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Abstract

Sigma-Point Kalman Smoothing: Algorithms and Analysis with

Applications to Indoor Tracking

Anindya Sankar Paul

Supervising Professor: Dr. Eric A. Wan

The sigma-point Kalman filter (SPKF) is proved to be a more accurate alternative to the

extended Kalman filter (EKF) in numerous nonlinear state estimation related applications.

However, nonlinear smoothing algorithms based on the sigma-point Kalman filtering tech-

nique are not well established. We have derived new fixed-interval and fixed-lag smoothing

algorithms using the sigma-point methodology and extended these nonlinear smoothers to

a common family of algorithms, called sigma-point Kalman smoothers (SPKS). While the

fixed-interval SPKS (FI-SPKS) operates on a fixed set of observations, the fixed-lag SPKS

(FL-SPKS) sequentially operates on the buffered blocks of measurements as they become

available. Both the FI-SPKS and FL-SPKS make use of the forward-backward (FB) and

Rauch-Tung-Striebel (RTS) approaches to perform smoothing. In the FB method, a stan-

dard SPKF is used as a forward filter. The backward filter requires the use of the inverse

dynamics of the forward filter. While smoothers based on the EKF simply invert the

linearized dynamics, with the SPKF the forward nonlinear dynamics are never analyt-

ically linearized. Thus the backward nonlinear dynamics are not well defined. In this

work, we make use of the relationship between the SPKF and weighted statistical linear

regression (WSLR) to pseudo-linearize the nonlinear dynamics. The independent forward

xv



and backward estimates are then statistically combined to generate the smoothed results.

The WSLR linearized dynamics are also incorporated in the RTS method to derive the

backward smoothing gain which operates on the forward SPKF estimates to produce the

smoothed states. We have applied the proposed SPKS to the challenging areas of proba-

bilistic inference, such as indoor localization and multiharmonic frequency tracking, and

evaluated the performance by comparing to the state-of-the-art tracking engines. Fur-

thermore, we have successfully extended the theoretical understanding of the SPKF by

analyzing its estimation-error bounds for the discrete-time nonlinear dynamical system.

We have derived the mean-square error lower bound using the well-known Cramér-Rao

theory. The upper error bound, which is also termed as the “stability bound”, exponen-

tially converges to the steady state if certain conditions on the state dynamics and system

noises are satisfied. The theoretical derivations are experimentally verified using practical

examples.
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Chapter 1

Introduction

1.1 Overview

This chapter summarizes our work on the problem of probabilistic Bayesian inference

that deals with estimating a set of hidden variables (referred as states) in an optimal and

consistent fashion using incoming noisy measurements. We start with a brief description of

the nonlinear state space model and later present the standard state estimation algorithms

for the nonlinear system. In this context, we describe the sigma-point Kalman filter

(SPKF) based estimator which is the core of the algorithmic development presented in

this thesis. Finally, a summary of the objective and contributions of our work are provided.

1.2 Probabilistic Inference and Dynamic State Space Model

The problem of estimating the hidden states from a set of noisy sensor observations is

a widely used method in airborne navigation [1, 2], robot localization and tracking [3],

simultaneous localization and mapping [4], driving an unmanned aerial vehicle (UAV) [5],

aerospace engineering [6] and many other similar areas. All the above applications concen-

trate on how a mobile robot/vehicle determines its own pose (position, velocity and ori-

entation) relative to the environment by observing certain characteristics of its surround-

ings. Recently, the use of state estimation extends to many other engineering fields such

as adaptive signal de-noising [7–9], robust and H∞ control [10, 11], system identification

and learning [12, 13] and modeling/parameter estimation for biomedical signals [14–16].

The general state estimation problem can often be cast in terms of estimating the state

1
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of a discrete-time dynamic state space system (DSSM),

xk+1 =fk (xk,vk) (1.1)

zk =hk (xk,nk) , (1.2)

where the random variable (RV) xk represents the unobserved state of the system and zk

is the sensor observations. Both the process noise vk and observation noise nk are assumed

Gaussian with zero mean and covariances Qk and Rk respectively. Note that we are not

assuming additivity of the noise sources. The nonlinear state transition function fk(.) and

observation function hk(.) are assumed to be known. The state transition/process model

fk, along with the prior distribution of the system state and the statistics of the process

noise, defines how the dynamic system evolves over time. In contrast, the observation

model hk describes how the evolved state, together with the observation noise, relates to

the sensor observations.

We use boldface notations to denote vectors and matrices, normal face are for scalers.

Matrices are labeled in upper cases, whereas lower cases are reserved for vectors and

scalers. Unless otherwise stated, these notational conventions are followed throughout the

dissertation.

1.3 Recursive Bayesian Estimation and Kalman Filtering

The optimal estimate of the state xk in the minimum-mean-square-error (MMSE) sense

is given by the conditional mean:

x̂k =E [xk|z1:k]

=

∫

xkp (xk|z1:k) dxk, (1.3)

where the vector z1:k denotes all the observations until time k.

z1:k =

[

z1 z2 . . . zk

]

. (1.4)

From Equation (1.3), the posterior probability p (xk|z1:k) of the state xk given observa-

tions z1:k provides the complete solution of the state estimation problem at time k. By
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applying Bayes rule and making use of the conditional independence of observations, we

can recursively update the state posterior density as new observations arrive [17]:

p(xk|z1:k) =Cp(zk|xk)p(xk|z1:k−1), (1.5)

where C is the normalizing constant. In order to gain insight of the above Equation, let’s

explain each term on the R.H.S. of Equation (1.5). The prior distribution p(xk|z1:k−1)

at time k is obtained by propagating the state posterior at time k − 1, p(xk−1|z1:k−1),

forward in time using the probabilistic state transition model p(xk|xk−1),

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (1.6)

The transition density p(xk|xk−1) is given by the state transition model fk and the process

noise distribution p(vk),

p(xk|xk−1) =

∫

δ (xk − fk (xk−1,vk)) p(vk)dvk, (1.7)

where δ is the Dirac delta function. The observation likelihood p(zk|xk) is specified using

the observation function hk and the observation noise density p(nk),

p(zk|xk) =

∫

δ (zk − hk (zk,nk)) p(nk)dnk. (1.8)

The normalizing factor C is given by

C =

(∫

p(zk|xk)p(xk|z1:k−1)dxk

)−1

. (1.9)

One has to solve all these multidimensional integrations shown in (1.6)-(1.9) analytically

in order to compute the state posterior density at time k. Unfortunately the integrals

are intractable except when the state space is linear and all the above distributions are

Gaussian. For the linear-Gaussian systems, the famous Kalman filter [18] provides the

closed-form MMSE estimate of the state xk.

1.4 Gaussian Approximate Filters For State Estimation

As the multidimensional integrals shown in Equations (1.6)-(1.9) are intractable for gen-

eral nonlinear systems, statistical approximations must be used in order to solve them.
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Although there are a number of categories of statistical approximation solutions available

in the literature, among those Gaussian approximate solutions and sequential Monte-Carlo

(SMC) implementations are the most prevalent. SMC based techniques, or particle filters,

model the state distribution using a set of discrete points and can provide arbitrary accu-

racy to the solution with a sufficient number of particles. Still, the general requirement

of large number of sample particles in order to converge to the true density can make this

approach computationally prohibitive. In this dissertation, we primarily concentrate on

the variants of Gaussian approximate solutions.

Gaussian approximate methods assume that all the underlying densities encountered in

Equations (1.6)-(1.9) are Gaussian and hence use the first (mean) and second (covariance)

order moments of those densities to perform the recursive state prediction and update. Of

all the Gaussian approximate methods, the extended Kalman filter (EKF) has the most

widespread use for state estimation problems [8, 11, 19–21]. The popularity of the EKF

based estimator is contributed due to its ease of implementation and cheap computational

requirement. In case of a nonlinear state space model, the EKF approximates the true

expectations shown in (1.6)-(1.9) by using the first-order truncated Taylor series expansion

around the current state estimate. The major inaccuracy of the EKF based approach

stems from the nature of the first-order Taylor series linearization, which approximates

the nonlinear dynamic model only up to the first order term and thereby neglects all the

higher order terms. Furthermore, the EKF does not take into account the uncertainty

of the prior state RV when it linearizes the process and observation models using the

Taylor series expansion. Failure to consider the probabilistic spread of the RV during

the linearization process often introduces large errors in the EKF calculated posterior

statistics, which sometimes may lead to suboptimal performance and filter divergence.

More detailed discussion on the EKF and its flaws can be found in Van der Merwe’s

dissertation [17].

The inaccuracies of the EKF gave birth to a new group of state estimation algorithms

collectively called the sigma-point Kalman filters (SPKF), which uses a deterministic sam-

pling approach in order to propagate the state distribution over nonlinear systems. The

first idea of sigma-point transform, which describes an efficient method of sampling and
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propagating a RV over nonlinear dynamics, was proposed by Julier and Uhlmann for state

estimation in automatic control [22,23]. They came up with a new derivativeless Kalman

filter called the Unscented Kalman Filter (UKF), which applies the deterministic sigma-

point transform method at each filter recursion. Later, Ito and Norgaard et al. proposed

a new variant of the filter known as the Central Difference Kalman Filter (CDKF), which

is based on the Stirling’s Interpolation Formula and also makes use of the sigma-point ap-

proach to propagate first and second order statistics of a RV over nonlinear systems [24,25].

Wan and Van der Merwe brought all these different deterministic sampling approaches un-

der a common umbrella of Gaussian approximate filters called the SPKF [26,27]. Van der

Merwe and Wan also derived numerically efficient and stable square-root versions of all

the SPKF variants [27]. For algorithmic descriptions and detailed proofs of all these

sigma-point methodologies, the reader can refer to Van der Merwe’s dissertation [17]. The

major advantage of the SPKF stems from the fact that it consistently outperforms the

EKF over a wide range of state estimation problems at the same order of computational

complexity [17, 26]. Like the EKF, the SPKF estimates only the first and second-order

moments of the true distribution. The probability distribution is represented by a set of

carefully chosen deterministic sample points (known as sigma points), which capture the

mean and covariance of the RV. These sigma points are then propagated through the true

nonlinear system, with the posterior mean and covariance calculated using simple weighted

averaging (the value of weights depend on the choice of SPKF parameters, details can be

obtained from chapter 3 in [17]). The SPKF captures the posterior mean and covariance

accurately to the 2nd order (3rd order is achieved for symmetric distribution) compared

to the EKF which linearizes the nonlinear systems and only achieves 1st order accuracy.

Furthermore, the SPKF no longer needs to calculate the Jacobians, which are sometimes

hard to obtain analytically. We will now present the pseudo-codes of the EKF and SPKF

in a concise manner. The reader can refer to [11, 12, 17, 21] for more elaborate discussion

on these topics.
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Below we demonstrate the EKF time-update and measurement-update recursions that

produce the filtered estimates x̂k and the associated estimation error covariance Pxk
at

each time k. Note, both the time-update and measurement-update steps compute the

Jacobians that are incorporated to predict and update the estimation error covariance.

Extended Kalman filter (EKF)

• Initialization:

x̂0 = E [x0] (1.10)

Px0
= E

[

(x0 − x̂0) (x0 − x̂0)
T
]

(1.11)

v̄0 = E [v0] (1.12)

n̄0 = E [n0] (1.13)

Q0 = E
[

(v0 − v̄0) (v0 − v̄0)
T
]

(1.14)

R0 = E
[

(n0 − n̄0) (n0 − n̄0)
T
]

(1.15)

• For k = 0, 1, 2, . . . , N

1. Time-update equations:

– Compute the process model Jacobians:

Fxk
= ∇xfk (x, v̄k)|x=x̂k

(1.16)

Gvk
= ∇vfk (x̂k,v)|v=v̄k

(1.17)

– Compute the predicted state mean and covariance:

x̂−
k+1 = fk (x̂k, v̄k) (1.18)

P−
xk+1

= Fxk
Pxk

F T
xk

+Gvk
QkG

T
vk

(1.19)

2. Measurement-update equations:
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– Compute the observation model Jacobians:

Hxk
= ∇xhk (x, n̄k)|x=x̂−

k+1

(1.20)

Gnk
= ∇nhk

(

x̂−
k+1,n

)∣

∣

∣

n=n̄k

(1.21)

– Update estimates incorporating the latest observation:

Kk+1 = P−
xk+1

HT
xk

(

Hxk
P−

xk+1
HT

xk
+Gnk

RkG
T
nk

)−1
(1.22)

x̂k+1 = x̂−
k+1 +Kk+1

[

zk+1 − hk

(

x̂−
k+1, n̄k

)]

(1.23)

Pxk+1
= (I −Kk+1Hxk

)P−
xk+1

. (1.24)
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The complete SPKF algorithm that updates the mean x̂k and the covariance Pxk
of

the state distribution using the observation zk is presented below:

Sigma-point Kalman filter (SPKF)

• Initialization:

x̂0 = E [x0] (1.25)

Px0
= E

[

(x0 − x̂0) (x0 − x̂0)
T
]

(1.26)

x̂a
0 = E

[

xa
0

]

=

[

x̂T
0 v̄T

0 n̄T
0

]T

(1.27)

P a
x0

=
[

(

xa
0 − x̂a

0

) (

xa
0 − x̂a

0

)T
]

=













Px0
0 0

0 Q0 0

0 0 R0













(1.28)

• For k = 0, 1, 2, . . . , N

1. Compute sigma points:

χa
k =

[

x̂a
k x̂a

k +

√

(

Ḿ + λ
)

P a
xk

x̂a
k −

√

(

Ḿ + λ
)

P a
xk

]

(1.29)

2. Time-update equations:

χx
i,k+1|k = fk

(

χx
i,k,χ

v
i,k

)

i = 0, 1, . . . , 2Ḿ (1.30)

x̂−
k+1 =

2Ḿ
∑

i=0

w
(m)
i χx

i,k+1|k (1.31)

P−
xk+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
ij

(

χx
i,k+1|k − x̂−

k+1

)(

χx
j,k+1|k − x̂−

k+1

)T
(1.32)
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3. Measurement-update equations:

γi,k+1|k = hk

(

χx
i,k+1|k,χ

n
i,k

)

i = 0, 1, . . . , 2Ḿ (1.33)

ẑ−k+1 =
2Ḿ
∑

i=0

w
(m)
i γi,k+1|k (1.34)

Pz̃k+1
=

2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

(

γj,k+1|k − ẑ−k+1

)(

γi,k+1|k − ẑ−k+1

)T
(1.35)

Pxk+1zk+1
=

2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

(

χx
j,k+1|k − x̂−

k+1

)(

γi,k+1|k − ẑ−k+1

)T
(1.36)

Kk+1 = Pxk+1zk+1
P−1

z̃k+1
(1.37)

x̂k+1 = x̂−
k+1 +Kk+1

(

zk+1 − ẑ−k+1

)

(1.38)

Pxk+1
= P−

xk+1
−Kk+1P

−
z̃k+1

KT
k+1 (1.39)

• Parameters:

xa
k =

[

xT
k vT

k nT
k

]T

(1.40)

χa =

[

(χx)T (χv)T (χn)T
]T

(1.41)

P a
xk

=













Pxk
0 0

0 Qk 0

0 0 Rk













(1.42)

λ = α2
(

Ḿ + κ
)

− Ḿ (1.43)

w
(c)
0 =

λ
(

Ḿ + λ
) +

(

1 − α2 + β
)

, i = 0 (1.44)

w
(m)
0 =

λ
(

Ḿ + λ
) , i = 0 (1.45)

w
(c)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ (1.46)

w
(m)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ . (1.47)
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The SPKF parameter α controls the size of the sigma-point distribution and should be

within 0 ≤ α ≤ 1 to avoid sampling non-local points when the nonlinearities are strong [17].

β ≥ 0 is the weighting term which incorporates the higher order moments of the prior

distribution. For a Gaussian prior, β = 2 [23]. The parameter κ is used to make sure

the positive definiteness of the covariance matrices and the default lower bound of κ ≥ 0

should work for most of the cases. The dimension of the state vector is M , Ḿ is the

dimension of each augmented state, and N is the length of the observation sequence.

1.4.1 Alternate interpretation of the SPKF

In this section, we demonstrate that the SPKF performs an inherent linearization called

the weighted statistical linear regression (“WSLR”) to locally linearize the nonlinear state

space [17, 28]. However, unlike the first-order Taylor series based truncation, the WSLR

technique takes into account both the mean and covariance of the Gaussian random vari-

able (GRV) at the point of linearization. We will now give a brief introduction of the

relationship between the SPKF and WSLR, which will be covered in more detail in sec-

tion 2.3.1.

The WSLR algorithm relates to deriving a linear approximation of a nonlinear function

g(x), operating on a RV x with mean x̄ and covariance Px, i.e.,

z =g (x) ∼= Ax+ b+ ε, (1.48)

where A and b are the statistical linearization parameters that are determined by mini-

mizing the linearization error ε. Defining

J =E
[

εTWε
]

(1.49)

is the expected mean square error with sigma-point weighting matrix W ,

[A, b] =arg min J

=arg min
(

E
[

εTWε
])

. (1.50)

Now setting the partial derivative of J with respect to the elements of b and A equal to
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zero, we obtain,

b =z̄ −Ax̄ (1.51)

A =P T
xzP

−1
x , (1.52)

where z̄ is the mean of the RV z and Pxz is the cross-covariance matrix of x and z. The

linearization error ε has zero mean and covariance Pε

Pε =Pz −APxA
T , (1.53)

where Pz is the covariance matrix of z. The statistical linearization procedure discussed

above relates to the sigma-point approach in the sense that the mean and covariance of x

and z are computed using the sigma points extracted from the probability density function

p(x) and p(z). To summarize, the WSLR provides the linear approximation of a general

nonlinear function in the MMSE context that takes into account the mean and covariance

of the RV it operates upon. Hence the WSLR technique is more accurate in the statistical

sense compared to the first-order Taylor series based linearization approach. The SPKF

leverages the benefits of the WSLR to produce superior state estimates than the EKF,

which adopts the Taylor series to perform local linearization.

1.5 Objective and Contributions of this Work

Since its introduction, the SPKF is used in numerous state estimation related applications

and proved to be a more accurate alternative to the EKF. However, nonlinear smoothing

algorithms based on the sigma-point Kalman filtering technique are not well established.

In addition, an in-depth analysis of the analytical bounds that quantify the state estima-

tion error of the SPKF has not yet been performed. The aim of this dissertation research is

to develop novel SPKF smoothing algorithms, apply the SPKF smoothers to the real-world

tracking problems and analyze the SPKF performance using analytical error bounds.

1.5.1 Summary of Research Objectives

The broad research objective is categorized into the following four subsections:
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1. Derive new fixed-interval and fixed-lag smoothing algorithms for a nonlinear system

using the sigma-point methodology and combine these derived smoothers into a

common family of algorithms, called sigma-point Kalman smoothers (SPKS).

2. Apply the proposed SPKS to the real-world pedestrian tracking system in order to

locate and track a person in an indoor environment.

(a) Implement the tag-based and tag-free tracking systems where the SPKS based

estimator fuses multiple observations from different unobtrusive sensors to con-

tinuously estimate a person’s 2D position and velocity.

(b) Compare the estimation accuracy to the commercial location tracking engines.

3. Expand the use of SPKS to the multiharmonic frequency tracking problem.

(a) Track the phase, frequency and amplitude of the fundamental frequency and

its harmonic components.

(b) Compare the performance to the extended Kalman smoother (EKS) based fre-

quency tracker using simulated and real multiharmonic periodic signals.

4. Derive (theoretically) state estimation error bounds for the SPKF.

(a) Prove the estimation error lower bound using the Cramér-Rao theory and ex-

perimentally verify its performance on a variety of benchmark problems.

(b) Formulate an expression for the estimation error upper bound using the Lya-

punov function based stochastic stability theory and demonstrate its perfor-

mance.

1.5.2 Research Contributions

Most of the research objectives stated above are successfully completed over the course

of this dissertation. My accomplishments include deriving the computationally efficient

SPKF smoothing algorithms, expand the use of SPKS to the challenging areas of prob-

abilistic inference, such as indoor localization and multiharmonic frequency tracking and
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extend the theoretical understanding of SPKF by analyzing its error behavior. In sum-

mary, the following new and substantial contributions are made to the body of SPKF

based state estimation algorithm and its applications.

1. Sigma-point Kalman smoothers (SPKS):

• The following new SPKS algorithms that include both the fixed-interval and

fixed-lag methodologies are implemented.

– Fixed-Interval Sigma-Point Kalman Smoother (FI-SPKS): Estimates the

state at each time using all the observations over a fixed time interval.

There are two variants depending on the adopted forward-backward or

Rauch-Tung-Striebel (RTS) methodology.

(a) Forward-backward statistical linearized sigma-point Kalman smoother

(FBSL-SPKS)

(b) Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother

(RTSSL-SPKS)

– Fixed-Lag Sigma-Point Kalman Smoother (FL-SPKS): Estimates the state

which lags behind the current observation by a fixed time interval. The

following variants include the state augmentation, forward-backward and

RTS techniques.

(a) State-augmented sigma-point Kalman smoother (Aug-SPKS)

(b) Forward-backward a priori sigma-point Kalman smoother (FB-Priori-

SPKS)

(c) Forward-backward statistical linearized sigma-point Kalman smoother

(FBSL-SPKS)

(d) Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother

(RTSSL-SPKS)

• The relationship between the WSLR and SPKF is explored to derive the smooth-

ing formulations.

• The computational complexity and memory of all the fixed-interval and fixed-

lag SPKS algorithms are evaluated. It is shown that the fixed-lag SPKS requires
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significantly less memory to generate smoothed estimates compared to the fixed-

interval case.

• The performance of the SPKS algorithms are experimentally verified on two

benchmark examples: Mackey-glass nonlinear time-series estimation and vehi-

cle re-entry tracking.

• The superiority of our SPKS over the extended Kalman smoother (EKS) and

other sigma-point smoothing approaches is established in terms of estimation

accuracy and computational efficiency.

2. Real-world application of SPKS algorithms: unobtrusive indoor pedes-

trian tracking

A novel SPKS based Bayesian inference system that tracks an user in an indoor

environment using unobtrusive sensors is successfully developed. Two variants of

the tracking mechanism are implemented based on the requirement of carrying a

receiver tag.

• Tag-based indoor tracking using received signal strength indication (RSSI): In

this system, the primary observation used for tracking is RSSI. A person carries

a small body-borne device that periodically measures the RSSI at 3 or more

standard Wi-Fi access points.

– The SPKS combines a potential field based dynamic model with RSSI

observations to track a person’s 2D position and velocity.

– The observation model is generated in a separate calibration phase by

fitting nonlinear radial basis function (RBF) maps between known user

positions and RSSI observations.

– The SPKS augments the RSSI measurements with the infra-red (IR) mo-

tion sensors and binary foot-switches in order to improve the estimation

accuracy of the tracker.

– The estimation accuracy of our system is tested against a commercial track-

ing engine known as Ekahau, which also uses RSSI. The consistent perfor-

mance improvement over the Ekahau was demonstrated.



15

• Tag-free indoor tracking using wall-mounted ultrasonic transducers: This sys-

tem does not require a body-borne tag.

– A novel SPKS based tag-free solution for indoor tracking is developed that

utilizes range information from wall-mounted ultrasonic transducers to es-

timate a person’s 2D position and velocity (first of its kind to author’s

knowledge).

– Signal processing techniques are used for background subtraction and sub-

sequently calculate the 1D range of the moving person.

– The range data from active and passive sonar-modules provide the obser-

vations for the SPKS based tracking algorithm.

– Two different tracking procedures are adopted:

(a) Range-map approach, which generates the observation model by fitting

RBF maps between known calibration locations and 1D ranges

(b) Simultaneous localization and mapping (SLAM) approach

– The SLAM based tracking procedure corresponds to simultaneously esti-

mating the state of the person (position and velocity) and the parameters

of the observation model. Parameters correspond to either the RBF param-

eters in position-range mapping (terrain aided navigation system (TANS-

SLAM)) or the 2D sonar module locations (landmark aided navigation

system (LANS-SLAM)).

– The tracking performance is compared to an accurate commercial tag-based

system developed by Ubisense, which uses ultra-wide-band (UWB) for time

difference of arrival (TOA) localization.

3. Real-world application of SPKS algorithms: multiharmonic frequency

tracking

This research is performed in collaboration with James McNames’s research group

at Portland State University.

• The SPKS based Bayesian inference algorithm is implemented for tracking the
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phase, frequency, and amplitude of the fundamental frequency and the har-

monic components present in a periodic signal.

• The performance of the SPKS is compared with the EKS, based on three crite-

rions: normalized mean-square-error, normalized frequency mean-square-error

and square-frequency-error.

• It is demonstrated that the SPKS multiharmonic tracker is significantly more

accurate, converges faster to the true solution, and robust to noise than the

EKS.

4. Estimation error bounds for discrete time SPKF

• An estimation error lower bound is derived using the well-known Cramér-Rao

theory.

• It is demonstrated that the estimation error of the SPKF is exponentially

bounded in the mean-square sense by an upper bound.

• The performance of the lower and upper bound is experimentally verified on

two state estimation examples: Mackey-Glass nonlinear time-series estimation

and tracking a vehicle that re-enters into the earth’s atmosphere from the outer

space.

1.6 Thesis Outline

The remainder of the thesis is organized as below:

• Chapter 2 is one of the core chapters in this dissertation, which presents the de-

velopment of different SPKS algorithms in detail. The performance of the SPKS

is demonstrated in two examples including the Mackey-Glass time series estimation

and vehicle re-entry tracking.

• Chapter 3 focusses on the application of SPKS to the tag-based indoor tracking

problem. The chapter starts with a survey of commercial indoor tracking systems
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and research prototypes, including their architecture, sensor platforms, and position-

ing algorithms. We provide a detailed discussion of the SPKS based tracking system

including the dynamic model, sensor observation models and how the various sensor

outputs are integrated into a Kalman framework. The performance of the proposed

algorithm is compared with a commercially available positioning engine developed

by Ekahau Inc.

• Chapter 4 discusses a tag-free solution to unobtrusive indoor tracking using wall

mounted ultrasonic sensors. The specific tracking application is covered in depth,

giving details about how the range information is extracted from each ultrasonic sig-

nal and how the range estimates from multiple sonar units are incorporated into the

SLAM framework to estimate the user’s 2D position and velocity. Tracking results

are shown for a number of trials and the estimates are compared to a commercial

tag-based system developed by Ubisense.

• Chapter 5 introduces the SPKS tracking approach to the multiharmonic frequency

tracking problem. It specifically discusses the dynamic and observation model used

for frequency tracking and demonstrates the system accuracy on a set of simu-

lated/real signals.

• Chapter 6 focuses on the derivation, implementation and verification of the state

estimation error bounds for the SPKF. A thorough literature review is provided

first and then the lower and upper error bound is derived from first principles.

Experimental results that validate our proofs are also shown.

• Chapter 7 presents the summary and conclusions of our work.

1.7 Publications

A large majority of the work either has already been published at numerous conferences or

submitted at the peer-reviewed literature for review. Here is a list of accepted publications

that are related to my dissertation:
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• Eric A. Wan and Anindya S. Paul, “A tag-free solution to unobtrusive indoor track-

ing using wall-mounted ultrasonic transducers,” Accepted in 2010 IEEE Interna-

tional Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich,

Switzerland, September, 2010.

• Anindya S. Paul and Eric A. Wan, “RSSI based indoor localization and tracking

using sigma-point Kalman smoothers,” IEEE Journal on Special Topics in Signal

Processing: Special Issue on Advanced Signal Processing for GNSS and Robust Nav-

igation, vol. 3, no. 5, pp. 860-873, October 2009.

• Sunghan Kim, Anindya S. Paul, Eric A. Wan and James McNames, “New multi-

harmonic frequency tracking using the sigma-point Kalman smoother,” EURASIP

Journal on Advances in Signal Processing, vol. 2010, no. 467150, pp. 1-13, February

2010.

• Sunghan Kim, Anindya S. Paul, Eric A. Wan and James McNames, “Multiharmonic

Tracking Using Sigma-Point Kalman Filter,” In proceedings of Annual International

Conference of the IEEE Engineering in Medicine and Biology Society 2008 (IEEE

EMBC 08), Vancouver, Canada, August, 2008.

• Anindya S. Paul and Eric A. Wan, “Wi-Fi Based Indoor Localization and Tracking

Using Sigma-Point Kalman Filtering Methods,” In proceedings of IEEE/ION Posi-

tion Location and Navigation Symposium 2008 (PLANS 2008), Monterey, CA, USA,

May, 2008.

• Anindya S. Paul and Eric A. Wan, “A new formulation for nonlinear forward-

backward smoothing,” In proceedings of IEEE International Conference on Acous-

tics, Speech and Signal Processing 2008 (ICASSP 2008), pp. 3621- 3624, Las Vegas,

NV, USA, March-April, 2008.

• Misha Pavel, Tamara Hayes, Ishan Tsay, Deniz Erdogmus, Anindya S. Paul, Nicole

Larimer, Holly Jimison and John Nutt, “Continuous Assessment of Gait Velocity

in Parkinson’s Disease from Unobtrusive Measurements,” In proceedings of the 3rd
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International IEEE EMBS Conference on Neural Engineering, pp. 700-703, Kohala

Coast, Hawaii, USA, May, 2007.

• Anindya S. Paul, Eric A. Wan and Alex T. Nelson, “Noise Reduction For Heart

Sounds Using a Modified Minimum-Mean Squared Error Estimator with ECG Gat-

ing,” In proceedings of 28th IEEE EMBS Annual International Conference, pp.

3385- 3390, New York City, USA, August-September, 2006.

• Anindya S. Paul, “Dual Kalman Filter for Autonomous Terrain Aided Navigation in

Unknown Environment,” Technical Report, OGI School of Science and Engineering,

Oregon Health and Science University, Beaverton, OR, May 2005.

• Anindya S. Paul and Eric A. Wan, “Dual Kalman Filters for Autonomous Terrain

Aided Navigation in Unknown Environment,” In proceedings of IEEE International

Joint Conference on Neural Networks (IJCNN), vol. 5, pp. 2784- 2789, Montreal,

Canada, July-August, 2005.

In addition, the dissertation research and corresponding publications have contributed to

external research grants, resulting in novel applications, new sensor platform for tracking,

and further refinement of tracking algorithms.



Chapter 2

Sigma-Point Kalman Smoothers (SPKS):

New Fixed-Interval and Fixed-Lag

Smoothing Formulations for Nonlinear

Systems

2.1 Overview

In this chapter, we apply the sigma-point Kalman filtering approach to derive a smoothing

scheme for nonlinear state space system. We take advantage of the relationship between

the SPKF and weighted statistical linear regression (WSLR) to derive the nonlinear sigma-

point Kalman smoother (SPKS) equations. The performance of the SPKS algorithms are

evaluated using the Mackey-Glass nonlinear time series estimation and the vehicle re-entry

tracking examples. It is shown that the proposed computationally efficient SPKS algo-

rithms easily outperform the extended Kalman filter (EKF), extended Kalman smoother

(EKS) and SPKF and also perform comparably with other existing sigma-point smoothers.

This chapter is organized as follows: Section 2.2 introduces our approach considering

both the fixed-interval (FI) and fixed-lag (FL) methods. Later, both the FI-SPKS and

FL-SPKS methods are detailed in sections 2.3-2.4 with step-by-step derivations. Imple-

mentation details and experimental results are shown in section 2.5. Section 2.6 concludes

the chapter with a discussion.

20



21

k
0

kx̂

N
Filter

(a)

k
0

kx̂
N

FI Smoother
(b)

k

0 N
kx̂

FL Smoother
L

(c)

Figure 2.1: The above schematic diagrams demonstrate the methodologies of a filter and
smoothers (a) Filter, (b) Fixed-Interval (FI) smoother, (c) Fixed-Lag (FL) smoother.

2.2 Introduction

2.2.1 Filter vs Smoother

The Kalman filter provides the optimal Bayesian recursive estimate in the MMSE sense

for the state xk of a linear state-space system driven by a white Gaussian noise [18]. The

estimate is optimal given all noisy measurements Zk = [z1, z2, . . . , zk] up to the current

time index k. A filter can be represented graphically as shown in Figure 2.1(a).

In contrast, the Kalman smoother (KS) estimates the conditional expectation of the

state xk given all past and future measurements Zk = [z1, z2, . . . , zN ] , 1 ≤ k ≤ N . A

filter uses only the past and current measurements up to time k to estimate x̂k, whereas a

smoother estimates x̂s
k for k ∈ (0, N) utilizing all the available measurements including the

future observations. As a smoother generally deals with more measurements, it is able to



22

achieve superior accuracy to that of a filter. The obvious downside of using a smoother is

that it performs non-real-time operations, possesses higher computational complexity and

takes longer processing time to compute estimates. Several common Kalman smoothing

formulations are given in [11, 12, 29–31]. Based on their work, smoothers are usually

divided into two main categories:

• A fixed-interval smoother estimates the state xk at time k using all the measurements

z1, z2, . . . , zN over a fixed time interval N . This type of smoother, which operates

within a fixed set of observations, is generally suitable for offline estimation. The

operation of a fixed-interval (FI) smoother is graphically shown in Figure 2.1(b).

• A fixed-lag smoother estimates the system state xk−L at time k − L given mea-

surements up to time k, z1, z2, . . . , zk, where the time index k continuously moves

forward as we obtain new measurements. In other words, we estimate the unknown

state xk by taking into account all past, present and L future observations. The

fixed lag parameter L trades off system latency for more estimation accuracy. A

schematic diagram of a fixed-lag (FL) smoother is illustrated in Figure 2.1(c).

2.2.2 Linear Smoothers

For the case of linear state space model, the fixed-interval and fixed-lag smoother formu-

lations are derived using the Kalman filter. Forward-Backward (FB) and Rauch-Tung-

Striebel (RTS) methods are perhaps the most popular ways of performing the fixed-interval

smoothing [11, 12]. In the FB approach to smoothing [29], a Kalman filter is run from

k = 1 to k = N to obtain forward estimates x̂f
k incorporating the observations zj for

1 ≤ j ≤ k. Similarly, estimates x̂b
k , which uses the observations zj for k ≤ j ≤ N , can be

obtained by operating a Kalman filter that runs backward in time from k = N to k = 1.

The backward filter dynamics is based on the inverse dynamics of the forward filter. The

forward and backward estimates are then optimally combined at each k to generate the

smoothed estimates x̂s
k.

The RTS approach is another way of implementing the fixed-interval smoothing which

is more computationally efficient than the FB method [30]. In the RTS form, the backward
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estimates are no longer needed in order to perform smoothing. In the RTS smoother, a

forward Kalman filter generates state estimates x̂k and estimation error covariances Pk

from time k = 1 to k = N incorporating the measurements zj for 1 ≤ j ≤ k. In

addition to the state estimates and error covariances, the forward pass also saves the

intermediate results including the state prediction x̂−
k and the prediction error covariance

P−
k at each time k. A backward smoothing pass runs backward in time in a sequence

from k = N , computing the smoothed state estimates x̂s
k from the forward estimates

and the intermediate results stored during the forward pass. Because the RTS smoother

is based on applying a correction pass to the forward filtering result, not on running

an independent backward filter, it can be applied in those cases when the forward state

dynamics is non-invertible.

In case of fixed-lag smoothing, the “state augmentation” approach is the most widely

used method [1, 11, 12], where an augmented state x̃k can be formed by combining the

current and L previous states

x̃k =

[

xk xk−1 · · · xk−L

]T

. (2.1)

A standard Kalman filter can be applied to estimate the full state of the augmented system,

with the last element of the augmented state vector being equal to the smoothed estimate

at time k − L given all measurements up to time k. Although, the state augmentation

method requires minimal effort to implement, computational complexity of this approach,

which is proportional to the cube of the state dimension, can be a serious concern for

certain applications.

Simon proposed a new formulation for the fixed-lag smoother to counter the high

computational load, which bypasses the state augmentation by a sliding window based

forward-backward approach [11]. Because no specific name was given in [11], we refer

this smoother as a fixed-lag forward-backward Kalman smoother (FL-FB-KS). Instead of

augmenting the current and L past states, the FL-FB-KS divides the data into blocks

(e.g., N =
∑

Ni) and then performs a forward-backward operation on the buffered blocks

of data as they become available. The standard Kalman filter equations are applied to

obtain the state estimates during the forward pass. A smoothing pass is then followed
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within the fixed size window, running backward in time and computing the smoothed

estimate x̂s
k.

2.2.3 Nonlinear Smoothers

The aim of our work is to derive a smoothing methodology for the nonlinear state space

system using the SPKF based implementation. Although substantial work has been done

on the broad topic of linear Kalman smoothing [11,12], derivation of nonlinear smoothers

is still an active area of research [16,26,31,32]. Extended Kalman smoother (EKS) remains

a popular choice to estimate smoothed states using a nonlinear state space model [33,34].

The EKS has been shown to have superior performance on a number of applications [12,

15, 31, 33], but since it makes use of the EKF as the core algorithm, it suffers from the

same EKF inaccuracies, such as linearization error, filter divergence, etc., as discussed in

Section 1.4. Hence in this chapter, we concentrate solely on designing a SPKS framework

in order to leverage all of the benefits the SPKF exhibits over the EKF.

Sigma-Point Kalman Smoother (SPKS)

Before going into the details of our SPKS methodologies, we first describe the two vari-

ants of the SPKS that have appeared in the literature. In [17, 26], the SPKS uses a

forward-backward approach. Although no specific name was given for this SPKS, in this

article it will be referred as a forward-backward nonlinear sigma-point Kalman smoother

(FBNL-SPKS) in order to differentiate from our proposed sigma-point smoothers. A stan-

dard SPKF is run in the forward direction using the nonlinear model. A second SPKF is

then run in the backward direction and the two estimates are optimally combined. The

backward filter dynamic model which is represented as an inverse forward dynamics is

approximated by training a backward nonlinear predictor (e.g., neural network model).

As the backward model needs to be fit to the data, it is both application specific and po-

tentially time consuming. In [32], an unscented Rauch-Tung-Striebel smoother (URTSS)

is proposed that uses a joint distribution of the current and future state in order to obtain

a smoothed estimate of the current state. While this avoids the need for the inverse dy-

namics, the computational complexity (cube of the state dimension) increases significantly
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due to the doubling of the state dimension.

In this work, we have proposed the following 6 SPKS algorithms that include both the

fixed-interval and fixed-lag methodologies.

• Fixed-interval sigma-point Kalman smoother (FI-SPKS):

1. Forward-backward statistical linearized sigma-point Kalman smoother (FBSL-

SPKS)

2. Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother (RTSSL-

SPKS)

• Fixed-lag sigma-point Kalman smoother (FL-SPKS):

1. State-augmented sigma-point Kalman smoother (Aug-SPKS)

2. Forward-backward a priori sigma-point Kalman smoother (FB-Priori-SPKS)

3. Forward-backward statistical linearized sigma-point Kalman smoother (FBSL-

SPKS)

4. Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother (RTSSL-

SPKS)

The FI-SPKS makes use of the forward-backward and RTS approaches as described in

Section 2.2.2. The FBSL-SPKS, which was first presented in [35], is a forward-backward

approach. In the FBSL-SPKS, a standard SPKF is used as the forward filter. The forward

SPKF generates state estimate x̂f
k at each time k using measurements up to time k. The

backward filter needs an inverse dynamics of the forward filter. While smoothers based on

the EKF compute the first order Taylor series based linearized dynamics, the forward non-

linear dynamics are never analytically linearized with the SPKF. Hence the dynamics of

the backward filter in the forward-backward approach are not well defined. Our proposed

SPKS makes use of the weighted statistical linear regression (WSLR) formulation of the

filter, which is straightforward, direct and computationally efficient. As will be detailed

later, the WSLR is a linearization technique that takes into account the uncertainty of

the prior random variable (RV) when linearizing the nonlinear model [17]. In this way,
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the WSLR is more accurate in the statistical sense than the first-order Taylor series based

linearization which does not factor in the probabilistic spread at the point of lineariza-

tion. By representing the forward dynamics in terms of WSLR, we are able to derive an

information filter that computes states x̂b
k by running backward in time. Estimates of

the forward and backward filter are then statistically combined to generate smoothed es-

timates x̂s
k in the standard manner. The complete derivation for the FBSL-SPKS is given

in Section 2.3.2. The RTSSL-SPKS follows the RTS methodology in order to estimate

smoothed states propagating through nonlinear dynamics. Similar to the FBSL-SPKS,

the RTSSL-SPKS uses a standard SPKF as the forward filter to estimate the state x̂k and

the state prediction x̂−
k . Incorporating the pseudo-linearized form of SPKF, we compute

a smoothing gain at each k during the backward smoothing pass that linearly combines

the forward estimate, x̂k, and the difference between the future smoothed estimate, x̂s
k+1,

and the state prediction, x̂−
k+1, in order to compute the current smoothed estimate x̂s

k.

The full derivation for the RTSSL-SPKS algorithm is presented in Section 2.3.3.

The Aug-SPKS, which adopts state-augmentation is the most simple and straightfor-

ward method to perform the nonlinear fixed-lag smoothing. In this method, an augmented

state space system is formed at each time k by the current and L previous states. A stan-

dard SPKF is then used to estimate the augmented states using the observations up to

time k with the last element of the augmented vector providing the smoothed state x̂s
k.

The Aug-SPKS algorithm is described in Section 2.4.1. The FB-Priori-SPKS is the ex-

tension of the linear fixed-lag smoother proposed by Simon [11]. Instead of augmenting

the individual state vectors, the state estimates in the FB-Priori-SPKS are computed se-

quentially within a sliding window containing the current and L previous observations.

The forward filter, which is a priori form of SPKF, operates on the statistically linearized

state space to compute the state prediction x̂−
k and the prediction error covariance P −

k .

A backward smoothing loop then determines the smoothed state x̂s
k from the forward

filtering results. Section 2.4.2 presents a summary of the FB-priori-SPKS algorithm. The

FBSL-SPKS and RTSSL-SPKS algorithms, which we demonstrate for the fixed-interval

case, is also applied for the fixed-lag category in a sliding window fashion. Instead of

operating on a fixed set of N measurements, we apply the same algorithm in a windowed
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Figure 2.2: This schematic diagram explains the concept of the FBSL-SPKS methodology.

The forward SPKF computes a posteriori estimate x̂f
k and the backward information

filter generates a priori estimate x̂b−
k at each discrete time k. The forward posteriori

and backward priori estimate are then statistically combined to generate the smoothed
estimate x̂s

k.

subset of L measurements from k = j−L+1 to k = j, where the time index j constantly

moves forward in time as we receive new measurements. The fixed-lag FBSL-SPKS and

RTSSL-SPKS algorithms are shown in sections 2.4.3 and 2.4.4.

2.3 Fixed-Interval Sigma-Point Kalman Smoothers (FI-SPKS)

In this section, we derive the formulations for the fixed-interval smoother operating on a

nonlinear state space. In the FI-SPKS framework, we develop both the FBSL-SPKS and

RTSSL-SPKS algorithms to estimate states at each discrete time k using a fixed set of

N measurements. Before going into the detailed algorithmic derivations for the FBSL-

SPKS and RTSSL-SPKS, we first present how the relationship between the SPKF and

WSLR can be applied to compute a pseudo linearized dynamics suitable for formulating

the equations of the fixed-interval smoothers.

2.3.1 Relationship between the SPKF and WSLR

Consider a prior RV x which is propagated through a nonlinear function g(x) to obtain

a posterior RV z. While x is a continuous RV observed at each time index k, for the

purpose of explaining the WSLR approach, we temporarily omit the discrete time index

k from the state and observation variables. Sigma points χi, i = 0, 1, . . . , 2M are selected

as the prior mean x̄ plus and minus the columns of the square root of the prior covariance
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Px

χ =

[

x̄ x̄+ γ
√
Px x̄− γ

√
Px

]

, (2.2)

where M is the RV dimension and γ is the composite scaling parameter. The sigma point

set χ completely capture the mean x̄ and the covariance Px of the prior RV x.

x̄ =
2M
∑

i=0

wiχi (2.3)

Px =
2M
∑

i=0

wi (χi − x̄) (χi − x̄)T , (2.4)

where wi is the normalized scaler weight for each sigma point. Each prior sigma point is

propagated through the nonlinearity to form the posterior sigma point γi

γi =g (χi) i = 0, 1, . . . , 2M. (2.5)

The posterior statistics can then be approximated using weighted averaging of the posterior

sigma points,

ẑ =
2M
∑

i=0

wiγi (2.6)

Pz =
2M
∑

i=0

wi (γi − ẑ) (γi − ẑ)T (2.7)

Pxz =
2M
∑

i=0

wi (χi − x̄) (γi − ẑ)T . (2.8)

This deceptively simple approach captures the desired posterior statistics more ac-

curately than using the standard Taylor series based first-order linearization techniques.

The implementation is also simpler, as it avoids the need to analytically linearize the

nonlinear function, and only requires direct function evaluations. The performance of the

sigma-point approach in capturing the mean and covariance of a GRV which undergoes a

nonlinear transformation is demonstrated in Figure 2.3. The left plot shows the mean and

covariance propagation using the Monte-Carlo sampling. The center plot demonstrates

the results using first-order linearization as in the EKF. The right hand plot depicts the

performance of the sigma-point approach. Note, only 5 sigma points are needed to ap-

proximate the 2D distribution. The superior performance of the sigma-point approach is
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Figure 2.3: 2D example of the sigma-point approach. The accuracy of the sigma-point
method in propagating the mean and covariance of the prior GRV through a nonlinear
function is compared with the Monte-Carlo sampling and the EKF approaches.

clearly evident. The figure also proves that the sigma-point weighted averaging technique

is an accurate approach to estimate the first and second-order statistics of a posterior

GRV.

An alternate view of the sigma point approach can be found by considering the

weighted statistical linearization of the nonlinear dynamics

z =g (x) ∼= Ax+ b+ ε, (2.9)

where A and b are the statistical linearization parameters and can be determined by

minimizing the expected mean square error which takes into account the uncertainty of

the prior RV x. Define

J =E
[

εTWε
]

(2.10)
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as the expected mean square error with sigma-point weighting matrix W

[A, b] =arg min J

=arg min
(

E
[

εTWε
])

. (2.11)

Taking a partial derivative of J with respect to b

∂J

∂b
=0. (2.12)

Now substituting J ,

J =(g (x) −Ax− b)T W (g (x) −Ax− b) , (2.13)

in Equation (2.12) to obtain

∂
[

(g (x) −Ax− b)T W (g (x) −Ax− b)
]

∂b
=0. (2.14)

After cross multiplication and differentiation, (2.14) simplifies to

E [W (g (x) −Ax− b)] =0. (2.15)

Finally, an expression for b can be computed from (2.15)

b =E [g (x)] −AE [x]

b =ẑ −Ax̄. (2.16)

After we obtain b, a new expression for J can be formed by substituting b into Equation

(2.13)

J =(g (x) −Ax− ẑ +Ax̄)T W (g (x) −Ax− ẑ +Ax̄) . (2.17)

In order to compute A, take a partial derivative of J with respect to A

∂J

∂A
=0. (2.18)

Now substitute J from (2.17) into (2.18)

∂
[

(g (x) − ẑ −A (x− x̄))T W (g (x) − ẑ −A (x− x̄))
]

∂A
=0. (2.19)
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After cross multiplication and differentiation, Equation (2.19) simplifies to

E
[

W
[

Ax̃x̃T + (g (x) − ẑ) x̃T
]]

=0, (2.20)

where

x̃ =(x− x̄) . (2.21)

By further simplifying Equation (2.20), an expression for A can be determined as follows

A =E
[

(x− x̄) (z − ẑ)T
]T
E
[

(x− x̄) (x− x̄)T
]−1

=P T
xzP

−1
x , (2.22)

where the prior mean (x̄) and covariance (Px) are calculated in (2.3)-(2.4) from the prior

sigma points. Similarly, the posterior mean (ẑ) and covariances (Pz and Pxz) are calcu-

lated from the posterior sigma points as shown in (2.6)-(2.8). The linearization error ε

has zero mean and covariance Pε which can be computed as below:

Pε =E
[

εTWε
]

=E
[

(g (x) − ẑ −A (x− x̄))T W (g (x) − ẑ −A (x− x̄))
]

=Pz −APxz − P T
xzA

T +APxA
T . (2.23)

Replacing P T
xz = APx from (2.22)

Pε =Pz −APxA
T −APxA

T +APxA
T

=Pz −APxA
T . (2.24)

From the posterior error covariance Pz obtained using (2.24),

Pz =APxA
T + Pε, (2.25)

we observe that the covariance of the linearization error Pε is added when calculating

the posterior covariance P̂z. The addition of the linearization error to the computed

posterior statistics is very important especially when there is severe nonlinearity over the

uncertainty region of prior RV. First-order Taylor-series-based linearization employed by
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the EKF often diverges in highly nonlinear region as it only performs linearization around

the mean of the RV but neglects this error term. In general, the WSLR technique is an

optimal way of linearizing any nonlinear function in the MMSE sense as this approach

explicitly takes into account the prior RV statistics (e.g. mean and covariance).

