INTEGRATING GENETICS AND PROTEOMICS TO STUDY
ALCOHOL-DRINKING BEHAVIORS

By

Suzanne S. Fei

A DISSERTATION

Presented to the
Department of Medical Informatics and Clinical Epidemiology
and the Oregon Health & Science University School of Medicine

In partial fulfilment of the requirements for the degree of

Doctor of Philosophy

April 2011



School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the PhD Dissertation of

Suzanne S. Fei

INTEGRATING GENETICS AND PROTEOMICS TO STUDY ALCOHOL-DRINKING BEHAVIORS

has been approved

Academic Advisor, Eilis Boudreau, M.D., Ph.D.

Research Advisor, Larry David, Ph.D.

Dissertation Committee Member, Phillip Wilmarth, Ph.D.

Dissertation Committee Member, Shannon McWeeney, Ph.D.

Dissertation Committee Member, John Belknap, Ph.D.

Oral Exam Committee Member, Robert Hitzemann, Ph.D.

Page ii



TABLE OF CONTENTS

ACKNOWIEAZEMENTS.........ooiiiiiiie e e e et e e e et e e e e e be e e e e atae e e ebaeeeesntaeeeennteeeennsees Vi
ADSEFACT ...ttt sttt st st sttt et e bttt e nbeenae neeereens vii
Chapter 1 — Introduction and Background ...........cc.ueeeiiiiiiiiiiic e 1
Chapter 2 — QUaNtitative Prot@OMICS .....uuiiiiiiieiciiiie et e e e 6
2.0 INEFOAUCTION ettt ettt et e st e s bt e e abe e s bee s bt e e sabeesabeesabaeesateesareenn 6
2.2 Materials and MEthOdS........c.c.eiiiiiiiiieie et 10
Tissue collection aNd PrOCESSING......uuuiiiiiiiiiiiieiee et e e e e e e e e e e e s errre e e e e s seranaeeeeeaesenanes 10
EXPErimeENntal deSIGN......uuiieiiii i e e e s e e e e e e et e e e e e e st re e e e e e eenannes 11
Protein digestion, peptide separation, mass spectrometry .......ccccccceeeieiciiiieeee e, 12
Peptide Identification Using Database Searches .........ccccecuveeeeciiie e 14

2.3 ReSUIS @Nd DISCUSSION ...eeuviiiiiriieniiiriie ettt ettt sttt sttt et n e e b e b e b ennees 15
Chapter 3 — Managing Shared PePLides .......cueiiicieie it 18
20 Vo e Yo ¥ ot o o [PPSR 18
32 |V =1 d o o Yo £ PSRN 22
3.3 RESUILS aNd DiSCUSSION ..eeiuutiiiiiiiiiieiiteriee ettt ettt e et sate e sabeesbeeesabeesabeesbaessteesabeesans 23
3.4 SUMMAry and CONCIUSIONS ...cceiiiieiiiiiieee e ettt e e et re e e e e e e setabre e e e e e e ssabtaaeeeeeeeesannraaaeaaeean 28
Chapter 4 — Complete Vs. Non-Redundant Databases.........ccvevvriieiiiiiieeiniieeecsieee e sieeessveee e 31
v [ oL o Te [ ¥ ot o] H PP P PSPPSR 31
B.2 IMEENOAS ...ttt et e st s re e nneas 35
4.3 ReSUIES @Nd DISCUSSION ...cerutiieiiiieiiiieeiee ettt sttt ettt st e s e s e sbe e e smeeeseneesans 36
4.4 SUMMArY and CONCIUSIONS ....ciiiuiiiieiiiee ettt ettt e et e e e s te e e e bae e e e eabaeeeearaeeesnteeeennsens 41
Chapter 5 — Normalization and Differential Expression Analysis .........ccccceeecveeeiiiieeiecieee e, 43

Page iii



L0 R 1Y 4o Yo [T Lot 4 o] o 43

5.2 IMIBENOTS ..ttt 44

[N oY a1 172 i o IR 44
BatCh adjUStMENTS ..c..eeieeeeiiee e e et e e e e naraeaean 46
Differential eXpression @nalySis ... iiiiiiiiiie e e e e e e e e e e e eanes 48
Basic WOrkflow and variations ..........cocueeiiie i 52

5.3 RESUItS aNd DiSCUSSION ..eeiuuiiiiiiieiieeiiiee ettt ettt ettt ettt e sab e sbe e s ae e e sab e e sbeeeaneeesareesans 54
The results of the comparisons between WOrkflows. ..........ccoecciiieeciiee e, 55
Questions and answers comparing specific methods..........cccceeeeiiiiiicciiie e, 65
Differential @Xpression FESUILS .......c.ccviii it e e s araee s 77

5.4 SUMMAry and CONCIUSIONS ....ccuuiieeiiiiiecciiee et ee et e et e st e e et e e e sabe e e esasaeeesssaeeeennsaees 78
Chapter 6 — Strain-Specific Databases ........cccuiiiiiiiie i 80
L3 R VoY e Yo ¥ ox i o o [PPSR 80
L3 21V =1 d o o Yo £ PSRN 82
6.3 RESUILS aNd DiSCUSSION ..eeiuuiiiiiieetieeiiie sttt ettt ettt ettt st e sbe e e s ae e e sar e e sbeeeeneeesareesans 84
6.4 SUMMAry and CONCIUSIONS ....ciiiiieiiiieeee ettt e et e e e e e s e e e e e e e s sabtraeeeeeeeesansraaaeaaeean 87
Chapter 7 — Mapping Differentially Expressed Proteins to Quantitative Trait LOCi .........ccccuuvee.. 89
/% R 1414 o T [V T o] o W PSP P PSPPSR 89
A 1= 1 g To Lo L3PPSO PSP OPR 93
7.3 ReSUIS aNd DISCUSSION c...eeuvieiiiiiiiiiiiie ettt ettt sttt et e b b e b e b enrees 93
7.4 SUMMaAry and CONCIUSIONS ....ccuviieiiiiiie et ee ettt e e et e e e sta e e et e e e s abe e e esaaaeeesssaeeesnsaees 98
Chapter 8 — Proteomics Vs. TranSCriptOMICS ......cccuuieiiiiieeiiiieeesritee e erieeeeeree e esree e e siree e s sneeeeenns 99
<3 VoY e Yo ¥ ox o o I PSRN 99
532 |V =1 d o o Yo [ SRR 102



8.3 RESUIES @NT DISCUSSION ..uvuvureruuiiieieriieititiiieteeererereeeeereeeereereeeeeeerererererererertrereteretereseeeeeeeeeseees 104

8.4 SUMMAry and CONCIUSIONS ....ccuuviiieiiiiee ettt e e ree e e sre e e et re e e e abae e e enbeeeeeanes 116
Chapter 9 — Overall Summary and CONCIUSIONS.......ccoiciiiiiiiiiie et e s aree e 118
REFERENCES. ........coootitiiiiiiiiiiiiiiiiitiiieeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e aeaeeeaeaesesasesesasasasssssasssssssnsssnasasannnne 123
APPENDICES. . ... .. e e e e ba bt babe b e bererntneeenenenenenee e 128

Appendix A —Sample Preparation ProtoCol......ccocccuiiiieii it e e e 128

Page v



ACKNOWLEDGEMENTS

Firstly, | would like to thank my dear family and friends for their love and support these
many years. Thank you for being patient with me as I've followed my dreams.

I’d like to thank Larry David, Phil Wilmarth, and the OHSU’s Proteomics Shared Resource for
the expertise, time, resources, and enthusiastic support needed to complete this work. | also
thank my department advisors, Eilis Boudreau and Shannon McWeeney, for their wisdom and
guidance in directing my education and research choices. | thank the Portland Alcohol Research
Center, especially Robert Hitzemann and John Belknap, for their support and direction in the
development and execution of this project. | thank Robert Hitzemann’s lab and Shannon
McWeeney’s group for providing striatal tissue, analysis advice, mRNA data, and additional
funding. Lastly, | thank my department and all the other fellows for providing an encouraging
and supportive graduate school experience.

This work was funded by several organizations. | was supported by a National Institutes of
Health (NIH) National Library of Medicine Biomedical Informatics Training Grant (NIH/NLM-5-
T15-LM07088-15) awarded to the Department of Medical Informatics and Clinical Epidemiology.
Materials and mass spectrometer time was paid for by a pilot grant from the Portland Alcohol
Research Center (PARC). The PARC is funded by the NIH National Institute on Alcohol Abuse and
Alcoholism (NIH/NIAAA-5-P60-AA010760-13). The Proteomics Shared Resource is funded by
NIH grants RO1-EY007755, P30-EY10572, and P30-CA069533, as well as support from the Oregon
Opportunity Fund. Robert Hitzemann’s lab is funded by NIH grants R01-AA11034 and UO1-
AA13484. DBA/2J) sequencing data and variant calling was provided by the Sanger Mouse

Genomes Project: http://www.sanger.ac.uk/resources/mouse/genomes/.

Page vi



ABSTRACT

The Portland Alcohol Research Center (PARC) was established to investigate the genetic
basis of alcohol dependence. One line of inquiry utilizes mouse strains that are widely divergent
in alcohol-related behaviors. Decades of genetics research comparing mouse strains has
identified many regions of the genome associated with such quantitative traits. These regions
are called Quantitative Trait Loci (QTLs). Microarrays have been used to identify which genes
within the QTLs are differentially expressed and are therefore potentially causal; however,
genetic variants that affect probe hybridization lead to many false conclusions. Here, we used
guantitative proteomics to compare brain striata between two mouse strains for which
abundant QTL and transcriptomic data is available. The primary aims of this research were to
(1) identify differentially expressed proteins that lie within QTLs and are therefore candidate
causal proteins, (2) determine if genetic variants also lead to spurious results in quantitative
proteomics, and (3) compare transcriptomic and proteomic datasets to determine their
agreement.

Of the 4,563 identified proteins (2.1% FDR), there were 1,807 quantifiable proteins families
that exceeded minimum count cutoffs (Chapter 2). With four pooled biological replicates per
strain, we used quantile normalization, ComBat (a package that adjusts for batch effects), and
edgeR (a package for differential expression analysis of count data) to identify 101 differentially
expressed families (Chapter 5), 84 of which had a coding region within one of the genomic
regions of interest identified by the Portland Alcohol Research Center (Chapter 7). Using strain-
specific protein databases, we conclude that proteomics is more robust to sequence differences

than microarrays; however, some proteins are still significantly affected (Chapter 6). To
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generate strain-specific databases, we used genome sequence data combined with a complete
protein database that contained all of the putative genetic isoforms for each protein. While the
increased proteome coverage in the databases led to a 6.8% gain in peptide assignments
compared to a non-redundant database (Chapter 4), it also necessitated the development of a
strategy for grouping similar proteins due to a large number of shared peptides. Choosing an
appropriate method for managing shared peptides was necessary before normalization and
differential expression analysis could proceed (Chapter 3). In the final chapter (Chapter 8), we
compared the proteomic data to transcriptomic data from three platforms: RNA-seq, Affymetrix
microarray, and lllumina microarray, and found that absolute expression, fold changes, and
significance levels observed in the protein data had low but significant correlations with those
found in the transcript data. More than half of the differentially expressed proteins were also

found to be differentially expressed at the transcript level.
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CHAPTER 1 - INTRODUCTION AND BACKGROUND

Differences between individuals in a population are caused by genetic and environmental
factors. Determining the influence of genomic variation on phenotypic traits in humans is
challenging and requires very large sample sizes due to genetic complexity and environmental
confounders. One solution to these complex problems is to use model organisms where
environment and breeding can be controlled so that the underlying biology can be understood.
Genetic research in mice began in 1902, and successive generations of inbreeding have led to
many genetically identical and stable inbred strains where tightly controlled housing and diet
conditions reduce the environmental impact on phenotypic traits.

One way to identify genes of interest for a quantitative trait is to cross two inbred strains
that are widely divergent for the trait of interest, cross the offspring again, measure the trait in
the their genetically segregating offspring mice (the F2 generation), and genotype the F2 mice to
determine which genomic regions are associated with the trait. These regions are referred to as
Quantitative Trait Loci (QTLs). The Portland Alcohol Research Center (PARC) has identified many
QTLs which are responsible for differences in alcohol-drinking-related behaviors (Crabbe et al.
2010) between these two mouse strains investigated in this study, C57BL/6 (B6) and DBA/2 (D2)
(Buck et al. 1997; Belknap and Atkins 2001). These two strains are two of the most commonly
used in all of genetics research as well as alcohol research.

Because of map imprecision, QTL regions are often very broad and contain many genes. Itis

difficult to determine which genes, termed “quantitative trait genes”, are actually influencing
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the trait. An approach that the PARC has taken is to measure mRNA expression levels in regions
of the brain that are expected to participate in alcohol-related decisions. Genes with coding
regions that lie within the QTL regions and that are differentially expressed between the strains
are suspect quantitative trait genes (Mulligan et al. 2006). However, searching for differentially
expressed mRNAs between two mouse strains using microarrays is problematic. The probes are
designed using a static reference sequence. Sequence differences between the strains can
cause many false positives and negatives when a probe consistently hybridizes to transcripts in
one strain and can’t in the other. In the strains used in this study, B6 and D2, 16% of the
Affymetrix mouse array has affected probes leading to a false positive rate of 22% and a false
negative rate of 12% (Walter et al. 2007). Similar issues have been found with human arrays
(Benovoy et al. 2008).

In this study, we used quantitative proteomics to compare gene expression between strains.
In Chapter 2, we described our quantitative proteomics method which utilizes spectral counts to
estimate protein expression levels. To our knowledge, this was the first time these strains have
been compared using quantitative proteomics. Protein expression is important in searches for
guantitative trait genes because studies have shown that protein levels generally do not
correlate well with mRNA levels (Gygi et al. 1999; Griffin et al. 2002; Washburn et al. 2003;
McRedmond et al. 2004; Mijalski et al. 2005; Fu et al. 2009; Taniguchi et al. 2010). Proteins that
have coding regions that lie within QTL regions and that are differentially expressed between
the strains would be putative “quantitative trait proteins”. We mapped our quantitative results
to the genome and identified several potential quantitative trait proteins in Chapter 7.

We also investigated the influence of genetic differences on quantitative proteomics. If a

genetic difference changes a protein sequence, then the peptide containing the substitution will
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likely not be identified using standard proteomic methodologies. Using genome sequence data,
we built strain-specific protein databases to evaluate the effect of genetic variants on peptide
identification and protein quantification. Our evaluation of the effect of sequence variants on
guantitative proteomics can be found in Chapter 6.

Building a strain-specific database necessitated the use of a complete protein database
constructed to contain all of the known gene duplication and alternative splicing isoforms for all
of the proteins. We specifically used the Ensembl (Hubbard et al. 2002) protein database
because each protein belongs to a transcript and each transcript belongs to a gene with a
specific location on the genome. To generate a strain-specific database, we needed to use this
protein-to-genome map to insert known variants and retranslate the proteins. Because
Ensembl contains separate protein entries for each splice and gene duplication isoform, it is a
very large database and many of its sequences are very similar to other sequences in the
database. This led to many of the identified peptides being ambiguously assigned to multiple
proteins. When we used standard proteomic methods for partitioning the shared peptides, we
encountered a serious false positive result in a large protein family for which there are many
very similar isoforms. This led us to evaluate several protein grouping approaches to reduce the
impact of shared peptides. We concluded that proteins that share large fractions of their
identified peptides should be grouped before shared peptides are split. We discuss and

compare several approaches for managing shared peptides through protein grouping in Chapter

Shared peptides occur more frequently in complete databases with high levels of sequence
similarity. Investigators can opt to search databases with little sequence redundancy to avoid

the impact of shared peptides. We searched our data on both a complete database, Ensembl,
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and a non-redundant database, Swiss-Prot (Boeckmann et al. 2003). A complete database is
one that includes each protein isoform as its own entry. Swiss-Prot, on the other hand, is a non-
redundant database that selects one canonical sequence to represent a set of very similar
isoforms and then provides information on the different isoforms in the annotation for the
protein. Our purpose for searching both databases was to quantify the impact of using a
complete database rather than a non-redundant database on the number of peptide
identifications. If many additional peptides are identified when searching databases with
increased isoform coverage, then it is worth the effort of developing methods to manage the
increased sequence redundancy. In Chapter 4, we compared the results from the two database
searches.

In Chapter 5, we evaluated several approaches for normalizing spectral counts and
determining which proteins were differentially expressed. Normalization was necessary
because the samples generated different numbers of total counts, and we had to account for
that before comparing the samples. We performed data collection in two batches. We
observed significant differences between batches that changed the abundance ranks of the
proteins across the samples. Normalization retains the original protein abundance ranks, and
the majority of these batch effects remained uncorrected. For this reason, we also evaluated
the use of an adjustment method that removes variation between batches. The need for
several biological replicates is being recognized in quantitative proteomics, particularly in long
and expensive spectral counting experiments. Many of the analysis approaches used in this
work were developed for transcriptomic data and this is the first time they’ve been applied to
proteomics data.

After preprocessing the data and finding significant proteins, in Chapter 7 we determined
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which of the proteins fell within the QTLs found by the PARC. We highlight one of the
guantitative phenotypes, Alcohol Preference Drinking, that has been shown to have highly
significant and reproducible QTLs, and we discuss several of the proteins that show evidence for
differential expression that lie within the QTLs.

Since transcriptomic datasets from multiple platforms have also been generated in this
tissue in these strains, we compared our proteomic results to transcriptomic results in Chapter
8. The PARC has generated data on three transcriptomics platforms: RNA-seq, Affymetrix
microarray, and lllumina Microarray (Bottomly et al. 2011). We compared several versions of
the proteomics results to the three sets of transcriptomics results. We calculated overall
correlations between the fold changes and significance levels, and we determined agreement

between sets of differentially expressed genes.
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CHAPTER 2 - QUANTITATIVE PROTEOMICS

2.1 INTRODUCTION

Since the invention of the microarray, the analysis of transcript expression levels has
become increasingly popular. Even more recently, high-throughput transcriptome sequencing
has become feasible. The corresponding analysis of protein expression levels has lagged behind
because proteins do not neatly hybridize to arrays and there are no simple methods to amplify
proteins. Impressive advances in mass-spectrometer-based technology and techniques,
however, hold promise in closing the gap. New mass spectrometers can generate millions of
spectra leading to the quantification of thousands of proteins per experiment.

The quantitative proteomics portion of this project was performed in the OHSU Proteomics
Shared Resource (PSR) directed by Larry David, Ph.D. A synaptosome prep (Appendix A) was
performed in an attempt to deplete highly-abundant housekeeping proteins and to enrich for
the more interesting membrane proteins that reside at the synapse.

We used MudPIT (Multi-dimensional Protein Identification Technology), a name used to
describe 2D-LC MS/MS, in combination with spectral counting to identify and quantify proteins
in the samples (Washburn et al. 2001; Zybailov et al. 2005). Spectral counts provide
reproducible estimates of protein expression (Liu et al. 2004; Zybailov et al. 2005), and this

technique has become very popular in quantitative proteomics (Wolters et al. 2001; Tannu and
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Hemby 2006; Lohaus et al. 2007). It is regularly used in OHSU’s PSR (Wilmarth et al. 2004;
Wilmarth et al. 2006; Dasari et al. 2007; Wilmarth et al. 2009).

Two rounds of liquid chromatography were used to separate the peptides to reduce
complexity and increase identifications. We used Strong Cation Exchange (SCX) chromatography
(separates based on charge) and Reverse Phase (RP) chromatography (separates based on
hydrophobicity). This combination is regularly used in MudPIT experiments, particularly in
neuroscience (Tannu and Hemby 2006; Lohaus et al. 2007). In the PSR, we use a larger RP
column than is often used. This requires larger initial amounts of protein, but is considerably
more robust to failure. This permits us to collect roughly twice as many fractions as is typically
seen, which leads to better separation of peptides and deeper proteome coverage. In this
experiment, we collected 35 offline SCX fractions per sample.

The SCX fractions were injected into an online RP column (a column attached to the mass
spectrometer). We used a linear ion trap mass spectrometer (LTQ, Thermo Fisher). An initial
mass spectrometer (MS) run measures the mass of the peptides (parent ions). High abundance
peptides are captured and fragmented into amino acids, and a second MS run measures their
masses (fragment ions). In theory, each MS/MS spectrum corresponds to one peptide and the
peaks give information on the amino acid sequence of the peptide.

To identify the peptides, the observed MS/MS spectra are compared to theoretical
fragmentation spectra from a database of known proteins using SEQUEST (Eng et al. 1994). A
pipeline developed in-house was used to identify proteins while controlling the false positive
rate using sequence-reversed decoy databases (Wilmarth et al. 2009). A count of how many
times a peptide is observed from a protein was used to provide an estimate of the protein

quantity. This method has been shown to be effective in a number of settings (Liu et al. 2004;
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Old et al. 2005; Bantscheff et al. 2007; Nesvizhskii et al. 2007; Balgley et al. 2008; Choi et al.

2008; Schmidt et al. 2009). An overview of the quantitative proteomics approach is shown in

Figure 2.1.
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Figure 2.1. An overview of the quantitative proteomics protocol used in this work. This
figure was adapted from a figure on the website for the Jim Ayers Institute for Precancer
Detection and Diagnosis (http://www.vicc.org/jimayersingtitute/technol ogies/). Isolated proteins
were digested and separated using liquid chromatography. The mass spectrometer was used to
generate a spectrum for each peptide. To identify the peptides, the spectra were searched against
the theoretical spectrafrom adatabase of known mouse proteins. A count of the number spectra
matched to each protein is used as the protein expression estimate.

