a robust foundation for the subsequent conclusion 

of equivalent predictability in determined onco-status cohort comparison experiments. The 

robustness of the onco-detection observations for the TCGA cancer samples was reinforced by 

inclusion of four onco-screening methods. Overall, the observation in the TMP project where 

ML models frequently selected transcriptomic features was explored in further depth in these 

experiments illuminating some of the reasons why machine learning models prefer expression 

signatures to differentiate molecular subtypes. 

 

Future directions for ML-based explorations of omics data 

 

The field is moving toward industrial-scale interconnected foundation models90,91. These systems 

can now exceed one trillion model parameters, can integrate data across all modalities, are 

capable of inter-species transfer learning, and can design de novo proteins with diffusion 

techniques. While these new approaches will take time to come to fruition, our work in 

multimodal TCGA data integration and modeling, Ellrott et al. (2025), represents an immediate 

step in the direction of tangible ML-based tools for the clinic. The sub-sampling with 

replacement framework developed in this study that utilizes repeated feature selection is 

potentially a strategy to reduce overfitting of feature sets because the resulting aggregated feature 

set within each primary tumor type is yielded from a composite of selection runs over many 

random combinations of minimally-sized samples across subtypes; a future study could be 
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designed to test this. The gene interaction analysis could be extended to include relationships 

within the mutation genes and within the expression genes. Inclusion of the specific MC3 

mutation type i.e. LOF, COMP, etc. could also be a facet of future analysis. In constructing the 

gene interaction network plots, future work could control for network complexity by 

dynamically varying the n=2 top-subtype MUTA gene and .01 p-value GEXP significance 

thresholds over the cancer types. A multi-label framework may be of utility in future subtyping 

taxonomies where a sample could have labels of tissue-of-origin, TCGA molecular subtype, 

mutation subtype, expression subtype, and a biological process-type such as immune-type92. 

 

Conclusions 

 

Multi-modal feature selection can be applied to identify biological relationships between 

genomic alterations (DNA mutations) and transcriptomic state (gene expression) in a cancer 

molecular subtype context. Other genomic data, in this case methylation, can be used as a control 

in these comparisons. Repeated selection of feature sets from the same molecular profile for a 

given cancer type can yield statistical quantification of feature relevance to primary tumor type 

Feature importance quantification methods can highlight which subtype that specific features 

may be associated with. Selection methods and frameworks can be combined with feature 

importance quantifications to build subtype-specific gene interaction graphs in the context of 

tumor-initiating mutation profiles and resulting gene expression states. The significance of these 

interactions can be quantified to reveal subtype-specific genomic dependencies and inform 

more-precise targeting of therapeutics and a more complete characterization of tumor biology. 

These results again demonstrate that drawing conclusions in ML interpretation efforts requires 

methodological rigor; the arbitrary selection of unique or a limited set of experimental variable 

combinations can lead to incomplete conclusions. This trend suggests that heterogeneous 

mutation profiles in cancer can result in similar transcriptomic phenotype patterns. 

 

Methods 

 

Data provenance and processing, feature engineering 
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Molecular profile data for 26 TCGA tumors were obtained from the NCI Tumor Molecular 

Pathology (TMP) working group’s publication data page10: 

https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022. Demographics for these data are 

shown in Table 2-1. Gene interaction data were downloaded from: 

PathwayCommons12.All.hgnc.sif.gz. COSMIC oncogenes were retrieved from: 

https://cancer.sanger.ac.uk/cosmic/download/cosmic/v101/cancergenecensus. The Ampliseq50 

oncogene list was obtained from Gemini Advanced 2.5 (experimental) and confirmed with 

GPT-Pro o4-mini-high: https://g.co/gemini/share/9a4b2176e776 

https://chatgpt.com/share/68151846-a7dc-8010-8753-a01a5f134702  

The Knight Diagnostics Lab oncogene list was derived from the GeneTrails listings at 

https://knightdxlabs.ohsu.edu/  

 

For each of the 26 primary tumor types: 1) mutation and expression features were first extracted 

from the full set of five TMP project datatypes. 2) the mutation features were aggregated into a 

single binary indicator for each gene by the feature-code-embedded HUGO gene identifiers over 

the four MC3 mutation types: composite (COMP), non-silent (nons), loss-of-function (LOF), and 

hotspot (HOTS). A gene was only considered not mutated if zero of its constituent features were 

indicated as not mutated as defined by a value of zero for all features measuring any of the four 

mutation types for that HUGO. 3) the mutation and expression profiles were sub-set to the 

intersection of interacting genes via mapping with the Pathway Commons .sif file as visually 

depicted in the initial steps of Fig. 3-1. Specifically, within each cancer type, the mutation genes 

were mapped to the “Source” column of the interaction (.sif) file whereas the expression genes 

were mapped to the “Target” column. 

 

Next, the mutation profiles of these intersection sub-set genes were sorted in a two-stage process 

termed memo-sorting. Here, the tabular data were subset by subtype and transposed to genes as 

rows and samples as columns. In stage one, genes with the most instances of mutated samples 

were sorted to the top and in stage two, mutated samples were grouped as chunks of columns left 

to right beginning with the top row, most-mutated gene, and descending row by row. The caching 

of columns left to right within each chunking iteration is the connection with the canonical 

memo-sort concept in computer science, hence the name. The result of plotting these 

 

56 

https://www.zotero.org/google-docs/?HYfbEr
https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022
https://download.baderlab.org/PathwayCommons/PC2/v12/PathwayCommons12.All.hgnc.sif.gz
https://cancer.sanger.ac.uk/cosmic/download/cosmic/v101/cancergenecensus
https://g.co/gemini/share/9a4b2176e776
https://chatgpt.com/share/68151846-a7dc-8010-8753-a01a5f134702
https://knightdxlabs.ohsu.edu/


subtype-specific organizations of mutation patterns jointly reveals the patterns of mutual 

exclusivity of mutated genes across samples within subtypes and the co-occurrence of frequently 

mutated genes between subtypes. Taking the union of the 10-most frequently mutated genes over 

all the subtypes with each primary tumor type yielded the mutation feature set component of 

each Pathway Commons-based interaction graph. 

 

Gene expression feature sets were obtained for each primary cancer type via application of a 

statistical feature selection algorithm called forward-backward early-dropping. This algorithm 

was implemented with the R package MXM89. The algorithm was applied to the expression 

profiles of the intersection sub-set genes again visually depicted in Figure 3-1. To control for 

overfitting and attain a diverse set of features representative of various sample combinations, the 

MXM feature selection method was run on sub-sets, with replacement, of 70 samples at a time. 

The compendium set of selected features was derived from a run of 250 repetitions within each 

cancer cohort. As a control, recursive feature elimination93 (RFE) using the scikit-learn 

implementation was run within the same sub-sampling framework of 250 repeats at the 

70-sample threshold. The feature selection was deployed on OHSU’s Advanced Research 

Cluster, ARC using a shell script loop passing args to a SLURM script the argument array option 

to call the respective R and Python feature selection scripts. 

 

Scikit-learn feature importance values were then calculated for each subtype over the ten most 

significant expression features within each cancer type. These feature values were evaluated 

against a custom class-specific implementation of the SHAP94 feature importance algorithm as a 

control. The SHAP feature importance values were calculated with a Catboost classifier using 

300 interactions and  a learning rate of 0.01. 

 

Interaction graph construction 

 

The top-two mutated genes for each subtype within each primary tumor type were extracted for 

inclusion as the upstream genes into each interaction plot. For the expression features, a p-value 

was calculated against random probability with a binomial test for each gene and genes occurring 

at a frequency above a significance threshold of 0.01 added to the graph as downstream 
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interactors from the mutation genes. This process was instantiated by writing .graphml objects to 

disk via the NetworkX Python package for export to plotting with Cytoscape82. 

 

Predictive signal by GDAN-TMP datatype comparison 

 

To prepare data ready for machine learning in the GDAN-TMP predictive signal comparison of 

the MUTA, METH, and GEXP datatypes, the code repository was cloned from: 

https://github.com/NCICCGPO/gdan-tmp-models.git 

Combinations of models, datatypes, and cancers contained in the results file 

 

>> model_info.json 
 

file were retrieved from: https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022 

per repo instructions. Feature sets were retrieved for all available model types within each cancer 

type via the 

 

>> tools_ml.get_model_info() 

 
function for the datatypes MUTA, METH, and GEXP. Molecular profiles for each TMP 

model-specific feature set were constructed from mapping the feature lists to the original raw 

TMP feature profiles. A scikit-learn random forest (RF) model with default hyperparameters was 

trained and tested on 30 data-splits for each TMP model’s feature set within each of the three 

data types within each of the 26 cancer types. Each of these predictions was scored with the F1 

measure using scikit-learn’s metrics library to account for class imbalances of the sample 

distributions inherent in most of these TCGA cancer types. The error for these prediction results 

is reported as standard deviation in Fig 3-10. 

