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Abstract

A controlled study of the contribution of external resources on Chinese

word segmentation

Yongshun Chen

Supervising Professor: Brian Roark

In Chinese, written sentences consist of a concatenation of characters and punctuation

with no additional word boundary delimiters. As an important first step in many Chi-

nese natural language processing (NLP) applications, Chinese word segmentation (CWS)

inserts word boundaries given unsegmented Chinese sentences. In recent international

competitions on CWS, there are two modes of training and evaluation, namely closed and

open. In closed task, no data nor information [3] in addition to training corpora can be

used for training. In open task, any external material can be used. To our knowledge, for

the open task, there has been no serious study of which external resources are useful and

which are not; nor has there been any study that quantifies each resource’s contribution.

Moreover, given a potentially helpful resource, how it is incorporated into the system can

also make a difference. We explore different resource incorporation methods to find the

more helpful method. We quantify the influence of different external resources for open

task, and further try to predict in advance which resource will improve performance. Em-

pirical results show that dictionaries that are independent from the training corpora are

extremely helpful to system performance. This finding is successfully generalized for the

word segmentation problem of language other than Chinese. We also find that number,

ASCII character, and punctuation normalization brings in additional gains.

ix



Chapter 1

Introduction

In NLP, hand-crafted systems are no longer popular, and most reported systems nowadays

depend on statistical methods. However, it is important to notice that many statistical

systems still contain rich hand-crafted knowledge (which can be represented by language

dependent rules, lexicons, etc.). However, there is little general understanding about the

usability among different knowledge resources.

For CWS, SIGHAN (ACL’s special interest group on Chinese language processing)

sponsored five international competitions. The competitions allow two modes of training

and evaluation, namely closed and open. In the closed task, candidates can only use the

given training data for system training. In the open task, candidates can use arbitrary

external resources, which must then be reported. In general, for the same training and

testing data, people receive much higher accuracy in the open task than in the closed task.

This argues that additional linguistic knowledge contributes to system performance. The

used external resources in literature are dictionaries, family name list, etc.

To our knowledge, there is no systematic study on which resources are useful to CWS

and which are not, nor the extent to which each resource contributes. Furthermore, how

the resource is integrated into the system can make a difference. We do a controlled

study on external resources’ effect, and quantify each resource’s contribution. In the

literature, many systems [1, 8, 14, 17, 19, 20] have multiple stages of independent pre- or

post-processing for each special word category. Different from them, we incorporate these

resources as features in our training method. This allows for incorporation of arbitrary

linguistic knowledge in a uniform and flexible way, eschewing the need for ad hoc pre-

or post-processing that makes use of such resources. Furthermore, we try to predict in

1
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advance which resource will help.

Finally, we generalize the findings in CWS to the Thai language, which also has the

issue of word segmentation, and compare improvements in system performance.

As a preview of our results, the biggest improvement to our system (1.5% F score)

was obtained with an external dictionary that is independent from the training corpora,

but both data follow the same segmentation standard. Furthermore, normalization of

ASCII characters, punctuation, and numbers brings in additional gain (0.8% F score).

Other resources fail to show significant system performance improvement independently,

but when adding all these resources into the system simultaneously, we obtain another

moderate improvement (0.3% F score).

It is not surprising that many researchers working on this problem have tried some of

these resources in different ways with no success, but they followed the tendency in this

field to not report them. This results in multiple people trying independent but similar

ideas only to repeat negative results. Therefore, another contribution of this work is to

study and also report exactly the maximized effectiveness of each piece of supplemental

information.



Chapter 2

Background

2.1 Chinese Word Segmentation

The Chinese writing system is different from that of English. In written English, word

boundaries are indicated by whitespace and punctuation. In Chinese, written sentences

consist of a concatenation of characters and punctuation with no additional word boundary

delimiters. For example, if we write English in the way we do for Chinese, the English

sentence “He was here.” will become “Hewashere.” Therefore, the problem of CWS is to

insert word boundaries given unsegmented raw Chinese sentences.

CWS is the first step of any Chinese NLP application that needs tokenized words

as input. Because errors in CWS will be passed along to subsequent NLP tasks, the

performance of CWS is of great importance.

We treat CWS as a tagging problem [18]. In this study, we experimented both “BI”

bi-tag tag set, and “SBME” four-tag tag set. For bi-tag, for each character in the unseg-

mented corpora, if it is the first character of a word, it is tagged with tag “B”, otherwise

tag “I”. For “SBME” four-tag, for each character, if the character itself is a single word,

it is tagged “S”. If it begins a word of two or more characters, it is tagged “B”. If it is in

the middle a word, namely it has at least one character to its left and one to its right, it

is tagged “M”. If it ends a word of two or more characters, it is tagged “E”. An example

is in Table 2.1.

3
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Table 2.1: An example of bi-tag and four-tag tag set.