A drawback of proteomics is that it cannot yet identify and quantify the complete
proteome—a feat that transcriptomics is quickly approaching with the use of tiling arrays and
RNA-seq. In addition, we cannot choose which proteins we identify using this MudPIT approach.

The proteins identified by mass spectrometry are biased towards high-abundance proteins. This
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differs from transcriptomics using microarrays, where the identifications are biased towards the
annotated sequences that are available at the time of probe design (Petyuk et al. 2007) (RD
Smith, unpublished data). If there are important differences between strains in very low
abundance proteins, such as some signaling molecules, it is unlikely we detected them using
mass spectrometry and spectral counting on these complex mixtures. We addressed this bias by
enriching for proteins found in the synapse, but the mixtures were still quite complex and
contained a wide range of protein concentrations. However, using the methods outlined
above, we identified and quantified thousands of proteins, a number that was sufficient to
identify at least some protein differences between strains.

There are several alternative quantitative proteomic approaches using mass spectrometry.
We ultimately used a label-free quantitative method (MudPIT + spectral counting) (Wolters et
al. 2001), however, we initially designed this project to use a labeled approach called iTRAQ
(DeSouza et al. 2005). iTRAQ, and many related methods, tag each peptide in a sample with a
marker of a known mass. The samples are then mixed together, and differential expression is
calculated as a relative measure of abundances. This is analogous to the red-green spotted
microarrays used in transcriptomics (Brown and Botstein 1999). There are pros and cons to
both label-free (e.g. spectral counting) and labeled (e.g. iTRAQ) approaches (Fang et al. 2006).
In our lab, iTRAQ was not a viable option because our iTRAQ-capable mass spectrometer lacked
the sensitivity to quantify more than 100 proteins in our complex synaptic preparations. Thus,
we adapted the label-free spectral counting approach. We compared the two approaches using
known protein mixtures spiked into an E. coli background, and found that spectral counting is
more accurate than iTRAQ over the range of protein abundances queried, however it is also

slightly more variable (Klimek et. al, in preparation). In addition, iTRAQ samples are multiplexed
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which further increases sample and data analysis complexity, and quantitative estimates are
relative rather than absolute.

There are several other label-free quantitative proteomic approaches, many of which are
based on ion intensities for the peptides when using high mass-accuracy mass spectrometers
(Fang et al. 2006; Monroe et al. 2007; Karpievitch et al. 2009). These approaches are promising
because they can be scaled up to be more high-throughput and process many more biological
replicates per experiment. These gains come with drawbacks, however. Proteins are often
quantified using only one or a few peptides, whereas in spectral counting, all of a protein’s
identified peptides are used. In addition, spectral counting, particularly combined with 2D-LC in
MudPIT experiments, quantifies many more proteins, reaching deeper into the proteome to the

less abundant proteins.

2.2 MATERIALS AND METHODS

TISSUE COLLECTION AND PROCESSING

Striatal tissue was provided by Dr. Robert Hitzemann’s lab. Stephanie Edmunds performed
the dissections. All animal handling procedures were done in accordance with federal guidelines
and approved by the OHSU IACUC. Adult (10-week-old) male ethanol-naive mice (C57BL/6 (B6)
and DBA/2 (D2)) were sacrificed and whole striata were immediately dissected from their brains
and snap frozen until further processing. To aid in the identification and quantification of less-

abundant synaptic proteins, a synaptosome preparation protocol developed by Smit et al. (Li et
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al. 2007; Li and Smit 2008) was followed to deplete mitochondrial and structural proteins and
enrich membrane proteins. The detailed protocol can be found in Appendix A. Following
suspension of the final synaptosome pellet in 0.5 ml 5 mM Hepes (pH 7.4) buffer, a protein
assay was performed (BCA assay kit, Pierce, Rockville, IL), and 500 ug portions of protein were

dried by vacuum centrifugation.

EXPERIMENTAL DESIGN

Four samples from each strain were analyzed where each sample consisted of a pool of
tissue from six mice to reduce within-strain variation and provide sufficient protein. The
experiments were performed in two batches as shown in Figure 2.2. Two samples from each
strain were analyzed in each batch. The mice for the first batch were sacrificed and the tissue
was processed in April of 2009. The 500 ug aliquots of protein were stored at -70°C until August
2009 at which point the liquid chromatography and mass spectrometry steps were begun. After
the results from the first batch were confirmed, a second set of samples was prepared. Mice for
the second batch were sacrificed in February of 2010, and the tissue was processed in March of

2010. The liguid chromatography and mass spectrometry steps were begun in April of 2010.
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Figure 2.2. Experimental design. A total of four B6 samples and four D2 samples were
run—two of each in 2009 and two of each in 2010. Each sample contained pooled tissue from six
mice. The above naming scheme on the samples has been applied throughout this document.

PROTEIN DIGESTION, PEPTIDE SEPARATION, MASS SPECTROMETRY

After protein processing, the 500 pg portions of synaptosome proteins were suspended in
100 pl of 100 mM ammonium bicarbonate buffer containing 4 mg/ml RapiGest SF detergent
(Waters, Milford, MA), reduced by addition of 10 pl of 100 mM dithioerythritol, and incubated
at 60°C for 30 min. Alkylation of free cysteines was then performed by addition of 30 ul of 100
mM iodoacetamide and incubation at room temperature for 30 min. Sixty pl of 0.3 mg/ml
trypsin (Proteomics Grade, Sigma, St Louis, MO) was then added and the samples digested

overnight at 37°C with shaking. Detergent was then removed by addition of 200 ul of 2%
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trifluoroacetic acid, incubation at 37°C for 45 min, centrifugation at 8,000g for 15 min, and
removal of the supernatant. Digests were then solid phase extracted (Sep Pak Light Cartridges,
Waters Corp) and peptides were separated by cation exchange chromatography into 35
fractions using a polysulfoethyl A column (PolyLC Inc., Columbia MD) as previously described
(Wilmarth et al. 2006). The detailed digestion protocol can be found in Appendix A. Of each
cation exchange fraction, 40% was then separated by reverse phase chromatography and 100
minutes of tandem mass spectrometry data was collected for each of the 35 fractions using an
LTQ linear ion trap (Thermo Scientific, San Jose, CA).

Mass spectrometry parameters were adapted from a previously described approach
(Bassnett et al. 2009) and are reproduced here. Electrospray ionization was performed using an
ion max source fitted with a 34 gauge metal needle and 2.4 kV potential. Samples were applied
at 20 pl/min to a trap cartridge (Michrom BioResources, Inc, Auburn, CA), and then switched
onto a 0.5x250 mm Zorbax SB-C18 column with 5 um particles (Agilent Technologies) using a
mobile phase containing 0.1% formic acid, 7-30% acetonitrile gradient over 100 min, and 10
pl/min flow rate. Data-dependent collection of MS/MS spectra used the dynamic exclusion
feature of the instrument control software (repeat count equal to 1, exclusion list size of 50,
exclusion duration of 30 s, and exclusion mass width of -1 to +4 ) to obtain MS/MS spectra of the
three most abundant parent ions following each survey scan from m/z 400-2000. The tune file
was configured with no averaging of microscans, a maximum inject time of 200

msec, and AGC targets of 3x10* in MS mode and 1x10* in Msn mode.
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PEPTIDE IDENTIFICATION USING DATABASE SEARCHES

Peptide identification was performed using SEQUEST (Version 28, rev. 12, Thermo Fisher).
Parent ion average mass tolerance was 2.5 Da and monoisotopic fragment ion tolerance was 1.0
Da. Tryptic cleavage was specified with a static modification of +57 Da on cysteine residues and
a variable modification of +16 Da on methionines. We included oxidized methionine (M+16)
because it was a moderately abundant modification and varied somewhat from sample to
sample.

A pipeline developed in-house was used to identify peptides and proteins with carefully
controlled false discovery rates estimated using sequence-reversed databases as described
previously (Wilmarth et al. 2009). This pipeline used a linear discriminant function to score
peptide matches based on various metrics as introduced in (Keller et al. 2002). Several
adaptations had been made, such as a modified DeltaCN score that averaged matches 4-10
rather than the second best match. In addition, discriminant score thresholds were chosen
using a data-driven approach by observing the distributions of forward and reversed matches,
thus allowing the adjustment of the threshold to meet a desired false discovery rate. To
maximize sensitivity, separate thresholds were set for the three primary charge states (1, 2, and
3).

Two improvements to the previously described pipeline (Wilmarth et al. 2009) were utilized
in this dataset. Separate thresholds were set for modified (M+16) and unmodified peptides, and
file compression was incorporated to permit the analysis of large datasets (>100GB). The raw

datasets were uploaded to Tranche (www.proteomecommons.org) and are available to the
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public (Fei et al. 2011).

Protein identification criteria were two distinct, fully-tryptic peptides per protein per
sample. All samples were searched against three different protein databases: UniProtKB/Swiss-
Prot (release 57.8; 16,191 entries; reviewed canonical sequences) and two versions of the
Ensembl protein database (release 57; 35,412 entries; ab initio predicted proteins were not
included), one representing the B6 strain and one representing the D2 strain (see Chapter 6).
Protein sequences that were exact duplicates or exact subsets of another protein sequence
from the same gene were removed from the Ensembl databases before searching. Unless
otherwise noted, the quantitative results in this paper were calculated using counts from the B6
(reference) Ensembl database for the B6 samples and the D2 Ensembl database for the D2

samples.

2.3 RESULTS AND DISCUSSION

All eight samples generated 4,049,668 tandem mass spectra (Table 2.1). A pipeline
developed by Dr. Phillip Wilmarth was used to identify peptides and proteins while controlling
false discovery rates estimated using sequence-reversed databases as described previously
(Wilmarth et al. 2009). Each of the three databases (Ensembl B6, Ensembl D2, and SwissProt)
was searched independently, and a summary of the search results are found in Table 2.2.
Thresholds were set to produce conservative false discovery rates. Overall, we identified 33,297
unique peptides belonging to 6,602 proteins. As expected, the primary functional categories we
identified were associated with high abundance proteins. The following clusters, in order of

significance using the DAVID Functional Annotation tool (Da Wei Huang and Lempicki 2008;
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Huang et al. 2009), were enriched our in our dataset compared to the list of all Ensembl
proteins: mitochondrial/oxidative phosphorylation proteins, synaptic proteins, vesicle proteins,
cytoskeletal proteins, and transport/localization proteins. Further analysis and discussion of the

data is discussed in subsequent chapters.

Total
Sample Date MS2
B61 09/18/09 | 436,561
B62 11/09/09 | 475,096
B63 04/20/10 | 558,560
B64 06/07/10 | 537,594
D21 11/04/09 | 473,304
D22 09/12/09 | 469,383
D23 04/27/10 | 551,073
D24 06/01/10 | 548,097
Totals 4,049,668

Table 2.1. Total number of tandem mass spectra generated per sample. The dateslisted are
the starting dates of the mass spectrometer runs.
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Swiss-Prot

Search Unmodified Modified (M+16) Nonredundant Proteins
Valid
Valid (Reversed) | Valid (Reversed) | Peptide | (Reversed)
Sample MS2 MS2 FDR Proteins Protein FDR
B61 40481 (493) 4912 (62) 1.24 1795 (7) 0.39
B62 38543 (454) 7040 (86) 1.20 1826 (8) 0.44
B63 51419 (600) 3329 (42) 1.19 2000 (11) 0.55
B64 39991 (455) 5677 (70) 1.16 1502 (6) 0.40
D21 50530 (560) 7742 (91) 1.13 2110 (16) 0.76
D22 35325 (408) 8637 (98) 1.16 1889 (15) 0.79
D23 52664 (585) 4355 (56) 1.14 1872 (14) 0.75
D24 39484 (473) 5598 (78) 1.24 1517 (9) 0.59
Totals 348437 (4028) 47290 (583) 1.18 0.58
Ensembl
B6 Search Unmodified Modified (M+16) Nonredundant Proteins
Valid
Valid (Reversed) | Valid (Reversed) | Peptide | (Reversed)
Sample MS2 MS2 FDR Proteins Protein FDR
B61 42561 (529) 4998 (75) 1.29 1942 (10) 0.51
B62 41286 (534) 7437 (115) 1.35 2011 (12) 0.60
B63 55344 (709) 3530 (61) 1.33 2178 (11) 0.51
B64 43253 (594) 6045 (87) 1.40 1668 (10) 0.60
D21 53258 (642) 8037 (110) 1.24 2317 (16) 0.69
D22 37623 (547) 9099 (133) 1.48 2076 (24) 1.16
D23 56829 (719) 4619 (74) 1.31 2066 (15) 0.73
D24 42602 (611) 5900 (100) 1.49 1664 (16) 0.96
Totals 372756 (4885) 49665 (755) 1.35 0.72
Ensembl
D2 Search Unmodified Modified (M+16) Nonredundant Proteins
Valid (Reversed) | Valid (Reversed) | Peptide | Valid (Reversed) | Protein
Sample MS2 MS2 FDR Proteins FDR
B61 42400 (533) 4990 (75) 1.30 1938 (10) 0.52
B62 41138 (544) 7392 (113) 1.37 2027 (12) 0.59
B63 55167 (730) 3518 (60) 1.36 2177 (12) 0.55
B64 43089 (593) 6026 (87) 1.40 1664 (11) 0.66
D21 53485 (639) 8073 (113) 1.24 2323 (16) 0.69
D22 37776 (540) 9135 (133) 1.46 2083 (23) 1.10
D23 57083 (735) 4656 (74) 1.33 2075 (16) 0.77
D24 42779 (618) 5935 (99) 1.49 1669 (14) 0.84
Totals 372917 (4932) 49725 (754) 1.36 0.72

Table 2.2. Number of identified spectra and proteins with their False Discovery Rates

(FDRs) using the Proteomics Shared Resource pipeline.
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CHAPTER 3 - MANAGING SHARED PEPTIDES

3.1 INTRODUCTION

The Ensembl protein database is what we refer to as a “complete” database. Complete
databases include a separate entry for each and every protein isoform no matter how similar
the isoforms are to each other. Two similar isoforms can originate from either alterative splicing
of the same gene or recent gene duplication events. Alternative splicing can generate two very
similar proteins when little exon information differs between the isoforms. In Ensembl, many
isoforms can also be perfect sequence matches to other isoforms. They may differ in transcript
sequence, but their protein products are identical (Blakeley et al. 2010). Recent gene
duplication events can also produce very similar protein isoforms. Evolution has often
supported the duplication of genomic regions that contain highly important genes. This makes
the genome more robust to mutation and permits the development of new functions.
Housekeeping genes, ancient genes with critical functions to the cell, are often duplicated many
times in the genome. If the duplication occurred relatively recently in evolutionary time, or
selective pressure has resisted mutation of the genes, the duplicated genes will produce very
similar protein isoforms.

Even after removing exact full-sequence protein duplicates and subsets belonging to the

same gene from the database before the database search step, sequence similarities in the
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Ensembl protein databases led to many shared (ambiguous) peptides that were assigned to
multiple proteins. One method for reducing the number of shared peptides is to group very
similar proteins before summing up the spectral counts. If a peptide matches to both Protein A
and Protein B, however Protein A and B have been grouped because they are very similar, then
that shared peptide is no longer considered shared. It maps only to that protein group and is
only counted once. It is no longer possible to separately quantify Proteins A and B, but it is
possible to quantify the group. In the ideal situation, only proteins that are so similar that there
is insufficient data to quantify them independently would be grouped.

There are many ways to form protein groups. One obvious approach is to align the protein
sequences, calculate how similar they are, and then group the very similar proteins. This is very
computationally complex, and is not practical on a per-experiment basis. Fortunately, Ensembl
already classifies their proteins into protein families based on sequence similarity. Protein
families were generated using a Markov Clustering (MCL) algorithm based on similarity scores
from an all-against-all BLASTP search (Enright et al. 2002). Rather than discard or split the
counts belonging to shared peptides, we can instead count the spectra belonging to each
protein family. Grouping similar proteins in this manner effectively reduces the number of
shared peptides, because it is common for a peptide to be shared between members of the
same family, and it is rare for a peptide to be shared between two different families.

We compared grouping by Ensembl protein family to grouping based on identified peptide
criteria. ldentified peptides are the peptides that were identified and counted by mass
spectrometry and spectral counting. The output of the database search step is a list of peptides
with a count of how often each peptide was seen in each sample. Due to predictable trypsin

cleavage sites, the same peptides are typically seen multiple times. This differs from
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technologies such as RNA-seq where essentially random reads are sequenced. To group
proteins based on the peptides that were identified, we did a pair-wise comparison of each of
the proteins in the database. Proteins A and B were merged into one group if both proteins had
fewer than X exclusive peptides with a total of Y exclusive peptide counts to distinguish between

them. Figure 3.1 shows the difference between shared and exclusive peptides.

Protein A
Protein B
Peptides: e

Figure 3.1. An example showing shared and exclusive peptides between two similar
proteins. The black peptides are shared, whereas the blue peptides are exclusive to protein B and
the red peptideis exclusive to protein A.

This grouping strategy allowed us to adjust grouping stringency to a desired level. Several
values of X and Y were evaluated to cover the spectrum of stringency. Higher numbers for X and
Y required more exclusive peptide evidence before allowing two isoforms to remain
independent. Improvements in mass spectrometry technology will lead to increased spectral
counts per protein and the identification of less abundant proteins. At this point, however, for
the majority of cases, there was insufficient data to be able to compare two very similar protein
isoforms, for example splice variants of the same gene, using exclusive peptide evidence.

Most proteomics analysis pipelines group proteins that have identical peptide sets
(redundant proteins) and remove peptide subsets (parsimony analysis) (Nesvizhskii and
Aebersold 2005; Zhang et al. 2007). We extended these concepts by grouping proteins that
shared most of their peptides and had few exclusive peptides to distinguish between them
before applying a shared-peptide splitting calculation. For example, a single unique peptide may

suggest a protein’s presence in the sample, but it may not provide sufficient data to quantify the
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protein independent of its family members (Blakeley et al. 2010). Grouping similar proteins,
even if there was some limited unique peptide evidence, fixed the unreliable quantitative results
we observed without grouping.

In analogy to definitions of “minimal identifiable protein sets” discussed in the parsimony
analysis references (Nesvizhskii and Aebersold 2005; Zhang et al. 2007), we attempted to define
the “minimal quantifiable protein set”. For example, if at least two distinct peptides and at least
ten peptide counts were required to consider a protein quantifiable, then shouldn’t it logically
follow that at least two unique peptides and at least ten unique peptide counts be required to
separately quantify two similar isoforms? The exact definition of what is quantifiable depends
on many factors and our definition is what made sense for our data and quantification
technique. For most experiments, the number of identifiable proteins will exceed, sometimes
greatly, the number of quantifiable proteins.

The peptides that remained shared between groups after grouping similar proteins were
split using exclusive peptide information (Liu et al. 2007; Wilmarth et al. 2009; Fermin et al.
2010; Zhang et al. 2010). For example, in Figure 3.1, there are three shared peptides, two
peptides exclusive to protein B, and one peptide exclusive to protein A. In this situation, 1/3 of
the shared peptide counts would be allocated to protein A and 2/3 of the shared peptide counts
would be allocated to protein B. This is what is referred to as a shared-peptide splitting
algorithm. In this dissertation, we evaluate several approaches for combining protein grouping
with shared-peptide splitting to maximize the number of isoforms that are identified while
minimizing the risk of errors due to splitting many shared peptides using information from few

exclusive peptides.
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3.2 METHODS

Sequence similarities in the Ensembl protein databases resulted in large numbers of
ambiguous (shared) peptides that were assigned to multiple proteins. Methods for splitting
shared peptides using unique peptide information have been proposed and have been shown to
provide more accurate protein total counts (Liu et al. 2007; Fermin et al. 2010; Zhang et al.
2010). Splitting peptides on the basis of relative unique peptide counts, however, fails when
unique counts are too low. To avoid these errors, we evaluated two methods to identify and
group similar proteins before applying peptide splitting.

The first method grouped proteins that belong to the same Ensembl protein family.
Ensembl provides protein family annotations for each of its proteins. Proteins were clustered
into protein families based on sequence similarity (for more details see

http://www.ensembl.org/info/docs/compara/family.html) (Enright et al. 2002).

In the second grouping method, all pair-wise comparisons of proteins were performed, and
proteins A and B were merged into one group if both proteins had fewer than X exclusive
peptides with a total of Y exclusive peptide counts (spectra) to distinguish between them.
Several values of X and Y were evaluated to cover the spectrum of stringency. The baseline
(least aggressive) grouping approach (where X=1 and Y=1) merged two proteins unless they
each had at least one exclusive peptide. This is similar to previously published parsimony
methods that group proteins with redundant peptide sets and remove proteins with subset
peptide sets (Nesvizhskii and Aebersold 2005; Zhang et al. 2007). Our method was slightly more

aggressive, however, because if proteins A and B were grouped together and B and C were
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grouped together, then A and C were also grouped together. Increasing the values for Xand Y
made the algorithm group more aggressively because more exclusive peptide data was required
in order for two proteins to remain independent. It should be noted that many groups
contained single proteins independent of grouping method or values of X and Y. After grouping
the proteins, any peptides that were found in multiple groups were split using protein group
unique peptide evidence similar to previous methods discussed above (Liu et al. 2007; Wilmarth

et al. 2009; Fermin et al. 2010; Zhang et al. 2010).