 

Onco-screen predictive signal comparison 

 

The memo-screening gene lists used for comparison in determining onco-status against the 

COSMIC, KDxL, and Ampliseq50 oncogenes were derived from the GDAN-TMP mutation 
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genes ranked by frequency of mutation using the memo-sort algorithm across the samples within 

each subtype; the output of the mutation mutual exclusivity analysis. The union of the 10 

most-frequently mutated genes in each subtype were aggregated within each primary tumor type 

to build the primary tumor-type-specific memo-screen gene lists. 

 

To determine sample-level onco-status, the four screening methods - COSMIC, Ampliseq-50, 

KDxL, and GDAN-TMP memo-screen oncogene list filters were run against the 157 GEXP 

feature sets composed of the 126 top-performing GDAN-TMP mRNA sets along with 26 de 

novo expression sets derived from the top-10 genes identified with our MXM sub-sampling 

framework for predicting F1 score and sample-level prediction confidence. The predict_proba 

method within scikit-learn was used to calculate the confidence scores. 
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Abstract 
 

The accuracy of machine learning methods is often limited by the amount of training data that is 

available. We proposed to improve machine learning training regimes by augmenting datasets 

with synthetically generated samples. We present a method for synthesizing gene expression 

samples and test the system’s capabilities for improving the accuracy of categorical prediction of 

cancer subtypes. We developed SyntheVAEiser, a variational autoencoder based tool that was 

trained and tested on over 8000 cancer samples. We have shown that this technique can be used 

to augment machine learning tasks and increase performance of recognition of underrepresented 

cohorts. 

 

Background 
 

Machine learning (ML) has become common in genomics as a means of modeling with complex 

biological data95,96. Across numerous publications from The Cancer Genome Atlas (TCGA)97, 

bulk RNA-sequencing has been shown as a robust way for defining cancer subtypes98–102. Bulk 

RNA-seq based signatures have been translated from basic research into FDA approved 

diagnosis used in the clinic103,104. While this technique has found use in more common cancers, 

issues begin to arise with more rare cancer variants. Small sample counts within genomics 

datasets can impede model performance because of the high dimensionality of the feature space 

and imbalanced classes. In training performance analysis, we have found that about 120 samples 

are often needed before a machine learning recognizer can achieve best possible performance. 

For rare cancers, the resulting low sample counts of these omics datasets limit the capability of 

machine learning to improve patient outcomes. In this paper, we show that synthetic sample 

generation is one possible mechanism to mitigate these issues. 

 

Synthetic data have been shown to improve the sample efficiency of learning across diverse 

domains such as image processing, physics modeling, and neuroscience105. We propose to apply 

data synthesis methods to augmenting transcriptomic data sets and improve the performance of a 

variety of prediction tasks. Neural networks with multiple hidden layers known as deep learning 

(DL) models combined with transfer learning techniques have demonstrated utility across a wide 
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range of modeling applications within the rapidly evolving field of ML106. Generative deep 

modeling has emerged as a route to generate new samples and works by creating representations 

of complicated, high-dimensional probability distributions107. 

 

A variational autoencoder (VAE) is a feed-forward neural network that approximates a function 

for mapping high dimensional variables into representative, or latent, variables of a reduced 

dimension108–110. Continuous normalizing flows and generative adversarial networks (GANs) are 

similar generative models to VAEs111. VAE training is an unsupervised machine learning 

technique, and is unaware of any outside labels, such as cancer subtype, and is only concerned 

with organizing a low dimensional latent space based on the sample data. The defining 

characteristic of a VAE is stochastic backpropagation108 which allows the model to overcome the 

accuracy and scalability challenges of modeling high-dimensional data. 

 

The aims of this study were to 1 build a generative model for creating synthetic gene expression 

samples, 2 develop an algorithm for creating synthetic samples based on combining these latent 

representations of multiple parent samples with a labeled dataset, and 3 integrate this generative 

modeling framework with a traditional ML classifier to robustly quantify the improvement in 

predictive power from the addition of synthetic samples. This will demonstrate that VAEs can be 

trained on pan-cancer data and use that information to extrapolate into new tissue types. In these 

new cohorts, a minimal set of examples can be used to extrapolate a larger training set, and that 

extended training set can help to improve the performance of machine learning methods. 

 

Traditional reasons for developing synthetic data sets for genomics and imaging include 

insufficient sample sizes, too many or too few features, disproportionate feature to sample size 

ratio, and the class imbalance problem112. Methods used to deal with class imbalance can be seen 

as analogous to synthetic sample generation methods. SMOTE113 is the canonical method 

addressing the class imbalance problem. This method seeks to improve classifier performance by 

undersampling the majority class and oversampling the minority class. The minority samples are 

not directly sampled with replacement, rather the feature values of two or more samples are 

recombined with the feature value differences multiplied by a random number between zero and 

one to generate novel samples. However, in cases of high feature dimensionality and low 
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signal-to-noise such as gene expression applications, the performance of SMOTE has been 

shown to both lack robust performance and be classifier dependent114. In cancer imaging, 

synthetic data have advanced to the point where a Synthesis Study Trustworthy Test 

(SynTRUST) has been proposed as a meta-analysis framework to address specific challenges 

across research and clinical care115. For computer vision tasks, there are a multitude of techniques 

for data augmentation116 including skin lesion image synthesis117. Generative methods have been 

shown to be robust across multiple data types, and as our research shows, this trend continues 

with transcriptomic data. 

 

In the field of transcriptomic sample generation, there are previous publications outlining the use 

of GANs to create synthetic mRNA samples and improve prediction tasks118. These methods 

utilize noise or alternate omics inputs to generate new synthetic samples. Our method differs 

from these approaches in how the basis for new samples are seeded. Rather than utilizing random 

noise for permuting existing models, our model mixes features of multiple samples in latent 

space before reconstructing a new synthetic sample. Importantly, the mixing of features in the 

low dimensional latent space occurs between samples of the same target label. This ensures that 

each synthetic sample is effectively a high dimensional average of similar elements and avoids 

mixing samples from different classes. 

 

When compared to other machine learning methods, deep learning methods are viewed as “black 

boxes” that produce predictions based on uninterpretable methods. Many times, especially when 

thinking about clinically oriented tasks, non-DL machine learning methods can provide 

interpretable models that can be connected to specific biological elements. These more 

interpretable models may be seen favorably for translational use cases, but may lack the ability to 

extract additional information from large sample populations in the same way that deep learning 

methods are able. For this study, we demonstrated that traditional ML can benefit from adding 

synthetic data generated by a VAE. By combining the pan-cancer training set, the VAE model is 

able to learn common patterns seen across multiple cancer types, and use that information to 

enrich a traditional machine learning task, even if that problem is only specific to a single cancer 

type. Because these performance gains are seen in methods, such as random forest (RF) based 
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models, that are commonly viewed as being interpretable, the results of this technique can be 

interrogated. 

 

Results 
 

Generative model overview 

 

A new method combining a VAE with a RF classifier and a corresponding software tool for 

sample synthesis was developed for applications in ML applied to gene expression data. Our 

dataset, based on samples from the TCGA, was structured for supervised categorical prediction 

where each sample was labeled with a cancer subtype within 25 primary tumor types based on 

gene expression profiles. In total, the 25 different tumor types were segmented into 99 molecular 

subtypes. For example, breast cancer (TCGA code BRCA), is subdivided into luminal A, luminal 

B, basal, and HER2119. A transfer learning framework was applied for training the VAE on a 

sample set composed of all TCGA samples using a tumor sample holdout strategy, Fig. 1A. This 

involved a sequence of training and fine-tuning a VAE and using a RF classifier to compare the 

predictive accuracy of the data modes. The VAE was never trained on or received any 

information about tissue type or cancer subtype. So in the case of the BRCA cohort, the trained 

VAE was not presented with any BRCA samples, but rather learned the patterns from all other 

available cancer types. Thus in that experiment, BRCA could be viewed as a rare cancer that had 

never been encountered. A VAE model is trained to compress gene expression data into a latent 

space and then decompress a faithful copy of the original signal. This encoder/decoder pair is 

then used to translate data into a “latent space” where values can be altered and decompressed 

back into “normal space” to create new samples. For our cross fold experiment, we produced 25 

separate encoder/decoder pairs that each ignored a single cancer type. The sample generation 

pipeline was built around the Tybalt VAE120, Fig. 1B. The corresponding feature engineering 

pipeline takes the intersection of genes across cancer types and reduces the feature counts with 

mean absolute deviation. Original gene counts varied by primary tumor type are shown in 

