
Relationship between acoustic features

and speech intelligibility

Akiko Amano-Kusumoto

M.S., Sophia University, 2002

A dissertation submitted to the faculty of the

Oregon Health & Sciences University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering

December 2010



c© Copyright 2010 by Akiko Amano-Kusumoto

All Rights Reserved

ii



The dissertation “Relationship between acoustic features and speech intelligibility” by

Akiko Amano-Kusumoto has been examined and approved by the following Examination

Committee:

John-Paul Hosom
Assistant Professor
Thesis Research Advisor

Alexander Kain
Assistant Professor

Jan P. H. van Santen
Professor

Marjorie R. Leek
Senior Research Career Scientist
Portland VA Medical Center

iii



Acknowledgements

I thought I was running a 26.2 mile marathon, but turned out to be a lot longer than

a marathon. It seemed it would never end. It would have never ended without all the

support I received.

First of all, I would like to thank my advisor, John-Paul Hosom, who has been by my

side all the time. He gave me advice and suggestion, but never forced me to do things.

He was open to my questions, and asked important questions. He took his time to listen

to my ideas. He never blamed me for the mistakes I made. He encouraged me when the

results turned out badly by saying I was doing interesting research. Thank you for your

guidance and endless support.

I would like to thank my thesis committee members for their valuable comments and

suggestions for my thesis. Thank you to Alexander Kain for giving me insights into speech

signal processing, advice, and stimulating discussions; Jan van Santen for his advice on

statistical analyses; and Marjorie Leek for teaching me that I cannot solve all the problems.

I would like to thank my long-time officemates, Qi Miao and Kristy Hollingshead, for

their support and encouragement. We sure liked our warm office, sharing the moments of

ups and downs together.

I would like to thank my colleagues at the Center for Spoken Language Understanding

(CSLU) for their support and friendship. Thank you to Esther Klabbers for her precious

advice on F0 analysis; Xiaochuan Niu for his code on the initial formant contour model;

Taniya Mishra for coming up the idea of setting a goal every day; Nate Bodenstab for

his constructive advice on my presentations; Pete Jacobs for his difficult questions; Emily

Tucker Prud’hommeaux for offering her voice as a female speaker; Maider Lehr for her

encouragement; and Meg Mitchell for her expertise on phonetic labels and formant correc-

tion. Special thanks to Raychel Moldover for proofreading my papers, asking questions,

iv



giving suggestions, and introducing me to Toastmasters where we practice public speaking

and leadership skills.

The National Science Foundation, with its financial support (NSF Grants: BCS-

0826654 and IIS-0915754), made it possible to continue my research at OHSU.

I would like to thank all the subjects who participated in my perceptual experiments,

as well as those who helped me with recruiting subjects. I tested a total of 145 people

who were recruited from the Elsie Stuhr Center, Hillsboro Senior Center, Portland State

University, Department of Biomedical Engineering at OHSU, CSLU, and my personal

connections.

Last, but not least, I would like to thank my family for their love and encouragement.

Thanks to my parents and parents-in-law for allowing me to stay in the United States.

Thank you to my sister, Yoko, for her honest advice. Thank you to my husband, Yuichi,

for his sacrifice, continuous support, and unconditional love.

v



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Specific aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Conversational (CNV) and Clear (CLR) Speech . . . . . . . . . . . . . . . . 6

2.2.1 Intelligibility of CNV and CLR speech . . . . . . . . . . . . . . . . . 7
2.2.2 Acoustic differences between CNV and CLR speech . . . . . . . . . 8
2.2.3 The effects of different speakers . . . . . . . . . . . . . . . . . . . . . 10

2.3 Relationship between acoustic features and speech intelligibility . . . . . . . 11
2.3.1 Prosodic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Summary of acoustic features . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Digital signal processing of speech to increase intelligibility . . . . . . . . . 20
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The importance of spectral and prosodic features to sentence intelligi-
bility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Text materials and recording . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Hybridization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Stage 1: Phoneme labeling . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Stage 2: Glottal closure instants (GCIs) detection . . . . . . . . . . 27
3.3.3 Stage 3: Placement of auxiliary marks . . . . . . . . . . . . . . . . . 27
3.3.4 Stage 4: Phoneme alignment between CNV and CLR speech . . . . 27
3.3.5 Stage 5: Parallelization of original waveforms of CNV and CLR speech 29

vi



3.3.6 Stage 6: Feature extraction . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.7 Stage 7: HYB configuration . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.8 Stage 8: Feature replacement and waveform synthesis . . . . . . . . 30

