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Abstract

Improving Maximum Daily Salinity Regressor Performance

in the

Columbia River Estuary Project

Rafael de Jesus Fernandez Moctezuma

Supervising Professor: Dr. Todd K. Leen

The goal of this research is to improve the performance of the Maximum Daily

Salinity regressor used in the fault detection mechanism deployed in the Columbia

River estuary (CORlE). The Center for Coastal and Land-Margin Research is de-

veloping an Environmental Observation and Forecasting System. The goal of the

CORlE project is to gain a better understanding of the estuary. The team has

deployed sensors in the estuary to measure salinity, temperature, pressure, and ve-

locity. Of these sensors, salinity sensors are subject to bio-fouling, an event that

results in data loss over time. Previous work in fault detection helped prevent data

loss.

Our work improves the performance of the regressor used as part of the detector

architecture. We looked at temperature measurements as inputs for the salinity

regressor. We used the Gaussian Mixture Model to build a new salinity regressor.

In addition to the Gaussian Mixture Model, we attempted to include historical

x



information into our regressor, explored the use of single-layer neural networks, and

considered incorporating measurements from nearby stations to improve regressor

performance. We also considered incorporating numerical predictions for salinity

from SELFE, a numerical model of the estuary developed by the CORIE team. We

show a performance comparison of the original and new regressors.

Xl



Chapter 1

Introduction

A common problem in statistics is to try to determine the relationship between

several random variables. Regression accomplishes the task of determining the rela-

tionship. Bishop [3], Duda et al. [6], and Mitchell [7] define regression as a method

to find a description of the data in terms of a function. To illustrate this concept,

consider a set of measurements of height and weight of individuals from a popu-

lation (see Table 1.1.) We assume these two variables are dependent. We express

the relation as a target function. We will fit the model function's parameters to

minimize a measurement of error. This error measurement provides performance

information - the relation between the estimated target function's value at a given

point and the observed (true) value.

Table 1.1: Sample measurements of height and weight from a population. Height
is expressed in inches and weight is expressed in pounds. The measurements are
indexed with the variable i.

If we assume the relation between height and weight is linear, we can write a

1

Index (i) Height (Inches) Weight (Pounds)
1 75 163
2 73 171
3 67 151
4 64 141
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model function to predict weigth with the form

j(x) = ax + b (1.1)

where a and b are the function's parameters, and x is height. To measure the error,

we can use the mean squared error (MSE)

(1.2)

where D is the number of observed data points, f(Xi) is the observed weight value

for a given point (indexed by i), and j(Xi) is the value of the model function (in this

example, the estimated weight) for a given height Xi. We can also define a different

model function, such as a quadratic:

j (x) = ax2 + bx + c. (1.3)

For any choice of model function, the learning task is to fit its parameters (a

and b for Equation 1.1, a, b, and c for Equation 1.3.) Figure 1.1 illustrates a linear

fit and a quadratic fit on height and wight data created to illustrate regression.

The results from the example (shown in Figure 1.1) show how the choice of a

different model function produced a different regressor. The MSE dropped when

we used a quadratic fit instead of a linear fit. It is clear that a critical step when

regressing a variable in terms of other(s) is the choice of the model function. Not

everything can be represented as a straight line.

We have reviewed the basic concepts of regression and showed an example with

two choices of model functions. This brings us to a comfortable point to describe

the work of this research.

As part of an Environmental Observation and Forecasting System, sensors de-

ployed in the Columbia River estuary (CORIE) collect salinity, temperature, pres-

sure, and velocity information. The salinity sensors are subject to bio-fouling, an

event that causes decay of the measured maximum diurnal salinity. This leads to
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Figure 1.1: Weight as a function of height. There are 52 available observations. Part
(a) shows a linear fit superimposed on available data. Part (b) shows a quadratic
fit superimposed on available data. The MSE for the linear fit is 151.5 and for the
quadratic fit is 146.6.

undesirable data loss. Archer et al. [1, 2] developed an automatic fault detection

mechanism to alert the CORIE staff at early stages of bio-fouling. The fault detec-

tion architecture uses a sequential likelihood ratio test. As part of this test, they

built a regressor for maximum daily salinity using temperature information.

This research improves the performance of the regressor used in the CORlE

project. Chapter 2 presents the Gaussian Mixture Model, our choice for regression.

Chapter 3 details the problem scenario, reviews the previous work on CORIE and

presents our choices for improving the regressor performance. Chapter 4 shows

experimental results. The Appendix describes alternative approaches we tried to

improve performance, and should provide documentation of our experience with

these approaches for future reference.