To form the SPKF, we consider the nonlinear state space model:

xk+1 =fk (xk,vk) (2.26)

zk =hk (xk,nk) , (2.27)

where xk ∈ R
M is the state, zk ∈ R

P is the observation at time index k, vk and nk are the

Gaussian distributed process and observation noises, f(.) is the nonlinear dynamic model

and h(.) is the nonlinear observation model function. The process and observation noise

have zero mean and covariances Qk and Rk, respectively. The SPKF is then derived by

recursively applying the sigma-point selection scheme shown above at every time interval

to these dynamic equations (see [23, 36] for more details).

Alternatively, we may form the statistically linearized state space using the WSLR

technique:

xk+1 =Af,kxk + bf,k +Gf,k (vk + εf,k) (2.28)

zk =Ah,kxk + bh,k + nk + εh,k, (2.29)

where Af,k, Ah,k, bf,k, bh,k are the statistical linearization parameters and εf,k, εh,k are

the linearization error with mean zero and covariance Pεf ,k and Pεh,k. All the linearization

parameters can be obtained by applying Equations (2.16), (2.22) and (2.24) iteratively at

each time index k. Gf,k is an input matrix that controls the amount of noise to be

added at each state vector. Deriving the Kalman filter using the pseudo-linearized state

space shown in (2.28) and (2.29) also leads to SPKF (see [17] for details). However the

advantage of this statistically linearized form is that it forms the nonlinear smoothing

equations which will be discussed in the following sections.
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2.3.2 Forward-Backward Statistical Linearized Sigma-Point Kalman

Smoother (FBSL-SPKS)

The FBSL-SPKS consists of two independent filters: a SPKF operating on a nonlinear

dynamics from time k = 1 to k = N and an information filter, which operates backward in

time starting from k = N on the statistically linearized dynamics. The coefficients of the

WSLR linearized dynamics are derived from the prior and posterior sigma points propa-

gated through the nonlinear system during the forward SPKF operation. The estimates

of the two filters are then statistically combined to obtain the smoothed estimates. Fig-

ure 2.2 demonstrates the outline of the FBSL-SPKS algorithm. In the following, we derive

the detailed algorithms used in the forward filter, backward filter and in the smoothing

technique.

Forward Filter

A standard SPKF is used as the forward filter. The forward SPKF operates on the

nonlinear state space demonstrated in Equations (2.26) and (2.27) in order to estimate

the state xk and the estimation error covariance Pxk
using the measurements z1:k. For

the purpose of notational convenience, the forward state estimate is denoted here as x̂k

instead of x̂f
k.

Without derivation, the pseudo code for the SPKF with WSLR is shown below:
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• Initialization:

x̂0 = E [x0] (2.30)

Px0
= E

[

(x0 − x̂0) (x0 − x̂0)
T
]

(2.31)

x̂a
0 = E

[

xa
0

]

=

[

x̂T
0 v̂T

0 n̂T
0

]T

(2.32)

P a
x0

=
[

(

xa
0 − x̂a

0

) (

xa
0 − x̂a

0

)T
]

=













Px0
0 0

0 Q0 0

0 0 R0













(2.33)

For k = 0, 1, 2, . . . , N

• Calculate sigma points:

χa
k =

[

x̂a
k x̂a

k +

√

(

Ḿ + λ
)

P a
xk

x̂a
k −

√

(

Ḿ + λ
)

P a
xk

]

(2.34)

• Time-update equations:

χx
i,k+1|k = fk

(

χx
i,k,χ

v
i,k

)

i = 0, 1, . . . , 2Ḿ (2.35)

x̂−
k+1 =

2Ḿ
∑

i=0

w
(m)
i χx

i,k+1|k (2.36)

P−
xk+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
ij

(

χx
i,k+1|k − x̂−

k+1

) (

χx
j,k+1|k − x̂−

k+1

)T
(2.37)

• Weighted Statistical Linearization of f(.):

P
xkx−

k+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

wc
ij

(

χx
j,k − x̂k

) (

χx
i,k+1|k − x̂−1

k+1

)T
(2.38)

Af,k = P T
xkx−

k+1

P−1
xk

(2.39)

bf,k = x̂−
k+1 −Af,kx̂k (2.40)

Pεf ,k = P−
xk+1

−Af,kPxk
AT

f,k (2.41)
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• Measurement-update equations:

γi,k+1|k = hk

(

χx
i,k+1|k,χ

n
i,k

)

i = 0, 1, . . . , 2Ḿ (2.42)

ẑ−k+1 =
2Ḿ
∑

i=0

w
(m)
i γi,k+1|k (2.43)

Pz̃k+1
=

2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

(

γj,k+1|k − ẑ−k+1

)(

γi,k+1|k − ẑ−k+1

)T
(2.44)

Pxk+1zk+1
=

2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

(

χx
j,k+1|k − x̂−

k+1

)(

γi,k+1|k − ẑ−k+1

)T
(2.45)

Kk+1 = Pxk+1zk+1
P−1

z̃k+1
(2.46)

x̂k+1 = x̂−
k+1 +Kk+1

(

zk+1 − ẑ−k+1

)

(2.47)

Pxk+1
= P−

xk+1
−Kk+1P

−
z̃k+1

KT
k+1 (2.48)

• Weighted Statistical Linearization of h(.):

Ah,k = P T
xk+1zk+1

(

P−
xk+1

)−1
(2.49)

bh,k = ẑ−k+1 −Ah,kx̂
−
k+1 (2.50)

Pεh,k = Pz̃k+1
−Ah,kP

−
xk+1

AT
h,k (2.51)

• Parameters:

xa =

[

xT vT nT

]T

(2.52)

χa =

[

(χx)T (χv)T (χn)T
]T

(2.53)

P a
xk

=













Pxk
0 0

0 Qk 0

0 0 Rk













, (2.54)

where λ is the composite scaling parameter which is given by:

λ =α2
(

Ḿ + κ
)

− Ḿ. (2.55)
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w
(c)
i and w

(m)
i are the scaler sigma-point weights and they are defined as:

w
(c)
0 =

λ
(

Ḿ + λ
) +

(

1 − α2 + β
)

, i = 0 (2.56)

w
(m)
0 =

λ
(

Ḿ + λ
) , i = 0 (2.57)

w
(c)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ (2.58)

w
(m)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ , (2.59)

where 0 ≤ α ≤ 1, β = 2 and κ = 0 are the SPKF parameters. The dimension of the state

vector is M , Ḿ is the dimension of each augmented state, Qk and Rk are the process

noise and the observation noise covariances at time k. Here we assumed that the length

of the observation sequence is N .

As demonstrated in the pseudo code, in addition to computing the state estimate x̂k

and state estimation error covariance Pxk
, the forward SPKF also computes the statistical

linearization parameters, Af,k, bf,k, Pεf ,k, Ah,k, bh,k, Pεh,k, at each time k in order to form

a pseudo-linearized dynamics. Equations (2.28) and (2.29) display the WSLR linearized

state space model. The backward filter, which we derive next, operates on this pseudo-

linearized dynamics to compute its estimates.

Backward Filter

An information filter is chosen as the backward filter, which starts from time k = N and

then proceeds backward in time to k = 1. The information filter is applied on the pseudo-

linearized state space formulations to estimate the state xb
k and the estimation error

covariance P b
k using the measurements zj for k ≤ j ≤ N . Due to the backward state

estimation, the pseudo-linearized state space demonstrated in Equations (2.28)-(2.29) is

suitably modified as

xk = A−1
f,k [xk+1 − bf,k −Gf,k (vk + εf,k)] (2.60)

zk = Ah,kxk + bh,k +nk + εh,k (2.61)
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From Equations (2.28) and (2.29), it is evident that the structural form of the WSLR

linearized dynamical system is different than the standard linear state space shown in [12]

(the statistically linearized system has different linearization coefficients and also contains

additional terms, such as bf,k, bh,k, εf,k and εh,k). Hence the standard information filter

formulations derived for the linear system cannot be directly applied in this case. In the

following, we derive the time-update and measurement-update equations of the backward

information filter applied on the statistically linearized dynamical system from first prin-

ciples. The backward filter steps make use of Lemmas 2.7.1 to 2.7.3, which are derived in

Appendix 2.7.

1. Initializations:

The initial conditions for the smoother are

SN+1 = 0 (2.62)

ŷN+1 = 0, (2.63)

where the information matrix Sk =
(

Pb
k

)−1
is the inverse of the state error covari-

ance and ŷk = Skx̂
b
k is defined as the information state. The estimated state and

estimation error covariance of the backward filter at time k are denoted as x̂b
k and

Pb
k respectively. The superscript “b” signifies the operation of a backward filter.

For notational convenience, the estimation error covariance of the backward filter at

time k is denoted here as P b
k instead of P b

xk
.

2. Time-update for the information matrix :

The equations of the state prediction and prediction error covariance can be formed

using the WSLR linearized dynamics as follows

x̂b−
k = A−1

f,k

(

x̂b
k+1 − bf,k

)

(2.64)

Pb−
k = E

[

(

xb
k − x̂b−

k

) (

xb
k − x̂b−

k

)T
]

. (2.65)
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Denoting xb
k+1 − x̂b

k+1 = ebk+1 and further simplifying (2.65) with the help of Equa-

tions (2.60) and (2.64),

Pb−
k = E

(

A−1
f,ke

b
k+1 −A−1

f,k (Gf,kvk +Gf,kεf,k)
)

.

(

A−1
f,ke

b
k+1 −A−1

f,k (Gf,kvk +Gf,kεf,k)
)T

(2.66)

= A−1
f,kP

b
k+1A

−T
f,k +A−1

f,kGf,k

(

Pεf ,k +Qk

)

GT
f,kA

−T
f,k . (2.67)

Equation (2.67) is derived by assuming E [εf,k] = 0 and E [vk] = 0. Applying the

matrix inversion Lemma (Refer to Lemma 2.7.1) on (2.67) and later simplifying we

obtain,

S−
k = AT

f,kSk+1Af,k−

AT
f,kSk+1Gf,k

[

(

Pεf ,k +Qk

)−1
+GT

f,kSk+1Gf,k

]−1

GT
f,kSk+1Af,k. (2.68)

Lets define KG,k
as the backward gain matrix,

KG,k
= Sk+1Gf,k

[

(

Pεf ,k +Qk

)−1
+GT

f,kSk+1Gf,k

]−1

. (2.69)

Substitute the above expression for KG,k
into Equation (2.68) in order to obtain

the final form of S−
k ,

S−
k = AT

f,k

(

I −KG,k
GT

f,k

)

Sk+1Af,k. (2.70)

Note the presence of linearization error term Pεf ,k in the R.H.S of (2.68). This term

governs the severity of the nonlinearity into the covariance prediction and it does

not appear in the standard information filter formulation for linear systems. [11,12].

The more severe the nonlinearity is over the uncertainty region of the state, the

higher will be the linearization error covariance matrices.

3. Time-update for the information state:

From (2.64)

x̂b−
k = A−1

f,k

(

x̂b
k+1 − bf,k

)

(2.71)

ŷ−k = S−
k x̂

b−
k

= S−
k A

−1
f,k

(

S−1
k+1ŷk+1 − bf,k

)

. (2.72)
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Now substituting S−
k from Equation (2.70) into (2.72),

ŷ−k = AT
f,k

(

I −KG,kG
T
f,k

)

(ŷk+1 − Sk+1bf,k) . (2.73)

Note that the correction term Sk+1bf,k is subtracted out from the previous informa-

tion state in Equation (2.73). This term is not present in the time-update Equation

of a standard information filter derived for linear systems.

4. Measurement-update for the information matrix :

We start the derivation using the Lemma 2.7.2, which provides us an expression for

Pb
k

Pb
k =

(

I −Kb
k Ah,k

)

Pb-
k

(

I −Kb
k Ah,k

)T
+Kb

k (Rk + Pεh,k)
(

Kb
k

)T
, (2.74)

where Kb
k is the backward Kalman gain and is also derived in Lemma 2.7.2

Kb
k = Pb−

k AT
h,k

(

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)−1
. (2.75)

Now assume

Lk =
(

Rk + Pεh,k +Ah,kP
b-
k AT

h,k

)

, (2.76)

and simplify P b
k

Pb
k =

[

I − P b−
k AT

h,kL
−1
k Ah,k

]

Pb−
k

[

I − P b−
k AT

h,kL
−1
k Ah,k

]T
+Kk (Rk + Pεh,k)K

T
k

= Pb−
k − Pb−

k AT
h,kL

−1
k Ah,kP

b−
k − Pb−

k AT
h,kL

−1
k Ah,kP

b−
k +

Pb−
k AT

h,kL
−1
k Ah,kP

b−
k AT

h,kL
−1
k Ah,kP

b−
k + Pb−

k AT
h,kL

−1
k (Rk + Pεh,k)L

−1
k Ah,kP

b−
k .

(2.77)

The above Equation is further simplified by combining the last two terms in (2.77)

and using Lk from (2.76),

Pb
k = Pb−

k − 2Pb−
k AT

h,kL
−1
k Ah,kP

b−
k + Pb−

k AT
h,kL

−1
k LkL

−1
k Ah,kP

b−
k

= Pb−
k − Pb−

k AT
h,kL

−1
k Ah,kP

b−
k

(

Pb
k

)−1
=

[

Pb−
k − Pb−

k AT
h,k

(

Ah,kP
b−
k AT

h,k +Rk + Pεh,k

)−1
Ah,kP

b−
k

]−1

.

(2.78)
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Using the matrix inversion Lemma on (2.78), the updated information error covari-

ance Sk is formed as follows:

(

Pb
k

)−1
=
(

Pb−
k

)−1
+AT

h,k (Rk + Pεh,k)
−1Ah,k

Sk = S−
k +AT

h,k (Rk +Pεh,k)
−1Ah,k. (2.79)

The presence of linearization error covariance Pεh,k at the R.H.S of the Equation

(2.79) is responsible for possessing a different update Equation than a standard linear

information filter.

5. Measurement-update for the information state:

The standard Kalman update Equation incorporating the latest measurement zk is

applied in order to compute the new information state x̂b
k ,

x̂b
k = x̂b−

k +Kb
k

(

zk −Ah,kx̂
b−
k − bh,k

)

. (2.80)

Replace Kb
k with Equation (2.75), multiply both sides of the Equation with Sk and

then substitute Sk from (2.79),

ŷk = ŷ−k +AT
h,k (Rk +Pεh,k)

−1 x̂b−
k +AT

h,k (Rk + Pεh,k)
−1
(

zk −Ah,kx̂
b−
k − bh,k

)

= ŷ−k +AT
h,k (Rk +Pεh,k)

−1 (zk − bh,k) , (2.81)

where zk is the true measurement at time k. The information state ŷk is formed

at the L.H.S of Equation (2.81) by the multiplication of the backward state x̂b
k and

the corresponding information matrix Sk,

ŷk = Skx̂
b
k . (2.82)

Note how the statistical linearization parameters bh,k and Pεh,k play a part in the

update of the information state.

Smoothing

The SPKF is run in the forward direction on the interval [0, N ] to compute the forward

posterior estimates x̂k and the estimation error covariances Pk. The information filter
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is then run backwards to form the prior backward estimates ŷ−k and the corresponding

estimation error covariances S−
k . Note that a posterior estimate at time k utilizes all

observations up to time k, whereas a prior estimate is the state prediction at time k

based on observations until time k − 1. The smoother statistically combines the forward

and backward estimates and their respective error covariances to determine the smoothed

estimate x̂s
k and the error covariance P s

k , where the superscript “s” signifies the smoothed

output.

The smoothed estimate x̂s
k is obtained by linearly combining the forward and the

backward estimates

x̂s
k = Kf

kx̂k +
(

I −Kf
k

)

x̂b−
k , (2.83)

where Kf
k is the linear combination coefficient to be determined. To make the smoothed

estimate x̂s
k unbiased, x̂k and x̂b−

k are combined with coefficients that sums equal to

identity. To determine Kf
k, we first compute the estimation error covariance P s

k between

the true xs
k and the estimate x̂s

k and then minimize the trace of P s
k with respect to Kf

k.

The smoothed error covariance P s
k can be defined as

P s
k = E

[

(

xs
k − x̂s

k

) (

xs
k − x̂s

k

)T
]

. (2.84)

Replacing x̂s
k from (2.83) and then further simplifying we obtain

P s
k = Kf

k

(

Pk + Pb−
k

) (

Kf
k

)T
+ Pb−

k −Kf
kP

b−
k − Pb−

k

(

Kf
k

)T
. (2.85)

Differentiating P s
k with respect to Kf

k and then setting equal to zero obtains

∂P s
k

∂Kf
k

= 0 (2.86)

= 2
[

Kf
k

(

Pk + Pb−
k

)

− Pb−
k

]

. (2.87)

Solving the above, we obtain an expression for K f
k

Kf
k = Pb−

k

(

Pk + Pb−
k

)−1
. (2.88)

• Smoothed Error Covariance:

We can put the newly obtained value of the coefficient K f
k into Equation (2.85)
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to derive an Equation for P s
k , which is a function of the forward and backward

estimation error covariances (for details, please refer to [11])

P s
k =

[

P−1
k +

(

Pb−
k

)−1
]−1

(2.89)

=
[

P−1
k + S−

k

]−1
. (2.90)

The matrix inversion Lemma can be applied to write the above in the following

alternative form

P s
k = Pk − PkS

−
k

(

I +PkS
−
k

)−1
Pk. (2.91)

As all covariance matrices are positive definite, Equation (2.91) suggests that the

smoothed covariance P s
k is smaller than or equal to the forward SPKF covariance

Pk.

• Smoothed Estimate:

An Equation for x̂s
k can be obtained by substituting the value of K f

k into Equation

(2.83)

x̂s
k = Pb−

k

(

Pk + Pb−
k

)−1
x̂k + Pk

(

Pk + Pb−
k

)−1
x̂b−

k . (2.92)

We can further simplify the above Equation using the matrix inversion Lemma

(A+B)−1 = B−1
(

AB−1 + I
)−1

, (2.93)

where A and B are the invertible square matrices in order to obtain the final Equa-

tion for the smoothed state x̂s
k,

x̂s
k = P s

k

[

P−1
k x̂k +

(

Pb−
k

)−1
x̂b−

k

]

(2.94)

=
(

I + PkS
−
k

)−1
x̂k + P s

k ŷ
−
k . (2.95)

Note that both the smoothed state x̂s
k and the smoothed error covariance P s

k are computed

by incorporating all available measurements z0:N .
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FBSL-SPKS algorithm

The final equations of FBSL-SPKS algorithm including the forward filter, the backward

filter and the smoother are demonstrated below:

• Forward filter :

The SPKF algorithm with WSLR as defined in Section 2.3.2 is used as a forward

filter, which starts from k = 1 and proceeds to k = N . In addition to computing

the estimates x̂k and the estimation error covariances Pk, statistically linearized

parameters Af,k, Ah,k, bf,k, bh,k, Pεf ,k and Pεh,k are also generated at each k by

applying the WSLR technique on the nonlinear dynamics.

• Backward filter :

The backward filter is an information filter, which operates backward in time from

k = N to k = 1 computing the information estimate ŷk and the information error

covariance Sk.

For k = N,N − 1, N − 2, . . . , 1

– Time update:

S−
k = AT

f,k

(

I −Kb
k G

T
f,k

)

Sk+1Af,k (2.96)

ŷ−k = AT
f,k

(

I −Kb
k G

T
f,k

)

(ŷk+1 − Sk+1bf,k) (2.97)

– Measurement Update:

Sk = S−
k +AT

h,k (Rk + Pεh,k)
−1Ah,k (2.98)

ŷk = ŷ−k +AT
h,k (Rk + Pεh,k)

−1 (zk − bh,k) (2.99)

• Smoother :

The smoother combines the estimates obtained from the forward and backward filters

in order to compute the smoothed estimates.
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P s
k =

[

P−1
k + S−

k

]−1
(2.100)

x̂s
k =

(

I + PkS
−
k

)−1
x̂k + P s

k ŷ
−
k (2.101)

Note, the smoothing step employs a minimum variance estimator, which linearly combines

the forward and backward estimates with constant coefficient matrices in order to estimate

the smoothed state at each k. We have found in practice that the state estimates gener-

ated by the FBSL-SPKS are clearly superior to those calculated by the standard SPKF.

However the performance advantage of the FBSL-SPKS comes at the price of higher com-

putational requirement. Each forward and backward filter employed by the FBSL-SPKS

exhibits O
(

NM3
)

order of computation, where M is the state dimension and N is number

of observations. In addition, the computational complexity of combining the forward and

the backward estimates to obtain smoothed states is also O
(

NM3
)

. Another disadvantage

of the FBSL-SPKS is that it demands significantly higher memory as the entire forward

estimation results, x̂k with dimension M × 1 and forward error covariances Pk with di-

mension M ×M , need to be saved for the future smoothing step. The implementation

of the FBSL-SPKS also assumes that an inverse of the statistical linearization parameter

of the process model, Af,k, exists and can be easily computed. In the next section, we

describe the RTSSL-SPKS, which is another variant of the fixed-interval SPKS.

2.3.3 Rauch-Tung-Striebel Statistical Linearized Sigma-Point Kalman

Smoother (RTSSL-SPKS)

Unlike a forward-backward smoother, there is no separate forward and backward filter

in the RTS smoother formulation. As the computation of full backward estimates is no

longer needed, the RTS based algorithm is more computationally efficient and easier to

implement than the forward-backward smoother. In the RTSSL-SPKS, a standard SPKF

is used as a forward filter. A backward smoothing pass, which proceeds from k = N to

k = 1, is then applied on the forward estimation results to obtain the smoothed estimates.

Figure 2.4 demonstrates the RTSSL-SPKS algorithm. The objective of the smoothing
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backward smooth

Figure 2.4: This schematic diagram explains the concept of the RTSSL-SPKS method-
ology. The forward SPKF generates a state estimate x̂k at each time k. The backward
smoothing step applies a correction on the forward estimates to derive the smoothed
estimates x̂s

k.

pass is to employ a corrective measure on the forward estimation results based on the

calculation of a smoothing gain Dk. The computation of Dk, which is a function of the

prior and posterior estimation-error covariances, requires a linearized form of the state

space. For a nonlinear system, EKF solves this problem using the Taylor series based

first-order linearization. In this dissertation, we make use of the WSLR form of the

nonlinear state space to perform the backward smoothing. As the statistically linearized

state space defined in (2.28) and (2.29) is different from the standard linear state space

used by the Kalman filter, we must derive the RTSSL-SPKS steps from first principles.

Forward Filter

The standard SPKF algorithm (refer to Section 2.3.2) is used as a forward filter, which

generates state estimates x̂k and estimation error covariances Pk from time k = 1 to

k = N incorporating the measurements zj for 1 ≤ j ≤ k. In addition to computing the

state estimates and error covariances, the forward pass also saves the intermediate results

including the state prediction x̂−
k and the prediction error covariance P −

k at each time k.

Similar to the forward SPKF employed by the FBSL-SPKS algorithm, the forward filter in

the RTSSL-SPKS algorithm also computes the statistical linearization parameters, Af,k,

bf,k, Pεf ,k, Ah,k, bh,k, Pεh,k, at each k in order to form the pseudo-linearized dynamics,

which makes the backward smoothing step feasible.
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Backward RTS Smoothing

Similar to the FBSL-SPKS smoother equations given in (2.90) and (2.95), the smoothed

state x̂s
k and the smoothed covariance P s

k for the RTSSL-SPKS algorithm are derived

by making use of the statistically linearized state space. However as opposed to the

FBSL-SPKS, which employs independent forward and backward filters for smoothing, the

RTSSL-SPKS does not require to directly compute the backward estimates in order to

perform smoothing. As the structural form of the WSLR linearized dynamics is different

than the standard linear state space, the standard RTS equations derived for the linear

system cannot be directly applied in this case. In the following, we derive the smoothed co-

variance and the smoothed state for the RTSSL-SPKS algorithm from first principles that

involves a backward correction on the forward filtering result. The backward smoothing

steps make use of Lemmas 2.7.3 to 2.7.11, which are derived in Appendix 2.7.

1. Initializations:

The initial smoothed state and the estimation error covariance is equal to the forward

filter estimate computed at the final time interval k = N . The initial conditions for

the smoother can be shown as

P s
N = PN (2.102)

x̂s
N = x̂N . (2.103)

The recursive RTS smoother is then run in the backward direction for k = N,N −
1, N − 2, . . . , 1.

2. RTS smoothing for estimation error covariance:

Below we derive the recursive Equation for the RTSSL-SPKS smoothed covariance

P s
k at each k. Here we start with the smoothed error covariance given in Equation

(2.90) and express the estimation error covariance of the backward filter P b
k in terms

of the smoothed error covariance P s
k and the forward prediction error covariance

P−
k . In that way we can avoid designing a separate backward Kalman filter and can
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estimate P s
k using only the forward filtering results. From Equation (2.67)

(

Pk + Pb−
k

)−1
=
[

Pk +A−1
f,kP

b
k+1A

−T
f,k +A−1

f,kGf,k

(

Pεf ,k +Qk

)

GT
f,kA

−T
f,k

]−1

= AT
f,k

[

Af,kPkA
T
f,k +Gf,k

(

Pεf ,k +Qk

)

GT
f,k + Pb

k+1

]−1
Af,k.

(2.104)

Introducing

P−
k+1 = Af,kPkA

T
f,k +Gf,k

(

Pεf ,k +Qk

)

GT
f,k, (2.105)

and also defining P b
k+1 from Lemma 2.7.4,

Pb
k+1 =

[

(

P s
k+1

)−1 −
(

P−
k+1

)−1
]−1

, (2.106)

we further simplify the Equation (2.104),

(

Pk + Pb−
k

)−1
= AT

f,k

[

P−
k+1 +

[

(

P s
k+1

)−1 −
(

P−
k+1

)−1
]−1

]−1

Af,k

= AT
f,k

(

P−
k+1

)−1
[

(

P−
k+1

)−1
+
(

P−
k+1

)−1
[

(

P s
k+1

)−1 −
(

P−
k+1

)−1
]−1 (

P−
k+1

)−1
]−1

.

(

P−
k+1

)−1
Af,k. (2.107)

Now by applying the matrix inversion Lemma, Equation (2.107) is expressed as

follows:

(

Pk + Pb−
k

)−1
= AT

f,k

(

P−
k+1

)−1 (

P−
k+1 − P s

k+1

) (

P−
k+1

)−1
Af,k. (2.108)

Using the above Equation, we substitute
(

Pk + Pb−
k

)−1
from the Equation (2.91)

in order to obtain the smoothed covariance P s
k ,

P s
k = Pk −Dk

(

P−
k+1 −P s

k+1

)

DT
k , (2.109)

where we have assumed that Dk=backward smoothing gain, which is defined as

Dk = PkA
T
f,k

(

P−
k+1

)−1
. (2.110)

Note that the computation of the backward gain Dk depends on the statistical

linearization parameter Af,k, forward estimation error covariance Pk and the future

prediction error covariance P −
k+1.
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3. RTS smoothing for state estimate:

Now we concentrate on deriving the recursive Equation for estimating the smoothed

state x̂s
k at each k. Like the derivation of the smoothed covariance, the estimation

of the smoothed state is based on expressing the FBSL-SPKS backward filter equa-

tions in terms of the previously computed smoothed results and the forward filter

estimates. We start the derivation using Equation (2.64). Multiplying both sides of

Equation (2.64) with S−
k ,

ŷ−k = S−
k A

−1
f,k

(

Pb
k+1ŷk+1 − bf,k

)

. (2.111)

By using Lemma 2.7.9,

S−
k = AT

f,k

[

Q́−1
k − Q́−1

k

(

Sk+1 + Q́−1
k

)−1
Q́−1

k

]

Af,k, (2.112)

where Q́k is defined as

Q́k = Gf,k

(

Pεf ,k +Qk

)

GT
f,k, (2.113)

we substitute S−
k and then further simply the Equation (2.111)

ŷ−k = AT
f,kQ́

−1
k

(

Sk+1 + Q́−1
k

)−1
(ŷk+1 − Sk+1bf,k)

= AT
f,k

(

I + Sk+1Q́k

)−1
(ŷk+1 − Sk+1bf,k)

ŷk+1 =
(

I + Sk+1Q́k

)

A−T
f,k ŷ

−
k + Sk+1bf,k. (2.114)

Multiplying both sides by A−1
f,kP

b
k+1 and then applying Lemma 2.7.5,

A−1
f,kQ́kA

−T
f,k = A−1

f,kP
−
k+1A

−T
f,k − Pk, (2.115)

we obtain,

A−1
f,kP

b
k+1ŷk+1 = A−1

f,kP
b
k+1A

−T
f,k ŷ

−
k +A−1

f,kP
−
k+1A

−T
f,k ŷ

−
k − Pkŷ

−
k +A−1

f,kbf,k

Pb
k+1ŷk+1 =

[(

Pb
k+1 + P−

k+1

)

A−T
f,k −Af,kPk

]

ŷ−k + bf,k. (2.116)

We use Lemma 2.7.6,

Pb
k+1 =

(

P−
k+1 + Pb

k+1

)

S−
k+1P

s
k+1, (2.117)
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and Lemma 2.7.7,

P−
k+1 + Pb

k+1 = Af,k

(

Pk + Pb−
k

)

AT
f,k, (2.118)

to replace P b
k+1 and P−

k+1 + Pb
k+1 from the L.H.S and the R.H.S of the Equation

(2.116),

Af,k

(

Pk + Pb−
k

)

AT
f,kS

−
k+1P

s
k+1ŷk+1 =

[

Af,k

(

Pk + Pb−
k

)

−Af,kPk

]

ŷ−k + bf,k.

(2.119)

Now multiplying both sides of the Equation (2.119) with
(

Pk + Pb−
k

)−1
A−1

f,k and

then substitute
(

Pk + Pb−
k

)−1
from the Equation (2.108)

AT
f,kS

−
k+1P

s
k+1ŷk+1 = ŷ−k −AT

f,kS
−
k+1

(

P−
k+1 − P s

k+1

)

S−
k+1Af,kPkŷ

−
k +

AT
f,kS

−
k+1

(

P−
k+1 − P s

k+1

)

S−
k+1bf,k. (2.120)

Equation (2.108) can be further modified as

AT
f,kS

−
k+1

(

P s
k+1 −P−

k+1

)

S−
k+1x̂

−
k+1 = −

(

Pk +Pb−
k

)−1
A−1

f,kx̂
−
k+1. (2.121)

Summing Equations (2.120) and (2.121) and later using Lemma 2.7.8

x̂s
k+1 = P s

k+1Sk+1x̂
−
k+1 − P s

k+1A
T
h,k+1Ŕ

−1
k+1Ah,k+1x̂

−
k+1 + P s

k+1ŷk+1, (2.122)

to substitute P s
k+1ŷk+1,

AT
f,kS

−
k+1

(

x̂s
k+1 − x̂−

k+1

)

= ŷ−k −AT
f,kS

−
k+1

(

P−
k+1 −P s

k+1

)

S−
k+1Af,kPkŷ

−
k +

[

−
(

Pk + Pb−
k

)−1
A−1

f,k +AT
f,kS

−
k+1P

s
k+1Sk+1

]

x̂−
k+1+

[

−AT
f,kS

−
k+1P

s
k+1A

T
h,k+1Ŕ

−1
k+1Ah,k+1 −AT

f,kS
−
k+1P

s
k+1S

−
k+1

]

x̂−
k+1+

AT
f,kS

−
k+1

(

P−
k+1 − P s

k+1

)

S−
k+1bf,k, (2.123)

where Ŕk+1 expands to

Ŕk+1 = Rk+1 + Pεh,k+1. (2.124)
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Now by applying Lemma 2.7.10,

x̂s
k − x̂k = P s

k ŷ
−
k − PkS

−
k

(

I + PkS
−
k

)−1
x̂k, (2.125)

and Equations (2.123), (2.108), (2.64) and (2.79), we simplify the Equation (2.123)

as follows:

AT
f,kS

−
k+1

(

x̂s
k+1 − x̂−

k+1

)

= ŷ−k −AT
f,kS

−
k+1

(

P−
k+1 −P s

k+1

)

S−
k+1Af,kPkŷ

−
k −

S−
k

(

I + PkS
−
k

)−1
x̂k. (2.126)

We can form the smoothed covariance P s
k+1 at time k+1 using the Equation (2.109)

P s
k+1 = Pk+1 −Dk+1

(

P−
k+2 − P s

k+2

)

DT
k+1. (2.127)

Substituting P s
k+1 from above into the Equation (2.126)

AT
f,kS

−
k+1

(

x̂s
k+1 − x̂−

k+1

)

= ŷ−k −

AT
f,kS

−
k+1

(

P−
k+1 − Pk+1 +Dk+1

(

P−
k+2 − P s

k+2

)

DT
k+1

)

DT
k ŷ

−
k −

S−
k

(

I + PkS
−
k

)−1
x̂k. (2.128)

Multiplying Pk on both sides of the Equation (2.128), we obtain

Dk

(

x̂s
k+1 − x̂−

k+1

)

= Pkŷ
−
k −Dk

(

P−
k+1 − Pk+1 +Dk+1

(

P−
k+2 − P s

k+2

)

DT
k+1

)

DT
k ŷ

−
k

− PkS
−
k

(

I + PkS
−
k

)−1
x̂k (2.129)

The above Equation can further be simplified as

Dk

(

x̂s
k+1 − x̂−

k+1

)

=
(

Pk −Dk

(

P−
k+1 − Pk+1 +Dk+1P

−
k+2D

T
k+1 −Dk+1P

s
k+2D

T
k+1

)

DT
k

)

ŷ−k −

PkS
−
k

(

I + PkS
−
k

)−1
x̂k. (2.130)

where the backward smoothing gainDk is defined in Equation (2.110). From (2.109),

P s
k+1 = Pk+1 −Dk+1

(

P−
k+2 − P s

k+2

)

DT
k+1

Dk+1P
s
k+2D

T
k+1 = P s

k+1 − Pk+1 +Dk+1P
−
k+2D

T
k+1. (2.131)
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Substitute Dk+1P
s
k+2D

T
k+1 from the above Equation into the Equation (2.130),

Dk

(

x̂s
k+1 − x̂−

k+1

)

=
(

Pk −Dk

(

P−
k+1 − P s

k+1

)

DT
k

)

ŷ−k − PkS
−
k

(

I +PkS
−
k

)−1
x̂k

= P s
k ŷ

−
k − PkS

−
k

(

I + PkS
−
k

)−1
x̂k. [from (2.109)] (2.132)

Finally, define Lemma 2.7.11,

x̂s
k − x̂k = P s

k ŷ
−
k − PkS

−
k

(

I + PkS
−
k

)−1
x̂k, (2.133)

and compare the above Equation with (2.132) in order to obtain the smoothed state

x̂s
k,

Dk

(

x̂s
k+1 − x̂−

k+1

)

= x̂s
k − x̂k

x̂s
k = x̂k +Dk

(

x̂s
k+1 − x̂−

k+1

)

. (2.134)

As shown, the smoothed state estimate x̂s
k is equal to the linear combination with

coefficient Dk of the following:

(a) The state estimate x̂k computed during the forward SPKF pass.

(b) The difference between the smoothed state x̂s
k+1 estimated at time k+1 during

the backward smoothing pass and the state prediction x̂−
k+1 computed by the

forward SPKF estimator.
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RTSSL-SPKS algorithm

The final equations of the RTSSL-SPKS algorithm including the forward filter and the

backward smoother are described below:

• Forward filter :

The SPKF algorithm with WSLR as defined in Section 2.3.2 is applied for k =

1, 2, . . . , N . In addition to computing the estimates x̂k and the error covariances Pk,

the forward pass also saves the intermediate results including the state prediction x̂−
k

and the prediction error covariance P −
k at each time k. The statistically linearized

parameters Af,k, Ah,k, bf,k, bh,k, Pεf ,k and Pεh,k are also generated at each SPKF

recursion using the WSLR technique on the nonlinear state space.

• Backward smoothing :

The backward smoothing recursion can be used to compute the smoothed estimates

at all k, starting from k = N and proceeding backwards to the initial time k = 1.

– Error covariance smoothing :

Dk = PkA
T
f,k

(

P−
k+1

)−1
(2.135)

P s
k = Pk −Dk

(

P−
k+1 − P s

k+1

)

DT
k (2.136)

– State estimate smoothing :

x̂s
k = x̂k +Dk

(

x̂s
k+1 − x̂−

k+1

)

(2.137)

Note, the smoothed error covariance P s
k is not necessary for the estimation of the smoothed

state x̂s
k and should only be computed if it is of sufficient interest. We have found in the

experimental results that the RTSSL-SPKS and FBSL-SPKS perform equally well with
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negligible difference in the estimation accuracy. However, the RTSSL-SPKS algorithm is

more computationally efficient than the FBSL-SPKS. The computational saving is due to

RTSSL-SPKS’s ability to combine the backward filtering and smoothing step to a single

backward smoothing pass. Both the forward filter pass and the backward smoothing pass

of the RTSSL-SPKS algorithm performs an order of O
(

NM3
)

computations in order to

generate the smoothed estimates. Another benefit of implementing the RTSSL-SPKS is

that it does not require the inverse of Af,k in order to compute the estimates, which can

be particularly significant if Af,k is singular or the inverse of Af,k leads to numerical

problems. On the downside, the RTSSL-SPKS needs more memory than the FBSL-SPKS

as it needs to save all the forward filter state predictions x̂−
k and the prediction error

covariances P−
k in addition to the state estimates x̂k and the estimation error covariances

Pk. The high memory requirement for the RTSSL-SPKS can pose significant burden

on a system, particularly for the case of large M and/or N . To address the problem

of offline estimation and higher storage requirement characterized by the fixed-interval

smoothers, we develop the nonlinear fixed-lag smoothers using the sigma-point Kalman

filtering methodology, which is described next.

2.4 Fixed-Lag Sigma-Point Kalman Smoothers (FL-SPKS)

Here we derive the formulations for fixed-lag smoothers operating on a nonlinear state

space. For a fixed-lag smoother, we estimate the state xk−L given observations up to time

k, z1:k. In other words, there exists a fixed time lag L between the current observation

and the smoothed state. The fixed-lag method provides sequential estimates of the states

delayed by L measurements, and is thus more appropriate to an on-line implementation

than the fixed-interval approach.

2.4.1 State-Augmented Sigma-Point Kalman Smoother (Aug-SPKS)

In the Aug-SPKS, the objective is to estimate the current state xk of dimension M using

all the past, present and L future measurements, where L is the fixed lag. Alternatively,

this may be viewed as estimating the lagged state xk−L given all measurements up to the
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current time k. The Aug-SPKS is specified by simply defining a new augmenting state

space,

x̃k+1 =

[

xk+1 xk · · · xk−L+1

]T

ML×1
(2.138)

=
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


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0
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














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(2.139)

zk = hk (xk) +nk, (2.140)

where the augmenting state x̃k is defined as

x̃k =

[

xk xk−1 · · · xk−L

]T

. (2.141)

The process noise vk shown in Equation (2.139) is of dimension M × 1. The standard

SPKF recursions shown in Section 2.3.2 are applied directly to the augmented system. The

fixed-lag estimate of the last element of the augmented state vector xk−L will be equal to

x̂k−L given measurements up to time k. As can be seen, the Aug-SPKS algorithm is simple

and straightforward to implement but the increased state dimension increases the overall

computational complexity of the algorithm. As the computational complexity of the SPKF

varies to the cubic rate of the augmented state dimension, the computational order of the

Aug-SPKS to generate each smoothed estimate becomes proportional to O
(

M3L3
)

. Note

that the computational load of the Aug-SPKS further increases to O
(

NM3L3
)

in order

to generate N smoothed estimates. The increased computational demand may pose a

challenge in implementing this smoother in practice, particularly in those cases involving

a large state dimension M . In addition to the higher computational demand, the Aug-

SPKS also requires larger memory at each k due to the generation of an augmented state

with length ML and an estimation-error covariance of dimension ML×ML. Still this is

an improvement compared to the FI-SPKS, which requires the entire forward estimation
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Figure 2.5: This schematic diagram explains the concept of the forward-backward fixed-
lag methodology. As shown, the forward filter and backward smoother operate within a
window of size L to generate state estimate x̂k−L delayed by L measurements. The win-
dow then slides one measurement to the right and the same forward-backward smoothing
operations are repeated to obtain x̂k−L+1.

results to be saved for the use of backward smoothing process. In the following sections,

we propose three different FL-SPKS algorithms, which rely on sequential smoothing rather

than state augmentation, to counter the disadvantages of Aug-SPKS.

2.4.2 Forward-Backward A Priori Sigma-Point Kalman Smoother (FB-

Priori-SPKS)

The FB-Priori-SPKS algorithm is motivated from the FL-FB-KS smoother, which is origi-

nally implemented by Simon for estimating smoothed states in a linear system [11]. Unlike

the Aug-SPKS, the FB-Priori-SPKS bypasses the state augmentation by estimating the

states sequentially within a sliding window. The FB-Priori-SPKS uses two-pass to gener-

ate smoothed states in a given time-window: a filter estimates states x̂k for k ∈ [j − L, j]

during the forward pass and then a smoothing pass operating backward in time from k = j

to k = j −L uses the forward pass results to obtain the final estimates. A new window is

formed for k ∈ [j − L+ 1, j + 1] by shifting forward the previous time-window and then

the same two-pass forward-backward process is repeated within the new window to obtain

smoothed states. For better understanding, the above procedure is shown in Figure 2.5.

We have extended Simon’s work, which formulates the fixed-lag sequential smoothing

equations using the standard linear state space, to derive the FB-Priori-SPKS [11]. The

equations of FB-Priori-SPKS uses a new form of SPKF. This form of the filter propagates

a priori state estimate and the corresponding estimation-error covariance. We employ a
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priori form of the KF operating on the statistically linearized state space to estimate the

smoothed states and the estimation-error covariances for the FB-Priori-SPKS. A priori

form of the KF is also easier and straightforward to implement than the SPKF.

We start with the state estimation and estimation error covariance equations for the

KF that is applied on the WSLR form of state space defined in Equations (2.28) and

(2.29)

xk = Af,k−1xk−1 + bf,k−1 +Gf,k−1vk−1 +Gf,k−1εf,k−1 (2.142)

zk = Ah,kxk + bh,k + nk + εh,k (2.143)

P−
k = Af,k−1Pk−1A

T
f,k−1 +Gf,k−1

(

Qk−1 + Pεf ,k−1

)

GT
f,k−1 (2.144)

Kk = P−
k A

T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
(2.145)

Pk = (I −KkAh,k)P
−
k (I −KkAh,k)

T +Kk (Rk + Pεh,k)K
T
k (2.146)

x̂−
k = Af,k−1x̂k−1 + bf,k−1 (2.147)

x̂k = x̂−
k +Kk

(

zk −Ah,kx̂
−
k − bh,k

)

, (2.148)

where a priori state x̂−
k and a priori covariance P −

k is estimated by taking into account

the measurements up to time k − 1. Now, define a new Kalman gain Lk, which is Af,k

times the standard Kalman gain Kk

Lk = Af,kKk. (2.149)

Substitute Kk from (2.145)

Lk = Af,kP
−
k A

T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
. (2.150)

Next, we derive the state and the error covariance equations for a priori KF that propagates

a priori state x̂−
k and covariance P−

k in order to obtain x̂−
k+1 and P−

k+1.

State propagation for a priori KF

Defining x̂−
k+1 in terms of x̂k

x̂−
k+1 = Af,kx̂k + bf,k. (2.151)
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Substituting x̂k from (2.148) into (2.151)

x̂−
k+1 = Af,k

(

x̂−
k +Kk

(

zk −Ah,kx̂
−
k − bh,k

))

+ bf,k

= Af,kx̂
−
k +Lk

(

zk −Ah,kx̂
−
k − bh,k

)

+ bf,k, (2.152)

where Lk is used from (2.150).

Covariance propagation for a priori KF

From Equation (2.146)

Pk = P−
k −KkAh,kP

−
k − P−

k A
T
h,kK

T
k +KkAh,kP

−
k A

T
h,kK

T
k +Kk (Rk + Pεh,k)K

T
k .

Substituting Kk from Equation (2.145) and simplifying

Pk = P−
k +

P−
k A

T
h,k

[

−
(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
−
(

Ah,kP
−
k A

T
h,k +Rk +Pεh,k

)−1
]

Ah,kP
−
k +

P−
k A

T
h,k

[

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
Ah,kP

−
k A

T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
]

Ah,kP
−
k +

P−
k A

T
h,k

[

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
(Rk + Pεh,k)

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
]

Ah,kP
−
k .

(2.153)

The above equation can further be simplified to form an expression for Pk

Pk = P−
k − P−

k A
T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
Ah,kP

−
k . (2.154)

Now define P−
k+1 in terms of Pk

P−
k+1 = Af,kPkA

T
f,k +Gf,k

(

Qk + Pεf ,k

)

GT
f,k. (2.155)

Substitute Pk from (2.154) and after further simplifying we obtain an expression for P −
k+1

in terms of P−
k

P−
k+1 = Af,k

[

P−
k − P−

k A
T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
Ah,kP

−
k

]

AT
f,k+

Gf,k

(

Qk + Pεf ,k

)

GT
f,k

= Af,kP
−
k (Af,k −LkAh,k)

T +Gf,k

(

Qk + Pεf ,k

)

GT
f,k. (2.156)
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Note, we derive an alternate form of the KF equations that provides an one-step solution

for propagating a priori state and a priori error covariance forward in time using the

WSLR form of the nonlinear system. In this respect, it is worth mentioning that both

the one-step a priori KF and the standard two-step KF with Equations (2.144)-(2.148)

generate identical estimates of the state and estimation-error covariances.

Combining Equations (2.152) and (2.156), a priori one-step formulation of the KF can

be summarized below:

x̂−
k+1 = Af,kx̂

−
k +Lk

(

zk −Ah,kx̂
−
k − bh,k

)

+ bf,k (2.157)

P−
k+1 = Af,kP

−
k (Af,k −LkAh,k)

T +Gf,k

(

Qk + Pεf ,k

)

GT
f,k, (2.158)

where the a priori gain Lk is defined as

Lk = Af,kKk

= Af,kP
−
k A

T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
. (2.159)

The a priori KF formulations shown above are then applied on the augmented statistically

linearized state space (Equations (2.28) and (2.29)) to derive the sequential two-pass

smoothing algorithm. In order to maintain continuity, the derivation is skipped here and

described in Appendix 2.8.
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FB-Priori-SPKS algorithm

The final equations of the FB-Priori-SPKS algorithm including the forward filter and the

backward smoother are demonstrated below:

• While j ≤ N

• Forward filter :

A priori Kalman filter defined in Equations (2.157)-(2.159) is applied on the statis-

tically linearized state space to obtain Lk, x̂
−
k and P−

k at each discrete time k.

– For k = j − L, j − L+ 1, . . . , j

Lk = Af,kP
−
k A

T
h,k

(

Ah,kP
−
k A

T
h,k +Rk + Pεh,k

)−1
(2.160)

x̂−
k+1 = Af,kx̂

−
k +Lk

(

zk −Ah,kx̂
−
k − bh,k

)

+ bf,k (2.161)

P−
k+1 = Af,kP

−
k (Af,k −LkAh,k)

T +Gf,k

(

Qk + Pεf ,k

)

GT
f,k, (2.162)

– End For

• Backward smoothing :

– Initialization:

x̂k+1,k = x̂−
k+1 (2.163)

Lk,0 = Lk (2.164)

P
0,0
k = P−

k . (2.165)

– Smoothing recursions:
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∗ For i = 1, 2, . . . , L+ 1

Lk,i = P
0,i−1
k AT

h,k

(

Ah,kP
0,0
k AT

h,k +Rk + Pεh,k

)−1
(2.166)

P
i,i
k+1 = P

i−1,i−1
k − P 0,i−1

k AT
h,kL

T
k,iA

T
f,k (2.167)

P
0,i
k+1 = P

0,i−1
k (Af,k −Lk,0Ah,k)

T (2.168)

x̂k+1−i,k = x̂k+2−i,k +Lk,i

(

zk −Ah,kx̂
−
k − bh,k

)

(2.169)

∗ End For

• Increment j by one: j = j + 1

• End While

Note, the FB-Priori-SPKS algorithm proposes a set of backward recursions, which loops

through for the period of entire lag L. For the first time through this loop (i = 1), we obtain

the standard measurement update of the KF. At the end of the loop (i = L+1), smoothed

estimates of each state with delays between 0 and L are computed using measurements

up to time k.