3.3 RESULTS AND DISCUSSION

When a standard peptide subset removal parsimony analysis was performed (equivalent to
DTASelect with Occam’s razor filter (Tabb et al. 2002)), the protein identifications were reduced
to 4,593 redundant target matches (3,284 non-redundant) with 98 decoy matches (2.1% protein
FDR), excluding common contaminants. In order to evaluate alternative grouping approaches
and to avoid the loss of annotation, we retained the redundant protein identifiers.

Our grouping algorithms take as input a peptide summary file that lists all of the peptides
identified, how often they were identified in each of the samples, and which proteins they
belong to. The results from the different grouping strategies are found in Table 3.2. Due to high
sequence similarity between many of the proteins, a condition which we refer to as sequence
redundancy, 31.16% and 11.94% of the peptides were ambiguously assigned to multiple
proteins before and after the baseline grouping strategy, respectively.

The algorithm we use to manage shared peptides splits the spectral counts based on the

fraction of unique peptide counts found for each protein containing the peptide (Zhang et al.)
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(see above methods). This approach was problematic for some proteins. For example, GAPDH,
a highly abundant housekeeping protein that is known to vary little between samples, appeared
to be highly differentially expressed. The gene for GAPDH is duplicated many times in the
genome, which led to multiple very similar GAPDH entries in the Ensembl protein database as
shown in Table 3.1. There was a single amino acid substitution in one of the protein isoforms,
so there was an increase in unique peptide counts for that isoform. This led the splitting
algorithm to assign many of the spectral counts to this one isoform, however this only occurred
in two samples, both of which belonged to one strain. This led to the isoform showing up as
differentially expressed between strains. Small unique counts can have large relative
fluctuations which translate to large fluctuations in split counts, particularly for protein families
with high sequence homology (actins, tubulins, etc.) for which the bulk of their spectral counts

belong to shared peptides.
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ENSMUSPOOOOO0O91727 0 0 0 O O O O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O
ENSMUSP00000073289
(and 7 others) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ENSMUSP00000108293 0 1 O 1 1 1 1 1

ENSMUSPO0O0OOO111883 0 0 1 0 O O O O 1 12 12 O O O O O O O O O o O o0 1 1 1

Table 3.1. An illustration of the peptide-splitting error in the GAPDH family. The GAPDH family of proteins share many peptides. The
highlighted GAPDH family member, ENSM USP00000108293, contains the [VSNASCTTNCLAPLAK peptide rather than the
IVSNASCTTNCLSPLAK peptide. The former peptide was observed once in B61 and once in B62. This single unique peptide led to a
disproportionately large portion of the shared peptides to be allocated to thisisoform for the two B6 samples. This led the protein to show up as
differentially expressed between strains.
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Another approach that circumvents such problems is to discard all shared peptides, as is
typically done in the field of transcriptomics. This is rarely done in proteomics, however,
because protein sequences are more similar to each other than transcript sequences due to
redundancy in the genetic code. Discarding shared peptides would have resulted in loss of a
large portion of our dataset, so we decided to try grouping very similar proteins so that fewer
peptides were shared. One approach we tried was to group similar proteins into Ensembl-
defined protein families and then count the spectral counts found per family. After grouping
similar proteins into families, only 0.59% of the peptides were ambiguously assigned to multiple
families. After filtering out families with a sum of fewer than ten counts across all eight samples
and one family with severe batch effects, 1,807 families remained for further analysis.

An alternative grouping approach that doesn’t rely on externally defined protein families is
to group two similar proteins if they each have fewer than X exclusive observed peptides with a
total of Y exclusive peptide counts to distinguish between them. We compared grouping by
Ensembl protein family to five other grouping strategies: 1. No grouping, 2. Standard baseline
grouping (requires each protein to have at least one exclusive peptide), 3. Light grouping
(requires at least one exclusive peptide with a total of five exclusive peptide counts), 4.
Moderate grouping (requires at least two exclusive peptides with a total of ten exclusive peptide
counts), and 5. Aggressive grouping (proteins are grouped if they share any peptides). The

results can be found in Table 3.2.
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Number of
Number Percentof Percentof groups

Percent  Total of groups groups differentially

of number groups containing containing expressed
Grouping peptides  of with >10 any shared only one (p<0.05/
strategy shared groups  counts peptides protein g<0.05)

No grouping | 31.16% | 4,593* 2,583 52.03% 100.00% 116/16
Baseline
grouping
(1/2) 11.94% | 3,264 2,405 33.76% 77.51% 120/17
Light

grouping
(1/5) 6.84% 2,998 2,329 26.66% 70.92% 119/17
Swiss-Prot
search with
no grouping | 4.78% 2,976 2,201 27.21% 100.00% 110/16
Moderate
grouping
(2/10) 4.62% 2,885 2,259 22.13% 69.06% 123/16
Ensembl
family
grouping 0.59% 2,343 1,808 4.54% 55.65% 101/19
Aggressive
grouping 0.00% 2,579 1,958 0.00% 63.31% 111/14

Table 3.2. A comparison of strategies for grouping similar proteins. The grouping label (2/10)
indicates that two proteins with any shared peptides are merged unless they each have 2
exclusive peptides with a total of 10 exclusive peptide counts to distinguish between them.
*-The ‘no grouping’ protein set includes redundant proteins.

Ensembl protein families were defined using sequence similarity measures and clustering

(see http://www.ensembl.org/info/docs/compara/family.html and (Enright et al. 2002)). Due

to the relatively low similarity threshold set by Ensembl when they constructed the protein
families, we found grouping by Ensembl family to be on the aggressive end of the spectrum. We
compared groups formed using Ensembl families to groups formed using the moderate grouping

criteria. We found that only 3.7% of the groups formed using the moderate peptide criteria
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contained proteins belonging to multiple Ensembl families. This indicates that grouping using
the moderate peptide criteria rarely groups two proteins that belong to different families and
are therefore most likely functionally distinct. Conversely, 19.0% of Ensembl families mapped to
multiple groups in the moderate grouping scheme. This suggests that grouping by Ensembl
family may be overly aggressive in some cases because there may be sufficient peptide data to
guantify some members of the family individually. We ultimately chose to remain with the
Ensembl family grouping for the majority of our analyses because of the family-level annotation
provided by Ensembl. Ensembl families are also desirable because they are pre-computed and

are consistent from experiment to experiment.

3.4 SUMMARY AND CONCLUSIONS

One of the challenges of proteomics is dealing with peptides that map to multiple proteins
(Duncan et al. 2010). When a large database such as the Ensembl database is used, this occurs a
lot more frequently because there is significant sequence redundancy in the database. The term
‘redundancy’ is often used to refer to proteins with identical peptide sets. Standard proteomics
pipelines deal with this kind of redundancy by grouping proteins together that have identical
peptide sets and are therefore indistinguishable. This strict definition of redundancy is easy
enough to manage, assuming the annotation for all of the proteins in the group is retained,
which it rarely is, but redundancy goes beyond looking at identical peptide sets. Take, for
example, two proteins that are splice variants, each containing an exon that the other does not
(mutually exclusive exons). The majority of their sequences, and therefore peptides, are

identical but they each have unique peptides as well. This unique information, if present, could
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be used to estimate the abundance of each of the isoforms and then to allocate the counts of
the peptides that are shared between the isoforms.

It is desirable to reduce the need to allocate shared peptides as this approach makes a
number of assumptions and there are several conditions where it breaks down, which can lead
to unreliable results. For example, before we collapsed our spectral counts into Ensembl
families, we looked at the protein-level data. The protein with the highest fold change was a
GAPDH isoform. GAPDH is known to be a highly expressed housekeeping protein that is
expected to vary little between samples. This fold change artifact was not because GAPDH was
differentially expressed in our samples; it was because in two B6 samples, a single unique
peptide was identified in this particular isoform. Since there were 12 very similar GAPDH
isoforms found in the dataset, most of the peptides were shared. This single unique peptide
increased the number of shared counts that were allocated to this one isoform. However, this
only occurred in two of the samples, both of which belonged to the B6 strain. This led to this
isoform showing up as differentially expressed between the two strains even though it shouldn’t
have. After collapsing the spectral counts into protein families, only 0.59% of all of the peptides
in the dataset were shared between families, and this particular GAPDH artifact went away
because all of the 12 isoforms were collapsed into one family.

Although searching large protein databases that contain many protein isoforms will increase
peptide counts, we recommend against doing so unless additional steps are taken to address
sequence redundancy in the database. Extensive sequence redundancy can lead to many
peptides being shared. These shared peptides can either be discarded, which will lead to
significant data loss, or, alternatively, we recommend grouping very similar proteins so that

fewer peptides are ambiguous.
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Ensembl protein families can be used to group similar proteins. Another approach for
grouping similar proteins is to compare the sets of peptides found for each protein. Most
proteomics analysis pipelines group proteins that have identical peptide sets (redundant
proteins) and remove peptide subsets (Parsimony principle). We recommend taking this a step
further and grouping proteins that share most of their peptides and have few exclusive peptides
to distinguish between them. This approach fixed the unreliable quantitative results we
observed with the standard approach, yet does not necessitate overly-aggressive protein
grouping or the algorithmic complexities of determining protein families based on sequence
similarity. Shared peptides that remain after grouping very similar proteins can either be
discarded or, as we have done, split based on unique peptide data (Liu et al. 2007; Wilmarth et
al. 2009; Fermin et al. 2010; Zhang et al. 2010).

Since protein families are provided for Ensembl proteins, we chose to utilize them because
of the useful family annotation provided by Ensembl. Managing annotation for proteins
grouped on a by-experiment basis is a challenge that is typically overlooked. In addition, protein
families are appealing because they are pre-computed and consistent from experiment to
experiment. There is a downside to using Ensembl protein families, however. If one member of
the family is significantly differentially expressed, and the others are not, that difference may no
longer appear significant when the counts are summed into families. When we compared family
summarization to the moderate grouping criteria, we observed this behavior for 25 proteins, 16
of which were confirmed using strictly unique peptide counts. Grouping these related proteins
may cause us to miss some significant proteins, however keeping them separate and splitting
their shared peptides can lead to false positives if the ratio of unique peptides to shared

peptides is small.
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CHAPTER 4 — COMPLETE VS. NON-REDUNDANT DATABASES

4.1 INTRODUCTION

In order to identify which peptides are present in a sample, the tandem mass spectra
generated by the sample are compared to theoretical spectra generated using a database of
known proteins. In this project, we used the SEQUEST algorithm (Eng et al. 1994) to match
observed spectra to theoretical spectra. When initiating the search, you specify which database
of known proteins to use. A database of proteins is typically a text file that lists each protein
sequence using the FASTA format. Most major online protein databases make these text files
available for use.

There are many considerations in choosing which protein database source to use. As this
research was performed in mouse, we are able to restrict our choices to mouse-specific
databases. Because it is one of the most commonly used model organisms, the mouse has one
of the most complete and well-annotated genomes. If we were not working with a model
organism, we may choose to use a cross-species database to maximize sequence coverage.
Most major databases with multiple species include a subset for mouse. The choice then comes
down to which database offers the most desirable set of features.

One design choice that database providers make is whether to include closely related
protein sequences as separate entries, or, alternatively, to choose one sequence to represent
the set and then provide annotation documenting various differences. For the purposes of this

project, we refer to the former as ‘complete’ databases and the latter as ‘non-redundant’
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databases.

UniProtKB/Swiss-Prot is the most commonly used example of a non-redundant database. It
is manually annotated and reviewed. When two proteins are very similar in sequence, one
representative sequence is chosen and the alternative sequence is provided in the annotation as
an isoform. The UniProt KnowledgeBase also includes a second complementary database
(UniProtKB/TrEMBL) which is machine annotated and is much more extensive. In this analysis,
we used the reviewed canonical Swiss-Prot mouse protein database (release 57.8; 16,191
entries; excluding isoforms) as the non-redundant database.

There are several databases that would be classified as ‘complete.” Some are primary
sources of data, while others consolidate data from multiple primary sources. Some examples
of primary sources include UniProtKB/SwissProt+TrEMBL, NCBI RefSeq, and Ensembl. Two
examples of databases that consolidate information from multiple sources include the
International Protein Index (IPI1) and Integr8. The IPI and Integ8 databases are popular with
proteomics researchers because they are very extensive and contain the most sequence
coverage. Larger databases often increase successful peptide-to-spectrum assignments. As the
primary database sources have begun to mature and share information, however, the databases
that consolidate multiple primary sources have become less useful. In 2010, both IPI and
Integr8 announced their closures, leaving investigators to choose which primary data source to
utilize. IPI recommended using UniProtKB and Integr8 recommended using Ensembl.

The primary data sources each have their strengths and weaknesses. For example,
generally, UniProtKB is protein-centric, RefSeq is transcript-centric, and Ensembl is genome-
centric. The primary goal of UniProtKB is to serve as “the central hub for the collection of

functional information on proteins, with accurate, consistent and rich annotation.” (emphasis
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added) Its primary focus is the protein molecule. RefSeq aims to “provide a comprehensive,
integrated, non-redundant, well-annotated set of sequences, including genomic DNA,
transcripts, and proteins.” It maps proteins to transcripts to genomic DNA when possible, but
many of its entries are derived from cDNA sequences that haven’t yet been mapped to the
genome. Ensembl is genome-centric in that each of its proteins belongs to a transcript, and
each of its transcripts belongs to a gene that has a definitive location on the genome sequence.
This means that Ensembl may be missing entries that can be found in RefSeq or UniProtKB but
that have not yet been mapped to the genome.

This project required that we use Ensembl as our complete database because we were
generating a D2-specific protein database using a list of genomic variants where each variant
was designated by its location in genomic coordinates. We used the ‘all’ Ensembl protein
database (Mus_musculus.NCBIM37.57.pep.all.fa), which constitutes the “super-set of all
translations resulting from Ensembl known or novel gene predictions”. We did not include the
‘ab initio’ database that contains translations resulting from ab initio gene prediction algorithms
such as SNAP and GENSCAN. Ensembl states that, “All 'ab initio' predictions are based solely on
the genomic sequence and not any other experimental evidence; therefore, not all GENSCAN or
SNAP predictions represent biologically real proteins.” This ab initio set may have included
many of the proteins in RefSeq and UniProtKB that are missing in the main Ensembl protein
database, but those proteins would lack the desired level of annotation and would have more
than doubled the size of the Ensembl database. This would have significantly increased the
search space, and it would have increased the search time per sample per database from 4 days
to nearly 10 days.

In addition to longer search times, searching a complete rather than a non-redundant
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database increases search space size. Including the Ensembl ab initio predicted sequences
would have increased it further. Other common practices in proteomic data analyses, such as
allowing for unknown post-translational modifications, allowing non-trypic peptides, and using
wide parent ion mass tolerance windows, also increase search space size. This may cause some
low-scoring but correct peptide top hits to be displaced by ‘noise’ matches, such as matches to
incorrect target or decoy sequences. This phenomenon increases proportionally with search
space size and reduces sensitivity for detecting and correctly identifying low-scoring peptides.

The loss of low-scoring peptides can negatively impact protein identification. This
particularly impacts low abundance proteins that may only have a few distinct peptides assigned
to them. At least two distinct peptides are required of each identified protein, and if a protein
drops below that threshold due to the loss of a low-scoring peptide, it will no longer be
considered a confident identification.

The purpose of this particular analysis was to determine if the gain in peptide assignments is
considerable enough to justify using complete databases rather than non-redundant databases.
We tested this using the Ensembl complete database and the Swiss-Prot non-redundant
database. Using a complete database leads to a sharp increase in the number of shared
peptides, peptides that are found within more than one protein, and therefore adds algorithmic
overhead in managing shared peptides, as is discussed in Chapter 3. It also significantly
increases the search space and the search time. Some investigators choose instead to search
non-redundant databases, such as Swiss-Prot, to minimize shared peptide load and reduce the

search space and search time.

Page 34



4.2 METHODS

To determine the gain in identified peptides using a complete vs. a non-redundant database,
we compared the results when we searched the data on Ensembl vs. Swiss-Prot. The canonical
Swiss-Prot (release 57.8) database included 16,175 unique proteins. The Ensembl protein
database (release 57) we used included 35,412 unique proteins grouped into 15,144 families
based on sequence similarity. We did not use the extended Ensembl database that includes ab
initio predicted protein sequences. We restricted this analysis to the reference (B6) version of
the Ensembl database except where noted. In the Ensembl database, protein sequences that
were exact duplicates or exact subsets of another protein sequence from the same gene were
removed from the Ensembl databases before searching. Although each sequence was unique,
many of the Ensembl proteins were very similar to other Ensembl proteins because all isoforms
(due to genomic duplication and alternative splicing) were included in the protein database.
This explains why, before any grouping of similar proteins was performed, 31.2% of Ensembl

peptides were ambiguous whereas only 4.8% of Swiss-Prot peptides were, as shown in Chapter

After performing the searches, as described in Chapter 2, we mapped the Ensembl families
to the Swiss-Prot proteins by comparing the sets of identified peptides. A Swiss-Prot protein
was mapped to an Ensembl protein family if they shared one or more peptides. Swiss-Prot
proteins that mapped to multiple families and families that mapped to multiple Swiss-Prot
proteins were discarded for the analysis comparing the two databases. In order to determine if

it is beneficial to include multiple protein isoforms in the database search step, we used the

Page 35



subset of cases where only one Swiss-Prot protein mapped to only one Ensembl family that

contained multiple identified proteins.

4.3 RESULTS AND DISCUSSION

We searched our dataset against both the Ensembl and Swiss-Prot databases so that we
could determine if the additional information content in Ensembl database would significantly
increase peptide and spectral counts. Overall, 422,421 non-unique peptides (spectral counts)
were counted when we used the Ensembl database and 395,727 were counted when we used
the Swiss-Prot database. This represents 10.4% and 9.8% of the total number of spectra
generated (4,049,668). There was a net increase of 26,694 peptide counts when Ensembl was
used instead of Swiss-Prot—which represents a net increase of 6.8%. Using the standard
parsimony analysis, an average of 3,336 (SD=732) additional peptides and 176 (SD=21.6)
additional proteins were identified per sample when searching Ensembl compared to Swiss-Prot.

There were 2,328 Ensembl protein families and 2,977 Swiss-Prot proteins found in the
dataset. In order to maximize the number of families mapped to proteins, no filtering based on
total spectral count across samples was performed. An Ensembl protein family mapped to a
Swiss-Prot protein if they shared any peptides. Of the Ensembl families, 147 did not map to any
Swiss-Prot proteins. Of those, 66 of them had at least two unique peptides identified and at
least 10 spectral counts across samples which indicate the families are very likely to be present
in the samples. The majority of these families had spectral counts indicating that they were
moderately abundant to highly abundant. These families would have been missed if only Swiss-

Prot was searched. Conversely, 55 of the Swiss-Prot proteins did not map to any Ensembl
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families. Of those, 13 of them had at least two unique peptides and at least 10 spectral counts
across samples which indicate the proteins are very likely to be present in the samples. Most of
these proteins had lower abundance spectral counts, and would have been missed if only
Ensembl was searched. These results show that Ensembl contains many proteins that cannot be
found at all in Swiss-Prot and that many of the proteins that are found in Ensembl and not in
Swiss-Prot are in fact present in these samples. However, there are still cases where a protein
exists in Swiss-Prot and not in Ensembl, suggesting that Ensembl is missing protein annotation in
several regions of the genome. It is possible that these proteins are still in the extended ab
initio Ensembl database and have not yet been annotated in the main Ensembl database. It is
also possible that these proteins were missed in Ensembl because they contained low-scoring
peptides that were not identified when searching the larger Ensembl database. Further
discussion of this latter topic is found below.

We next determined if using a complete database (one that contains multiple protein
isoforms per protein) is beneficial for increasing peptide counts within a protein family. To test
this using Ensembl and Swiss-Prot, we first made the assumption that each Ensembl protein
family would map to one Swiss-Prot protein. Theoretically, Swiss-Prot chooses one
representative protein sequence from each protein family whereas Ensembl includes all of the
various protein isoforms as separate entries. This assumption did not apply in many cases and
those exceptions were removed. Of the Swiss-Prot proteins, 148 mapped to multiple Ensembl
protein families. Conversely, of the Ensembl families, 506 mapped to multiple Swiss-Prot
proteins. After filtering out the one-to-many and many-to-many mapping relationships, 1,645
one-to-one relationships remained. Of those, 896 protein families represented only one protein

isoform so those families were removed as well. This left 749 Swiss-Prot protein to Ensembl
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protein family mappings that met our original assumption: only one Swiss-Prot protein mapping
to only one Ensembl protein family that contained multiple isoforms.

In these 749 cases where a single Swiss-Prot protein mapped to an Ensembl protein family
that represented multiple protein isoforms, using the Ensembl database instead of Swiss-Prot
led to a net increase of 5,769 non-unique peptide identifications (spectral counts)— which
represents a net increase of 9.1%. Out of the 749 cases, 373 mapped perfectly, meaning that all
of the peptides identified were found in both databases. In 296 cases, at least one additional
unique peptide was found in Ensembl that was not found in Swiss-Prot. A total of 930 unique
peptides were found in Ensembl that were not found in Swiss-Prot. This means that 39.5% of
the 749 proteins benefit from using a complete database that includes multiple protein isoforms
rather than a non-redundant database that utilizes only one isoform to represent a protein
family. Conversely, in 196 cases, at least one additional unique peptide was found in Swiss-Prot
that was not found in Ensembl. A total of 296 unique peptides were found in Swiss-Prot that
were not found in Ensembl. These cases will be discussed at the end of this section.