100' , 100
65 70 75 65 70 75

Height (in inches) Height (in inches)

(a) Linear fit (b) Quadratic fit



Chapter 2

Regression with the Gaussian
Mixture Model

Our intention to improve the performance of the maximum daily salinity regressor

deployed on the CORIE project led us to consider the use of the Gaussian Mixture

Model. This chapter reviews the Gaussian Probability distribution, presents prop-

erties amicable for regression, introduces the Mixture Model, and discusses the EM

algorithm for fitting Gaussian Mixture parameters.

2.1 The Gaussian Probability Distribution

The French mathematician Abraham de Moivre developed the Normal Distribution

in the early 18th century. In the early 19th century, Carl Friedrich Gauss used it

to analyze the distribution of errors in astronomical observations. The distribution

bears Gauss' name extensively in the engineering and physics literature1. The shape

of this distribution resembles a bell (see Figure 2.1.)

When an input x is only one variable, we define this univariate probability

distribution as

(2.1)

1For interesting historical information about Gauss, visit the MacThtor History of Mathematics
archive, http://www-history.mcs.st-andrews.ac. uk/history /

4
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where Jt is the mean and (J2is the variance. If we have D samples, we can calculate

the mean and variance 2 as
1 D

Jt=-~D~xi~=l
(2.2)

2 1 ~ ( )
2

(J = - L..JXi - Jt .
D i=l

The square root of the variance, (J, is called the standard deviation.

(2.3)

Notice how

we fully describe the Gaussian distribution by its mean and variance. If we sample

from a Gaussian distribution, we expect to obtain Jt, since this point has the highest

probability. If a random variable X is distributed as Gaussian, we say that the

expected value of x is the mean of the Gaussian distribution:

E [x] = Jt. (2.4)

When the input is an n-dimensional vector X, the Gaussian distribution is

For n-dimensional inputs, the mean p, is an n-dimensional vector, and the co-

variance I; is an n x n matrix. In equation 2.5, II;I denotes the determinant of the

covariance matrix, I;-l is the inverse of the covariance matrix, and (x - p,f is the

transpose of the vector difference.

2.2 Joint, Marginal, and Conditional Gaussian Prob-

ability Distributions

Gaussian distributions have a great advantage: joints, marginals, and conditionals

are also Gaussian. Recall that a joint probability distribution involves two or more

variables, that may be dependent or independent from each other. Consider two

2Wolfram's Mathworld provides interesting discussion on mean and variance, at
http://mathworld.wolfram.com/Mean.html and http://mathworld.wolfram.com/Variance.html
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Univariate Gaussian Distribution
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Figure 2.1: A Univariate Gaussian Distribution with Jl = 0 and 0'2 = 1. Notice how
the "bell" is centered at the mean. The standard deviation a is also illustrated.

random variables x and y which are outputs of a given process. The joint distribution

tells us the probability of a given pair of values {Xi, Yi} occurring together [8]. We

write joint probability distributions as either

p(x, y) = p(x)p(y) (2.6)

p(x, y) = p(x)p(ylx) (2.7)

where the expression in equation 2.6 denotes statistical independence between x and

y and equation 2.7 denotes the probability of observing y given the ocurrence of x,

a desirable situation for regression, since we can express one variable in terms of the

other. Joint Gaussians have the form

p(x, y) = N(fl, ~), with fl =
[

JlX

]

and ~ =
[

a; ax;
]

. (2.8)
Jly axy ay

Each random variable has a contribution in the mean vector and covariance matrix

(denoted with subindices in equation 2.8)3.

Consider the task of regressing x on y, and z. We can easily group y and

z as a new variable, R, to manipulate the expressions in convenient block form.

3These expressions are frequently extended to more than two variables representing the mean
vector and covariance matrix in block form.
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Starting with a joint probability distribution of those two random variables, we can

obtain a conditionalprobability. FollowingBayesTheorem, weobtain the conditional

probability as

( IR ) = p(x, R) (29 )
p x p(R) .

We marginalize the joint p(x, y) to obtain p(y) by integrating the joint distribu-

tion over x. The result is Gaussian, and equivalent to removing the contribution of

x. The conditional density is

(2.10)

with conditional mean and variance:

(2.11)

(2.12)

In Equation 2.11 we have a linear expression to estimate x in terms of R. This

is a linear regressor.

2.3 Gaussian Mixtures

The Gaussian distribution is not necessarily a good way to estimate the true dis-

tribution of the random variables we observe. Observation may come from more

than one distribution. Stephenson [9]gives a great motivating example, which we

summarize as follows: Suppose we draw the followingobservations:

x = {-20, -19, -19, -18, 7,8,9,9,10, 11}.