Although we have found that both the FB-Priori-SPKS and Aug-SPKS performs com-

parably in a number of state estimation examples, the FB-Priori-SPKS is more computa-

tionally efficient than the Aug-SPKS. The FB-Priori-SPKS performs O
(

LM3
)

computa-

tions within each sliding window in order to generate the smoothed estimate x̂k−L given

measurements z1:k. Recall that the Aug-SPKS requires a significantly higher order of

computation O
(

M3L3
)

in order to generate the smoothed estimate x̂k−L. Although the

generation of each estimate takes O
(

LM3
)

processing, the computational complexity of

the FB-Priori-SPKS increases to O
(

NLM3
)

in order to compute N smoothed estimates

using N sliding windows. The FB-Priori-SPKS is not only computationally superior,

it also requires less memory compared to the Aug-SPKS to save each estimated state

and estimation error covariance, which are of size M × 1 and M ×M respectively. One

disadvantage of the FB-Priori-SPKS is that the backward smoothing loop calculates L
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cross-estimation-error covariances P 0,i
k of dimension M ×M within each window, which

demands higher memory and also takes longer in computing the smoothed estimates. In

addition, the forward estimation results of each L sized window need to be saved for the

backward smoothing recursions to take place. In the next sections, we present a fixed-

lag version of the FBSL-SPKS and RTSSL-SPKS methods, which are more direct and

simple to implement while maintaining the same level of computational complexity and

performance of the FB-Priori-SPKS.

2.4.3 Forward-Backward Statistical Linearized Sigma-Point Kalman

Smoother (FBSL-SPKS)

In this section, we demonstrate how the FBSL-SPKS, derived in Section 2.3.2 for the

fixed-interval case, can be extended into the fixed-lag framework. Similar to the FB-

Priori-SPKS, the proposed FBSL-SPKS algorithm works in a sequential forward-backward

manner within a windowed set of L measurements, from k = j − L to k = j, where

the time index k constantly moves forward. The FBSL-SPKS performs in three steps,

which can be summarized as follows. A SPKF starts at k = j − L and operates forward

in time on the true dynamics until k = j to obtain posterior state estimates x̂k. An

information filter starts at k = j and then operates backward in time to k = j − L in

order to generate prior information states ŷ−k . Note that the backward filter works on a

statistically linearized dynamical space, the coefficients of which can be obtained from the

forward SPKF recursions by using the WSLR formulations. The estimates of the forward

and backward filters are then statistically combined at each time k to obtain the smoothed

estimates x̂s
k.



62

FBSL-SPKS algorithm

The pseudo code of the FBSL-SPKS algorithm combining the forward filter, the backward

filter and the smoother is described below:

• While j ≤ N

• Forward filter :

– For k = j − L, j − L+ 1, j − L+ 2, . . . , j − 1, j

The SPKF algorithm as demonstrated in Section 2.3.2 is used as a forward

filter to compute state estimates x̂k and estimation-error covariances Pk at

each discrete time k. Statistically linearized parameters Af,k, Ah,k, bf,k, bh,k,

Pεf ,k and Pεh,k are also derived at each k by applying the WSLR formulations

on the nonlinear state space.

– End For

• For k = j, j − 1, j − 2, . . . , j − L+ 1, j − L

– Backward filter :

∗ Time update:

S−
k = AT

f,k

(

I −Kb
k G

T
f,k

)

Sk+1Af,k (2.170)

ŷ−k = AT
f,k

(

I −Kb
k G

T
f,k

)

(ŷk+1 − Sk+1bf,k) (2.171)

∗ Measurement Update:

Sk = S−
k +AT

h,k (Rk + Pεh,k)
−1Ah,k (2.172)

ŷk = ŷ−k +AT
h,k (Rk + Pεh,k)

−1 (zk − bh,k) (2.173)
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– Smoother :

The smoothed estimates are obtained by combining the forward and the back-

ward estimates.

P s
k =

[

(Pk)
−1 + S−

k

]−1
(2.174)

x̂s
k =

(

I + PkS
−
k

)−1
x̂k + P s

k ŷ
−
k (2.175)

• End For

• Increment j by one: j = j + 1

• End While

As no state augmentation is required, the computational cost of implementing the FBSL-

SPKS to generate N smoothed estimates is of the same order as the FB-Priori-SPKS,

O
(

NLM3
)

, where N is the number of observations, M is the state dimension and L is

the lag. Like the FB-Priori-SPKS, each smoothed state and estimation error covariance

generated by the FBSL-SPKS are also of size M . However, unlike the FB-Priori-SPKS,

computation of cross estimation error covariances are no longer required. Comparing to

the fixed-interval version of the FBSL-SPKS, the forward estimation results are still need

to be saved in order to apply the backward filtering step. The major difference here is that

in the fixed-lag case, the smoother works within a windowed set of L states and hence only

L forward estimates are required to obtain the smoothed results. However, it inherits the

fundamental drawbacks of the fixed-interval FBSL-SPKS approach: the backward filtering

and the smoothing occurs in two separate steps and the backward filter needs the inverse

dynamics of the forward filter.

2.4.4 Rauch-Tung-Striebel Statistical Linearized Sigma-Point Kalman

Smoother (RTSSL-SPKS)

Similar to the FBSL-SPKS, the fixed-interval RTSSL-SPKS equations, detailed in Section

2.3.3, can be extended into the fixed-lag framework. The fixed-lag version of RTSSL-SPKS
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SPKS Computation Memory

Fixed-Interval SPKS
FBSL-SPKS O

(

NM3
)

(x̂k,Pk) ∈ R
M , ∀k ∈ [1, N ]

RTSSL-SPKS O
(

NM3
)

(

x̂k,Pk, x̂
−
k ,P

−
k

)

∈ R
M , ∀k ∈ [1, N ]

Fixed-Lag SPKS

Aug-SPKS O
(

NL3M3
)

(x̂k,Pk) ∈ R
ML

FB-Priori-SPKS O
(

NLM3
)

(

x̂k,Pk,P
i,j
k i 6= j

)

∈ R
M , ∀k ∈ [1, L]

FBSL-SPKS O
(

NLM3
)

(x̂k,Pk) ∈ R
M , ∀k ∈ [1, L]

RTSSL-SPKS O
(

NLM3
)

(

x̂k,Pk, x̂
−
k ,P

−
k

)

∈ R
M , ∀k ∈ [1, L]

Table 2.1: Performance comparison of the proposed SPKS in terms of computation and
memory.

works within a windowed set of L measurements between time k = j −L and k = j using

a forward and a backward pass:

1. A standard SPKF is used as a forward filter, which at each k estimates a priori state

x̂−
k , a posteriori state x̂k and their respective error covariances by operating on the

true nonlinear dynamics.

2. A backward RTS smoothing pass is then followed on the forward filtering results

to generate x̂s
k by linearly combining the forward estimates with a correction term

governed by a smoothing gain. Note, the smoothing gain is a function of the sta-

tistically linearized process model, forward estimation error covariance and forward

prediction covariance. The correction term is equal to the difference between the

future smoothed state x̂s
k+1 and a priori state x̂−

k+1 at time k + 1.

The time index k continuously moves forward to accommodate new measurements and

the RTSSL-SPKS equations are applied on each L windowed segment to determine the

smoothed estimates.
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RTSSL-SPKS algorithm

The final equations of the RTSSL-SPKS algorithm including the forward filter and the

backward smoother are described below:

• While j ≤ N

• Forward filter :

– For k = j − L, j − L+ 1, j − L+ 2, . . . , j − 1, j

The SPKF algorithm with WSLR as defined in Section 2.3.2 is applied for

k = 1, 2, . . . , N . In addition to computing the estimates x̂k and the error

covariances Pk, the forward pass also saves the intermediate results including

the state prediction x̂−
k and the prediction error covariance P −

k at each time k.

The statistically linearized parameters Af,k, Ah,k, bf,k, bh,k, Pεf ,k and Pεh,k

are also generated at each SPKF recursion using the WSLR technique on the

nonlinear state space.

– End For

• Backward smoothing :

– For k = j, j − 1, j − 2, . . . , j − L+ 1, j − L

∗ Error covariance smoothing :

Dk = PkA
T
f,k

(

P−
k+1

)−1
(2.176)

P s
k = Pk −Dk

(

P−
k+1 − P s

k+1

)

DT
k (2.177)

∗ State estimate smoothing :

x̂s
k = x̂k +Dk

(

x̂s
k+1 − x̂−

k+1

)

(2.178)
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– End For

• Increment j by one: j = j + 1

• End While

The computational complexity of RTSSL-SPKS to estimate N smoothed states is of the

same order as the FB-Priori-SPKS and the FBSL-SPKS, O
(

NLM3
)

, where N is the

number of observations, M is the state dimension and L is the lag. In the RTSSL-

SPKS, the backward filtering and the smoothing are combined to a single step and hence

it avoids an additional O
(

NLM3
)

computations for performing a separate smoothing

step. However, it needs to save L forward predictions with L forward estimates for the

backward smoothing step which makes the RTSSL-SPKS slightly more memory intensive

than the FBSL-SPKS. As only L forward estimates are required compared to N estimates

to perform the backward smoothing, the fixed-lag RTSSL-SPKS requires considerably less

memory than the fixed-interval case. Table 2.1 compares the computational complexity

and memory of all the proposed fixed-interval and fixed-lag smoothers.

2.5 Numerical Simulations

We evaluate all our fixed-interval and fixed-lag smoother algorithms in the following sce-

narios:

1. Estimation of an underlying clean Mackey-Glass chaotic time series corrupted by an

additive white Gaussian noise.

2. Tracking a space vehicle when it re-enters into the earth’s atmosphere at a high

altitude and with a high speed.

These two examples were used to demonstrate the performances of previously proposed

sigma point smoothers, namely the FBNL-SPKS [17, 26] and URTSS [32] and hence is

chosen in this dissertation in order to facilitate comparison among our methodologies. In
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Figure 2.6: Performance comparison between the FI-SPKS and the SPKF using the
Mackey-Glass chaotic time series. (a): Clean and noisy time series. (b): Estimated
time series.

addition to comparing various SPKS methodologies, we also evaluate our smoothers versus

the EKF, EKS and SPKF.

2.5.1 Problem Description and State Space Representation

Mackey-Glass clean time series estimation

In this example, the objective is to estimate the clean Mackey-Glass-30 chaotic time series

which is corrupted by an additive white Gaussian noise (SNR = 0db). This example
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Figure 2.7: Performance comparison between the FI-SPKS and the SPKF using the
Mackey-Glass chaotic time series. This plot zooms in on a section of the estimated time
series shown in Figure 2.6(b) to demonstrate how accurately the SPKS tracks the ground
truth.

was used to demonstrate the superior performance of FBNL-SPKS over the traditional

SPKF [26]. The Mackey-Glass time series is generated by the following continuous time

differential Equation [26]

dx(t)

dt
= −0.1x(t) +

0.2x(t− 3)

1 + x(t− 30)10
(2.179)

where t is the continuous time index and x(t) is the time series amplitude at time t. The

discrete time version of the clean time series is modeled as a nonlinear autoregressive

process [17], which is shown below:

xk = f (xk−1, xk−2, . . . , xk−M ;w) + vk [in this example, M = 6] (2.180)

The parameterized model f is approximated by training a 6-5-1 (input-hidden-output)

nodes feed-forward neural network on the clean time series. The optimum number of

hidden nodes is chosen by minimizing the modeling error using a ten fold cross validation

technique. w denotes the neural net weights and biases after learning. The modeling

error vk is assumed to have zero mean and covariance σ2
v , which is computed after the

convergence of the neural net weights. White Gaussian noise is added with the clean

time series to obtain SNR = 0db. The noise corrupted time series zk at each time k are
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Figure 2.8: (a): Performance evaluation of the FI-SPKS in terms of MSE for the Mackey-
Glass time series estimation problem. (b): This plot exemplifies a single run where the
SPKF generates a large spike in the MSE, whereas the SPKS is able to keep the estimation
error at the lower level. MSE is calculated between the estimates and the original clean
time series by averaging over 200 randomly initialized Monte-Carlo (MC) runs. As proved
from the MSE results, the RTSSL-SPKS generates more accurate estimates than the
SPKF.

considered as measurements and fed into the estimator. The M element state vector is

denoted as xk =

[

xk−1 xk−2 . . . xk−M

]

and nk is the measurement noise. The state
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Figure 2.9: Performance comparison between the FL-SPKS (L = 10) and the SPKF using
the Mackey-Glass chaotic time series. (a): Estimated time series with the ground truth.
(b): This plot zooms in on a section of the estimated time series.

space configuration of the above problem is defined as:

xk+1 = f (xk;w) +Gf,kvk (2.181)

zk = Hkxk + nk, (2.182)

which can be expanded as
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Figure 2.10: Performance evaluation of the FL-SPKS (L = 10) in terms of MSE for the
Mackey-Glass time series estimation problem. MSE is computed between the estimates
and the clean time series by averaging over 200 randomly initialized MC runs. The per-
formance advantage of the RTSSL-SPKS over SPKF is clearly shown.
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Figure 2.11: True vehicle trajectory. The solid line is the vehicle trajectory and the dashed
line is the earth’s surface. The radar is placed at ’o’.
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(a) ‘x’ position error
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Figure 2.12: Performance comparison between the FI-SPKS and the SPKF on vehicle re-
entry tracking example. (a) and (b): MSE and estimation-error covariances for 2D vehicle
position xk and yk. MSE is calculated between the estimates and the ground truths by
averaging over 200 randomly initialized MC runs. The MSE results clearly demonstrate
that the RTSSL-SPKS is more accurate in vehicle position estimation than the standard
SPKF.

• Observation Model :

zk =

[

1 0 . . . 0

]

xk + nk. (2.184)

Note that the process model is nonlinear while the observation model is linear.
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(a) ‘x’ velocity error
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(b) ‘y’ velocity error

Figure 2.13: Performance comparison between the FI-SPKS (N = 2000) and the SPKF
on vehicle re-entry tracking example. (a) and (b): MSE and estimation-error covariances
for 2D velocity of the vehicle vxk

and vyk
. MSE is calculated between the estimates and

the ground truths by averaging over 200 randomly initialized MC runs. It is evident from
the plots that the RTSSL-SPKS generates lower MSE than the SPKF for vehicle velocity
estimation.

Vehicle Re-entry Tracking

In this case, the task involves to track a space vehicle that re-enters into the earth’s atmo-

sphere at a high altitude and with a significantly large velocity. A radar stationed on the

earth is used to measure the range and the bearing of the vehicle. This tracking problem

is regarded as particularly challenging for a state estimator because the entering vehicle is
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under the influence of strong nonlinear forces such as aerodynamic drag and earth’s grav-

ity [37–39]. In addition, a poor knowledge of initial vehicle state and unknown properties

of the aerodynamic forces make the problem even more challenging. The aerodynamic

drag is a function of the vehicle’s velocity and varies exponentially with the altitude. The

earth’s gravitational force pulls the vehicle toward its center and its magnitude possesses

a nonlinear relationship with the position of the vehicle. Julier et al. have successfully

employed the Unscented Kalman filter (UKF) in order to estimate the vehicle’s state [23].

They have also shown that the UKF can provide a significantly better estimate than the

EKF.

The vehicle’s state (xk) consists of its 2D position (xk and yk), 2D velocity (vxk
and

vyk
) and a scaler parameter of aerodynamic drag (dk). The vehicle state dynamics can be

shown as [23]:

• Dynamical Model :

xk+1 = xk + δTvxk
(2.185)

yk+1 = yk + δTvyk
(2.186)

vxk+1
=
(

1 + δTDdr
k

)

vxk
+ δTG

g
kxk + vpx,k

(2.187)

vyk+1
=
(

1 + δTDdr
k

)

vyk
+ δTG

g
kyk + vpy,k

(2.188)

dk+1 = dk + vpd,k
(2.189)

where Ddr
k and G

g
k are the aerodynamic drag related force term and the gravity

related force term respectively at each discrete time k. All these forces are highly

nonlinear and can be defined as:

Ddr
k = −βkexp

[

R0 −Rk

H0

]

Vk (2.190)

G
g
k = − Gm0

(R0 −Rk)
3 , (2.191)



75

0 20 40 60 80 100 120 140 160 180 200
10−8

10−6

10−4

10−2
Mean squared error and variance of x

Po
sit

io
n 

V
ar

ia
nc

e 
(K

m2 )

Time (s)

 

 SPKS MSE
SPKF MSE
SPKF Est Cov
SPKS Est Cov

(a) ‘x’ position error
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Figure 2.14: Performance comparison between the FL-SPKS (lag L = 10) and the SPKF
on vehicle re-entry tracking example. (a) and (b): MSE and estimation-error covariances
for 2D vehicle position xk and yk. MSE is calculated between the estimates and the ground
truths by averaging over 200 randomly initialized MC runs. From the figures, the superior
performance of FL-SPKS over the SPKF can be observed.

where

βk = β0exp (dk) (2.192)

Rk = Distance between the vehicle and the center of the earth

=
√

x2
k + y2

k (2.193)

Vk = Magnitude of the vehicle’s velocity

=
√

v2
xk

+ v2
yk
. (2.194)
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(a) ‘x’ velocity error
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Figure 2.15: Performance comparison between the FL-SPKS (lag L = 10) and the SPKF
on vehicle re-entry tracking example. (a) and (b): MSE and estimation-error covariances
for 2D velocity of the vehicle vxk

and vyk
. MSE is calculated between the estimates and the

ground truths by averaging over 200 randomly initialized MC runs. As seen, the fixed-lag
RTSSL-SPKS generates more accurate estimates than the SPKF.

The “ballistic coefficient” βk represents the uncertainty in vehicle characteristics.

The magnitudes of the typical vehicle and the earth parameters (β0, R0, H0 and

Gm0), the process noise parameters (vpk
) and the state initialization are taken

from [23]. The discrete state dynamics is formed by applying the Euler approxi-

mation on the continuous vehicle dynamics. Due to large nonlinearities, the Euler

integration step δT is chosen to be small i.e. 50ms.
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• Observation Model :

rk =
√

(x1,k − xr)
2 + (x2,k − yr)

2 + n1,k (2.195)

θk = arctan

(

x2,k − yr
x1,k − xr

)

+ n2,k, (2.196)

where the measurement zk =

[

rk θk

]

consists of both range and bearing. A

radar, which is stationed on the earth surface at xr and yr, observes the range and

bearing at a sampling rate of 10Hz. As can be noted, the state predictions are

made at a higher rate (2 predictions per update) than the observation update. The

observation noise nk is uncorrelated zero mean white, with variances of 1m and

17mrd for the range and bearing respectively [23].

2.5.2 Experimental results

In each of the above two experiments, we show simulation results comparing our proposed

SPKS approaches with the EKF, EKS, FBNL-SPKS and URTSS in terms of mean of

(MSE) and standard deviation ((std)) of MSE for a Monte-Carlo (MC) run of 200 ran-

domly initialized experiments. For each MC run, a different realization of both process

and observation noises is generated. The MSE between the true and estimates is calcu-

lated by ensemble averaging over all 200 MC runs, which is then plotted with time. Note,

the MSE is computed after the estimators have converged.

Mackey-Glass clean time series estimation

The clean and noisy Mackey-Glass time series is shown in Figure 2.6(a). Figure 2.6(b)-

2.7 compares the FI-SPKS estimates with the ground truth. Figure 2.7 zooms in a section

of Figure 2.6(b) in order to demonstrate how closely the FI-SPKS estimates follow the

true time series. As the estimation accuracy of both the FBSL-SPKS and RTSSL-SPKS

is found similar for this case, only the RTSSL-SPKS estimates are shown in the figures.

Estimates obtained from the standard SPKF are also plotted on the same graph. As

is clearly visible from the figures, the FI-SPKS estimates are closer to the true time

series than the SPKF estimates. Figure 2.8(a) shows the MSE between the true and the
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(a) ‘x’ position error
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Figure 2.16: Tracking performance of the FL-SPKS algorithm for a lag L = 40. (a) and
(b): MSE and estimation-error covariances for 2D vehicle position xk and yk. The above
graphs demonstrate that the improvement of estimation accuracy for the FL-SPKS is
related to the increasing lag L (higher L is proportional to the greater number of future
measurements incorporated for the state estimation calculation). Comparing the above
results with the performance of FI-SPKS, it is evident that they both generate similar
level of tracking accuracy.

SPKF/RTSSL-SPKS estimated time series. It is clearly evident that the magnitude of the

SPKS errors are smaller than those of the SPKFs. Figure 2.8(b) displays a specific run,

where the SPKF produced a large spike in the MSE while the SPKS kept the estimation-

error at the lower level.

Figure 2.9(a)- 2.10 demonstrate the performance accuracy of the FL-SPKS over the
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(a) ‘x’ velocity error
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Figure 2.17: Tracking performance of the FL-SPKS algorithm for a lag L = 40. (a) and
(b): MSE and estimation-error covariances for 2D vehicle velocity vxk

and vyk
. As we

increase the value of L, the tracking accuracy of the FL-SPKS becomes similar with that
of the FI-SPKS.

SPKF. The superior accuracy of the FL-SPKS methods is clearly depicted. Note, the

number of lagged states used in this example are L = 10. Considering that the Mackey-

Glass-30 chaotic time series was sampled at every 6 s, the smoothed state estimate lags

behind the current observation by 1min. The lag L = 10 is chosen because we have found

that the FL-SPKS obtains similar estimation accuracy with the FI-SPKS at this lag value.

In other words, the performance of an offline fixed-interval smoother which works on a fixed

set of predefined measurements, can be mimicked by a fixed-lag smoother with a much
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Estimator E(MSE) std(MSE)

Filter
EKF 1.20 0.252
SPKF 0.236 0.054
Fixed-Interval Smoother
EKS 0.725 0.184
FBNL-SPKS 0.106 0.025
URTSS 0.099 0.024
FBSL-SPKS 0.098 0.021
RTSSL-SPKS 0.098 0.021
Fixed-Lag Smoother

Aug-SPKS (L = 10) 0.120 0.025
FB-Priori-SPKS (L = 10) 0.121 0.024
FBSL-SPKS (L = 10) 0.120 0.024
RTSSL-SPKS (L = 10) 0.120 0.023
Aug-SPKS (L = 30) 0.101 0.021
FB-Priori-SPKS (L = 30) 0.101 0.022
FBSL-SPKS (L = 30) 0.101 0.021
RTSSL-SPKS (L = 30) 0.101 0.021

Table 2.2: Performance comparison of different estimators for the Mackey-Glass time
series estimation problem. The mean of MSE (E(MSE)) and standard deviation of MSE
(std(MSE)) are computed by averaging over 200 independent MC runs.

smaller set of measurements. The RTSSL-SPKS estimates are only plotted here as all the

fixed-lag algorithms, including the Aug-SPKS, FB-Priori-SPKS, FBSL-SPKS and RTSSL-

SPKS, perform comparably. The RTSSL-SPKS algorithm is given preference due to its

superior computational efficiency and numerical advantage as described in Section 2.4.4.

For example at L = 10, the Aug-SPKS performs ∼86,620 floating point operations at

time k to estimate x̂s
k. However, the fixed-lag RTSSL-SPKS algorithm requires only

∼2380 floating point computations in order to generate the smoothed estimate at time k.

The performance of different estimators is summarized in Table 2.2. The performance

of our proposed smoothers are shown in bold. As is evident from the table, the extended

Kalman smoother (EKS) not only has a worse MSE performance but the standard devi-

ation of the MSE is also higher than the SPKS. The table further demonstrates that our

proposed fixed-interval and fixed-lag smoothers perform comparably with the other exist-

ing SPKF smoothing methodologies. In contrast to the FBNL-SPKS, our proposed SPKS
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Estimator E(MSE)x std(MSE)x E(MSE)vx std(MSE)vx

Filter
EKF 5.95e-5 0.0023 1.58e-4 0.0034
SPKF 5.88e-5 0.0015 1.54e-4 0.0022
Fixed-Interval Smoother
EKS N/A N/A N/A N/A
FBNL-SPKS 1.56e-5 0.0006 4.01e-5 0.0009
URTSS 1.57e-5 0.0006 4.01e-5 0.0009
FBSL-SPKS 1.56e-5 0.0006 4.00e-5 0.0009
RTSSL-SPKS 1.56e-5 0.0006 4.00e-5 0.0009
Fixed-Lag Smoother

Aug-SPKS (L = 10) 1.90e-5 0.0010 5.36e-5 0.0014
FB-Priori-SPKS (L = 10) 1.89e-5 0.0010 5.34e-5 0.0014
FBSL-SPKS (L = 10) 1.89e-5 0.0009 5.34e-5 0.0014
RTSSL-SPKS (L = 10) 1.89e-5 0.0009 5.34e-5 0.0014
Aug-SPKS (L = 40) 1.63e-5 0.0007 4.03e-5 0.0011
FB-Priori-SPKS (L = 40) 1.63e-5 0.0007 4.03e-5 0.0011
FBSL-SPKS (L = 40) 1.63e-5 0.0007 4.03e-5 0.0010
RTSSL-SPKS (L = 40) 1.63e-5 0.0007 4.03e-5 0.0010

Table 2.3: Performance comparison of different estimators for the vehicle re-entry tracking
example. The mean of MSE (E(MSE)) and standard deviation of MSE (std(MSE)) are
computed by averaging over 200 independent MC runs.

methods avoid the time consuming process of learning a nonlinear backward dynamic

model. Our proposed SPKS methods are more computationally and memory efficient

than the URTSS, which increases each state dimension by doubling the state space. Ta-

ble 2.2 also illustrates the estimation performance of the FL-SPKS for two different lag

values, i.e. L = 10 and L = 30. The results demonstrate that the MSE of the FL-SPKS

decreases and tends toward the FI-SPKS as we increase the lag value. However the down-

side is increasing computational complexity and the greater time delay between the current

observation and the smoothed estimate. For example, shifting from L = 10 to L = 30 not

only increases the time delay from 1min to 3min but also increases the number of floating

point operations at time k from 2380 to 7140 for the fixed-lag RTSSL-SPKS estimator.

However at L = 30, the computational complexity of the Aug-SPKS smoother, which

performs state augmentation in order to perform smoothing, increases exponentially from

86,620 to 20,74,260 floating point operations in order to estimate x̂s
k.
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Vehicle Re-entry Tracking

Figure 2.11 displays the true vehicle re-entry path. As seen, when the vehicle moves closer

to the earth’s surface, its ballistic trajectory almost becomes vertical due to the increased

aerodynamic drag and gravity. The performance of the SPKF and FI-SPKS in tracking

the 2D position and velocity of the vehicle is depicted in Figure 2.12(a)- 2.13(b). These

figures plot the estimated covariance (trace of estimation-error covariance matrix) against

actual MSE between the true and estimated vehicle trajectory. Results are displayed

in the same format as presented in [23] in order to demonstrate the filter consistency.

While both the FBSL-SPKS and RTSSL-SPKS are applied to compute estimates, the

tracking performance of the RTSSL-SPKS is only shown here. Note, the perfect alignment

of MSE with its corresponding estimated covariance indicates that both the SPKS and

SPKF generate consistent estimates. As is clearly visible from the figures, the FI-SPKS

outperforms the SPKF for both position and velocity estimation in terms of lower MSE

and lower estimated covariance.

Figure 2.14(a)- 2.15(b) demonstrate the performance accuracy of the FL-SPKS over

the SPKF. The superior accuracy of the FL-SPKS methods for tracking a re-entry vehicle

is clearly depicted. As before, all our proposed FL-SPKS algorithms perform comparably,

and hence only the RTSSL-SPKS estimates are shown here. Note, the number of lagged

states used in this example are L = 10. As the radar range and bearing measurements are

observed at every 100ms, the smoothed state estimate lags behind the current observation

by 1 second. Comparing with the FI-SPKS estimates, the FL-SPKS generates slightly

higher MSE, particularly during the initial period. The initial MSE spike for the FL-

SPKS case is clearly visible in case of velocity estimation (Figure 2.15(a) and 2.15(b)).

When increasing the lag from L = 10 to L = 40, (i.e. increase of time delay from 1 s to

4 s between the smoothed state and the current measurement), the FL-SPKS produces

almost equal estimates with the FI-SPKS. The accuracy of the FL-SPKS estimates with

state lag L = 40 is shown in Figure 2.16(a)-2.17(b).

Table 2.3 compares the performance of different estimators. As before, our proposed

estimators are shown in bold. Note that the EKS estimates are not available. This
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is because the estimation-error covariance matrix became severely ill-conditioned while

tracking, and hence the covariance inversion was not possible. Similar to the Mackey-

Glass experiment, all the different SPKS filters perform comparably in this case. Only the

results for x (x-component of position) and vx (x-component of velocity) are shown in the

table as the estimation performance for y (y-component of position) and vy (y-component

of velocity) are found to be comparable.

2.6 Discussion

In this chapter, we propose new fixed-interval and fixed-lag smoothing algorithms for the

nonlinear state-space model. At the core of all the proposed smoothers lies the sigma-

point Kalman filtering based Bayesian inference algorithm. Both the FI-SPKS and the

FL-SPKS smoother equations are derived from the first principles and detailed step by

step mathematical formulations are provided.

The FI-SPKS consists of two smoothers, namely the FBSL-SPKS and the RTSSL-

SPKS, which make use of the forward-backward and the RTS methods respectively to

derive its formulation. Both the FBSL-SPKS and the RTSSL-SPKS are only suitable

for the offline estimation as they generally operate on a fixed set of measurements. The

FBSL-SPKS consists of three components: a forward filter, a separate backward filter and

a smoother. The forward filter is the SPKF, which operates on the original nonlinear

state space from k = 1 to k = N to derive the forward estimates. In addition to the state

estimates, the forward filter also derives the WSLR coefficients at each k in order to form

a statistically linearized state space. The backward filter is an information filter, which

computes state estimates by operating from k = N to k = 1 using the pseudo-linearized

state space. The estimates of the two filters are then statistically combined to generate the

smoothed estimates. The disadvantages of the FBSL-SPKS include higher computational

complexity, i.e. O
(

NM3
)

for each component, and the need for greater memory as the

entire forward estimation results need to be saved for the future use. In addition, the

backward filter implicitly assumes that the inverse of the forward dynamical model exists.

Although computationally inefficient, the FBSL-SPKS algorithm can be appealing to the
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practitioners because it is conceptually simpler, easier to understand and perhaps the

most straightforward smoothing algorithm. Moreover the availability of the independent

backward estimates using the future observations, can generate interests for implementing

the FBSL-SPKS in certain applications.

The RTSSL-SPKS follows the Rauch-Tung-Striebel approach, which is made of two

components: a forward filter and a backward smoother algorithm which incorporates both

the backward filter and the smoother. The forward filter is the standard SPKF, which

in addition to generating the state estimates and the estimation error covariances also

computes the statistical linearization parameters for the nonlinear dynamic model. The

backward smoothing pass linearly combines a correction term with the forward filtering

results at each k to obtain the final smoothed states. Comparing to the FBSL-SPKS, we

have found an almost identical estimation accuracy for the RTSSL-SPKS but the biggest

advantage of the RTSSL-SPKS is that it is computationally cheaper to implement. As

it avoids running an independent backward filter, its implementation saves an order of

O
(

NM3
)

computations. The absence of a separate backward filter also eliminates the

need for computing the inverse of the forward dynamic model, which in effect avoids the

numerical problem in case the state dynamics is non-invertible. One drawback of the

RTSSL-SPKS algorithm is that it needs more memory than the FBSL-SPKS as both

the prior and the posterior state estimates of the forward filter are required to perform

smoothing. The higher computational efficiency and the numerical advantage should make

the RTSSL-SPKS as an attractive choice for the SPKS based nonlinear fixed-interval

smoothing.

In practice, the demand for larger memory may pose a hinderance in implementing

the FI-SPKS. Moreover, the fixed-interval method is an offline estimator, which does not

collect new observations while performing the smoothing operation. In contrast, the es-

timated state in the FL-SPKS lags behind the current measurement by L time, where

the time-delay L is an application specific constant. The Aug-SPKS algorithm is the

most simplistic representation of the FL-SPKS, where an augmented state combining the

current and the L past states is simultaneously estimated at each time k. The compu-

tational complexity i.e. O
(

NM3L3
)

and the size of each state dimension i.e. ML are
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too prohibitive to implement this smoother in practice. In order to overcome the draw-

backs of the Aug-SPKS algorithm, we have proposed three FL-SPKS algorithms, namely

the FB-Priori-SPKS, FBSL-SPKS and RTSSL-SPKS, which perform a series of sequential

smoothing within overlapping time-windows. All the three FL-SPKS methods reduce the

computational order to O
(

NLM3
)

and also the estimated state dimension to M . The

fixed-lag FBSL-SPKS and the RTSSL-SPKS both leverage the benefits and the drawbacks

of their fixed-interval counterparts and we can conclude that the RTSSL-SPKS is the most

efficient in terms of computation among all the FL-SPKS methods.

The performance of both our fixed-interval and fixed-lag smoothing formulations have

been demonstrated in two examples, i.e. Mackey Glass time series estimation and vehi-

cle re-entry tracking, and were also compared with the other methodologies in terms of

estimation accuracy. As can be seen, the proposed SPKS algorithms clearly outperform

the EKF/EKS/SPKF based approaches and also perform comparably with the existing

fixed-interval SPKF based smoothers which are time consuming to learn and also bears

much higher computational load.
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2.7 Appendix 1

Lemma 2.7.1. if A = B−1 +CD−1CT , where A, D are invertible square matrices and

B and C matrices may or may not be square. Then by applying matrix inversion Lemma

we obtain,

A−1 = B −BC
[

D +CTBC
]−1

CTB (2.197)

Lemma 2.7.2. • P b
k = (I −KkAh,k)P

b−
k (I −KkAh,k)

T +Kk (Rk + Pεh,k)K
T
k

• Kk = P b−
k AT

h,k

(

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)−1

Proof:

Let δx,k denote as the state estimation error at time index k

δx,k = xb
k − x̂b

k

= xb
k − x̂b−

k −Kk

(

zk −Ah,kx̂
b−
k − bh,k

)

=
(

xb
k − x̂b−

k

)

−Kk

(

Ah,kx
b
k + bh,k +nk + εh,k −Ah,kx̂

b−
k − bh,k

)

[from(2.29)]

= (I −KkAh,k)
(

xb
k − x̂b−

k

)

−Kk (nk + εh,k) (2.198)

The estimation error covariance can be defined as:

P b
k = E

(

δx,kδ
T
x,k

)

= E
(

(I −KkAh,k)
(

xb
k − x̂b−

k

)

−Kk (nk + εh,k)
)

(

(I −KkAh,k)
(

xb
k − x̂b−

k

)

−Kk (nk + εh,k)
)T

(2.199)

= (I −KkAh,k)P
b−
k (I −KkAh,k)

T +Kk (Rk + Pεh,k)K
T
k (2.200)

Here it is assumed that expected values of nk and εh,k are zero. Now the objective

is to derive the gain function Kk by minimizing the estimation error P b
k i.e. by setting

∂Pb
k

∂Kk
= 0.

∂P b
k

∂Kk
= 2 (I −KkAh,k)P

b−
k

(

−AT
h,k

)

+ 2Kk (Rk +Pεh,k)

= 0 (2.201)

Hence we get,

Kk

(

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)

= P b−
k AT

h,k

Kk = P b−
k AT

h,k

(

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)−1
(2.202)
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Lemma 2.7.3. • Kk = P b
k A

T
h,k (Rk + Pεh,k)

−1

Proof:

Starting with Equation (2.202) and multiplying I = P b
k

(

P b
k

)−1
on the right hand side,

Kk = P b
k

(

P b
k

)−1
P b−

k AT
h,k

(

Rk +Pεh,k +Ah,kP
b−
k AT

h,k

)−1
(2.203)

Substituting
(

P b
k

)−1
from (2.79) and simplifying,

Kk = P b
k

(

AT
h,k +AT

h,k (Rk + Pεh,k)
−1Ah,kP

b−
k AT

h,k

) (

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)−1

= P b
k A

T
h,k (Rk + Pεh,k)

−1
(

(Rk + Pεh,k) +Ah,kP
b−
k AT

h,k

) (

Rk + Pεh,k +Ah,kP
b−
k AT

h,k

)−1

= P b
k A

T
h,k (Rk + Pεh,k)

−1 (2.204)

Lemma 2.7.4. • P b
k+1 =

[

(

P s
k+1

)−1
−
(

P−
k+1

)−1
]−1

Proof:

Similar to (2.79) we can also get the covariance update for the forward filter using the

statistically linearized parameters,

Pk+1 =

[

(

P−
k+1

)−1
+AT

h,k+1 (Rk+1 + Pεh,k+1)
−1Ah,k+1

]−1

AT
h,k+1 (Rk+1 + Pεh,k+1)

−1Ah,k+1 = (Pk+1)
−1 −

(

P−
k+1

)−1
(2.205)

Substituting (2.205) into (2.79) and replacing k = k + 1,

P b
k+1 =

[

(

P b−
k+1

)−1
+ (Pk+1)

−1 −
(

P−
k+1

)−1
]−1

=

[

(

P s
k+1

)−1 −
(

P−
k+1

)−1
]−1

[from (2.90)] (2.206)

Lemma 2.7.5. • A−1
f,kQ́kA

−T
f,k = A−1

f,kP
−
k+1A

−T
f,k − Pk

Proof:

P−
k+1 = Af,kPkA

T
f,k +Gf,k

(

Pεf ,k +Qk

)

GT
f,k (2.207)

Assuming Q́k = Gf,k

(

Pεf ,k +Qk

)

GT
f,k

Q́k = P−
k+1 −Af,kPkA

T
f,k

A−1
f,kQ́kA

−T
f,k = A−1

f,kP
−
k+1A

−T
f,k − Pk (2.208)
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Lemma 2.7.6. • P b
k+1 =

(

P−
k+1 +P b

k+1

)

S−
k+1P

s
k+1

Proof:

From (2.90),

P b
k+1 = P s

k+1

[

I + P b
k+1

(

P−
k+1

)−1
]

= P−
k+1

(

P−
k+1

)−1
P s

k+1 +P b
k+1

(

P−
k+1

)−1
P s

k+1

=
(

P−
k+1 + P b

k+1

)

S−
k+1P

s
k+1 (2.209)

Lemma 2.7.7. • P−
k+1 + P b

k+1 = Af,k

(

Pk + P b−
k

)

AT
f,k

Proof:

Pk and P b−
k can be obtained from Lemma 2.7.5 and (2.67) respectively. Adding them,

Pk + P b−
k = A−1

f,k

(

P−
k+1 + P b

k+1

)

A−T
f,k

P−
k+1 + P b

k+1 = Af,k

(

Pk + P b−
k

)

AT
f,k (2.210)

Lemma 2.7.8. • x̂s
k+1 = P s

k+1Sk+1x̂
−
k+1 − P s

k+1A
T
h,k+1Ŕ

−1
k+1Ah,k+1x̂

−
k+1 +P s

k+1ŷk+1

Proof:

Assuming Rk+1 + Pεh,k+1 = Ŕk+1 and źk+1 = zk+1 − bh,k+1,

x̂k+1 = x̂−
k+1 +Kk+1

(

źk+1 −Ah,k+1x̂
−
k+1

)

(2.211)

Substituting (2.211) and (2.81) into the relevant portions of (2.94),

x̂s
k+1 = P s

k+1Sk+1x̂
−
k+1 + P s

k+1Sk+1Kk+1

(

źk+1 −Ah,k+1x̂
−
k+1

)

+ P s
k+1ŷk+1 − P s

k+1A
T
h,k+1Ŕ

−1
k+1źk+1 (2.212)

Replacing Kk+1 = Pk+1A
T
h,k+1Ŕ

−1
k+1 into (2.212) and simplifying we obtain,

x̂s
k+1 = P s

k+1Sk+1x̂
−
k+1 − P s

k+1A
T
h,k+1Ŕ

−1
k+1Ah,k+1x̂

−
k+1 + P s

k+1ŷk+1 (2.213)

Lemma 2.7.9. • S−
k = AT

f,k

[

Q́−1
k − Q́−1

k

(

Sk+1 + Q́−1
k

)−1
Q́−1

k

]

Af,k

Proof:

From (2.67),

S−
k = AT

f,k

(

S−1
k+1 +Gf,k

(

Pεf ,k +Qk

)

GT
f,k

)−1
Af,k (2.214)
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Applying matrix inversion Lemma on (2.214) and substituting

Q́k = Gf,k

(

Pεf ,k +Qk

)

GT
f,k, (2.215)

we obtain,

S−
k = AT

f,k

[

Q́−1
k − Q́−1

k

(

Sk+1 + Q́−1
k

)−1
Q́−1

k

]

Af,k (2.216)

Lemma 2.7.10. • x̂k = A−1
f,k

(

x̂−
k+1 − bf,k

)

Proof:

x̂−
k+1 = Af,kx̂k + bf,k

x̂k = A−1
f,k

(

x̂−
k+1 − bf,k

)

(2.217)

Lemma 2.7.11. • x̂s
k − x̂k = P s

k ŷ
−
k − PkS

−
k

(

I + PkS
−
k

)−1
x̂k

Proof:

Define x̂s
k+1 from Equation (2.95)

x̂s
k =

(

I + PkS
−
k

)−1
x̂k + P s

k ŷ
−
k

x̂s
k − x̂k =

[

(

I + PkS
−
k

)−1
− I

]

x̂k + P s
k ŷ

−
k

Now substituting I with
(

I + PkS
−
k

)(

I + PkS
−
k

)−1
at the R.H.S. of the above Equa-

tion,

x̂s
k − x̂k = −PkS

−
k

(

I + PkS
−
k

)−1
x̂k + P s

k ŷ
−
k (2.218)

Now rearranging the terms at the R.H.S. of the above Equation

x̂s
k − x̂k = P s

k ŷ
−
k − PkS

−
k

(

I + PkS
−
k

)−1
x̂k (2.219)

2.8 Appendix 2

2.8.1 FB-Priori-SPKS Derivations

In the following, the smoothing recursion of the FB-Priori-SPKS, where the a priori KF

Equations (2.157)-(2.158) are applied on the augmented statistically linearized state space,

is derived as follows:
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From Equations (2.157) and (2.158), we can write the a priori KF for the augmented

system of Equations (2.139) and (2.140) as follows:



















x̂−
k+1

x̂k,k

...

x̂k−L,k



















=



















Af,k 0 · · · 0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0





































x̂−
k

x̂k−1,k−1

...

x̂k−L−1,k−1



















+

L̃k



















zk −
[

Ah,k 0 · · · 0

]



















x̂−
k

x̂k−1,k−1

...

x̂k−L−1,k−1



















− bh,k



















+



















bf,k

0
...

0



















(2.220)













P
0,0
k+1 · · ·

(

P
0,L+1
k+1

)T

...
. . .

...

P
0,L+1
k+1 · · · P

L+1,L+1
k+1













=



















Af,k 0 · · · 0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0



















×



















P
0,0
k

(

P
0,1
k

)T
· · ·

(

P
0,L+1
k

)T

P
0,1
k P

1,1
k · · ·

(

P
1,L+1
k

)T

...
. . .

. . .
...

P
0,L+1
k P

1,L+1
k · · ·

(

P
L+1,L+1
k

)T



























































AT
f,k I · · · 0

0 0
. . .

...
...

. . .
. . . I

0 · · · · · · 0





















−



















AT
h,k

0
...

0



















L̃T
k





















+



















Gf,kQkG
T
f,k 0 · · · 0

0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0



















+



















Gf,kPεf ,kG
T
f,k 0 · · · 0

0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0



















, (2.221)

where the augmented Kalman gain L̃k can be defined as

L̃k =



















Lk,0

Lk,1

...

Lk,L+1



















. (2.222)
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The augmented L̃k can be expanded as

L̃k =



















Af,k 0 · · · 0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0





































P
0,0
k

(

P
0,1
k

)T
· · ·

(

P
0,L+1
k

)T

P
0,1
k P

1,1
k · · ·

(

P
1,L+1
k

)T

...
. . .

. . .
...

P
0,L+1
k P

1,L+1
k · · ·

(

P
L+1,L+1
k

)T





































AT
h,k

0
...

0



















×



















[

Ah,k 0 · · · 0

]



















P
0,0
k

(

P
0,1
k

)T
· · ·

(

P
0,L+1
k

)T

P
0,1
k P

1,1
k · · ·

(

P
1,L+1
k

)T

...
. . .

. . .
...

P
0,L+1
k P

1,L+1
k · · ·

(

P
L+1,L+1
k

)T





































AT
h,k

0
...

0



















+Rk + Pεh,k



















−1

(2.223)

After simplifying the expression for L̃k can be reduced to

L̃k =



















Af,kP
0,0
k AT

h,k

P
0,0
k AT

h,k

...

P
0,N
k AT

h,k



















(

Ah,kP
0,0
k AT

h,k +Rk + Pεh,k

)−1
, (2.224)

where P i,i
k , 0 ≤ i ≤ L and P i,j

k , i 6= j are defined as the estimation-error covariances for

each state and the cross-covariances between states respectively in the augmented state

vector. The individual state estimates shown in (2.220) can be defined as:

x̂k−i,k = E [xk−i|z1:k] (2.225)

for 1 ≤ i ≤ L+ 1. Comparing (2.222) and (2.224), we obtain

Lk,0 = Af,kP
0,0
k AT

h,k

(

Ah,kP
0,0
k AT

h,k +Rk + Pεh,k

)−1
(2.226)

Lk,i = P
0,i−1
k AT

h,k

(

Ah,kP
0,0
k AT

h,k +Rk + Pεh,k

)−1
, 1 ≤ i ≤ L+ 1 (2.227)
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Now (2.221) can be further simplified by substituting L̃k from (2.224)













P
0,0
k+1 · · ·

(

P
0,L+1
k+1

)T

...
. . .

...

P
0,L+1
k+1 · · · P

L+1,L+1
k+1













=



















Af,kP
0,0
k Af,k

(

P
0,1
k

)T
· · · Af,k

(

P
0,L+1
k

)T

P
0,0
k

(

P
0,1
k

)T
· · ·

(

P
0,L+1
k

)T

...
. . .

. . .
...

P
0,L
k P

1,L
k · · ·

(

P
L,L+1
k

)T



















×





















AT
f,k I · · · 0

0 0
. . .

...
...

. . .
. . . I

0 · · · · · · 0





















−



















Af,kP
0,0
k Af,k

(

P
0,1
k

)T
· · · Af,k

(

P
0,L+1
k

)T

P
0,0
k

(

P
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Equating the first column and the diagonal elements of the left and right hand side

P
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T
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(2.232)

for 1 ≤ i ≤ L+ 1.

Similarly by expanding (2.220), we can obtain the following set of equations

x̂−
k+1 = Af,kx̂

−
k +Lk,0

(

zk −Ah,kx̂
−
k − bh,k

)

+ bf,k (2.233)

x̂k+1−i,k = x̂k+2−i,k +Lk,i

(

zk −Ah,kx̂
−
k − bh,k

)

, (2.234)

for 1 ≤ i ≤ L+ 1.



Chapter 3

A Tag-Based Approach to Unobtrusive

Indoor Tracking Using RSSI

3.1 Overview

In the previous chapter, we developed a new smoothing scheme for the nonlinear system

using the SPKF based approach. Suitable fixed-interval and fixed-lag sigma-point Kalman

smoothing (SPKS) algorithms are derived and evaluated using the Mackey-Glass noisy

time series and re-entry vehicle tracking examples. In this chapter we apply the proposed

SPKS algorithms into a real world indoor tracking framework where our task is to locate

and track a user in an indoor environment. Specifically, the objective is to evaluate the

feasibility of building an indoor location tracking system that is cost effective for large

scale deployments, can operate over existing Wi-Fi networks, and can provide flexibility

to accommodate new sensor observations as they become available.

This chapter is organized as follows. Section 3.2 starts with a survey of commer-

cial indoor tracking systems and research prototypes including their architecture, sensor

platforms and positioning algorithms. It then introduces our SPKS based Bayesian infer-

ence algorithm for location tracking and summarizes the used sensor modalities. Section

3.3 discusses the Bayesian framework and details the dynamic and observation models

used in our SPKS framework. Section 3.4 examines the fixed-interval and fixed-lag based

SPKS algorithms implemented in our tracking system. Experimental results are given in

Section 3.5, and finally discussion and conclusion are presented in Section 3.6.
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3.2 Introduction And Related Work

Location and context-aware technologies play a critical role in emerging next generation

mobile applications. Example goals of these applications range from tracking assets within

large warehouses, monitoring people inside assisted living communities, to adapting user

interfaces based on location and activity. Key to each application is the ability to ac-

curately localize and track an individual or asset. Explicit positioning sensors based on

GPS work worldwide and can sometimes achieve centimeter level accuracy. However, GPS

generally requires a direct view to several satellites, resulting in limited performance for

indoor environments. Development of non-GPS based solutions are thus of great interest

for indoor use based on both existing signals and hardware, as well as new systems and

sensor modalities. Additional design constraints pose significant challenges for develop-

ment of such systems, including calibration overhead, user privacy, and the high variability

of wireless channels.