Supplemental Table 1. 
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Fig. 4-1 Overview of the synthetic TCGA gene expression sample generation pipeline. A One cancer 
cohort at a time is designated for sample generation and removed from the TCGA sample set. The Tybalt 
VAE adapted from Way and Greene120 is trained on these TCGA samples and then fine-tuned on 40 
samples from the designated cohort_n. The remaining samples from cohort_n are used as validation. The 
latent feature values of three randomly selected samples from within each subtype are randomly 
recombined to form a latent sample feature vector which is then decoded with the trained decoder to 
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generate a synthetic sample with feature dimensionality restored to that of the 5000 input genes. This 
latent feature value recombination and decoding process is repeated to generate 200 samples per subtype 
per validation split. The random forest classifier is trained five times, each time predicting on the entire 
held-out validation set to return a subtype prediction accuracy with quantified error. The train-validation 
split point at cohort_n and ensuing processes comprise a single experimental replicate which is repeated 
25 times per cancer cohort. B Input gene expression features and latent dimension of the Tybalt VAE 
component of the pipeline. C Depiction of the three-sample version of the HLVS algorithm operating 
within each labeled class 
 
Using our hybrid DL/traditional ML synthesis and analysis pipeline, we analyzed the effect on 

subtype prediction performance with the RF classifier for 25 cancer types, using the cohort 

holdout strategy, where specific cancers were limited to 40 samples for training the RF classifier 

with all other samples from that cancer type used for performance validation. Effectively, our 

protocol simulated 25 separate rare cancer cases by restricting the RF training set to 40 samples. 

This process was repeated across these 25 cancer types, generating 200 additional samples per 

subtype to augment the 40 original samples. Thus, the number of synthetic samples generated 

varied for each primary tumor type, varying from 400 for the binary cancers up to 1400 for 

gastroesophageal (GEA) with seven subtypes. Using the validation sets, we measured F1 score 

performance improvement on the prediction of held out samples by a mean of 6.85% and a 

maximum improvement of 13.2% in lung squamous cell carcinoma (LUSC). 

 

The transfer learning strategy involved first training the VAE on the gene expression data for 

approximately 8000 samples from the TCGA dataset, holding out one specific cancer type for 

testing. After the initial training, the VAE was fine-tuned on a subset of 40 randomly selected 

samples from the testing cancer type. The rationale for using this threshold of 40 samples for 

fine-tuning and sample generation across the 25 cancers was to balance a simulated reduced 

sample set with diminished accuracy while still having enough samples with which to generate 

quality synthetic samples. Reducing the batch size parameter of the VAE when transferring the 

model from training on a relatively large dataset to fine-tuning on a smaller dataset was 

identified as an important factor in learning a model capable of generating samples that improved 

predictive accuracy. 

 

The effect of the quantity of training varied by cancer and could be inferred by the shape of the 

learning curves. In these data, the ratio of sample sizes in the training sets to fine-tuning sets was 

 

66 



approximately two orders of magnitude and the number of epochs utilized in the training phase 

was observed to be a primary parameter in controlling the performance results of the generated 

synthetic data. This can be approached in absolute terms of training and fine-tuning epoch counts 

as well as from a ratio perspective. To investigate these effects, the quantity of TCGA training 

epochs was varied while holding the fine-tuning epochs constant at 150. The proportion of 

pan-TCGA training epochs to fine-tuning epochs on the cohort targeted for sample generation 

was observed to affect model performance asymmetrically across cohorts thus is a key point of 

consideration for generalizing this model to data with other distributional characteristics. 

 

Synthetic sample generation 

 

We tested two methods for synthetic sample generation: Random Noise Latent Variable Samples 

(RNLVS) and Hybrid Latent Variable Samples (HLVS). For a baseline, we deployed RNLVS 

which modulates samples with random noise in the latent space to create synthetic samples that 

are slightly perturbed from their original parent sample. We contrasted that method against 

HLVS which is designed to generate a synthetic sample of a specific subtype. It does this by 

randomly recombining the latent feature values of two or three samples from the same subtype 

into a novel latent feature vector (Fig. 1C). Both two- and three-sample versions of HLVS were 

tested. The rationale for using three samples was to balance a generalized subtype representation 

based on a greater number of samples with the fact that for cancers with many subtypes, random 

samplings would begin to return one or zero samples of the rare subtypes as test set sizes 

decreased which negated the possibility of latent feature recombination. The decoder component 

of the VAE was then used to project each HLVS vector back into gene expression space. To 

validate the performance of RNLVS vs. HLVS derived synthetic samples, we tested machine 

learning models derived from cohorts generated using the two methods. We noted a marked 

improvement in performance using HLVS derived samples, as shown in Fig. 2. 
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Fig. 4-2 Comparison of cancer subtype prediction accuracy improvement between the two RNLVS 

methods and two HLVS methods tested. With feature sets and model parameters fixed across primary 

cancer types, the HLVS methods return synthetic samples that result in greater accuracy improvement for 

21 out of 25 cancer types 

 

For both the RNLVS and the HLVS sample generation methods and for each set of the 

experimental replicates, 200 samples were generated within each subtype for each of 25 

replicates of 40 randomly selected training samples for a total of 5000 synthetic samples per 

subtype per replicate set. The trained decoder contained both pan-TCGA information as well as 

information from all subtypes via the 40 samples selected from within the cohort designated for 

sample generation. This was the result of the transfer learning design of the experiment in 

leveraging the combined learned representation of what a molecular cancer subtype is in general, 

with how molecular subtypes within a primary tumor cohort differed from each other. 
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After the synthetic samples were generated, they were mixed with the original training samples 

and then used to train a traditional ML RF classifier to predict on a validation set to assess 

performance of the sample generation. Across the 25 cancer subtype learning tasks, this resulted 

in improved classification accuracy for the majority of cancers. In our testing, 16 out of 25 

cancers returned a statistically significant improved subtype prediction raw accuracy at a p value 

threshold of at least 0.05 as a result of mixing with the original 40 samples all of the 200 

synthetic samples per subtype across the 25 experimental replicates. 

 

Synthetic sample assessment 

 

To quantify and compare the quality of the sample embeddings and generated synthetic samples, 

a Scikit-Learn RF classifier was selected based on its observed performance as a traditional ML 

method121,122. The default hyperparameters of the RF classifier were used. Within each cohort and 

experimental replicate, the RF was first trained on the 40 original samples then used to predict on 

the validation set. This training of the RF was repeated on the VAE reconstruction of the same 40 

samples once they had been encoded then re-coded back to gene expression space at the end of 

the fine-tuning epochs. The RF trained on these re-coded samples was then used to predict on the 

same validation as was used to evaluate the original 40 samples. Finally, this RF training and 

validation scheme was repeated on the pure synthetic and the mixture of the 40 original samples 

with the 200 synthetic samples per subtype. Raw prediction accuracy [Scikit-Learn metrics] was 

utilized for these comparisons. For each of these four data phases, the RF model was trained on 

the test set five times and used to predict on the validation each time to control for stochasticity 

in the RF model. The results of these five runs were averaged. A comparison of the performance 

results for two configurations within both the HLVS and RNLVS latent feature modification 

methods across the 25 TCGA cancers is shown in Fig. 2. The error shown is standard deviation 

and the magnitude relates to subsampling effects of low sample sizes. This illustrates 

heterogeneity within cohorts and number of subtypes within cohorts. 

 

Once establishing this baseline configuration of the VAE training to attain predictive accuracy 

improvement for the majority of cohorts, learning curves were generated. The original and mixed 

datasets were subsampled in incremental steps with the random forest again repeated five times 
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and averaged on each subsample set at each increment size. Learning curves for four selected 

cancers that returned increased raw accuracy from the addition of synthetic samples are shown in 

Fig. 3 with learning curves for the other 21 cohorts in Supplemental Fig. 1. 