A Gaussian would use -2.2 as the mean value of this distribution, and the num-

bers drawn are not even close to that estimate. It is better to have two subsets,

Xl = {-20, -19, -19, -18}, and X2 = {7,8,9,9,10, 11},with a Gaussiandistribu-

tion for each subset. Even better, we can build a distribution over both Gaussians
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as a weighted sum. The weights would be 1~ and 160respectively, corresponding to

the fraction of the data points that belong to each Gaussian component. Gaussian

mixtures are expressed as

c

p(x) = L WiPi(xl,ui,Ei)
i=1

(2.13)

where c is the number of Gaussian components. For each component i, the associated

weight, mean, and covariance matrix are Wi, [ii, and Ei respectively. The sum of all

weights must be unity (L:~=1Wi = 1). In Section 2.2 we derived an expression for

a conditional Gaussian distribution. Following the same rationale, we can write an

expression for a conditional Gaussian Mixture. The final expression is

(2.14)

where every item indexed by i corresponds to a Gaussian component. There is a

closed form expression for the expected value of the conditional,

E[xly]
1 c= -
( ) L WiPi(y)Edxly]

P y i=1
c

2:p(ily)Edxly]
i=1

(2.15)

which is a regressor function for x with input y.

2.4 Fitting the model parameters

When working with Gaussian Mixtures, one faces the task of fitting the model

parameters (weights, means, and covariances) as well as deciding the number of

components to use. We used the Expectation-Maximization (EM) algorithm [5] to

fit the weights, means, and covariances, and cross-validation [7] to determine an

appropriate number of Gaussian components.
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The Expectation-Maximization (EM) algorithm (Dempster, 1977 [5]) is generally

used to fit the parameters of Gaussian Mixtures, as shown in a popular tutorial by

Bilmes [4]. Dempster et al. [5], and later Xu and Jordan [10] provide proof of

convergence to local optima of this algorithm. Recall that we fit the parameters of

a proposed model to minimize a measurement of error. For EM, we find parameters

that maximize likelihood of the data under the proposed distribution. Think of this

as "maximizing the benefit", comparable to "minimizing the error." In summary,

this algorithm iterates over two steps: the E-step and the M-step. We start with

a random selection of parameters (weights, means, covariances) for a mixture of c

components. The E-Step computes the expected complete-data likelihood values as

a function of the current proposed set of parameters given the previous ones used.

The M-Step finds new values of parameters that maximize the expected complete-

data likelihood function. The two steps are repeated until convergence according to

a given criteria.

We used cross-validation [7] to determine the number of Gaussian components.

First, we separated the available data in two disjoint sets: fitting (F) and hold-

out ('H.). Then, we proposed a range of the number of components to consider

(2,3,. . .,10). For each choice of the number of components, we used EM to fit a

Gaussian Mixture4 with the set F. For every Mixture, we evaluated its performance

on the set 'H.. We were then able to decide which number of components was best

suited for our data by looking at the mean square error on the set 'H..

Suppose we have modelled the joint density of two variables, x and y as a Gaus-

sian Mixture. If we wish to regress x in terms of y, we must find the conditional

density p(xly). This process is detailed in Chapter 3, where we show how we built

a regressor for salinity..

4EM converges to local optima. It is wise to use several restarts and pick the parameters that
yield the best performance (i,e., minimize the MSE of the mixture evaluated on the set F.)



Chapter 3

Building a Regressor for the
CORlE data

This chapter reviews the previous work by Archer et al. [1,2], presents a summary of

the characteristics of the problem wetry to solve, and details our proposed regression

mechanism using the Gaussian Mixture Model.

3.1 Bio-fouling

As part of an environmental observation and forecasting system, sensors deployed in

the Columbia River estuary (CORIE)! collect salinity, pressure, temperature, and

velocity measurements. Figure 3.1 shows stations deployed in the estuary. Measure-

ments have been archived since 1996. The CORIE team uses the measurements to

gain a better understanding of the estuary. Of the sensors deployed, salinity sensors

are subject to bie-fouling, an event that causes a decay of the measured maximum

daily salinity. Bie-fouling is caused by the growth of biological material on the sen-

sor. A CORIE expert will take a look at the salinity measurements and identify a

monotonic decay of the maximum diurnal salinity measurement. The expert will

then estimate when bie-fouling started and discard the corrupted data. Figure 3.2

shows clean and bie-fouled timeseries.

IFor up to date information on the CaRIE project, visit www.ccalmr.ogi.edujCORIEj

10
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QJl01
<0.

Figure 3.1: CORlE Stations map. Stations are marked with circles. We refer to
stations in this text by their name.