3.2.1 Existing Indoor Tracking Systems: Hardware Description

A number of commercial systems and research prototypes currently exist for indoor lo-

calization. Systems typically use infra-red (IR), ultra-sound, or radio-frequency (RF)

sensors [40–43]. Although they show potential for indoor tracking, each has its own limita-

tions. The Active Badge System is one example of an early location-aware application [40].

The person to be tracked carries a small tag or “active badge”, which emits a unique IR

code every 15 seconds (s). A network of sensors pre-placed around the building pick up the

periodic IR waveforms and a central “master-station” processes the data and triangulates

the individual’s location. Poor IR scalability and high maintenance overheads are some

of the drawbacks faced by this system. The Cricket system places multiple “beacons”

at several locations within the indoor environment which concurrently transmit RF and

ultrasonic pulses. The person being tracked carries a listening device which uses time of

flight (TOF) difference between RF and ultrasonic pulses in order to determine the dis-

tance to the beacons. Based on the TOF difference between multiple beacons, the closest

beacon is inferred. Although Cricket improves accuracy and stability, high maintenance



95

and calibration requirements require significant effort to use in practice. A commercially

available system by Sonitor [44] also uses ultrasonic sensors for tracking a person. The

user carries a small tag that emits its identification number via ultrasonics. Detectors

scattered throughout the environment receives this information and triangulates the user.

An advantage of this ultrasound based system is its immunity to interference and noise

compared to RF, however the ultrasound cannot penetrate walls and is more expensive

than comparable RF based positioning systems.

RF based positioning systems are one of the most popular for indoor tracking. This

is due to the fact that radio signal strength (RSSI) can be obtained relatively effortlessly

without the need of any specialized hardware. RADAR was one of the first RF signal

strength based positioning system used to track people inside buildings [41]. Multiple

base stations (at least 3) are placed with overlapping coverage within the area of interest.

A laptop computer carried by an individual is used to collect the RSSI measurements.

The system then compares the RSSI observation of the user with a set of pre-stored

signal strength measurements known as “fingerprints” at each of the base stations to

identify the user’s coordinates. The major disadvantages of the fingerprinting method

include the need for dense training coverage and poor extrapolation to areas not covered

during training. Although RADAR employs an empirical model for RF propagation and

wall attenuation, actual RF signals deviate considerably while propagating indoors due

to multipath, metal reflection, and noise. Often indoor positioning systems have been

designed to take advantage of public wireless local area networks (WLAN) instead of

setting up proprietary RF networks. For example, Place-Lab uses publicly available 802.11

access points with receivers built into the users devices for positioning [45,46]. The system

compares the observed RSSI with a pre-stored “radio map” to determine the users position.

Although it has the advantage of limited calibration requirements, reported accuracy

is lower than existing positioning systems. Another example of WLAN based tracking

includes the “Horus WLAN location determination system” [47]. A laptop computer

carried by the user collects RSSI which is then compared to known RSSI fingerprints in

order to perform localization. A commercially available product by Ekahau provides a

complete tag and software solution using RSSI with the 802.11 protocol [48]. Multiple
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802.11 access points are placed at predefined locations in the environment. The user

carries a small tag that measures the RSSI at periodic intervals. The system compares

the observed RSSI with a pre-stored set of RSSI collected during a separate training phase

to compute the user’s current location. The system is relatively inexpensive and energy

efficient, but its accuracy is quite limited in certain scenarios as seen in the experimental

section of this paper. Finally, there are systems which explore the use of “angle of arrival

(AOA)” and “time difference of arrival (TOA)” in order to perform user localization. For

example, Ubisense is a tag based localization engine which uses ultra-wideband (UWB)

radio technology to detect a mobile Ubisense tag [49]. Instead of depending on RSSI, it

focuses on multiple proprietary access points act as sensors that independently determine

the AOA of the UWB signal [50] and the TOA between a pair of sensors in order to

perform positioning. While expensive and with significant calibration challenges, the

Ubisense system can provide high tracking accuracy to within several centimeters.

3.2.2 Existing Indoor Tracking Systems: Algorithmic Description

Researchers have adopted a wide number of signal processing and pattern recognition

based algorithms in order to perform user localization. As RSSI is widely accepted as

the “feature of choice” for indoor positioning [43, 51], in this section we will describe the

location estimation algorithms which use RSSI as its primary input. Radio propagation

inside an indoor environment is extremely chaotic due to the presence of large number of

obstructions/reflecting surfaces and hence learning the position-RSSI relationship can be

a challenging task. Elnahrawy et al. discuss about the potential barriers of using signal

strengths to perform localization and show that none of the present algorithms has an

huge performance advantage over the others [52]. Below we will summarize a plethora of

indoor tracking algorithms which have found extensive uses in numerous applications.

Range and proximity based algorithms

Range and proximity based algorithms for user localization are simple, straightforward and

easy to implement. From a set of observed RSSI, the range based method triangulates

the person’s position based on a distance calculation from multiple access points [53, 54].
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Unfortunately the computed distance from each RSSI can be erroneous due to the high

variation of radio signal propagation in an indoor environment. Instead of depending on

signal strength, a method has been proposed which computes the mapping between the

transmission power of the access points and the range of the RF signal [55]. The user

position can then be inferred using trilateration by exploiting the relationship between

radio range and transmission power. Proximity based localization connects a user to an

access point from which it receives the maximum signal power and hence the user location

is assumed to be the same as the location of that corresponding access point [56, 57].

Hightower et al. estimates the user location by computing the centroid of k access points

which generates the highest signal strength [43]. Although the “strongest base station

algorithm”, discussed above, is very simple and computationally fast, it can generate a

very coarse grained location estimates. The potential solution to improve the granularity

is to implement a dense grid of access points inside the indoor location, which effectively

increases the hardware and computational requirement.

Fingerprinting method

The fingerprinting based “scene analysis” approach is one of the most widely used tech-

nologies seen in the literature [41,47,51,58]. It consists of an offline training phase and an

online tracking phase. Fingerprints are generated during the training/calibration phase

where RSSI data is collected at a set of marked training locations. During the tracking

phase, the collected RSSI observation is compared with known fingerprints and the cor-

responding fingerprints that are the most similar with the observed ones are chosen. The

user position can then be inferred as the location of the fingerprint which best matches

with the observation or can be computed as a centroid of k nearest reference fingerprints.

The most challenging aspect of the fingerprinting based method is to formulate a distance

calculation that can measure similarity between the observed RSSI and the known RSSI

fingerprints. Euclidean distance based calculation is used in order to measure the minimum

distance between the observed RSSI and the mean of the fingerprints collected at each

training point [59]. RADAR uses a k-nearest-neighbors method in order to find the closest

match between fingerprints and the RSSI observation [41]. Recently, research efforts have
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concentrated on developing a better distance measure that can take into account the vari-

ability of the RSSI training vectors. These methods estimate a probability density for the

training RSSI and then compute the likelihood/a posteriori estimates during the tracking

phase using the observed RSSI and the estimated densities [47,60,61]. User localization is

performed using a maximum likelihood (ML) or a maximum-a-posteriori (MAP) estimate

of position. Kernel based nonlinear distance calculations have also appeared in the litera-

ture for RSSI fingerprinting [51,58]. Although these recent developments improve position

estimates compared to simple k-nearest-neighbors, they often require substantially larger

training sets and greater computational resources. Moreover, the calibration process is

tedious, time consuming and manual, which reduce the scalability of the fingerprinting

based approach. Searching through the whole fingerprint database for similarity measure

between the observed and reference RSSI is a computationally intensive operation and

recently efficient algorithms have been proposed to reduce the computational cost [62,63].

Youssef et al. performed an efficient location clustering, called “joint clustering” [62], and

the “MoteTrack” system adopts a decentralized approach by distributing the overall RSSI

signature database over a number of fixed nodes [63].

Signal propagation modeling

In contrast to fingerprinting, signal propagation modeling based techniques express the

RF signal attenuation using a physics based theoretical “path loss” model [64,65]. These

proposed path loss models consider both free-space signal attenuation and attenuation

suffered due to reflection/refraction from the walls/obstacles. Instead of using fixed at-

tenuation factors for walls/floors, Barsocchi et al. apply a linear least-squares technique to

learn the attenuation coefficients by minimizing the actual and model predicted RSSI [66].

However, the RSSI propagation in indoor environment is noisy due to multipath, metal

reflection, and interference noise [66, 67] and hence the relationship between the position

and RSSI is highly complex. Thus the RSSI propagation may not be adequately captured

by a linear fixed invariant model.
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Probabilistic Bayesian inference

A number of variants on the probabilistic Bayesian inference approaches have appeared

in the literature [43,46,68–76]. The Bayesian inference is a probabilistic framework which

sequentially estimates the unknown state from the noisy observations using a dynamic

predictive model and an observation likelihood. The Bayesian methods can estimate a

person’s velocity and acceleration in addition to position, and can also provide an un-

certainty measure of the estimates. In [68, 73], the authors survey the Bayesian filter

implementations for location estimation using the ultrasound, infrared and laser range

finders. They conclude that although the particle filters can converge to the true poste-

rior state distribution for non-Gaussian and multimodal cases, the Kalman filter and its

variants are the most efficient in terms of memory and computation. The Kalman filter-

ing methods for real time positioning have long been popular in the robot tracking and

navigation communities [12, 77, 78]. Recently the Kalman filter and their variants have

also been applied to indoor people tracking. For examples, Fod et al. and Hsieh et al.

describe a Kalman filter approach using multiple laser range finders [70,71]. More recently,

the particle filters have been used to demonstrate encouraging performance, although at

a high computational cost for real time people tracking [43, 74–76]. The particle filter

based system described by J. Hightower et al. incorporates a random acceleration based

human motion model as the dynamics of the system, while the sensor model (observation

likelihood) uses a single Gaussian with fixed pre-defined parameters [43]. Letchner et al.

introduce a sensor measurement model in the particle filter framework [75] that combines

a Wi-Fi signal propagation model [79] and a fingerprinting technique for localization. The

method assumes radially symmetric attenuation of wireless signals and also requires large

training data for fingerprinting. In addition, several algorithms assume an empirical path-

loss based radio signal propagation map to compute the likelihood of RSSI observation

in a particle filter framework [45, 79, 80]. The performance of these algorithms, however,

may degrade in practice due to the RSSI variability over time and location. Recently

research efforts have been directed towards developing local RSSI likelihood models from

the training data with known ground truth locations [74, 81]. Ferris et al. use Gaussian
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processes to generate an observation likelihood for wireless signal strength measurements

in the particle filter [74]. However, learning the parameters using graph based hyperpa-

rameter estimation can be slow and take significant computational resources. Also related

to the Bayesian inference are the use of hidden Markov modeling (HMM) approaches.

The Locadio system uses a HMM on a graph of location nodes to infer position based on

the variation of the Wi-Fi signal strength [72]. The person’s motion is determined based

on the variance of RSSI measurements over a sliding window. However, significant RSSI

variability (even at the same location) can cause a high number of errors in determining

whether the person is moving or still.

3.2.3 SPKS based Position Tracking using RSSI Measurements

We follow the sigma-point Kalman filter (SPKF) based Bayesian inference approach [26,

36, 82] for indoor localization and tracking. We use our recently proposed fixed-interval

(FI-SPKS) and fixed-Lag sigma-point Kalman smoother (FL-SPKS) algorithms for track-

ing purposes [35]. While the FI-SPKS uses all N RSSI measurements in order to compute

smoothed state estimates at each time, location estimate obtained from the FL-SPKS gen-

erally lags behind the current measurement by L time. Both the FI-SPKS and FL-SPKS

estimators fuse a model of walking motion, room-wall configurations, and all available sen-

sor observations in order to track 2D position and velocity. A random acceleration based

model of human walking is used as the dynamic model of motion. This is augmented with

a room-wall model involving a potential field created throughout the indoor environment

in order to repel motion away from walls. Available sensors include RSSI, binary infra-red

(IR) motion sensors, and binary foot-switches. Instead of using a fixed path loss based

prior map for the observation model, we learn the position-RSSI relationship from the

training data. Specifically, Radial-Basis Function (RBF) networks are used to provide a

nonlinear mapping between known locations and observed RSSI values. These models are

fit during a separate calibration process, and take into account the various multipath and

other room specific characteristics. This chapter provides a more detailed description and

analysis of our methods that was presented in [83, 84].
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While our approach is generally independent of the specific hardware or sensor modal-

ity, the current system design uses RSSI sensors manufactured by Ekahau Inc. The per-

son(s) to be tracked carry a small body-borne device that periodically measures the RSSI

at 3 or more standard Wi-Fi access points placed at pre-defined locations. Due to tag

based hardware limitations, the sampling rate is generally 4 − 8 s. The low sampling

rate motivates the use of the sigma-point smoother over the filter implementation, as the

smoother provides superior interpolation of data using both past and future observations.

A smoother requires buffering of data and a fixed latency in performing the actual esti-

mates. While the computational complexity is increased, the sigma-point smoothers can

still be implemented far more efficiently than comparable particle smoother formulations.

Augmenting the RSSI measurements are IR motion sensors mounted to the walls that

provide a binary “on” signal when it detects a motion in its range. Similarly, binary

foot-switches indicate the location of a person when stepped on.

Experimentations were performed at several “living-laboratories” used to develop mon-

itoring and assistive technologies for the elderly. The performance of our tracker was com-

pared with the baseline Ekahau tracking engine. As will be shown, both the FI-SPKS and

FL-SPKS based tracker provide significant improvement in position tracking accuracy.

3.3 Recursive Bayesian Estimation Framework

Recall that the problem of state estimation involves estimating the state of a discrete-time

nonlinear dynamic system,

xk+1 =fk (xk,vk) (3.1)

zk =hk (xk,nk) , (3.2)

characterized by the process model f(.) and observation model h(.). In the following sec-

tions, we briefly summarize the different components of our tracking mechanism including

the dynamic model, observation models and how the measurements from multiple sensors

can be fused using the Kalman framework.
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3.3.1 Dynamic Model

We define the state vector x =

[

x y vx vy

]T

, corresponding to 2D position and

velocity for tracking purposes. A simple random acceleration based model [85,86] is used

for predicting walking motion. This is augmented with a room model involving a potential

field created throughout the indoor environment in order to repel estimated motion away

from walls.

The potential field can be created off-line using prior knowledge of wall configurations

and large furniture location. Computationally this is achieved by dividing the space into

1 inch square cells. Each cell contains a binary certainty measure C (i, j) that indicates

whether the cell is occupied, i.e., an obstacle exits within the cell. The force Fi,j (x, y)

exerted on a person due to an occupied cell is made inversely proportional to the distance

between the person’s current position and the occupied cell position [87].

Fi,j (x, y) = −FcrC (i, j)

d2
i,j (x, y)

(

x− xi
c

di,j(x, y)
~x+

y − yj
c

di,j(x, y)
~y

)

, (3.3)

where di,j(x, y) is the distance between the person’s current position, (x, y), and the

occupied cell position, (xi
c, y

j
c). ~x and ~y are the unit vectors along the x and y direction.

Fcr is the force constant and design parameter that controls the overall strength of the

repulsive force. If the force is too strong, location estimates will not be near walls or

furniture. If the force is too small, tracking may result in trajectory estimates that pass

through walls.

The total resultant force Fr(x, y) =

[

Fx (x, y) Fy (x, y)

]

is the vectorial sum of

forces exerted by all the occupied cells on the person’s current cell location.

Fr(x, y) =
∑

i,j

Fi,j (x, y) . (3.4)

This repelling force function Fr(x, y) is calculated off-line, and may be viewed as a poten-

tial field or simply a nonlinear function of the person’s current position. Figure 3.1 displays

the corresponding magnitude of the potential field for a simple multi-room example.

Combining the potential field and a random walk model yields the dynamic state-space
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Figure 3.1: Potential field is shown in a multi-room environment. As illustrated, the
magnitude of the potential force peaks at the edge of the walls and decreases exponentially.

model f(.) [84],

xk+1 = xk + δTvxk
+
δT 2

2
Fxk

(xk, yk) (3.5)

yk+1 = yk + δTvyk
+
δT 2

2
Fyk

(xk, yk) (3.6)

vxk+1
= λvxk

+ δTFxk
(xk, yk) + (1 − λ) vpx,k

(3.7)

vyk+1
= λvyk

+ δTFyk
(xk, yk) + (1 − λ) vpy,k

(3.8)

The parameter λ smoothens the changes in velocities and also ensures that the variance

of random process remains bounded. The integration time in this case is δT = 1 second.

The process noise vp,k =

[

vpx,k
vpy,k

]

is modeled as a zero mean white Gaussian.

3.3.2 Observation Model

As we have three different sensor technologies, the observation model in (3.2) depends on

the specific technology used.
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Figure 3.2: Example floor plan with calibration locations indicated by a ’+’.

RSSI Observation model

A naive approach to using RSSI measurements involves comparing an observed RSSI value

to a table of previously recorded RSSI values and their associated positions. This direct

“table look-up” approach, however, is prone to errors due to the high variability of RSSI

values. In the Bayesian framework, the observation function can be viewed as a generative

model providing the likelihood of a RSSI observation given the current estimate of the state

position. In most RSSI tracking literature, the observation likelihood is approximated with

a simple fixed a priori distribution (e.g., Gaussian distribution) [43,46]. In our method, we

characterize the RSSI-position relationship and variability by fitting nonlinear mappings

between position and observed RSSI values.

Data to fit the maps are first collected during a calibration phase. This involves

dividing the floor plan into P rooms or sections. In each section, the vertices and center of

an approximate octagonal grid are used as calibration points. See Figure 3.2 for illustration

purposes. This calibration scheme was chosen to match the grid pattern used by the

Ekahau positioning engine in order to allow for the direct comparisons of final performance.

Note that an exact octagonal grid is not possible due to the presence of furniture, walls

and other objects in the floorplan. At each calibration point, a person carrying a body

borne RSSI tag spends Tc s (generally 60 s) while RSSI data is collected. Typically, RSSI

values are recorded from M (generally 3− 5) Wi-Fi access points located in the corners of

the entire space to be calibrated. The person also performs a slow rotation at each point

to average RSSI variability due to tag orientation. Note that if multiple tags are to be
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Figure 3.3: (a) Raw RSSI values recorded at each access point during calibration, (b)
RSSI mean values at each calibration location, (c) RBF nonlinear maps plotted with the
RSSI mean values.

calibrated simultaneously, it is advisable to physically separate the tags on the person as

far as possible, as we have found that multiple tags can interfere with RSSI consistency.

This process is repeated at all calibration points in the space. Figure 3.3(a) illustrates

the collection of raw RSSI data at each calibration point. The number of RSSI samples

collected at each calibration point are denoted as Nr (generally 8− 10). The Nr number

of RSSI samples are then averaged to obtain a representative mean RSSI observation

per calibration point as shown in Figure 3.3(b). Specific values for the amount of data

collected, variability, etc., are tag specific and will be given in the experimental results

section.

After RSSI data collection, a RBF network is used to fit a nonlinear map between

known calibration locations and the mean RSSI observations as illustrated in Figure 3.3(c).

A RBF network is a feed forward neural network consisting of a hidden layer of radial

kernels and an output layer of linear neurons [88]. A Gaussian kernel is used as the radial

basis. This RBF map represents the forward generative observation model,

zm,k = hm (xk, yk) + nr
m, (3.9)

where zm,k is the observed RSSI from access pointm, 1 ≤ m ≤M , with noise nr
m assumed

to be Gaussian with zero mean and standard deviation equal to the RSSI variability

determined from the calibration data. The RBF observation map hm for the m-th access
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point is specified by

hm (xk, yk) = W T
mKm,G

([

xk yk

]

;µm,Σm

)

, (3.10)

where K
m,G is the Gaussian kernel function [88] with mean vector µm and covariance

matrix Σm,

µm =

[

µm,1 µm,2 . . . µ
m,C

]T

(3.11)

Σm =



















Σm,1 0 · · · 0

0 Σm,2 · · · 0
...

. . .
...

0 · · · 0 Σm,C



















, (3.12)

where C is the number of Gaussian kernels in the hidden layer of the RBF network and

Wm are the output layer linear weights,

Wm =

[

wm,0 wm,1 . . . w
m,C−1

]

. (3.13)

The parameters of each Gaussian kernel µm,c, Σm,c and the hidden-to-output layer weights

wm,c are learned using a hybrid procedure that operates in two stages. The prior weight,

center position and the spread parameter of each Gaussian are first obtained by model-

ing the known calibration locations with a Gaussian Mixture Model (GMM ) using the

Expectation Maximization (EM ) algorithm. The output layer weights Wm are then cal-

culated in a batch least-squares manner in order to minimize the MSE error at the output.

Figure 3.3(c) illustrates a nonlinear observation map learned from the calibration data.

The observed RSSI zm,k, RBF function hm, and the observation noise nr
m from each

access point are combined to form a multi-dimensional observation model,

zk =

[

z1,k z2,k . . . zm,k . . . zM,k

]

(3.14)

h =

[

h1 h2 . . . hm . . . hM

]

(3.15)

nr =

[

nr
1 nr

2 . . . nr
m . . . nr

M

]

(3.16)

where zk is the multi-dimensional RSSI observations emanating from each access point.

Similarly h and nr are the augmented RBF observation model and the measurement noise

for access points 1 ≤ m ≤ M.
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Once fit using calibration data, this RBF observation model may be used in the

Bayesian framework for tracking. As the RBF network is trained to learn a nonlinear

mapping between known calibration locations and observed RSSI values, this model takes

into account room specific multi-path and non line of sight (NLOS) RSSI propagation.

By learning the map, the need to specify the location of the access points is also avoided.

IR motion sensor Observation model

Infra-red (IR) motion sensors may be mounted to the walls and provide binary “on” signals

when motion is detected within range. Localization using motion sensors are challenging

due to their large beam width and high false alarm rate. The likelihood model for a motion

sensor is modeled simply as a Gaussian distribution. The observation model is thus linear

and defined as:

zk =Hxk + nms, (3.17)

where H is the observation matrix,

H =







1 0 0 0

0 1 0 0






, (3.18)

and nms is the Gaussian observation noise with mean and variance associated with

the IR sensor. The mean value is taken to be a position in-line with the orientation of

the sensor at a distance based on the approximate sensor range. The variance is based

on the beam width of the sensor. Specific values for the mean and variance are found by

approximate characterization of the sensors. Filter performance is not highly sensitive to

these values. Note that this simple model clearly does not take into account the specific

geometry of the beam pattern, or other complicating factors such as memory and latency

in the binary sensor. Incorporating a more accurate distribution would require a non-

Gaussian framework (e.g., particle filters), and was not explored for this current phase of

the research.



108

Figure 3.4: Floor layout for test Lab-I

Binary foot-switch Observation model

Similar to IR motion detectors, foot-switches may be placed on the floor to provide a

binary “on” signal that indicates the location of a person. The observation likelihood may

again be modeled simply as a Gaussian distribution with the corresponding observation

model,

zk =Hxk + nf, (3.19)

where H is the observation matrix,

H =







1 0 0 0

0 1 0 0






, (3.20)

and nf is the Gaussian observation noise for the foot-switch sensors. The mean value of

the Gaussian is set to the known location of the switch. We set the variance σ2
f of the

foot-switches to be approximately 10 ft in our experiments. While this is clearly larger

than necessary, the aim was to simulate accuracy closer to that of the IR motion sensors

during initial setup of the testing facilities. Setting the variance to a small value can

provide exact localization at precise moments in time, but can also lead to “jumps” in

trajectories at the vicinity of the foot-switches. Artificially increasing the variance helps

ensure the smoothness of the estimated trajectory.
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Figure 3.5: (a) to (e): Raw RSSI values from 5 access points collected during calibration
at Point-of-Care test Lab-I, (f) to (j): Fitted RBF maps.

Multiple sensors observation model

The Kalman framework allows for fusing multiple sensors of different types as available.

An augmented observation vector is specified,

zk =

[

zRSSI
k zIRk zFoot

k

]

(3.21)

along with the corresponding observation functions. Note that the dimension of this aug-

mented observation may change at each time step to account for varying sensor sampling

rates or missing observations.

3.4 SPKS Based Location Tracker

While the SPKF may be applied directly to the tracking problem, we have found im-

proved performance through the use of SPKS. We have investigated both of our proposed

smoother variants, namely the FI-SPKS and FL-SPKS, for Wi-Fi based tracking. The

FI-SPKS corresponds to a fixed interval smoothing approach whereby the final time N is

fixed and smoothed estimates are found using all N measurements. For tracking purposes,
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Figure 3.6: Tracking performance in test Lab-I using RSSI measurements, (a) Ekahau
estimates (red: ground truth, black: estimate), (b) SPKS estimates (red: ground truth,
blue: SPKS estimate). The position of the access points are shown by green circles on the
floorplan. The above tracking result is shown for subject 1.

the FI-SPKS provides an off-line estimate of the position and velocity trajectories after all

data up to time N has been collected. In fixed-interval SPKS (FI-SPKS) framework, we

apply both the FBSL-SPKS and the RTSSL-SPKS algorithms to estimate the position and

velocity of the user. We have demonstrated the detailed derivations of the FBSL-SPKS
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Figure 3.7: Tracking performance in test Lab-I using RSSI + foot switch observations
(red: ground truth, blue: SPKS estimate). Yellow rectangular boxes indicate the position
of the foot switches on the floor plan. The position of the access points are shown by
green circles on the floorplan. The above tracking result is shown for subject 1.

and the RTSSL-SPKS from first principle in sections 2.3.2 and 2.3.3. In the experimental

result section, we have only demonstrated the performance of the RTSSL-SPKS due to its

ease of implementation and low computational complexity.

We have also implemented the proposed FL-SPKS methods whereby the smoothed

state estimate always lags behind the current observation by L time interval (for our case,

we have used L = 3). For details about the different variants of the fixed-lag SPKS

approaches, please refer to Section 2.4. The time difference L is a design specific constant

and adds a fixed latency in computing the actual estimates. We have implemented both

the FBSL-SPKS and the RTSSL-SPKS for constantly estimating user’s 2D position and

velocity in an indoor environment. Both the FBSL-SPKS and the RTSSL-SPKS provide

pseudo real-time estimates by dividing the data into blocks (e.g., N =
∑

Ni) and then

sequentially performing the smoother operation on the buffered blocks of data as they

become available. The equations of the fixed-lag FBSL-SPKS and the RTSSL-SPKS are

shown in sections 2.4.3 and 2.4.4. Table 3.1 demonstrates the user-specified parameters

needed to implement the SPKS based location tracker.

We had to deal with a number of problem specific issues, such as different update rates
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Figure 3.8: Tracking performance in test Lab-I, (a) Ekahau estimates (red: ground truth,
black: estimate), (b) SPKS estimates using RSSI measurements (red: ground truth, blue:
SPKS estimate). The position of the access points are shown by green circles on the
floorplan. The above tracking result is shown for subject 2.

and the time-varying observation dimensions, in order to adopt the SPKS framework in

indoor location tracking problem. We will discuss below how we address these issues in

our indoor positioning system.
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Figure 3.9: Tracking performance in test Lab-I using RSSI + foot switch observations
(red: ground truth, blue: SPKS estimate). Yellow rectangular boxes indicate the position
of the foot switches on the floor plan. The position of the access points are shown by
green circles on the floorplan. The above tracking result is shown for subject 2.

3.4.1 Different update rates for process and observation models

The proposed location tracker uses RSSI sensors manufactured by Ekahau Inc. The Eka-

hau engine is a proprietary system which requires placing multiple access points at pre-

defined locations of the house. The subject to be tracked carry a body-borne receiver tag

which periodically measures the RSSI from the installed access points. Due to tag based

hardware limitation, the RSSI sampling rate is between 4 − 8 s. This low sampling rate

can be a hinderance for continuous tracking and can also lead to “jumps” in estimated

trajectories. In order to overcome this problem, we propose to operate the SPKF time-

update and measurement-update steps at differing rates. In other words, every SPKF

cycle does not necessarily have a measurement-update step. Recall that in filter time-

update, we use the dynamic model to predict the next state x̂−
k+1 from the current state

x̂k and measurements up to time k, z1:k. While the measurement-update step utilizes the

observation model for incorporating the current measurement zk+1 with state prediction

x̂−
k+1 and generates an updated state x̂k+1. In the proposed location tracker, the SPKS

based estimator performs a time-update step at every second but a measurement-update
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Figure 3.10: SPKF estimates using only RSSI measurements in test Lab-I. The position
of the access points are shown by green circles on the floorplan.

step is incorporated only when the sensor measurement is available. The fast time-update

ensures the computation of state estimates at every time index even when the RSSI mea-

surement is not available during that time. The availability of position estimates at higher

rate may prove extremely useful for monitoring the elderly at their own homes.

3.4.2 Time-varying observation dimensions

As we have mentioned in Section 3.3.2, the proposed SPKS fuses multiple sensors, in-

cluding RSSI, IR motion sensors and foot-switches in order to perform localization. As

is evident from the experimental results (please see Section 3.5), the performance accu-

racy of our SPKS based location tracker has been improved by incorporating multiple

sensor measurements. Since different sensors operate at different rates and have differ-

ent observation dimensions, one design challenge was to derive a SPKS framework which

can adapt to the time-varying observation dimensions. For example, the sampling rate

of RSSI is between 4 − 8 s and the dimension of RSSI measurement vector depends upon

the number of RSSI sensors which actually reported the signal strength at a particular

time. IR motion sensors provide binary “on” measurement only when there is a motion

within its range. Binary foot-switches can only be turned “on” when pressed. In order to
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Figure 3.11: (a) Fixed-interval RTSSL-SPKS estimates, (b) Fixed-lag (lag L = 3) RTSSL-
SPKS estimates (red: ground truth, blue: SPKS estimates). The position of the access
points are shown by green circles on the floorplan. The SPKS estimates are generated
using only RSSI measurements.

combat the arrival of time-varying measurements, we maintain an event-log which will in-

form about the number of different sensor firing at each time instant. If data arrives from

multiple sensors, the effective observation model used in the SPKS framework is formed

by concatenating each individual sensor observation models and sigma points required
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Figure 3.12: Floor layout for test Lab-II

Table 3.1: Summary of user-specified parameters

Name Symbol Value

Potential field force constant Fcr 10
Integration time δT 1 s
Smoothing AR coefficient λ 0.95
Number of access points M 3-5

Measurement noise variance(foot-switch) nf
k 10 ft

Measurement noise variance(constrained motion sensor) nms
k 5 ft

Measurement noise variance(unconstrained motion sensor) nms
k room dimension

Measurement lag L 3
Sigma-point spread α 0.85
Sigma-point weighting term β 2
Sigma-point parameter κ 0
Time spent per calibration point Tc 1min
Recorded RSSI per calibration point Nr 8-10
RSSI sampling rate Tr 4-8 s

for measurement-update step will be extracted from this augmented observation vector.

When the event-log specifies the firing of single sensor, the effective observation model

is reverted back to the corresponding sensor model. This process although very simple

and straightforward needs careful logging of sensor events in order to accommodate the

time-varying rate of data stream.
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3.5 Experimental Results

Implementation and testing were performed at several “living-laboratories” (also called

Point-of-Care labs) used to develop monitoring and assistive technologies for the elderly.

A number of trials were conducted in which different subjects followed a predefined path.

While walking, the subject periodically recorded the ground truth. The Ekahau real-time

positional engine was also turned on during these tests. Although the exact location

estimation algorithm used by the Ekahau software is not known, this still provides a

commercial benchmark for evaluation of our approach. Note that the same calibration

data was used for both the SPKS based tracker and the Ekahau’s positioning engine. In

order to prove that the accuracy of our SPKS based tracker is consistent over different

locations and subjects, the experimental results displayed in this work were performed at

three different sites with multiple subjects. The three test sites, described below, not only

demonstrate the superior accuracy of the proposed tracker compared to Ekahau tracking

engine but also expose the limitations of RSSI-based tracking in an indoor location.

3.5.1 Test Lab-I

The Point-of-Care test Lab-I is located at the “Wallowa” building, part of West Campus

at the Oregon Health & Science University (OHSU). The test site is setup with 5 access

points located at the four corners and at the center. A layout of the test Lab-I is shown in

Figure 3.4. The size of the test Lab-I is 60 ft by 30 ft. In the entire environment, calibration

was performed first in order to measure the RSSI variability emanating from each access

point. The floor plan was divided into P = 15 sections. Each room was considered a

section and the long corridors were divided into multiple sections. In each section 9 points

were chosen to perform calibration in such a way that 8 points formed the periphery of

an octagon and the remaining point was at the center of the octagon. At each calibration

point, a person carrying a RSSI tag spent around one minute to collect the training RSSI

data. Roughly 8 − 10 RSSI measurements were recorded at each calibration points for a

total of 1065 measurements.

As described earlier, a RBF network was used to fit a nonlinear map between known
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Table 3.2: Performance comparison of Ekahau tracking engine with different SPKS track-
ers at test Lab-I. The E(RMSE) and std(RMSE) is computed over 20 different trials.

Estimator E(RMSE) (ft) std(RMSE) (ft)

Ekahau(RSSI) 28.4 12
fixed-interval SPKS(RSSI) 5.68 1.95
fixed-interval SPKS(RSSI+footswitch) 1.44 0.5
fixed-lag SPKS with L = 3(RSSI) 8.45 4.2
fixed-lag SPKS with L = 3(RSSI+footswitch) 2.73 0.62
fixed-lag SPKS with L = 6(RSSI) 5.85 2.2
fixed-lag SPKS with L = 6(RSSI+footswitch) 1.58 0.6

calibration locations and the collected RSSI values. The raw RSSI at each calibration

point and the RSSI calibrated maps for 5 access point were shown in Figure 3.5(a)- 3.5(j).

We conducted several trials of moving test in which subjects walked at a normal speed

following a predefined path. Two different subjects were used as the RSSI variability is

observed to be subject dependent. In one trial, subject 1 took 174 s to complete the path

and 25 RSSI observations were recorded during that time period. Subject 2 completed the

same path in 164 s and recorded 19 RSSI observations. The sampling rate varied between

4 − 8 s during tracking. Multi-rate filtering was implemented so that the time-update

equations still provide estimates of the position and velocity at every second. Approximate

ground truth was collected periodically during the walking and is also shown in the plots.

Figure 3.6(a)- 3.9 compares the estimates obtained from the Ekahau engine and the SPKS

tracker. From Figure 3.6(a) and 3.8(a), it can be seen that the estimates from the Ekahau

tracking engine are very inaccurate and often fail to even locate the person in the correct

region/room. The fixed-interval based SPKS tracker with RSSI only observations clearly

tracks the person with greater accuracy (see Figure 3.6(b) and 3.8(b)).

The tracking performance of the SPKF, the fixed-interval RTSSL-SPKS and the fixed-

lag RTSSL-SPKS are compared in Figure 3.10- 3.11(b). Note that while the fixed interval

based RTSSL-SPKS uses all RSSI observations to obtain each smoothed estimate, the

fixed-lag RTSSL-SPKS takes into account the past, present and L future measurements

to provide the smoothed state at each time k. In this example, the lag between the

current measurement and the estimated state is equal to L = 3. Considering the sampling
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Figure 3.13: (a) to (e): Raw RSSI values from 5 access points collected during calibration
at Point-of-Care test Lab-II.
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Figure 3.14: (a) to (e): Fitted RBF maps on top of the mean of RSSI collected during
calibration at test Lab-II.

rate of 4 − 8 s, the corresponding lag introduces a latency of 12 − 24 s in the location

tracking framework. As shown, both the SPKS-based methods provide superior estimates

as compared to the SPKF estimates. Notice how the SPKF generates large “jumps” due to

poor sampling rate of the RSSI sensors. As shown in Figure 3.11(a) and 3.11(b), the SPKS

is free of such problem as the smoother provides superior interpolation of data using both

past and future observations. The fixed-interval based RTSSL-SPKS estimates are slightly

more accurate compared to its fixed-lag counterpart. Accuracy of the FL-SPKS improves

with increasing lag value and it becomes equal to that of the fixed-interval smoother for

lag L = 6, as demonstrated in Table 3.2.

When RSSI observations are integrated with foot-switch signals, the accuracy of the

SPKS based tracker improves even further (Figure 3.7 and 3.9). Note that we set the

variance of the foot-switch sensors to be 10 ft in our experiments.

Table 3.2 compares the estimation accuracy of fixed-interval and fixed-lag SPKS tech-

niques with the Ekahau tracking engine. The tracking accuracy of each estimator is

demonstrated in terms of mean of root-mean-square-error (RMSE) and standard devia-

tion (std) of RMSE for 20 different trials. We have selected three subjects and each subject

performs a number of walking tests in the lab. As is clearly evident from the table, both

the fixed-interval and fixed-lag SPKS significantly outperform the Ekahau tracking engine.
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Table 3.3: Performance comparison of Ekahau tracking engine with different SPKS track-
ers at test Lab-II. The E(RMSE) and std(RMSE) is computed over 20 different trials by
various subjects.

Estimator E(RMSE) (ft) std(RMSE) (ft)

Ekahau(RSSI) 20.22 8.2
fixed-interval SPKS(RSSI) 8.38 2.5
fixed-interval SPKS(RSSI+IR motion sensor) 6.25 2.22
fixed-lag SPKS with L = 3(RSSI) 11.6 3.4
fixed-lag SPKS with L = 3(RSSI+IR motion sensor) 9.55 2.8
fixed-lag SPKS with L = 6(RSSI) 8.86 2.4
fixed-lag SPKS with L = 6(RSSI+IR motion sensor) 7.02 2.36

3.5.2 Test Lab-II

The test Lab-II is located in the “Center for Health and Healing (CHH)” at OHSU.

The floor layout is shown in Figure 3.12. Similar to POCL test Lab-I, calibration was

performed here for each of the 5 Wi-Fi access points. The raw RSSI collected at each

calibration point and the RSSI calibrated maps for 5 access points are demonstrated in

Figure 3.13(a)- 3.14(e). Notice from the raw RSSI plots, there is no significant variation of

RSSI across the floor. This is due to the small size of the POCL Lab-II (30 ft by 22.5 ft).

The low RSSI variability across the test Lab-II is responsible in producing the RBF maps

which are almost “flat” and hence carry little information about one-to-one position-RSSI

mapping.

The lab is also fitted with a number of IR motion sensors instead of foot switches.

There are two variants of motion sensors installed in the houses based on their field-of-

view. The full beam width unconstrained sensors are generally installed one per room

and have variability that matches the full dimension of the room. The constrained sensors

have limited beam width and are generally installed along corridors. The variability of

the constrained sensors is thus significantly lower than the unconstrained ones.

In Figure 3.15(a)- 3.16, we demonstrate a walking experiment comparing the Ekahau

performance to the SPKS tracker. The Ekahau estimates as observed in Figure 3.15(a)

are mostly stuck in one portion of the house. The SPKS tracker performance using RSSI,

with and without the IR motion sensors are depicted in Figure 3.15(b) and 3.16. Note we
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Figure 3.15: Tracking performance in test Lab-II using only RSSI measurements, (a)
Ekahau estimates (red: ground truth, black: Ekahau estimate), (b) SPKS estimates using
RSSI measurements (red: ground truth, blue: SPKS estimate). The position of the access
points are shown by green circles on the floorplan. The furniture positions are shown as
magenta rectangular boxes.

only demonstrate the performance of the fixed-interval based RTSSL-SPKS in this section.

While still superior to the Ekahau estimates, the small size of the POCL Lab-II and the

presence of many pieces of furniture limit the performance of the SPKS tracker compared

to its performance in Lab-I. The limited performance of the SPKS is expected considering

how flat the observations maps are due to the low variability of RSSI across the floor. The

example with test Lab-II clearly exposes one of the fundamental limitations of localization
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Figure 3.16: Tracking performance in test Lab-II using RSSI + motion sensor, (a) SPKS
estimates using RSSI + motion sensor observations (red: ground truth, blue: SPKS esti-
mate). Small yellow rectangular boxes indicate the location of the motion sensors on the
floorplan.

using signal strength in an indoor environment. It also establishes the need of combining

measurements from multiple sensors in order to improve the tracking accuracy. As shown

in Figure 3.16, adding the motion sensors with RSSI improves the SPKS tracking accuracy

in spite of the high false alarm and large variability of the motion sensors.

Table 3.3 compares the estimation accuracy of fixed-interval and fixed-lag SPKS tech-

niques with Ekahau tracking engine in test Lab-II. The tracking accuracy of each estimator

is demonstrated in terms of mean of RMSE and standard deviation (std) of RMSE for

20 different trials performed by various subjects. As is evident from the table, both the

fixed-interval and the fixed-lag SPKS perform comparably but they clearly outperform

the Ekahau over all the trials.

3.5.3 Test Lab-III

In 3.18(a)-3.18(i), we demonstrate an additional moving test at a third location, which is

the real home of a person. This experiment is shown in this work to establish the superior

accuracy of the SPKS based tracker compared to the commercial Ekahau positioning

engine for room level localization. The size of Lab-III is 55 ft by 25 ft. The floorplan of

this site is shown in Figure 3.17(a). Similar to test Lab I and II, this living lab is also
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Figure 3.17: (a): Floor layout for test Lab-III. (b) to (e): Fitted RBF maps on top of the
means of RSSI collected during calibration at test Lab-III.

equipped with 5 wireless access points placed at four corners and at the center. The entire

floorplan is divided into 9 sections. In each section, an octagonal grid is formed to perform

calibration. Due to a problem with the RSSI tags, a limited amount of calibration data

was collected (only 212 RSSI measurements for the entire house). The RBF observation

maps were learned from this small calibration data set and we would thus expect worse

tracking performance corresponding to only room level localization accuracy. The fitted

RBF maps are displayed in Figure 3.17(b)-3.17(e). One of the access points reported RSSI

data packets only for nearby sections of the floor due to a tuning problem and hence can

not be used for localization. As described, this experiment provides us an opportunity to

determine the resiliency and robustness of our SPKS based tracking infrastructure in a

challenging environment.

During the moving test, a subject walked on the calibration grid points at each section

along a counter clockwise direction. Figure 3.18(a)-3.18(i) compare the Ekahau localiza-

tion performance with that of the SPKS tracker. As seen in figures, the Ekahau tracking
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Figure 3.18: (a)-(i): Performance comparison between the Ekahau (black) and the SPKS
(blue) at test Lab-III in terms of room-level accuracy. The position of the access points
are shown by green circles on the floorplan.

engine fails to localize the person in the correct section except for a single case (as shown in

Figure 3.18(g)). Most of the Ekahau estimates are randomly centered around the middle

of the entire floor plan. However, the fixed-interval RTSSL-SPKS based tracker correctly

localizes the person in all of the sections.

Table 3.4 summarizes the performance and superiority of the SPKS based tracker over

other popular estimation techniques, including the EKF, EKS and SPKF, in terms of

RMSE position error. As seen, the EKF, EKS, SPKF and SPKS all clearly outperform

the Ekahau. It is also verified that the SPKS has clear performance advantage over the

EKS. Table 3.5 displays the superior accuracy of the SPKS based tracker over the Ekahau

in terms of room level localization. The room accuracy corresponds to the percentage

of times the estimated location lies in the correct room (the section where the subject is

present). Room-level accuracy is an important metric, as instead of precise localization,

many real life applications operate at the level of rooms. The table verifies the ability of

the SPKS tracker to operate precisely at the room-level even when the calibration data is

small and some of the access points fail to operate as desired.
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Table 3.4: Performance comparison of the SPKS with other estimators in terms of RMSE.
Overall RMSE is calculated relative to the observed true trajectory over 50 different trials
performed at various test labs and real houses. RMSE for test Lab-III is not shown as
accurate ground truths were not available.

Estimator Overall Lab-I Lab-II

Ekahau (RSSI) 23.88 28.4 20.22
EKF(RSSI) 12.32 11.73 13.41
EKS(RSSI) 9.54 9.49 10.2
SPKF(RSSI) 8.95 8.21 9.85
SPKS(RSSI) 6.45 5.68 8.38
SPKS(RSSI+IR motion sensor) 5.92 N/A 6.26
SPKS(RSSI+footswitch) 1.44 1.44 N/A

Table 3.5: Performance comparison of the SPKS with the Ekahau in terms of room level
localization. Room level accuracy is defined as the percentage of times the estimated loca-
tion falls within the desired room. Overall room level accuracy is calculated by ensemble
averaging over 50 different trials performed at various test labs and real houses.

Estimator Overall Lab-I Lab-II Lab-III

Ekahau (RSSI) 58.8 54.32 62.3 60.95
SPKS(RSSI) 82.21 84.02 75.18 95.22
SPKS(RSSI+IR motion sensor) 83.2 N/A 77.08 95.34
SPKS(RSSI+footswitch) 97.78 97.78 N/A N/A

3.6 Discussion and Future Work

A new method and system have been developed for RSSI based indoor localization and

tracking. Instead of using simple fingerprinting or a fixed a priori distribution for the

RSSI tags, an observation function is generated from the RSSI calibration data by fitting

nonlinear maps between the known calibration locations and RSSI mean values. The RSSI

maps are incorporated into a Bayesian framework that fuses all sensor measurements with

a simple dynamic model of walking. The dynamic model consists of a random acceleration

model augmented with repulsive forces to account for the room-wall configurations. For the

Bayesian inference, we primarily consider the proposed fixed-interval and fixed-lag SPKS

estimators, which are derived from first principles in Chapter 2. The SPKS trackers

can provide superior interpolation using both past and future observations and hence

provide considerable improvement in the tracking accuracy compared to the standard
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SPKF. The SPKS tracker can accommodate a multi-rate processing where state estimates

are determined at a higher rate (e.g., every second) while the RSSI observations occur at

a slower update rate. Missing observations are also easily handled by the approach.

While the primary sensors are Wi-Fi tags, the approach can also incorporate multiple

types of sensors. In the current implementation, both IR motion sensors and simple

foot-switches were incorporated. As a predominantly software solution, the approach

provides the flexibility to incorporate sensors from multiple manufacturers. Performance

was evaluated in a number of “living laboratories”, where the tracking accuracy was

demonstrated to be superior to the available industry positioning engine developed by the

Ekahau Inc. The proposed system is currently being deployed into a number of houses in

order to continuously monitor elderly for clinical purposes.

Although the SPKS based approach is capable of accurate tracking, several factors

may limit the performance of the proposed approach. RSSI noise, spatial variability, and

sampling rate all affect accuracy. Complexity of the position-RSSI correspondence due

to the severe multipath, NLOS propagation, metal reflection, interference from other Wi-

Fi devices, and RSSI noise can pose significant challenges in successful generation of the

observation maps. The accuracy of the RSSI observation maps also depend on the number

of RSSI measurements collected over the entire indoor environment during calibration. A

sufficient number of calibration points at different locations must be selected to capture

the full spatial characteristics of the environment. The octagonal positioning used in this

study may or may not be sufficient. While a complex spatial variability in the RSSI makes

fitting the observation maps more difficult, the complexity of the maps is precisely what

makes tracking possible. A relative flat observation map is non informative. The actual

shape of the RSSI map is also influenced by the type, location, and orientation of the RF

access points, which must be properly located and tuned so that RSSI can be acquired

over the entire house for each access point. During tracking, accuracy is further influenced

by the RSSI noise and the sampling rate, which both contributes to location uncertainty.

The 4 − 8 s sampling rate in this study was due to the hardware limitations. Clearly a

faster sampling rate is always preferred. Incorporation of non-RSSI sensors may also affect

accuracy. In this work, IR motion sensors and foot-switches were used. However, we only
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incorporated a very simple model that did not account for beam patterns, false alarms,

or latency.

Future directions may include refined models of walking motion and better observation

models for the RSSI based tracking method. In this context, one can investigate whether

the RSSI based tracking framework can be augmented by a digital compass and accelerom-

eter sensors which may provide an additional orientation information. The orientation

information can be used either to improve the current dynamic model by changing to a

more sophisticated “heading” model or to learn orientation dependent RSSI radio maps

during calibration. A detailed sensor characterization test for motion sensors may also be

used which will help to understand the beam pattern and correspondingly to develop a

better likelihood model. In addition, self calibration based simultaneous localization and

mapping (SLAM) approach can also be designed, whereby the parameters of the RSSI

maps are continuously updated to account for changes in environment or to even avoid

the initial off-line calibration procedure. Tag-free solutions can also be investigated that

would provide an alternative to RSSI, allowing for unobtrusive localization without the

use of body worn tags.