3.4 Phonetic and acoustic characteristics . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Phonetic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Acoustic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Perceptual experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Normalizing energy of speech and noise . . . . . . . . . . . . . . . . 34
3.5.2 Obtaining SNR–50 level . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Speech corpus verification . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Experiment 3–1: The effects of duration and spectral features from CLR
speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.1 Procedures and apparatus . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Experiment 3–2: The effects of individual features versus combined features
and signal processing artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.1 Implementation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.2 Quality experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.3 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Experiment 3–3: The effects of phoneme insertions from CLR speech . . . . 45
3.8.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.3 Phoneme Confusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The effect of formant contours and phoneme durations on vowel intelli-
gibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Text materials: CVC words . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Speech Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Acoustic analysis of speech materials . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Vowel steady-state values . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 F2 slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



4.3.3 The relationship between F2 steady-state frequencies and vowel du-
rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 The relationship between F2 slope and vowel durations . . . . . . . 57
4.4 Experiment 4–1: Intelligibility of naturally spoken CNV and CLR speech

at different speaking rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Normalizing loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Normalizing F0 contour . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Procedures and apparatus . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Hybridization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Hybridization conditions . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.2 Speech synthesis with HYB formant contours . . . . . . . . . . . . . 68

4.6 Experiment 4–2: The effects of formant contours and phoneme durations
on vowel intelligibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.1 Procedures and apparatus . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Effect of speaking style and speaking rate on formant contours with
limited phoneme contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Method: Modeling formant contours . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Estimating model parameters . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Results of formant contour model . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Characterizing formant shapes in terms of speaking styles and speaking rates 85

5.4.1 Estimated d (t; s, p) parameters . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 Estimated formant target values . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Relationship between model parameters and F2 slope . . . . . . . . 87

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Effect of speaking style on formant contours with a variety of phoneme
contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Text material and recording (CVC words) . . . . . . . . . . . . . . . . . . . 92

6.2.1 Creating CVC words . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



6.2.4 Perceptual validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Acoustic analyses of CVC words . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Formant contour shape . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 Formant steady state values . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.3 Formant transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.4 Phoneme duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.5 Fundamental frequency (F0) contours . . . . . . . . . . . . . . . . . 101

6.4 Formant contour model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Coarticulation function . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Constraints on parameters . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Experiment 6–1: Speaking style dependencies of target formants . . . . . . 103
6.5.1 Estimating model parameters: Style-independent targets . . . . . . . 103
6.5.2 Estimating model parameters: Style-dependent targets . . . . . . . . 104
6.5.3 Results: Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.4 Formant model validation . . . . . . . . . . . . . . . . . . . . . . . . 108
6.5.5 Estimated d (t; s, p) parameters . . . . . . . . . . . . . . . . . . . . . 110
6.5.6 Contribution of the vowel target . . . . . . . . . . . . . . . . . . . . 113
6.5.7 Estimated formant target values . . . . . . . . . . . . . . . . . . . . 114

6.6 Experiment 6–2: Data-driven consonant target . . . . . . . . . . . . . . . . 115
6.7 Discussion: Speaker dependency . . . . . . . . . . . . . . . . . . . . . . . . 117
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Applications of the formant contour model . . . . . . . . . . . . . . . . . .120
7.1 Experiment 7–1: Reducing formant-tracking errors . . . . . . . . . . . . . . 121

7.1.1 Formant target estimation . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.2 Re-estimating coarticulation parameters . . . . . . . . . . . . . . . . 122
7.1.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Experiment 7–2: Detecting formant-tracking errors . . . . . . . . . . . . . . 129
7.3 Experiment 7–3: Extracting F2 slope . . . . . . . . . . . . . . . . . . . . . . 131
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
8.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Constraints and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.1 Assistive listening devices . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.2 Objective measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