Detection of bio-fouling can take weeks or months. Degradation can either be

a very slow process or occur within a couple of weeks. It is not until a sensor is

substantially compromised that the experts start analyzing the timeseries. Even

then, determining the day at which bio-fouling starts is an uncertain estimation.

We refer to the time at which bio-fouling occurs as on-set time.

3.2 Detection of Bio-fouling

In order to detect bio-fouling, Archer et al. [1, 2] looked at sources of correlated

information. They found that temperature sensors are not subject to bio-fouling,

and assumed there is a correlation between temperature and salinity measurements.

This assumption follows from the fact that salinity and temperature at a given sta-

tion result from the same mixing process of ocean and river waters. They proposed

that the measured salinity and temperature at a given station results from a linear

mixing of ocean and river waters, expressed as

Sm = o:(t)So+ (1 - o:(t))Sr (3.1)
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Figure 3.2: Clean and bio-fouled salinity time series examples from sensors in the
Columbia River estuary. The top timeseries shows a clean signal, with its natural
variability. The bottom plot shows a bio-fouled sequence. Notice how the maximum
salinity value is decreasing over time after 9/28, the estimated time at which bio-
fouling began. Image from Archer et al. [2]

Tm = a(t)To+ (1 - a(t))Tr. (3.2)

In the above formulation, the observed salinity and temperature at a given time

tare Sm and Tm, the ocean salinity and temperature are So and To, and the river

salinity and temperature are Sr and Tr. The linear mixing coefficient is a(t). Archer

et al. estimated a by solving the temperature equation 3.2

(3.3)

In upstream river there is almost no salinity penetration, hence equation 3.1 with

Sr = 0 implies Sm = a(t)So, i.e., a(t) is well correlated with salinity measurements,

which means Sm is a linear function of a(t). With this information, they modeled

salinity s and the mixing coefficient a as jointly Gaussian,

(3.4)

0
10/109/10 9/15 9120 9/25 9/30 10/05

I , . . I.11..
30

:5
m20
ex>

j:: 10
Q

0
""9/309/10 9/15 9/20 9/25 10/05 10/10

Date (month/day)
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Tansy, timeseries 2002
30

- Local
- River

2250 2300 2350 2400
CORlE day

2550

Figure 3.3: Temperature timeseries. Yearly, local and river temperatures cross over
during Spring and Fall. This is intuitive since upstream river is warmer during
the Summer than during the Winter when compared to the temperature observed
mid-estuary.

which can be used to regress salinity on the mixing coefficientas discussed in Chap-

ter 2. At this point, with a regressor that gives an expected value for salinity

observing upstream river temperature, ocean temperature, and local temperature,

they used a sequential likelihood ratio test to detect bio-fouling [1,2]. This approach

reduced data-loss by half.

Although the detection architecture yielded satisfactory results, we observed that

during transition periods (spring and fall) the regressor performed poorly. This fol-

lowsfrom the fact that during this transition periods the local and river temperatures

cross-over. Figure 3.3 illustrates a year-long timeseries of temperature data. In this

research, we looked at improving the overall performance of the regressor, aiming

specifically to the performance during transition periods.

3.3 Feature selection

As we mentioned earlier, the clearest indication of bio-fouling is a decrease of max-

imum daily salinity, Archer et al. [1] describe how to extract this feature. The

maximum daily salinity occurs near the tidal flood, a time at which the water depth



14

11
9/17 9/18 9/19

Date (month/day)
9/20

Figure 3.4: Feature selection looking at tidal cycles. There are two tidal cycles per
day, identified looking at the pressure signal, which is clean. After identifying the
maximum salinity between ebbs, we pick the maximum of those two values as the
maximum daily salinity. mage from Archer et al. [1]

is highest. By looking at the pressure signal, which is clean and not subject to

bio-fouling, they identify tidal ebbs by simply looking at the lowest points of the

pressure signal. Then, they identify the maximum salinity measurement between

ebs. In one day, there are two ebbs, so they choose the maximum salinity of those

two values. Figure 3.4 shows a sample pressure signal and a salinity timeseries.

Once the maximum daily salinity is extracted, we look at the matching tempera-

ture for the time at which the maximum occured. The river temperature is obtained

from stations located upstream (usually Eliot or Woody). Ocean temperature is as-

sumed constant at 10.43 Celsius based on observations from stations close to the

ocean (usually jetta or sandi).

Local temperature and upstream river temperature were candidate input features

.
3°h f\ ">.