Chapter 4

A Tag-free Solution to Unobtrusive

Indoor Tracking Using Wall-Mounted

Ultrasonic Transducers

4.1 Overview

In the previous chapter we applied the sigma-point Kalman smoother (SPKS) to track

a person in an indoor environment using RSSI observations. The RSSI based tracking

framework is tag-based where a user carries a radio transceiver tag while walking. In this

chapter, we propose a novel tag-free solution for indoor tracking using ultrasonic transduc-

ers or sonar units. The tracking is performed utilizing sonar-range maps learned from the

calibration data. We also apply the simultaneous localization and mapping (SLAM) algo-

rithm to track a person which simultaneously estimates the location of the wall-mounted

sonar units with user positions.

This chapter is organized as follows. Section 4.2 discusses the use of ultrasonic sensors

in tracking robots and underwater vehicles. It then summarizes the various components

of the SPKS based Bayesian inference algorithm used in our tracking system. Section 4.3

describes the data acquisition hardware, which captures the analog echoes. Section 4.4

shows the signal processing steps, which compute the 1D range of the moving person.

Section 4.5 describes the proposed SPKS based Bayesian inference algorithm which uses

learned observation maps and range measurements from active sonar units to track a

person. Section 4.6 implements two types of SLAM algorithms which simultaneously

computes the observation model parameters with the user state. Section 4.7 incorporates

128
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the range observations from passive sonar units into the system and demonstrates its

performance. Finally, Section 4.8 summarizes our contribution.

4.2 Introduction

There is a great demand for accurate indoor localization and tracking systems with the

recent advancement of context aware technologies. The next generation mobile applica-

tions often need to accurately locate a person in order to provide information about its

surroundings. As GPS is unable to provide location based information in an indoor en-

vironment, researchers are actively investigating various sensing technologies to develop

an accurate indoor positioning system. In this light, a plethora of sensors such as infra-

red (IR), ultra-sonic badges and radio-frequency (RF) based wireless local area network

(WLAN) have been proposed and widely used in indoor localization [40–42,48,49,89]. In

Section 3.2, we surveyed a number of current indoor people-tracking systems and their

architectures. All these different positioning systems require the user to carry a body-

borne receiver tag while walking. For example, a person to be tracked has to carry a

small IR tag in the Active Badge system that periodically transmits IR waveforms to a

network of sensors [40]. In the Cricket system, which uses RF and ultrasonic sensors,

the person carries a listening device that uses time of flight (TOF) difference between

the RF and ultrasonic waves in order to locate the user [42]. For the wireless local-area

network (WLAN) based tracking systems, such as Place-Lab and Ekahau, an user needs

to carry a RF transceiver in order to measure the Wi-Fi signal strength from multiple

access points [45, 46, 48]. Although the tag-based tracking systems can generate satis-

factory tracking accuracy, in some applications (e.g., monitoring activities of daily living

of seniors in independent living facilities), wearing a tag may be seen as undesirable or

simply a nuisance. In addition, most of the tag based systems require extensive calibra-

tion. Despite these limitations of the tag based approach, there are even fewer options for

tag-free monitoring system. Arrays of infra-red (IR) motion sensors may be employed to

determine the region-level location but the multiple IR systems are prohibitively expensive

and complicated to install. Mitsubishi Electric Research Laboratories, for example, has a
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prototype system that requires over 200 IR sensors to be installed in the ceiling of a large

office building [90]. Video-based tracking draws from advances in automated surveillance

and can often be very effective, though performance may degrade with complicated back-

ground clutter and other non-ideal environments [89, 91, 92]. The primary disincentive

to video-based tracking, however, is privacy concerns. People don’t want a video camera

in their home, constantly monitoring their activities. With these concerns in mind, we

propose utilizing ultrasonic range sensors for indoor tracking.

The study of well-known creatures like bats and dolphins shows that they use time-

of-flight (TOF) ranging approach to calculate distance from obstacles. Sound navigation

and ranging (sonar) method has traditionally been used to navigate an underwater vehicle

like submarines [93, 94]. It has also extensively been used to determine the distance and

direction of an underwater vehicle and to enable communication between vehicles [95,96].

Although the acoustic frequency used by the sonar technique varies from low (infrasonic)

to high (ultrasonic), the ultrasonic frequency based sonars are the most prevalent. In

addition to underwater navigation, the ultrasonic sonars have also found applications in

tracking position and orientation of indoor mobile robots [77, 97]. The robot or vehicle

is generally equipped with multiple sonar transducers which transmit ultrasonic wave at

periodic intervals and then waits for the corresponding echo. The accurate estimation of

propagation time, defined as the time duration between the instant of signal transmission

and its reception, is applied to compute the range of the surrounding obstacles. Each es-

timated range information is then used to triangulate the robot’s pose [98–100]. Recently,

the probabilistic Bayesian inference framework has also been employed to infer the robot’s

pose from multiple sonar range measurements [77,78,101,102]. Ultrasonic sensors are also

applied in indoor people-tracking using a tag-based approach. A commercially available

tag-based tracking system by Sonitor uses ultrasonic technology for tracking a person [44].

The user carries a small tag which emits its identification number via ultrasonics. Detec-

tors scattered throughout the environment receive this information and triangulate the

user’s location.

In this chapter, we present a novel tag-free solution for indoor location tracking that

utilizes low-cost wall-mounted ultrasonic transducers. The sonar modules transmit an
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ultrasonic wave at a periodic interval and capture analog echoes, which are then digitized

and analyzed in order to estimate the 1D range of the moving person. Simplistically, the

range corresponds to the strongest echo received after reflection. The proposed system

utilizes a number of signal processing techniques including Bandpass filtering, Hilbert

transformation, and background subtraction to remove interference from other objects

(e.g., chairs) in the room. An adaptive threshold is then used to determine the locations

of strong echoes. Finally, clustering is performed to determine several candidate range

estimates. These candidate range estimates from multiple transducers provide the obser-

vations for the subsequent tracking algorithm to determine a person’s 2D position and

velocity.

We implement a probabilistic Bayesian inference algorithm based on a fixed-lag sigma-

point Kalman smoother (FL-SPKS) in order to localize and track a person. The proposed

SPKS fuses a model of walking motion, room-wall configurations and all available sonar

range observations in order to track a person. Initially a random acceleration-based hu-

man walk model is used as the dynamic model of motion. Later, we apply the so-called

“coordinated turn (CT) model” [86], as it is more suitable to mimic the way a human

walks. The two dimensional CT based target maneuver model relies on target kinematics,

in contrast to the random acceleration model, which is based on random processes. The

CT model also takes into account the spatial coupling between dimensions. The target

maneuver model is augmented with a room-wall configuration involving a potential field

created throughout the indoor environment in order to repel motion away from walls.

This chapter provides a more detailed description and analysis of our methods that was

presented in [103].

Instead of using an observation model known a priori, we use two different methods

to estimate the parameters of the observation model. The first method is similar to what

we have implemented for RSSI based indoor tracking. This method uses the Radial-Basis

Function (RBF) network to learn a nonlinear mapping between known user locations and

range measurements. Note that each ultrasonic transducer has its own observation map

and these maps are fit during a separate offline calibration phase. Unfortunately the whole

calibration process is tedious, time consuming and also requires significant manual effort.
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In addition, any error in measuring the ground-truth directly affects the accuracy of the

learned model, which effectively degrades the state estimates. Hence our next phase of

research focusses on investigating a SLAM based “self-calibration” technique, whereby the

parameters of the observation models are continuously updated in the tracking phase to

account for changes in the environment or in order to make the initial off-line calibration

procedure redundant. The task is to simultaneously estimate the state of the person (2D

position, velocity and turn rate) and the parameters of the observation model. Parameters

correspond to the 2D sonar module locations along with a correction factor for the speed

of sound to account for multipath, reflection/refraction and other measurement errors.

A dual SPKS framework is introduced to tackle this problem that works by alternating

between using one SPKS to localize the user given the current estimated parameters, and

a second SPKS to update the estimate of the parameters given the current position of the

user.

An ultrasonic sensor is in “active” mode when it triggers an ultrasonic signal and

records the primary echo after it bounces off walls/targets. In “passive” mode, an ultra-

sonic sensor never transmits but only records the indirect reflections of an ultrasonic signal

coming from an active unit. Initially we only consider the range observations recorded by

the active sonar transducers for the tracking purposes. In the last phase of this work, we

investigate whether we can improve the tracking accuracy by incorporating the passive

range measurements with the already used active observations. Although the same SPKS

tracking algorithm is employed for this task, the dimension of the observation model is

increased in order to include the additional passive measurements.

Experiments were performed at a test lab where the performance of our tag-free sonar

based solution was compared with the commercial tag based Ubisense positioning en-

gine [49]. From the simulation results, it is clear that ultrasonic sensors can be success-

fully used to accurately track a person in an indoor location. The estimation accuracy

exhibited by our proposed tag-free tracker is shown to be comparable with the Ubisense

positioning engine. The SLAM approach, where the model parameters are learned online

in conjunction with the state estimates further improves the tracking accuracy. Finally,

we also demonstrate that incorporating the passive sonar ranges into the location tracking
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Figure 4.1: (a) Devantech Sonar Module. (b) Custom trigger generator board. (c) Se-
quential triggers of ultrasonic sensors.

indeed helps to localize the person with higher accuracy.

4.3 System Hardware and Data Acquisition

The sonar module selected for tracking is a low cost unit manufactured by Devantech Inc.,

which transmits ultrasonic pulses at the rate of 40 kHz. The ultrasonic signal emitted

from each sonar unit can travel up to a distance of 14 ft. The chosen module has two

separate transducers, one for transmitting the ultrasound and the other for listening the

corresponding echo. Each ultrasonic unit is mounted using a gimbal joint as shown in

Figure 4.1(a) in order to help translation and rotation along any direction on the wall.

The analog echo return is tapped from the output of the preamplifier stage lies at the

back of the sonar circuit board. For testing, 6 ultrasonic units were mounted on the walls



134

Active

Passive

Passive

Passive

Passive

Passive

a a

p a p

2m m

q m q

r d
r d d

p
1d

a
2d

1

2

3

4

5

6 a
2d

p
3dp

4d

p
5d

p
6d
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of a single room as illustrated in Figure 4.2.

The prototype system consists of a standard PC running MATLAB control software

connected to a 8 channel, 16 bit DAQ manufactured by Measurement Computing. The

DAQ is responsible for both controlling a custom “trigger circuit” and for digitizing all

analog sonar returns. Note that the signal is digitized using the DAQ at a sampling rate

of fs (fs = 250 kHz) to avoid aliasing. The trigger circuit, as displayed in Figure 4.1(b),

uses 555 multivibrators and flip-flops in order to fire the multiple ultrasonic sensors in a

sequential manner. A positive triggering edge generated from the CPU passes through

the trigger generator board which in turn fires a sonar unit. The corresponding unit
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becomes “active” and transmits an ultrasonic wave. The circuit board then waits for

a predetermined amount of time Tf mill-seconds (ms) (in this case, Tf = 30ms) for the

active unit to record the primary echoes. Simultaneously, the other sonar units are in

“passive” mode and only record indirect reflections or shadows coming from the active

unit. After Tf ms, the circuit board issues another trigger pulse to fire the next sonar unit,

which goes into the active mode. This procedure runs in a sequential manner until all 6

installed ultrasonic sensors have been fired. The sequential pattern of sonar triggering with

clock cycles for 6 sensor modules is displayed in Figure 4.1(c). Finally, all the collected

ultrasonic reflections with the synchronization timing information are transferred to the

CPU for further processing. Note that there exists a random time delay of Td ms (the mean

and standard deviation of Td,
(

Td
)

mean = 40ms and
(

Td
)

std = 50ms, are computed by

averaging over 1000 trials) between the CPU triggering and when the actual sonar firing

occurs. Exact knowledge of Td is essential in order to synchronize the data timing and is

provided by the trigger generator board. All the ultrasonic units are custom cabled with

the trigger generator using an OP-AMP cable driver circuit.

4.4 Signal Processing: Range Calculation

The following signal processing steps are carried out sequentially on a received ultrasonic

signal in order to determine range candidates, which provide the observations for the

subsequent tracking algorithm.

4.4.1 Bandpass Filtering

A raw ultrasonic reflection profile is shown in Figure 4.3(a). The raw data is collected at

the end of the preamplifier stage of a sonar module. In order to make the signal base-band,

the raw data is passed through a eighth-order zero-phase Butterworth-Bandpass filter with

lower and upper cutoff frequencies of fL and fH respectively (in this case, fL = 37 kHz and

fH = 42 kHz). The Bandpass filter also removes the DC component of the input signal.

As the frequency of the emitted ultrasonic wave is about 40 kHz, the cutoff frequencies

are chosen accordingly so that they can maintain the overall signal response while keeping
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Figure 4.3: Signal processing steps performed on each reflected signal in order to identify
the potential range candidates, (a) Raw analog signal, (b) Band-pass filtered signal with
envelope, (c) Sonar traces with background subtraction, (d) Adaptive threshold (magenta
shows the location where the sonar trace exceeds the threshold).

the distortion negligible. The Bandpass filtering is also the required preprocessing step for

envelope detection, which needs a base-band input. Figure 4.3(b) depicts the Bandpass

signal. Note that the signal consists of echoes from background objects and a moving

person. In fact, the echo return from the nearest object (a chair) is larger than the echo

from the person we are trying to track.

4.4.2 Envelope Detection and Downsampling

The output signal from the Bandpass filter is passed through a envelope detection block

in order to extract its instantaneous amplitude. The envelope detection method works

by creating a complex signal called an “analytic signal” of the input using a Hilbert

transformer [104]. The analytic signal consists of a real part which is the original signal
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Figure 4.4: Zoomed version of the sonar envelope.

and an imaginary part which is the Hilbert transform of the original signal. An n-point

Fast-Fourier Transform (FFT) is used to calculate the Hilbert transform. In order to match

the delay caused by the Hilbert transform, the original signal is time-delayed before being

added to the imaginary part of the signal. The instantaneous amplitude of the signal is

then extracted by calculating the absolute value of the analytic signal. In order to reduce

jitter and smooth the envelope, the result is also subjected to a low-pass filter.

In our experiment, signal downsampling is performed after the envelope detector. Re-

call that the sampling rate of the A/D converter while digitizing the received ultrasonic

signal is chosen to be sufficiently high (250 kHz) in order to prevent aliasing. As the

large number of samples add higher processing/storage requirements and are also unnec-

essary for future processing, a decimation step is followed on the extracted envelope of

the sonar signal. The decimation step applies a low pass filter on the input data and

then resamples the resulting smoothed signal at the rate of (fs)resamp kHz (we have

adopted (fs)resamp = 20 kHz). Note, the downsampled signal corresponds to a resolution

of 0.685 inch/sample, which we have found sufficient for our application. Figure 4.3(b)

displays the signal envelope in “red” with the Bandpass signal. Figure 4.4 is the zoomed

version of Figure 4.3(b), which demonstrates the performance of Hilbert transform based
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Figure 4.5: This figure maps a single range into the 2D location of a subject (magenta:
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envelope detection method. This final Bandpass, demodulated, and downsampled signal

is referred to as the sonar trace, sv
m,k(n), where m indicates the module index, k is the

time index for the 2Hz cycle rate, n is the time index of the trace sampled at 20 kHz, and

v ∈ {a, p} indicates whether the trace was an “active” or “passive” return.

4.4.3 Background Subtraction

The signal envelope may consist of echoes emanating from the moving person and back-

ground static objects (e.g., chairs in the room). The challenging problem lies in computing

the range of the person by removing echoes from static objects which may be closer in

distance and appear larger than the echo of interest. Simplistically, the range corresponds

to the timing at which the maximum energy from an echo is received. However, due to a

phenomenon called multipath interference, the reflected signal from a target can take both

direct and indirect paths to reach at the receiver. The variation of path lengths produces



139

0 1000 2000 3000 4000 5000 6000
1.35

1.4

1.45

1.5

1.55

1.6

Samples

Si
gn

al
 L

ev
el

 (V
ol

ts
)

0 1000 2000 3000 4000 5000 6000
−0.02

−0.01

0

0.01

0.02

Samples

Si
gn

al
 L

ev
el

 (V
ol

ts
)

 

 

Filtered data
Envelope

0 100 200 300 400 500 600
−0.02

−0.01

0

0.01

0.02

Samples

Si
gn

al
 L

ev
el

 (V
ol

ts
)

 

 

Fast sonar trace
Slow sonar trace
Difference trace

0 100 200 300 400 500 600
−0.02

−0.01

0

0.01

0.02

Samples

Si
gn

al
 L

ev
el

 (V
ol

ts
)

 

 

Difference trace
 Threshold
Multple ranges

person person

(c)

(b)(a)

(d)

r2

r1

r3

person

person
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phase differences among the waves reaching at the receiver which may cause signals to

interfere constructively or destructively with one another. As a result, the amplitude of

the sonar envelope becomes higher and lower with time, which indicates that the strongest

echo does not always correspond to the range of the person. In order to solve this prob-

lem, we apply the background subtraction by taking the difference of two time-averaged

versions of the sonar trace. Specifically,

sfastm,k (n) = λfsfastm,k−1 (n) +
(

1 − λf
)

sv
m,k (n) (4.1)

sslowm,k (n) = λssslowm,k−1 (n) +
(

1 − λs) sv
m,k (n) (4.2)

s∆m,k (n) = sfastm,k (n) − sslowm,k (n) , (4.3)
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where λf and λs are chosen to provide 1 s and 15 s time constants respectively. The

difference trace s∆
m,k (n) preserves only the strong echoes which possess the potential as

range candidates. These traces are illustrated in Figure 4.3(c).

4.4.4 Adaptive Threshold Selection

The next step involves determining an adaptive threshold that can be used on the difference

signal to determine the locations of strong echoes. While the background subtraction with

time averaging helps remove interference, signals still fluctuate in time. The variance of

this fluctuation is also affected by how close the echo is to the transceiver, as well as

the size and location of the person relative to other objects. We thus apply a threshold
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tthm,k (n), which adapts to the standard deviation of the difference signal.

tvarm,k (n) = λftvarm,k−1 (n) +
(

1 − λf
) [

s∆m,k (n)
]2

(4.4)

tthm,k (n) = α
√

tvarm,k (n), (4.5)

where α (we have used α = 4) is a threshold specific constant. Figure 4.3(d) displays

the adaptive threshold in “green”. The magenta blob demonstrates the location in the

difference trace that exceeds the threshold, indicating the range, r, of a subject from the

sonar unit. In the above figure, there is just one magenta blob, which maps the location

of the subject in 2-D to within a circle of radius r as shown in Figure 4.5. However, there

arises many cases when the signal envelope exceeds the threshold at multiple locations.

Figure 4.6 displays one typical example, which has three magenta blobs corresponding to

ranges r1, r2 and r3. Figure 4.7 demonstrates how multiple ranges denote three different

locations of the subject inside the room.

4.4.5 Clustering

The multiple strong echoes, which rise above the threshold are clustered and the center of

each cluster is regarded as the potential range candidate. Note that we do not have any

prior knowledge of the number of clusters each signal might contain and hence we have

implemented the iterative self-organizing data analysis algorithm (“ISODATA”) based

clustering technique for this purpose. The ISODATA is an iterative version to the popular

k-means algorithm [105], which can automatically select the number of clusters based on

some statistical criterions. The operation of the algorithm can be summarized as follows:

1. Perform k-means clustering

2. Split any clusters into two whose elements are sufficiently dissimilar

3. Merge any two clusters whose elements are sufficiently close

4. if there is any change in the total number of clusters, go back to (1)

else end.
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We have selected the following parameters in order to compare the elements within a

cluster and between two clusters

• σ2
c : Maximum spread of each cluster permitted before splitting

• Dc: Minimum distance between two clusters before merging

Note that the above parameters are application specific and are chosen using a 10 fold

cross validation procedure based on the criterion that maximizes the tracking accuracy.

The values of σ2
c and Dc used in this application are shown in Table 4.1. For more

details of the clustering algorithm, one can refer to [105]. The centroids of these clusters

represent the final range candidates, ri
m,k, where i is the candidate index. The set of

all range candidates from all sonar modules, both in active and passive mode, are then

collectively fed as observations zk either to the observation map based Bayesian estimator

(Section 4.5) or to the SLAM estimator (Section 4.6) for tracking the person.

4.5 Indoor Tracking Using Range Observation Maps

In this section, we apply the SPKS based recursive Bayesian estimation framework using

range observations and a predictive model of human walking to perform tag-free indoor

tracking. Note, here we have only considered range observations from active sonar units.

4.5.1 Recursive Bayesian Estimation Framework

Recall that the problem of recursive Bayesian estimation can be cast in terms of estimating

the state xk of a standard discrete-time nonlinear dynamic system,

xk+1 =fk (xk,vk) (4.6)

zk =hk (xk,nk) . (4.7)

In the following, we will define the different components of the above equations in the

context of ultrasonic range based tracking application.
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4.5.2 Dynamic Model

We consider a simple random acceleration based model [85, 86] and a CT model with

unknown turn rate ω [86] as the system dynamic model f(.). Both of these models

are augmented with a room model involving a potential field created throughout the

indoor environment in order to repel estimated motion away from walls. The potential

field based random acceleration model used here is exactly the same as that used in

the RSSI based tracking algorithm, which can be found in Section 3.3.1. The random

acceleration model assumes that the target acceleration is an independent (i.e., “white

noise”) random process and the target motion is uncoupled (or weakly coupled) across

different coordinates. Although this model is fairly simple to implement, a target maneuver

is rarely independent with respect to time. Hence in the next step, we consider a “CT”

model which relies on target kinematics and also takes into account spatial coupling across

coordinates. This “heading” based model is also more realistic given people tend to walk

forward (or backward) instead of sideways. In the following section, we provide a short

description for each of these models.

Random acceleration model

The state vector at time k corresponds to person’s 2D position and velocity

xk =

[

xk yk vxk
vyk

]

. (4.8)

This model is driven from time k to k + 1 by a white noise random process defined as

follows:

xk+1 = xk + δTvxk
+
δT 2

2
Fxk

(xk, yk) (4.9)

yk+1 = yk + δTvyk
+
δT 2

2
Fyk

(xk, yk) (4.10)

vxk+1
= λvxk

+ δTFxk
(xk, yk) + (1 − λ) vpx,k

(4.11)

vyk+1
= λvyk

+ δTFyk
(xk, yk) + (1 − λ) vpy,k

, (4.12)

where Fxk
(xk, yk) and Fyk

(xk, yk) are the x and y components of the resultant potential

field Fr(xk, yk) at time k. For more details about the potential field, refer to Section 3.3.1.
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The parameter λ smoothens the changes in velocities and also ensures that the variance

of random process remains bounded. The Euler integration time δT = 0.5 s. The process

noise is white Gaussian with zero mean

vp,k =

[

vpx,k
vpy,k

]

. (4.13)

Coordinated turn (CT) model with unknown turn rate

This model is based on the assumption that the target moves with nearly constant an-

gular rate ω perturbed by random noise. The model uses target kinematics which takes

into account the spatial coupling across x and y coordinates. In contrast to the random

acceleration model, the CT model includes the turn rate ωk as an extra component in the

state to be estimated. The new state vector is defined as:

xk =

[

xk yk vxk
vyk

ωk

]

(4.14)

The discrete time version of the CT model can be described as follows:

xk+1 = xk +
sin (ω̄kδT )

ω̄k
vxk

− 1 − cos (ω̄kδT )

ω̄k
vyk

+
δT 2

2
Fxk

(xk, yk) + vpx,k
(4.15)

yk+1 = yk +
1 − cos (ω̄kδT )

ω̄k
vxk

+
sin (ω̄kδT )

ω̄k
vyk

+
δT 2

2
Fyk

(xk, yk) + vpy,k
(4.16)

vxk+1
= cos (ω̄kδT ) vxk

− sin (ω̄kδT ) vyk
+ δTFxk

(xk, yk) + vpvx,k
(4.17)

vyk+1
= cos (ω̄kδT ) vyk

+ sin (ω̄kδT ) vxk
+ δTFyk

(xk, yk) + vpvy,k
(4.18)

ωk+1 = ωk + vpω,k
, (4.19)

where ω̄k is the central point of ωk+1 and ωk

ω̄k =
1

2
(ωk+1 + ωk) . (4.20)

Note that the CT model is nonlinear as ωk is a state component. The process noise vp,k,

defined as

vp,k =

[

vpx,k
vpy,k

vpvx,k
vpvy,k

vpω,k

]

, (4.21)

is zero mean white Gaussian and is used to model the perturbation of the trajectory from

the ideal CT motion.
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4.5.3 Observation Model

The observation model h(.) in the recursive Bayesian estimation context can be viewed as a

generative model which provides an observation prediction given the current state estimate.

In case of tracking using ultrasonic transducers, the task of each observation model is to

predict a circular arc with radius equal to person’s range given person’s current estimated

position. In this work, we learn the position-range relationship from the training data.

Similar to the observation map characterizing the RSSI-position relationship (as shown in

Section 3.3.2), a nonlinear map is fit between known locations and range values extracted

from each recorded signal. Note, as we have only considered active sonar measurements,

the number of observation maps to be learned is M = 6. Although adding a training

mechanism can increase the system overhead, it needs to be performed only once for a

given location.

Data to fit the maps are first collected during a training phase. We have employed

the Ubisense [49], which is an industry standard tag based tracking engine, in order to

collect user’s position in the calibration phase. In the training phase, a person carrying an

Ubisense tag walks around the entire room for Ttr s. For our experiment, we have chosen

Ttr = 15mins. While walking, the user follows a number of movement patterns namely

Lawnmower (vertical and horizontal), diagonal, circle, sine wave so that the system is not

biased to a particular data sequence. Typically, M number of ultrasonic transducers (we

have usedM = 6 for our experiment) are set up in the entire space to be calibrated in order

to record the echoes. Figure 4.2 displays the location of 6 ultrasonic units installed in the

test-area. Signal processing steps described in Section 4.4 are then applied to each recorded

ultrasonic signal to obtain potential range candidates. A recursive map learning algorithm

is used that iteratively learns an observation map by choosing a range candidate at time

k which is closest to the map predicted range corresponding to the current user position.

Before presenting the pseudo-code of the algorithm, we first describe the equations of the

observation maps and its parameters.

A RBF network is used to fit a nonlinear map between the Ubisense estimated positions

and range measurements obtained from each recorded signal. As we have already used the
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(a) (b) (c)

Figure 4.8: Sonar maps fit between known locations and observed range values.

same RBF framework in Section 3.3.2 for tracking a person using RSSI, we are not going

to provide much details here. However, in order to maintain continuity we summarize

below the observation model equations. This RBF map is represented as,

zm,k = hm (xk, yk) + nm (4.22)

where zm,k is the observed range from sonar module m, 1 ≤ m ≤ M , with noise nm

assumed to be Gaussian with zero mean and standard deviation determined from the

calibration data. The user position at time k is denoted as

xpk
=

[

xk yk

]

. (4.23)

The RBF observation map hm for the m-th ultrasonic module is specified by

hm (xk, yk) = W T
mKm,G

([

xk yk

]

;µm,Σm

)

, (4.24)

where K
m,G is the Gaussian kernel function [88] with mean vector µm and covariance

matrix Σm, and Wm are the output layer linear weights. These parameters are gener-

ally learned during RBF training process with known user positions and range values.

Figure 4.8 illustrates three different observation maps.

Each recorded signal corresponding to the ultrasonic transducer m provides a vector

of probable range candidates zm,k at time k

zm,k =

[

z1
m,k z2

m,k . . . zi
m,k . . . zIm,k

]

, (4.25)
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where zi
m,k is the centroid of the i-th cluster. The objective here is to devise a technique

that can facilitate selection of a suitable zm,k from the given pool of zm,k, which can then

be used for estimating the observation map hm, as described before.
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The pseudo-code of the recursive map learning algorithm for the m-th ultrasonic trans-

ducer is shown below. The algorithm takes the vector zm,k, which contains all the potential

range candidates, and the user position xk as inputs and generates an observation map

hm.

• Initialization

– j = 1

– For k = 1 : N

∗ Collect the potential range candidates zm,k.

∗ Select an initial zj
m,k from zm,k based on the cluster size, highest signal

level within a cluster, and proximity of previously calculated range.

– End For

– Form an augmented observation zm and augmented position Xm as below:

zj
m =

[

z
j
m,1 z

j
m,2 . . . z

j
m,k . . . z

j

m,N

]

(4.26)

Xm =

































x1 y1

x2 y2

...
...

xk yk

...
...

xN yN

































. (4.27)

• While hj
m 6= hj−1

m

– Map learning

Learn the RBF observation map hj
m for the m-th sensor using the correspon-

dence between Xm and zj
m.

– For k = 1 : N
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∗ Observation Prediction

Use hj
m to predict ẑj

m,k according to the formula

ẑ
j
m,k = hj

m (xk, yk) . (4.28)

∗ Gating

A suitable “gating” mechanism is applied on zm,k using ẑ
j
m,k to obtain

z
j+1
m,k . It chooses the closest range candidate zmin

m,k to the prediction ẑj
m,k. If

no candidate is found to be within some radius (e.g., 1 ft) then the entire

set of zm,k is discarded.

z
j+1
m,k = zmin

m,k . (4.29)

– End For

– Generate a new observation vector based on the gated measurements

zj+1
m =

[

z
j+1
m,1 z

j+1
m,2 . . . z

j+1
m,k . . . z

j+1

m,N

]

, (4.30)

– increment j: j = j + 1

• End While

• After the convergence is achieved (generally within 5 − 6 iterations),

zFm = zj
m, (4.31)

learn the final hm using the correspondence between zF
m and Xm.

The above algorithm is applied for all M ultrasonic units to generate hm, where 1 ≤ m ≤
M. We have further assumed that N number of training measurements are available to

learn each observation map hm. The final range zm,k, RBF map hm, and the observation

noise nm from each ultrasonic sensor are combined to form a multi-dimensional observation
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model,

zk =

[

z1,k z2,k . . . zm,k . . . zM,k

]

(4.32)

h =

[

h1 h2 . . . hm . . . hM

]

(4.33)

n =

[

n1 n2 . . . nm . . . nM

]

, (4.34)

where zk is the multi-dimensional range observations emanating from each sensor. Simi-

larly h and n are the augmented RBF observation model and the measurement noise for

sensors 1 ≤ m ≤ M.

4.5.4 SPKS Based Location Tracker

The SPKS based Bayesian inference algorithm is at the core of our tracking framework.

Specifically, we implement the fixed-lag RTSSL-SPKS (details of the FL-SPKS algorithm

is provided in Section 2.4), as it can operate at close to real time. In the FL-SPKS method,

we obtain an estimate of the state at time k−L given measurements up to and including

time k, where k is the time index and constantly moves forward. The time lag L is a

design specific constant and adds a fixed latency in the state estimator. The value of L

used in our experiment is shown in Table 4.1, which corresponds to a lag of 2 s between

the current observation and smoothed state. The fixed-lag RTSSL-SPKS divides the data

into blocks (e.g., N =
∑

Ni) and then sequentially performs the RTSSL-SPKS operation

on the buffered blocks of data as they become available. The mathematical formulation

of fixed-lag RTSSL-SPKS is shown in Section 2.4.4.

In order to incorporate the ultrasonic sensors into the SPKS location tracker, we need

to solve a number of problem specific issues such as gating and time-varying observation

dimensions. We first describe about those design issues before elaborately presenting the

pseudo-code of the SPKS.

Iterative gated measurement recursion

This section deals with integrating a gating mechanism with the SPKS estimation process.

The recorded ultrasonic signal for the m-th transducer at time k provides a set of range
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Figure 4.9: This schematic diagram demonstrates the “gating” procedure followed during
the SPKS estimation process. As shown, the Euclidian distances are computed from the
predicted range ẑm,k to each of the potential candidates. The candidate z2

m,k is chosen as

the distance d2 between ẑm,k and z2
m,k is the smallest.

candidates zm,k. Gating performs an iterated measurement update step in the forward

SPKF algorithm to select a final range observation zm,k from the set of candidates in zm,k,

for all 1 ≤ m ≤ M. Heuristically, the range measurement is first selected that is closest

to the predicted measurement based on the predicted state x̂−
k . Using this selected range,

the state estimate x̂k is updated, and then the process is repeated until convergence of

the state estimate.
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Below we demonstrate an algorithmic outline of the gated measurement recursion at

time k, which takes the time-updated state x̂−
k as input and generates an estimated state

xk.

• Initialization

x̂
j
k = x̂−

k . (4.35)

• While zj
k 6= z

j−1
k

– Observation prediction:

ẑ
j
m,k = hm

(

x̂
j
k

)

, ∀m = 1 . . .M (4.36)

– Gating

z
j
m,k = zmin

m,k , ∀m = 1 . . .M (4.37)

where zmin
m,k is the closest range candidate to the prediction ẑj

m,k. If no candidate

is found to be within some radius (e.g., 0.5 ft) then the entire set of zm,k is

discarded. The gating mechanism is adopted in Figure 4.9 to avoid confusion

from the four potential range candidates.

– The gated and predicted measurements from all the sonar units are combined

to form augmented observation vectors

z
j
k =

[

z
j
1,k z

j
2,k . . . z

j
m,k . . . z

j

M,k

]

(4.38)

ẑ
j
k =

[

ẑ
j
1,k ẑ

j
2,k . . . ẑ

j
m,k . . . ẑ

j

M,k

]

. (4.39)

– State Update

x̂
j+1
k = x̂−

k +Kj
k

(

z
j
k − ẑj

k

)

, (4.40)

where Kj
k is the Kalman gain at j-th iteration.
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– increment j: j = j + 1

• End While

• After convergence, the final state estimate at time k is

x̂k = x̂
j
k. (4.41)

Note, the above recursion generally takes less than 5 iterations to converge.

Time-varying observation dimensions

As noted in the gated measurement recursion algorithm, the dimension of the observation

vector varies over time. Hence one design challenge is to derive a SPKS based tracking

framework that can adapt to the time-varying observation dimensions. In order to ac-

complish the task, we maintain an event-log during SPKS operations which notes down

the specific sensors that generates an observation at time k. Note that the core SPKS

algorithm remains unaffected by the dimension change of the observation vector. As per

the event-log, an augmented observation vector, observation model and sensor noise vec-

tor are formed at each time k and used in the observation step of the SPKS estimation

process. This process although very simple and straightforward needs careful logging of

sensor events in order to accommodate the time-varying rate of data stream.

ISPKS algorithm

We implement a modified iterated sigma-point Kalman smoother (ISPKS), which inte-

grates the gating mechanism and the recursive measurement update of the iterated sigma-

point Kalman filter (ISPKF) in our tracking framework. ISPKF is first proposed by

Sibley et al. who have applied it in estimating a sequence of feature measurements for a

“long range stereo” system [106]. Unlike the standard EKF and SPKF, which uses the

one-step measurement update, the ISPKF employs the Gauss-Newton recursion in the

measurement update step that generates a maximum a posteriori (MAP) solution of the
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state [106,107]. Sibley et al. have demonstrated that the tracking accuracy of the ISPKF

is significantly higher compared to the EKF/SPKF based estimator in the “long range

stereo” application. However, the measurement recursion adopted by the ISPKF is com-

putationally intensive compared to the EKF/SPKF, which increases the computational

cost from O
(

M3
)

to O
(

JM3
)

at each k, where J is the number of iterations performed.

Since the gating procedure is based on an iteration of the state estimate, we may

also follow the Gauss-Newton recursive state update procedure to take advantage of this

iteration. However, in practice we have found that the ISPKF provides only minor im-

provements in tracking performance for our application. Further work is needed to better

characterize the benefits of both the ISPKF and the gating mechanism to determine

whether the extra complexity is warranted.

Below we present the complete pseudo-code of the ISPKS algorithm with gating. The

forward filter is the ISPKF, which uses the same time-update equations as the standard

SPKF. However, the measurement-update step of the ISPKF consists of a state-update

iteration instead of the standard one-step measurement-update followed by the SPKF.

The gating mechanism as outlined in Section 4.5.4 is applied at each iteration of the

measurement-update step. The iterative posterior state update Equation (4.65), which

computes x̂l
k, contains all the terms of the standard SPKF and an additional MAP cor-

rection term involving the Kalman gain, cross-error covariance between the state and

observation, state prediction covariance and the difference between the predicted state

and previous iterated state. New sigma points are extracted at each iteration from the

latest estimate of the posterior state distribution with mean x̂l
k (superscript l denotes iter-

ation) and covariance Pxk
, which are propagated over the observation model h to compute

a new measurement prediction
(

ẑl
k

)−
. Gating is applied on the range candidates using

(

ẑl
k

)−
and a new posterior state x̂l+1

k is adapted using the state update Equation (4.65).

This process is repeated until convergence, which is achieved when the MSE between two

consecutive posterior states x̂l
k and x̂l+1

k becomes less than 0.5 ft. Note, for the first time

through the measurement-update loop (l = 1), we obtain the standard measurement up-

date of the SPKF. After convergence of the forward ISPKF, a backward RTS smoothing

pass is then followed on the forward filtering results within a L sized window to obtain
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the smoothed estimates.

• Forward Filter Initialization:

x̂0 = E [x0] (4.42)

Px0
= E

[

(x0 − x̂0) (x0 − x̂0)
T
]

(4.43)

x̂a
0 = E

[

xa
0

]

(4.44)

=

[

x̂T
0 v̂T

0 n̂T
0

]T

(4.45)

P a
x0

=
[

(

xa
0 − x̂a

0

) (

xa
0 − x̂a

0

)T
]

(4.46)

=













Px0
0 0

0 Q0 0

0 0 R0













(4.47)

• While j ≤ N

1. Forward filter Recursions:

– For k = j − L, j − L+ 1, . . . , j

– Calculate sigma points:

χa
k =

[

x̂a
k x̂a

k +

√

(

Ḿ + λ
)

P a
xk

x̂a
k −

√

(

Ḿ + λ
)

P a
xk

]

(4.48)

– Time-update equations:

χx
i,k+1|k = f

(

χx
i,k,χ

v
i,k

)

i = 0, 1, . . . , 2Ḿ (4.49)

x̂−
k+1 =

2Ḿ
∑

i=0

w
(m)
i χx

i,k+1|k (4.50)

P−
xk+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
ij

(

χx
i,k+1|k − x̂−

k+1

)(

χx
j,k+1|k − x̂−

k+1

)T
(4.51)
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– Weighted Statistical Linearization of f(.):

Pxkx−

k+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

wc
ij

(

χx
j,k − x̂k

) (

χx
i,k+1|k − x̂−1

k+1

)T
(4.52)

Af,k = P T
xkx−

k+1

P−1
xk

(4.53)

bf,k = x̂−
k+1 −Af,kx̂k (4.54)

Pεf ,k = P−
xk+1

−Af,kPxk
AT

f,k (4.55)

– Measurement-update equations:

γi,k+1|k = h
(

χx
i,k+1|k,χ

n
i,k

)

i = 0, 1, . . . , 2Ḿ (4.56)

ẑ−k+1 =
2Ḿ
∑

i=0

w
(m)
i γi,k+1|k (4.57)

– Measurement-update recursions:

The Gauss-Newton recursion followed in the measurement update step is

shown below:

∗ Initialization:

γ0
i,k+1 = γi,k+1|k (4.58)

(

ẑ0
k+1

)−
= ẑ−k+1 (4.59)

(

χ0
i,k+1

)x
= χx

i,k+1|k (4.60)

x̂0
k+1 = x̂−

k+1 (4.61)

∗ For l = 1, 2, . . . Lc

· Apply gating to determine zl
k+1.
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· State update:

P l
z̃k+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

(

γl−1
j,k+1 −

(

ẑl−1
k+1

)−
)

.

(

γl−1
i,k+1 −

(

ẑl−1
k+1

)−
)T

(4.62)

P l
xk+1zk+1

=
2Ḿ
∑

i=0

2Ḿ
∑

j=0

w
(c)
i,j

((

χl−1
j,k+1

)x
− x̂l−1

k+1

)

.

(

γl−1
i,k+1 −

(

ẑl−1
k+1

)−
)T

(4.63)

Kl
k+1 = P l

xk+1zk+1

(

P l
z̃k+1

)−1
(4.64)

x̂l
k+1 = x̂−

k+1 +Kl
k+1

(

zl
k+1 −

(

ẑl−1
k+1

)−
)

−

Kl
k+1

(

P l
xk+1zk+1

)T (

P−
xk+1

)−1 (

x̂−
k+1 − x̂l−1

k+1

)

(4.65)

· Sigma-points extraction:

(

x̂l
k+1

)a
=

[

(

x̂l
k+1

)T
nT

]T

(4.66)

(

P l
xk+1

)a
=







Pxk
0

0 Rk






(4.67)

(

χl
k+1

)a
=















(

x̂l
k+1

)a

(

x̂l
k+1

)a
+

√

(

Ḿ + λ
) (

P l
xk+1

)a

(

x̂l
k+1

)a
−
√

(

Ḿ + λ
) (

P l
xk+1

)a















(4.68)

· Observation prediction:

γl
i,k+1 = h

((

χl
i,k+1

)x
,
(

χl
i,k+1

)n)

i = 0, . . . , 2Ḿ (4.69)

(

ẑl
k+1

)−
=

2Ḿ
∑

i=0

w
(m)
i γl

i,k+1 (4.70)

∗ End For

– Compute the final state estimate and state estimation error covariance at
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time k + 1

x̂k+1 = x̂l
k+1 (4.71)

Pxk+1
= P−

xk+1
−Kl

k+1P
l
z̃k+1

(

Kl
k+1

)T
(4.72)

– Weighted Statistical Linearization of h(.):

Ah,k = P T
xk+1zk+1

(

P−
xk+1

)−1
(4.73)

bh,k = ẑ−k+1 −Ah,kx̂
−
k+1 (4.74)

Pεh,k = Pz̃k+1
−Ah,kP

−
xk+1

AT
h,k (4.75)

– End For

2. Backward smoothing :

– For k = j, j − 1, j − 2, . . . , j − L+ 1, j − L

∗ Error covariance smoothing :

Dk = Pxk
AT

f,k

(

P−
xk+1

)−1
(4.76)

P s
k = Pxk

−Dk

(

P−
xk+1

− P s
k+1

)

DT
k (4.77)

∗ State estimate smoothing :

x̂s
k = x̂k +Dk

(

x̂s
k+1 − x̂−

k+1

)

(4.78)

– End For

• Increment j by one: j = j + 1

• End While

• where:

xa =

[

xT vT nT

]T

(4.79)

χa =

[

(χx)T (χv)T (χn)T
]T

(4.80)

P a
xk

=













Pxk
0 0

0 Qk 0

0 0 Rk













(4.81)
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• Parameters:

λ is the composite scaling parameter

λ =α2
(

Ḿ + κ
)

− Ḿ, (4.82)

and w
(c)
i and w

(m)
i are the scaler sigma-point weights defined as:

w
(c)
0 =

λ
(

Ḿ + λ
) +

(

1 − α2 + β
)

, i = 0 (4.83)

w
(m)
0 =

λ
(

Ḿ + λ
) , i = 0 (4.84)

w
(c)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ (4.85)

w
(m)
i =

1

2
(

Ḿ + λ
) , i = 1, 2, . . . , 2Ḿ (4.86)

where M is the dimension of each state, Ḿ is the dimension of each augmented

state, Qk is the process-noise covariance and Rk is the observation-noise covariance.

The length of the observation sequence is N and L is the lag between the current

measurement and the estimated state. The final smoothed state and associated

error covariance are denoted as x̂s
k and P s

k respectively. The values of the SPKF

parameters are shown in Table 4.1. Note that in the standard ISPKF implementation

Lc is taken as a small fixed value. In our implementation, Lc is determined from

the MSE criterion between x̂l
k and x̂l+1

k .

Table 4.1 demonstrates the user-specified parameters needed to implement the SPKS based

location tracker.

4.5.5 Experimental Results

Implementation and testing were performed at a test Lab (called Sonar-Lab) located in

the “Jack-Murdock” building at the Oregon Health & Science University (OHSU). The

test Lab is 19.2 ft by 14.8 ft cluttered with various office furniture. A number of trials
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Table 4.1: Summary of user-specified parameters

Name Symbol Value

Time constant for AR averaging (short) Tsc 1 s
Time constant for AR averaging (long) Tlc 15 s
Potential field force constant Fcr 10
Euler Integration time δT 0.5 s
Smoothing AR coefficient λ 0.95
Number of ultrasonic sensors M 6
Measurement lag L 4
Sigma-Point spread α 0.85
Sigma-Point weighting term β 2
Sigma-Point parameter κ 0
Time spent for training Ttr 15min
Sampling rate of the SPKS fs 2Hz
Max sample spread allowed in one cluster σ2

c 40
Min sample distance between two clusters Dc 25

were conducted in the test Lab in which different subjects followed random trajectories.

In order to obtain a commercial benchmark for evaluation of our approach, the Ubisense

real-time tracking engine was turned on during these tests. Four Ubisense access points

and six ultrasonic transducers were set up at various locations of the test Lab.

Ubisense is a commercial tag based positioning engine which uses the ultra-wideband

(UWB) radio technology to detect a mobile Ubisense tag. Ubisense places multiple access

points at the predefined locations of the room which transmits UWB signals at periodic

intervals. The person carries a receiver tag which independently determines the “angle-of-

arrival (AOA)” of the UWB signal and the “time difference of arrival (TOA)” between

a pair of sensors in order to perform positioning. The Ubisense positioning engine can

provide centimeter level tracking accuracy if the person’s tag is always viewed along a

direct path by at least two access points. The drawback of Ubisense is it is costly, tag-

based and its calibration mechanism, which includes positioning the access points at the

optimal orientations relative to the tag involves several implementation challenges.

In order to perform user localization and continuous tracking, our system was first

calibrated in order to generate the observation maps from the training data. During the

calibration phase for the ISPKS based tracking system, a person carrying an Ubisense tag
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Figure 4.10: Tracking performance in Sonar-Lab (red : Ubisense estimates, blue: ISPKS
estimates). The root-mean-square-error (RMSE) between the ISPKS and the Ubisense
estimated positions is equal to RMSE = 1.95 ft. The above tracking result is shown for
subject 1. The start and end positions for the Ubisense and sonar trajectories are marked
for better visualization.

walked around the whole test location for Ttr = 15mins. Roughly 2 − 3 measurements

per second from all 6 ultrasonic sensors were recorded during training for a total of 2341

measurements. As described in Section 4.5.3, a recursive RBF network was used to fit

a nonlinear map between the Ubisense estimated user locations and the person’s ranges.

Three representative range calibrated observation maps are depicted in Figure 4.8.

Our objective is to compare the tracking performance of the tag-free ISPKS estimator

with the Ubisense positioning engine. In order to demonstrate that the accuracy of the

ISPKS tracker is consistent over multiple subjects, we performed three trials of moving

test in which three different subjects walked at a normal speed in the Sonar-Lab. Note
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Figure 4.11: Tracking performance in Sonar-Lab (red : Ubisense estimates, blue: ISPKS
estimates). The RMSE between the ISPKS and the Ubisense estimated positions is equal
to RMSE = 2.52 ft. The above tracking result is shown for subject 2. The start and end
positions for the Ubisense and sonar trajectories are marked for better visualization.

that the subjects followed different trajectories while walking. Subject 1 took 30 s to

complete the path and 78 range observations were recorded during that time period.

Subject 2 completed another path in 60 s and recorded 157 range observations. Subject

3 also walked for 60 s and recorded 164 measurements. Although the sampling rate of

the incoming ultrasonic sensor data was found to vary between 333 − 500ms, the ISPKS

estimator was operated at a fixed rate of 2Hz during tracking. In the tracking examples,

the lag between the current measurement and smoothed state was set to L = 4, which

corresponds to a a time delay of LδT = 2 s, but provides for smoother trajectory estimates.