8.4.1 Perceptual effects of the formant contour model . . . . . . . . . . . . 142
8.4.2 Speaker dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4.3 Speech perception by elderly listeners . . . . . . . . . . . . . . . . . 144

A IEEE-Harvard sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

B Phonetic feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

C Generic tables by Allen et. al. . . . . . . . . . . . . . . . . . . . . . . . . . .161

D CVC word list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

E Mean estimated consonant target . . . . . . . . . . . . . . . . . . . . . . . .163

Biographical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

x



List of Tables

3.1 An example of the phoneme alignment operation and corresponding paral-
lelization for a hyb-p configuration. The first two columns represent the
phoneme sequence of cnv and clr speech. The third column represents
whether the phoneme or pause is inserted or deleted when the hyb con-
figuration is Phoneme=clr and Non-speech=cnv. In this example, while
the plosive closure /d(^)/ is an exact match, clr plosive release /d(_)/ is
inserted into the cnv speech. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 hyb configurations indicating the source of six acoustic features either from
clr or cnv speech. Experiments 3–1 through 3–3 are conducted testing
eight hyb conditions. Original cnv and clr speech are included in all
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Summary of the values of acoustic features of clr and cnv speech. Mean,
standard deviation (in parentheses) over 70 sentences, p values, and Cohen’s
d effect size are shown. Degree of freedom df are all equal to 69. Asterisks
are shown for significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Summary of the values of formant frequencies of cnv and clr speech. For-
mant frequencies are converted to Bark scale, while bandwidths are mea-
sured in Hz. Mean, standard deviation (in parentheses) over 70 sentences, p

values (degrees of freedom), and Cohen’s d effect size are shown. Asterisks
are shown for significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Average SNR–50 with standard deviations in parentheses obtained in Ex-
periments 3–1, 3–2, and 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Comparison Mean Opinion Score (CMOS) results comparing Implementa-
tions 1 and 2. Asterisks are shown for significance (α= 0.05). . . . . . . . . 44

3.7 The error patterns, in percent, for substitution errors (voicing, manner,
place, and height) and insertion/deletion errors at the phoneme level. . . . 48

4.1 Formant SS values of four vowels in four speaking conditions. Standard
deviations are shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . 53

4.2 F2 slope (Hz/ms) at vowel onset and offset, for four vowels in four speaking
conditions. Standard deviations are shown in parentheses. . . . . . . . . . . 54

xi



4.3 Vowel durations (ms) of four vowels in four speaking conditions. Standard
deviations are shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . 55

4.4 F0 values of clr/fast for the F0 contour model. . . . . . . . . . . . . . . . 59

5.1 Experiment in goodness of fit with different configurations and error rates
(in Bark squared). Cfg. 8 shown in bold font is used for further analysis in
Section 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Number of occurrences (percentage) of the vowels in our speech corpus and
CMU dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Number of occurrences (percentage) of the consonants in our speech corpus
and CMU dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 List of places of articulation and groupings. . . . . . . . . . . . . . . . . . . 93
6.4 Number of occurrences of C1 (left column)–V (top row) combinations in

our speech corpus. C1 is grouped by the place of articulation. . . . . . . . 94
6.5 Number of occurrence of V (left column)–C2 (top row) combinations in our

speech corpus. C2 is grouped by the place of articulation. The transitions
from V to 6 (Plt), 8 (Glt) and 11 (w) are rare in English and not available
in our corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Mean vowel duration (ms) of 8 vowels (standard deviation) in two speaking
styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Average F0 values of cnv and clr speech at the phoneme boundary. Only
voiced consonants (approximants) are averaged over 484 samples per speak-
ing style. Peak F0 values are not necessarily within the vowel. . . . . . . . . 101

6.8 Mean error Es,target (in Bark) and standard deviation in parentheses in
training and test sets. Style-independent II is the result of an increased
amount of training data (described in Section 6.6). . . . . . . . . . . . . . . 105

7.1 The mean error rate (standard deviation) in four conditions. 184 tokens
(or 140 tokens) of cnv speech and 47 tokens (or 95 tokens) of clr speech
for male (or female) are selected based on the threshold of Err1 > 0.4. . . . 127