:20
a;
C/)

10

0
9/17 9/18 9/19 9/20

16
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to replace the mixing coefficient originally proposed. Projections of the tempera-

ture space are shown in figure 3.5. In addition, we noted that by normalizing the

measured and river temperature by the denominator of the mixing coefficient, we

gained a natural separation of winter and summer datapoints as shown in Figure

3.6. The normalized temperatures are calculated as

(3.5)

TrN = To: Tr (3.6)

where TmN and TrN refer to normalized local and river temperature, To is the ocean

temperature, Tm is the local temperature, and Tr is the upstream river temperature.

We then proceeded to model the joint density

(3.7)

as a Gaussian Mixture. The regressor function after fitting the model parameters,

E[sITm, Tn TmN, TrN], has the form of equation 2.15.

Figures 3.5 and 3.6 allow a quick visualization of the temperature spaces. It

can be seen, for instance, that Summer points have a different functional form than

Winter points. The Gaussian Mixture Model, when properly fitted, should capture

these different forms with its various Gaussian components.

We also decided that data points for which the difference between ocean and

river temperatures was less or equal to 1.5 Celsius were unnormalizable. This proved

useful in experimentation and is discussed in more detail in Chapter 4.
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Chapter 4

Experimental results

This chapter presents and discusses results obtained using the Gaussian Mixture

Model for regression. We compare our performance to the Single Gaussian regressor

originally deployed by Archer et al.[l, 2]

We experimented with data from two stations: Tansy and am169. Refer to

Figure 3.1 to visualize their location in the estuary. Station am169 has several

sensors. We will refer to the sensor located at 11.3m below mean sea level as

"am169Jniddle" and the sensor located at 14.3m below sea level as "am169_bottom".

There was enough historical data archived for these stations, and a reasonable

number of data points available. Data from 1999 to 2003 was available for Tansy,

and data from 2001 to 2003 for am169. We had 744 data points available for Tansy.

For am169Jniddle, we had 533 data points, and for am160_bottom, 586.

We split the data to make sure we had a "full year" for training. This means we

covered all four seasons with points from the various years. We produced 10 different

shuffles, so that we could estimate the regressor performance. Every shuffle always

tried to set aside a full year for training.

In Chapter 3 we discussed the feature selection process. Recall that after nor-

malizing the temperatures we could visually identify, by looking at the datapoints,

a clear division between summer, winter, and unnormalizable data points. This

motivated us to experiment with four different configurations for our input vectors:

(1) Only raw features, (2) Only normalized features, (3) Both raw and normalized,

18
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Figure 4.1: Performance comparison of original and new regressor on Tansy. The
blue bars represent the error from the original p( s Ia) regressor, the red bars represent
the error from the new p(sIT) regressor, which uses 10 Gaussian components. Notice
the improvement in performance during the transition periods. "NMSE" refers to
the normalized mean-square error. Figures show average of ten splits.

and (4) Both raw and normalized with a hard-rule that separated normalizable from

unnormalizable datapoints. Configuration (4) required having two separate archi-

tectures, each trained with combination features, but with one architecture devoted

exclusively to the input vector of raw features for points that cannot be normalized.

Section A.5 in the appendix shows training and test errors for these different choices

of inputs.

Results are presented in Figures 4.1-4.3.. The mean square error and the variance

normalized mean square error (nmse) are shown. Results are averaged over the 10

splits. Significant improvement was observed during the transition periods, which

results in an overall performance improvement of the regressor.

In summary, our proposed new regressor which uses local, river, and normalized

temperatures as inputs performed considerably better than the original model that

used the mixing coefficient as input. The overall performance improves, most notable

in the transition periods.
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Figure 4.2: Performance comparison of original and new regressor on am169Jlliddle.
The blue bars represent the error from the original p(sla) regressor, the red bars rep-
resent the error from the new p(sIT) regressor, which uses 9 Gaussian components.
Notice the improvement in performance during the transition periods. "NMSE"
refers to the normalized mean-square error. Figures show average of ten splits.

(a) Comparison on am169_bottom, MSE

Perfomance comparllon.am189_bottom

12

10

i 6f' li~ l.slrgleGaJsstan

z J ,ir---1T-. 8Gaussla1 t.4ixUe Model

wto~ sunmer "Mnter spnro tal

(b) Comparison on am169l>ottom, NMSE

Figure 4.3: Performance comparison of original and new regressor on am169_bottom.
The blue bars represent the error from the original p(sla) regressor, the red bars
represent the error from the new p(sIT) regressor, which uses 7 Gaussian compo-
nents. Notice the improvement in performance during the transition periods, but in
this station we do not observe improvement in Summer and Winter data. "NMSE"
refers to the normalized mean-square error. Figures show average of ten splits.
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Chapter 5

Conclusion, Related, and FUture
Work

We observed that the selection of new input features improved the performance of

the salinity regressor. Using a nonlinear model (Gaussian Mixture Model) helped

identify different functional forms for the feature space. We observed significant

improvement during transition periods, which yielded overall performance enhance-

ment when compared to the original regressor.