Figure 4.1 shows that a number of proteins benefit substantially from including multiple
protein isoforms in the database search step. A total of 30 proteins gain an additional five or

more unique peptides when using Ensembl. Several examples are discussed below.
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Figure 4.1. A histogram of the
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One of the most abundant proteins in these samples, AT2B2_MOUSE, is a calcium
transporting ATPase. There is peptide evidence to suggest that 15 isoforms of this protein are
present in these samples. Including these isoform sequences doubled the number of spectral
counts (from 2,557 to 5,330) and added identifications for an additional 107 unique peptides.
This is an extreme example of a highly expressed housekeeping protein that has been duplicated
four times across the genome and has many splice variants.

Another example is that of DAB2P_MOUSE. It is the only Swiss-Prot protein that mapped to
a family of 28 different Ras GTPase-activating proteins that are products of four different genes
on three chromosomes. There is peptide evidence that 11 of those 28 are expressed in these
samples. Including these isoform sequences increased the number of spectral counts by 1,680%

(from 50 to 840) and added identifications for an additional 44 unique peptides.

Page 39



A less extreme example is that of IDH3G_MOUSE. It mapped to a family of two different
isocitrate dehydrogenase 3 (NAD+) proteins (beta and gamma) located on two different
chromosomes. There is peptide evidence that both isoforms are present. Including both
isoforms in the search increased the number of spectral counts by 272% (from 213 to 580) and
added identifications for an additional 20 unique peptides. As it turns out, the beta isoform of
this protein is up for review to be included as its own protein entry in Swiss-Prot. This brings up
the issue as to whether two isoforms should be included as separate proteins in a non-
redundant database and how similar must proteins be to be included in the same family in
complete databases. In this particular case, the beta and gamma versions are 51% identical.

It is perplexing that so many peptides were found in Swiss-Prot that were not found in
Ensembl. Ensembl, in theory, should contain all of the proteins that are utilized in Swiss-Prot.
Of course, the most likely reason for this is that Ensembl is lacking annotation for some Swiss-
Prot proteins. It is possible that some of the proteins in Swiss-Prot are in the Ensembl ab initio
protein set that we did not include. There is a second less obvious reason why many peptides
that were found in Swiss-Prot might not have been found in Ensembl. The spectra for the
missing peptides may have no longer had top scores due to the increased search space size
when using the larger database.

Using peptide matching and simple string searches, we calculated how many peptides were
missed due to missing annotation vs. search space effects. In the Swiss-Prot search, SEQUEST
identified 30,539 distinct peptides. Of those, 620 (2.0%) were not found when searching the
reference Ensembl database. However, of these 620 peptides, 69 of them were found when
searching the D2 version of the Ensembl database, indicating that Swiss-Prot contained the D2

version of the peptide sequence. This could be because there are genuinely multiple versions of
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the peptide across the strains and that Swiss-Prot contains the version found in the D2 strain, or
it could be due to an error in the Ensembl genome. Several additional instances of possible
errors in the Ensembl genome are discussed in the strain-specific databases chapter.

This left 551 peptides that were found using a Swiss-Prot search but were not found
searching either the reference or the D2-version of the Ensembl database. To investigate the
cause of these missed peptides, we used a simple string search to determine how many of the
peptides identified in the Swiss-Prot search could also be found in the Ensembl database but
were not identified in the Ensembl SEQUEST searches. We found that 341 of the missing
peptides were in fact in the Ensemble database; however, they had just not been found during
the search. The remaining 210 peptides could not be found in either version of the Ensembl
database. This confirms that missing annotation is a factor that contributes to missed peptides
when using Ensembl, but that searching a larger database and the corresponding reduction is

sensitivity for low scoring peptides is also an important factor in this dataset.

4.4 SUMMARY AND CONCLUSIONS

To summarize, using Ensembl, we observed a 6.8% increase in successful spectrum-to-
peptide assignments. To make a fair protein-level comparison, we selected only the 749 cases
where there were one-to-one matches between Swiss-Prot proteins and Ensembl families that
contained multiple isoforms. In half of those cases, additional peptides were found using
Ensembl or Swiss-Prot (Figure 4.1). A total of 30 proteins gained five or more additional unique
peptides when using all of the isoforms in the Ensembl family compared to Swiss-Prot. In all of

these 30 cases, there is peptide evidence that multiple isoforms are present in the samples.
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Spectral counts increased dramatically in some cases. Additional unique peptides were also
found using Swiss-Prot, which suggests that Ensembl does not contain all of the canonical
sequences that are used in Swiss-Prot and that searching a larger database reduces search
sensitivity for some peptides. We estimate that 55% of the peptides missed in Ensembl but
found in Swiss-Prot are due to a reduction in search sensitivity for low-scoring peptides due to a
larger database, 34% are due to missing sequence data in Ensembl, and 11% are due to Swiss-
Prot containing the D2 version of the peptide, which may actually be the correct peptide for
both strains.

We chose the Ensembl database because of its straightforward mapping onto the mouse
genome, but there are several additional complete databases, some of which include even more
isoforms than Ensembl. Given this, we expect that utilizing these complete databases will
increase peptide identifications by at least 6%. However, we recommend against searching
them unless additional steps are taken to address redundancy in the database and the allocation
of shared peptides. Very similar proteins should be combined into groups even if they do not
have identical peptide sets, as their quantitative results may be unreliable as discussed in
Chapter 3. In addition, it should be taken into consideration that larger databases lead to longer

search times and some loss of sensitivity for low-scoring peptides.
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CHAPTER 5 — NORMALIZATION AND DIFFERENTIAL EXPRESSION

ANALYSIS

5.1 INTRODUCTION

After summarizing the spectral counts into protein groups or families and divvying up the
shared peptides, the data can be normalized and then analyzed for differential expression. In
this chapter, we compared three normalization approaches (sum total, sum total with protein
length, and quantile (Bolstad et al. 2003)). These approaches adjust the spectral counts with the
intent of making the samples more comparable to each other. Our data was generated in two
batches, so we also evaluated the utility of a package used to adjust for batch effects (Johnson
et al. 2007). To determine which proteins are differentially expressed between strains, we
compared four differential expression analysis approaches (ANOVA with factors for strain and
batch, Significance Analysis of Microarrays (Tusher et al. 2001) blocked on batch, Quasi-Poisson
Generalized Linear Model (Li et al.) with factors for strain and batch, and edgeR (Robinson et
al.)). Further information about each method is given in the methods section.

These topics are combined into one chapter because they should not be evaluated
independently. Our approach for comparing these methods was to define a baseline analysis
pipeline and then vary one method with each additional iteration. The results of the variations

are then compared to each other. As this is a biological dataset rather than a simulated dataset
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or an experimental mixture with known levels of spiked-in proteins, an analysis of the sensitivity
and specificity of these methods could not be performed. We instead assessed the performance
of the methods using a variety of metrics. We evaluated the approaches using the Ensembl
family summarized counts, but similar results would be found using the other grouping

strategies as well.

5.2 METHODS

NORMALIZATION

After summarizing the peptide counts into protein families or groups, we normalized the
counts between samples. For example, when some samples have more total counts than
others, in order to compare them, it is necessary to adjust the counts across the samples until all
of the samples have the same total counts. We compared three normalization approaches (sum
total, sum total with protein length, and quantile (Bolstad et al. 2003)).

The data is formatted in a matrix with protein families or groups in the rows and samples in
the columns. A count of how many peptides was seen for each protein group in each sample is
in each cell. Sum total normalization is a standard normalization procedure where each column
(sample) is multiplied by the overall average column count divided by the sample column count.
This simple scaling approach effectively multiplies each entry in column by a constant so that all
of the column sums become equal.

Sum total with protein length normalization utilizes sum total normalization to make the
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samples (columns) comparable, but also adds an additional round of normalization based on
protein length to make the proteins (rows) comparable to each other. Sum total normalization
normalizes the columns whereas length normalization normalizes the rows. Because spectral
counting relies on a count of the number of observed spectra for a protein, longer proteins tend
to have more counts than shorter proteins, even if they are present in similar concentrations in
the samples. In order to compare protein A to protein B in the samples, it is first necessary to
remove that bias. In the situations where multiple proteins belonged to a family, the median
protein length was used. The median was chosen because it is less influenced by outliers than
the mean. Typically, most proteins in a family are of similar length, but there are often very
short and sometimes very long isoforms as well. The spectral counts were normalized to equal
the number of peptides per 500 amino acids.

Quantile normalization (Bolstad et al. 2003) has been shown to perform well in other types
of wide data (data that measures many more variables than there are samples). Itis now
commonly used in microarray work. It is an aggressive normalization approach that normalizes
the sum totals across the samples, but also normalizes their distributions. If samples are
expected to have similar distributions but don’t due to apparently systematic experimental bias,
guantile normalization can remove that bias and make the distributions more similar (if not
identical, depending on how the algorithm is implemented). Quantile normalization essentially
sorts each column, takes the average of each row, and replaces all of the values in that row with
the average. This forces the distributions to be identical. We chose to use the
normalize.quantiles method in the preprocessCore R/Bioconductor library. It had additional
enhancements for dealing with missing data and ties fairly, and therefore produces similar

rather than identical distributions.
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BATCH ADJUSTMENTS

Quantile normalization can correct linear batch effects across the range of protein
abundances. It cannot correct batch effects that change the ranks of proteins within the
samples, because the ranks are maintained after normalization. For example, if protein A is the
50" most abundant protein in sample 1 and is the 100" most abundant protein in sample 2, its
ranks will remain 50" and 100" after quantile normalization. More localized, per protein, batch
adjustments can be performed to remove batch effects. A simple example would be if the
mean counts for protein A is 60 in batch 1 and 40 in batch 2, a constant of -10 could be added to
the batch 1 samples and a constant of 10 could be added to the batch 2 samples to bring both
their means to 50. This removes the variation due to batch effects from the samples. This also
runs the risk of over-adjusting the data, particularly if sample sizes are small and observed
variation is due to inadequate sampling rather than genuine batch effects. Further
considerations when using batch adjusted data are discussed below.

For many proteins in these samples, we observed batch effects that changed the ranks of
the proteins between batches. These types of batch effects are very common in high-
throughput datasets such as transcriptomics, proteomics, and copy number analysis, especially
when data collection occurs at multiple time points (Leek et al. 2010). There were many points
in this experimental protocol where batch differences could have led to batch effects. For
example, the batch 1 samples were stored at -70°C for three months prior to digestion. Also, in
batch 2, at least one protein did not digest completely, as can be seen in the pre- and post-

digestion gels (Figure 5.1). Minor batch differences in the synaptic enrichment can also lead to
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batch effects, as well as environmental differences between the mouse litters used in batch 1 vs.
batch 2. The proteins that showed the greatest batch effects were mitochondrial in origin.

Most of the proteins that showed significant batch effects and were at least 20% more abundant
in batch 2 were mitochondrial, which means batch 2 contained much more mitochondrial
protein. Conversely, many more spectral counts belonging to cytoskeletal and synaptic proteins

were counted in batch 1, likely due to the more successful depletion of mitochondrial proteins

in batch 1.

B6-1 B6-2 D2-1 D2-2 B6-3 B6-4 D2-3 D2-4

Before Digestion
After Digestion

—_—

Figure 5.1 Pre- and post-digestion gels. Gelswere run before and after the digestions to
ensure proteins were adequately digested into peptides. Batch 1 consists of samples B61, B62,
D21, and D22. Batch 2 consists of sample B63, B64, D23, and D24. In Batch 2, one protein did
not digest completely. Differences such as these lead to batch effects.

We evaluated the influence of batch adjustment because batch effects that changed protein

ranks remained after normalization (Leek et al. 2010) (see Figures 5.9a and b in the results
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section of this chapter). To adjust for batch effects, we used non-parametric empirical Bayes
adjustments in the ComBat software package (Johnson et al. 2007). This implementation is
more robust to outliers in small sample sizes than basic location and scale methods for batch
adjustments. ComBat has recently been shown to outperform five other batch adjustment
packages in terms of precision, accuracy, and performance (Chen et al. 2011). Unless otherwise
noted, differential expression results shown in this dissertation are a combination of quantile

normalization, batch adjustment, and edgeR for differential expression analysis.

DIFFERENTIAL EXPRESSION ANALYSIS

There are a number of statistical approaches for determining which proteins are significantly
differentially expressed between groups. Each approach has different assumptions and
therefore identifies a different set of proteins. We compared four differential expression
analysis approaches: 1. Analysis of Variance (ANOVA) with factors for strain and batch, 2.
Significance Analysis of Microarrays (Tusher et al. 2001) blocked on batch, 3. Quasi-Poisson
Generalized Linear Model (Li et al.) (qpGLM) with factors for strain and batch, and 4. edgeR
(Robinson et al.)).

Due to batch effects (which led to high variances) and small sample sizes, p-values adjusted
for multiple comparisons typically led to few or no proteins showing up as differentially
expressed before batch adjustment. It is difficult to compare methods using the small numbers
of significant proteins that remain after adjustment for multiple comparisons, even when the

more generous False Discovery Rate (FDR) (Storey and Tibshirani 2003) adjustment is used with
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a liberal cutoff of 0.2. For the purposes of this section, p-values that have not been adjusted for
multiple comparisons are primarily used to compare the methods. In some cases, we also use
the number of proteins passing various FDR-adjusted p-value (i.e. g-value) thresholds. In later
sections, both the unadjusted p-value and the FDR-adjusted g-value are shown.

It should be noted that this FDR algorithm (Storey and Tibshirani 2003) differs from the FDR
algorithm utilized in the peptide identification pipeline (Wilmarth et al. 2009). They have similar
underlying principals, but their goals and implementations differ considerably. The FDR
algorithm introduced here, by Storey et. al., generates a multiple comparison-adjusted p-value,
which they refer to as a g-value. It is more liberal than methods that control familywise error
rates and is therefore better suited for genome-wide studies that test thousands of genes
simultaneously. It also provides an alternative and yet intuitive approach for interpreting
significance in a large set of g-values. The algorithm takes as input the distribution of p-values
and outputs the adjusted g-values. The FDR level is the expected proportion of false positives
among all the positives. For example, if 100 genes are found to be significant with a g-value of
less than 0.05, then it is expected that about 5 of those genes are false positives.

A two-way Analysis of Variance (ANOVA) is a typical statistical approach for determining
which factors appear to significantly affect the outcome variable. In this case, the outcome
variable was the spectral counts for a single protein, and the factors we included in the model
were strain and batch. Each protein was evaluated independent of the other proteins. The
assumptions of the ANOVA model are: 1. Independence of cases, 2. Normality of residuals, and
3. Homogeneity (equality) of variances. For assumption 1, aside from performing the processing
in batches, which is accounted for by using a batch factor, each sample was biologically and

technologically independent from the others. For assumption 2, the sample sizes are
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insufficient to test for normality of residuals, but spectral count data is count data, which
typically tends to fit normality assumptions when counts are greater than 10 in each cell. Thisis
not the case for many of our proteins, which is why we also evaluated other approaches that
make different distributional assumptions. For assumption 3, again, the sample sizes are
insufficient to test for homogeneity of variances, but it is expected that they would be similar
across groups.

The Significance Analysis of Microarrays (SAM) package (Tusher et al. 2001) was developed
for wide datasets where the number of variables measured far exceeds the number of samples,
such as is seen in microarray data and in this dataset. It uses a non-parametric version of the t-
test to test for significance. It generates a null distribution by permuting the data many times.
The observed difference between groups is then compared to the distribution of observed
differences in the randomized data. This permits the calculation of an empirical p-value, and
does not make the same assumptions that the ANOVA model makes. The SAM package
estimates the false discovery rate across a range of stringencies, and allows the user to set the
desired false discovery rate. For comparison with the g-values of 0.2 in the other approaches,
we chose a false discovery rate of approximately 20%. In the situation where there are
experimental batches, the SAM manual recommends blocking the permutations by batch to
generate a more accurate null distribution when batch effects may be present, so that is what
we did.

The Quasi-Poisson Generalized Linear Model (qpGLM) was based on the QuasiTel (Li et al.)
package developed for MS/MS spectral count data. Differing data formats and experimental
designs prevented us from utilizing the package itself. We adapted the statistical model and test

used in the package to fit our design by incorporating a factor for batch. The Poisson
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distribution is commonly used to model count data, but assumes the mean and variance are
equal. Biological data such as ours is often overdispersed, meaning the variance is greater than
the mean. The Quasi-Poisson distribution permits the variance to be greater than the mean by
introducing an overdispersion parameter in the mean-variance function. In our implementation,
each protein was tested independently of the others, as was done with the ANOVA model, and
information shared across proteins was not used to estimate dispersion.

The software package edgeR was designed to analyze count data that measures expression
across many genes, such as SAGE, RNA-seq, and MS/MS spectral counting. It uses the negative
binomial distribution, another distribution commonly used to model count data. One of the
features of edgeR is that it uses shared information across genes to estimate dispersion.
Specifically, we used the common dispersion option, where all of the proteins are used to
estimate dispersion. Alternatively, we could have used tagwise dispersion, which limits the
window of proteins used to estimate dispersion. As stated in the edgeR manual, using tagwise
dispersion estimates penalizes highly variable proteins. Proteins that have greater variability
within groups will appear far lower in the p-value ranking using tagwise dispersions than they
would using common dispersion. We compared the results using both tagwise and common
dispersion approaches and found few differences. The proteins that were missed using tagwise
dispersion had relatively large between-strain differences but suffered from considerable batch
effects. For this reason, the common dispersion estimate was chosen. The edgeR package does
not yet incorporate a factor for batch in its model, but the developers plan to implement such

flexibility in their models in the future.
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BASIC WORKFLOW AND VARIATIONS

To compare these methods, we defined a baseline workflow and then varied it in a number
of ways. We then compared the results of the various workflows. The baseline workflow is
shown below. The underlined text indicates the names of the workflow variants that are
compared. The input to the workflow is a peptide summary file that includes a list of peptides, a
count of how many times each peptide was observed in each sample, and a list of which
proteins each peptide belongs to. Separate peptide files are generated for the B6 Ensembl
database search and the D2 Ensembl database search. For the comparison of workflow
variations, the B6 counts are used on the B6 samples and the D2 counts are used on the D2

samples.
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Baseline version [Unnormalized

a.

Add a column to the peptide file indicating which families (or groups) each peptide
belongs to.

Merge the B6db and D2db peptide files.

Select B6db counts for B6 samples and D2db counts for D2 samples.

Summarize peptide counts into families (or groups).

Split shared peptide counts based on unique peptide counts.

Remove families with fewer than 10 counts across samples.

Perform no normalization procedure.

Find differentially expressed families.

i. Significance Analysis of Microarrays (SAM) (unpaired, blocked on batch, FDR~%20)
j. Two-way Analysis of Variance (ANOVA) (strain and batch factors)

k. Quasi-Poisson generalized linear model (qpGLM) (strain and batch factors)

I.  edgeR (common dispersion)

Use sum total normalization in step g. [Sum Total Normalized]

Use sum total normalization in step g, and then also normalize based on protein length

(counts per 500 amino acids). [Sum Total and Length Normalized]

Use quantile normalization in step g. [Quantile Normalized]

Use quantile normalization in step g, and then use ComBat to adjust for batch effects.

[Quantile Normalized and Batch Adjusted]

Use quantile normalization in step g, and then log transform. [Quantile Normalized and Log

Transformed
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5.3 RESULTS AND DISCUSSION

Here we compare results obtained from several different workflows for identifying
differentially expressed proteins. We compare these workflow variations using several metrics.
Please note that where results for only B6 samples are shown, these results were representative
of results for the other samples as well. Ensembl protein family summarized data is used. We
refer to families as proteins in this section, so as to not confuse readers who are interested in
applying these methods to protein-summarized data. Results would be similar using other
grouping schemes. A total of 1,807 families are used. One family was removed due to severe

batch effects.

The following sections are included:
1. The results of the comparisons.
a. Coefficient of variations
b. Between-batch M vs. A plots
c. Between-batch R? plots
d. Box plots of count distributions
e. Between-strain correlation plots with significant proteins highlighted for each of
the four differentially expression analysis methods.
f. The number of significant proteins found using each workflow variation.
2. Questions and answers comparing specific methods.

3. Summary of differential expression results.
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THE RESULTS OF THE COMPARISONS BETWEEN WORKFLOWS.

A. Median Coefficients of Variation-

Workflow Variation Median Coefficient of Variation (CV)
Unnormalized 0.249
Sum Total Normalized 0.225
Sum Total and Length Normalized 0.249
Quantile Normalized 0.224
Quantile Normalized and Batch Adjusted 0.095
Quantile Normalized and Log Transformed | 0.061

Table 5.1. Median Coefficients of Variation (CVs) for the normalization approaches
investigated. Only the top quartile of the B6 samplesis used because the CV becomes unstable
as counts approach zero.

Results: Of the normalization methods, quantile normalization improved (decreased) the CV the
most. Sum total normalization also improved the CV. Normalizing based on protein length
increased the CV relative to its baseline procedure, sum total normalization. Batch adjustment
significantly improves CV. Due to scaling, the CV of the log transformed data is much lower than

the untransformed data.

Conclusion: Quantile normalization is recommended. Length normalization is not

recommended. Batch adjustment is recommended if reduced variation and increased sensitivity

is desired.
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B. Figure 5.2. M vs. A Plots
(B61 vs. B63 shown)

Results: Quantile normalization does a better

job of centering the data along the range of
abundances than sum total normalization.
Normalizing based on protein length increases =
scatter for some proteins. Batch adjustment
significantly decreases scatter.

Conclusion: Same as Section A.