 

 

Fig. 4-3 Learning curve comparisons of individual cancers; predictive accuracy as a function of sample 

size aggregated across 25 experimental replicates. Original sample sets in blue showing subsampled 

accuracy growth up the 40 sample training threshold. Continuation of learning curves at larger sample 

counts with subsampling mixed original/synthetic sample sets in orange. A Breast invasive carcinoma 

learning curve, relatively smooth improvement in predictive accuracy with addition of synthetic samples 

up to a peak at approximately 150 samples. B Pancreatic adenocarcinoma, with 76 original samples shows 

a gradual improvement in predictive accuracy observed past 100 samples. C Performance improvement 

behavior of adding synthetic samples for kidney renal papillary cell carcinoma with 76 original samples, 
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third smallest cohort. D Learning curve for colorectal adenocarcinoma, with more challenging to predict 

subtypes showing plateau in improved performance at around 50% accuracy 

 

To characterize the similarity of the gene expression value distributions within the respective 

subtype label categories for the synthetic samples with the original samples from which they 

were generated, maximum mean discrepancy (MMD) was calculated for each pairwise 

combination of samples within three cancer types representing a range of subtype counts shown 

in Fig. 4A. A scatter plot of 2D UMAP dimensionality reduction was applied to visualize 

clustering of samples by subtype with mixing of original and synthetic data, Fig. 4B. If the 

distance between the expression value distributions of the original and synthetic samples is 

minimal, it would be expected that original and synthetic samples would cluster randomly within 

each subtype, with subtype status driving the clustering. Affirmingly, when applied to a mixed 

set of the original and synthetic samples, this clustering shows general separation of samples 

consistent by subtype as illustrated in Fig. 4C. Clustering of synthetic samples within a given 

subtype may be driven by the synthetic gene expression vectors being based on combinations of 

latent values from real samples resulting in synthetic samples being a non-linear interpolation of 

real samples. Although some degree of clustering by synthetic and original sample status is 

observed, despite this limitation, there is still an improvement in subtype predictive accuracy 

with either the pure synthetic or mixed data sets. A full survey covering another 22 TCGA 

cancer types can be found in Supplemental Fig. 2. 
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Fig. 4-4 Comparison of evaluation methods for synthetic vs original samples. A MMD statistics for each 

pair of cancer subtypes within each primary cancer type comparing the difference of gene distributions 

with samples split by subtype vs. samples split by original/synthetic. B Scatter plots of 2D UMAP 

projections showing interspersed clustering of original and synthetic samples separated by cancer type. C 

Cluster maps showing propensity of samples to cluster by subtype with interspersion of synthetic and 

original samples within each subtype. Color bars on left in pink and light blue show original or synthetic 

sample status and saturated color bars on right show subtype sample status 
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An additional quantitative inspection of the original and re-coded gene expression values was 

conducted with a root mean squared deviation (RMSD) comparison. 

 

For each of the 40 samples in each experimental replicate, RMSD was calculated across the 5000 

genes for the original and re-coded versions of the values. One thousand RMSD values, 40 

samples times 25 replicates, for each cohort are shown in Fig. 5. 

 

 

Fig. 4-5 Correlation of gene expression RMSD with the difference in prediction accuracy by primary 

cancer cohort. The gene expression RMSD is the average root mean squared deviation across each 

sample’s 5000 gene expression values input to the VAE with the corresponding re-coded values of 

encoding and decoding these input values. The y-axis, delta accuracy is the change in average subtype 
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predictive accuracy across the 25 replicates of 40 input samples vs. the average of the predictions at 140 

and 160 sample size mixed sample sets of the original 40 samples and synthetic samples within each 

experimental replicate 

 

Recursive feature elimination, a statistical feature selection algorithm, was applied to identify 

specific gene features of importance within the original, re-coded, and synthetic samples. For 

three selected primary tumor types, BRCA, LUAD, and PRAD, the intersections of features 

selected across the three data phases are presented in Fig. 6A. Consistency in the specific 

features selected from each phase of the data would be expected in the case of consistency in the 

gene expression values across the data phases. For these three cancers, this pattern of consistency 

was observed—in BRCA, 71 features were commonly selected across all three phases of the data 

compared with 39, 17, and 16 features commonly selected across the pairwise combinations of 

the data phases. Eighty-four and 66 features were commonly selected across all data phases for 

LUAD and PRAD, respectively, with lower numbers again observed for any pairwise 

combinations of data phases. This observation indicates biological consistency of the synthetic 

data with the original samples. Permutation-based feature importance scores were calculated 

within each of the three data phases for each of these three cancers for these selected features 

shown in Fig. 6B. The gene FOXA1 scored in the top three of the most important features for 

BRCA across all data phases and SEPT9 scored in the top three across all phases for PRAD. 
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Fig. 4-6 Selection frequency and importance comparisons of feature sets. A Intersections of features 

across original, re-coded, and synthetic samples. B Feature importance scores calculated with 

Scikit-Learn Permutation Importance algorithm for features selected three or more times across the 25 

experimental replicates 

 

For further validation of the VAE-based genomic samples, we tested the algorithm on single-cell 

data, by using oligodendroglioma intra-tumor heterogeneity gene expression data obtained from 

the Broad Single Cell Portal123. To create two distinct cohorts, this data was filtered for malignant 

and Microglia/Macrophage cell labels which were the analog to the cancer subtype labels in the 

original experiments. The Microglia/Macrophage class was down-sampled to 250 samples to 

approximately match the 235 samples in the malignant class. Filtering samples with missing 

expression values from this set yielded a prepared set of 418 samples with 235 samples of the 

Microglia/Macrophage class and 183 samples of the malignant class. The 23,686 raw gene 

features were reduced to the 5000 gene features with the same greatest mean absolute deviation 

method utilized in the original experiments. The data was randomly split into a pre-training set of 
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268 samples and a fine-tuning set of 150 samples for input to the VAE sample generation tool in 

its same configuration from the original experiments. The generated data were evaluated against 

the original data with UMAP clustering (Supplemental Fig. 3), showing synthetic and original 

single-cell samples clustering by cell type and not clustering by real or synthetic status. 

 

Discussion 
 

In order to test the robustness of our method, we benchmarked the recognition of cancer subtypes 

as defined by the TCGA cohort. Because each tissue type has extremely different dynamics, and 

the subtypes within each of these cancers are defined by different rules, this allowed us to 

perform robust benchmarking in translation, by removing entire cancer types from the original 

training set. Additionally, the dataset has cohorts of extremely different sample sizes, with 

groups with 995, such as the case of breast invasive carcinoma (BRCA) and as few as 74 in the 

case of mesothelioma (MESO) and uveal melanoma (UVM). In our tests with the TCGA dataset, 

the sample size limitation is most pronounced in cancers with rare subtypes such as bladder 

urothelial carcinoma (BLCA) or kidney renal papillary cell carcinoma (KIRP), primary tumors 

with subtypes containing less than 10 samples. Using a leave-tissue out cross fold strategy, every 

cancer type was tested as if it was a rare cancer type. Our method to increase sample sizes of 

rare, molecularly defined subtypes to solve the class imbalance problem could be of particular 

utility for feature sets reduced to the number of samples required to train accurate models. 

 

Augmenting datasets with synthetic samples created with the HLVS methods outperformed the 

RNLVS derived samples in 20 out of 25 of the specific machine learning tasks tested. The 

three-sample and two-sample variations of the HLVS method performed comparably well with 

average predictive improvement over the original samples of 3.64% ± 0.04% and 3.67 ± 0.04% 

percentage points, respectively. Although random noise methods combined with generative 

modeling improved performance for the majority of tested cancers, the performance gains were 

greater across most cancers with the combination of generative modeling and HLVS methods. 

 

This study sought to leverage the representation learning capabilities of generative modeling 

with the interpretability of traditional ML to develop a method for transcriptomic sample 
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generation. The software tool developed can be directly applied to supervised categorical 

prediction tasks with gene expression data sets and potentially adapted to other transcriptomic 

based ML tasks including regression. This was an improvement on previous methods in 

robustness for this type of genomics prediction task characterized by a large ratio of features to 

samples. By using transfer learning techniques to train a model on data related to the fine-tuning 

data and final prediction domain, the model is less prone to overfitting. The training method 

utilized in this study was to include all of the TCGA cohorts, except the cancer type designated 

for testing, to prepare the VAE for fine-tuning. The RMSD statistics characterizing the 

reconstruction values between the best-fit cancer, BRCA, and poorest-fit cancer, THYM, showed 

that the mean of every tested cancer was within the error of every tested cancer. This 

demonstrates generalizability of a transfer learning strategy where fewer epochs are used for 

training than fine-tuning and the batch size is reduced in the fine-tuning from the training. 