7.2 The performance rate (%) with several detection thresholds (θ1 = 0.4). . . . 128
7.3 The mean error rate of the F2 slope (Hz/ms) at the vowel onset and offset

positions. The F2 values from autoFrm (Err1), autoFrmModel (Err2),
and handFromModel (Err3) are compared with those of handFrm per
token, averaged over C1 − V and V − C2 results. . . . . . . . . . . . . . . . 131

B.1 Phonetic feature values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xii



C.1 Generic values (Hz) provided by Allen et al. [1]. F4 is given by F3 + 1000
(Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.1 List of 242 CVC words used in Chapters 6 and 7. . . . . . . . . . . . . . . . 162

E.1 Mean consonant target values described in Chapter 6 for both speakers. . . 163

xiii



List of Figures

3.1 Suggested acoustic features and tree structure. (∗FNS is formant-normalized
spectrum.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 An example of hybridization algorithm. . . . . . . . . . . . . . . . . . . . . 26
3.3 Formant frequency of 8 vowels in cnv and clr speaking styles with one

standard deviation in F1–F2 space. . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Intelligibility rates (in percent) in Experiment 3–1. Significant differences

are shwon with asterisks (∗: p < 0.05). . . . . . . . . . . . . . . . . . . . . . 39
3.5 Intelligibility rates (in percent) in Experiment 3–2. Significant differences

are shwon with asterisks (∗: p < 0.05). . . . . . . . . . . . . . . . . . . . . . 43
3.6 Intelligibility rates (in percent) in Experiment 3–3. Significant differences

are shwon with asterisks (∗: p < 0.05). . . . . . . . . . . . . . . . . . . . . . 46
3.7 Tree structures obtained from Experiments 3–1 through 3–3. Significance as

compared with original cnv speech was shown with the asterisks (p < 0.05). 50

4.1 Formant frequencies as a function of vowel duration in four conditions.
Outliers in terms of vowel duration are represented with asterisks. Two
lines show the fitted exponential curves in clr and cnv speaking styles
separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 F2 slope (Hz/ms) frequencies as a function of vowel duration with four
conditions. Outliers in terms of vowel duration are represented as asterisks. 57

4.3 F0 contour model used to normalized F0 values for the four conditions. Red
circles from the left- to right-hand side indicate (1) onset of /w/, (2) onset
of /V /, (3) maximum point of /V /, (4) onset of /l/, and (5) offset of /l/. . 59

4.4 Percent correct rates for four vowels in four conditions (two speaking styles
and two speaking rates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Confusion matrices representing responded and presented vowels on the
horizontal and vertical axes, respectively. The diagonal responses are the
correct answers; the percentage is shown at the center of each circle. . . . . 62

4.6 Percent correct rates as a function of vowel durations for each vowel in four
conditions in Experiment 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiv



4.7 hyb-m condition. The hyb-m contour was obtained by multiplying original
cnv contours with weighting functions (a). Vertical dashed lines in (a) and
(b) represent phoneme boundaries. . . . . . . . . . . . . . . . . . . . . . . 66

4.8 hyb-mt condition. The hyb-mt contour was obtained by multiplying orig-
inal cnv contours with weight functions (a). Vertical dashed lines in (a)
and (b) represent phoneme boundaries. . . . . . . . . . . . . . . . . . . . . 67

4.9 hyb-cd condition. Formant contours (F1 through F4) of the word “wheel”
are shown. Dotted lines are cnv formant contours, and solid lines are the
modified contours. The duration of each phoneme is stretched to match
that of clr speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10 Percent correct rates for five conditions. Significant differences are shown
with asterisks (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001, ∗∗∗∗: p < 0.0001). . 70

4.11 Confusion matrices representing responded and presented vowels on the
horizontal and vertical axes, respectively. The diagonal responses are the
correct answers; the percentage is shown at the center of each circle. . . . . 73