Sum Total Normalized

Median: 0.148
o 1QR:1.15

o =
3 -
@
I I I I I
2 4 6 8 10
A
Quantile Normalized
- Median: 0.028
o |QR:1.08
o =

Unnormalized

Median: 0.120

2 4 6 8 10

Sum Total and Length Normalized

O “Median: 0.131
IQR: 1.14

.
@
00 ]
| | | | |
2 4 6 8 10
A

Quantile Normalized and Batch Adjusted

Median: 0.00289
IQR: 0.407




C. Figure 5.3. Influence on between-batch R? Unnormalized

(Avg(B61&B62) vs. Avg(B63&B64) shown) R-5q=0.8698
Results: Quantile normalization moderately o
improves R? between batches. Sum total )
normalization does not have a considerable
effect on R%. Normalizing based on protein >
length decreases R?. Batch adjustment s g
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lagicount)

lagicount)

D. Figure 5.4. Influence on count distributions

Results: As expected, quantile normalization
does the best job of making the distributions
similar. They would be identical, however the
package we used, Bioconductor’s
normalize.quantiles, has been adapted to
handle missing data and tiesin away that
leads to non-identical distributions. Batch
adjustment further increases similarity.

Conclusions: Quantile normalization is
recommended. Batch adjustment is
recommended if increased sensitivity is
desired.
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E. Significance plots

Figure 5.5a. Significance plots - SAM

Results: At an FDR~%20, SAM identifies
few proteins as differentially expressed, and
misses some of the ones that appear to be
most different. Thisis probably due to
batch effects or high variance. Batch
adjustment increases the number identified.
Sum total normalization is slightly better
than quantile. SAM identifiesfew ‘interna’
proteins (proteins that lie near the line) even
in the batch adjusted set.
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Figure 5.5b. Significance plots - ANOVA

Results: ANOVA identifies many proteins
as differentially expressed, but also misses
some of the ones that appear to be most
different. Again, thisis probably dueto
batch effects or high variance. Batch
adjustment increases the number identified.
Quantile identifies slightly more than sum
total, but many of the identified proteins are
internal proteins. A fold change filter may
be helpful. Log transformation leads to only
higher abundance proteins being identified
as differentially expressed.
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Mean D2 Counts

Mean D2 Counts

Figure 5.5c. Significance plots — qpGLM

Results: gpGLM identifies slightly fewer
proteins than ANOVA as differentially
expressed, and also misses some of the
ones that appear to be most different.
Again, thisis probably dueto batch
effects or high variance. Batch
adjustment increases the number
identified. Many of theidentified
proteins are internal proteins. A fold
change filter may be helpful.
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Mean D2 Counts

Figure 5.5d. Significance plots — edgeR

Results: edgeR identifies few proteins as
differentially expressed. Of all the
methods, it does the best job of capturing
the proteins that appear to be most
different, perhaps because it is the only
method that uses information across
proteins to estimate dispersion. Very few
internal proteins are identified. Batch
adjustment increases the number
identified, many of which are on the
edges. Batch adjustment increases
sensitivity but likely also increases the
false positives.
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F. Number of significantly different proteins between strains found using each variation.

Dataset ANOVA qpGLM SAM edgeR
p<0.05 (q<0.2) | p<0.05(g<0.2) | (@FDR~20%) | p<0.05 (q<0.2)
Unnormalized 87 (1) 60 (0) (25) 20(7)
Sum Total Normalized 103 (4) 86 (0) (20) 21 (6)
Sum Total and Length 103 (4) 86 (0) (12) 31(6)
Normalized
Quantile Normalized 125 (6) 84 (0) (12) 19 (5)
Quantile Normalized 211 (21) 157 (7) (100) 101 (33)
and Batch Adjusted
Quantile Normalized 105 (2) 98 (4) (0) 0(0)
and Log Transformed

Table 5.2. Number of significantly different proteins between strains. Numbers are out of
1,807 total. The number of proteins with p<0.05 is shown. In parentheses, the number of
proteins with g<0.2 is shown. The g-vaue isap-vaue that has been adjusted for multiple
comparisons using the False Discovery Rate approach (Storey and Tibshirani 2003).
Conclusions from Significance Plots and table of numbers of significant proteins:

Approximately the same numbers of proteins are found using sum total or quantile
normalization across methods; therefore, we recommend quantile normalization due to the
benefits described in early sections. Batch adjustment significantly increases the number of
proteins found in all methods, despite including a factor for batch in the ANOVA and qpGLM
models and blocking for batch in SAM. More thorough evaluations of length normalization, log
transformation, and batch adjustment are found below.

Overall, ANOVA and gpGLM find more proteins to be significant than SAM or edgeR. The
significance plots show that they also identify many of the internal proteins (proteins with small
fold changes) to be significant. In analyses like these, a fold change threshold is often used to
reduce the number of candidates. Such a threshold equalizes the number of proteins found by

the methods. A fold change threshold, however, will prevent the detection of proteins with

small but significant differences. Transcripts with small fold changes have been experimentally
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confirmed between these strains, and it is possible that significant but low fold change proteins
are present as well. As biological validation is costly, however, higher fold change proteins are

typically selected first for validation.
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QUESTIONS AND ANSWERS COMPARING SPECIFIC METHODS.

Question: Does length normalization lead to the identification of different proteins and is it

recommended?

Results: Only the edgeR approach finds several additional proteins after length normalization.

This is likely due to increased variability in small proteins.

sthorm_anova standlennorm_anova

stnorm_sa standlennorm sam

SRR

1786

1721

stnorm_edgeR  standlenno edgeR

SRR

1772

Figure 5.6. Venn diagrams illustrating agreement between sum total vs. sum total and

length normalized approaches.

Answer: Because length normalization increases variability in small proteins and decreases R®

between batches, we do not recommend normalizing based on protein length unless a

comparison of different proteins is desired.
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Question: Does log transformation lead to the identification of different proteins and is it
recommended?

Results: Log transformation is most appropriate when used with ANOVA. ANOVA assumes the
data is normally distributed. Count data, particularly when the average counts per sample are
less than ten, are generally not normally distributed. Log transformation makes counts more
normally distributed. SAM, qpGLM, and edgeR do not require the data to be normally
distributed. ANOVA with and without log transformation agree on the majority of proteins, but
both approaches contribute unique proteins. The 47 proteins found in the untransformed data
had a higher average fold change (0.87 vs. 0.60 |log,(B6/D2)|), a lower average coefficient of
variation (0.58 vs. 0.63), and a higher count median (5 vs. 4 counts per sample) than the 27
proteins found in the transformed data (before transformation). This is to be expected as the
transformation scales down the counts and coefficients of variation so that smaller differences

can be seen in proteins with fewer counts.

Figure 5.7. Venn diagram illustrating

gnorm_anova gnormandlt_anova
agreement between untransformed vs.
@ log transformed approaches using the
1655 ANOVA method.

Answer: The proteins found to be significant only in the log transformed data are less reliable
than those found only in the untransformed data because they generally have lower counts,
lower fold changes, and higher variability. For this reason, we do not recommend log
transforming the data. This may lead to violations in the distribution assumptions of ANOVA in
proteins with an average count of fewer than ten per sample, but these low-count proteins give
less reliable results and should probably not be chosen for follow-up biological validation

anyway.
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Question: Does batch adjustment lead to the identification of different proteins and is it
recommended?

Results: In the majority of cases, batch adjustment leads to the identification of additional
proteins and does not cause proteins to shift from significant to not. The single protein found in
the unadjusted data and not in the adjusted data by qpGLM had a significant batch effect that,

after adjustment, led to a reassignment of that protein from significant to not.

gnorm_anova  gnormandbadj anova gnorm_sam gnormandbadj sam

1649 1706

Figure 5.8. Venn diagrams illustrating agreement between unadjusted vs. batch adjusted
approaches.

ANOVA qpGLM SAM edgeR
Ba Adj Ba Adj Ba Adj Ba Adj

Both Only Both Only Both Only Both Only
Number of
Significant
Proteins 125 86 83 74 12 88 19 82
Average Fold
Change
|log2(B6/D2)| | 0.83 0.71 0.85 0.72 0.82 0.83 0.95 0.58
Average CV 0.47 0.5 0.46 0.46 0.35 0.37 0.43 0.36
Median Count | 6 6 6 6 22 21 26 45
Average
Count 34.23 27.6 33.59 21.6 61.08 63.78 80.31 96.34

Table 5.3. Effect of batch adjustment. This table shows some metrics measured on the proteins
that were found be significant with batch adjustment compared to the proteins that were found
even if no batch adjustment was performed. All four differential expression analysis approaches
are shown. The Fold Change, Coefficient of Variation (CV), Median Count, and Average Count
values were calculated on the quantile normalized data before any batch adjustment was
performed.

Overall, the proteins identified only in the batch adjusted data had similar or slightly higher
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coefficients of variation (before adjustment) than those found in both the adjusted and
unadjusted sets. This is to be expected as batch adjustment allows proteins with higher
variance due to batch effects to be found significant when they would otherwise not. The
exception to this trend was edgeR. The 19 proteins found in both sets had a higher average CV
than the 82 found in just the adjusted set. A closer look at the data revealed that edgeR was
proficient at detecting proteins with some counts in one strain and very few in the other, as can
be seen in the significance plots, in both the unadjusted and adjusted data. CV and fold change
calculations are unreliable for such cases, so their average CV and fold change values were
artificially inflated.

The proteins found in both the adjusted and unadjusted sets generally had higher average
fold changes than those found in just the adjusted sets. This indicates that batch adjustment
allows the methods to find proteins with smaller fold changes that would otherwise be missed
due to batch effects. Mean and median counts varied across methods, indicating that batch
adjustment influences proteins across the abundance spectrum, and that it affects the different
methods in different ways. For example, in edgeR, adjustment permitted the identification of
additional more abundant proteins, but in ANOVA and qpGLM, it permitted the identification of
additional less abundant proteins.

To determine if batch adjustment had an influence on the overall distance between
samples, the samples were clustered using hierarchical clustering (Spearman Rank, average
linkage) and compared using principal components analysis (Figures 5.9a and 5.9b). In the
unnormalized and quantile normalized datasets, the batches clustered together. In the batch
adjusted dataset, the strains clustered together. The unnormalized and quantile normalized

clusters are identical because quantile normalization does not change the ranks of the proteins.
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(Striata from six B6) (Striata from six D2)

Batch 1 Batch 2
(2009) (2010)
l Quantile Normalized
and
Unnormalized Quantile Normalized Batch Adjusted

B62 5‘— B62 B61
B61 B6l ] B63
D22 n22:| B62
p21 D21 B64
B63 B63 pz1
D23 D23 D23
B64 B64 D22
D24 D24 D24

Figure 5.9a. Experimental Design and Spearman-Rank clustering of samples before
normalization, after normalization, and after batch adjustment. Striatafrom six mice were
pooled for each sample to reduce within-strain variation and to obtain enough protein. Batch 1
contained samples B61, B62, D21, and D22. Batch 2 contained samples B63, B64, D23, and
D24.
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Figure 5.9b. Principal Components Analysis of samples before normalization, after
normalization, and after batch adjustment. Batch 1 contained samples B61, B62, D21, and
D22. Batch 2 contained sampled B63, B64, D23, and D24. Only the first and second principal
components are shown.
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The effect of batch adjustment on the counts of several proteins are shown in Table 5.4. As
an example, consider protein ENSFM00250000005161. It has a fold change of -1.66 and was not
significant in the unadjusted data but was significant in the adjusted data in qpGLM, SAM, and
edgeR. It was significant in both unadjusted and adjusted in ANOVA. As can be seen in the
count data, batch adjustment reduces the variability in the data that is due to batch effects by
bringing the means and variances of the batches closer together. This adjustment is made
possible by having multiple samples from each strain in each batch. Inevitably, some over-
adjustment occurs as well, as some apparent batch effects may simply be the product of small
sample sizes and insufficient sampling. Such over-adjustment leads to under-estimated
biological variance, which can lead to false positives. Additional replicates or biological

validation is needed to distinguish being proteins that are true vs. false positives.

ENSFMO00250000005161

Batch 1 Batch 2

B61 B62 D21 D22 |[B63 B64 D23 D24
Raw (unnormalized) counts 12 5 20 12 23 21 43 38
Quantile normalized
(unadjusted) counts 129 |51 16.3 | 128 |[206 |23.9 |350 |39.5
Quantile normalized and batch
adjusted counts 20.1 |13.6 | 246 |216 |13.4 |16.0 | 269 | 303

ENSFM00250000001036

Batch 1 Batch 2

B61 B62 D21 D22 B63 B64 D23 D24
Raw (unnormalized) counts 2 1 9 1 10 12 20 28
Quantile normalized
(unadjusted) counts 2.0 1.1 7.0 1.0 8.5 14.4 | 17.6 | 30.3
Quantile normalized and batch
adjusted counts 8.2 7.4 133 | 7.7 3.4 7.8 12.1 | 215
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Raw (unnormalized) counts
Quantile normalized
(unadjusted) counts

Quantile normalized and batch
adjusted counts

Raw (unnormalized) counts
Quantile normalized
(unadjusted) counts

Quantile normalized and batch
adjusted counts

Raw (unnormalized) counts
Quantile normalized
(unadjusted) counts

Quantile normalized and batch
adjusted counts

Raw (unnormalized) counts
Quantile normalized
(unadjusted) counts

Quantile normalized and batch
adjusted counts

ENSFM00540000717914

Batch 1 Batch 2

B61 B62 D21 D22 B63 B64 D23 D24
12 15 9 9 7 4 5 0
129 | 153 |7.0 9.5 6.1 5.1 43 0.4
9.9 11.7 | 4.3 6.2 9.3 8.5 7.0 3.8
ENSFMO00500000271034

Batch 1 Batch 2

B61 B62 D21 D22 B63 B64 D23 D24
15 19 15 8 4 2 4 0
16.4 19.4 12.0 8.5 3.3 3.0 3.5 0.4
11.3 13.6 6.9 4.3 8.6 8.3 8.3 5.5
ENSFM00260000050374

Batch 1 Batch 2

B61 B62 D21 D22 B63 B64 D23 D24
28 30 24 25 24 7 11 5
344 |33.0 |19.0 |29.5 |21.3 |85 9.5 6.1
26,5 | 254 |12.7 |20.8 |28.0 |17.3 |16.8 | 14.0
ENSFM00250000007114

Batch 1 Batch 2

B61 B62 D21 D22 B63 B64 D23 D24
27 38 33 20 34 19 23 12
331 (419 | 271 |224 |30.0 (219 |204 |14.7
29.7 | 36.4 |227 |19.0 |33.6 |26.5 |239 |18.9

Table 5.4. The effect of batch adjustment on the counts of several proteins.
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Answer: Batch adjustment increases sensitivity by reducing variability in the data due to
batch effects. Like many analysis approaches, there is a tradeoff between sensitivity and
specificity. As this is an experimental dataset, we cannot thoroughly investigate this tradeoff
because we do not know which proteins are truly differentially expressed in these strains.

The clustering trees, principal components analysis, and the examples above show that
guantile normalization is insufficient for correcting batch effects that change the ranks of
proteins within the samples. Quantile normalization can correct global linear experimental
variation as long as the abundance ranks of the proteins remain the similar between samples.
However, when the proteins change rank considerably from between two batches, quantile
normalization cannot correct the batch differences. One approach for addressing protein-
specific differences batch effects is to include a factor for batch within the model. However,
despite including a factor for batch in the ANOVA and qpGLM models and blocking by batch in
SAM, many additional proteins are identified in these models after batch adjustment. In
addition, the edgeR package does not yet allow a factor for batch. A more localized, per-protein
batch adjustment is needed, especially for models that do not include a factor for batch.
ComBat performs local adjustments, and yet utilizes shared information across proteins to make
the adjustments more robust to outliers.

For the purposes of this project, batch adjustment is recommended because a high
sensitivity at the expense of a lower specificity is desired for use in further bioinformatic
analyses with transcript data. When it comes time to choose which proteins to biologically
validate, a higher specificity is desired and the unadjusted data should be inspected manually

before moving forward with a protein choice.
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Question: Which method for identifying differentially expressed proteins is recommended?

Results: Agreement in all possible three-way combinations of the four methods evaluated are

shown in figure 5.10.

gnorm_edgeR gnormandbad]_edgeR

Figure 5.10. Agreement in all possible three-way combinations of the four differential
expression methods evaluated. All sets are quantile normalized. Batch adjusted sets are on the
right and unadjusted are on the | eft.

In comparing ANOVA and SAM, in the unadjusted data, ANOVA finds all of the proteins that
SAM finds. In the adjusted data, SAM finds only four proteins that ANOVA does not find. This
overlap is to be expected as SAM uses a t-test with an empirical null distribution obtained using
permutations of the data and ANOVA with only two groups reduces to a t-test. Only one of the
four that SAM finds and ANOVA does not passes a 1.5 fold change filter, and that one has an

average of ~15 counts per sample and a moderately high CV, and it likely violates ANOVA's
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normality assumption, which would explain why it benefits from SAM’s empirical null
distribution. All of the four found by SAM and not ANOVA are found to be significant using
edgeR. As sensitivity is desired over specificity in this analysis, and SAM contributes little
additional information, we will exclude it from further analyses. If specificity is desired, it may
be helpful to use the SAM results as a significance filter as it is the only one of the four methods
that does not make distribution assumptions and instead uses an empirical null distribution.

In comparing edgeR and qpGLM, both find proteins that the others do not find. This is to be
expected as the gqpGLM model is based on the quasi-Poisson distribution and edgeR is based on
the negative binomial distribution. They are both useful for modeling count data; however the
quasi-Poisson model uses a linear mean-variance function whereas the negative binomial model
uses a quadratic mean-variance function. This difference leads to large and small counts being
weighted differently in the two models (Ver Hoef and Boveng 2007). In addition, the edgeR
package uses shared information across proteins to estimate dispersion. In this dataset, the
gpGLM model, identifies many internal (low fold change) proteins and misses many of the
proteins with large fold changes, as seen in the significance plots. After applying a 1.5 fold
change threshold, the qpGLM model finds only five proteins that ANOVA and edgeR do not, and
they have high CVs and average counts per sample of less than seven. The gpGLM model
identifies few additional proteins and will therefore be excluded from further analyses.

The differences between edgeR and qpGLM are partly due to the differing modeling choices
that were implemented in the edgeR package, such as utilizing shared information between
proteins to estimate dispersion. The edgeR package was specifically built for count data from
high-throughput technologies that quantify many variables in few samples, such as Serial

Analysis of Gene Expression (SAGE) and RNA-seq. Their model assumptions fit our dataset well,
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and edgeR has proven to successfully identify many of the high fold change proteins, including
the ones that are nearly absent in one strain—ones which remain largely unidentified in the
other methods. However, edgeR is sensitive to batch effects, does not yet include a factor for
batch, and therefore finds few proteins in the undadjusted dataset.

To further explore the proteins that ANOVA finds that edgeR does not, we applied a fold
change threshold of 1.5 and compared the ANOVA results to the edgeR results. In the batch
adjusted data, ANOVA found an additional 69 proteins that edgeR did not. None of them had an
average sample count of greater than 11, and 90% of them had an average count of less than 5.
Of the 69, 32 had fold changes of greater than two, but all of them had average sample counts
of less than 5, most of them less than 2.5. To summarize, ANOVA finds proteins with moderate

fold changes and small counts to be significant whereas edgeR does not.

Answer: In comparing ANOVA to SAM, we find that SAM finds few proteins that ANOVA does
not find. The gpGLM model finds many internal (low fold change) proteins and few additional
proteins not already found by ANOVA and edgeR. In comparing ANOVA to edgeR, ANOVA finds
proteins with moderate fold changes and small counts to be significant whereas edgeR does not.
Due to sampling, it is known that the results from these lower count proteins are often
unreliable and deeper or repeated sampling is needed to confirm such results. In addition, as
discussed earlier, it is these proteins with small counts that have the most potential to violate
the distribution assumptions of the ANOVA model. For these reasons, we recommend using

edgeR on this quantitative proteomics dataset.

Page 76



DIFFERENTIAL EXPRESSION RESULTS

Regardless of analysis approach, striatal protein expression was very similar between B6 and
D2 (Figure 5.11, Pearson r=0.997, p< 2e-16). Of the 1,807 families exceeding minimum count
cutoffs that we were able to quantify, 101 were significantly different between strains (p<0.05)
using quantile normalization, batch adjustment, and edgeR. After a False Discovery Rate (FDR)
adjustment for multiple comparisons, 33 remained significant at q<0.2 and 19 remained
significant at g<0.05 (Figure 5.11). Ten of the 19 had p-values of less than 0.05 even when no
batch adjustment was performed. Further discussion of the significant proteins can be found in

the chapter that maps the proteins to QTLs.

1000

Figure 5.11. Protein families
found to be significantly
different between strains. Gray
circlesrepresent al of the data.
Black open circles represent a p-
value of lessthan 0.05. Black
closed circles represent an FDR-
adjusted g-value of lessthan 0.2.
Black closed squares represent a
g-value of less than 0.05.
Normalized and adjusted datais
shown, but a plot of the raw data
was similar.

100
|
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5.4 SUMMARY AND CONCLUSIONS

Large-scale technologies such as microarrays and mass spectrometry often involve multiple
samples processed at different times and require normalization to remove non-biological
variability. We compared several normalization methods and found that quantile normalization-
-a powerful, non-linear normalization method frequently used for microarrays (Bolstad et al.
2003)--performed the best and did not negatively impact the power to detect significant
proteins. Quantile normalization makes the distribution of spectral count values nearly identical
between samples, an assumption that is reasonable for this comparison of the same tissue
between very similar mouse strains. There may be many other situations where quantile
normalization would not be appropriate.