 

For the benchmarking observed in Fig. 2, issues beyond sample generation likely prevented 

SKCM and TGCT from improving their performance. The subtypes in skin cutaneous melanoma 

(SKCM) were originally defined using mutation markers. Training ML models on gene 

expression fails to capture that original information used for defining the subtyping, and instead 

relies on gene expression values that happen to be correlated with the subtype, rather than 

elements with direct biological implications. Similarly testicular germ cell cancer (TGCT) 

subtypes are largely defined by DNA methylation and miRNA124. In these cases, boosting the 

population of gene expression data will do little to better illuminate the underlying biology. 

 

To quantify the similarity of the synthetic and original data, maximum mean discrepancy 

(MMD), a nonparametric distance statistic that is robust in comparing sample groups comprising 

different distributions125, was calculated for each subclass pair within three primary cancer types 

of differing numbers of subtypes. For all subclass pair comparisons, the distance between 

subclasses was significantly greater than the distance between the original and synthetic samples 

as shown in Fig. 4A. This observation is reinforced with UMAP clustering behavior shown in 

Fig. 4B, where original and synthetic samples cluster uniformly within each cancer subtype. The 

sample cluster map of gene expression value experiments, seen in Fig. 4C, also showed 

aggregation of samples within subtypes of mixed synthetic and original data. 
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The feature selection experiments reveal a greater intersection of features across the original, 

re-coded, and synthetic samples than within any pairwise combination of these three phases as 

shown in Fig. 6A. This observation is validating of both the model encoding and the synthetic 

data. 

 

The feature importance scores indicate reduced error associated with the synthetic data compared 

with the original and re-coded feature importance scores as shown in Fig. 6B. This effect is 

driven by improved statistical power of synthetic data sets and the solving of the class imbalance 

problem with 200 synthetic samples per cancer subtype vs. 40 total original samples within each 

replicate. This demonstrates the potential utility of the method to improve confidence in 

biomarker target identification for rare cancer subtypes. 

 

Conclusions 
 

This work demonstrates that generative models based on neural networks can be combined with 

traditional ML as an effective means to generate synthetic gene expression samples. This allows 

for information from other tissue and cancer types to provide priors for learning patterns in a new 

cohort. Rare cancers, which traditionally see much lower rates of collection and sequencing, can 

benefit from augmenting their dataset. Additionally, non-DL machine learning methods, 

traditionally seen as more trustworthy or easier to interpret than DL models, can still benefit 

from these methods. 

 

Methods 
 

Data provenance and feature engineering 

 

The data utilized for developing this sample generation method and software tools were derived 

from a TCGA-based curated dataset from the Tumor Molecular Pathology working group and 

can be downloaded from the NCI’s Genomic Data Commons10 

[https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022]. These data files were tabular 
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comprising 8009 samples across 25 primary tumor types and 99 subtypes. The gene expression 

features utilized in this study were down-selected via mean absolute deviation to the 5000 most 

differentially expressed features per the original Tybalt method120. The raw expression values 

were normalized with the Scikit-Learn MinMaxScaler function within each cohort and within 

each feature. Four of the cancers utilized in this study have only two subtypes making them a 

binary supervised classification problem whereas the remaining cancers are multiclass with three 

to seven subtypes per primary tumor type. 

 

Generative modeling framework 

 

The sample generation model shown in Fig. 1 was built around a variational autoencoder (VAE) 

adapted from120. A latent feature dimension of 250 was used for all experiments and all 

experiments used 150 epochs for model fine-tuning. One cohort at a time was designated for 

generating synthetic samples and removed from the combined TCGA set. The VAE was then 

trained on all of the remaining TCGA samples for 1, 2, 3, 4, 10, 20, or 30 epochs. The batch size 

was set at 50 for each of these initial TCGA trainings. From the cohort selected for sample 

generation, a training set of 40 samples was randomly selected without replacement. The 

remaining samples were used as a validation set of size nv = n − 40. The various epoch-count and 

feature set versions of the TCGA-trained VAE were then each fine-tuned for 150 epochs at batch 

size of 10 on the 40 samples within each replicate. A learning rate of 0.0005 was used for both 

the TCGA training and fine-tuning steps. This framework is represented symbolically in 

Algorithm 1. 
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Algorithm 1 Generation of categorically labeled synthetic samples from the latent feature vectors of a 

variational autoencoder 
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The initial validation split of 40 fine-tuning samples within the cohort designated for sample 

generation defined each experimental replicate. Within each replicate, the samples not selected 

into the set of 40 for fine-tuning are designated as the validation set such that the number of 

validation samples varies by cohort because each cancer cohort contains a different number of 

total samples. Results for 25 replicates were produced for each cohort. Replicates returning less 

than three (or two in the alternate HLVS version) samples for any subtype within the random 40 

cohort samples were rejected because this was the sampling threshold for the latent feature 

recombination algorithm, described below. 

 

The training/validation split constituted an experimental replicate and was repeated 25 times for 

each cohort. If a training set contained less than three samples within a subtype, the sampling 

was repeated up to 50 times attempting to obtain at least three samples per subtype. The replicate 

was omitted if three (or two) samples were not obtained over these 50 repeats. The latent feature 

object was subset by subtype. Three samples at a time were chosen without replacement and sent 

to a function where the latent feature values from these three samples were randomly recombined 

into a novel latent feature vector. Two hundred synthetic samples were generated within each 

subtype for each primary tumor type. This 200 synthetic subtype sample by 150 synthetic latent 

feature object was returned to the original 5000 dimension feature space using the trained VAE 

decoder. 

 

To evaluate the HLVS results, a set of experimental control results were generated with RNLVS 

derived from Gaussian noise injection. The effectiveness of Gaussian noise injection has been 

mathematically described for multi-layer perceptron neural networks in terms of the heat kernel 

and Taylor expansions [32]126. This form of noise injection was implemented in the present study 

with sigma values of 0.1 and 0.2 for the Gaussian function applied to corresponding sets of latent 

feature values with a zero-floor or rectification operation to prevent negative expression values. 

 

Within each experimental replicate, the 40 training samples were used to train a Scikit-Learn 

random forest model with default hyperparameters. This random forest was trained on the 

original training samples of the data then was used to predict on the validation set as to establish 
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a baseline accuracy score with which to compare with the synthetic samples. The process of 

training the random forest and predicting on the validation set was repeated for the re-coded, 

synthetic, and mixed sample sets denoted by the green, red, and orange arrows, respectively, in 

Fig. 1. The mixed sample set was the generated synthetic sample set blended with the original 40 

training samples. 

 

The imbalanced class problem was eliminated by adding 200 synthetic samples to each class. 

The result was that subtypes with relatively few samples were augmented with proportionally 

more synthetic samples. 

 

For the comparisons of the distributions of the original and synthetic samples within the cancer 

subtype class pairs shown in Fig. 4A, the MMD formula utilized is given in Algorithm 2. 

 

 

Algorithm 2 Compute MMD 

 

The UMAP clusterings of original with synthetic samples within each intended cancer subclass 

shown in Fig. 4B were done by subsampling the pool of generated samples within each subtype 

the same number of synthetic samples as unique original samples in the aggregated input across 
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the 25 experimental replicates. This unified set of balanced counts of original and synthetic 

samples within each subtype for each primary tumor type was input to the UMAP dimensionality 

reduction algorithm for subsequent scatter plotting. The clustering algorithm was the default 

“average” method implemented in the Scipy dependency of the Seaborn Clustermap function 

[33]127. 

 

The feature importance algorithm utilized was Scikit-Learn Permutation Importance and was run 

on each of the 25 experimental replicates within the original gene expression data, the 

reconstructed expression data, and the synthetic sample expression data. Ten features were 

selected from each replicate within each data phase. The intersections of every combination of 

selected features were identified and binned for plotting in the UpSet plot. 