Chinese sentence 母 亲 吃 胡 萝 卜 。

segmentation 母 亲 吃 胡 萝 卜 。

bi-tag tag B I B B I I B

four-tag tag B E S B M E S

translation mother eats carrots .

2.2 Related Work

As we mentioned above, in recent international competitions on CWS, there are two modes

of training and evaluation, namely closed and open. In a closed task, no material other

than training corpora may be used for training. In open task, any information or external

material [3] can be used. By its nature, the closed task encourages participants to focus on

tuning machine learning methods. Discriminative methods have generally shown the best

performance, and include maximum entropy [6, 10], perceptron [8, 21], and conditional

random fields (CRF) [15, 17, 20, 22]. Features include word-based features [21], sub-word-

based features [17, 20], and character-based features [8, 10, 15]. Further improvements have

been gained by dictionary-based N-gram language models [1, 4, 7, 17, 20], and rule based

dictionary matching [21]. Many systems [1, 8, 14, 17, 19, 20] benefit from independent

stages of pre-processing, and post-processing. For the open task, external dictionaries

[1, 6, 10, 19] have been used, as well as data segmented with different segmentation

standards [1, 7, 10]. Family name lists [5, 7], transliterated name lists [7], and raw text

[9] have also been used.

2.3 Log-linear Model

Following [12, 13], given a character-tag sequence CT = c1τ1, c2τ2, ..., ckτk as training

example, where the character sequence is from the unsegmented raw corpora, and the

tag sequence is the gold segmentation answer for this character sequence, an exponential

model has the form
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P (τ |c) =
exp(Φ(CT) · α)

Z(C)
=

exp(
∑n

i=1 φi(cτ)αi)

Z(C)
, (2.1)

where Φ(CT) ∈ <d is an n-dimensional feature vector; α ∈ <d is an n-dimensional weight

vector; φi is the fired feature given this character sequence, and Z is a normalization

factor:

Z(C) =
∑
τ∈T|c|

exp(
n∑
i=1

φi(cτ)αi). (2.2)

By taking the log of the probabilities in (2.1), and discarding normalization constant, we

have

logP (τ |c) = Φ(CT) · α, (2.3)

which is a linear combination of weighted features.

Let GEN be a function that enumerates tag sequences for C. Then the learning task

is to use training corpora to set the value of weight vector α, so that a mapping from

input C to output F (C) can be found:

F (C) = argmax
T∈GEN(C)

Φ(CT) · α. (2.4)

2.4 Perceptron Algorithm

Under the log-linear framework, there are various parameter estimation methods, such

as conditional random fields, perceptron, maximum entropy. In this study, we adopted

perceptron algorithm for training. It is an online algorithm that converges quickly during

a few passes over the training corpora.

We follow a variant of the perceptron algorithm [11] given in Figure 2.1. In the training

phase, for each unsegmented input character sequence, system temporarily outputs a tag

sequence based on the model’s features’ weights at that time. Then for each difference

between the temporary output and the correct answer of this character sequence, each

feature associated with the temporary output will be fired, and have its weight subtracted
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Inputs: Training examples (xi, τi)
Initialization: Set α = 0
Algorithm:
For t = 1 . . . T, i = 1 . . . N
Calculate zi = argmaxz∈GEN(xi)Φ(xi, z) · α
If(zi 6= τi) then α = α+ Φ(xi, τi)− Φ(xi, zi)
Output: Parameters α

Figure 2.1: A variant of perceptron algorithm [11].

by one. Similarly, each feature associated with the correct answer will be fired, with its

feature weight added by one. After each iteration over the training corpora, we test on a

development set and track system performance. The model converges when accuracy fails

to increase during a few (in our experiments, we choose five) consecutive iterations. We

use Viterbi decoding in the training phase, and forward-backward decoding in the testing

phase.

One problem of this training method is that the trained model is prone to be over-

trained on the training corpora. In other words, system performance can be promising

when evaluated on development set, but it tends to drop more than expected when eval-

uated on testing set. To resolve this, after the model converged, the set of averaged (for

each feature independently) cumulative (over iterations) feature weights [2] is adopted as

feature weights in the final model.

2.5 Evaluation

We use F score to report system performance. For some experiments, we additionally

report out-of-vocabulary (OOV) word recall, in vocabulary (IV) word recall, or use cross

validation.

F Measure: F-measure accuracy is the weighted harmonic mean of precision and

recall:

F = 2 · precision · recall
precision+ recall

. (2.5)

Precision is the number of correctly identified words divided by word count in system
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output. Recall is the same denominator divided by word count in the correct answer of

the input corpora.

OOV Words Recall: OOV words are the words that are not in the system training

data, but in the data on which the system is evaluated. How well does the system handles

OOV words can largely influence overall system performance. In fact, one goal of incorpo-

rating external knowledge is to enhance the system’s ability of OOV words identification.

Therefore, we evaluate recall on OOV words, which is the ratio between the number of

correctly identified OOV words, and the total number of OOV words in the correct answer.