Our study involved two different sample collections, striatum preparations, and sets of mass
spectrometry runs separated by several months, which can be typical in experiments involving
multiple biological replicates. Using cluster analyses and principal component analyses, we
found that significant batch effects (additional sources of non-biological variability) that altered
protein ranks were still present even after quantile normalization. Our study design, where two
pairs of samples were run at each time point, allowed for correction of batch effects using
empirical Bayesian methods (Johnson et al. 2007). Removal of non-biological variation resulted
in lower p-values from statistical tests and thresholds could then be adjusted accordingly. Batch
corrections can be aggressive and clear evidence that they are necessary should be
demonstrated. Quantitative proteomic study designs must also be compatible with batch

correction requirements. Since increased sensitivity at the expense of specificity was desired,
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batch adjustment after normalization was chosen for these data due to significant batch effects
that changed proteins ranks that remained even after quantile normalization. Adjusting for
batch effects is especially critical for statistical models that do not include a factor for batch. If
batch effects are ignored, they have to potential to cause many false negatives and in some
cases, even false positives.

Of the methods we evaluated to identify differentially expressed proteins, we recommend
using the Bioconductor package edgeR. It was designed for count data from experiments that
generate wide data similar to ours (number of variables >> number of samples). It successfully
identifies low-count proteins with high fold changes and moderate-to-high count proteins with
moderate-to-low fold changes. An additional fold change threshold may be implemented if

desired, but of the methods evaluated, edgeR appears to need it the least.

Page 79



CHAPTER 6 — STRAIN-SPECIFIC DATABASES

6.1 INTRODUCTION

Now that we have determined the best differential expression method to use in this study,
we can address the question of whether strain-specific databases affect peptide identifications
and differential protein expression analysis. Genomic sequence differences between the strains
alter RNA and protein sequences. This has been shown to lead to spurious results in
transcriptomics, but has never been evaluated in this context in proteomics.

RNA microarrays are often used to identify which transcripts are differentially expressed
between two groups. In the context of a Quantitative Trait Locus (QTL) mapping experiment, it
is common to compare the parental strains using microarray analysis of a tissue that is
suspected to be of interest for the quantitative trait. Transcripts that are differentially
expressed and that lie within the QTL can help identify causal variants. However, searching for
differentially expressed transcripts between two mouse strains using microarrays is problematic.
This is particularly true for B6 and D2 since the reference mouse genome is based on the B6
sequence, and the microarray probes were designed using the reference mouse genome.
Sequence differences between the strains cause many false positives and negatives when a

probe effectively hybridizes to transcripts in one strain and can’t in the other. Evenif a
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transcript is equally expressed in the two strains, if there is a sequence variant in the probe, the
B6 transcript will hybridize and the D2 transcript won’t, leading to a false differential expression
result. In the PARC, methods to mask out affected probes were developed. In the Affymetrix
mouse 430 array, 16% of the probes were affected by single nucleotide polymorphisms (SNPs).
Ignoring them led to a false positive rate of 22% and a false negative rate of 12% (Walter et al.
2007).

This problem is accentuated when comparing two mouse strains, however recent studies
have also shown that a similar percentage of probes in the human microarrays are affected by
SNPs (Benovoy et al. 2008). This may be a non-issue if equal numbers of your cases and controls
have a particular SNP, however, in genes relevant to the disease, that is potentially not the case.

In this study, we desired to determine if quantitative proteomics using spectral counting is
similarly affected by unaccounted for sequence variants. Even if the variant has no effect on the
function or expression of a protein, if that variant is not accounted for in the analysis, the
peptides that contain the variant will not be identified and counted. Like microarrays, this could
cause false negatives and false positives in the quantitative results.

The quantitative proteomics approach we used does not target specific peptides, like
microarrays use probes to target specific sequences on a transcript, so there was no need to
mask out affected peptides. However, after an MS/MS spectrum has been generated for the
peptides, the spectra are identified by comparing them to a set of theoretical spectra from a
database on known protein sequences. Like the microarray problem, the available databases of
mouse proteins are based on the sequence from the B6 strain. Peptides affected by sequence
variants will not be identified using this approach. It is necessary to build a custom protein

database for the D2 strain. The Sanger Mouse Genomes Project has made genomic variant data
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between B6 and D2 available. In this project, we used their variant data to generate a strain-
specific protein database. We used it to test the influence of sequence variants on quantitative

proteomics.

6.2 METHODS

The Ensembl genome is based on the B6 strain, so the default reference protein database
was used as the B6 database. To generate a D2-specific database, the D2 pileup file (dated
12/9/2009) containing over five million genomic single nucleotide polymorphisms (SNPs) and
short insertions and deletions (InDels) was downloaded from the Wellcome Trust Sanger
Institute Mouse Genomes Project ftp site. Variants with a quality score of less than ten, and
variants where half or more of the reads matched the reference strain were discarded. The
variants and the reference Ensembl database sequences were stored in a MySQL database and
were accessed using Perl and SQL scripts (available upon request).

Using the Ensembl Perl API, the SNPs and InDels were inserted into the correct locations in
the transcripts and the proteins were retranslated. If an error was found, the reference
sequence was used as the D2 sequence. Error conditions and the number of times they
occurred were: 1. No translation object was defined for the Ensembl transcript (89), 2. The
translated Ensembl transcript did not match the Ensembl protein reference sequence (5), 3. The
reference allele provided by Sanger did not match the reference allele provided by Ensembl
(1,027), and 4. The deletion found by Sanger was not found in the Ensembl reference sequence
(21). For the latter two errors, the majority of them were due to incorrectly defined transcript

coordinates that were off by one. This affected a small subset of proteins in Ensembl release 57.
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The same errors were much less frequent in the testing phase of this script which used Ensembl
release 56. The errors had not been corrected in Ensembl release 58. We did not attempt to
manually correct these cases, because it may have resulted in more errors. We instead just
skipped these variants and used the reference sequence.

In the D2-specific database, approximately 20% of the proteins had altered sequences and
0.25% had premature stop codons. Unless otherwise noted, the quantitative results in this
dissertation were calculated using counts from the B6 (reference) Ensembl database for the B6
samples and the D2 Ensembl database for the D2 samples. To determine the effect of strain-
specific databases on peptide identification and protein quantification, all samples were
searched on both databases and the results were compared. The crossovers search strategy is

shown in figure 7.1.

B6E O\ 7 b2

I Samples / \ ) Samples _ /
o - - _ } _._./.
BE D2
Protein Protein
Catabase Cratabas
’ e _ __-'/.
B6 on Bedb ‘ DZon E!Edl:u‘ BeonD2db 02 onD2db

Figure 7.1. Cross-over search strategy. To evauate the influence of strain-specific databases
on peptide identification and protein quantification, samples from both strains were searched on
both databases, and the results were compared.
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6.3 RESULTS AND DISCUSSION

We compared quantitative results obtained from searching the D2 samples on the reference

Ensembl database vs. an Ensembl database adapted to match the D2 genome sequence. On

average, we identified an additional 239 peptides per sample when using the D2 database,

which represents an increase of 0.44% (Figure 7.2). Only 62 (3.4%) of the protein families had

spectral count differences of greater than 5%. Of those, just seven went from differentially

expressed to not or vice versa.
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Figure 7.2. Number of additional
peptides identified when using a
strain-appropriate database. An
average of 211 additional peptides are
identified when a strain-appropriate
protein database isused. The
normalized gain is normalized to the
total number of countsin the sample.

If we assume true counts are obtained using the D2 database on the D2 samples, we

obtained 91 true positives (the protein family was determined to be significantly differentially

expressed using either database), 11 false positives, 10 false negatives, and 1,695 true

negatives. These led to a false positive rate of 0.64% and a false negative rate of 9.9%. Six of

the false positives and seven of the false negatives had only a small change in their p-value

which led to a change in differential expression status due to the arbitrary cutoff of 0.05. Five

false positives and two false negatives had significantly altered p-values due to low peptides
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counts for the D2 strain when searched on the reference database. In these cases, at least one
D2 peptide was absent in the reference database but was present in the D2 database. This led
to anincrease in peptide counts in the D2 samples and a change in differential expression status
when the appropriate database was used. An example peptide is shown in Table 7.1. Spectra

for each version of the peptide are shown in Figure 7.3.
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Protein ID: ENSMUSP00000068260 Reference DB D2 DB

B6 B6 B6 B6 | D2 D2 D2 D2
Peptide Sequence -1 -2 -3 4 (-1 -2 -3 A4
ELSGLPSGPSVGSGPPPPPPGPPPPPIPTSSGSDDSASR |0 |0 |0 |0 |10|6 |10 |6
ELSGLPSGPSVGSGPPPPPPGPPPPPISTSSGSDDSASR |5 |8 |8 |10|]0 |O |O |O

Table 7.1. An example peptide affected by a strain-specific substitution. Protein family
ENSFM00250000001899 is one of the false positives discussed earlier. Using the Ensembl
reference database, this protein was considered differentially expressed with atotal of 185 counts
in the B6 strain and 148 counts in the D2 strain (p=0.0077). Using the D2 database on the D2
samplesincreased the D2 counts to 180, making the protein no longer significant (p=0.20). This
change is due to the single amino acid substitution S242P in protein ENSM USP00000068260.
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Figure 7.3. Tandem mass spectra confirmed a single amino acid substitution S242P in
protein ENSMUSP00000068260. (A) Fully-tryptic peptide

EL SGL PSGPSV GSGPPPPPPGPPPPPI STSSGSDDSA SR from sample B64. Multiple copies of
the 3+ peptide were obtained in all B6 samples and had similar fragmentation patterns. This
spectrum has an Xcorr value of 6.23 and a DeltaCN value of 0.58. (B) Peptide

EL SGL PSGPSV GSGPPPPPPGPPPPPIPTSSGSDDSA SR from sample D21. This spectrum had
an Xcorr value of 7.12 and a DeltaCN vaue of 0.52. Multiple copies of the 3+ peptide were
obtained in all D2 samples and had similar fragmentation patterns. The masses of the two Y 12
1+ ionswere 1166.49 Da and 1156.36 Da, respectively. The mass difference of 10.13 Daisin
excellent agreement with the expected 10.02 Da mass difference between serine and proline.
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The remaining false negative was a low count protein family that appeared to have missing
counts when the D2 database was used. This suggested an error in the D2 database. Because
we searched both strains on both Ensembl databases, we were able to identify cases where
discrepancies likely arose due to sequence errors in the reference or D2 databases. For
example, we found 29 peptides that were present in both strains when using the D2 database,
but were absent when using the Ensembl reference database. These suggest there are errors in
the Ensembl reference sequence. Conversely, there were 37 peptides that were found in both
strains when using the reference database and were absent when using the D2 database. These
suggest there are errors in the D2 genome sequence or the Ensembl transcript coordinates used

to insert the polymorphism and retranslate the protein.

6.4 SUMMARY AND CONCLUSIONS

We identified 0.44% more peptides when we used a protein database that took into account
the strain’s genome sequence. As these two strains of mice are roughly as similar to each other
as two humans are, we expect similar results would be obtained in human data. Although the
increase in spectral counts is low, most of the observed differences are concentrated in only a
handful of families and may alter their differential expression status. When we used the
Ensembl reference database rather than the strain-specific database for D2 in the analysis for
differential expression, we observed a false positive rate of 0.64% and a false negative rate of
9.9%. These values show that protein-based expression techniques are more robust to
underlying genomic sequence variation than mRNA hybridization techniques (Walter et al.

2007). This is to be expected as there are many more genomic polymorphisms than amino acid
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substitutions due to codon redundancy in the genetic code. We conclude that the vast majority
of proteins do not have quantitative estimates that are considerably influenced by underlying

sequence differences, but in the few that do, the influence can be significant.
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CHAPTER 7 — MAPPING DIFFERENTIALLY EXPRESSED PROTEINS TO

QUANTITATIVE TRAIT LOCI

7.1 INTRODUCTION

In this chapter, we focus on the biological importance of this research. The integration of
guantitative proteomics with quantitative genetics is a powerful paradigm for finding genes that
potentially influence important phenotypic traits. The Portland Alcohol Research Center (PARC)
houses many experts in alcohol-related quantitative genetics, and this project was designed
specifically to parallel their work in order to maximize its utility.

Anyone who has or has a close relationship with someone who has struggled with alcohol
dependence (AD) knows that it is a devastating condition that leads to a host of interpersonal,
societal, and economic problems. It is common knowledge that alcoholism tends to run in
families, and twin studies that have attempted to segregate environmental and genetic factors
estimate that AD has a heritability of 50-64%, meaning that more than half of the variation in
the trait is due to genetics (Gelernter and Kranzler 2009).

Several genes that participate in alcohol metabolism have a very clear relationship with AD.
For example, individuals, often of Asian ethnicity, with a missense mutation in acetaldehyde
dehydrogenase experience a buildup of acetaldehyde when they consume alcohol, leading to

facial flushing. Individuals with such mutations are often much less likely to suffer from AD, and
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drugs have been developed to inhibit this enzyme as a treatment option for those who are
struggling with AD (Xiao et al. 1996).

Linkage and candidate gene studies have identified several additional loci or variants
associated with AD, however only a small fraction of the genetic risk has been accounted for by
these loci (Gelernter and Kranzler 2009) and their relationship to AD is less clear. In humans,
determining the influence of genomic variants on complex phenotypic traits that are influenced
by multiple genes is challenging and requires very large sample sizes due to genetic complexity
and environmental confounders. AD, in particular, is difficult to study for technical and ethical
reasons. One alternative approach is to use model organisms where environment and breeding
can be controlled. Genetic research in mice began in 1902, and successive generations of
inbreeding have lead to many genetically identical stable inbred strains where tightly controlled
housing and diet conditions reduce environmental effects.

One way to identify genes of interest for a quantitative trait is to cross two inbred strains
that are widely divergent for the trait, measure the trait in the F2 offspring mice, and genotype
the F2 mice to determine which genomic regions are associated with the trait. These regions
are referred to as Quantitative Trait Loci (QTLs). The Portland Alcohol Research Center (PARC)
has identified many QTLs which are responsible for differences in alcohol-drinking-related
behaviors (Crabbe et al. 2010) between the two mouse strains investigated in this study (Buck et
al. 1997; Belknap and Atkins 2001).

QTL regions are often very broad and contain many genes. It is difficult to determine which
gene, termed “quantitative trait gene”, is actually influencing the trait from the many in a QTL
region that are not trait-relevant. An approach that the PARC has taken is to measure mRNA

expression levels in regions of the brain that are expected to participate in alcohol-related
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decisions. Genes with coding regions that lie within the QTL regions and that are differentially
expressed between the strains are suspect quantitative trait genes (Hitzemann et al. 2003;
Hitzemann et al. 2004; Mulligan et al. 2006).

In this study, we compared B6 and D2 using quantitative proteomics. To our knowledge,
this is the first time these strains have been compared using quantitative proteomics. Protein
expression is important in searches for quantitative trait genes because studies have shown that
protein levels generally do not correlate well with mRNA levels (Gygi et al. 1999; Griffin et al.
2002; Washburn et al. 2003; McRedmond et al. 2004; Mijalski et al. 2005; Fu et al. 2009;
Taniguchi et al. 2010). Proteins that have coding regions that lie within QTL regions and that are
differentially expressed between the strains would be putative “quantitative trait proteins”.
This is one approach for determining which differentially expressed proteins in a quantitative
proteomics study are more likely to be suspect ‘causal’ proteins, rather than downstream
‘reactive’ proteins that are simply differentially expressed in response to an altered
environment.

In this chapter, we discuss one of the phenotypes in particular to show how quantitative
proteomics data can be used to identify suspect quantitative trait proteins. Alcohol Preference
Drinking is a well defined phenotype with a large effect size between B6 and D2. The mice are
given the option of drinking tap water or water with 10% ethanol. B6 mice prefer the 10%
ethanol and voluntarily consume more than 10g/kg/day of ethanol. In contrast, D2 mice avoid
the ethanol, and usually consume less than 1g/kg/day (McClearn and Rodgers 1959; Belknap et
al. 1993; Phillips et al. 1994; Rodriguez et al. 1995). This phenotype is consistent across labs,
suggesting a strong genetic influence and minimal gene by site interactions (Crabbe et al. 1999).

Mapping for quantitative trait loci that explain preference drinking has been performed in
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several labs using several B6 and D2-derived populations: the recombinant inbred BXDs (Phillips
et al. 1994; Rodriguez et al. 1995), B6D2F,s (Phillips et al. 1998; Tarantino et al. 1998),
backcrosses to B6 (Melo et al. 1996; Peirce et al. 1998), selected lines (Belknap et al. 1997), and
congenics (Whatley et al. 1999). A meta-analysis combining the above studies found several
highly significant and robust QTLs that appeared consistently across studies on chromosomes 2,
3, 4, and 9 (Belknap and Atkins 2001). The QTLs on chromosomes 2 and 9 had particularly high
scores and low p-values.

A combination of microarray expression analysis and QTL mapping was used to help identify
which genes in the QTLs are differentially expressed between B6 and D2 (Hitzemann et al. 2004;
Mulligan et al. 2006). In one study (Hitzemann et al. 2004), expression data was also available
for the mapping populations. This allowed the mapping of expression QTLs (eQTLs) for the
differentially expressed genes to confirm that they are in fact cis-regulated. A cis-regulated
differentially expressed gene within a QTL is a strong candidate causal gene, often referred to as
a Quantitative Trait Gene (QTG). In the other study (Mulligan et al. 2006), expression was
measured in congenic strains, so cis-regulation could be assumed.

Unfortunately, in our study, the complexity of quantitative proteomics has prevented us
from acquiring expression data across a mapping population. Evidence of cis-regulation would
further narrow down the list of candidate quantitative trait proteins (QTPs). Expression data
across a mapping population could also find evidence for trans-regulated effector proteins that
share a QTL with the phenotype. Studies using proteomics to compare populations are rare but
show much promise. Several studies have used 2D-gels to map Protein Quantity Loci (PQL)
(Damerval et al. 1994; de Vienne et al. 1999; Gauss et al. 1999; Klose et al. 2002; Garge et al.

2010; Bourgeois et al.). An impressive recent study used the more modern liquid-based
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guantitative proteomic methods to map PQLs between two yeast strains (Foss et al. 2007). They
confirmed that loci that influence protein expression differ from those that influence transcript
expression. This prevents us from utilizing transcript data to check for cis-regulation of
differentially expressed proteins. It also emphasizes the importance of directly measuring

protein expression.

7.2 METHODS

QTL genomic regions were obtained from the Portland Alcohol Research Center

(http://www.ohsu.edu/parc/by phen.shtml). Genome coordinates given in cM were converted

to bases using the Jackson Laboratory Mouse Map Converter

(http://cgd.jax.org/mousemapconverter). For QTLs that did not have ranges given, the peak +

20Mb (% of the median of the observed ranges) was used.

A protein family mapped to a QTL if: 1. It contained a protein that had a coding region within
the QTL range, and 2. There was peptide evidence that the protein within the QTL was present
in the samples. Significance testing was performed using the binomial and hypergeometric
tests. Mappings of differentially expressed families were confirmed at the gene-level using

gene-summarized spectral counts with no grouping.

7.3 RESULTS AND DISCUSSION

Eighty-four (83%) of the significantly differentially expressed families had coding regions

that fell within one of the genomic regions of interest identified by the Portland Alcohol
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Research Center (Table 6.1). This is significantly greater than expected by chance as these
regions cover only 64% of the genome (Binomial p=0.00002) and only 73% of all of the families
identified overlapped with these regions (Hypergeometric p=0.011). Differentially expressed
proteins that overlap with these regions are candidate “quantitative trait proteins”. A list of

these proteins is provided as a supplemental table in (Fei et al. 2011).

Quantitative Phenotype p<0.05 @<0.2 g<0.05
Acute Alcohol Withdrawal 13 5 3
Alcohol Acceptance 5 2 2
Alcohol Metabolism 14 3 3
Alcohol Preference Drinking 54 19 10
Alcohol Response Conditioning | 21 4 1
Alcohol Stimulated Activity 65 20 13
Chronic Alcohol Withdrawal 24

Hypothermia 6

Loss of Righting Reflex 12

Table 6.1. Number of significantly differentially expressed protein families that overlap
with PARC QTLs. These families have at least one protein that was identified in the dataset and
that lies within aregion of the genome found to be associated with the given phenotype.

Ten of the significantly differentially expressed families (q<0.05) contained proteins that
overlap with Alcohol Preference Drinking QTLs (Table 6.1). To confirm these results, we
generated gene-summarized data to verify that the gene that falls within the QTL is the one that
is differentially expressed. Gene summarized data is useful for verification and for integration
with genomic and transcriptomic data, however it should be used with caution as very similar
genes from the same family, such as GAPDH, are left ungrouped and may suffer from peptide
splitting errors. At the gene level, six genes, all from different families, passed the q<0.05

threshold for the Alcohol Preference Drinking phenotype. These genes were, in order of
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significance Myo5a (Myosin VA), Acaala (acetyl-Coenzyme A acyltransferase 1A), Mpst
(mercaptopyruvate sulfurtransferase), Pbxipl (pre-B-cell leukemia transcription factor
interacting protein 1), Plcb1 (phospholipase C, beta 1), and Aco2 (aconitase 2). These genes,

their locations, and their agreement with transcriptomic results are listed in Table 6.2.
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Average Average
B6 D2 Transcript also
Gene Counts Counts g-value Location significant?