 

Software tool requirements: 

●​ TensorFlow 2.10 

●​ Python 3.9 

●​ Scikit-Learn 1.1.3 

 

Data Availability 
 

The software tool, SyntheVAEiser, is available at 

https://github.com/ohsu-comp-bio/syntheVAEiser [34]128 and 

https://doi.org/10.5281/zenodo.13948571 [35]129 under the Apache 2.0 license.  
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Abstract 
 

Despite large-scale efforts to measure the effect of drug screens in cancer cell lines, mapping the 

effects of drugs to patient samples has been a challenge. Biological differences between cell lines 

and patients, such as lack of immune system or microbiome, in-vitro survival adaptations, and 

biases in measurement technologies create differences across sample modalities that can 

confound analysis including prediction with machine learning. In this work, we propose a 

multiway batch correction strategy to enable algorithmic prediction of tumor drug response 

across model systems and patient data. Recent advances in batch correction algorithms have been 

motivated by the need to correct for batch effects in single-cell omics and include diverse 

approaches such as variational autoencoders (VAEs) and generative adversarial networks 

(GANs). Given the successes of these generative deep learning methods in single cell sequencing 

analysis, we worked to employ similar approaches to correct large omics measurements across 

various cancer datasets. Here, we describe mapping of datasets from diverse data sources and 

model systems to the same space, so that a predictive model of drug response built in a system 

such as cell lines can be used in biologically relevant models such as organoids, patient-derived 

xenografts, and tumor data. Specifically, we introduce a modified loss function in a VAE using 

cosine similarity distance to minimize the effect of different cancer model systems in predicting 

cancer types. We evaluate the method on standard data types for drug response prediction - gene 

expression, copy number variation, and protein abundance. For this method, the cosine similarity 

is added as an additional term to the VAE reconstruction and Kullback-Leibler divergence loss 

terms. This injects a quantification of the dissimilarity between the tumor and tumor model 

distributions into the backpropagation and gradient descent for updating the model parameters 

resulting in an encoded representation of the data where the effect of data source has been 

attenuated while preserving the phenotypic signal. We evaluate our approach for biological 

signal preservation while reducing model system-specific noise with logistic regression and 

Euclidean distance. Our results show that the proposed VAE can effectively correct for platform 

effects and improve the accuracy of downstream integrative analyses. This study has the 

potential to improve the accuracy and translatability of proteogenomic drug response studies. 

The proposed modified VAE could be used to correct for platform effects in a variety of datasets, 

including those from different studies, different platforms, and different cancer types. This could 
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lead to new insights into cancer biology, calibration of cancer patient digital twins, and the 

development of new diagnostic and therapeutic strategies. 

 

Introduction 
 

The complexity of biological processes in cancer and the ethics of testing new therapeutics 

necessitate the use of models130. Cancer model systems include cell lines, organoids, and 

patient-derived xenografts131. These systems provide a means with which to screen putative 

therapeutic compounds against various types of cancers132–134. However, nested batch effects - 

unwanted noise - arise in data derived from these model systems due to biological artifacts such 

as cell lines having no immune system and technical artifacts such as differences in assays135. 

Additionally, non-linear relationships arise in data from biological model systems due to 

biochemically encoded information flow between system components such as gene regulation 

and metabolism136. The motivation for correction of batch effects in cancer model systems is to 

predict drug response in humans based on observations in model systems. A successful model 

system batch correction method could also inform future data collection in terms of what 

additional biological signals to target for collection or what noise signals to design against in the 

design of data collection instrumentation. Methods for batch correction in single-cell data have 

been developed and systematically benchmarked137. Variational autoencoders (VAEs) are 

versatile, neural network models that generate tunable latent representations of data thus are 

amenable to modification of data distributions120. 

 

VAEs are deployed in python whereas single-cell batch correction packages are written primarily 

in R presenting unique installation and intermediate data structuring challenges in evaluating 

method performance. Thus, package usability instead of performance emerges as a primary 

factor in the design and comparison of different correction methods. We hypothesize that neural 

network methods can both improve both the tractability of constructing system-specific 

correction pipelines and correct for batch effects as well as or better than existing methods while 

also improving the usability of batch correction tooling. Our observations are based on 

experiments, datasets, methods, and evaluations that were undergoing simultaneous development 

resulting in discrepancies over the lifetime of the project. However, the two cancer model system 

 

86 

https://www.zotero.org/google-docs/?GtPnlm
https://www.zotero.org/google-docs/?8yFjEM
https://www.zotero.org/google-docs/?wa9ZwW
https://www.zotero.org/google-docs/?gS9jWi
https://www.zotero.org/google-docs/?kms043
https://www.zotero.org/google-docs/?9ZQ5my
https://www.zotero.org/google-docs/?WYCD1e


batch correction themes of aligning the biological signal component of omics data distributions 

while retaining separation of the phenotypic signals remain consistent across all combinations of 

data modalities, correction methods, and evaluation methods.  

 

Results 
 

CoderData platform and batch correction strategy 
 

Cancer model systems data were obtained using Pacific Northwest National Laboratory’s 

CoderData (Cancer Omics Drug Experiment Response Data) integration platform138. This 

package integrates five data sources: Broad Sanger, CPTAC (Clinical Proteomic Tumor Analysis 

Consortium19), HCMI (Human Cancer Models Initiative20), BeatAML139, and MPNST (malignant 

peripheral nerve sheath tumor140). Each of these datasets contain samples with molecular profiles 

of various combinations of data types including transcriptomics, proteomics, mutations, and copy 

number variation. For example, CPTAC contained samples with molecular profiles covering all 

four data types with 10 cancer types whereas the HCMI organoids contained no proteomics 

profiles and a different combination of 10 cancer types. Understanding the intersections of these 

data attributes is necessary for controlling the design of machine-learnable data structures. This 

includes controlling for statistical power and class imbalance. The strategy to evaluate the model 

system correction methods was to predict cancer type and model system source before and after 

the correction and to cluster by cancer type and model system labels before and after the 

correction. The model system batch correction workflow of data acquisition, structuring, and 

comparing DL with linear correction methods is shown in Fig. 5-1. 

 

 

87 

https://www.zotero.org/google-docs/?8vLKQL
https://www.zotero.org/google-docs/?XWb6yz
https://www.zotero.org/google-docs/?RPxxjI
https://www.zotero.org/google-docs/?Xgg6rL
https://www.zotero.org/google-docs/?jPvdAd


Fig. 5-1 Model systems batch correction process flow diagram. Corresponding data across model 

systems, data types, and cancer types were sourced from the CoderData platform at Pacific Northwest 

National Laboratory. Classification on both the cancer type labels and the data source labels in addition to 

UMAP clustering on the independent variables by both label types established baseline results on the 

pre-corrected data. The pipeline then bifurcated for the linear method vs neural network comparison with 

additional unique data structuring on each track to correct for model system batch effects and then 

reformatted the data for direct post-correction comparisons 

 

Machine learnable data preparation 

 

The batch-correction evaluation was implemented with a dual-label tabular data structure. Label 

set one was the model system or data source and label set two was the cancer type; these two 

label sets were the y targets for the scikit-learn classifiers and the UMAP dimensionality 

reduction. One or more data types of biomolecular measurements i.e. transcriptomics, 

proteomics, etc. comprised the independent variable portion of the data. The result was 

dual-labeled, mono- or multi-modal machine learnable and dimensionally reducible data. A 

generic tabular representation of this structure for one biological modality is shown in Fig. 5-2. 

This representation shows two model systems and two cancer types however data structures with 

more than two model systems per cancer and/or more than two cancers are possible and were 

tested in conjunction with these binary dual-label structures.  
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Fig. 5-2 Dual-label data structure prepared for machine learning. Actual cancer model system data 

structures may contain more than two classes within each label. Limited sample sizes and class 

imbalances, denoted by the difference in height of the green and the blue boxes, may be severe thus 

presenting challenges for model learning 

 

Modeling challenges 

 

The three primary challenges in modeling with these data, as summarized in Fig. 5-3, were 

limited sample sizes, class imbalances, and incomplete coverage of data types and cancer types. 

Limited statistical power due to small sample sizes presented training challenges for both the 

traditional ML models used in the evaluation and the neural network models used in the 

correction. Additionally, algorithms are often designed to optimize overall accuracy, which can 

be dominated by the majority class141. In extreme cases, the minority class may be ignored 

altogether. This leads to poor predictive performance on the minority class such as a rare cancer 

type or model system with relatively fewer samples. Further, across model systems, the 

intersection of data types and cancer types is incomplete. These data characteristics limited the 

available set of testable experimental configurations within the constraints of presently available 

ML tools. 
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Fig. 5-3 Model system sample counts by cancer type faceted by data type. Mutation, transcriptomic, copy 

number, and proteomic data types by 5 solid and 1 blood cancer types. Model system combination varied 

by several orders of magnitude resulting in class imbalances and limited power. Data shown for the five 

most-common cancer types intersecting the four model system projects. HCMI data were first pre-filtered 

to include only 3D organoid samples 

 

Model approaches and evaluations 

 

Within these constraints of small sample-sizes, class imbalances, and limitations in data 

type-coverage, modeling configurations were explored to develop both the correction and 
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evaluation components of the pipeline. A survey of single-cell batch correction algorithms, such 

as the popular ComBat-seq142, was conducted to identify a method amenable to our data and 

establish a baseline of comparison for the GDAN-TMP quantile rescaling algorithm and the 

VAE. MBatch143 was identified as a tractable solution and deployed in a comparison pipeline 

with four custom VAEs developed and deployed in collaboration with Raphael Kirchgaessner, a 

PhD candidate also with the Ellrott Lab. The VAE development drew from a variety of 

VAE-tuning methods with potential to achieve our goal of preserving biological signal while 

removing both the biological artifacts arising from different model system sources. This process 

is termed disentanglement of latent representations and a multitude of approaches have been 

reported; one example implementation is adding a penalty term to the composite loss function of 

a VAE144–146. Representative results of batch correction method and evaluation method 

comparisons for a multicategorical cancer type comparison are shown in Fig. 5-4. The five 

cancer types comprising this primary tissue prediction are the solid tumors shown in Fig. 5-3 i.e. 

all but AML. 