Figure 4.10-4.12 compares the position estimates obtained from the Ubisense engine

and the ISPKS tracker. From the experimental results, it is clearly evident that the
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Figure 4.12: Tracking performance in Sonar-Lab (red : Ubisense estimates, blue: ISPKS
estimates). The RMSE between the ISPKS and the Ubisense estimated positions is equal
to RMSE = 2.84 ft. The above tracking result is shown for subject 3. The start and end
positions for the Ubisense and sonar trajectories are marked for better visualization.

position estimates computed by the ISPKS is comparable with the Ubisense positioning

engine. Notice in Figure 4.10-4.12 how Ubisense sometimes generates large jumps in

its estimates. This occurs due to the failure of the Ubisense tag to always maintaining

a direct line of sight with at least two of the access points. In contrast, the ISPKS

tracker consistently provides smooth estimates. In addition, the estimation accuracy of

the proposed ISPKS is also shown to be consistent over multiple subjects and different

paths. Only the performance of the ISPKS tracker using the CT model as system dynamics

is demonstrated in the figures. The CT model is chosen because it is more realistic

and it takes into account the spatial coupling across 2D coordinates. Figure 4.13(a)-

4.13(b) compares the performance of the CT based ISPKS with that based on a random
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Figure 4.13: Performance of the ISPKS based trackers using two different dynamic models
(red : Ubisense estimates, blue: ISPKS estimates). (a) ISPKS estimates using random
acceleration based model, (b) ISPKS estimates using CT model with unknown turn rate.

−5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

x (ft)

y 
(ft

)

 

 
Ubisense est
Sonar est
Ubisense st pos
Ubisense end pos
Sonar st pos
Sonar end pos

(a) RMSE=3.94 ft

−5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

x (ft)

y 
(ft

)

 

 
Ubisense est
Sonar est
Ubisense st pos
Ubisense end pos
Sonar st pos
Sonar end pos

(b) RMSE=1.95 ft

Figure 4.14: Performance of the ISPKF and ISPKS based trackers in estimating user
positions(red : Ubisense estimates, blue: ISPKF/ISPKS estimates). (a) ISPKF estimates,
(b) ISPKS estimates.

acceleration model. As shown, the estimates obtained from the CT based ISPKS are

slightly more accurate compared to that of the random acceleration model.

The tracking performance of the ISPKF and ISPKS are compared in Figure 4.14(a)-

4.14(b). Note that the ISPKF also applies the recursive gating technique as the ISPKS.

As shown, the ISPKS estimates are superior to the ISPKF. Like Ubisense, the ISPKF

also demonstrates “jumps” at some parts of the estimation trajectory. The ISPKS is free
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Figure 4.15: Tracking Performance of the ISPKS in estimating user positions(red :
Ubisense estimates, blue: ISPKS estimates). The above plots are for two trials performed
by different subjects.

Table 4.2: Tracking performance of the ISPKS and ISPKF. The mean and standard
deviation of RMSE is calculated by averaging over 50 different trials performed at the
Sonar-Lab.

Estimator E(RMSE) (ft) std(RMSE) (ft)

ISPKF 4.78 2.2
ISPKS 3.08 1.75

of such problem as the smoother provides superior interpolation of data using both past

and future observations. Table 4.2 tabulates the RMSE between the Ubisense and ISPKS

estimates computed using 50 different trials performed at the Sonar-Lab. Note that the

trials were performed by multiple subjects and each subject followed a separate random

trajectory while walking.

There exists a few trials where we have found that the ISPKS tracker is not very

accurate in position estimation. Figure 4.15(a) and 4.15(b) demonstrate two such cases.

One likely cause of lower accuracy may be related to the inaccurate modeling of observation

maps. Lack of sufficient training data, failure to identify the correct range from the range

candidates are might be some of the reasons which prevent from generating accurate

observation maps. Learning observation maps also involve a calibration phase, which

is a time consuming and tedious process. In the following we demonstrate our recent

effort in investigating the “simultaneous localization and mapping (SLAM)” whereby the
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parameters of the observation models are continuously updated in the tracking phase to

account for the lack of observation maps.

4.6 Simultaneous Localization and Mapping (SLAM)

4.6.1 Introduction

SLAM defines the task of simultaneously estimating the state of a moving agent (for e.g.

position, velocity and attitude) and a map of the surrounding environment given limited

sensing capabilities. The SLAM technique is essential in order to safely navigate a vehicle

in an environment that is constantly changing or when no a priori knowledge is available

about the surroundings. The state estimation and map generation processes are inter-

dependent, i.e. based on the map of the environment, the SLAM algorithm estimates the

state of the agent while the state estimates are then further used to re-tune the maps. The

simultaneous map-building feature of the SLAM algorithm has proved highly beneficial in

locating an unmanned vehicle in an unsurveyed environment without any direct positioning

sensor. As no a priori knowledge is needed for the environment and the initial state of

the vehicle, the prospect of SLAM algorithm has attracted a great deal of attention in the

mobile robotics and autonomous vehicle navigation communities [3, 4, 108–113].

There are two predominant approaches to the SLAM problem as seen in the literature.

One approach, called a landmark aided navigation system (LANS) models the environment

by estimating the location of the landmarks scattered throughout and based on this model

estimates the agent’s state [4, 112]. The noisy range from each landmark is generally

observed using the radar/sonar sensors, which is then used to estimate both the state

of the agent and position of each landmark. The other approach, called a terrain aided

navigation system (TANS), builds an environmental map from the concurrent terrain

information provided by its sensors and then generates state estimates based on it [2,114].

Key aspects of this approach include the choice of representation for the map and the

algorithms to perform the estimation or map building. For both of these approaches,

the prevailing method is to use the EKF to fuse the measurements from various sensors

in order to estimate the state and the map [2, 4]. Research has also been performed
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on comparing alternative stochastic estimation techniques. For example, a constrained

hidden Markov model (HMM) was applied for the TANS approach [114]. A few research

teams also tackled the SLAM problem using batch estimation techniques [115]. However,

the major disadvantage in these techniques is that they cannot be operated in an online

mode. The use of the UKF [22] to replace the EKF has also been proposed for unmanned

aerial vehicle (UAV) navigation. In [5], an UKF was implemented to navigate a small

UAV through an unsurveyed environment.

This work applies both the TANS and LANS based SLAM approaches in our ultra-

sonic range based tracking framework to simultaneously estimate the observation model

parameters with the person’s state. Although the use of SLAM is prevalent in robot and

UAV navigation systems for modeling an unknown environment, we are not aware of any

literature that applied the SLAM approaches in the tag-free indoor tracking case. In the

TANS based approach, the RBF observation maps characterize the environment. Like

the map-based tracking approach described in the previous section, we still use a separate

calibration phase to learn the parameters of each observation map. However, instead of

keeping the parameters fixed during the tracking phase, we constantly update the map

parameters at each time k using the currently estimated position. The newly generated

observation maps at time k are then used to estimate the user’s state x̂k+1 at time k+ 1.

The re-estimation of the observation maps not only accounts for changes in environment

but also helps to alleviate any inaccuracies involved in map-learning during the calibration

phase. In the LANS based tracking method, the location of each sonar unit is simultane-

ously estimated with the state vector using the sonar range observations. A dual Kalman

framework is introduced to tackle this problem that works by alternating between using

one SPKS to localize the user given the current estimated locations of the ultrasonic trans-

ducers, and a second SPKS to update the 2D sonar module locations given the current

position of the user. The dual framework is first proposed by Wan et al. [116]. In addition

to the 2D locations of the transducers, the observation model also contains a “correction

factor” to take into account various noise and modeling errors. As both the state of the

person and observation model parameters are estimated online during the tracking phase,

the offline calibration phase is no longer needed and hence completely eliminated from
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Figure 4.16: Sequential state and map estimation procedure in TANS-SLAM. An ISPKS
is used for state estimation and the RBF learning algorithm is applied to estimate the
observation map parameters.

the LANS framework. The “self-calibration” procedure saves a significant amount of time

and manual effort, which could be very useful in some applications (e.g., installing the

ultrasonic transducers into hundreds of homes to monitor daily living of seniors).

4.6.2 TANS Based SLAM Algorithm For Indoor Tracking

In the TANS based approach, the objective is to simultaneously estimate the parameters of

each observation map with the user state using the range information from the sonar units.

As the sensor observation maps represent the tracking environment, the idea here is to

constantly adapt them using the state estimates in order to reflect environmental changes.

A calibration phase still needs to be performed, where we learn the initial observation

maps corresponding between known user positions and observed ranges. User tracking

involves two estimation procedures to be performed concurrently:

1. An ISPKS tracker takes into account the previously generated observation maps ĥk

and the new range measurements zk+1 to compute the new state estimate x̂k+1.

2. The estimated user position in x̂k+1 and the observed range zk+1 are augmented

with their previous values obtained during the tracking and calibration phase. The

RBF learning process is adopted that fits a nonlinear map for each sonar transducer

corresponding between the augmented user position and range measurements to

compute new observation maps ĥk+1.
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Note that in the above SLAM procedure, the state estimation occurs using the ISPKS, but

the observation maps are learned using the two phase RBF learning algorithm described

in Section 3.3.2. In this case, the ISPKS and RBF learning algorithm used only the range

measurements recorded by the active ultrasonic units. The TANS-SLAM method is shown

schematically in Figure 4.16. We can also use a dual framework in this case, where two

ISPKS filters may be applied to estimate the state and observation maps. However, due

to the large dimension of the observation map parameters, we avoid using the ISPKS for

the observation maps as it can significantly increase the computational complexity of the

estimation process.

In this context, we want to refer to our previous work where we have estimated the

state of a vehicle (position and velocity) in an unknown environment using a low cost

inertial measurement unit (IMU) and three simple terrain sensors. Each terrain sensor

is simulated to provide noisy measurements of some “characteristic” (for e.g. altitude,

temperature, or vision based features) of the environment at the current vehicle location.

A dual Kalman framework, where two SPKF filters run concurrently to estimate the

vehicle state and environment map parameters is adopted in our simulation. The details

of our work with experimental results are shown at the end of this chapter in Appendix 4.9.

SLAM Framework

The state space model for dealing with the SLAM problem in the TANS based system is

defined as,

xk+1 =fk (xk,vk) (4.87)

zk =hk (xk,wk,nk) . (4.88)

Note that wk corresponds to the parameters for the observation map hk at time k. The

parameters wk are adapted at each time k using the current estimated state and noisy

sensor measurements. In the following, we will define the different components of the

above equations in the context of ultrasonic range based tracking application.
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Dynamic Model

The state vector is the same as shown in Section 4.5.2, which includes the person’s 2D

position, velocity and unknown turn rate

xk =

[

xk yk vxk
vyk

ωk

]

. (4.89)

We follow the same potential field embedded “CT” model as described in Section 4.5.2

for the dynamic model fk.

Observation Model

We have used the same RBF observation model, which is covered in Section 4.5.3. Here

we will provide a brief summary in order to identify the observation model parameters

that we are going to learn. The observation model hm for the m-th sensor, which maps

the known 2D positions into the 1D ranges, can be defined as follows

zm,k = hm (xk, yk) + nm, (4.90)

where zm,k is the observed range from sensor m, 1 ≤ m ≤ M , which is chosen from

several range candidates by applying a gating mechanism as shown in Section 4.5.3. The

2D user position is denoted as

[

xk yk

]

. The RBF observation map hm is comprised of

several parameters

hm (xk, yk) = W T
mKm,G

([

xk yk

]

;µm,Σm

)

, (4.91)

where Km,G is denoted as the Gaussian kernel function [88] with mean vector µm and

covariance matrix Σm and Wm is the weights for the output layer. The parameters for

the m-th sensor can be denoted as a single vector wm

wm =

[

Wm µm Σm

]

. (4.92)
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The parameter vector wm is learned by fitting a nonlinear map between the augmented

measurement zm and the user position X collected during the calibration phase, where

zm =

[

zm,1 zm,2 · · · zm,k · · · zm,N

]

(4.93)

X =




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. (4.94)

The measurement vector zm, weight parameter wm, and observation noise nm from each

ultrasonic transducer are combined to form a multi-dimensional observation model,

z =

[

z1 z2 . . . zm . . . zM

]

(4.95)

w =

[

w1 w2 . . . wm . . . wM
]

(4.96)

n =

[

n1 n2 . . . nm . . . nM

]

, (4.97)

where z, wm and n are the augmented measurement vector, weight parameter vector and

measurement noise for M number of ultrasonic transducers.

SLAM Algorithm

Our objective is to develop an estimation framework that works by alternating between

learning the map parameters given the current estimated position of the user, and using

the newly obtained maps to localize the user. Note, the estimator is operated at a fixed

rate of fs = 2Hz. At k = 0, before the first measurement arrives, the map parameters are

initialized as

ŵ0 = w, (4.98)
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Figure 4.17: Comparison of the tracking performance between the TANS-SLAM and
range-map estimation using two different trials, (a) to (b): range-map estimation results
(blue): user positions are estimated using fixed observation maps learned during the cali-
bration phase. (c) to (d): TANS-SLAM results (blue): user positions are estimated using
simultaneous learning of observation map parameters. The Ubisense results red provide
the ground truth for comparison.

where w is the augmented parameter vector that is learned during the calibration. Fur-

thermore, the augmented measurement and user position at time k = 0 are denoted as

z0 = z (4.99)

X0 = X, (4.100)

where z and X are obtained in the calibration phase.
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After the arrival of a new user range zm,k ∀m, 1 ≤ m ≤ M, the ISPKS equations with

gating, as shown in Section 4.5.4, are applied to estimate the user state at time k, x̂k. Note

that the estimation of x̂k takes into account the observation maps with parameters ŵk−1

learned at the previous time step. The position estimate, x̂k and the range measurement

zm,k are then augmented with Xk−1 and zm,k−1 to form a new measurement and position

vector zm,k and Xk respectively

zm,k =

[

zm,k−1 zm,k

]

(4.101)

Xk =

[

Xk−1 x̂k

]

. (4.102)

The parameters ŵm
k for the m-th observation map are then computed by fitting a RBF

map between the newly generated zm,k and Xk. Note that the two phase RBF learning

method described in Section 3.3.2 is applied to estimate the parameter vector ŵm
k . The

simultaneous estimation of the user position and map parameters continues at each time

step k until the arrival of the last measurement. Some points to be noted in the above

algorithm:

• The map parameters ŵk are learned only when a new range measurement is incor-

porated in the estimation process. Hence during the ISPKS backward operation,

which operates on the same set of measurements as the forward filter, the parameter

vector does not alter its value.

• As demonstrated, the dimension of Equations (4.101) and (4.102) grows without

bounds and hence the computational complexity of the estimation process expo-

nentially increases with k. To combat the higher computational growth and keep

the dimension of Xk and zm,k fixed, we eliminate the oldest state estimate and

range measurement obtained during tracking at every 10 s. However, none of the

calibration data is removed as it contains more accurate user positions.

• Instead of applying the RBF learning procedure at each k, which is computation-

ally intensive, we estimate the observation map parameters at every 3 s. Note, the

Equations (4.101) and (4.102) are formed at each k but we allow a time-interval of

3 s between two consecutive RBF parameter estimation.
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Table 4.3: Tracking accuracy of the TANS-SLAM method in terms of RMSE. The mean
and standard deviation of RMSE is calculated by averaging over 50 different trials per-
formed by multiple subjects in the test Lab.

Estimator E(RMSE) (ft) std(RMSE) (ft)

TANS-SLAM 2.64 1.12
Range-map 3.08 1.75

Experimental Results

In this section, we demonstrate two trials in which two different subjects walked at a

normal speed in the Sonar-Lab. Our objective is to compare the estimation performance of

the proposed TANS-SLAM approach against the range-map case described in Section 4.5.

Note that the same calibration data and range observations are used for both the cases.

Here we have considered only active sonar ranges to generate the results. The Ubisense

tracking engine, which provides reliable ground truth was turned on for performance

comparison with our tracker.

Figure 4.17(a)-4.17(d) illustrate the superiority of the TANS-SLAM approach in indoor

tracking. The results of the range-map examples are presented in Figure 4.17(a)-4.17(b).

In this case, the observation maps are learned during the calibration phase and are kept

fixed during tracking an user. As can be seen, the estimated trajectories fail to follow the

Ubisense estimates closely, which result significantly higher RMSE between the Ubisense

and ISPKS estimates. On the other hand, Figure 4.17(c)-4.17(d) demonstrate the TANS-

SLAM examples. As is clearly evident from the above figures, the SLAM approach im-

proves the quality of the ISPKS outputs and henceforth reduces the RMSE between the

Ubisense and ISPKS estimates. Table 4.3 demonstrates the RMSE of position estimates

over 50 different trials performed in the test Lab. As shown, the SLAM approach generates

slightly superior mean and standard deviation of RMSE over the range-map estimator.

The figures and table verify that constantly updating the observation map parameters in

conjunction with the state estimates can indeed generate superior tracking results.

Despite the promising nature of the TANS-SLAM method in indoor tracking case,

there are some deficiencies to be noted:

• Although the TANS technique simultaneously estimates the map parameters with
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ISPKS State 
Estimator

ISPKS Parameter 
Estimator

Range kz ˆkxˆ kw

Figure 4.18: Sequential Dual Estimation Framework in LANS-SLAM. Two ISPKS oper-
ates alternately to estimate the state and observation model parameters.

the user state, it still involves an offline calibration phase. Unfortunately performing

calibration is time-consuming, tedious and also requires manual effort.

• The observation maps consist of several parameters, computation of which demands

higher computational load and slows down both the state and map estimation pro-

cess.

• The estimation accuracy of the TANS method is not consistent over multiple trials

and subjects.

Below we investigate another SLAM technique for tag-free indoor tracking using the LANS

approach, which takes care of the above disadvantages.

4.6.3 LANS Based SLAM Algorithm For Indoor Tracking

The LANS-SLAM approach corresponds to simultaneously estimating the state of the

person and the parameters of the observation model using range observations from the

ultrasonic transducers. The parameters consist of the 2D sonar module locations along

with a parameter ck which is set to the speed of sound. However, this term also adapts as a

“correction factor” to account for the effect of multipath, reflection/refraction and various

noise and modeling errors. In this section, we have only considered range measurements

recorded by active ultrasonic modules to track a person. The major advantage of the

LANS technique lies in its self-calibrating nature, which means that the calibration phase
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is no longer needed. The number of observation parameters to be estimated is significantly

less than that of the TANS-SLAM and thus reduces the computational complexity of the

estimation process. A dual Kalman framework is proposed, which allows two ISPKS filters

to run concurrently:

• One ISPKS to track the person at time k given the estimated parameters at the

previous time step k − 1.

• A second ISPKS to estimate the parameters at k given the current estimated location

of the person.

A schematic diagram of the LANS-SLAM method is shown in Figure 4.18. Note that for

parameter estimation, it is sufficient to run a sigma-point Kalman filter (SPKF). However,

for coding purposes and duality, the smoother may be used with only minor differences in

performance.

SLAM Framework

We first define a discrete time nonlinear dynamical system for estimating user’s state

xk+1 =fk (xk,vxk
) (4.103)

zk =hk (xk,wk,nk) , (4.104)

where wk is the parameter vector which is estimated by forming a second dual state-space,

wk+1 =wk + vwk
(4.105)

zk =hk (xk,wk,nk) , (4.106)

where the parameters wk are now considered the state, with a random walk model. The

user’s state xk are now considered “parameters” in the same observation equation. The

SPKS (or SPKF), may again be used to estimate the state (i.e. parameters) in an efficient

manner, and can be shown corresponds to a modified-Newton optimization method [17].

In the following, we will define the different components of the above equations in the

context of ultrasonic range based tracking application.
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Dynamic Model

The state dynamic model, which is a CT model with wall potential field is exactly the

same as followed in the TANS model.

Observation Model

The time-of-flight observation model for the m-th active ultrasonic unit can be defined as

follows

zm,k = hm,k

([

xk yk

]

;

[

xs
m,k ck

])

+ nm,k, (4.107)

where the observation model hm,k is proportional to the distance between the m-th sonar

unit and the person,

hm,k =
2Ns
ck

√

(

xk − xsm,k

)2
+
(

yk − ysm,k

)2
, (4.108)

where zm,k is the observed range of the user from the active sonar module m, 1 ≤ m ≤M

and

[

xk yk

]

is the user position at time k. The 2D coordinates of the m-th ultrasonic

sensor is denoted as

xs
m,k =

[

xsm,k ysm,k

]

. (4.109)

The speed of sound at the specific indoor location is denoted as ck. Ns is a conversion

factor which is used to convert the time-of-flight equations into samples. In practice,

zm,k corresponds to a sample count, where Ns = 20 is the conversion factor for the

20 kHz sample rate. The constant term 2 appeared at the right hand side of Equation

(4.108) indicates that the range information extracted from each ultrasonic signal actually

contains twice the distance between the user and each ultrasonic transducer. Figure 4.2

demonstrates that the range observation ram recorded by the m-th active unit corresponds

to twice the distance, dam, between the active unit and the person (superscript “a” denotes

active unit). The parameter vector wk to be estimated contains the 2D coordinates of

each ultrasonic transducer and the speed of sound

wk =

[

ck xs
1,k xs

2,k . . . xs
m,k . . . xs

M,k

]

. (4.110)
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Figure 4.19: Tracking performance in Sonar-Lab using the LANS-SLAM method (red :
Ubisense estimates, blue: ISPKS estimates). The RMSE between the ISPKS and the
Ubisense estimated positions is equal to RMSE = 2.12 ft. The above tracking result is
shown for subject 1.

The measurement zm,k, observation function hm,k, and observation noise nm,k from

each ultrasonic sensor are combined to form a multi-dimensional observation model,

zk =

[

z1,k z2,k . . . zm,k . . . zM,k

]

(4.111)

hk =

[

h1,k h2,k . . . hm,k . . . hM,k

]

(4.112)

nk =

[

n1,k n2,k . . . nm,k . . . nM,k

]

. (4.113)

SLAM Algorithm

The dual Kalman model shown in Section 4.6.3 is applied that works by alternating

between learning the parameter vector ŵk given the current estimated position of the
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user x̂k, and using the newly obtained ŵk to estimate x̂k+1. Two separate ISPKS filters

with gating as described in Section 4.5.4 are used for the state and parameter estimation.

The incoming range observations are fed to both the filters. As before, the dual estimator

is operated at a fixed rate of fs = 2Hz. There are some points to be noted in the above

dual estimation algorithm:

• Before the arrival of the first measurement, at k = 0, the weight vector wk is

initialized as

ŵ0 = w0, (4.114)

where w0 is

w0 =

[

c0 xs
1,0 xs

2,0 . . . xs
m,0 . . . xs

M,0

]

. (4.115)

The 2D coordinates xs
m,0 for the m-th sensor is roughly chosen to lie within 2− 3 ft

from its actual location and c0 = 1128 ft/s which is the speed of sound in free space.

The values of xs
m,0 and c0 are chosen accordingly for faster convergence.

• At k = 0, the state xk, containing the position of the person being tracked is

initialized to within an approximate radius of 2 ft.

• Convergence of the parameters using the dual approach is typically achieved within

5-10 s of tracking.

Experimental Results

In this section, our objective is to demonstrate the tracking accuracy of the proposed

LANS-SLAM approach using ultrasonic range observations. Note, we have only used the

active range observations to generate the results. We demonstrate two different trials in

which two subjects walked in the Sonar-Lab. Subject 1 took 60 s to complete the path and

154 range observations were recorded during that time period. Subject 2 completed the

other path in 50 s and recorded 136 sonar ranges. The Ubisense tracking engine, which

provides reliable ground truth was turned on for performance comparison with our tracker.
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Figure 4.20: Tracking performance in Sonar-Lab using the LANS-SLAM technique (red :
Ubisense estimates, blue: ISPKS estimates). The RMSE between the ISPKS and Ubisense
estimated positions is equal to RMSE = 1.78 ft. The above tracking result is shown for
subject 2.

Figure 4.19-4.20 compares the position estimates obtained from the Ubisense engine and

the LANS-SLAM method. As can be seen, the dual ISPKS adopted by the LANS-SLAM

generates position estimates comparable to the Ubisense engine. As expected, the tracking

is not accurate during the initial period because the observation model parameters require

some time to converge to its true values. However, after the parameters converge, the

LANS-SLAM estimated positions closely follow the Ubisense. The figures clearly illustrate

that the superior accuracy of the Ubisense system, which is expensive, tag-based and

requires a detailed calibration procedure, can be mimicked by our in-house, tag-free, self-

learning ISPKS based tracking engine. In addition, the estimation accuracy of the LANS-

SLAM approach is found to be consistent over multiple subjects and random paths.
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(a) Trial 1, RMSE=4.92 ft
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(b) Trial 2, RMSE=3.81 ft
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(c) Trial 1, RMSE=1.43 ft

−5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

x (ft)

y 
(ft

)

 

 
Ubisense est
Sonar est
Ubisense st pos
Ubisense end pos
Sonar st pos
Sonar end pos

(d) Trial 2, RMSE=2.3 ft

Figure 4.21: Comparison of the tracking performance between the LANS-SLAM and
range-map estimation using two different trials, (a) to (b): range-map results (blue):
user positions are estimated using fixed observation maps learned during the calibration
phase. (c) to (d): LANS-SLAM results (blue): user positions are estimated using a dual
ISPKS. The Ubisense results red provide the ground truth for comparison.

Figure 4.21(a)-4.21(d) compares the estimation accuracy of the LANS-SLAM approach

against the range-map estimation case described in Section 4.5. The same incoming range

measurements are used by both of these techniques to generate the position estimates.

Figure 4.21(a)-4.21(b) present the range-map estimation results using the learned obser-

vation maps. Note, the parameters of each observation map are learned in a separate

calibration phase and are kept fixed during user tracking. In these cases, the estimated
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Table 4.4: Tracking accuracy of the LANS-SLAM in terms of RMSE. The mean and
standard deviation of RMSE is calculated by averaging over 50 different trials performed
by multiple subjects in the test Lab.

Estimator E(RMSE) (ft) std(RMSE) (ft)

LANS-SLAM 2.02 1.04
TANS-SLAM 2.64 1.12
Range-map 3.08 1.75

trajectories fail to follow the Ubisense estimates closely, which result significantly higher

RMSE between the Ubisense and ISPKS estimates. On the other hand, Figure 4.21(c)-

4.21(d) demonstrate the tracking performance of the LANS-SLAM algorithm. As is clearly

evident from the figures, the LANS-SLAM method improves the quality of the estimated

positions which reduces the RMSE. Table 4.4 tabulates the RMSE of position estimates

for 50 different trials performed by multiple subjects in the Sonar-Lab. As seen, the LANS-

SLAM algorithm generates tracking results with superior mean and standard deviation of

RMSE over the range-map based estimator. Note that the LANS-SLAM produces better

tracking accuracy than the TANS-SLAM method. The above figures and table suitably

verify that the dual LANS-SLAM method indeed converges and after convergence it can

also track a person with superior accuracy.

4.7 Indoor Tracking Using Active and Passive Ultrasonic

Transducers

In this section our objective is to evaluate how incorporating the range measurements from

“passive” ultrasonic sensors affect the estimator performance. Recall that the specific

sonar-module that emits an ultrasonic signal and records the primary echo is referred as

the “active” unit. The other sonar-modules at that time act as “passive” units and record

indirect reflections or shadows coming from the active unit.

Figure 4.22 demonstrates the ultrasonic reflections recorded by two sensors when they

alternately emit an ultrasonic signal. First, the ultrasonic sensor 1 transmits an ultrasonic

burst and listens its primary reflection, which is shown in Figure 4.22 (a). Notice, the

strongest echo comes from the person’s body. The sonar unit 2 records the indirect
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Figure 4.22: Ultrasonic signals for active and passive transducers. We show the outputs
of two sonar units when they alternately are in active and passive mode. (a) and (b):
Ultrasonic signals recorded by sensor 1 and 2 when sensor 1 is in active (transmit and
listen) and sensor 2 is in passive (only listen) mode. (c) and (d): Ultrasonic signals
recorded by sensor 1 (passive) and sensor 2 (active).

reflection demonstrated in Figure 4.22 (b). We turn our attention to two signal peaks in

this figure: the strongest one is the result of direct signal propagation from the sensor

1 transmitter to sensor 2 receiver; the other is the reflection from the person’s body.

Figure 4.22 (c) and Figure 4.22 (d) demonstrate the ultrasonic reflections recorded by

the sonar units 2 and 1 respectively, when the sensor 2 is in active and sensor 1 is in

passive mode. As shown in Figure 4.22 (d), the passive ultrasonic signal possesses two

other strong echoes beside the body reflection, which may result from direct reception and

wall reflection. In this respect, we want to mention that the amplitude of the echo due

to direct signal propagation from the active transmitter unit to the passive receiver unit

remains constant except when a person/object blocks the direct path.
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This concept can easily be generalized to an arbitrary number M of ultrasonic sensors.

Each individual sensor takes its turn periodically to transmit an ultrasonic signal whereas

all M sensors listen the returning echo. Previously we only incorporated the primary echo

received by the active unit and neglected the other M − 1 passive observations. In other

words, only M = 6 sonar observations are used at each k in the tracking algorithm. In

this section, we include all active and passive measurements in the estimation framework.

Hence for M = 6, there are a total of M 2 = 36 recorded sonar returns (6 active and 30

passive) at each k. This in effect increases the dimension of the observation vector and

correspondingly causes delay in generating the estimates.

4.7.1 State Space Model

We use the dual estimation framework shown in Section 4.6.3, where the observation

model parameters wk are simultaneously estimated with the state xk. We follow the

LANS-SLAM approach as it is self-calibrating, contains less number of parameters to

estimate and produces the best tracking performance.

Dynamic Model

We apply the potential field embedded CT model (see Section 4.5.2) as the dynamic model.

Observation Model

The observation models for active and passive sensors follow the time-of-flight equa-

tions. The observation equation for the m-th active sonar unit with 2D coordinates
[

xsm,k ysm,k

]

can be shown as

zam,k = ham,k

([

xk yk

]

;

[

xsm,k ysm,k ck

])

+ na
m,k, for 1 ≤ m ≤ M (4.116)

where the observation model ha
m,k (superscript “a” denotes active unit) for the m-th active

unit is the same as shown in Equation (4.108)

ham,k =
2Ns
ck

√

(

xk − xsm,k

)2
+
(

yk − ysm,k

)2
. (4.117)
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Similarly, we demonstrate the observation equation for the q-th passive unit when the

m-th sensor is active

z
p
q,k = h

p
q,k

([

xk yk

]

;

[

xsm,k ysm,k xsq,k ysq,k ck

])

+ n
p
q,k, for 1 ≤ q ≤ M-1,∀q 6= m

(4.118)

where the observation model h
p
q,k (superscript “p” denotes passive unit) defines the dis-

tance from the m-th active unit to the subject, plus the distance from the subject to the

q-th passive unit,

h
p
q,k =

Ns
ck

(
√

(

xk − xsm,k

)2
+
(

yk − ysm,k

)2
+

√

(

xk − xsq,k

)2
+
(

yk − ysq,k

)2
)

. (4.119)

The q-th sensor is located at

[

xsq,k ysq,k

]

. The range observation at time k, zam,k is

obtained from the recording of the m-th active sensor. The passive sensor q generates

a range observation z
p
q,k from an indirect reflection coming from the m-th active unit.

The parameter vector wk to be estimated contains the 2D coordinates of each ultrasonic

transducer and the speed of sound

wk =

[

ck xs
1,k xs

2,k . . . xs
m,k . . . xs

M,k

]

. (4.120)

Figure 4.2 demonstrates that the range observation ram recorded by the m-th active sonar

unit corresponds to twice the distance, dam, between the active unit and the person.

Whereas the passive range observation r
p
q corresponds to the sum of distances dam and

d
p
q , where d

p
q is the distance from the person to the q-th passive unit.

In addition to the active and passive ultrasonic units, we also include a state constraint

in the observation model corresponding to a “shadow” condition. As shown in Figure 4.22,

there is a signal return due to the direct path between an active and a passive unit. A

sudden drop or change in the variation of the direct path return indicates that the subject

has walked directly between the m-th active and q-th passive unit. For example as shown

in Fig. 4.2, the subject is blocking the direct path between the active unit and the 5-th

passive unit. Hence the corresponding passive unit should record a sudden drop of signal

strength in its direct return from the active unit. If this condition is detected, an additional
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observation equation is included, which constrains the 2D position of the subject to be on

a straight line between the m-th and q-th ultrasonic units.

zcq,k = hc
q,k

[

xk yk

]

, (4.121)

where zcq,k is the pseudo observation

zcq,k =
Ns
ck

[(

ysm,k − ysq,k

)

xsq,k +
(

xsq,k − xsm,k

)

ysq,k

]

. (4.122)

The constraint observation model hc
q,k is defined as

hc
q,k =

Ns
ck

[

(

ysm,k − ysq,k

) (

xsq,k − xsm,k

)

]

. (4.123)

Note, the constraint equation, as shown in Equation (4.121) has no measurement noise.

Although the constraint equation with “perfect” measurements does not pose any the-

oretical problems, when augmented with Equation (4.126), the covariance of the new

measurement noise may become singular. A singular noise covariance increases the possi-

bility of numerical problems for the estimator. In addition, the Cholesky decomposition,

which computes matrix square-roots, cannot be performed on a singular matrix. Hence,

we modify the constraint equation by adding a small measurement noise to the “perfect”

measurements

zcq,k = hc
q,k

[

xk yk

]

+ nc
q,k, (4.124)

Combining all observations, observation functions and noise terms for a fixed active unit

m, we form a multidimensional observation model

zm,k =

[

zam,k z
p
1,k . . . z

p
q,k . . . z

p
M-1,k

zcq,k

]

(4.125)

hm,k =

[

ham,k h
p
1,k . . . h

p
q,k . . . h

p
M-1,k

hc
q,k

]

(4.126)

nm,k =

[

na
m,k n

p
1,k . . . n

p
q,k . . . n

p
M-1,k

nc
q,k

]

. (4.127)

Note that the dimension of each augmented vector will very depending on whether the

constraint term is present. Finally, for all active units m ∈ M, we form the complete
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observation model

zk =

[

z1,k z2,k . . . zm,k . . . zM,k

]

(4.128)

hk =

[

h1,k h2,k . . . hm,k . . . hM,k

]

(4.129)

nk =

[

n1,k n2,k . . . nm,k . . . nM,k

]

, (4.130)

where the augmented measurement, observation model, observation noise at time k are

denoted as zk, hk and nk respectively.

SLAM Algorithm

The dual Kalman framework shown in Section 4.6.3 is adopted. Recall that it incor-

porates two ISPKS filters with gating to alternately estimate the state xk and model

parameters wk using the range observations zk. The only difference with the dual es-

timator in Section 4.6.3 is the dimension of the observation vector at time k. As we

consider measurements coming from both the active and passive ultrasonic sensors, the

dimension of each observation vector zk is of size equal to M2 compared to size M for the

LANS-SLAM case which considers only the active sonar units.

4.7.2 Experimental Results

In this section, we illustrate the performance results of the LANS-SLAM approach in-

corporating both the active and passive sonar measurements and compare them with the

results obtained using only the active sonar data. The objective here is to evaluate how

incorporating the passive sonar ranges affect the tracking accuracy. We demonstrate two

random trajectories followed by two different subjects. Subject 1 took 40 s to complete

the path and 96 range observations were recorded during that time period. Subject 2

completed the path in 60 s and recorded 144 measurements.

Figure 4.23(a)-4.23(d) show the LANS-SLAM estimated positions with/without pas-

sive measurements for subjects 1 and 2. Figure 4.23(a) and 4.23(b) are the LANS-SLAM

position estimates using only active sonar measurements, whereas both active and passive

measurements are used to generate the estimated positions shown in Figure 4.23(c) and
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Figure 4.23: Tracking performance in Sonar-Lab using the LANS-SLAM incorporating
both active and passive ultrasonic transducers, (a) and (b): LANS-SLAM estimates (blue)
using range measurements recorded by active units, (c) and (d): LANS-SLAM estimates
(blue) using range measurements recorded by active and passive units. The Ubisense
results (red) provide the ground truth for comparison. Two subjects performed the walking
to generate the data.

4.23(d). As before, the accuracy of our tracking results are compared in terms of RMSE

between our estimates and the Ubisense engine. It is clearly evident that the position

estimates shown in Figure 4.23(c) and 4.23(d) are more accurate compared to that in

Figure 4.23(a) and 4.23(b).

Table 4.5 tabulates the RMSE of position estimates for 50 different trials performed

by multiple subjects in the Sonar-Lab. The LANS-SLAM estimator, which obtains range
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Table 4.5: Tracking accuracy of the LANS-SLAM with active and passive sonar measure-
ments in terms of RMSE. The mean and standard deviation of RMSE is calculated by
averaging over 50 different trials performed by multiple subjects in the test Lab.

Estimator E(RMSE) (ft) std(RMSE) (ft)

LANS-SLAM (active+passive) 1.66 0.92
LANS-SLAM (active) 2.02 1.04

measurements from the active and passive sonar units generates position estimates with

superior mean and standard deviation of RMSE over the case when no passive range

measurements are used. The above figures and table suitably verify that incorporating

the passive ultrasonic units into the location tracking method indeed helps to improve the

tracking accuracy.

4.8 Discussion and Future Work

In this chapter, we develop a novel method for indoor tracking using range measurements

from ultrasonic sensors. Instead of wearing a body-borne receiver tag, we propose an

unobtrusive tag-free tracking system, which requires setting up a set of ultrasonic trans-

ducers inside the indoor location. Each sonar unit records analog echoes, which are then

digitized and passed through a number of signal processing steps including Bandpass fil-

tering, Hilbert transformation, background subtraction, and clustering to calculate a set

of range candidates. An observation function is generated from the calibration data by

fitting nonlinear maps between the known calibration locations and active sonar ranges.

The observation range maps are incorporated into an ISPKS based tracking algorithm that

fuses all range measurements with a CT based dynamic model to generate 2D position,

velocity and turn rate. A gating technique is also integrated in the range-map generation

and state estimation process to avoid confusion from multiple range candidates.

Instead of using a fixed observation model, a simultaneous localization and mapping

algorithm is designed to simultaneously estimating the state of the person and the pa-

rameters of the observation model. The TANS-SLAM method still uses observation maps

in the estimation process but the map parameters are updated during tracking using the

newly generated state estimates. The LANS-SLAM approach completely eliminates the
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offline calibration phase. A dual estimation framework is employed which operates two

separate ISPKS in an alternate fashion. One SPKS localizes the user by taking input the

estimated observation model parameters and the other computes the parameters given

the currently estimated user position. Parameters in the LANS-SLAM correspond to the

2D sonar module locations along with a correction factor to account for various noise

and modeling errors. Finally, we also incorporate the indirect range observations from

the passive sonar modules into the LANS-SLAM framework and evaluate the system per-

formance. Accuracy of all the proposed tracking algorithms are evaluated on a data set

involving 50 different trials performed by multiple subjects in a test Lab. The tracking

accuracy is determined through a comparison with the commercial Ubisense engine. It

is shown that the ultrasonic sensor based tag-free tracking performs comparably with

the Ubisense, which is tag based, more expensive and also encounters several calibration

challenges. The LANS-SLAM algorithm with all range observations from the active and

passive sonar-modules provides the highest tracking accuracy. The LANS-SLAM method

is the most attractive choice for the ultrasonic sensor based tag-free indoor tracking be-

cause it requires minimal calibration, uses fewer number of parameters and demonstrates

fast convergence (within 5-10 s) starting from a rough estimate of sonar locations.

Future research direction includes developing a more refined model of human walking,

adding a better gating technique to determine the correct range from range candidates

and extending the system to a multi-room facility. In this context, one can incorporate

a biomechanical model in the tracking framework as that can mimic accurately the way

human walks. Investigation on the multiple hypothesis approach can help in developing a

better gating method. The current system also requires cabling to a multi-channel DAQ

operating at a fast 250 kHz sampling rate to allow for subsequent digital demodulation.

This could be replaced with analog demodulation, allowing for the uses of a low cost D/A

and wireless transmission to the central PC. The current system is also obviously limited

to single person tracking, thus limiting the use to applications such as monitoring elders

in independent living facilities. Multi-person tracking may be possible through extensions

in the (Sigma-Point) Kalman algorithms based on multi-target tracking methods and

probabilistic data association, along with possibly other sensors to help differentiate sonar
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returns between people. In addition, future research also can be directed to determining

optimal placement of ultrasonic transducers in an indoor location in order to maximize

the tracking accuracy.
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4.9 Appendix

4.9.1 Autonomous Terrain Aided Navigation in Unknown Environment

In this section, we describe the application of a dual SPKF to the problem of simulta-

neous estimation of the state and map parameters for localizing an unmanned vehicle.

The experimental scenario considered here consists of an unmanned vehicle maneuvering

through an unsurveyed environment within a 10m×10m bounded region. Though the ter-

rain aided navigation algorithm presented here can be extended to a full three dimensional

environment (e.g., for unmanned aerial vehicles), for ease of visualization, simulations are

conducted in two dimensions. Three onboard sensors obtain terrain information and an

IMU provides acceleration and angular rate in the body fixed frame. We also compare

our dual SPKF based system performance to the baseline EKF in terms of vehicle state

estimation accuracy. We will start with describing the specific process and observation

(map) models used inside the SPKF/EKF based estimators and then moving on to the

experimental results.

Vehicle process model

In the vehicle process model, the standard IMU driven kinematic process model formula-

tion [117] that comprises an inertial navigation system (INS) mechanization component

and sensor bias error components is followed. In two dimensions, the IMU includes two

accelerometer and one rate gyro. Errors in the sensors include both bias and additive

noise. The vehicle state vector is shown as

x =

[

x y vx vy ψ bx by bω

]T

, (4.131)

where

[

x y

]

is vehicle 2D position,

[

vx vy

]

is 2D velocity, ψ is the Euler (heading)

angle. The accelerometer bias vector is denoted as ba =

[

bx by

]

and bω is the IMU

gyro rate bias. There is no separate scale-error term in the state vector, as it is found to

be sufficient to model both the sensor bias and scale error as a time varying bias term.

The continuous time kinematic equations of the vehicle [5] followed in this simulation can
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be defined as

ẋ = cosψvx − sinψvy

ẏ = sinψvx + cosψvy

ψ̇ = zω − bω

v̇x = zx − bx + (zω − bω) vy

v̇y = zy − by + (zω − bω) vx

ḃx = vbx

ḃy = vby

ḃω = vbω
, (4.132)

where za =

[

zx zy

]T

is the noisy observation from accelerometer

za = a+ ba + na, (4.133)

and bω is the noisy measurement obtained from the rate gyro

zω = ω + bω +nω. (4.134)

a =

[

ax ay

]T

and ω are the vehicle’s true acceleration and angular velocity respectively.

Note that in reality, the accelerometer and gyro outputs slowly drift from the true values.

The sensor bias terms shown in (4.133) and (4.134) are incorporated to compensate the

sensor drifts. It is assumed that the accelerometer is situated exactly at the vehicle center

of gravity (CG). The Gaussian white process and observation noises are denoted as v(·)

and n(·) respectively. Sampling rate of δT = 100ms is chosen in order to discretize the

continuous time vehicle kinematic model in (4.132). Note that the accelerometer and

gyro biases are modeled as a slowly varying random walk where vbx
, vby

and vbω
are

zero mean Gaussian random variable. As the biases are unknown random variable, the

accelerometer and gyro sensors may not be sufficient on its own to localize the vehicle.

Hence three terrain sensors are incorporated into the tracking system which provide some

information about the environment at the current vehicle location.
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Figure 4.24: (a) to (c): True terrain maps used in the simulation, (d): Traces of three
noisy terrain sensor measurements.

Vehicle observation model (Terrain map)

In this simulation, three terrain maps are used. Each map can be thought of as providing

complimentary terrain information such as altitude, pressure, or visual characteristics of

the environment. For this preliminary study, each map is modeled as a mixture of three,

five and two Gaussian distributions respectively. Clearly, this is not a complex realistic

scenario, but serves the purpose to investigate the ability of SPKF estimators to gener-

ate consistent estimates of the vehicle state and map parameters after convergence and

also to provide a performance comparison between the SPKF and EKF implementation.

Figure 4.24(a) - 4.24(c) illustrate the visual contour plots of these maps.

The measurements from the M = 3 onboard sensors correspond to each of the map

values at the current true vehicle location plus additive noise. The terrain sensors obtain
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the measurements at the rate of s = 10Hz. The role of the Kalman filter state-estimator

is thus to fuse these three sensor readings with the process model to estimate the vehicle

location and heading. The signal to noise ratio (SNR) at the output of each terrain

sensor is kept as 20 dB. A typical sensor trace from a random trajectory is shown in

Figure 4.24(d).

In the dual Kalman filter setup for SLAM, the maps are assumed unknown and some

parametric representation of the maps must be simultaneously learned from M sensor

traces. As described earlier, the true map in this case consists of a simple mixture of

Gaussian densities. However, since we cannot assume prior knowledge of this, we attempt

to learn this map using both two layer multi-layer perceptrons (MLP) and radial basis

function (RBF) neural networks. The vehicle observation model can be defined as

zm,k = hm,k (xk, yk) + nm,k, (4.135)

where zm,k is the sensor measurement from the m-th terrain sensor, m, 1 ≤ m ≤M , with

noise nm,k assumed to be Gaussian with zero mean. The observation map hm,k can either

be learned using MLP or RBF. The discrete time index is denoted as k.

The MLP observation map [88], hM
m,k, for the m-th sensor is specified by

hMm,k (xk, yk) =
(

W 2Mm,k

)T
tanh

(

(

W 1Mm,k

)T
[

xk yk

]

+B1Mm,k

)

+ b2Mm,k, (4.136)

where W 1M
m,k and W 2Mm,k are the hidden and output layer weights and B1M

m,k and b2Mm,k

are the input and output biases for the m-th terrain sensor. Note that in the above

equation, we have adopted a standard three layer form [88] of MLP. Assuming there are

H nodes in the hidden layer,

W 1Mm,k =







w10,0
m,k w10,1

m,k · · · w10,H−1
m,k

w11,0
m,k w11,1

m,k · · · w11,H−1
m,k






(4.137)

B1Mm,k =

[

b10
m,k b11

m,k · · · b1H−1
m,k

]T

(4.138)

W 2Mm,k =

[

w20
m,k w21

m,k · · · w2H−1
m,k

]T

. (4.139)

Combining all the network weights and biases a single weight vector Wm,k is formed for
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m-th terrain sensor

Wm,k =

[

W 1Mm,k W 2Mm,k B1Mm,k b2Mm,k

]T

. (4.140)

Notice that all the individual weight terms are first vectorized before combining them to

form the augmented weight vectorWm,k. Note that the true value ofWm,k is unknown and

it is estimated simultaneously with the vehicle state using the dual estimation framework.

Similarly for RBF case, the observation map hR
m,k may be denoted as

hRm,k (xk, yk) =
(

W 1Rm,k

)T
KR

m,k

([

xk yk

]

;µR
m,k,Σ

R
m,k

)

, (4.141)

where KR
m,k is the Gaussian kernel function [88] with mean vector µR

m,k and covariance

matrix ΣR
m,k,

µR
m,k =

[

µ0
m,k µ1

m,k . . . µC−1
m,k

]T

(4.142)

ΣR
m,k =



















Σ0
m,k 0 · · · 0

0 Σ1
m,k · · · 0

...
. . .

...

0 · · · 0 ΣC−1
m,k



















, (4.143)

where C is the number of Gaussian kernels in the hidden layer of the RBF network and

W 1Rm,k is the output layer linear weights,

W 1Rm,k =

[

w10
m,k w11

m,k . . . w1C−1
m,k

]

. (4.144)

The parameter vector for the RBF model which needs to be estimated at each time k can

be denoted as

Wm,k =

[

µR
m,k ΣR

m,k W 1Rm,k

]T

. (4.145)

As seen in (4.135), each MLP/RBF network implements a mapping from a two dimen-

sional input space to one dimensional output space. Note that each terrain sensor has its

own sensor map. The map learning problem is made more challenging by the fact that the

inputs and outputs are limited to the random trajectory and corresponding sensor traces

from the vehicle.
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The observed sensor output zm,k, terrain map hm,k, parameter vector Wm,k and the

observation noise nm,k from each terrain sensor are combined to form a multi-dimensional

observation model,

zk =

[

z1,k . . . zm,k . . . zM,k

]

(4.146)

hk =

[

h1,k . . . hm,k . . . hM,k

]

(4.147)

Wk =

[

W1,k . . . Wm,k . . . WM,k

]

(4.148)

nk =

[

n1,k . . . nm,k . . . nM,k

]

(4.149)

where zk is the multi-dimensional RSSI observations emanating from each terrain sensor.

Similarly hk, Wk and nk are the augmented observation maps, augmented parameter

vector and the augmented measurement noise for sensors 1 ≤ m ≤ M. SPKF based

tracking algorithm using dual Kalman framework defined in (4.103)-(4.104) has been used

to estimate both the state vector xk and augmented parameter vector Wk at each time k.

Dual Estimation

We have used a standard SPKF to track the vehicle’s state and simultaneously learn the

parameters of the observation maps using dual Kalman framework. Note that the SPKF

time-update and measurement-update steps operate at different rates. The time-update

step operates at every 10ms, whereas we obtain measurements from the terrain sensors

at every 100ms.