5.1 Examples of coarticulation function with fixed p for each function where
total word length equals to 0.3 (sec). . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The results of formant contour model (Cfg. 10) for the word “wheel” in two
speaking styles (clr and cnv). In all cases, blue vertical dash-dot lines
show the phoneme boundaries, while vertical red dashed lines represent p1

and p2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Mean Es,target values and standard deviations for 21 configurations for the

vowel /i:/. Two conditions are cnv and clr styles. . . . . . . . . . . . . . 82
5.4 Mean Es,target value for each vowel in four conditions. . . . . . . . . . . . . 82
5.5 Average values of coefficient s1 in d1(t; s1, p1) (red) and d2(t; s2, p2) (blue)

functions for four conditions in each vowel. Asterisks (∗) on the right-hand
side indicate significant main effect of the speaking style (p < 0.05). The
significant differences between speaking rates (t-test, p < 0.01) are indicated
with asterisks (∗∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Three sets of formant target values (style-dependent, globally estimated,
and generic target values). The observed data are shown in blue bold (clr

style) and in red italics (cnv style) in all three figures. . . . . . . . . . . . . 88
5.7 Relationship between direct measure of F2 slope and coefficients s1 and s2

in d1(t; s1, p1) (vowel onset) and d2(t;−s2, p2) (vowel offset) functions. All
four speaking styles were combined. . . . . . . . . . . . . . . . . . . . . . . 90

xv



6.1 F2 contour shape from middle of C1 to middle of V (/i:/) for cnv (red solid
lines) and clr (blue dashed lines). All contours are centered at the C1−V

boundary (0ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Formant steady-state values (with ±1 standard deviation) in F1/F2 space

for cnv and clr speech. The phonemes shown with dashed blue lines are
for clr speech, and solid red lines are for cnv speech. . . . . . . . . . . . . 99

6.3 F2 onset slope difference of the vowel /i:/ between clr and cnv speaking
style. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 The results of formant contour model for the word “yes (/j E s/)” of male
speech. Circles (same in (a) and (c)) are the initial values, while crosses
are estimated values with style-dependent estimation (different in (a) and
(c)). The estimated target values are the average of 10 groups per speaking
style from the training set. The coarticulation parameters (s and p) are
adjusted to minimize the error with given target values per token. Blue
vertical dash-dot lines show the phoneme boundaries, while vertical red
dashed lines represent p1 (left) and p2 (right). . . . . . . . . . . . . . . . . 106

6.5 Histograms of s values for each speaker. . . . . . . . . . . . . . . . . . . . . 107
6.6 Histograms of vowel contribution for each speaking style and each speaker. 108
6.7 Estimated style-independent vowel target values in F1−F2 space. The

means of each phoneme from style-independent target estimation are shown
in black crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Estimated style-independent consonant target values in F1−F2 space. Se-
lected consonants are shown for C1 (filled blue: /t/, /õ/, /l/, /j/ and /w/)
and C2 (open red: /t/, /õ/ and /l/). . . . . . . . . . . . . . . . . . . . . . . 109

6.9 Estimated style-dependent vowel formant target values in F1−F2 space for
cnv style (open red) and clr style (filled blue). The means of each phoneme
from style-dependent target estimation are shown in black crosses, while the
means from style-independent target estimation are shown in black squares. 110

6.10 Estimated style-dependent C1 target values: Selected consonants (/t/, /õ/,
/l/, /j/ and /w/) are shown in F1−F2 space for cnv style (open red) and
clr style (filled blue). The means of each phoneme from style-dependent
target estimation are shown in black crosses, while the means from style-
independent target estimation are shown in black squares. . . . . . . . . . 111

xvi



6.11 Estimated style-dependent C2 target values: Selected consonants (/t/, /õ/
and /l/) are shown in F1−F2 space for cnv style (open red) and clr style
(filled blue). The means of each phoneme from style-dependent target esti-
mation are shown in black crosses, while the means from style-independent
target estimation are shown in black squares. . . . . . . . . . . . . . . . . . 112

6.12 Observed F2 contours for C1= approximant, V = /E/ in both cnv (red solid
lines) and clr (blue dashed lines) speech. All contours are centered at the
C1 − V boundary (0ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.13 Estimated style-independent consonant target values (showing only bilabi-
als and alveolars) in F1−F2 space with larger amount of training data. The
blue and red fonts represent C1 and C2 values, respectively. The means of
each phoneme from style-independent target estimation are shown in trian-
gles (C1) and squares (C2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 The steady-state values of autoFrm and handFrm for two speakers. cnv

and clr tokens are shown in red and blue, while mean values are shown in
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Estimated vowel target from the training data using autoFrm (blue) and
handFrm (red). Formant targets are style-independently estimated. The
black markers show the mean of 20 values. . . . . . . . . . . . . . . . . . . . 123