RNAseqg-No
Affy-Yes
Myo5a 105.3 55.1 1.13E-11 | 9:74918822-75071495 lumArray-No

RNAseq-Yes
Affy-N/A
Acaala 18.5 7.7 8.39E-03 | 9:119250578-119259412 [llumArray-Yes

RNAseqg-No
Affy-No
Mpst 3.9 11.7 2.49E-02 | 15:78237534-78244432 llumArray-N/A

RNAseq-No
Affy-No
Pbxipl 0.3 3.9 2.65E-02 | 3:89240628-89254874 lumArray-No

RNAseq-Yes
Affy-Yes
Plcbl 36.1 21.4 2.65E-02 | 2:134611895-135300994 [llumArray-No

RNAseq-No
Affy-No
Aco2 172.3 212.5 2.72E-02 | 15:81702739-81745563 lllumArray-No

Table 6.2. Genes that are differentially expressed at the protein level that lie within an
Alcohol Preference Drinking QTL. The g-value given is based on gene summarized,
ungrouped, quantile normalized, and batch adjusted data. The QTL peak locations for these
chromosomes are 2: 47,240,782 & 69,122,746 & 81,739,612, 3: 148,823,289 & 102,153,294,
9:45,509,345 & 52,274,199, and 15: 87,922,064. The QTLs on chromosomes 2, 3, and 9 are
highly significant and replicable.

Myo5a is a transport molecule that binds to neurofilaments to transport organelles and
synaptic vesicles. It is highly expressed it neurons. In humans, mutations in this gene cause
mental retardation and seizures, and in mice, mutations cause a similar syndrome referred to as
the dilute-lethal phenotype (Rao et al.). Interestingly, this is also the protein primarily

responsible for the difference in coat color between B6 and D2. There are several splice

isoforms for this protein, and none of them differ in protein sequence between B6 and D2.
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Acaala is a membrane protein that is involved in fatty acid metabolism. It functions in the
beta-oxidative system of the peroxisomes. Deficiency of this enzyme leads to pseudo-Zellweger
syndrome[Information from GeneCards]. Neither of its two splice isoforms differ in protein
sequence between B6 and D2.

Mpst is an enzyme that catalyzes the transfer of sulfer ions and is involved with cysteine
degradation and cyanide detoxification. Deficiency in Mpst activity has been implicated in a rare
inheritable disease called mercaptolactate-cysteine disulfiduria (MCDU) (Billaut-Laden et al.
2006). Both of its splice isoforms have differing protein sequences between B6 and D2.

Pbxip1 regulates the BPX family of transcription factors in the nucleus as well as tethers
estrogen receptor-alpha to microtubules in the cytosol[Information from GeneCards]. One of its
two isoforms has differing protein sequences between B6 and D2.

Plcb1 is involved in G-protein signaling by producing the second messenger molecules DAG
and IP3. It has been associated with synaptic transmission and learning. Linkage studies have
found it to be associated with schizophrenia (Peruzzi et al. 2002; Arinami et al. 2005) and
expression studies have confirmed it’s dysregulation in the disease (Lin et al. 1999; Shirakawa et
al. 2001). Plcb1 knock-out mice show several endophenotypes regarded as relevant to
schizophrenia (Koh et al. 2008). There are several splice isoforms for this protein, and none of
them differ in protein sequence between B6 and D2.

Aco2 is a mitochondrial protein that participates in the Krebs cycle. It has previously been
found to be differentially expressed in a 2D-gel quantitative proteomics study comparing normal
human pre-frontal cortex tissue to tissue from schizophrenic patients (Martins-de-Souza et al.
2009). There is only one isoform for this protein, and it is the same in B6 and D2.

The above genes were significant with a g-value of less than 0.05 after gene summarization,
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but there was also one interesting protein family worth noting that was significant at the family
level, but did not pass the 0.05 significance threshold at the gene level. A Syntaxin Binding
family (family-level p=0.0003, q=0.0267) contained genes Stxbp1 and Stxbp3b, both of which lie
within the Alcohol Preference QTLs. The primary contributor to the family’s spectral counts was
Stxbp1 (gene-level p=0.0018, q=0.1435). All three of Stxbp1’s splice isoforms differ in sequence
between B6 and D2. This protein regulates syntaxin and therefore participates in
neurotransmitter release and synaptic vesicle docking and fusion. Mutations in this gene have

been associated with infantile epileptic encephalopathy (Saitsu et al. 2008).

7.4 SUMMARY AND CONCLUSIONS

Few protein families are significantly differentially expressed in striatum between strains B6
and D2. Of those that are, many contained proteins that lie within previously-identified
genomic regions of interest for alcohol-related behavioral traits. These proteins will serve as
good candidates for causal proteins that may explain the vast behavioral differences between
these strains. We have highlighted here several differentially expressed proteins that lie within
the highly significant and reproducible QTLs for the Alcohol Preference Drinking phenotype.
Several of the proteins have been implicated in diseases related to neural dysfunction, including
Schizophrenia for which alcohol dependence is a common comorbid condition (Drake et al.
1990). Follow-up biological confirmation of these differentially expressed proteins is

recommended.
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CHAPTER 8 — PROTEOMICS VS. TRANSCRIPTOMICS

8.1 INTRODUCTION

The Portland Alcohol Research Center (PARC) has identified many regions of the genome,
termed Quantitative Trait Loci (QTLs), associated with alcohol-related behaviors. QTL regions
are often very broad and contain many genes. ltis difficult to determine which gene, termed
“quantitative trait gene”, is actually influencing the trait from the many in a QTL region that are
not trait-relevant. An approach that the PARC has taken is to measure mRNA expression levels
in regions of the brain that are expected to participate in alcohol-related decisions. Genes with
coding regions that lie within the QTL regions and that are differentially expressed between the
strains are suspect quantitative trait genes.

However, as discussed in the Chapter 6, searching for differentially expressed mRNAs
between two mouse strains using microarrays is problematic. Sequence differences between
the strains cause many false positives and negatives when a probe consistently hybridizes to
transcripts in one strain and can’t in the other, causing spurious effects on estimates of
differential expression. To address these errors, the PARC has acquired transcriptomic data on
three platforms and has developed an approach for masking the effect of known single
nucleotide polymorphisms (SNPs) on each platform. The Affymetrix microarray contains
multiple short 25-base-pair probes per transcript, whereas the Illumina microarray contains one

long probe per transcript. It is suspected that the long probes on the lllumina array may be
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more resistant to the effects of SNPs on hybridization, however the PARC routinely masks out
probes that are affected by known SNPs between the strains in both arrays (Walter et al. 2007).
In some cases, this prevents a gene from being quantified, particularly in the Illumina array that
only has one long probe per transcript. However, in the Affymetrix array, there are typically
enough remaining SNP-free probes to reliably quantify the transcript.

The third transcriptomic platform employed by the PARC is called RNA-seq. It is a relatively
new approach that utilizes massively parallel sequencing technologies to sequence RNA
transcripts rather than DNA. The short reads are then assembled onto the reference mouse
genome, and the reads per gene are summed to quantitatively estimate transcript abundance.
It has been shown to correlate moderately well with measurements obtained using microarrays
(Mortazavi et al. 2008). RNA-seq is appealing for comparing two mouse strains for two reasons:
1. Known polymorphisms can be incorporated into the reference genome before the reads are
aligned to it, and 2. The reads are long enough (~100bp) and the algorithms are robust enough
to allow several mismatches per read. The PARC has shown that RNA-seq is more robust to
sequence polymorphisms between strains than microarrays (Bottomly et al. 2011).

In this study, we compared these strains using quantitative proteomics. Protein expression
is important in searches for quantitative trait genes because studies have shown that protein
levels generally do not correlate well with mRNA levels (Gygi et al. 1999; Griffin et al. 2002;
Washburn et al. 2003; McRedmond et al. 2004; Mijalski et al. 2005; Foss et al. 2007; Fu et al.
2009; Taniguchi et al. 2010). It is more technically challenging to measure protein expression
than transcript expression; however, because of their low correlation, protein-level datasets are
valuable because they add new information. Transcripts have a short half-life and are typically

produced in order to generate more protein in response to a stimulus. Proteins are more static
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and tend to have a longer half-life. A protein expression estimate shows how much of a protein
is actually there, whereas a transcript expression estimate tends to show how much is being
synthesized. Valuable information is gained from measuring both transcript and protein levels.

Proteins that have coding regions that lie within QTL regions and that are differentially
expressed between the strains would be putative “quantitative trait proteins”. It may be
possible to identify some of these quantitative trait proteins by observing significant differences
in their transcript abundances, but some differentially expressed proteins do not show
significant differences in their transcript levels. In these cases, it is necessary to collect protein
expression data directly.

The PARC has now generated expression data in the striata of B6 and D2 in three
transcriptomic platforms and one proteomic platform. In this chapter, we compare the
transcriptomic data to several versions of the proteomics data to answer the following
guestions: 1. How well do protein and transcript levels correlate in this system? 2. Which
transcriptomic platform correlates best with protein expression? and 3. Which proteomic
analysis approach correlates best with transcriptomic data? Despite the historically low
correlations between proteomic and transcriptomic data, the case has previously been made
that platforms (and by extension, analysis methods) that increase the correlation between
transcriptomic and proteomic data are likely increasing the accuracy of the measurements (Fu et
al. 2009). In that study, they used absolute expression levels measured in a single experimental
condition. Here, we are able to compare relative expression levels between two groups
(strains). We find significant although modest correlations between the fold changes seen at
the transcript vs. protein level, as well as their significance levels. We also find that the

agreement between lists of differentially expressed genes found by proteomics and
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transcriptomics is fairly low but is still significantly greater than expected by chance.

8.2 METHODS

The transcriptomic data and analysis published by Bottomly et al. (Bottomly et al. 2011) was
utilized in this work. All data was summarized into Ensembl genes. Data from at least 10 mice
from each strain were generated for each of the three transcriptomic platforms. RNA-seq data
was analyzed using edgeR, Affymetrix data was analyzed using RMA, and lllumina microarray
data was analyzed using Lumi. The log (base 2) of the fold change (average B6/average D2) was
utilized to center the data at zero (for reference, log,(2/1)=1, log,(1/1)=0, log,(1/2)=-1). The g-
values (False Discovery Rate-adjusted p-values) from the above methods were utilized as
measures of the significance of differential expression. A g-value of less than 0.05 was
considered significant.

We compared the transcriptomics data to four versions of the proteomics data: the baseline
(1/1) grouped data and the moderately (2/10) grouped data, both with and without batch
adjustment. We selected only the groups that represented a single gene. This permitted a
clean mapping from protein data to transcript data. We did not choose to directly summarize
the data into Ensembl genes because we did not want to take the risk that two genes are so
similar that they should be grouped but weren’t. Using the grouped data, as discussed in
previous chapters, avoids these errors. If two genes are grouped, then that means there is
insufficient peptide evidence to distinguish between them at the protein level. These genes
would not be considered in this analysis because only single-gene groups were selected. It was

unclear whether the baseline (1/1) grouping was sufficient or if the more stringent moderate

Page 102



(2/10) grouping improved the data quality and accuracy. We compared both approaches to the
transcript data. We did not use the Ensembl family grouping because many families contained
multiple genes, and these families would be lost if only single-gene families were selected.

It was also unclear if batch adjustment improved the overall data quality and accuracy. We
evaluated both the unadjusted and batch adjusted data for these two grouping schemes. A p-
value of less than 0.05 was used to indicate significant differential expression. The FDR-adjusted
g-value is also shown. In the protein data, particularly in the data that was not batch adjusted,

few proteins passed the g<0.05 significance threshold.
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8.3 RESULTS AND DISCUSSION

We compared the transcriptomics data from three platforms (Affymetrix microarray,
Illumina microarray, and RNA-seq) to four versions of the proteomics data generated in this
project (the baseline (1/1) grouped data and the moderately (2/10) grouped data, both with and
without batch adjustment). To make a fair comparison, we used only the protein groups that
represented a single Ensembl gene. The protein data was mapped to the transcript data using
the Ensembl gene ID.

Table 8.1 summarizes the number of genes queried as well as the correlations between the
protein and transcript platforms. More genes were quantified at the protein level using the less
stringent grouping approach (2,174 vs. 1,979). This indicates that some genes were merged due
to shared peptide information in the moderate (2/10) grouping that weren’t merged in baseline
(1/1) grouping. Since only single-gene groups are used in this comparison, these proteins will be
present in the baseline grouping data and absent in the moderate grouping data.

Over 1,300 genes have data available on all four platforms. As this provides a substantial
overlap, we have decided to restrict our analyses to these genes for which all data is available.
All correlations are calculated using this subset of the data. Despite the substantial overlap, few
genes are differentially expressed in all four platforms. A further comparison of agreement

between platforms is shown in Figure 8.7.

Page 104



Baseline Grouping Baseline Grouping Moderate Grouping Moderate Grouping

(1/1), Quantile (1/1), Quantile (2/10), Quantile (2/10), Quantile
Normalized Normalized and Normalized Normalized and
Batch Adjusted Batch Adjusted

Total number of genes quantified using proteomics.
(Only protein groups representing a single gene were selected.)

| 2,174 | 2,174 | 1,979 | 1,979

Number of genes with proteomic, RNA-seq, Affymetrix, and lllumina array data available.
| 1,461 | 1,461 | 1,346 | 1,346

Number of genes significant in all four platforms
3 E |4 IE

Correlation of Log,(Fold Change): Protein vs. RNA-seq

r=0.11/0.13 r=0.11/0.12 r=0.11/0.13 r=0.11/0.12
p<0.00005/<0.00005 | p<0.00005/<0.00005 | p<0.00005/<0.00005 | p<0.00005/<0.00005

Correlation of Significance: Protein p-value vs. RNA-seq g-value

r=0.11/0.11 r=0.06/0.06 r=0.12/0.11 r=0.08/0.08
p<0.00005/<0.00005 | p=0.0188/0.0207 p<0.00005/<0.00005 | p=0.0029/0.0035
Correlation of Log,(Fold Change): Protein vs. Affymetrix

r=0.08/0.16 r=0.08/0.16 r=0.07/0.14 r=0.07/0.14

p=0.0025/<0.00005 p=0.0019/<0.00005 p=0.0079/<0.00005 p=0.0068/<0.00005

Correlation of Significance: Protein p-value vs. Affymetrix g-value

r=0.10/0.10 r=0.08/0.08 r=0.10/0.10 r=0.08/0.09
p=0.0002/0.0001 p=0.0040/0.0015 p= 0.0005/0.0003 p=0.0045/0.0013
Correlation of Log,(Fold Change): Protein vs. lllumina Microarray

r=0.07/0.08 r=0.07/0.08 r=0.07/0.07 r=0.07/0.07
p=0.0047/0.0018 p=0.0054/0.0023 p=0.0118/0.0102 p=0.2332/0.0118
Correlation of Significance: Protein p-value vs. lllumina g-value

r=0.03/0.03 r=0.02/0.04 r=0.03/0.04 r=0.04/0.05
p=0.3017/0.2507 p=0.3412/0.1618 p=0.2332/0.1677 p=0.1907/0.0732

Table 8.1. Correlations between transcriptomic and proteomic data. Four versions of the
proteomics data were compared to transcriptomic data from three platforms. Both the baseline
(/1) and moderate (2/10) grouping approaches are shown, in both unadjusted and batch adjusted
form. The correlations between the log,(fold changes) and the significance levels are calcul ated.
Two correlation coefficients and p-values are show for each comparison. Thefirst isthe standard
Pearson correlation coefficient. This correlation assumes the variables are normally distributed,
which islikely for the fold changes but unlikely for the p-values. To confirm the results, we also
show the non-parametric rank-based Spearman correlation.
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Overall, correlation coefficients were small but quite significant. Both the fold changes and
the significance levels correlated. The RNA-seq and Affymetrix data generally correlated better
with the protein data than the lllumina array data, however the difference was only significant
between Affymetrix and Illlumina using Spearman correlation (r=0.16 vs. r=0.08, p=0.014, Fisher
r-to-z transformation). This trend may be because RNA-seq, Affymetrix, and spectral counting
all take multiple ‘measurements’ per gene whereas Illumina arrays use only one long probe per
transcript, leading to reduced sampling. The RNA-seq fold changes correlated slightly better
with the protein fold changes than the Affymetrix fold changes when using a Pearson correlation
and slightly worse using a Spearman correlation. The RNA-seq significance levels generally
correlated best with the protein significance levels. No significant differences in correlation
were seen between Affymetrix and RNA-seq.

The correlations between the protein and transcript significance levels were generally
higher in the unadjusted data than in the batch adjusted data, but again, the differences were
not significant. This trend suggests that the batch adjustment may be over-adjusting some
genes leading to artificially low p-values that may correlate even less with the transcript levels.
The results from the baseline (1/1) grouping and moderate (2/10) grouping are so similar that
there is no clear winner.

Figures 8.1 and 8.2 show representative correlation plots for the fold changes and
significance levels. This “shotgun blast” is typical of plots showing protein vs. transcript data,
and confirms previous results showing little correlation between quantitative measurements of
proteins and transcripts. This further attests to the usefulness of including quantitative
proteomic data in the search for differentially expressed genes, including quantitative trait

genes.
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Figure 8.1. Proteomic vs. Transcriptomic Fold Changes. This plot showsthelog (base 2) of
the protein fold changes plotted against the log (base 2) of the transcript fold changes. For
reference, 10gx(2/1)=1, 10gx(1/1)=0, logx(1/2)=-1. The quantile normalized protein data and the
RNA-seq transcript data is shown, but the plot is representative of the correlation plots for the
other platforms as well.
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L AT

O-Values- Normalized RNA-seq Data

P-Values - Quantile Normalized Protein Data

Figure 8.2. Proteomic vs. Transcriptomic Significance Levels. Thisplot shows the
significance levels of the protein expression data plotted against the significance levels of the
transcript expression data. Note the lack of anormal distribution, which iswhy Spearman rank-
based correlations are also shownin Table 8.1. The p-values for the quantile normalized protein
data and the g-values for the RNA-seq transcript data is shown, but the pattern is representative of
the correlation plots for the other platforms aswell. The p-values were used instead of the g-
values for the protein data because most of the g-values were 1. Due to data processing
approaches, no RNA-seq g-values exceeded 0.7.

For comparison, we also the show the correlation between absolute expression levels in the
protein vs. RNA-seq data (Figure 8.3). The correlation coefficients are much higher between the
absolute expression levels compared to the relative fold changes or significance levels. There is
a clear trend that the higher count proteins tend to have higher count transcripts. It is expected
that the correlation would be even higher if we had not performed the synapse protein
enrichment protocol where we intentionally depleted highly abundant housekeeping proteins in

favor of less abundant synaptic proteins.
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Figure 8.3. Correlation of absolute peptide vs. RNA-seq counts. Only the quantile

normalized peptide and RNA-seq counts are shown, but results would be similar with raw counts.
The averages include al of the samples from both strains. Only the genesin the baseline (1/1) set
are shown, but the results would be similar with the moderate (2/10) set or with the complete
dataset. The Pearson and Spearman correlation coefficients and p-values are shown.

The bias introduced by the synaptic enrichment is of particular concern when comparing
absolute expression levels, however it is also potentially a concern in the relative measures if
there are protein trafficking differences between strains. For example, consider the case where
100 copies of a protein are made in both B6 and D2, but 10 of those copies are trafficked to the
synapse in B6 whereas 90 copies are trafficked to the synapse in D2. A whole cell preparation
will theoretically show similar levels of the protein expression whereas a synaptic enrichment
will lead the protein to show up as differentially expressed between strains. We were aware of
these considerations before performing the experiment but still decided to perform the

enrichment in order to maximize the number of synaptic proteins that were quantified. Cases

where protein trafficking differences lead to apparent differential expression results are of

Page 109



interest as well.

Figure 8.4 summarizes the agreement between the four proteomic analysis approaches
chosen for comparison with the transcriptomic data. As was shown in chapter 5, batch
adjustment only leads to an increased number of significant genes, and does not cause genes to
go from significant to not. Using batch adjustment, several additional genes are found to be
significant in each grouping approach. The less stringent grouping approach led to the
identification of one additional gene in the unadjusted data. That one gene was Myosin 5A, a
high spectral count gene with good evidence for differential expression. It was lost in the
moderate grouping approach because it was grouped with other similar genes and was
therefore discarded. For this reason, when multi-gene groups are discarded, we recommend

using the less stringent baseline (1/1) grouping approach to minimize data loss.

Figure 8.4. Agreement between the Prot q11p Prot q210p
four proteomic analysis
approaches chosen for comparison
with the transcriptomic data. “q”
indicates quantile normalized and
unadjusted while “qa’ indicates
guantile normalized and batch
adjusted. “11" indicates baseline
(/1) grouping while “210" indicates
moderate (2/10) grouping. “p”
indicates genes are considered
significant if p<0.05. Thisfigure and
other similar figures were generated
using the Venny tool (Oliveros
2007).

Prot gqal1p Prga210p

The percentage of genes found to be significant is much smaller in the proteomics data than
in the transcriptomics data, particularly in the unadjusted data or when the FDR-adjusted g-

value is used to determine significance. Despite using p-values rather than g-values and utilizing
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batch adjustment, the number of significant proteins is still much less than the number of
significant transcripts (Figure 8.5). The primary reason that fewer genes are found significant in
proteomics data compared to RNA-seq data is that fewer peptides are counted than RNA-seq
reads. For example, in the baseline (1/1) set of genes, an average of 21 peptides are counted
per sample per gene whereas an average of 2,542 RNA-seq reads are counted per sample per
gene. lItis easier for edgeR to find significance with larger counts. The quantitative techniques
used to analyze the microarrays are even more sensitive than RNA-seq and were able to find
even more significant genes (Figure 8.5). Another contributor to the reduction in significant
genes in the proteomics data is that it displays higher variability between samples than the

transcriptomics data, even after adjusting for batch effects (Figure 8.6).