IV Words Recall: IV words are the words that occur in both training set and the

evaluation data set. Similar to OOV words recall, we define IV words recall as the ratio

between the number of correctly identified IV words, and the total number of IV words

in the correct answer.

Cross Validation: We apply ten-fold cross validation to some experiments. We

partition the training set into ten subsets, and act accordingly to the corresponding correct

answer. Then by using each subset as temporary development set, and the remaining as

temporary training set, we separately train ten temporary converged models, which are

ten sets of weighted features. Finally, we combine these ten temporary models to derive

the final model: for each feature, we use arithmetic mean of its ten temporary weights as

its final feature weight.



Chapter 3

The System

3.1 Segmentation Corpus

In this study, we report on the PKU CWS corpora, released by Peking University for the

second SIGHAN competition (see Table 3.1). It follows GB137151 segmentation standard,

and is widely used for CWS studies. Comparing with other corpura in Table 3.1, it has

higher OOV rate and bigger test set.

Table 3.1: Second SIGHAN competition corpora [3].

corpora encoding training size testing size OOV
(words/types) (words/types) rate

AS Big Five Plus, Unicode 5.45M / 141K 122K / 19K 0.043

PKU CP936, Unicode 1.1M / 55K 104K / 13K 0.058

CityU Big Five, Unicode 1.46M / 69K 41K / 9K 0.074

MSR CP936, Unicode 2.37M / 88K 107K / 13K 0.026

3.2 Baseline System Feature

In our study, we define class based on tags. Two classes are involved: class “B” and class

“I”. For “BI” tag set, tag “B” is mapped to class “B”, and tag “I” is mapped to class

“I”. For “SBME” tag set, both tag “S” and tag “B” are mapped to class “B”, and both

tag “M” and tag “E” are mapped to class “I”.

1GB13715 is the national standard for text segmentation in computer applications in China.

8
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In our perceptron baseline system, we have two types of features. Type I features

only contain character and tag information. Type II features must contain tag class, and

character and tag information is optional. At run time, the system automatically generates

each feature (regardless of feature type) given a specific feature template and the specific

input sequences.

• Type I Feature Templates

Let c0 be the current character, c−1 the character immediate left to c0, c1 the

character immediate right to c0, τ0 the tag of c0, and τ−1 the tag of c−1. Baseline

system’s type I feature templates are in Table 3.2, where “ID” is the index for each

feature template. We found this set of feature templates by using a greedy approach.

We started with a small set of feature templates (feature template 1 to 10) as the

final feature template set, and experimenting one additional feature template a time.

The additional feature template that yields the biggest system performance gain is

then inserted to the final feature template set. By doing this iteratively, we obtained

the final 14 feature templates.

Table 3.2: Type I feature templates in baseline system.

ID feature ID feature ID feature ID feature
template template template template

1 τ0c0 5 τ0c−1 9 τ0c−1c0 13 τ0c−1c0c1
2 τ−1τ0c0 6 τ−1τ0c−1 10 τ−1τ0c−1c0 14 τ−1τ0c−1c0c1
3 τ0c1 7 τ0c0c1 11 τ0c−2c−1
4 τ−1τ0c1 8 τ−1τ0c0c1 12 τ−1τ0c−2c−1

• Type II Feature Templates

Based on the terminology of type I feature templates, let C0 be the tag class of

tag τ0, and C−1 the tag class of tag τ−1. Starting with the 14 feature templates of

type I, similar to how we found the set of type I feature templates, we again use a

greedy approach. We experimented inserting one type II feature a time. The type

II feature template that yields the biggest system performance gain is then kept in
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the final type II feature template set. By doing this iteratively, we obtained the final

five type II feature templates given in Table 3.3, where “ID” is the index for each

feature template.

Table 3.3: Type II feature templates in baseline system.

ID feature template ID feature template

1 C−1C0c−1 4 C−1τ−1c−2c−1
2 C−1C0c−1c0 5 C−1C0τ−1c−2c−1
3 C−1C0τ0c−1c0

3.3 Baseline System Performance

We split the prescribed PKU corpora into two portions: the first portion is the first 17149

lines, and we use it as training set to train the system; the remaining 1907 lines are held

out as development set, and we use it for system convergence decision. In our training

set, there are 4698 character types, and 1826448 characters. Our test set is the given

test set in the PKU corpora. Baseline system performance and state of the art [14, 10]

performance are in Table 3.4.

We tune the feature template sets with four-tag tag set, and it achieved higher baseline

performance than the bi-tag tag set. Therefore, in subsequent experiments, we report

results with four-tag tag set unless otherwise explained.