Experimental Results

In this section, we demonstrate the performance of SPKF/EKF based estimators for simul-

taneously estimating the vehicle’s position and the parameters of its surroundings given a

set of terrain sensor measurements. The vehicle is driven randomly within a 10m×10m

space. It is assumed that the vehicle is carrying onboard three terrain sensors, which

observe the value of three terrain maps based on the current vehicle location. The true

terrain maps from which the sensor traces were obtained are unknown. Hence we propose

a MLP/RBF based parametric representation of the observation maps whose parameters
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Figure 4.25: Tracking performance of dual SPKF in terms of MSE between the true and
the estimated, (a): position estimation accuracy, (b) heading angle estimation accuracy.

are initially taken as random and are learned from the sensor measurements to mimic

the unknown terrain maps. There is a separate observation map learned for each terrain

sensor. Recall that we have employed both three layer MLP and RBF networks to rep-

resent the terrain maps, which require the knowledge of the number of hidden nodes H

and Gaussian kernels C respectively. Hidden nodes H and kernel C are decided using a

10 fold cross validation technique. It is found that the optimum number of H and C were

28 and 12 respectively [118].

For the simulation purposes, we have generated a set of epochs each consisting of a

random vehicle trajectory. At each epoch, N = 1000 terrain observations are collected
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Figure 4.27: (a) to (c): Reconstructed terrain maps after convergence.

from the vehicle’s trajectory. A new vehicle trajectory is generated at each epoch from the

same bounded region. The estimated state and map parameters from the previous epoch

are used to initialize the next epoch. It is observed that it takes about 50 − 75 epochs

for the SPKF to converge to the true state and maps. Figure 4.26 shows the estimated
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Table 4.6: Performance comparison of the dual SPKF and the dual EKF after convergence
(MSE shown in the table is actually the average of MSE obtained in MLP and RBF).

MSE after convergence Map 1 Map 2 Map 3 Vehicle Position

EKF 0.145 0.139 0.204 0.135
SPKF 0.074 0.072 0.118 0.055

trajectory of the SPKF versus the true trajectory after convergence. As is clearly seen,

the SPKF estimated trajectory is nearly indistinguishable from the true. Figure 4.25(a)

and 4.25(b) demonstrates the accuracy of the SPKF based tracker after convergence in

tracking the vehicle position and heading angle on the basis of MSE between the true and

the estimated values. Note that neither the initial values of the state nor the maps are

assumed known. The MSE between the true and the estimates is computed by a moving

average window over time. Each window is 10 s long with a 4 s overlap between successive

windows. As is clearly seen from the figures, the SPKF estimator can successfully track the

vehicle’s position and heading angle after the convergence of the vehicle’s state and terrain

map parameters. Dual EKF estimates are also plotted in the same figures for performance

comparison with SPKF estimates. It is shown that the SPKF consistently outperformed

the EKF in terms of vehicle position and yaw angle estimates. Figure 4.27(a) - 4.27(c)

display the SPKF reconstructed maps after convergence. Comparing them with the true

maps (Figure 4.24(a) - 4.24(c)), we can observe that the estimated maps are almost similar

with the true. Reconstructed maps are shown for the RBF cases only, as the RBF result

converges faster to the true values and after convergence it demonstrates lower MSE than

the MLP. Table 4.6 compares the performance of the SPKF with the EKF in terms of

estimation accuracy [118]. As evident from the table, the SPKF provides significant gain

over the EKF in final performance.



Chapter 5

New Multiharmonic Frequency Tracking

Using Sigma-Point Kalman Smoothers

5.1 Overview

In the previous chapters, we evaluate the performance of the sigma-point Kalman smooth-

ing (SPKS) algorithms in real world indoor tracking. In this chapter, we apply the SPKS

into the domain of frequency tracking where the task is to track the individual frequencies

and amplitudes of a multiharmonic periodic signal. The state-space approach to tracking

time-varying frequencies of multiharmonic periodic/quasi-periodic signals have recently

become popular within the research community. Due to nonlinear state dynamics, several

groups have proposed an extended Kalman filter/smoother (EKF/EKS) to track multi-

harmonic frequencies. In this chapter, our intention is to introduce a new multiharmonic

frequency tracker based on the proposed SPKS and compare its performance to that of

the EKS method. This work has been done in collaboration with Sunghan Kim and James

McNames who are associated with the Biomedical Signal Processing (BSP) Laboratory,

department of Electrical and Computer Engineering (ECE), Portland State University.

They have been working on applications, including frequency tracking for quasi-periodic

signals with time-varying amplitudes for many years and we have integrated our SPKS

based estimator with their tracking framework.

This chapter is organized as follows. Section 5.2 introduces our approach with a brief

description of current frequency tracking methodologies seen in the literature. Section 5.3

discusses the Bayesian framework and details the dynamic and observation models used in

201



202

our SPKS estimator. Section 5.4 examines the different estimation algorithms, including

the SPKS and the EKS, implemented in our tracking system. Experimental results are

given in Section 5.5, and finally discussion and conclusions in Section 5.6.

5.2 Introduction

Many natural signals contain nearly periodic rhythms with slowly varying morphologies.

Example signals with this property include tremor, speech, electrocardiogram (ECG), and

arterial blood pressure (ABP). In many applications the instantaneous frequency (IF) of

these signals contains useful information for further analysis.

Many signal processing methods have been applied to the problem of multiharmonic

frequency tracking in quasi-periodic signals. For example, the pitch tracking in the

speech signal analysis is one of the most common applications of multiharmonic fre-

quency tracking. Pitch detection/tracking algorithms can be roughly categorized into

three groups: time-domain methods such as zero-crossing, frequency-domain methods,

and time-frequency-domain methods. Due to the nonstationary nature of human voice,

the pitch tracking algorithms generally perform within a short window in time/frequency

domain [119,120]. Recently Tabrikian et al. proposed a new maximum a-posteriori (MAP)

based statistical approach using a harmonic model for pitch tracking [121]. They imple-

mented the MAP estimator using dynamic programming based on measurements collected

over several window frames. However, these frame-by-frame based algorithms are always

not applicable especially when a local signal stationarity cannot be assumed [16, 122].

There are other methods based on adaptive schemes that have been applied to track

rhythmicity (harmonic components) in nonstationary quasi-periodic signals (not neces-

sarily speech signals) [123]. The advantage of using these adaptive schemes is that one

can track frequencies recursively as signal samples are acquired. For details of these dif-

ferent frequency tracking methods, one can refer to [15].

In order to perform multiharmonic frequency tracking, we represent a time-domain

signal using the Fourier series in which the amplitude, phase, and frequency of each har-

monic component are allowed to vary slowly over time. We employ the dynamic state
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space approach in order to track the harmonics present in a given signal. The application

of state space methods to continuously track the harmonics was pioneered by Parker et

al. [122], which triggered many subsequent investigations [124–128]. Recently there have

been several proposed methods based on particle filters [129, 130] but unfortunately they

are highly computationally intensive and hence practically intractable.

We follow the SPKF [26, 36, 82] based Bayesian inference approach for multiharmonic

tracking. Although the SPKF has been applied to a wide range of problems, we are un-

aware of any literature that applies the SPKF to the multiharmonic frequency tracking

problem. In [16], we have successfully adopted the SPKF to track the amplitudes, fre-

quencies and phases of all harmonics present in a quasi-periodic signal and have outlined

the superior accuracy of SPKF based approach compared to the EKF. As a smoother

delivers better estimates than a filter and our work was focused on an offline analysis, in

this chapter we concentrate on our recently proposed fixed-interval sigma-point Kalman

smoother (FI-SPKS) algorithm [35] for the tracking purpose. This dissertation provides a

more detailed description and analysis of our method that was recently accepted in [131].

The FI-SPKS estimator, which uses the entire recording of signal to generate each state

estimate, fuses a dynamic model with discrete signal observations in order to track the

multiple harmonics. We have adopted the state dynamics and observation model from

Parker’s work [122] with slight modifications. The SPKS based multiharmonic frequency

tracker is also compared with the traditional EKS approach based on several performance

metrics and the performance advantage of the SPKS method is demonstrated.

5.3 Recursive Bayesian Inference Framework

We have used the following state space model,

xk+1 =fk (xk,vk) (5.1)

zk =hk (xk,nk) . (5.2)

The different components of the above model including the dynamic model fk and ob-

servation model hk are described below in terms of multiharmonic frequency estimation

context.
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5.3.1 State Space Model

We employ the following observation model called a rectangular model [122] in our fre-

quency tracking system,

zk = sk + nk

= h(xk) + nk

=
m
∑

p=1

ap,k cos (pθk) + bp,k sin (pθk) + z̄k + nk, (5.3)

where m is the total number of harmonics present which is assumed to be known, θk is

the instantaneous angle, ap,k and bp,k are the amplitudes of the p-th harmonic sinusoidal

components, z̄k is the trend of zk, f̄ is the mean frequency, and observation noise nk is

a white noise process with zero-mean and covariance Rk. The instantaneous angle θk is

modeled as,

θk =
k
∑

i=1

2πTsfi

=
k
∑

i=1

2πTs
(

ξi + f̄
)

=
k
∑

i=1

2πTsξi +
k
∑

i=1

2πTsf̄

= ϕk + 2πTskf̄ , (5.4)

where f̄ is the mean frequency, ξk is the difference between the instantaneous frequency

fk and the mean frequency f̄ , ϕk is the accumulative sum of ξk and Ts is the sampling

interval. The definition of instantaneous angle θk shown in Equation (5.4) is one of the

major differences between our state-space model and the one proposed in [122]. This

modification was obtained because the SPKS favors the state variables to have zero mean.

Since ϕk is the accumulative sum of ξk = fk − f̄ , its mean is zero. The zero mean state

process increases the numerical stability for the SPKS estimator.
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The dynamic model f(.), which characterizes the propagation of each state-space vari-

able from time k to time k + 1, is formed as follows,

ϕk+1 = ϕk + 2πTsγk + vϕ,k (5.5)

γk+1 = αγk + (1 − α)vγ,k (5.6)

ap,k+1 = ap,k + va,k (5.7)

bp,k+1 = bp,k + vb,k (5.8)

z̄k+1 = z̄k + vz̄,k (5.9)

where γk is the fluctuating component in ϕk, α is an autoregressive (AR) coefficient of

γk, and v·,k are mutually uncorrelated white noise processes. A value of α = 1 results in

a random walk model of ϕk and α = 0 results in a white noise model. The variance Qk

of process noise v·,k determines how quickly the parameters are expected to change over

time.

The state vector xk is shown as,

xk =

[

ϕk γk a1,k . . . am,k b1,k . . . bm,k z̄k

]T

, (5.10)

Now combining the dynamic and observation models, we can write the overall state-space

framework for our proposed frequency tracker as follows,

xk+1 = f(xk) + vk (5.11)

=
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(5.12)

zk = h(xk) + nk (5.13)

=
m
∑

p=1

ap,k cos (pθk) + bp,k sin (pθk) + z̄k + nk. (5.14)

Note that the state transition function f(·) is linear and the observation function h(·) is

nonlinear in the above state space model.
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5.4 Multiharmonic Frequency Tracker

In this section we use the FI-SPKS and EKS based estimators for multiharmonic frequency

tracking. We perform an offline analysis, in which we use the entire signal recording

of whole duration in order to compute the smoothed state at each time k. We prefer

the RTSSL-SPKS for this task due to its ease of implementation, low computational

complexity and numerical efficiency (for details, refer to Chapter 2).

In order to demonstrate the performance advantage of the proposed SPKS based fre-

quency tracker, we compare the performance of the SPKS with that of the EKS in terms

of estimation accuracy. In the next section, we will summarize the EKS estimation algo-

rithm. Due to the presence of several variants of the EKS, we will demonstrate below the

specific version that is used for performance comparison with the SPKS. The following

EKS estimator has previously been used for frequency tracking by Kim et al. [15].

5.4.1 EKS frequency tracker Recursions

The pseudo code for the EKS is shown below:

Forward Updates

The filtered and predicted state estimates can be computed directly from the well-known

EKF recursions, which is shown as below:

• Initialization:

x̂0|0 = [0 0 0.1 . . . 0.1 0]T

P0|0 = diag(0.1 . . . 0.1)
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• Time-update equations:

Fk =
∂fk(x)

∂x
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ẑ−k+1 = h(x̂−
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The above recursions produce both the filtered estimates x̂k, the predicted estimates x̂−
k+1

and their associated estimation error covariances at each time k, which will be required

for smoothing.

Smoothing

There are many mathematically equivalent expressions for the EKS. Here we use a vari-

ant similar to that developed in [33] (see [34, p. 374]). The backward recursive update

equations for the EKS start with an initialization at time N such as,

ψ−
N = 0,

where ψ is called the adjoint variable. The smoothed estimates can then be computed by

the following recursive operations from k = N to k = 1,

• Backward-smoothing equations:

Kb,k = (FkP
−
k H

T
k )R−1

e,k

ψk = (Fk −Kb,kHk)
Tψk+1 +HT

k R
−1
e,kek

x̂s
k = x̂−

k + P−
k ψk.

5.5 Experimental Results

The performance of the SPKS and EKS based frequency tracker have been demonstrated

on two sets of simulated signals and a photo-sensor insect activity signal. We will start with

defining the input signals, parameter and performance-metric selection for the estimators

before moving on to the performance results.

5.5.1 Simulated Time-Variant Harmonic Signals

We employ equations (5.3)-(5.9) to generate two sets of simulated signals with time-

varying harmonics using a sampling rate of fs = 2kHz. The mean frequency and the

signal duration are kept as f̄ = 100Hz and Td = 3 s, respectively. The first set of simulated

signal contains the rhythmicity during the entire 3 s duration. The second set of simulated
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signal contains the rhythmicity only during the first and last one second, 0 − 1 s and

2−3 s. Between 1 s and 2 s, a white Gaussian noise replaces the rhythmicity. The absence

of rhythmicity for a specific period of time mimics certain real world cases when the

rhythmicity is intermittent.

5.5.2 Photo-Sensor Insect Activity Signal

We applied both the SPKS and EKS trackers to a photo-sensor insect activity signal. The

photo-sensor insect activity signal has a clear harmonic structure, which carries important

entomological information. The instantaneous frequency and the harmonic amplitudes

help entomologists determine what kind of insects flew over the photo-sensor [132, 133].

The sampling frequency of the photo-sensor insect activity signal was 16 kHz and the

signal duration was 10 s.

5.5.3 Parameter Selection

Table 5.1 lists the user-specified parameters needed to generate the examples and the

estimators. The parameter values, except for the SPKS case, are mainly adopted from the

work of Kim et al. who have successfully designed a EKS multiharmonic frequency tracker

using the same parameters [15]. Note that the chosen parameters were tuned in accordance

with the best performance of the EKS tracker [15]. While designing the proposed SPKS

multiharmonic tracker, we did not perform any additional tuning. Therefore, any bias

incurred during the selection of the user-specified parameters would favor the EKS tracker.

5.5.4 Performance Metric Criteria

There are two major criterions that we considered when comparing the performance of

frequency trackers: accuracy and “lock-on time” [15,16,131]. The accuracy quantifies how

closely the tracker estimates the state. In many cases, the primary objective of frequency

tracking is to estimate the fundamental frequency and all of its harmonics as accurately

as possible from a noisy input signal. The lock-on time is a measure of how quickly the

tracker can converge to the true state. This is particularly important especially when

the rhythmicity in a given signal is intermittent. Hence a frequency tracker need to be
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Table 5.1: Summary of user-specified design parameters

Name Symbol Value

AR Coefficient α 0.9987
Phase process noise variance qθ 10−5Ts

Frequency process noise variance qf 100 Ts

Amplitude process noise variance qs 0.0002 Ts

Average process noise variance qȳ 0.001 Ts

Measurement noise variance Rk 1
Mean frequency f̄ 100Hz
Sigma-Point spread α 0.85
Sigma-Point weighting term β 2
Sigma-Point parameter κ 0

where Ts is the sample interval.

robust so that it can regain the ability to track the intermittent frequencies as quickly as

possible [129].

We used three metrics to compare the accuracy and speed of convergence for the

SPKS and EKS multiharmonic frequency trackers. The performance metrics, which will

be described next are designed by Sunghan Kim and James McNames for this application.

The first metric is the normalized mean-square-error (NMSE),

NMSE =

∑N
k=1 (sk − ŝk)

2

∑N
k=1 (sk − s̄)2

, (5.15)

where N is the signal duration, ŝk is the estimate of the clean signal sk and s̄ is the mean

of the signal sk. Lower NMSE indicates that the signal estimates are closer to the true.

The second metric is normalized frequency mean-square-error (NFMSE),

NFMSE =

∑N
k=1(fk − f̂k)

2

∑N
k=1(fk − f̄)2

, (5.16)

where fk is the instantaneous frequency (IF), f̂k is the estimated IF, and f̄ is the mean

IF. NFMSE has a natural scale ranging from 0 to 1. A value NFMSE = 1 means that the

average accuracy of the estimated IF is no better than simply using the mean IF as an

estimate. NFMSE > 1 indicates poorer frequency tracking than a simple mean estimator

and a value of NFMSE � 1 indicates accurate frequency tracking.

The third metric is square-frequency-error (SFE(k)), which can be written as,

SFE(k) =
(

fk − f̂k

)2
. (5.17)



211

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
0

0.2

0.4

0.6

(a) EKS

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
0

0.2

0.4

0.6

(b) SPKS

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
0

0.2

0.4

0.6

(c) EKS error residual

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
0

0.2

0.4

0.6

(d) SPKS error residual

Figure 5.1: Tracking performance on a simulated signal, (a) Signal spectrogram with the
estimated harmonics (white lines). The EKS frequency tracker is used to generate the
frequency estimates. (b) Signal spectrogram with the estimated harmonics (white lines).
The estimates are generated using the SPKS tracker. (c) Residual estimation Error for the
EKS (NMSE = 8.56). (d) Residual estimation error for the SPKS (NMSE = 7.53). The
black stripes along the spectrograms are the true harmonics and indicate the presence of
significant amount of power at the corresponding frequencies. The white rectangular box
highlights the performance improvement of SPKS over the EKS tracker. As can be seen
for the SPKS case, the estimated harmonics always closely follow the true (Figure (b)).
However, inside the rectangular box the EKS estimates diverge from the true (Figure (a)).
The failure of the EKS to track the appropriate frequencies is responsible for the presence
of harmonic structures in the EKS residual plot (Figure (c)). However, the SPKS residual
plot (Figure (d)) does not display any left-over harmonic structures.

When this metric is averaged over an ensemble of simulated signals, it visualizes how

rapidly the trackers lock on to the true frequency. In contrast to the NMSE and NFMSE,

SFE(k) is a function of time that shows the squared difference between the true IF and its

estimate at a given time. For all of our results we calculated the NFMSE, NMSE, SFE(k)
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Figure 5.2: Performance comparison between the SPKS and EKS in terms of NMSE,
NFMSE and SFE(k), (a) NMSE versus SNR, (b) NFMSE versus SNR, (c) SFE(k) versus
time (s) at SNR = −3 dB. This plot demonstrates that how quickly the output of a
frequency tracker can converge to the true state after a period when no rhythmicity is
present. The shaded regions displayed in the plots represent the 5th and 95th percentile
ranges of the NFMSE, NMSE and SFE(k) respectively.

over an ensemble of 300 simulated signals.

5.5.5 Results

Simulated signals

Figure 5.1 shows the estimated multiharmonic frequencies using the EKS (a) and SPKS

(b) trackers on top of the spectrogram of a simulated signal. Note that the SNR of the
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(d) SPKS error residual

Figure 5.3: Performance comparison between the SPKS and EKS in tracking an intermit-
tent rhythmic signal, (a) EKS estimated frequencies on top of an intermittent rhythmic
signal at SNR = −3 dB, (b) SPKS estimated frequencies on top of an intermittent rhyth-
mic signal at SNR = −3 dB, (c) Residual signal between the true and estimated using the
EKS tracker, (d) Residual signal between the true and estimated using the SPKS tracker.
Note that the rhythmicity is present only between 0−1 s and 2−3 s. The simulated signal
does not contain any harmonic structure between 1 − 2 s. With the help of these plots
we evaluate how fast the SPKS/EKS frequency tracker can start tracking the harmonic
components after t = 2 s. The presence of harmonic structures in the EKS residual plot
(see Figure (c)) indicates EKS’s failure to lock on the true frequencies. As is evident
from Figure (b) and (d), the SPKS estimates converge to the true harmonic frequencies
at t = 2.1 s and hence it does not generate any residual harmonic patterns.

simulated signal was set to be at −3 dB. As can be seen from the plots, the EKS tem-

porarily lost its way in tracking the correct harmonics at the middle of the spectrogram

between t = 1.1 s and t = 1.9 s and also toward the end, after t = 2.7 s. The estima-

tion error of EKS is responsible in producing the residual harmonic structures as shown

in Figure 5.1(c). In contrast, the estimated frequencies obtained from the SPKS never
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diverged from the true during the entire signal duration and hence its residual error plot

(Figure 5.1(d)) does not show any harmonic structures.

Plot (a) in Figure 5.2 demonstrates the NMSE versus SNR for the SPKS and EKS

trackers. It shows that the SPKS tracker can track the true signal better than the EKS

tracker over a wide range of SNR. Plot (b) in Figure 5.2 depicts the NFMSE versus

SNR of the two multiharmonic trackers. Similar to the previous case, the SPKS clearly

outperforms the EKS over the entire range of SNR. Note that the performance difference

is larger at low SNR values. In fact at SNR = −2 dB, the corresponding NFMSE ≈ 1

signifies that the EKS estimated IF is no better than simply using a mean IF as an

estimate. However, the NFMSE for the SPKS at SNR = −2 dB is only 0.2, which proves

that the SPKS is more robust to noise than the EKS. Plot (c) in Figure 5.2 depicts the

SFE(k) of the SPKS and EKS multiharmonic trackers. The objective of this figure is to

demonstrate how quickly the estimators can converge to the true harmonics after a period

when no rhythmicity is present. It depicts that the SPKS tracker can regain its track of

the true IF faster than the EKS tracker.

Plots in Figure 5.3 show the estimated harmonic frequencies using the EKS and SPKS

trackers on top of the spectrogram of a simulated signal. Note that the rhythmicity is

present only between 0-1 s and 2-3 s. After the rhythmic structure came back at t = 2 s,

the SPKS converged and started tracking the true harmonic frequencies accurately from

t = 2.4 s (see Figure 5.3(a)). In contrast the EKS based frequency tracker completely

failed to regain its track of the true IF as seen in Figure 5.3(b)). Figure 5.3(c) and

5.3(d) demonstrate the spectrograms of estimation residuals using the EKS and SPKS

respectively. As visualized from the error plots, the EKS just barely started tracking the

true harmonic frequencies at the very end of the signal. After the rhythmicity came back

at t = 2 s, it took only 0.4 s for the SPKS to start tracking the true frequencies.

Photo sensor insect activity signal

Plots (a) and (b) in Figure 5.4 show the estimated harmonics using the EKS (a) and SPKS

(b) multiharmonic trackers on top of the spectrogram of a photo-sensor insect activity sig-

nal. Plots (c) and (d) in Figure 5.4 are the spectrograms of estimation residuals using the



215

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 1 2 3 4 5 6
0

100

200

300

400

(a) EKS

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 1 2 3 4 5 6
0

100

200

300

400

(b) SPKS

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 1 2 3 4 5 6
0

100

200

300

400

(c) EKS residuals (NMSE = 0.104)

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 1 2 3 4 5 6
0

100

200

300

400

(d) SPKS residuals (NMSE = 0.038)

Figure 5.4: Performance comparison between the EKS and SPKS tracker in tracking the
fundamental and harmonic frequencies of a photo sensor insect activity signal, (a) EKS
estimated frequency on top of the signal spectrogram, (b) SPKS estimated frequency
on top of the signal spectrogram, (c) Residual spectrogram between the true and EKS
estimates, (d) Residual spectrogram between the true and SPKS estimates.

EKS (c) and SPKS (d), respectively. The NMSE between the true and reconstructed bug

signal using the SPKS estimated harmonics is 0.038 while that using the EKS estimates

is 0.104. As seen from the figures, the SPKS estimates closely matched with the true

harmonics for the entire signal duration while the EKS tracker lost its track between 2.3 s

and 2.9 s. The region where the EKS tracker diverged from the true is marked with two

dark grey bars. Although the resulting error between the true and EKS estimates for the

fundamental frequency is not significant, the slight error in the IF results in complete mis-

match of higher harmonic frequencies. This observation is verified from the residual plot

of EKS (Figure 5.4(c)), which demonstrates higher estimation errors at upper harmonic
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frequencies than at the fundamental frequency level.

5.6 Discussion

In this chapter we covered in detail how a SPKS based new multiharmonic tracker for track-

ing the amplitude, phase and frequency of each harmonic component was implemented.

Recently, the EKF/EKS based state-space method has become popular to accomplish the

task of frequency tracking. In this work we have demonstrated that the SPKF/SPKS is

in fact a better and viable alternative than the industry standard EKF/EKS for tracking

fundamental and harmonic components of a periodic signal. The dynamic and observation

models used in the frequency tracking framework were taken from the work of Parker et

al. [122] and modified according to our needs. We made a head-to-head performance

comparison between the SPKS and EKS multiharmonic trackers based on a set of simu-

lated signals and a photo sensor insect activity signal. Using three difference performance

metrics, including NMSE, NFMSE and SFE, we have demonstrated that the SPKS multi-

harmonic tracker is significantly more accurate, converges faster to the true solution, and

robust to noise than the EKS multiharmonic tracker.



Chapter 6

Error Bounds for Discrete Time

Sigma-Point Kalman Filter

6.1 Overview

The SPKF based Bayesian inference algorithm has been demonstrated to perform with

a superior accuracy in estimating the unknown state of the nonlinear system. Julier has

demonstrated that the weighted set of sigma points that accurately capture the relevant

prior mean and covariance of a random variable (RV), calculates the posterior mean and

covariance correctly at least to the second order [23]. Recall that the prior sigma points

are propagated over the true nonlinear dynamics to generate the posterior sigma points,

which are then weighted averaged to compute the posterior mean and covariance. Julier

analyzed the accuracy of the posterior sigma points in moment calculation by comparing

with the Taylor series expansion around the posterior RV and verifying that the first and

second order terms matched exactly. However, no specific form of the error bounds that

capture the difference between the true and estimated states are derived for the SPKF.

In this chapter, our focus is to derive the recursive error bounds on the mean-square error

(MSE) performance of the SPKF based estimator in the context of a nonlinear dynamical

system.

This chapter is organized as follows. Section 6.2 discusses about the importance of

developing bounds on the performance of nonlinear estimation algorithms and demon-

strates the various techniques that leads to our derivation of the performance bounds for

the SPKF. Section 6.3 and 6.4 contain the derivations for computing a lower and a upper

217
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error bounds for the SPKF. Experimental results are given in Section 6.5, and finally

discussion and conclusions are presented in Section 6.6.

6.2 Introduction

Recursive Bayesian estimation is a general probabilistic approach for sequentially esti-

mating an unknown state probability density function over time using incoming noisy

measurements and a known process model. Recall that if the system is linear and the

state and noise densities are all Gaussian, the Kalman filter is optimal and provides for an

efficient and practical solution. For the nonlinear dynamical systems, the EKF is the most

popular and widely used suboptimal filtering technique for state estimation. The SPKF,

which was recently introduced has been shown to outperform the EKF in a consistent

manner for a number of applications [17, 26, 27, 116, 134]. Although the error behavior of

the EKF and its variants have been analyzed in a rigorous mathematical way [135–140],

we are not aware of any literature that provides an in-depth analysis of the estimation

error bounds for the SPKF based algorithms.

Van Trees et al. discusses about the importance and the issues involved in attaining

the bounds on the performance of nonlinear estimation algorithms [139]. As the nonlinear

estimators adopt suboptimal filtering technique to generate the state estimates, the lower

and upper error bounds measure the level of confidence associated with each estimate.

The SPKF approximates the prior state density with a number of sigma points. The

posterior state statistics, calculated at each SPKF iteration are approximated from the

sigma points propagated over the nonlinear dynamics. Hence, like other nonlinear estima-

tion algorithms, analytical error bounds in this case provide important information about

the filter performance. The lower and upper bounds provide an effective analytical tool

to measure the performance limitation of the filter and correspondingly help to manage

expectations of the end-user before performing any data simulation.

A commonly used lower bound for estimating nonrandom parameters in the time-

invariant system is equal to the famous Cramér-Rao bound (CRB), given by the inverse of

the Fisher information matrix [141,142]. Similar to the original CRB, a Bayesian version
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of the CRB (BCRB) is developed by Van Trees et al. for estimating random parameters

with a prior distribution [143–145]. The BCRB (also termed as “posterior CRB”) is

proved to be equal to the inverse of the Bayesian information matrix (BIM), which takes

into account both the contribution of the data and the prior information. Developing

a BCRB for the time-variant dynamical systems has attracted a lot of attention in the

research community and as a result several variants of the BCRB have appeared in the

literature [140,146–151]. Kerr et al. presents an overview of the various formulations that

are used to develop the BCRB for the state dynamical models [152].

Although contributions have been made in deriving the recursive BCRB for both the

continuous and the discrete time systems, the continuous time dynamics seems to have

received the most attention [143, 147, 148, 153]. In this respect, much of the effort was

concentrated in deriving a continuous time differential equation for the BIM. Van Trees

was the first to apply the Cramér-Rao theory to continuous time systems [143]. Later, the

bound was improved by Snyder et al. under the assumption that the underlying process

model is linear [153]. Bobrovsky and Zakai generalized the continuous-time BCRB so

that it could be applied to the nonlinear process and observation models [146]. Their

initial paper derived the BCRB for the one-dimensional state estimation case [146, 147]

but later they extended their derivation to include the multidimensional states [147,148].

Bobrovsky and Zakai were also the pioneers to derive a lower bound formulation for

the discrete time dynamical systems [146]. Galdos et al. generalized the Bobrovsky-

Zakai version of the BCRB and applied it successfully to the nonlinear multidimensional

discrete time systems [149,150]. Although their bounds are more general than the previous

bounds in the literature, still they have certain limitations. The most significant one

is the assumption that both the system state and the measurement vector have equal

dimensions, which is not necessarily true for all cases. Tichavský et al. provided an efficient

implementation of a recursive BCRB on the state error covariance, which is obtained from

first principles and is more general than the Bobrovsky-Zakai/Galdos bound [140]. In

addition, the derivation does not apply any constraints on the state dynamics or on the

state/observation dimensions. The derived BCRB demonstrates a lower bound on the

estimation error covariance of the nonlinear estimator. Using Tichavský’s derivation, Van
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Trees demonstrated a lower error bound for the EKF [139].

Similar to the filter lower bound, the convergence and stability properties of the filter

also need to be addressed in order to fully quantify the estimation error. Hence efforts have

been made to derive a filter upper bound for stochastic dynamical systems [135–138,154].

Although a literature survey points to an extensive number of research papers that already

exist on this topic, below we will only discuss those papers that we have found useful for our

derivation. The concept of the estimation-error upper bound came from the control theory.

Its derivation is based upon computing a Lyapunov function and analyzing the convergence

and stability properties of the stochastic process defined by the Lyapunov system. Whereas

in lower bound computation, the BCRB is solely based on the estimation error covariance

of the filter, the Lyapunov function based Bayesian upper bound is a function of the

state space dynamics, system nose parameters as well as the estimation error covariance

matrix. Song et al. derived a set of stochastic stability criterions in the MSE sense under

the condition that the system model is linear [135]. Independent of Song’s work, the

convergence and stability properties have also been specifically investigated for the linear

parameter estimation framework [138, 155, 156]. Galkowski et al. extended the stability

criteria to the nonlinear models using a special form of the nonlinear dynamics [136].

Another situation, where the upper error bound was derived includes a deterministic state

space model, i.e. state dynamics with zero process and observation noises [154, 157, 158].

Recently, Reif et al. demonstrated that the expected estimation error of the EKF is upper

bounded in the mean-square sense provided certain constraints can be applied on the

system dynamics, noise terms and the estimation error covariance [137]. Reif’s derivation

is more general than the previous error bounds in the sense that it is based on a standard

nonlinear dynamical model with the additive process and observation noises. Recently,

Alessandri et al. and Kim et al. derived the upper stability bound of their variants of the

EKF using Reif’s formulation [138, 159]. Alessandri et al. further extended Reif’s work

by taking into account the correlation between the estimation error and system noises in

his bound calculation.

In this chapter, the main contribution of our work is to derive a lower and upper error

bound for the SPKF, which operates on the discrete-time nonlinear dynamical model to
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estimate the system’s state. Both the lower and the upper bound is derived in terms of

MSE between the true and estimated state. The derived BCRB for the SPKF follows the

work of Tichavský and co-authors [140] as this is the most straightforward and generalized

lower error bound we have found in the literature. We further demonstrate that the

estimation error of the SPKF is exponentially bounded in the MSE sense by an upper

bound, if the prior conditions on the estimation error covariance, state dynamics and

system noise terms hold true. The derivation of the SPKF upper bound is based on

the work of Reif et al. [137]. After a thorough literature review, we decided to follow

Reif’s work as we found his derivation to be the most exhaustive, theoretically sound

and easy to understand. Note that the final equations of the lower and upper error

bounds for the SPKF are derived analytically from first principles. However, there are

some approximations needed to implement the bounds in practical examples. In the lower

bound calculation, we have approximated the multidimensional expectations required to

generate a closed form solution by sample weighted averaging over the extracted sigma

points. This is necessary because the calculation of the multidimensional expectations

is analytically intractable for the nonlinear system. This will be explained in detail in

Section 6.3.3. The upper error bound is derived as a function of parameters corresponding

to the lower and upper bound values of the state error covariance, system noise terms,

state space parameters and the initial estimation error. However, in practice those bound

values are not known in advance, hence we adopt a separate training procedure to estimate

them. This will be further detailed in Section 6.4.1. Although these approximations and

assumptions might affect the accuracy, the derived bounds provide a quantitative measure

of confidence on the SPKF generated state estimates and help to determine whether the

SPKF would achieve the expected accuracy in a particular state estimation application.

6.3 Lower Error Bound For The SPKF

Before going details into the derivation of the SPKF lower bound, we provide a short

description on the CRB and the BCRB, which analyzes the performance of an estimator

in terms of MSE between the true states and the estimates. To describe the lower bound,
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we have followed the same notations used by Van trees in his book [139].

6.3.1 Background: CRB and BCRB

Consider the process of estimating a M dimensional state vector x using a set of noisy

N dimensional observation vector z. In the first case, we assume that the state x is

an unknown nonrandom vector. If p(z|x) denotes the observation likelihood given the

state x, the Cramér-Rao bound (CRB) (C(x)) on the estimation error covariance matrix

P (x, x̂) can be shown as

P (x, x̂) ≥ J−1
F , C(x), (6.1)

where P (x, x̂) is the covariance between the estimated x̂ and the true state x and can

be shown as

P (x, x̂) = Ez|x

[

(

x(z) − Ez|x (x̂(z))
) (

x(z) − Ez|x (x̂(z))
)T
]

. (6.2)

The M ×M Fisher information matrix JF , which uses the likelihood distribution can be

defined as

[JF (x)]ij = Ez|x

[

−∂
2 ln p(z|x)

∂xi∂xj

]

for i, j = 1, 2, . . . ,M. (6.3)

Next, the unknown state x to be estimated is defined as a random vector with a

prior probability density p(x), which is referred to as Bayesian estimation. Van Trees

extended the classical CRB bound for the case of Bayesian estimation, which is known as

the Bayesian Cramér-Rao bound (BCRB). The BCRB (CB(x)) is defined as

P (x, x̂) ≥ J−1
B , CB(x), (6.4)

where P (x, x̂) is the MSE matrix between the true and estimated state,

P (x, x̂) = Exz

[

(x̂− x) (x̂− x)T
]

. (6.5)
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The M ×M Bayesian information matrix (BIM) JB is equal to the summation of contri-

bution from the data JD and the contribution of the prior density JP

[JB ]ij = Ez,x

[

−∂
2 ln p(z,x)

∂xi∂xj

]

for i, j = 1, 2, . . . ,M (6.6)

= Ex [JF ]ij + Ex

[

−∂
2 ln p(x)

∂xi∂xj

]

for i, j = 1, 2, . . . ,M (6.7)

JB = JD + JP . (6.8)

Note that JD is the expectation of the Fisher information matrix JF over the prior distri-

bution p(x). The above equation demonstrates that the BCRB depends on the information

obtained from the observed data as well as a priori information of the hidden state.

6.3.2 Recursive BCRB For The Nonlinear Filtering Problem

The objective here is to derive a recursive formulation of the BCRB for the time-varying

nonlinear dynamical model in order to lower bound the state estimation error covariance

Pk. For the nonlinear filtering problem, the BCRB can be demonstrated as

Pk ≥ J−1
k , (6.9)

where Jk is the BIM. For notational convenience, we have omitted the subscript “B” from

Jk. Note in this case, the BIM is a function of discrete time k. Hence the key of the

derivation is to find a recursive formulation of Jk+1 in terms of Jk.

In order to obtain the derivation, first recall the nonlinear discrete time dynamic

system,

xk+1 =fk (xk,vk) (6.10)

zk =hk (xk,nk) , (6.11)

where xk ∈ R
M represents the unobserved state of the system and zk ∈ R

P is the sensor

observation at time index k. The system dynamic model f(.) and observation model

h(.) are assumed known. The process noise vk ∼ N (0,Qk) and observation noise nk ∼
N (0,Rk) are independent white processes.
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Tichavský and co-authors derived an expression for Jk+1 from first principles, which is

based on the previously computed Jk, using the above nonlinear dynamical model [140],

Jk+1 = D22
k −D21

k

(

Jk +D11
k

)−1
D12

k , (6.12)

where

D11
k = Exk ,xk+1

[

−∆xk
xk

ln p(xk+1|xk)
]

(6.13)

D12
k = Exk ,xk+1

[

−∆
xk+1
xk

ln p(xk+1|xk)
]

(6.14)

D21
k =

[

D12
k

]T
(6.15)

D22
k = Exk ,xk+1

[

−∆
xk+1
xk+1

ln p(xk+1|xk)
]

+ Exk+1,zk+1

[

−∆
xk+1
xk+1

ln p(zk+1|xk+1)
]

. (6.16)

The gradient operator ∆Θ
Φ is defined as

∆Θ
Φ = ∇Φ

[

∇T
Θ

]

(6.17)

∇Θ =

[

∂
∂θ1

∂
∂θ2

· · · ∂
∂θM

]T

. (6.18)

The state transition and observation probability distributions are denoted as p(xk+1|xk)

and p(zk+1|xk+1) respectively. In order to maintain continuity the entire derivation of

Jk+1 is skipped here. An interested reader can refer to Tichavský’s paper [140] for further

details.

6.3.3 Recursive BCRB For The SPKF

We derive the lower bound of the state estimation error covariance of the SPKF using

the Equation (6.12). For this purpose, we make use of statistically linearized form of the

standard nonlinear state space, which is repeated here for convenience

xk+1 =Af,kxk + bf,k +Gf,k (vk + εf,k) (6.19)

zk =Ah,kxk + bh,k + nk + εh,k, (6.20)

where the linearization coefficients, Af,k, Ah,k, bf,k and bh,k, and linearization error terms,

Pεf ,k and Pεh,k are already defined in Section 1.4.1.
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By defining the state transition distribution from state k to k+1, p(xk+1|xk), and the

observation density at time k+ 1, p(zk+1|xk+1) in terms of WSLR coefficients, we obtain

p(xk+1|xk) =
1

(2π)
M
2

∣

∣

∣Qk + Pεf ,k

∣

∣

∣

1

2

.

e
− 1

2 [xk+1−(Af,kxk+bf,k)]
T
(

Qk+Pεf ,k

)

−1

[xk+1−(Af,kxk+bf,k)]
(6.21)

p(zk+1|xk+1) =
1

(2π)
P
2 |Rk+1 + Pεh,k+1|

1

2

.

e−
1

2 [zk+1−(Ah,k+1xk+1+bh,k+1)]
T
(Rk+1+Pεh,k+1)

−1
[zk+1−(Ah,k+1xk+1+bh,k+1)],

(6.22)

where M is the dimension of the state vector xk and P is the dimension of the observation

vector zk. Note that we represent both of these densities as Gaussian.

Applying natural logarithm (ln) on both sides of those probability densities, we obtain

− ln p(xk+1|xk) =
M

2
ln (2π) +

1

2
ln
∣

∣

∣Qk + Pεf ,k

∣

∣

∣+

1

2
[xk+1 − (Af,kxk + bf,k)]

T
(

Qk + Pεf ,k

)−1
[xk+1 − (Af,kxk + bf,k)]

(6.23)

− ln p(zk+1|xk+1) =
P

2
ln (2π) +

1

2
ln |Rk+1 + Pεh,k+1|+

1

2
[zk+1 − (Ah,k+1xk+1 + bh,k+1)]

T (Rk+1 +Pεh,k+1)
−1 .

[zk+1 − (Ah,k+1xk+1 + bh,k+1)] . (6.24)

The log-densities obtained from Equations (6.23) and (6.24) are substituted into the Equa-

tions (6.13)-(6.16), which are further simplified by applying the double gradient operator

∆·
· as shown,

D11
k = Exk

[

AT
f,k

(

Qk + Pεf ,k

)−1
Af,k

]

(6.25)

D12
k = −Exk

[

AT
f,k

(

Qk + Pεf ,k

)−1
]

(6.26)

D21
k = −Exk

[

(

Qk + Pεf ,k

)−1
Af,k

]

(6.27)

D22
k = Exk

[

(

Qk + Pεf ,k

)−1
]

+ Exk+1

[

AT
h,k+1 (Rk+1 + Pεh,k+1)

−1Ah,k+1

]

. (6.28)
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Now substituting the value of D11
k , D12

k , D21
k and D22

k into the Equation (6.12), we obtain

a recursive equation for the BIM Jk+1 as shown below:

Jk+1 = Exk

[

(

Qk + Pεf ,k

)−1
]

− Exk

[

(

Qk + Pεf ,k

)−1
Af,k

]

.

(

Jk + Exk

[

AT
f,k

(

Qk + Pεf ,k

)−1
Af,k

])−1

Exk

[

AT
f,k

(

Qk + Pεf ,k

)−1
]

+

Exk+1

[

AT
h,k+1 (Rk+1 + Pεh,k+1)

−1Ah,k+1

]

. (6.29)

As proved, the recursive equation of Jk+1 is the function of statistically linearized state and

observation dynamics, statistics of the linearization error and the previous Jk computed

at time k. The expression for Jk+1 is significant due to its ability to calculate the lower

bound on the SPKF performance without applying the original filter equations to the data.

As recursive computation of Jk assesses the SPKF performance on a given application, it

has the potential to save significant amount of time and effort in terms of computations,

filter design and filter tuning compared to actual implementation of the filter.

In order to obtain a closed form solution for Jk+1, we have to compute the multidi-

mensional expectations over the state distribution. Note, this is necessary because the

WSLR coefficients and linearization error terms at time k are defined as a function of

the current state xk. Unfortunately computing the above mentioned expectations are in-

tractable, hence statistical approximation techniques must be used in order to solve those.

Monte-Carlo based simulation is one possibility to approximate the expectations. However

it can be computationally intensive for calculating expectations over a state with a higher

dimension. In this work, we follow the sigma-point based weighted averaging technique

to solve the multidimensional expectations, which can be shown as follows.

Any expectations of the form

E [g (xk)] =

∫

g (xk) p (xk|z1:k) dxk (6.30)

can be approximated by a sample weighted averaging of the sigma points

Ẽ [g (xk)] =
2M
∑

i=0

wig
(

x
(i)
k

)

, (6.31)

where wi is the weight of the i-th sigma point. Hence using the above equation, we can com-

pute the expectations needed to obtain an expression for the lower bound. For example, to
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compute D11
k , first we extract sigma points from the expression AT

f,k

(

Qk + Pεf ,k

)−1
Af,k

and then we obtain an estimate of the true expectation by weighted averaging over all the

sigma points as shown in Equation (6.31).

In this respect, there is another important thing to mention i.e. how to compute the

initial value of the BIM J0. To start the recursion on Jk, we need to know about J0 which

can be evaluated from a priori state distribution p (x0) as shown below

J0 = Ex0

[

−∆x0

x0
ln p (x0)

]

. (6.32)

By taking negative logarithm on p (x0),

− ln (p(x0)) =
M

2
ln (2π) +

1

2
ln |P0| +

1

2
[x0 − x̂0]

T P−1
0 [x0 − x̂0] (6.33)

J0 = Ex0

[

P−1
0

]

(6.34)

= P−1
0 . (6.35)

In the experimental result section, we provide two different simulation examples that will

demonstrate the realizations of the SPKF lower bound.

6.4 Upper Error Bound For The SPKF

In this section, we are going to analyze the error convergence behavior of the SPKF and

derive an upper bound of the state estimation error in the mean square sense. However,

first we describe the necessary concept and assumptions we have to make, which enable

us to derive the upper error bound.

6.4.1 Conditions Of Convergence And Assumptions

We make use of the following Lemma, which states that a stochastic process can be shown

to be error bounded under certain conditions, in order to analyze the error behavior of

the filter. Note, Agniel et al. and Tarn et al. were the first who used this Lemma in

the parameter estimation problem to prove that the error of an estimator operating on

a stochastic model is upper-bounded [160, 161]. Recently Reif et al. also apply this to

demonstrate the error behavior of the discrete time EKF [137].
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Lemma 6.4.1. If a stochastic process Vk (ek) as well as real numbers c1, c2, c3 > 0 and

0 < c4 ≤ 1 exists, such that the following criteria

c1 ‖ek‖2 ≤ Vk (ek) ≤ c2 ‖ek‖2 (6.36)

E [Vk+1 (ek+1) |ek] − Vk (ek) ≤ c3 − c4Vk (ek) , (6.37)

is satisfied for each ek, where ek is the estimation error between the true and estimated

state at time k

ek = xk − x̂k, (6.38)

the stochastic process can be proved to be exponentially bounded in MSE sense with prob-

ability one for every k ≥ 0. In mathematical form, this can be expressed as

E
[

‖ek‖2
]

≤ c2

c1
E
[

‖e0‖2
]

(1 − c4)
k +

c3

c1

k−1
∑

i=1

(1 − c4)
i . (6.39)

The proof of the Lemma is beyond the scope of this dissertation, interested readers

can look at the books by Goodwin [7] and Morozan [162] and the references within for

further details.

Next, we want to explicitly state the assumptions that we have to make in order to

derive the upper bound of the SPKF.

Assumption 6.4.1. Considering a statistically linearized form of the SPKF given by

Equations (6.19)-(6.20), the following assumptions need to be hold true for the upper error

bound to exist.

1. There exists positive real numbers pmin and pmax which lower and upper bounds the

estimation error covariance matrix Pk such that

pminI ≤ Pk ≤ pmaxI. (6.40)

2. The covariance matrices for the process and the observation noise Qk and Rk are

positive definite and they are lower bounded by qmin > 0 and rmin > 0

qminI ≤ Qk (6.41)

rminI ≤ Rk. (6.42)
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3. It is assumed that an upper bound exists for the norm of the WSLR coefficients Af,k

and Ah,k as follows:

‖Af,k‖ ≤ af,max (6.43)

‖Ah,k‖ ≤ ah,max. (6.44)

4. The initial estimation error and estimation error at each time k is finite,

‖e0‖ ≤ η (6.45)

‖ek‖ ≤ δe. (6.46)

5. The statistical linearization errors εf,k and εh,k for the process and the observation

models are bounded via the following equations,

‖εf,k‖ ≤ kεf
‖ek‖2 (6.47)

‖εh,k‖ ≤ kεh
‖ek‖2 , (6.48)

where kεf
and kεh

are the positive real numbers.

6. The covariances of the linearization error terms for the process and observation

models

Pεf ,k = E
[

εf,kε
T
f,k

]

(6.49)

Pεh,k = E
[

εh,kε
T
h,k

]

, (6.50)

are assumed to be lower-bounded as follows:

pεf ,minI ≤ Pεf ,k (6.51)

pεh,minI ≤ Pεh,k. (6.52)

7. Finally, we assume that the term Gf,k appears in Equation (6.19) are bounded via

Gf,kG
T
f,k ≤ δI, (6.53)

for δ > 0 is a small positive number.

The assumptions are based upon the notion that certain parameters of the system

model, noise terms and the estimation error covariance are bounded and we know the
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exact bound values in advance. Reif et al. demonstrates how the existence of the above

bounds can be verified during the state estimation process by taking advantage of the

observability and detectability properties of the system model [137]. For example, with

the help of the observability gramian they have proved that the estimation error covariance

Pk is lower and upper bounded if the following conditions hold

• The initial error covariance P0 is positive definite.