Parallel to this research, Haiming Zheng experimented with the Mixture of Ex-

perts model. This model uses a gating function (neural network) to direct inputs to

several linear components. The Gaussian Mixture Model performed comparably to

this approach, which is currently deployed in the CORIE project.

After trying several regression approaches and observing similar results (refer to

the Appendix), it is reasonable to assume that we have achieved the best possible

performance with the input features we selected.

Future work may explore the use of additional input features, such as windforc-

ings. It may also be possible to incorporate information from nearby stations. It

may also be convenient to extend the current mixing process assumption.
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Appendix A

Additional Approaches

As described before, the goal of this research is to improve the performance of the

maximum daily salinity regressor. We tried several approaches, documented in this

appendix.

A.I Use of historical temperature information

When we looked at historical timeseries of maximum daily salinity, we concluded it

was a reasonable assumption to expect historical temperature information from past

days to help improve the predictor's performance. We decided to conduct a pilot

study and build linear regressors using current day flood and ebb temperatures, as

well as previous days' information. We built several linear regressors of this form:

~ ° °
81(Tf' Te)
S

~

(T
-2 T -2 T -1 T -1 mO T O)3 f ' e , f ' e ,.1.j, e

S
~

(T
-4 T -4 T -3 T -3 T -2 T -2 T -1 T -1 mO T O)5 f ' e , f ' e , f ' e , f ' e ,.1.j, e

Regressor 81 uses current day information, regressor 83 incorporates the previous

two days' measurements, and so on. We trained on Tansy data from Summer

2002 and tested on Summer 2003. We observed no significant improvement when

adding historical information. Table A.I shows the performance of the regressors.
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Figure A.1 shows timeseries of measured maximum daily salinity and predicted

values according to regressors 81, 83, and 85,

Table A.1: Performance of linear regressors using historical data. Notice how there
is no significant improvement when adding information from previous days. The
measure of performance is the Mean Square Error.

We were convinced that there was no useful information in historical data by

examining the linear model's parameters. The values assigned to m were more

significant, in all cases, for the current day. Table A.2 shows the model parameters

for regressors 81, 83, and 85,

Table A.2: Model parameters for historical data linear regressors. Vector m contains
the weights, b is the constant. Notice how the last two entries of m (corresponding
to the current day) are significantly greater than the others.

Regressor MSE

81 1.1248

82 1.0913

83 1.0886

84 1.0700

85 1.1041

Regressor Model Parameters

81 m = (10.1,-11.4)', b = -18.6
82 m = (-0.9,0.4,10.8, -11.2)', b = -19.2
83 m = (0.1, -1.5, -1.1, 1.9,10.9,-11.4)', b = -19.1
84 m = (-1.2, -0.6, 1.1,0.5, -1.3,0.6,10.7, -10.5)', b = -20.2
85 m = (1.3, -2.2, -2.3, 1.2,1.2,0.8, -1.3, -0.4, 10.9,-10.2)', b = -19.2
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Figure A.I: Prediction using historical information. The timeseries reveal that there
is no significant improvement when incorporating historical information.



26

A.2 Incorporating SELFE salinity numerical pre-

diction

The CORlE team has developed a numerical model of the estuary called "SELFE',

which simulates the dynamics of the river. We considered incorporating the SELFE

salinity predictions as an independent observation to our maximum daily salinity re-

gressor. We used the same criteria applied to measurement time series to determine

tidal cycles.

Unfortunately, the data from SELFE did not help improve the regressor per-

formance. The salinity predictions from SELFE are not as reliable as we expected

at this point. We believe the numerical predictions might be useful as the CORIE

team continues to make progress in their system.

A.3 Neural Network based regressor

As we described earlier, the transition periods represent a challenge for the regressor.

It was a reasonable complementary experiment to use Neural Networks to see ifthis

non-linear architecture could better pick up the seasonality changes.

We set up pilot studies using two architectures: 30 hidden nodes and 50 hidden

nodes, both single-layered, searching for an optimal regularizer a. We were trying to

beat the performance of the Mixture of Experts (ME) model (mentioned in Chap-

ter 5.) Results were comparable but not superior to the ME regressor, a situation

that discouraged us from further pursuing this approach. Further exploration of

different architectures and regularizer parameter values would have been too time-

consuming, and the Gaussian Mixture Model had already performed better than the

original Single Gaussian regressor. Table A.3 shows training and test errors on data

from Tansy station using the ME model based regressor. Table AA shows training

and test errors on the same data using the NN based regressor.
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Table A.3: Mixture of Experts performance on Tansy data. Results are averaged
over 10 splits of the available data. Performance is presented in terms of mean
square error (mse) and variance normalized mean square error (nmse).