Table 3.4: Baseline system performance and state of the art results on PKU corpora.

evaluation data type F % P % R % RIV ROOV

DEV closed, bi-tag 95.9 95.7 96.0 96.1 93.9

DEV closed, four-tag 96.1 95.9 96.3 96.3 94.1

test closed, bi-tag 93.1 92.1 94.0 94.3 56.5

test closed, four-tag 94.0 93.2 94.7 94.8 67.0

test[14] closed, state of the art 95.2 95.6 94.8 not reported 77.8

test[10] open, state of the art 96.9 96.9 96.8 97.6 83.8



Chapter 4

Feature Engineering

4.1 Features for External Resources

We represent each external resource as lists of finite number of character strings, and then

incorporate these lists into system by features. Each feature contains character and tag

information.

To incorporate a single list of string, where each string has N characters, we encode

2N features for the case of bi-tag tag set. For example, suppose N is two, for any specific

input string (following the denotation in chapter 3.2, the input string is denoted as a

sequence of ci, i = −1, 0, 1, ...), we have four features: c0c1 is in the list with c0 tagged

“B” in the input string, c0c1 is in the list with c0 tagged “I” in the input string, c−1c0 is

in the list with c0 tagged “B” in the input string, c−1c0 is in the list with c0 tagged “I”

in the input string. An example is given in Figure 4.1. For the case of four-tag tag set,

we similarly use 4N features. We use this method for resources such as dictionary, name

entity (NE), etc.

To jointly incorporate two lists, denoted “list A”, which is a list of string, where each

string has M characters, and “list B”, which is a list of string, where each string has N

characters, for the bi-tag case, we encode 2M + 2N features. For example, if M is one

and N is two, for any specific input string (follow the denotation in chapter 3.2), we have

six features: c0 in “list A” and c1c2 in “list B” with c0 tagged “B” in the input string, c0

in “list A” and c1c2 in “list B” with c0 tagged “I” in the input string, c−1 in “list A” and

c0c1 in “list B” with c0 tagged “B” in the input string, c−1 in “list A” and c0c1 in “list B”

with c0 tagged “I” in the input string, c−2 in “list A” and c−1c0 in “list B” with c0 tagged

11
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Figure 4.1: Example of independently incorporating one list.

“B” in the input string, c−2 in “list A” and c−1c0 in “list B” with c0 tagged “I” in the

input string. An example is given in Figure 4.2. For the case of four-tag, we similarly use

4M + 4N features. We use this method to encode affix, and people’s full name, etc.

Figure 4.2: Example of jointly incorporating two lists.

In the subsequent part of this thesis, we follow these feature encoding methods unless

otherwise additionally explained.

4.2 Word Dictionary Feature

4.2.1 Resource Incorporation Method

We tried different ways of dictionary incorporation, to find the external resource incorpo-

ration method that can better reveal a given resource’s contribution. One method is to
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use the method given in chapter 4.1. Another method is to append the dictionary to the

end of the training data. Using the same dictionary, we found that the method in chapter

4.1 outperforms the other method. Preliminary results are in chapter 4.7.

4.2.2 Word Dictionary Feature

We experiment several dictionaries: a dictionary derived from the training corpora, a

dictionary derived from the MSR corpora of the same competition, a dictionary derived

from Penn Chinese Treebank (PCTB), and a dictionary that follows the same segmentation

standard as the training corpora, but is independent from them.

Given multiple helpful word dictionaries that follow different segmentation standards,

we try to combine their contributions together. One way is to have separate features for

each dictionary, and include all these features in the system in parallel. Another way

is to concatenate these dictionaries together, and encode features for the obtained big

dictionary.

Preliminary results are in chapter 4.7.

4.3 Word Forming Feature

4.3.1 String Repetition Pattern Feature

String (normally contains one or two characters) repetitions commonly exist in written

Chinese. The string repetitions obey several patterns, which are consistently segmented1.

Take pattern ABAB for example: if “A” and “B” represents different characters, string

“ABAB” is always segmented into two “AB” words. For example, “高兴高兴” (meaning:

to have joy) is the repetition of “高兴” (meaning: happy), and it is segmented into

“高兴高兴” (suppose empty space is the word boundary delimiter). Similar segmentation

consistencies also exist in pattern AAB, AABB, ABA, ABAB, ABAC, ABB. We encode

features for each pattern, and features for the optional suffixes (的 and地, which hardcodes

the pattern’s Part-of-Speech as adjective and adverb, respectively) of pattern AA and

AABB.

1Please refer to the segmentation guideline (section 3.1) of the prescribed PKU corpora.
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4.3.2 Affix Feature2

Affixes in Chinese extend and assist word usage in dialects, syntactical variations, and

ways of referring to people with especial emphasis (such as respect, warmth, order in the

family, etc.). For example, the Chinese may call his or her aunt (in Chinese: 姨) who is the

second (in Chinese: 二) daughter of her family 二姨. We encode features to incorporate

lists of common prefix (老, 大, 小, 阿, 超, 非, etc.), suffix (们, 家, 学, etc.), and infix (了

一) into the system.