• The state space model satisfies the uniform observability condition.

• The process and the observation noise covariances Qk and Rk are positive definite

and finite.

The details of this proof are omitted here, but can be found in [137, 163].

The Equations (6.40)-(6.52) demonstrate a number of unknown parameters, such as

pmin, pmax, qmin and rmin, which determine the accuracy of the filter upper bound. In

an ideal scenario, it is assumed that we already know those values and analyze the filter

estimation error in terms of those parameters. But in practice, the true parameter values

are unknown and hence the question is how to compute them. This is important because

the upper bound of the filter estimation error is derived as a function of those parameters,

hence any inaccurate computation may pose a direct effect on the accuracy of the derived

error bound in practical examples. Formulating the parameters analytically should be

the ideal case but as mentioned by Reif and Alessandri, the process is challenging and

complex [137, 138]. One option is to resort to simulations in order to estimate them

from the training data. For example, Reif et al. computed the maximum and minimum

eigenvalue of Pk ∀k from the training data and used those as a bound for Pk, i.e. pmin and

pmax. The terms kεf
and kεh

are estimated with respect to the highest spectral norm of the

Hessian matrices of the process and the observation model. Similarly, the bounds qmin and

rmin are adopted from the minimum eigenvalues over Qk and Rk ∀k respectively [137,138].

We have also adopted a training procedure similar to Reif and Alessandri in order to

estimate the above bound parameters. However, instead of computing the sample bounds

from the training data, we derive the confidence-interval estimate for each unknown pa-

rameter, which is an interval that contains the N% of the total probability distribution of
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a random variable. By definition, the confidence interval is the region within which the

unknown true value of the parameter is expected to fall with approximately N% prob-

ability. Assuming a random variable X is normal distributed, the N% upper and lower

confidence interval bounds can be described as follows:

µx ± zNσx, (6.54)

where µx and σx are the mean and standard deviation of the measured value x of X,

which are obtained from the training data. The constant zN specifies the size of the interval

about the mean that contains N% of the probability mass under the normal distribution.

The values of zN for the two-sided N% confidence intervals can be found in any statistics

textbook. Note, we have used N=95% as 95% confidence interval is most commonly used

in the statistical learning theory. For N=95%, the value of zN = 1.96. For details about

the assumptions and the procedure, please refer to chapter 5 of the Mitchell’s book [164].

We have employed the above concept to determine the unknown parameters as shown

in Equations (6.40)-(6.52). For example, we run the SPKF on the training data comprising

T = 500 independent trials to compute the estimation error covariance Pk from each trial.

The minimum and the maximum values p̂t
min and p̂t

max are computed at each trial t from

the corresponding trace of Pk. Combining p̂t
min and p̂t

max over all T trials, we obtain

p̂min =

[

p̂1
min · · · p̂t

min p̂Tmin

]

(6.55)

p̂max =

[

p̂1
max · · · p̂t

max p̂Tmax

]

. (6.56)

Assuming that the distribution of the random vectors p̂min and p̂max as Gaussian, the

N = 95% confidence interval is estimated using the Equation (6.54) for each distribution.

The confidence interval upper and lower bound for the distribution of p̂min can be shown

as

µp̂min
± z95σp̂min

, (6.57)

where µp̂min
and σpmin

are the sample mean and the sample variance from the distribution.

In other words, we can tell with 95% confidence that the true pmin lies between the

interval defined by µp̂min
− z95σp̂min

and µp̂min
+ z95σp̂min

. In a similar way, we can also
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demonstrate that the true pmax is bounded within µp̂max
− z95σp̂max

and µp̂max
+ z95σp̂max

with a probability equal to 95%. Hence using the above logic, we can choose the values

of pmin and pmax as

pmin = µp̂min
− z95σp̂min

(6.58)

pmax = µp̂max
+ z95σp̂max

, (6.59)

where z95 = 1.96.

We have implemented the exact similar procedure in order to determine the 95%

confidence interval bounds for Qk, Rk, Pεf ,k, Pεh,k, Af,k and Ah,k. We are not repeating

those derivations as we think readers can compute them by following the above procedure.

In order to estimate kεf
and kεh

, we have followed the procedure shown by Reif et al. [137].

The confidence interval estimates of the parameters defined here are used to compute the

estimation error upper bound in practical examples shown in Section 6.5.

6.4.2 Mathematical Derivation

In this section, our objective is to form the Lyapunov function as a function of the SPKF

estimation error ek so that the Lemma 6.4.1 can be applied to prove the error bound. We

start with an expression of the state estimate (x̂k+1) at time k + 1 in terms of previous

state estimate x̂k at time k

x̂k+1 = Af,kx̂k + bf,k +Kk (zk −Ah,kx̂k − bh,k) , (6.60)

where Kk is the Kalman gain and zk is the observation at time k. The statistical lin-

earization parameters for the process model areAf,k, bf,k, whereas that for the observation

model areAh,k and bh,k respectively. Substituting zk in (6.60) with the WSLR observation

Equation (6.11) and also defining ek = x̂k − xk, we obtain

x̂k+1 = Af,kx̂k + bf,k +Kk (Ah,kxk −Ah,kx̂k + nk + εh,k) . (6.61)
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Subtracting Equation (6.61) from the WSLR process Equation (6.19)

xk+1 − x̂k+1 = Af,k (xk − x̂k) + εf,k +Gf,kvk −Kk (Ah,k (xk − x̂k) + εh,k + nk)

ek+1 = (Af,k −KkAh,k) ek + εf,k −Kkεh,k +Gf,kvk −Kknk

ek+1 = (Af,k −KkAh,k) ek + εtk +Nt
k , (6.62)

where

εtk = εf,k −Kkεh,k, (6.63)

is the combined pseudo-linearization error and

Nt
k = Gf,kvk −Kknk, (6.64)

is the combined noise term. The Equation (6.62) demonstrates how the estimation error

ek propagates from time k to k + 1.

In order to use the Lemma 6.4.1, which proves the convergence of the estimation error

ek, we introduce the Lyapunov function Vk (ek), which is defined as

Vk (ek) = eT
kP

−1
k ek, for k = 0, 1, . . . , N. (6.65)

Using (6.40), we have

1

pmax
‖ek‖2 ≤ Vk (ek) ≤

1

pmin
‖ek‖2 (6.66)

This satisfies the first condition for Lemma 6.4.1, as listed in Equation (6.36). In or-

der to prove the second condition, we have to demonstrate that an upper bound for

E [Vk+1 (ek+1) |ek] exists as in Equation (6.37). Defining Vk+1 (ek+1) in terms of the error

dynamics shown in (6.62)

Vk+1 (ek+1) =
[

(Af,k −KkAh,k) ek + εtk +Nt
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk +Nt
k

]

= eT
k (Af,k −KkAh,k)

T P−1
k+1 (Af,k −KkAh,k) ek +

[

εtk

]T
P−1

k+1 [2 (Af,k −KkAh,k) ek] +
[

εtk

]T
P−1

k+1ε
t
k + 2

[

Nt
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk

]

+
[

Nt
k

]T
P−1

k+1N
t
k . (6.67)

The task is now simplified to deriving an upper bound for each term on the right hand

side of Equation (6.67). The proof of this is divided into several Lemmas, which we will
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describe next. The Lemmas, emphasized below, are the integral parts of this derivation

and is proved from first principles.

Lemma 6.4.2. Taking into account that the Assumption 6.4.1 be fulfilled, we can demon-

strate that the norm of the Kalman gain term Kk of the SPKF is satisfied by the following

inequality

‖Kk‖ ≤ af,maxpmaxah,max

(pεh,min + rmin)
. (6.68)

Proof:

Defining Kalman gain Kk based on the coefficients of the statistically linearized dynamical

system

Kk = Af,kPkA
T
h,k

(

Ah,kPkA
T
h,k + Pεh,k +Rk

)−1
(6.69)

Kk ≤ ‖Af,k‖ ‖Pk‖
∥

∥

∥AT
h,k

∥

∥

∥

∥

∥

∥

∥

(

Ah,kPkA
T
h,k + Pεh,k +Rk

)−1
∥

∥

∥

∥

. (6.70)

Note, for a vector x ∈ R
n, the ‖x‖ is defined as the Euclidean norm of x

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n. (6.71)

Now using Assumption 6.4.1, we can upper bound each individual norm and prove the

following

Kk ≤ af,maxpmaxah,max

(pεh,min + rmin)
, (6.72)

which concludes the proof.

Lemma 6.4.3. Let the conditions of Assumption 6.4.1 hold and defining a real number

0 < α < 1, we can prove the following inequality

(Af,k −KkAh,k)
T P−1

k+1 (Af,k −KkAh,k) ≤
(1 − α)

(1 + ε)
P−1

k , (6.73)

where ε ≈ 0 is a very small positive real number.

Proof:

We start with the equation of the estimation error covariance Pk+1 at time k+1 in terms

of the error covariance Pk

Pk+1 = (1 + ε)
[

Af,kPkA
T
f,k +Pεf ,k +Qk −Kk

(

Ah,kPkA
T
h,k + Pεh,k +Rk

)

KT
k

]

.

(6.74)
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The term (1 + ε) is called “covariance scaling”, which is introduced by Alessandri et al. in

deriving the error bound of the modified EKF algorithm [138]. Although this term inflates

the covariance matrix slightly from time k to k + 1, the advantage is that it simplifies

the derivation of the error bound. Furthermore, Alessandri et al. demonstrate that there

is no visible change of performance for the EKF with and without the presence of ε.

Manipulating the R.H.S. of Equation (6.74) yields

Pk+1 = (1 + ε)
[

Af,kPkA
T
f,k + Pεf ,k +Qk −Af,kPkA

T
h,kK

T
k

]

= (1 + ε)
[

(Af,k −KkAh,k)Pk (Af,k −KkAh,k)
T
]

+

(1 + ε)
[

KkAh,kPk (Af,k −KkAh,k)
T + Pεf ,k +Qk

]

. (6.75)

In the next step, we aim at simplifying the term KkAh,kPk (Af,k −KkAh,k)
T . With

Equation (6.69), we demonstrate

A−1
f,k (Af,k −KkAh,k)Pk = Pk −A−1

f,kKkAh,kPk

= Pk − PkA
T
h,k

(

Ah,kPkA
T
h,k + Pεh,k +Rk

)−1
Ah,kPk. (6.76)

Now using the matrix inversion Lemma, the R.H.S. of the Equation (6.76) can be simplified

to

A−1
f,k (Af,k −KkAh,k)Pk =

(

P−1
k +AT

h,kR
−1
k Ah,k

)−1

(Af,k −KkAh,k) = Af,k

(

P−1
k +AT

h,kR
−1
k Ah,k

)−1
P−1

k ≥ 0. (6.77)

It can be seen that the R.H.S. of Equation (6.77) ≥ 0 as all the R.H.S. matrices are

either positive definite or positive semi-definite (Af,k and Ah,k are positive semi-definite

matrices and all others are positive definite). From the definition of Kk, we can show that

Kk = Af,kPkA
T
h,k

(

Ah,kPkA
T
h,k + Pεh,k +Rk

)−1
≥ 0. (6.78)

Combining Equations (6.77) and (6.78),

KkAh,kPk (Af,k −KkAh,k)
T ≥ 0. (6.79)

Substituting Equation (6.79) into (6.75)

Pk+1 ≥ (1 + ε)
[

(Af,k −KkAh,k)Pk (Af,k −KkAh,k)
T + Pεf ,k +Qk

]

. (6.80)
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Now multiplying (Af,k −KkAh,k)
−1 and (Af,k −KkAh,k)

−T by the left and right of each

term on both sides

1

(1 + ε)
(Af,k −KkAh,k)

−1 Pk+1 (Af,k −KkAh,k)
−T ≥ Pk + (Af,k −KkAh,k)

−1 .

(

Pεf ,k +Qk

)

(Af,k −KkAh,k)
−T .

(6.81)

Applying Lemma 6.4.2 and Assumption 6.4.1 to simplify the Equation (6.81) as follows

Af,k −KkAh,k ≤ ‖Af,k −KkAh,k‖ I

≤ (‖Af,k‖ + ‖Kk‖ ‖Ah,k‖) I

≤
(

af,max +
af,maxpmaxa

2
h,max

pεh,min + rmin

)

I

≤ af,max

(

1 +
pmaxa

2
h,max

pεh,min + rmin

)

I. (6.82)

Interchanging the L.H.S and R.H.S. terms in Equation (6.82),

[

(Af,k −KkAh,k)
T
]−1

≥ 1

af,max

(

1 +
pmaxa2

h,max

pεh,min+rmin

)I. (6.83)

Similarly we can show that

[

(Af,k −KkAh,k)
T
]−T

≥ 1

af,max

(

1 +
pmaxa2

h,max

pεh,min+rmin

)I. (6.84)

From Assumption 6.4.1,

Pεf ,k ≥ pεf ,minI (6.85)

Qk ≥ qminI (6.86)

We can express the identity matrix I in terms of the estimation error covariance Pk and

its upper bound pmax

Pk ≤ pmaxI

P−1
k ≥ 1

pmax
I

I = PkP
−1
k ≥ Pk

pmax
(6.87)
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The R.H.S. of Equation (6.81) can be substituted using the results obtained from Equations

(6.83), (6.84), (6.86) and (6.87)

1

(1 + ε)
(Af,k −KkAh,k)

−1 Pk+1 (Af,k −KkAh,k)
−T ≥

Pk











1 +
pεf ,min + qmin

pmaxa
2
f,max

(

1 +
pmaxa2

h,max

pεh,min+rmin

)2











. (6.88)

Now defining the term t1,

t1 =
pεf ,min + qmin

pmaxa
2
f,max

(

1 +
pmaxa2

h,max

pεh,min+rmin

)2 , (6.89)

we can write Equation (6.88) in terms of t1,

(Af,k −KkAh,k)
−1Pk+1 (Af,k −KkAh,k)

−T = (1 + ε) (1 + t1)Pk. (6.90)

Taking inverse on both sides and assuming (1 − α) = 1
1+t1

, we obtain

(Af,k −KkAh,k)
T P−1

k+1 (Af,k −KkAh,k) ≤
1

(1 + ε) (1 + t1)
P−1

k

≤ (1 − α)

(1 + ε)
P−1

k , (6.91)

which concludes the proof.

Lemma 6.4.4. Considering that the Assumption 6.4.1 holds true and there exists a real

number t2 ∈ R > 0, we can prove the following inequality

[

εtk

]T
P−1

k+1

[

2 (Af,k −KkAh,k) ek + εtk

]

≤ t2 ‖ek‖3 , (6.92)

where εtk is the combined pseudo-linearization error as defined in Equation (6.63) and ek

is the SPKF estimation error.

Proof:

From the properties of the vector and matrix norm, the L.H.S. of the above inequality can

be written as

[

εtk

]T
P−1

k+1

[

2 (Af,k −KkAh,k) ek + εtk

]

≤
∥

∥

∥

∥

[

εtk

]T
∥

∥

∥

∥

∥

∥

∥P−1
k+1

∥

∥

∥

[

2 (‖Af,k‖ + ‖Kk‖ ‖Ah,k‖) ‖ek‖ +
∥

∥

∥εtk

∥

∥

∥

]

(6.93)
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We can expand εtk from Equation (6.63) and then take the norm on both sides
∥

∥

∥

∥

[

εtk

]T
∥

∥

∥

∥

≤ ‖εf,k‖ + ‖Kk‖ ‖εh,k‖ (6.94)

Using Assumption 6.4.1 and Lemma 6.4.2,
∥

∥

∥

∥

[

εtk

]T
∥

∥

∥

∥

≤ kεf,k
‖ek‖2 +

af,maxpmaxah,max

(pεh,min + rmin)
kεh,k

‖ek‖2 . (6.95)

The
∥

∥

∥P−1
k+1

∥

∥

∥ can be shown as

∥

∥

∥P−1
k+1

∥

∥

∥ ≤ 1

pmax
. (6.96)

We apply Equations (6.95), (6.96) and the Assumption 6.4.1 to substitute the R.H.S. of

Equation (6.93). After simplification we obtain

[

εtk

]T
P−1

k+1

[

2 (Af,k −KkAh,k) ek + εtk

]

≤
[(

kεf,k
+
af,maxpmaxah,maxkεh,k

(pεh,min + rmin)

)

1

pmin

]

.

[

2af,max

(

1 +
pmaxa

2
h,max

(pεh,min + rmin)

)

+

(

kεf,k
+
af,maxpmaxah,maxkεh,k

(pεh,min + rmin)

)

δe

]

‖ek‖3 .

(6.97)

Now introducing t2,

t2 =

[(

kεf,k
+
af,maxpmaxah,maxkεh,k

(pεh,min + rmin)

)

1

pmin

]

.

[

2af,max

(

1 +
pmaxa

2
h,max

(pεh,min + rmin)

)

+

(

kεf,k
+
af,maxpmaxah,maxkεh,k

(pεh,min + rmin)

)

δe

]

, (6.98)

and finally substituting t2 into Equation (6.97)

[

εtk

]T
P−1

k+1

[

2 (Af,k −KkAh,k) ek + εtk

]

≤ t2 ‖ek‖3 , (6.99)

we prove the above Lemma.

Lemma 6.4.5. Using the Assumption 6.4.1 and there exists a positive real number t2 ∈
R > 0, we can prove the following inequality

2
[

N t
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk

]

≤
(

1 +
1

ε

)

[

N t
k

]T
P−1

k+1N
t
k+

[

εtk

]T
P−1

k+1ε
t
k + εeT

k (Af,k −KkAh,k)
T P−1

k+1 (Af,k −KkAh,k) ek (6.100)

where N t
k is the combined noise term as defined in Equation (6.64) and ε ≈ 0 is a very

small positive real number.
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Proof:

The L.H.S. of the proof is divided into two parts:

2
[

N t
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk

]

= 2
[

N t
k

]T
P−1

k+1 [(Af,k −KkAh,k) ek] +

2
[

N t
k

]T
P−1

k+1ε
t
k. (6.101)

The task is now to decorrelate the noise expression Nk from the expression involving the

estimation error ek. For this purpose, we make use of Young’s inequality theorem,

2aT
1 a2 ≤ aT

1Paa1 + aT
2P

−1
a a2,∀a1,a2 ∈ R

n (6.102)

where Pa is a symmetric positive definite matrix of dimension n× n. Now defining

a1 = N t
k (6.103)

a2 = P−1
k+1 (Af,k −KkAh,k) ek (6.104)

Pa =
1

ε
P−1

k+1, (6.105)

for the first part of the R.H.S. of Equation (6.101), Young’s inequality provides

2
[

N t
k

]T
P−1

k+1 [(Af,k −KkAh,k) ek] ≤
1

ε

[

N t
k

]T
P−1

k+1N
t
k+

εeT
k (Af,k −KkAh,k)

T P−1
k+1 (Af,k −KkAh,k) ek.

(6.106)

Similarly Young’s inequality also can be applied on the second part of the R.H.S. of Equa-

tion (6.101) by specifying

a1 = N t
k (6.107)

a2 = P−1
k+1ε

t
k (6.108)

Pa = P−1
k+1, (6.109)

2
[

N t
k

]T
P−1

k+1ε
t
k ≤

[

N t
k

]T
P−1

k+1N
t
k +

[

εtk

]T
P−1

k+1ε
t
k. (6.110)

Combining Equations (6.106) and (6.110) gives the final result:

2
[

N t
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk

]

≤
(

1 +
1

ε

)

[

N t
k

]T
P−1

k+1N
t
k +

[

εtk

]T
P−1

k+1ε
t
k+

εeT
k (Af,k −KkAh,k)

T P−1
k+1 (Af,k −KkAh,k) ek. (6.111)
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Lemma 6.4.6. Let the Assumption 6.4.1 holds true, we can derive that for t3 ∈ R > 0,

E

[

[

N t
k

]T
P−1

k+1N
t
k

]

≤ t3 (6.112)

Proof:

Substituting the expression of N t
k from Equation (6.64) and then performing expectation

on the L.H.S. of the proof,

E

[

[

N t
k

]T
P−1

k+1N
t
k

]

= E
[

(Gf,kvk −Kknk)
T P−1

k+1 (Gf,kvk −Kknk)
]

= E
[

vT
kG

T
f,kP

−1
k+1Gf,kvk + nT

kK
T
k P

−1
k+1Kknk

]

(6.113)

Expectation of the other cross terms in Equation (6.113) is zero as both the process and

observation noise (vk and nk) are white and have zero mean. In order to evaluate the

expectation on the R.H.S. of Equation (6.113), we use Assumption 6.4.1 and Lemma 6.4.2

as follows:

vT
kG

T
f,kP

−1
k+1Gf,kvk ≤ 1

pmin
vT

kG
T
f,kGf,kvk (6.114)

nT
kK

T
k P

−1
k+1Kknk ≤

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2n

T
knk, (6.115)

where

P−1
k+1 ≤ 1

pmin
. (6.116)

After substituting the expressions from Equations (6.114) and (6.115) into the Equation

(6.113), it can be further simplified as

E
[

vT
kG

T
f,kP

−1
k+1Gf,kvk + nT

kK
T
k P

−1
k+1Kknk

]

≤

E

[

1

pmin
trace

(

vkGf,kG
T
f,kv

T
k

)

]

+ E

[

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 trace

(

nkn
T
k

)

]

≤ 1

pmin
trace

[

E
(

Gf,kvkv
T
kG

T
f,k

)]

+
a2

f,maxp
2
maxa

2
h,max

pmin (pεh,min + rmin)
2 trace

[

E
(

nkn
T
k

)]

≤ 1

pmin
trace

(

Gf,kQkG
T
f,k

)

+
a2

f,maxp
2
maxa

2
h,max

pmin (pεh,min + rmin)
2 trace (Rk) . (6.117)

As both sides of Equation (6.113) are scalars, applying the trace operation on the R.H.S.

as shown above does not change its value. In the above equation, we have used

E
[

vkv
T
k

]

= Qk (6.118)

E
[

nkn
T
k

]

= Rk. (6.119)
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The trace (Qk) and trace (Rk) can be shown as

trace (Qk) ≤ qmaxqrow, qrow =number of rows in Qk matrix (6.120)

trace (Rk) ≤ rmaxrrow, rrow =number of rows in Rk matrix. (6.121)

Substituting the Equations (6.120) and (6.121) into the Equation (6.117) and also using

the bound for Gf,kG
T
f,k, we get the final result

E

[

[

N t
k

]T
P−1

k+1N
t
k

]

≤ 1

pmin
qmaxqrowδ +

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 rmaxrrow

≤ t3, (6.122)

where t3 > 0 is defined as

t3 =
1

pmin
qmaxqrowδ +

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 rmaxrrow. (6.123)

Lemma 6.4.7. Assuming that there exists Assumption 6.4.1, we can prove the following

E

[

[

εtk

]T
P−1

k+1ε
t
k

]

≤ t4, (6.124)

where t4 ∈ R > 0.

Proof:

The proof of this Lemma follows the same path as the previous Lemma 6.4.6. First ex-

panding εtk using the Equation (6.63) and then taking the expectation on both sides

E

[

[

εtk

]T
P−1

k+1ε
t
k

]

= E
[

(εf,k −Kkεh,k)
T P−1

k+1 (εf,k −Kkεh,k)
]

= E
[

εTf,kP
−1
k+1εf,k

]

+ E
[

εTh,kK
T
k P

−1
k+1Kkεh,k

]

. (6.125)

The cross terms obtained after multiplication in Equation (6.125) are zero as the WSLR

linearization error terms (εf,k and εh,k) are assumed to be white and have zero mean.

Applying the Assumption 6.4.1 and Lemma 6.4.2, we can show that

εTf,kP
−1
k+1εf,k ≤ 1

pmin
εTf,kεf,k (6.126)

εTh,kK
T
k P

−1
k+1Kkεh,k ≤

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 ε

T
h,kεh,k, (6.127)

where

P−1
k+1 ≤ 1

pmin
. (6.128)
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Adding Equations (6.126) and (6.127), the R.H.S. of Equation (6.125) becomes

E
[

εTf,kP
−1
k+1εf,k

]

+ E
[

εTh,kK
T
k P

−1
k+1Kkεh,k

]

≤ 1

pmin
εTf,kεf,k +

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 ε

T
h,kεh,k.

(6.129)

Again applying the trace operation on the R.H.S

E

[

[

εtk

]T
P−1

k+1ε
t
k

]

≤

1

pmin
trace

[

E
[

εf,kε
T
f,k

]]

+
a2

f,maxp
2
maxa

2
h,max

pmin (pεh,min + rmin)
2 trace

[

E
[

εh,kε
T
h,k

]]

. (6.130)

Defining Pεf ,k and Pεh,k as the covariance of the statistical linearization error εf,k and

εh,k,

Pεf ,k = E
[

εf,kε
T
f,k

]

(6.131)

Pεh,k = E
[

εh,kε
T
h,k

]

, (6.132)

we can write the above equation as

E

[

[

εtk

]T
P−1

k+1ε
t
k

]

≤ 1

pmin
trace

[

Pεf ,k

]

+
a2

f,maxp
2
maxa

2
h,max

pmin (pεh,min + rmin)
2 trace [Pεh,k]

≤ 1

pmin
pεf ,maxpεf ,row +

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 pεh,maxpεh,row

≤ t4, (6.133)

where

trace
[

Pεf ,k

]

≤ pεf ,maxpεf ,row, pεf ,row = Number of rows inPεf ,k

trace [Pεh,k] ≤ pεh,maxpεh,row, pεh,row = Number of rows inPεh,k

and the positive real number t4 is defined as

t4 =
1

pmin
pεf ,maxpεf ,row +

a2
f,maxp

2
maxa

2
h,max

pmin (pεh,min + rmin)
2 pεh,maxpεh,row. (6.134)

This proves Lemma 6.4.7.

Now going back to Equation (6.67),

Vk+1 (ek+1) = eT
k (Af,k −KkAh,k)

T P−1
k+1 (Af,k −KkAh,k) ek+

[

εtk

]T
P−1

k+1 [2 (Af,k −KkAh,k) ek] +
[

εtk

]T
P−1

k+1ε
t
k+

2
[

Nt
k

]T
P−1

k+1

[

(Af,k −KkAh,k) ek + εtk

]

+
[

Nt
k

]T
P−1

k+1N
t
k , (6.135)
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we can substitute the R.H.S. terms with the results obtained from the Lemmas 6.4.2-6.4.7,

Vk+1 (ek+1) = (1 + ε) eT
k (Af,k −KkAh,k)

T P−1
k+1 (Af,k −KkAh,k) ek+

[

εtk

]T
P−1

k+1

[

2 (Af,k −KkAh,k) ek + εtk

]

+

(

2 +
1

ε

)

[

Nt
k

]T
P−1

k+1N
t
k +

[

εtk

]T
P−1

k+1ε
t
k

≤ (1 − α)eT
kP

−1
k ek + t2 ‖ek‖3 +

(

2 +
1

ε

)

[

Nt
k

]T
P−1

k+1N
t
k +

[

εtk

]T
P−1

k+1ε
t
k. (6.136)

Substituting Vk (ek) = eT
kP

−1
k ek, the expression of Vk+1 (ek+1) can be denoted as

Vk+1 (ek+1) ≤ (1 − α)Vk (ek) + t2 ‖ek‖3 +

(

2 +
1

ε

)

[

Nt
k

]T
P−1

k+1N
t
k +

[

εtk

]T
P−1

k+1ε
t
k.

(6.137)

Taking the expectation on both sides, we get

E [Vk+1 (ek+1) |ek] ≤ (1 − α)Vk (ek) + t2 ‖ek‖3 +

(

2 +
1

ε

)

E

[

[

Nt
k

]T
P−1

k+1N
t
k

]

+

E

[

[

εtk

]T
P−1

k+1ε
t
k

]

. (6.138)

Now we replace the two expectation terms from the R.H.S of Equation (6.138) with the

results shown in Equations (6.122) and (6.133),

E [Vk+1 (ek+1) |ek] ≤ (1 − α) eT
kP

−1
k ek + t2 ‖ek‖3 +

(

2 +
1

ε

)

t3 + t4. (6.139)

Assuming that the estimation error ek is beta-distributed as ek ∈ B(0, δ) [137] and defining

δ = min

(

δe,
α

2pmaxt2

)

(6.140)

we can derive

t2 ‖ek‖3 = t2 ‖ek‖2 ‖ek‖

= t2
α

2pmaxt2
‖ek‖2 . (6.141)

From the definition of Vk (ek) and defining

P−1
k ≥ 1

pmax
I,

we obtain

Vk (ek) = eT
kP

−1
k ek

≥ 1

pmax
‖ek‖2 . (6.142)
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Substituting the above expression of Vk (ek) into the Equation (6.141) to obtain,

t2 ‖ek‖3 ≤ α

2
Vk (ek) , (6.143)

Now we substitute the above equation into (6.139) and simplify by introducing a new

constant c, which is equal to

c =

(

2 +
1

ε

)

t3 + t4 > 0. (6.144)

We can further simplify the Equation (6.139) as follows:

E [Vk+1 (ek+1) |ek] ≤
(

1 − α

2

)

Vk (ek) + c

E [Vk+1 (ek+1) |ek] − Vk (ek) ≤ −α
2
Vk (ek) + c

E [Vk+1 (ek+1) |ek] − Vk (ek) ≤ −βVk (ek) + c, (6.145)

where β is a constant defined as

0 < β =
α

2
≤ 1. (6.146)

From the definition, it can be demonstrated that the Lyapunov function Vk is bounded

within

Vk (ek) = eT
kP

−1
k ek

1

pmax
‖ek‖2 ≤ Vk (ek) ≤

1

pmin
‖ek‖2 . (6.147)

Hence we have shown that for the SPKF estimation error ek at each k, the stochastic

process denoted by the Lyapunov function Vk (ek) follows the criteria

1

pmax
‖ek‖2 ≤ Vk (ek) ≤

1

pmin
‖ek‖2 (6.148)

E [Vk+1 (ek+1) |ek] − Vk (ek) ≤ −βVk (ek) + c, (6.149)

where pmax, pmin, c > 0 and 0 < β = α
2 ≤ 1. Assuming the validity of the above conditions,

we can apply the Lemma 6.4.1 to prove that the SPKF estimation error ek is exponentially

upper bounded in MSE sense at each discrete time index k as follows:

E
[

‖ek‖2
]

≤ pmax

pmin
E
[

‖e0‖2
]

(1 − β)k + cpmax

k−1
∑

i=1

(1 − β)i . (6.150)
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If we compare the above equation with the general error-convergence Equation (6.39), we

find that they are identical if we denote

c1 =
1

pmax
(6.151)

c2 =
1

pmin
(6.152)

c3 = c (6.153)

c4 = β. (6.154)

The Lyapunov upper bound expression is a function of numerous parameters characterized

by the statistically linearized dynamic model, initial estimation error and the upper and

lower bounds of the estimation error covariance. For a specific application, these are

computed by collecting an extensive set of training data and then running a SPKF to

generate the estimates. Unfortunately, as we cannot completely get rid of the estimator in

the calculation of the filter upper bound, it serves as a drawback for the proposed method.

Another disadvantage is that the training data should adequately represent the unseen

observations and hence care should be taken to collect it in an exhaustive manner. Hence

the next research question should be how to apply the upper bound in practical examples

that does not require data driven simulations. This is still an open topic and could prove

to be an excellent research project.

The Equation (6.150) demonstrates that the estimation error ek exponentially con-

verges to a steady state in the MSE sense provided certain conditions on the estimator

performance and state space model are met. These conditions, which are shown in As-

sumption 6.4.1 specify that the error covariance, noise terms, initialization error and cer-

tain state space parameters are upper and lower bounded. Recall, the Assumption 6.4.1

computes the lower and upper bounds of those parameters using 95% confidence interval

estimates, which denote that the true value lies within those bounds with 95% probability.

Note, the rate of convergence of Equation (6.150) is governed by the term β and the ratio

of pmax and pmin. Higher value of β and lower ratio of pmax

pmin
ensure faster convergence. In

the experimental result section, we demonstrate two different simulated examples where

the norm of the estimation error generated by the SPKF over 200 Monte-Carlo (MC) runs
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Figure 6.1: Clean and noisy Mackey-Glass time series data.

is shown to be upper bounded by the Equation (6.150).

6.5 Numerical Simulations

We evaluate our derived lower and upper bound expressions in the following scenarios:

1. Estimation of an underlying clean Mackey-Glass chaotic time series corrupted by an

additive white Gaussian noise.

2. Tracking a space vehicle when it re-enters into the earth’s atmosphere at a high

altitude and with a high speed.

The same two examples were also used to evaluate the performance of the FBSL-SPKS

and RTSSL-SPKS as demonstrated in chapter 2. Here we provide an outline of the above

examples, details can be found in Section 2.5.

6.5.1 Mackey-Glass clean time series estimation

State Space Representation

In this example, the objective is to estimate the clean Mackey-Glass-30 chaotic time series

which is corrupted by an additive white Gaussian noise (SNR = 0db). The clean time

series is modeled as a parameterized function f by training a 6-5-1 (input-hidden-output)
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nodes feed-forward neural network. The M element state vector is denoted as xk, where

xk =

[

xk−1 xk−2 . . . xk−M

]

. (6.155)

The state space configuration of the above problem is defined as:

xk+1 = f (xk;w) +Gf,kvk (6.156)

zk = Hkxk + nk, (6.157)

which can be expanded as

• Process Model :
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vk (6.158)

• Observation Model :

zk =

[

1 0 . . . 0

]

xk + nk, (6.159)

where the process noise vk is Gaussian distributed with zero mean and covariance σ2
v , zk

is the noise corrupted time series and nk is the measurement noise.

6.5.2 Vehicle Re-entry Tracking

In this case, the task involves to track a space vehicle that re-enters into the earth’s

atmosphere at a high altitude and with a significantly large velocity. A radar is used to

measure the range and the bearing of the vehicle from the earth’s surface. While entering,

the vehicle is under the influence of strong nonlinear forces such as aerodynamic drag and

the earth’s gravity, which are functions of the vehicle’s position, velocity and altitude.

The vehicle’s state (xk) consists of its 2D position (xk and yk), 2D velocity (vxk
and

vyk
) and a scaler parameter of aerodynamic drag (dk). The vehicle’s process model and

the observation model are described below:
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Figure 6.2: Demonstration of the lower error bound for the SPKF in the Mackey-Glass
time series example. (a): The trace of the estimation error covariance is plotted against
the derived BCRB, (b): This plot zooms in on a section of plot (a) in order to demonstrate
that the SPKF estimation error is lower bounded by the BCRB.

• Process Model :

xk+1 = xk + δTvxk
(6.160)

yk+1 = yk + δTvyk
(6.161)

vxk+1
=
(

1 + δTDdr
k

)

vxk
+ δTG

g
kxk + vpx,k

(6.162)

vyk+1
=
(

1 + δTDdr
k

)

vyk
+ δTG

g
kyk + vpy,k

(6.163)

dk+1 = dk + vpd,k
(6.164)
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Figure 6.3: Demonstration of the upper error bound for the SPKF in the Mackey-Glass
time series example. The trace of the estimation error covariance is plotted against the
derived Lyapunov function based upper bound.
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Figure 6.4: True vehicle trajectory. The solid line is the vehicle trajectory and the dashed
line is the earth’s surface. The radar is placed at ’o’.

where Ddr
k and G

g
k are the aerodynamic drag related force term and the gravity

related force term respectively at each discrete time k. The integration time is

denoted as δT . For further details, refer to Section 2.5.1.

• Observation Model :

rk =
√

(x1,k − xr)
2 + (x2,k − yr)

2 + n1,k (6.165)

θk = arctan

(

x2,k − yr
x1,k − xr

)

+ n2,k, (6.166)
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Figure 6.5: Demonstration of the lower error bound for the SPKF in the vehicle re-entry
tracking example. (a): The trace of the estimation error covariance is plotted against the
derived BCRB, (b): This plot zooms in on a section of plot (a) in order to demonstrate
that the SPKF estimation error is lower bounded by the BCRB.

where the measurement zk =

[

rk θk

]

consists of both range and bearing. The

radar is assumed to be located at

[

xr yr

]

. The measurement sampling rate is

taken as 10Hz. The observation noise nk is uncorrelated zero mean white.
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Figure 6.6: Demonstration of the upper error bound for the SPKF in the vehicle re-entry
tracking example. The trace of the estimation error covariance is plotted against the
derived Lyapunov function based upper bound.

6.5.3 Experimental Results

In this section, we demonstrate how our derived lower and upper bounds compare against

the estimation error ek of the SPKF for the Mackey-Glass time series example and the

vehicle re-entry tracking example. In each case, the SPKF is employed to estimate the

unknown states and the estimation error is computed by the difference between the true

and estimated states. Note that for each example, the estimation error plotted in the

figures are generated by ensemble averaging of the 200 randomly initialized Monte-Carlo

(MC) runs. For each MC run, a different realization of both process and observation noises

was generated.

The clean and noisy Mackey-Glass time series is displayed in Figure 6.1. Figure 6.2(a)-

6.2(b) compares the trace of the estimation error covariance of the SPKF with the BCRB.

As shown in Figure 6.2(a), the derived BCRB is so close at the trace of Pk , we cannot

distinguish each other. Hence we use Figure 6.2(b) in order to zoom in a section of

Figure 6.2(a), which clearly separates the BCRB bound from Pk. Both of the figures

confirm that the BCRB demonstrated in Equation (6.29) indeed actually lower bounds

the ek. Figure 6.3 demonstrates the estimation error upper bound for the SPKF in the

Mackey-Glass time series example. In this example, the convergence parameter values i.e.

β and the ratio of pmax and pmin are exclusively computed from the training data and are
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found as

β = 0.262 (6.167)

pmax

pmin
= 0.094 (6.168)

As clearly seen in the figure, the derived Lyapunov bound acts as an upper bound for the

expected norm of the estimation error ek in the Mackey-Glass time series example.

We also illustrate the results of the experiment that we performed in the vehicle re-

entry tracking case in order to verify the lower and upper bounds against the estimation

error ek of the SPKF. Figure 6.4 displays the true vehicle re-entry path and the position

of the radar at the earth’s surface. Figure 6.5(a) demonstrates the BCRB bound against

the trace of the estimation error covariance Pk. Similar to the Mackey-Glass example, a

zoomed segment is shown in Figure 6.5(b) in order to distinguish the BCRB error bound

from Pk. As demonstrated in the figures, the SPKF estimation error covariance is lower

bounded by the derived BCRB. Figure 6.6 illustrates the estimator upper bound against

the norm of the filter estimation error ek. For this example, the convergence parameters

are as follows:

β = 0.02 (6.169)

pmax

pmin
= 1.5 (6.170)

The Lyapunov function based stochastic upper bound as shown in Equation (6.150) clearly

captures the filter estimation error. Note that in the vehicle re-entry tracking case, the

value of β and pmax

pmin
is lower and higher than that in the Mackey-Glass time series estimation

case. Small β and high ratio of pmax and pmin may increase the convergence time of the

upper bound. Figure 6.6 confirms the validity of the above finding. As seen in the plot, the

convergence rate of the upper bound is significantly slower here than that of the Mackey-

Glass case. This is primarily due to higher uncertainty of the initial vehicle state, which

correlates to higher estimation error covariance pmax and severe nonlinearity exhibited by

the system dynamics, which causes higher statistical linearization error pεf
and pεh

. With

the above two examples, we have achieved demonstrating how the derived error bounds

quantify the estimation performance of the SPKF.
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6.6 Discussion And Future Work

In this work, we have analyzed the estimation error behavior for the SPKF operating on a

discrete time nonlinear dynamical system. In this context, step by step derivations of the

lower and upper error bounds for the SPKF based estimators are presented. Although the

SPKF enjoys greater success than the EKF in estimating hidden states for the nonlinear

filtering problem, the analytical convergence analysis for the SPKF has mostly been ig-

nored. We have derived both the lower and upper bound in terms of the estimation error

of the filter, i.e. MSE between the true and the estimated state. Our derivation of the

SPKF lower bound is based on the Van Trees version of the BCRB and its value at time k

is shown to be equal to the inverse of the BIM Jk. The recursive formulation of the BIM

from time k to k+1 extends the work of Tichavský, who has derived a general expression

of Jk for a nonlinear dynamical model. The derivation of the SPKF error upper bound

follows the work of Reif et al. where we have demonstrated that the estimation error

exponentially converges to a steady state. The validity of the derived lower and upper

bounds are verified for the Mackey-Glass time series estimation problem and vehicle re-

entry tracking problem. In each case, both the lower and upper error bounds are plotted

against the estimation error of the SPKF and are shown that the estimation error lies

within the above bounds.

Although the SPKF error bounds are derived analytically, several numerical approx-

imation techniques are adopted to apply the error bounds in the practical examples. In

order to formulate a closed form solution of the lower bound, one has to solve multidimen-

sional expectations, which are analytically intractable for the nonlinear system. We have

resolved the situation by using the sigma-point averaging strategy where the expectations

are computed by weighted averaging over the extracted sigma points. The SPKF upper

error bound is a function of the parameters involving the bound values of the estima-

tion error covariance, system noise terms, state space model and the initial estimation

error. As those parameters are not known in advance, numerical simulations are adopted

and 95% confidence interval estimates are used as their values. The above approxima-

tions no doubt affect the accuracy of the error bound implementation in practical cases.
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Furthermore, the training data should be collected in an exhaustive manner so that the

confidence interval estimates are the true indicator of unknown parameters. Note, the

approximations are needed as the process of analytically obtaining the parameter values

is complex and challenging for the nonlinear system. Hence instead of devoting much

time and effort on deriving the analytical expression of the parameters, we consider the

numerical approximation as the first step in implementing the upper error bound in prac-

tical state estimation examples. Despite the practical limitations, the derived lower and

upper error bounds are capable of analyzing the SPKF performance on a given application

without applying the recursive filter equations. Most importantly this is the first attempt

of deriving performance bounds for the SPKF based estimators, which can provide an

excellent building block in pursuing further research. The future direction may include

to apply the derived error bounds to some other state estimation problems and evaluate

their performance. Future research may also extend our work by exploring the stability

and observability properties of the nonlinear state space model to analytically formulate

suitable bound parameters for the SPKF upper bound.



Chapter 7

Summary and Conclusions

In this chapter, we briefly summarize our work performed during the course of this dis-

sertation.

7.1 Sigma-point Kalman Smoothers (SPKS)

In Chapter 2 the following new SPKF smoothing algorithms that include both the fixed-

interval and fixed-lag methodologies are implemented and brought under a common family

called sigma-point Kalman smoothers (SPKS).

• Fixed-interval sigma-point Kalman smoother (FI-SPKS):

1. Forward-backward statistical linearized sigma-point Kalman smoother (FBSL-

SPKS)

2. Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother (RTSSL-

SPKS)

• Fixed-lag sigma-point Kalman smoother (FL-SPKS):

1. State-augmented sigma-point Kalman smoother (Aug-SPKS)

2. Forward-backward a priori sigma-point Kalman smoother (FB-Priori-SPKS)

3. Forward-backward statistical linearized sigma-point Kalman smoother (FBSL-

SPKS)

4. Rauch-Tung-Striebel statistical linearized sigma-point Kalman smoother (RTSSL-

SPKS)

255
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Both the FI-SPKS and FL-SPKS algorithms are derived from first principles by making

use of the weighted statistical linear regression (WSLR) formulation of the nonlinear state

dynamics. In addition, the computational complexity and memory of the FI-SPKS and

FL-SPKS algorithms are analyzed. The tracking accuracy of the proposed FI-SPKS and

FL-SPKS algorithms are experimentally verified using two benchmark examples: Mackey-

Glass nonlinear time-series estimation and vehicle re-entry tracking. The performance of

our proposed SPKS are also compared with the extended Kalman smoother (EKS) and

other sigma-point smoothing approaches in terms of accuracy, computational efficiency

and memory. From the results, the superiority of our estimators is clearly established.

7.2 Real-world Application of SPKS Algorithms: Unobtru-

sive Indoor Pedestrian Tracking

A novel SPKS based location tracking method that tracks an user in an indoor environment

using unobtrusive sensors is successfully developed. We have investigated two variants of

the tracking mechanism based on the requirement of carrying a receiver tag.

Chapter 3 proposes a tag-based indoor tracking system which uses RSSI as the primary

sensor. The person(s) to be tracked carry a small body-borne device that periodically mea-

sures the RSSI at 3 or more standard Wi-Fi access points placed at pre-defined locations.

The observation model of the tracker is generated from the RSSI calibration data by fit-

ting nonlinear RBF maps between the known calibration locations and RSSI mean values.

The RSSI observation maps are incorporated into the SPKS based tracking algorithm

which combines the RSSI observations with a potential field based dynamic model. In

addition to RSSI, the SPKS fuses the infra-red (IR) motion sensor and binary foot-switch

measurements in the inference system. Furthermore the SPKS performs multi-rate pro-

cessing, where state updates and RSSI observations occur at different rates, and handles

time-varying observations. The performance of the proposed SPKS tracker is evaluated

in a number of “living laboratories”, where the tracking accuracy is demonstrated to be

superior to the EKS and an available industry positioning engine developed by the Ekahau

Inc.
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Chapter 4 presents a novel tag-free solution that utilizes low cost ultrasonic trans-

ducers to track a person. Instead of wearing a body-borne receiver tag, the proposed

system requires setting up multiple wall-mounted ultrasonic range sensors inside the in-

door location. The active ultrasonic transducers transmit an ultrasonic wave and capture

analog echoes, which are then digitized and analyzed in order to calculate the 1D range

of the moving person. Signal processing techniques including Band-pass filtering, Hilbert

transformation, background subtraction and clustering are used to remove interference

from other static objects in the room. The range data from active and passive ultrasonic

sensors are treated as observations in the SPKS based Bayesian framework to determine

a person’s 2D position and velocity. We adopt two different tracking procedures:

• Range-map approach, which estimates the user’s state by generating RBF obser-

vation maps in the calibration phase between known calibration locations and 1D

ranges.

• SLAM approach, which corresponds to simultaneously estimating the state of the

person and the parameters of the observation model.

We further investigate two different SLAM approaches: TANS-SLAM and LANS-SLAM.

The TANS-SLAM method still uses observation maps but the map parameters are updated

during tracking using the newly generated state estimate. The LANS-SLAM method

employs a dual estimation approach, which alternately uses one SPKS to localize the

user given the current estimate of the observation model parameters and a second SPKS

to update the parameters using the current user state. Parameters consist of the 2D

locations of the ultrasonic modules and a time-varying term which corresponds to the

effect of multipath, reflection/refraction on the speed of sound. The LANS-SLAM method

is the most attractive choice for the ultrasonic sensor based indoor tracking because it

requires minimal calibration, uses fewer number of parameters and demonstrates fast

convergence starting from a rough estimate of sonar locations. The tracking accuracy of

all our proposed methods are evaluated over a number of trials performed in a test-lab. It

is demonstrated that the TANS-SLAM based tag-free system performs comparably with

the tag-based highly accurate industry standard “Ubisense” positioning engine.
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7.3 Real-world Application of SPKS Algorithms: Multihar-

monic Frequency Tracking

In Chapter 5 we cover in detail how the SPKS based Bayesian inference algorithm can

be implemented for tracking the phase, frequency, and amplitude of the fundamental

frequency and the harmonic components present in a periodic signal. This work is done

in collaboration with James McNames’s research group at Portland State University. The

performance of the SPKS multiharmonic tracker is compared with that of EKS using

simulated signals and a photo sensor insect activity signal. It is clearly shown that the

SPKS is significantly more accurate, converges faster to the true solution, and robust to

noise than the EKS.

7.4 Estimation Error Bounds for SPKF

Chapter 6 analyzes the state estimation error behavior and presents the formulations of

the lower and upper error bounds for the SPKF operating on a nonlinear discrete time

system. The well-known Bayesian Cramér-Rao theory is used for the derivation of the

lower bound. It is shown that the state estimation error covariance Pk for the nonlinear

system can be lower bounded by the inverse of the Bayesian information matrix Jk, which

is a function of time k. We extend Tichavský’s formulation to derive a recursive expression

of Jk. The derivation of the upper bound follows the work of Reif et al. to demonstrate

that the expected value of the norm of state estimation error exponentially converges

to a steady state. Step by step analytical derivations are shown to determine the final

equations of the lower and upper bounds. To apply the error bounds in the practical

examples, we adopt several numerical approximations which are clearly explained in the

dissertation. The validity of the SPKF error bounds are shown using two benchmark

examples: Mackey-Glass nonlinear time series estimation and vehicle re-entry tracking.

In each case, it is demonstrated that the state estimation error lies within the derived

lower and upper bounds.
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