7.3 An example of the contour model before and after re-estimatation of the
coarticulation parameters. The word is “fun (/f 2 n/)” (male speech) in
cnv style. Blue vertical dash-dot lines show the phoneme boundaries, while
vertical red dashed lines represent p1 (left) and p2 (right). . . . . . . . . . . 124

7.4 Histograms of Err1 through Err4 for the male speaker. Filled bars are
the tokens that have Err1 ≤ 0.4, and open bars are the tokens that have
Err1 > 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Histograms of Err1 through Err4 for the female speaker. Filled bars are
the tokens that have Err1 ≤ 0.4, and open bars are the tokens that have
Err1 > 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 ROC curve for two speakers. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.7 Histograms of δ[tcv] and δ[tvc] for the male speaker for the selected tokens

(Err1 > 25 Hz/ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.8 Confidence interval of the δ[tcv] and δ[tvc] for the male speaker. . . . . . . . 133
7.9 Histograms of δ[tcv] and δ[tvc] for the female speaker for the selected tokens

(Err1 > 25 Hz/ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.10 Confidence interval of the δ[tcv] and δ[tvc] for the female speaker. . . . . . . 135

xvii



8.1 Formant contours are modeled with style-dependent target values and coar-
ticulation functions (d(t; s, p)), which are from either clr or cnv speech
with cnv duration. The color red is associated with cnv, while blue is
with clr speech. The word wheel is shown in this example. . . . . . . . . . 143

xviii



Abstract

Relationship between acoustic features and speech intelligibility

Akiko Amano-Kusumoto

Supervising Professor: John-Paul Hosom

A number of studies have shown that the intelligibility of speech spoken deliberately

clearly, referred to as “clear speech” or clr speech, is higher than that of speech spo-

ken during typical communication, referred to as “conversational speech” or cnv speech.

Significant changes in the acoustic features of clr speech, as compared to those of cnv

speech, have been found in previous studies. However, little is known about the rela-

tionship between speech intelligibility and the individual sets of acoustic features that

are typical in clr speech. Our long-term goal is to better understand and model those

features that contribute to speech intelligibility for different groups of normal-hearing lis-

teners. One objective of this thesis is to identify acoustic features that contribute to the

increased intelligibility of clr speech over cnv speech, which we refer to as “relevant fea-

tures” for normal-hearing listeners. Our hypothesis is that some acoustic features are more

relevant to increased speech intelligibility than others. We have proposed a “hybridiza-

tion” algorithm that replaces a single feature, or a combination of features, of cnv speech

with those of clr speech, in order to examine the relative contribution of the features to

intelligibility. “Hybridized” (hyb) speech is the synthesized speech whose features consist

of both cnv and clr features.

In perceptual experiments, we confirmed that it is possible to obtain intelligibility of

xix



hyb speech that is higher than the intelligibility of cnv speech. In particular, replacing

a combination of the acoustic features of duration and spectrum from cnv speech with

the corresponding features extracted from clr speech yielded higher intelligibility than

the intelligibility of the baseline cnv speech. In addition, replacing formant frequencies of

cnv speech with those of clr speech was also effective to improve vowel intelligibility of

/i:/ and /ei/ without changing the phoneme duration. On the other hand, we found that

a combination of energy, fundamental frequency (F0), phoneme sequence, and non-speech

(pause) patterns is not a contributing factor to improved intelligibility of clr speech for

the speaker we studied.

To further understand the relationship between phoneme duration and spectrum (i. e.

formant frequencies), a formant contour model was developed by decomposing a formant

contour into formant targets and coarticulation functions. The effect of speaking style on

formant targets was examined using estimated model parameters. The results of model fit-

ting experiments using consonant-vowel-consonant (CVC) words from two speakers showed

low fitting error rate with both style-independent (error: 0.3090–0.3834Bark) and style-

dependent (error: 0.2780–0.3712Bark) targets. At last, we examined methods to reduce

formant-tracking errors and to improve the accuracy in extracting F2 slope as applications

of this formant contour model.
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Chapter 1

Introduction

1.1 Specific aims of the thesis

A number of studies have shown that the intelligibility of speech spoken deliberately

clearly, referred to as clear (or clr) speech, is higher than that of speech spoken during

typical communication, referred to as conversational (or cnv) speech. Significant changes

in the acoustic features of clr speech, as compared to those of cnv speech, have been

found in previous studies. However, little is known about the cause of increased speech

intelligibility and the relationship between speech intelligibility and sets of acoustic fea-

tures that are typical in clr speech. In this thesis, we examine which acoustic features

contribute to speech intelligibility.