4.3.3 Suoxie Feature

Suoxie is a special form of abbreviation – key characters extracted from word(s) to replace

the word(s) with unchanged meaning. For example, the Chinese can use 京津唐 to repre-

sent the geographical area that covers 北京, 天津, and 唐山. As our NE resources already

include many suoxie words, we only encode features for souxie of province and city name

list. With a list of each province’s, and each common city’s abbreviation, we encode it

jointly with itself to represent neighboring abbreviation concatenation.

4.3.4 Feature Using Part-of-Speech (POS) Information

In Chinese, compound word contains two or more morphemes, whose POS is up to word

compounding rules3. For example, word苦瓜 (meaning: balsam pear, bitter gourd) obeys

the rule “one-character adjective followed by one-character noun”, where苦 means bitter,

and瓜means melon. With POS tagged data4 that follows the same segmentation standard

as the PKU corpora, we collect separate list for each morpheme class. Then we jointly

incorporate two lists with respect to word compounding rules.

2This is according to the segmentation guideline (chapter 3.2) of the prescribed PKU corpora.
3This is according to the segmentation guideline (chapter 3.3) of the prescribed PKU corpora.
4http://download.csdn.net/source/1259040
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4.4 NE Feature

4.4.1 Japanese Name Feature

In Chinese language, Japanese name is written as given name following family name

(except the emperor). We collect a list of 8.7K5 Japanese family name, and a list of

common Japanese female given name6. Then we incorporate them separately as a single

list, as well as jointly to represent full name.

4.4.2 Chinese Name Feature

Chinese name has the form of family name (over 85% has one character) followed by given

name (mostly has one or two characters). We have a list of 373 common Chinese family

names (97% has one character), and a list of 6.5K common Chinese given names (of both

one and two characters).

In addition to having all the features we have for Japanese names for Chinese names,

we further have features for Chinese full name before a punctuation, features for full name

list, and features for a common custom – the first character of a given name is also a

family name, etc.

4.4.3 Transliteration Name Feature

Chinese generally transliterates foreign names by picking the sequence of characters whose

pronunciation in Chinese is phonetically similar to the name’s pronunciation in the source

language. Thus “巴巴拉 or芭芭拉” (both are common Chinese translations of name Bar-

bara, and pronounced ba-ba-la in Chinese) approximates the pronunciation of “Barbara”.

Certain Chinese characters are frequently used for this purpose than most others.

With 66K Chinese translation of foreign names, we extract a list of the first one

character, and a list of first two characters sequence, same for the last characters, and

another list of all used characters. Then we include these lists jointly (such as first two

5http://zh.wikipedia.org
6http://hi.baidu.com/%D3%EA%BD%A5/blog/item/4688aab4c2349f748ad4b2b0.html
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character sequence list with the character list) to generalize for unknown transliterated

names.

4.4.4 Famous People Name Feature

As external resource, we collect7 lists of names of world famous philosophers, singers,

musicians, scientists, ideologists, writers and their pen names, and names of Chinese

political leaders since year 1954. We also have a list for the “dot” symbol, which is

sometimes observed in the middle of a name. Then we group8 these names into lists with

respect to segmentation convention difference. We include each list separately, and we

also include name list and the dot symbol list jointly for the purpose of generalization.

Furthermore, we jointly incorporate Chinese family name list and person’s title list

to encode a way of referring to person – family name followed by title. For example,

professor (in Chinese: 教授) Wang (in Chinese: 王, which is the family name of the

faculty) is written as 王教授 in Chinese.

4.4.5 Chengyu Idiom Feature

Chengyu (such as 心想事成, which means all dreams come true) is a kind of conventional

Chinese idiom. 96% of chengyu has four characters. We incorporated a list of 30K9

chengyu idiom into our system.

4.4.6 Geographical Location Feature

We have lists of world countries, cities, mountains, basins, islands, peninsulas, rivers, lakes,

seas, oceans, continents, and Chinese provinces, springs, dams.

7All resource for chapter 4.5.4 to chapter 4.5.7 are download from http://www.wikipedia.org.
8Please refer to the segmentation guideline (chapter 2.2.1) of the prescribed PKU corpora.
9http://www.cnpoem.net/cy
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4.4.7 Other Name Entity Feature

At international level, we gather lists of companies names, languages, awards, religions,

music types, musical instruments, currencies, news agencies, and measurement units. Lim-

ited to China, we collect lists of operas, 56 nationalities, highway lines, train lines, festi-

vals, democratic parties and their “suoxie”, colleges’ names, all government departments’

names, and lists of Chinese year denotation, namely “ganzhi (such as 甲子)” (denote year

with 60 year cycle), “shengxiao (such as 亥猪)” (denote year with 12 year cycle), and

Chinese dynasty names. Furthermore, we have lists of vegetables, fruits, vitamins, and

weather conditions names. Each list is included into the system independently.

4.5 Normalization

Different from previously mentioned cases, segmentation decisions for ASCII strings, num-

bers10, and punctuation are more dependent on their neighboring context, rather than the

exact symbol or character. Therefore, we normalize for ASCII strings, numbers, and punc-

tuation.