450 . . .
B Proteomics - Quantile Normalized P-Values

400 - Proteomics - Quantile Normalized and Batch Adjusted P-Values
350 B Transcriptomics - RNA-seq Q-Values
a0 | W Transcriptomics - Affymetrix Q-Values
gsn | B Transcriptomics - lllumina Array Q-Values
3
3‘200 E
I-‘|:15I3 .

100

50 A

00 01 015 02 025 03 035 04 045 05 055

Significance Levels (Binned)

Figure 8.5. P- and Q-value distributions for the protein and transcript data. Despite using
p-values rather than g-values and adjusting for batch effects, many more genes are considered
differentially expressed in the transcript data than in the protein data. Due to the analysis
approach utilized, no transcriptomic g-values are greater than 0.7.
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Figure 8.6. Coefficient of Variation distributions for the protein and RNA-seq data. The
reduction in number of significant genesin the proteomics data can be explained by the fact that
proteomics data has many fewer average counts per sample per gene as well as greater variation
between samples. Shown here are the coefficient of variation distributions for the quantile
normalized with and without batch adjusted proteomics data as well as for the RNA-seq data,
which has been quantile normalized here for comparison.

Figure 8.7 summarizes the agreement between the different approaches and the
transcriptomic data. When comparing which genes are considered differentially expressed in
the proteomic and transcriptomic data, 56.3% and 54.7% of the significant genes found by
proteomics (unadjusted and adjusted, respectively) were also found to be significant by at least
one of the transcriptomics methods. As only 38.6% of all the genes considered were found be
significant by at least one of the transcriptomic methods, this agreement between proteomics
and transcriptomics is greater than expected by chance (Hypergeometric, p=0.116 (unadjusted)

and p=0.0013 (batch adjusted)). Of the additional proteins found when batch adjustment was
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performed, significantly more agree with transcriptomic results than expected by chance
(p=0.0093). This suggests that batch adjustment is successful in allowing additional genuinely
differentially expressed genes to be identified in the proteomics dataset.

Figure 8.7 highlights the point that proteomic and transcriptomic methods find different
genes to be differentially expressed between strains. Roughly half of the differentially
expressed proteins were not found to be different by any of the transcriptomic methods.
Conversely, many of the differentially expressed transcripts were not found to be different at
the protein level. Even after utilizing batch adjustment and the liberal p<0.05 significance
threshold, 34 of the genes that were found to be different at the transcript level on all three
transcriptomic platforms showed no evidence of differential expression at the protein level. It
would be interesting to investigate the biological reasons for these discrepancies. For example,
perhaps variants in their transcripts lead to reduced translational efficiencies that require the
cell to produce more copies of the transcript to maintain adequate protein levels. Table 8.2
highlights which functional categories were enriched in the differentially expressed genes from

each platform.
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Baseline (1/1) Grouping - Quantile Normalized, Unadjusted

RNA-seq Affy Array RNA-seq Affy Array

O\ lllum Array

Prot g11p ™\ lllum Array Prot q11q

p<0.05 q<0.05

Baseline (1/1) Grouping - Quantile Normalized, Batch Adjusted

RNA-seq Affy Array RNA-seq Affy Array
B \ lllum Array Prot ga11q )

lllum Array

p<0.05 q<0.05

Figure 8.7. Agreement between transcriptomics and proteomics. Only the Baseline (1/1)
grouping scheme is shown but similar results were obtained with the Moderate (2/10) grouping
scheme. The top two diagrams show agreement with the quantile normalized data, and the
bottom two diagrams show agreement with the quantile normalized and batch adjusted data. The
left two diagrams consider a p-value of less than 0.05 to be significant in the proteomics data
whereas the right two diagrams use the more stringent FDR-adjusted g-values to determine
significance.

Page 114



Platform Functional Category

Proteomics (p<0.05, after
batch adjustment) mitochondrial, nucleotide-binding, GTPase, and cytoskel etal

RNA-seq (g<0.05) vesicle, cytoskeletal, neuron projection, synaptic

Affymetrix Microarray neuronal, mitochondrial, synaptic regulation, nucleotide-
(g<0.05) binding, cytoskeletal

synaptic, cytoskeletal, nucleotide-binding, mitochondrial,
[lluminaArray (g<0.05) |neuronal

Table 8.2. Functional categories that were significantly enriched in the differentially
expressed genes found in each platform. Categories are listed in order of significance.
Categories and enrichment significance were calculated using the DAVID Functional Annotation
tool (http://david.abcc.nciferf.gov) (DaWei Huang and Lempicki 2008; Huang et al. 2009).
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8.4 SUMMARY AND CONCLUSIONS

In this chapter, we compared quantitative results obtained using several versions of the
proteomics dataset and data from three transcriptomic platforms. We were able to quantify
more than 1,300 genes in all four platforms. In addition to significant correlations found
between absolute expression levels, we also found significant correlations between the fold
changes seen at the transcript vs. protein level, as well as their significance levels. The RNA-seq
and Affymetrix data tended to correlate better with the protein data than the lllumina array
data. We also found that the agreement between lists of differentially expressed genes found
by proteomics and transcriptomics is significantly greater than expected by chance. Despite the
statistically significance of the correlation and agreement, the correlation coefficients and the
overlap were still quite low. Proteomics data contributes a lot of additional information. All
four platforms tend to find genes from different functional categories significant.

In comparing the proteomic analysis approaches, we found the Baseline (1/1) grouping
scheme to be most appropriate for generating gene summarized data. If groups represented
more than one gene are discarded so that protein groups can be mapped to transcriptomic data,
it is advantageous to minimize grouping to prevent the loss of data from multi-gene groups. We
also compared unadjusted results to batch adjusted results. We found that unadjusted
significance levels correlated slightly better with transcriptomic results than batch adjusted
significance levels, suggesting that some over-adjustment is occurring leading to artificially low
p-values that are not seen at the transcript level in some genes. However, of the additional

genes identified in the batch adjusted set, significantly more than expected by chance overlap
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with genes found to be significant using transcriptomics. This is in accord with the conclusions
from chapter 5. Batch adjustment increases sensitivity for differentially expressed genes, but at
the same time sacrifices specificity. Both the true and false positives increase when batch

adjustment is utilized.

Page 117



CHAPTER 9 — OVERALL SUMMARY AND CONCLUSIONS

This project generated a MudPIT (2D-LC MS/MS) quantitative proteomics dataset comparing
striata between two strains of mice for which there is considerable genetic (Quantitative Trait
Locus) and transcriptomic (RNA-seq, Affymetrix array, and Illumina array) data available. The >4
million spectra dataset identified >33,000 distinct peptides counted >423,000 times.

We searched the dataset on three databases: (1) the reference Ensembl database, (2) an
Ensembl database generated to match the D2 sequence, and (3) the canonical non-redundant
Swiss-Prot database. The Ensembl database contains high levels of sequence redundancy
because it intentionally includes similar isoforms as separate entries. Sequence redundancy
leads to over a third of the identified peptides being shared (i.e. ambiguous because they belong
to multiple proteins). We evaluated two approaches for grouping similar proteins to reduce
shared peptide load. The first was based on Ensembl —defined protein families generated using
similarity information from full sequence alignments. The second used identified peptide
criteria from the proteomics dataset, where the stringency could be adjusted. Due to the
similarity thresholds set when Ensembl constructed the protein families, the protein family
grouping fell on the aggressive end of the spectrum. It was still deemed valuable, however,
because it is pre-computed and therefore consistent from experiment to experiment, and it
provides family-level annotation. Regardless of grouping approach, we recommend grouping

very similar proteins before splitting shared peptide counts using unique peptide proportions.
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This grouping, in essence, finds the “minimal quantifiable protein set” and will help avoid errors
that occur when unique counts are too small to be used reliably.

One approach that is often used to minimize shared peptide load is to search databases with
minimal sequence redundancy. We define complete databases to be databases that include
separate entries for each isoform (e.g. Ensembl, as well as NCBI RefSeq, UniProtKB/TrEMBL, and
IPl). Alternatively, we define non-redundant databases to be databases that select one
canonical sequence to represent a set of similar isoforms with documentation of the isoform
differences in the annotation (e.g. UniProtKB/Swiss-Prot). We searched our dataset on Ensembl
and Swiss-Prot, and found that less than 5% of peptides are shared when searching Swiss-Prot
but at least 30% are shared when searching Ensembl, and probably much more than that since
we removed whole-sequence duplicates and subsets before searching and peptide subsets
after searching. Despite the increased shared peptide load, however, searching Ensembl yielded
an ~7% increase in successful spectrum-to-peptide assignments due to the increased sequence
coverage in Ensembl, which yielded an additional 27,000 identifications in the 4 million spectra
dataset. Many peptides were found in Ensembl that were not found in Swiss-Prot, however
some peptides were found in Swiss-Prot that were not found in Ensembl as well. We estimate
that 55% of the peptides missed in Ensembl but found in Swiss-Prot are due to a reduction in
search sensitivity for low-scoring peptides due to a larger database, 34% are due to missing
sequence data in Ensembl, and 11% are due to Swiss-Prot containing the D2 version of the
peptide, which may actually be the correct peptide for both strains in some cases.

After constructing protein groups, summing spectral counts per group, and splitting shared
peptides based on unique peptide proportions, we now have protein group summarized data.

The dataset can then be normalized and analyzed for differential expression between strains.
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We evaluated three approaches for normalizing the data and found quantile normalization
performed the best. Because our data collection was performed in two batches, we also
evaluated a batch-adjustment package, ComBat, and found it to be valuable. We then
compared four differential expression analysis approaches and found that edgeR, a package
available in R/Bioconductor, generated the resultset with the most desirable characteristics. All
three of the methods we chose to utilize (quantile normalization, ComBat batch adjustment,
and edgeR) were developed for transcriptomic datasets and this is the first time that we are
aware of that they have been applied to spectral counting data.

After determining which protein groups were differentially expressed, we mapped the
results to the genome to determine which groups had members with coding sequences that fell
within Quantitative Trait Loci (QTLs) previously found in the Portland Alcohol Research Center
between these strains. Many of the QTLs contained differentially expressed proteins. Of the
differentially expressed proteins, 83% fell within a QTL which is greater than expected by
chance. We identified several interesting differentially expressed proteins within the replicable
Alcohol Preference QTLs, and we recommend further biological validation of these proteins.

One of the benefits of working with two popular mouse strains is the availability of genome
sequence data for each. We obtained known between-strain Single Nucleotide Polymorphisms
(SNPs), Insertions, and Deletions (InDels) from the Sanger Mouse Genomes Project and used
them to generate a D2-specific protein database. The reference Ensembl database is based on
the B6 sequence and could therefore be used for the B6 strain. Searching the D2 samples on
the D2 database yielded an increase of 955 (0.44%) successful peptide-to-spectrum
assignments. The genetic variation between these two strains is roughly equivalent to the

sequence variation found between two unrelated humans. We anticipate that results similar to
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those outlined here would be seen in human samples. The percentage increase is low, but most
of the differences are concentrated in a handful of proteins, some of which had drastically
altered spectral counts and differential expression status. Using the reference database on the
D2 samples led to a false positive rate of 0.64% and a false negative rate of 9.9%. This approach
was also able to identify errors in the databases. In some cases, the D2 database contained the
correct sequence for both strains, indicating an error in the Ensembl reference database. In
other cases, the reference database contained the correct sequence, indicating an error in the
D2 genome data or an error in the Ensembl transcript coordinates used to generate the strain-
specific database.

In this tissue in these strains, transcriptomics data from three different platforms have been
generated in the PARC. We selected protein groups that represented only one gene and
mapped the groups to the gene-summarized transcript data. More than 1,300 genes were
guantified in all four platforms. We found low but significant transcript-to-protein correlations
between absolute expression levels, B6/D2 fold changes, and differential expression significance
levels. We also found that more than half of genes found to be differentially expressed in the
protein data were also differentially expressed in the transcript data, a percentage that is
significantly greater than expected by chance. In addition, we used the comparisons with the
transcript data to estimate the utility and accuracy of several alternative analyses of the
proteomics data.

In conclusion, we have demonstrated the utility of combining a proteomics dataset with
genetic and transcriptomic data between two popular strains of mice. Our dataset highlighted
several issues with the existing quantitative proteomic methods that handle shared peptides,

and we proposed a protein grouping approach that addresses these issues. We used genome
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sequence data to generate strain-specific databases that allowed us to evaluate the impact of
unknown sequence substitutions on quantitative proteomic methods. Because many
differences seen at the protein level are not seen at the transcript level, protein data provides
additional information that aids in the search for the differentially expressed genes that explain

phenotypic differences between these strains.
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APPENDICES

APPENDIX A — SAMPLE PREPARATION PROTOCOL

Enrichment for synapse proteins

Requirements:

Hepes stock solution: 500 mM, pH 7.4; sucrose stock solution: 2 M (freeze 30ml aliquots);
complete protease inhibitor (Roche); glass-Teflon Potter homogenizer; bench-top
temperature-controlled centrifuge; ultracentrifuge with swing-out rotor (SW 28 Ti from
Beckman Coulter (holds six 37mL tubes)); Roche complete protease inhibitor.

Day before-

1. Check out the rotor and place in cold room.

2. Prepare the sucrose gradient solutions from stock solution with composition indicated
in table 1.

Table 1. Composition of 50 mL of sucrose density gradient buffers prepared from the stock

solutions*.
500 mM 2M Distilled

Buffer Hepes sucrose water Number to make
0 M sucrose 1 with complete PI
(a.k.a. 5 mM Hepes) 0.5mL 0omL 49.5 mL 2 without
0.32 M sucrose 0.5mL 8 mL 41.5 mL 1 with complete PI
0.85 M sucrose 0.5mL 21.25 mL 28.25 mL 1
1.2 M sucrose 0.5mL 30 mL 19.5mL 1

*This makes enough for one pair of samples.

3. Dissolve 1 tablet of Roche complete protease inhibitor in each 50 mL 0.32 M sucrose
solution and in the specified tubes of 5 mM Hepes. This will keep for one week in the
fridge. Remember to keep buffers on ice throughout prep.

Day of-

4. Turn on and cool down the centrifuges to 4 °C.

5. Pipette 10 mL of the 0.32 M sucrose solution into the glass Potter, and keep it and
pestle on ice.

6. Drop frozen brain tissue directly into the glass Potter. Rinse the tube with 2 mL of the
0.32 M sucrose solution and pour it into the glass Potter.

7. Place the teflon pestle into the glass potter with your sample, switch on the rotation at
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

900 rpm (intermediate speed on the hand drill) and homogenize the sample with 12
strokes. (Thoroughly rinse and cool pestle and potter in between samples—no need to
use soap.)

Remove the homogenate to a tube. Rinse the potter with 3 mL of the 0.32 M sucrose
solution and add to tube. Centrifuge for 10 min at 1000 x g, 4 °C (3,600 RPM on J2-HS
next to Ultra).

During centrifugation, pipette 10 mL 1.2 M sucrose into a 37 mL polycarbonate
ultracentrifuge tube, and carefully layer on top at an angle 10 mL 0.85 M sucrose
solution. Keep the tubes on ice.

Carefully layer the supernatant onto the ultracentrifuge tube containing the 0.85/1.2M
sucrose gradient. (Hold tube almost horizontally and put tip on edge and let sample
flow onto gradient.)

Balance ultracentrifuge buckets with tubes on a balance. The difference between two
opposite tubes should not exceed 0.02g.

Centrifuge the gradients for 2 hrs at 100,000 x g in a swing-out rotor (SW 28 Ti from
Beckman Coulter) at 4 °C (28,000 RPM in Ultra—max speed for rotor).

Collect the synaptosome fraction from the 0.85/1.2 M interface (2" band) into a new
labeled 37mL ultracentrifuge tube. (Discard top layer & interface of each tube with one
pipette tip then use new tip to collect 0.85/1.2 interface.) You may continue, refrigerate
for one night, or freeze the interface at this step.

Add the leftover 0.32M sucrose solution (~10ml) and then fill with 5 mM Hepes buffer
containing protease inhibitor. Mix with pipette. Balance tubes until the difference
between opposite tubes does not exceed 0.02g.

Centrifuge the samples at 80,000 x g for 30 min at 4 °C (SW 28 Ti rotor at 25,000 RPM in
Ultra) (You don’t have to use a swing out rotor—this one was just handy.).

Remove the supernatant until about 0.5 mL solution above the pellet.

Resuspend the pellet with 5 mL 5 mM Hepes buffer containing complete protease
inhibitor and transfer to a pre-cooled glass vial with a small magnetic stirrer inside, and
stir on a stirring platform at 250 rpm for 15 min over ice.

Carefully layer the hypotonic shocked sample on an ultracentrifuge tube containing
another sucrose density gradient of 0.85/1.2 M, ~13 mL each. Balance the buckets.
Centrifuge for 2 hrs at 100,000 x g in a swing-out rotor at 4 °C.

Collect the synaptic membrane fraction from the 0.85/1.2 M interface (2™ band) into a
new labeled 37mL ultracentrifuge tube. (Discard top layer & interface of each tube with
one pipette tip then use new tip to collect 0.85/1.2 interface.) You may continue,
refrigerate for one night, or freeze the interface at this step.

Add 5 mM Hepes buffer without protease inhibitor to fill and balance tubes until the
difference between opposite tubes does not exceed 0.02g.

Centrifuge the samples at 80,000 x g for 30 min at 4 °C (SW 28 Ti rotor at 25,000 RPM in
Ultra) (You don’t have to use a swing out rotor—this one was just handy.).

Remove the supernatant until about 0.5 mL solution above the pellet.

Freeze or determine protein concentration**.

Transfer 500 ug protein for each sample to a 1.5 mL tube, and dry with a Speedvac.
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**Protein concentration determination

1. Use Thermo BCA Protein Assay kit (Prod # 23227). (Neon hands on black box.)

2. Use a microtiter plate. If possible, reuse a used one until full. Don’t touch the bottom.

3. 1.96 ml A + 40 pl B (or more as needed—will need 200 pl/well in step 6)

4. Pipette 10 pl of each standard (in fridge) into each well. Can use one tip if you go from 0
to 2.

5. Pipette 10 pl of each sample into each well.

6. Follow kit instructions.

7. Use plate reader upstairs.

8. Confirm using 5 ug of protein on a Coomassie gel.
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Digestion of synaptosome proteins for off-line mudpit
Beginning with 500 pg dried aliquots of synaptosome proteins.

1. Dissolve a 1 mg vial of RapiGest SF in 250 pl of 100 MM Ammonium bicarb buffer.

2. Add 100 pl to each 500 pg synaptosome sample. Shake at a setting of 7 for 5 minutes.

3. Add 10 ul of 100 mM freshly prepared DTT solution, vortex briefly, and incubate at 60°C
for 30 min (in PCR machine—File 10 <enter> start).

4. Cool briefly and add 30 ul of 100 mM iodoacetamide solution, vortex briefly and let
stand for 30 min in the dark at room temp.

5. Dissolve one 20 pg vial of Sigma trypsin/500 ug sample by adding 65 ul of 1 mM HCI
immediately before use (keep onice). (1 mM HCl = 50ul 1M HCI + 50 ml H,0).

6. Remove 4.2 pl of each sample (15 ug) to run on SDS-PAGE gel (pre-digestion)

7. Add 60 pul of diluted trypsin to each synaptosome sample, vortex briefly and incubate
overnight at 37°C.

8. Following overnight incubation, remove 6 ul (15 ug) to run on SDS-PAGE gel (post-
digestion).

9. Run mini-gel to assure digestion is complete, then add 200 pl of 2% TFA and vortex
briefly. Incubate at 37°C for 45 min.

10. Centrifuge at 10,000 rpm for 15 min in the Jouan tabletop centrifuge.

11. Carefully remove the supernatant to another 0.65 ml centrifuge tube, being careful not
to disturb any pellet that might be present.

12. Filter the samples using a Millipore Ultrafree MC .45um (blue box above drill) at 5,000
RPM for 10 minutes in the Jouan centrifuge at 4°C.

13. If samples will be separated by cation exchange, perform a Sep-Pak purification*** of
the peptides.

***Sep-Pak Procedure (use Sep-Pak light cartridges and 1.0 ml syringes)

Rinse cartridge

1. Slowly rinse cartridge with 1mL 100% ACN.

2. Slowly rinse cartridge with 1mL 0.1% Trifluoroacetic acid (TFA).

Bind sample to cartridge

3. Dilute the sample to 0.5 ml by adding 250 pl water.

4. Very slowly apply the sample to the cartridge (approximately 1 drop per 5 seconds).
Discard flow-through.

Rinse sample on cartridge

5. Slowly wash the cartridge with 1mL of 0.1 % TFA. Use new syringe.

Elute sample off of cartridge

6. Slowly apply 0.5mL of 50% ACN, and then 0.5 ml of 100% ACN through the cartridge,
collecting the eluents in a clean Eppendorf. Your clean sample is now in 1.0mL of about
75% acetonitrile.

7. If necessary, you can now speed-vac to get rid of the acetonitrile. This would be
required if applying the sample to a reverse phase column or trap cartridge.
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