Table A.4: Neural Network performance on Tansy data. The network had 50 hidden
inputs, and was trained for 10,000 iterations with the regularizer a = 1.4. This
setting that yielded the best performance for this station. Results are averaged over
10 splits of the available data. Performance is presented in terms of mean square
error (mse) and variance normalized mean square error (nmse).

The Neural Network regressor performed comparably to the Mixture of Experts

regressor. Transition periods (spring and fall) are still difficult. Notice how the

normalized mean square error for both approaches is close to unity, which means

the regressors are performing just as well as predicting the mean value for those

periods.

whole summer winter sprmg fall

training-mse 1.38 0.86 1.37 2.39 1.78

training-nmse 0.44 0.29 0.47 0.83 0.91
test-mse 1.81 1.21 2.07 2.75 2.11

test-nmse 0.51 0.38 0.54 0.94 0.95

whole summer winter spnng fall

training -mse 1.42 0.94 1.46 2.34 1.86

training -nmse 0.46 0.32 0.50 0.81 0.95
test-mse 1.86 1.29 2.14 2.78 2.21

test-nmse 0.53 0.41 0.56 0.95 0.99
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A.4 Incorporating salinity information from nearby

stations

We considered the possibility of looking at salinity measurements from nearby sta-

tions to either improve the regressor performance or provide additional information

to alert the CORlE staff of potential failures. Consider the following scenario: Three

stations (A, B, and C) are located close to each other. We have temperature based

regressors for each station. We wish to also regress salinity on the measurements

from the other stations. This setting is detailed in Figure A.2. Every connection

in the graph represents an available and reliable regressor. We can visualize the

information building a matrix as the one shown in Table A.5.

Figure A.2: Diagram of nearby station relations. Connections represent a reliable
source of information. Self-links represent the temperature based regressor.

Suppose no station bio-fouls, and assume salinity at nearby stations provides

useful information for regression. We can build regressors incorporating salinity

measurements from other stations. For station A, considering stations Band C as

relevant sources of information:

(A.1)

Suppose we are trying to predict station A's salinity and only station C bio-fouls.
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Table A.5: Matrix of regressors from nearby stations. The matrix represents a con-
nected graph, where every entry corresponds to a connection. In a fully-connected
graph, we have regressors for all stations based on local temperature measurements
and other stations salinity measurements. The diagonal elements are the tempera-
ture based regressors. Sx is the expected salinity for station X, Sx is the measured
salinity, and Tx is the vector of temperature measurements (local and upstream
river. )

A

A SA(TA)
B SB(SA)
C Se(SA)

B

SA(SB)
SB(TB)
Se(SB)

C

SA(Se)
SB(Se)
Sc(Tc)

First, we face the problem of determining if C is no longer reliable. Assuming a

detector based on Sc(Te) has fired an alarm, and detectors based on Se(SA) and

Se(SB) agree with the alarm, a given detection system would have to modify the

connectivity of the graph and discard information from station C. The result of this

decision is shown in Figure A.3 and Table A.6.

Figure A.3: Diagram of nearby station relations after station C bio-fouls. Connec-
tions from station C are removed.

What happens if stations Band C bio-foul at the same time? Likely, regres-

sors SB(Se) and Se (S B) cannot be trusted to provide reliable information to the

detectors, a situation that provides additional difficulty for the system to determine
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Table A.6: Matrix of regressors from nearby stations after station C bie-fouls. Re-
gressors based on Se are removed from the detection system.

A

A SA(TA)
B SB(SA)
C Se(SA)

B

SA(SB)
SB(TB)
Se(SB)

c

Se(Te)

which stations should be dropped from the connection graph.

We think it is not viable to further pursue the use of salinity measurements from

nearby stations, since their salinity measurements are also unreliable, and a system

that attempts to work around possible scenarios would end up being a collection of

special ad-hoc conditions.