For ASCII strings, we have features for ASCII and Chinese character boundaries (c−1

is a Chinese character and c0 is an ASCII character; c−1 is an ASCII character and c0 is a

Chinese character), ASCII character and number boundaries (c−1 is an ASCII character

and c0 is a number symbol; c−1 is a number symbol and c0 is an ASCII character), ASCII

character and punctuation boundaries (c−1 is an ASCII character and c0 is a punctuation

symbol; c−1 is a punctuation symbol and c0 is an ASCII character), as well as for ASCII

character concatenation (both c−1 and c0 are ASCII characters). Features are encoded by

joint lists.

For punctuation, we follow the feature encodings for ASCII strings, except that features

for punctuation and ASCII character boundaries are removed, as they already exist as

features for ASCII strings.

For numbers, we create a list of prefix (denoted prefix list 1) and a list of suffix near

any of witch number needs to be segmented apart, and another list of prefix and another

10Please refer to the segmentation guideline (chapter 2.2.5, 2.2.6) of the prescribed PKU corpora.
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list of suffix near any of which number needs not with respect to the segmentation guide-

line. Then we encode corresponding features for each situation (such as c−2c−1 are in

prefix list 1, and c0 is in the number symbol list).

4.6 Features with Web Data

All previous resources are sets of lexicons that we collect for specific topics or categories.

In this section, we make an effort to use raw web data, and search term11, to try to

automatically extract word boundary information.

With 1.1G news from different websites between 2008 May and June, we separately

extract lists of one character before punctuation, two character sequence before punctua-

tion, one character after punctuation, two character sequence after punctuation, and the

concatenation of the character that is immediately preceding and following each punctu-

ation.

From Sogou search engine’s half years’ search term, we separately extract list of search

terms of two, and of three characters.

4.7 Feature Engineering Summary

Preliminary results show that all the external dictionaries, namely the dictionaries derived

from data other than the training corpora, do not hurt system performance, and most of

them make contributions (only the dictionary derived from PCTB failed to make signifi-

cant improvement). The contribution turns out to be the biggest when the dictionary and

training corpora follow the same segmentation standard.

Given multiple helpful dictionaries that follow different segmentation standards, we

try to combine them by concatenating all helpful dictionaries into a new dictionary, which

then be incorporated into the system. We also try using all these dictionaries in parallel.

However, it is hard to say whether dictionary combination can outperform the most helpful

dictionary (in the set of helpful dictionaries) or not.

11Both web data and search term are downloaded from http://www.sogou.com/labs.
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We also find that the word dictionary derived from the training corpora hurts system

performance, even with complicated cross validation scenarios. It is because in this case,

features related to this dictionary are excessively reliable at training time. Hence, they

are the only features that are well trained, leaving the massive amount of baseline features

fail to be well tuned. At testing time, however, this dictionary no longer has its perfect

word coverage, so the performance drops.

Results for dictionary incorporation are given in Table 4.1. It also shows that the

method we adopt to incorporate external dictionary yields better system performance

(comparing with appending the dictionary to the end of training corpora). Note that

dictionary “D 1” is derived from the training corpora. Dictionary“D 2” is from PKU12 but

independent from training corpora. Dictionary “D 3” is from the MSR corpora released

by second SIGHAN competition. Dictionary “D 4” is from PCTB. Dictionary “D 5” is the

concatenation of dictionary D 2, D 3, and D 4. “D 2 (append)” indicates incorporating

dictionary “D 2” by appending it to the end of training corpora.

Table 4.1: Results for dictionary incorporation.

condition
four-tag tag set bi-tag tag set

F% R% P% RIV ROOV F% R% P% RIV ROOV

baseline 94.0 93.2 94.7 94.8 67.0 93.1 92.1 94.0 94.3 56.5

baseline + D 1 92.3 93.3 91.2 97.1 31.5 91.5 92.5 90.5 97.8 22.7

baseline + D 2 93.6 92.8 94.5 94.4 65.8 92.8 91.7 94.0 94.0 54.2
(append)

baseline + D 2 95.5 95.3 95.7 97.0 68.7 94.4 94.2 94.7 96.4 58.8

baseline + D 3 94.7 94.2 95.2 95.7 69.0 93.8 93.2 94.3 95.4 58.4

baseline + D 4 94.1 93.7 94.4 95.5 64.1 93.9 93.4 94.3 95.2 62.8

baseline + D 2 94.6 94.9 94.3 97.0 60.0 94.6 94.6 94.5 96.7 60.5
+ D 3 + D 4

baseline + D 5 94.9 95.0 94.7 96.8 65.3 94.9 94.9 94.8 96.6 67.4

12http://ccl.pku.edu.cn/doubtfire/Course/Chinese%20Information%20Processing/2002 2003 1.htm
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With all the external resources, our system achieved 96.6% F score, which is very

close to the state of the art [10] performance for the open task. Preliminary results show

that the external dictionary that is not derived from the training corpora, but follows

the same segmentation standard as it made the biggest contribution. All normalization

features made an additional contribution. All other resources fail to make independent

contribution, but they together yielded another moderate improvement. A summary of

feature ablation results is in Table 4.2, where “norm” indicates all normalization features,

and “others” indicates features other than dictionary and normalization features.