 

Fig. 5-4 Comparison of batch correction methods with multicategorical cancer-type classification. 

Performance improvement from uncorrected data was measured with four Scikit-learn evaluation models: 
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random forest, decision tree, logistic regression, and support vector machine. The uncorrected data is 

shown in green with the linear correction method MBatch in yellow, the GDAN-TMP quantile rescaling 

in purple, and our four VAE correction methods developed at OHSU: VAE beta classifier, VAE classifier, 

VAE contrastive loss, and VAE discriminative 

 

In comparing the performance of our GDAN-TMP quantile rescaling, MBatch, and the four 

VAEs, the rescaling method consistently returns the largest increase in cancer type prediction 

performance. For three of the four evaluation methods, the MBatch correction method raised the 

mean prediction above the upper quartile of the uncorrected data. Our four VAE methods showed 

similar performance results for each of the four evaluation classifiers with the lower quartile of 

all four VAE-improved predictions above the upper quartile of the uncorrected data for the 

decision tree and logistic regression evaluation classifiers. The classifier VAE (vae_clssfr) was 

the most performant VAE architecture although the overall difference among the VAEs was 

minimal.The supervised categorical prediction evaluation was also applied using the model 

system sources as the y-labels (results not shown). Here, a reduction in prediction performance 

on model system labels indicates successful batch correction. 

 

Next, a UMAP dimensionality reduction was performed on both the cancer type and model 

system source as an additional evaluation of correction performance. The expected behavior was 

analogous to the classification scheme where post-correction clustering effect would diminish for 

model system source and the clustering effect would improve for biological signal as indicated 

by cancer type. A UMAP cluster comparison on system source labels, shown in Fig. 5-5, shows a 

similar reduction in clustering performance for both MBatch and the VAE, over two cancer 

types, which indicates in both cases the intended removal of batch effect. 
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Fig. 5-5 Dimensionality reduction pre- and post-artifact correction. MBatch vs VAE — both the linear 

MBatch and non-linear VAE correction methods transformed the data distributions so that samples that 

were originally clustered by the model system data source did not cluster after the correction. Variation in 

this effect was observed over combinations of methods and cancer types 
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Discussion 

 

This experiment addressed the challenge that observations in cancer model systems, such as drug 

screening in cell-lines, have poor transferability to humans147. In mouse models, for example, this 

is the result of significant differences in gene expression that relate to differences in metabolism, 

life span, and tumor-type susceptibility148. Cell-lines lack an immune system and microbiome 

altogether which also degrades the capability of recapitulating the effect of drug perturbations in 

humans. Similar challenges exist for organoids. These sources of biological noise are distinct 

from the phenotype of interest and are what batch correction, widely developed for single-cell 

data integration, attempts to overcome137. In addition to these biological factors, the aggregation  

of assays with differences in time-of-capture, operations personnel, reagents, and instruments 

results in technical artifacts between groups of samples in the data. Together, these biological and 

non-biological factors combine to result in what are termed nested, confounded, or hierarchical 

data effects. 

 

Our approach sought to overcome these data platform incongruences by leveraging the 

non-linear modeling capabilities of generative neural networks i.e. a VAE to transform the 

distributions of cancer model system omics to be of utility in prediction problems such as drug 

response with human data. As an initial step toward this larger goal, we structured our modeling 

around cancer tissue-of-origin prediction. Our pipelines consisted of an evaluation framework 

and the correction methods under comparison. The evaluation framework utilized non-neural 

network ML classifiers to compare the effect of cancer type predictability on both the cancer 

labels and the model system source labels. F1 scoring was used to quantify the prediction 

accuracies to account for class imbalances; ideally, a model system dataset for developing 

correction methods would have balanced classes to not confound the source effects. A UMAP 

clustering provided a corresponding qualitative assessment of the correction effectiveness. For 

both the label prediction and clustering, diminished performance on the model system source 

labels served as an indicator of the intended effect of aligning omic data distributions. 
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Over the various permutations of data type, prediction goal, correction methods, and evaluation 

methods we observed variation in the correction results. However, the general trend was that the 

GDAN-TMP quantile rescaling algorithm showed the greatest improvement in prediction of 

phenotypic class followed by the MBatch linear method and our four VAEs. We worked toward  

comparisons of multiple correction methods using multiple evaluations. Future work should 

continue in this direction by integrating explicit comparisons across methods such as ComBat, 

MNN, and contrastive learning and incorporating direct measures of evaluation such as kBET 

and silhouette. 

 

Conclusions 
 

The utility of cancer model systems is constrained by nested batch effects that include both 

biological and technical artifacts. Clustering and supervised categorical prediction can be 

implemented with multiple methods to build robust evaluation schemes for correcting data 

source effects in cancer model systems. The interactive effects between model system data 

attributes, different evaluation frameworks, and different correction methods can lead to 

significantly different conclusions in terms of both the degree to which the biological signal of 

interest has been preserved and the degree to which the batch effects have been removed. This 

highlights that an arbitrary choice of evaluation classifier i.e. SVM can lead to different 

conclusions than if using multiple evaluation methods. An ideal model for transforming cancer 

model system data distributions would diminish data source effects across data types and 

prediction tasks while improving detectability of the phenotypic signal of interest.  

 

Methods 
 

Data provenance and structuring 

 

Data for copy number variation, mutations, gene expression, and proteomics were obtained for 

four model system platforms: CPTAC, HCMI, cell-line, and BeatAML using the CoderData data 

portal at https://pnnl-compbio.github.io/coderdata/. Age ranges, male-to-female ratios, and the 

disease stages are shown for the five cancer types reported herein in Table 5-1. 
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Table 5-1 CPTAC demographics 

 

 

The model system labels used in this experiment do not match the current data offerings due to 

ongoing updates to CoderData. The HCMI data included model systems other than organoid 

such as cell-line. These non-organoid samples were removed rather than added to the other 

cell-line data as to avoid introducing additional source noise; this came at the expense of 

increased statistical power for the cell-line data type. 

 

An interactive data extraction and re-structuring notebook was built with python in Jupyter Lab 

using the cd.load() function in the coderdata package: 

 

>> import coderdata as cd 

 

The evaluation framework, which included the ML classifiers and plotting functions, described 

in detail below, was built into the same notebook to enable rapid exploratory comparisons across 

stages of data correction. The R-based MBatch read separate input files from disk in a transposed 

format compared with the typical pandas dataframe input format for the Python-based VAEs. 

 

Modeling 
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During development, multiple cancer label combinations were tested within binary and 

multi-class formulations of the problem. The prediction results shown in Fig. 5-4 used 

transcriptomics data for predicting five cancer types: renal-clear-cell, glioblastoma, colon-adeno, 

lung-aeno, and pancreatic-adeno. The evaluation framework consisted of four scikit-learn 

models: random forest, decision tree, logistic regression, and support vector machine. 

Hyperparameter settings were set to default.  

 

A development VAE was built by modifying the Tybalt120 model by adding a penalty and reward 

term to the composite loss function. The two distribution distance metrics tested in this phase 

were cosine similarity and euclidean distance. The four models built by project collaborator 

Raphael Kirchgaessner were deployed on OHSU’s Exacloud using a push-only to production 

strategy via a shared GitHub Repo. The four variations of distentanglement VAEs tested were: 

beta, contrastive, classifier, discriminative. 

 

Matplotlib and seaborn were used to generate the figures. 