A.5 Comparison of features in Gaussian Mixture

Model

This section includes a comparison of performance when using: (1) local measure-

ments, (2) normalized features, (3) combination features, and (4) combination fea-

tures with a hard-rule. We observed comparable performance when using combi-

nation features or combination features with a hard-rule separating unnormalizable

points. When using a hard-rule, the performance during summer and winter was

slightly worse.
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Table A.7: Gaussian Mixture Model on Tansy, 8 components, raw features only

Table A.8: Gaussian Mixture Model on Tansy, 6 components, normalized features
only

Table A.9: Gaussian Mixture Model on Tansy, 10 components, combination features

Table A.I0: Gaussian Mixture Model on Tansy, 4 components for the Normalizable
points, 2 components for the Unnormalizable points, combination features with hard
rule

whole summer winter spnng fall

train- mse 1.44 0.93 1.33 2.63 1.73

train-nmse 0.46 0.31 0.45 0.91 0.88

test- mse 1.92 1.32 2.10 3.14 1.97

test- nmse 0.55 0.42 0.55 1.01 0.88

whole summer winter spnng fall

train-mse 1.52 1.01 1.59 2.42 1.82
train- nmse 0.49 0.34 0.54 0.84 0.93

test-mse 2.08 1.35 2.43 3.25 2.21
test- nmse 0.59 0.43 0.63 1.11 0.99

whole summer winter sprmg fall
train- mse 1.37 0.87 1.31 2.34 1.87

train-nmse 0.44 0.29 0.45 0.81 0.95
test-mse 2.01 1.26 2.40 3.08 2.31

test- nmse 0.57 0.40 0.62 1.05 1.04

whole summer winter spring fall
train-mse 1.18 0.80 1.29 2.39 1.54

train-nmse 0.38 0.27 0.44 0.83 0.79
test-mse 1.76 1.06 2.43 3.01 1.86

test- nmse 0.49 0.34 0.63 1.02 0.83
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Table A.11: Gaussian Mixture Model on am169...middle,11components, raw features
only

Table A.12: Gaussian Mixture Model on am169...middle,7 components, normalized
features only

Table A.13: Gaussian Mixture Model on am169...middle, 9 components, combination
features

Table A.14: Gaussian Mixture Model on am169...middle,4 components for the Nor-
malizable points, 7 components for the Unnormalizable points, combination features
with hard rule

whole summer winter spring fall
train-mse 5.38 1.57 6.74 9.18 6.51

train-nmse 0.47 0.29 0.50 0.62 0.88
test-mse 6.81 1.49 9.86 10.31 9.08

test-nmse 0.60 0.29 0.67 0.79 1.19

whole summer winter sprmg fall
train- mse 5.39 1.98 6.93 8.29 6.48

train-nmse 0.47 0.36 0.52 0.56 0.88
test-mse 7.03 1.90 7.59 12.21 10.36

test-nmse 0.62 0.38 0.52 0.94 1.36

whole summer winter spnng fall
train- mse 5.34 1.86 6.72 8.36 6.73

train-nmse 0.47 0.39 0.50 0.57 0.92
test-mse 6.83 1.76 8.03 11.88 9.38

test-nmse 0.60 0.35 0.55 0.91 1.23

whole summer winter sprmg fall
train-mse 4.76 1.91 6.52 6.97 6.58

train-nmse 0.42 0.35 0.49 0.47 0.89
test-mse 6.22 1.77 8.45 12.51 9.22

test-nmse 0.55 0.35 0.58 0.96 1.21
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Table A.15: Gaussian Mixture Model on am169_bottom, 9 components, raw features
only

Table A.16: Gaussian Mixture Model on am169_bottom, 6 components, normalized
features only

Table A.17: Gaussian Mixture Modelon am169_bottom, 7 components, combination
features

Table A.18: Gaussian Mixture Model on am169_bottom, 6 components for the Nor-
malizable points, 7 components for the Unnormalizable points, combination features
with hard rule

whole summer winter sprmg fall
train-mse 5.26 2.03 6.18 10.65 4.78

train-nmse 0.55 0.34 0.59 0.85 0.90
test-mse 5.99 2.11 6.55 12.89 6.14

test-nmse 0.66 0.35 0.71 1.02 1.04

whole summer winter sprmg fall
train-mse 4.77 2.22 6.45 7.70 4.29

train-nmse 0.50 0.38 0.62 0.62 0.81
test-mse 5.64 2.61 6.41 11.02 4.92

test-nmse 0.61 0.44 0.69 0.87 0.84

whole summer winter spring fall
train-mse 4.41 2.03 5.65 7.58 4.05

train-nmse 0.46 0.35 0.54 0.60 0.77
test-mse 5.88 2.47 6.27 12.54 5.33

test-nmse 0.64 0.41 0.68 0.99 0.91

whole summer winter spring fall
train-mse 3.85 2.21 5.50 6.16 2.97

train-nmse 0.40 0.37 0.52 0.49 0.56
test-mse 4.96 2.51 6.48 11.13 4.35

test-nmse 0.54 0.42 0.70 0.88 0.74
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