List boundary features (features focusing on the tag of the character that is immedi-

ately proceeding or following a list token) did not make any statistical significant improve-

ment. Ten-fold cross validation as another evaluation method showed no improvement on

system performance.

Table 4.2: Feature ablation results on PKU test set and the state of the art results for the
open task.

experiment condition F% R% P% RIV ROOV

baseline 94.0 93.2 94.7 94.8 67.0

baseline + D 2 95.5 95.3 95.7 97.0 68.7

baseline + norm 94.6 94.0 95.3 95.1 75.1

baseline + D 2 + norm 96.3 96.2 96.4 97.4 76.5

baseline + D 2 + norm + others 96.6 96.5 96.6 97.5 79.6

baseline + D 2 + others 95.6 95.6 95.7 97.1 70.2

baseline + norm + others 95.3 94.7 95.8 95.8 77.1

baseline + others 94.5 93.9 95.2 95.4 69.9

state of the art for open task [10] 96.9 96.9 96.8 97.6 83.8



Chapter 5

System Gain Prediction

Given a set of external resources, it is very useful if we can predict how well each resource

can help system performance in relevant to other resources. Therefore, we try to define

some metrics for the resource usage prediction, with 26 lists (all external dictionaries,

Japanese and Chinese family name and given name, idiom, people, pattern, geographical

location, music, festival lists, etc.) among the lists we use in this study. We assume that

the unsegmented test set is given. Some of our features (such as normalization features)

only capture the segmentation decision of a sub-word (such as left or right boundaries).

In this case, a correctly identified word, which is the smallest unit to F measure, is the

result of multiple features’ and lists’ simultaneous contribution. We did not include such

complicated cases.

We define three cases for strings, given the specific training set, raw test set, and an

external resource list:

case 1: string that is in the list, in the raw test set, but not in the segmented training

set.

case 2: string that is in the list, and in the segmented training set.

case 3: string that is in the list, and in the unsegmented training set.

For each string in the list, we count the summation of its occurrence in the designated

training set, then accumulate all these counts, and denote the result as token. We also

count the number of strings that exist in the list, and also exist at least once in the

designated training set, and denote this count as type. For each case, we calculate its token

and type separately. For denotation, take the case 1 for example, we use token(case1) for

the former accumulated string tokens, and type(case1) for the latter unique string types.

21
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• Resource Contribution Prediction Metric I

In this metric, we define

scoreI =


type(case1)
token(case1)

, if token(case1) 6= 0

0, otherwise

. (5.1)

The denominator is the count of situations in which features related to this list fire

at testing time. This score describes the stability of the list’s help to the OOV

words. Thus help is more stable when scoreI is higher (which means that for the

same value of token(case1), it is associated with more unique string types), because

even if the system fails to segment some OOV words correctly, it still can possibly

segment other unique OOV words with success.

Figure 5.1 (in which all dictionaries are external) indicates the relationship between

score1 and the system performance in F score. Each data point represents a list.

Hence this metric is not quite successful, as for similar score1 scores (of the four

dictionaries), they result in significantly different system performances.

Figure 5.1: External resources’ contribution prediction metric I.

Therefore, to predict a list’s influence on system performance, we may also need

to know the list tokens’ relationship with the training corpora: such as whether
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features related to the list are well trained, and even if so, whether they are reliable

to the system, due to the fact that the list tokens may follow different segmentation

standard(s) from the training corpora.

• Resource Contribution Prediction Metric II

In this metric, we define

scoreII =


type(case1)
token(case1)

· token(case2)token(case3)
· type(case2), if token(case1) · token(case3) 6= 0

0, otherwise

.

(5.2)

In this metric, beyond the information in scoreI , we included the term type(case2),

which captures the list’s overlap with the words in the training corpora. This reveals

how well features of this list is trained in the system. The term token(case2)
token(case3)

captures

the extent to which different segmentation decisions apply to the same string pieces.

Figure 5.2: External resources’ contribution prediction metric II.

From Figure 5.2 (in which all dictionaries are external) we can see that in this metric,

the score increase monotonically with F score. Each data point represents a list. Hence

with this metric, the resource with higher score2 is prone to make bigger contribution.



Chapter 6

Thai Word Segmentation

To validate that our findings in CWS is language independent, we try to apply our findings

(external dictionaries and ASCII characters, numbers, punctuation normalization are the

most helpful to increase system performance) in CWS to Thai language word segmenta-

tion. Because generating resources lists for relevant normalization requires knowledge of

characters, we only experiment the external dictionaries’ contributions.