 

Hardware and software 

 

Exacloud: https://www.ohsu.edu/advanced-computing-center/acc-cluster-computing 

​ * Note: Exacloud has since rebranded to Advanced Computing Center (ACC) Research 

Cluster (ARC) 

UMAP: https://umap-learn.readthedocs.io/en/latest/ 

Scikit-learn: https://scikit-learn.org/stable/ 

MBatch: https://bioinformatics.mdanderson.org/public-software/mbatch/ 

GDAN-TMP quantile rescaling algorithm: 

https://github.com/NCICCGPO/gdan-tmp-models/tree/main/tools/quantile_rescale.py  
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Chapter 6 — Conclusions, overall scientific contributions, and individual 

contributions 

 

Brian Karlberg 

 

Publishing/permissions: NA 
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The complexity of cancer - a chemical system of interwoven networks for communication, 

control, biosynthesis, and energy production149–151 - requires modeling approaches that transcend 

established disciplinary boundaries152,153. Machine learning (ML) is isomorphic to such a system 

of complexity in providing a means for integrative modeling; capabilities beyond traditional 

analytical methods. This dissertation presented ML-based analyses of cancer as molecularly 

defined by sequencing-based omics. These molecular profiles of genomic and transcriptomic 

measurements were studied over the majority of solid tumors in both humans and cancer model 

systems. Our findings show the mRNA data is of particular utility in delineating cancer subtypes 

and developing ML pipelines with potential for cost-effective clinical implementation. Another 

overarching theme is the identification of feature sets, classifiers, or generative models that are 

specific to data types and can be tailored to goals ranging from cancer detection, defining 

subtypes, synthetic sample generation, and batch correction. 
 

Prediction of TCGA molecular subtypes 

 

The GDAN-TMP project utilized an interdisciplinary approach154 — clinicians, biologists, 

computer scientists, and engineers building ML models for translating high-dimensional TCGA 

molecular data into clinically applicable knowledge and software tools. Our work in applying 

five distinct ML approaches with five molecular data types across the majority of solid tumors 

revealed genomic and transcriptomic gene signatures specific to cancer types. From this 

development work, several key findings emerged: cross validation and performance scoring to 

account for imbalanced classes can facilitate benchmarking of orthogonal ML methods, compact 

feature sets of potential clinical utility, that gene-centric molecular profiles can enhance 

interpretability, gene expression signatures are comparatively performant in capturing complex 

underlying biology, external validation frameworks can be built with rigor, the statistical effects 

of limited sample sizes can be characterized, and that pre-trained ML pipelines for molecular 

subtype prediction can be shipped to facilitate adoption by the broader community. 

 

 

Mutational landscape vs transcriptional state 
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Memoization-based sorting can be applied to gene-level binary mutation values for cancer 

cohorts at both the primary tumor and subtype levels. This can be done either with or without a 

priori feature selection and reveals patterns of mutually exclusivity in mutation data as a basis for 

analysis of alterations to DNA coding regions. Feature selection was conducted within a repeated 

sub-sampling framework to produce selection frequency-based ranked sets of expression 

features. Subtype-specific interaction networks can be built to introspect cancer molecular 

subtype biology. Class-specific feature importance quantification was developed to analyze 

relative feature importance with subtype resolution. Combining memo-sort-identified mutation 

gene sets with expression gene sets via Pathway Commons interaction mapping yields a route 

constructing gene interaction networks with either primary tumor-type or subtype specificity. 

Gene expression features predict molecular subtype with equivalent F1 score and prediction 

confidence across the TCGA. 

 

Synthetic sample generation 

 

Here, we demonstrated how generative deep learning can be leveraged to synthesize 

transcriptomic data. We utilized transfer learning, fine tuning, and then sub-sampling with a 

variational autoencoder to generate latent-space representations of mRNA profiles specific to 

106 TCGA cancer subtypes. This approach used the prior information of thousands of samples 

for learning distributions of rare subtypes with limited statistical power. Our novel data 

augmentation technique was demonstrated to be robust under both quantitative and qualitative 

evaluations that included supervised categorical prediction, an RMSE analysis, UMAP and Scipy 

clustering, maximum mean discrepancy distributional analysis, feature importance calculations, 

and application to single-cell data. In sum, this experiment showed how deep learning can 

integrate with and boost the performance of traditional, interpretable ML methods. 
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Cancer model systems batch correction 

 

Cancer model systems such as cell-lines and organoids provide a means for testing the efficacy 

of putative chemotherapy drugs. However, molecular profiling data derived from such model 

systems suffer from inherent limitations relating to both technical and biological artifacts. These 

artifacts result in what is termed “nested batch effects” and inhibit the transferability of 

observations to confident conclusions of drug-response in humans. A preprocessing pipeline was 

developed to extract model system data from various sources and prepare dual labeled — system 

and cancer type — machine learning ready. We explored the utility of adapting batch-correction 

methods from single cell methods and worked to build batch-correcting terms into variational 

autoencoders. Our evaluation framework included unsupervised clustering and supervised 

categorical prediction on both label sets to compare the performance of various correction 

methods. The quantile rescaling algorithm from the GDAN-TMP project was observed to be 

particularly performant under one set of evaluations, however this result underscores the theme 

of importance in comparing multiple evaluation methods in drawing conclusions from the 

application of ML to molecular profile data of cancer. 

 

Overall scientific contributions 

 

This dissertation presents a body of work demonstrating the application of machine learning to 

cancer molecular profiles to advance precision oncology. The primary contributions are 

organized across four key areas: the prediction of molecular subtypes, the interpretation of the 

underlying biology, the improvement of modeling performance through data synthesis, and the 

extension of these methods to bridge cancer model systems with human data. 

First, this work established a comprehensive and robust framework for the clinical translation of 

cancer subtyping. We developed a public library of machine learning classifiers capable of 

predicting molecular subtypes for new tumor samples across 26 different cancer types from The 

Cancer Genome Atlas (TCGA). A key finding was that gene expression (mRNA) signatures 

were frequently the most informative data type for classification, often outperforming the 

genomic and epigenomic features originally used to define the subtypes. The generalizability of 

 

101 



these models was confirmed through rigorous external validation, and we characterized the 

relationship between sample size and predictive accuracy, providing guidance for future study 

design. 

Second, we investigated the complex relationship between the mutational landscape and the 

resulting transcriptomic state in cancer. A novel feature selection framework was developed, 

combining a memo-sort algorithm to identify patterns of mutual exclusivity among mutated 

oncogenes with a sub-sampling approach to pinpoint corresponding mRNA expression 

signatures. This analysis revealed that while specific mutations are critical, mRNA signatures 

effectively integrate the complex downstream effects of numerous genomic and proteomic 

alterations. This provides a strong rationale for their utility in molecular classification, as they 

consistently demonstrate high predictive power even in cases where common oncogene panels 

fail to detect a mutation. 

Third, to address the common challenge of limited data for rare cancer subtypes, we developed a 

novel deep learning method for synthetic data generation. The tool, SyntheVAEiser, utilizes a 

variational autoencoder (VAE) trained via a transfer learning strategy to generate high-fidelity, 

synthetic gene expression samples. We demonstrated that augmenting training datasets with 

these synthetic samples significantly improves the accuracy of machine learning classifiers, 

thereby overcoming limitations posed by small sample sizes and imbalanced classes. This 

contribution provides a powerful method for improving statistical power in genomic studies. 

Finally, this research tackled the critical challenge of translating findings from cancer model 

systems (e.g., cell lines, organoids) to human patients. We developed and evaluated a multi-way 

batch correction strategy to remove the technical and biological artifacts that confound the 

integration of these disparate datasets. By employing and comparing various methods, including 

novel VAE-based approaches, we demonstrated a pipeline to align data distributions while 

preserving the essential biological signals. This work represents an important step toward 

enabling the prediction of patient drug response based on data from preclinical model systems. 

Collectively, these contributions demonstrate a multi-faceted machine learning approach to 

address fundamental challenges in cancer genomics. This dissertation delivers not only 

predictive models and software tools for the research community but also provides deeper 
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insights into cancer biology and a clear path toward more precise, molecularly-guided clinical 

decision-making. 

 

Contributions, individual 

 

Chapter 1 was written by B.K. with general guidance for content and formatting from the DAC 

committee in ideation and revisions. The three topics comprising Chapter 2 were extracted from 

the GDAN-TMP publication per B.K. primary contributions. K.E. and J.L were involved in the 

grid search and feature selection results generation with the TMP consortia providing 

experimental and figure ideation and revision guidance for the validation and sample collection 

components. Unless otherwise noted, figures were generated by B.K. and reproduced without 

modification from the Cancer Cell publication. Chapter 3 was written by B.K upon results 

generated by B.K. in iterative ideation and revision with K.E. All figures were created by B.K. 

Chapter 4 was written by B.K. via direct reproduction, without modification, of the Genome 

Biology publication.All figures were created by B.K. Chapter 5 was written by B.K. based on the 

AACR poster. All figures were created by B.K. Chapter 5 was written by B.K with revised 

content based on committee comments.  
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