6.1 Thai Data

We use the news training set provided by the Thai word segmentation competition In-

terBEST1 2009. It has 1353967 words, 35211 word types, 5667333 characters, and 162

character types. We split the training set into two portions: the first portion is the first

208118 sentences, and we use it to train the Thai word segmenter; the remaining 26014

lines are held out as development set, and we use it for system evaluation. Histogram

plots of the training corpora are in Figure 6.1.

6.2 Experiments and Results

We experimented Thai word segmentation with both “BI” bi-tag tag set, and “SBME”

four-tag tag set. For each dictionary, we only include words whose lengths are smaller

than 17. The baseline system has exactly the same sets of feature templates as the CWS

baseline does. We obtained nine independent external dictionaries from five research

1http://thailang.nectec.or.th/interbest

24
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Figure 6.1: Histogram of Thai training corpora.

centers, which are LEXiTRON2, longdo3 (English-Thai, Japanese-Thai, German-Thai,

French-Thai dictionaries), cettex4(old and new dictionaries), SWATH5, and libthai6. Af-

ter integrating each dictionary into the baseline system in the same way as the Chinese

external dictionary was, we obtain significant system gain for each dictionary with both

bi-tag and four-tag tag set. Selected results on the development set are in Table 6.1

(in which all dictionaries are external), where “all” indicates all mentioned nine dictio-

naries, and“cttex (new)”, “LEXiTRON” are the two dictionaries that made the biggest

independent contribution for both tag sets.

Then we try to apply the system gain prediction metric II (presented in chapter 5) to

Thai word segmentation’s four-tag results (see Figure 6.2). As we see in the figure, the

plot fails to be as clear and intuitive as what we obtained for Chinese. This preliminary

result shows that predicting the resources’ usabilities for Thai is not as straightforward as

for Chinese language.

Firstly, this might be due to the differences of the length of word sequences between

two languages. In PKU corpora, 97% of word tokens, and 99.3% of word types have length

2http://lexitron.nectec.or.th
3http://dict.longdo.com
4http://fr2.rpmfind.net/linux/rpm2html/search.php?query=cttex
5http://www.cs.cmu.edu/ paisarn/software.html
6http://linux.thai.net/projects/libthai
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Table 6.1: Results of Thai word segmentation with external dictionaries.

condition
four-tag bi-tag

F% R% P% F% R% P%

baseline 91.8 92.3 91.3 88.6 89.5 87.6

baseline + cttex (new) 93.1 93.5 92.7 91.8 92.3 91.2

baseline + LEXiTRON 93.0 93.4 92.6 91.3 91.8 90.7

baseline + all (in parallel) 93.6 94.0 93.1 92.6 93.2 92.0

baseline + all (cat together) 92.9 93.3 92.5 91.2 91.7 90.6

no greater than five. In Thai, however, we can see from Figure 6.1 that the size of word

length is generally much larger. Secondly, this may be because of the differences in the

alphabet size between two languages: Thai’s alphabet set (less than 200) is much smaller

than that of Chinese (around 5K in PKU corpora). Finally, for the experiments we have

for Thai word segmentation, each dictionary helps system performance. In this case, we

are in lack of exemplars that fail to make contribution.

Figure 6.2: External resources’ contribution prediction metric II on Thai.



Chapter 7

Conclusion and Future Work

In this work, we explored a variety of external resources’ contributions to CWS. We found

that dictionaries that are not derived from the training corpora are the biggest contributor

to system performance, and thus finding is successfully generalized in Thai word segmenta-

tion. The contribution is the biggest when the dictionary and the training corpora follow

the same segmentation standard. Dictionary that is derived from the training corpora

hurts system performance, even under complicated cross validation scenarios. Also, we

found that normalization of ASCII characters, punctuation, and numbers can increase

system performance.

All other resources do not bring in independent system gain, but they together make

a moderate additional contribution. For some resources (such as Japanese given name),

the test set does not have sufficient relevant OOV words to move the system performance

significantly. For some other resources (such as Chinese family name and Chinese given

name), the words in the list occur massively frequent in the training corpora, so that the

relevant features become unreliable through training.

Given an unknown resource, we tried to predict its usefulness in advance. It turned out

that our prediction metric for CWS failed to generalize well for Thai word segmentation.

The reason is unclear to us. It might be because of the difference of word length or

alphabet size between the two languages. Also, for Thai, as all dictionaries help the

system performance, we do not have exemplars that do not help. All these make the

resource usage prediction cross two languages more difficult.

In the future, we can further work on understanding the key differences between the

word segmentation tasks of Chinese and Thai. This will enable us to better characterize

27
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which resources help and which do not, and further their potential contributions.

To improve the reliability of resources, we can further apply word clustering [16] to

resources prior to incorporating them into the system. Moreover, under the existing

flexible framework, we can further build a joint model for CWS and Chinese POS tagging.
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