One objective in this thesis is to determine which acoustic features of CLR

speech are relevant to increased intelligibility. Up until this point, no specific

acoustic features have been found which directly contribute to the increased intelligibil-

ity of clr speech. The hypothesis is that some acoustic features are more important to

increased intelligibility than others (relevant features). We examine differences in intelli-

gibility of the relevant features with young listeners (age: 18–40) with normal hearing. To

analyze the relative contributions of a variety of acoustic features to speech intelligibility,

we propose a “hybridization” (hyb) algorithm that replaces a single feature, or a combi-

nation of features, of cnv speech with those extracted from the clr speech, using parallel

recordings of sentences. Upon waveform synthesis of these “hybrid” (hyb) features, we

examine the resulting hyb speech in human perceptual experiments to evaluate relative

speech intelligibility levels.

1
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Our specific aims were:

Specific Aim 1: To identify high-level acoustic features that are relevant to

increased intelligibility of CLR speech. By using either sentences or consonant-

vowel-consonant (CVC) words for the test stimuli (one male speaker), depending on the

acoustic features to be evaluated, we replaced a single feature or a combination of features

of cnv speech with those of clr speech using the hyb algorithm, and synthesize hyb

speech. We assessed the intelligibility of the hyb speech through perceptual experiments

using young listeners (age: 18–40) with normal hearing. In this study, we focused on a

single feature or a combination of features such as phoneme duration, energy, fundamental

frequency (F0), and spectrum (more precisely, formant frequencies). If the hyb speech

had significantly higher intelligibility than the baseline cnv speech, we defined the features

that were extracted from clr speech as relevant features.

Specific Aim 2: To develop a model of relevant features that have been

identified as a result of Specific Aim 1. A combination of formant contour and

phoneme duration have been identified as relevant features as a result of Specific Aim 1. We

develop a model of the formant contour with a linear combination of formant target values

and coarticulation functions. We estimated model parameters by minimizing the error

between the modeled formant contour and observed data on limited context /w/–/V /–

/l/ (one male speaker) as well as general CVC words (one male and one female speakers).

We characterized differences in formant target values and coarticulation functions based

on speaking style and speaking rate. The style-independent estimated formant targets

yielded the first known report of unvoiced consonant targets with a data-driven approach,

as opposed to a rule-based approach.

Specific Aim 3: To develop applications of the formant contour model. The

automatic extraction of formant frequencies is an important process for speech analysis and

formant-based speech synthesis. Especially, extracting F2 transition (or slope) information

accurately is important, since F2 transition is used to diagnose speech-related disorder

(e. g. dysarthric speech). As an application of the contour model, we have proposed

a method to apply above-mentioned formant contour model to reduce formant-tracking

errors made by existing formant-tracking software, and to extract F2 slope from the model.
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First, we examined whether we can estimate model parameters using the automatically-

extract formant contour, which might contain formant-tracking errors. Then, we reduced

the formant-tracking errors using the estimated contour model, and detected tokens that

had formant-tracking errors. Finally, the extracted F2 slope from the model was compared

with that of manually corrected formant contours.

1.2 Organization of the thesis

Chapter 2 provides a literature review of the studies that relate to speech intelligibility

and acoustic features. We list our expectation of which acoustic features may or may

not be relevant to increased intelligibility of clr speech. Also, existing signal processing

algorithms to improve intelligibility are included in this chapter. In Chapter 3, we identify

high-level acoustic features that are relevant to increased intelligibility of clr speech

(Specific Aim 1). We propose a hybridization (hyb) algorithm to identify acoustic features

that are relevant to increased intelligibility. We examine a single feature or combinations

of high-level acoustic features (i. e. prosodic and spectral features) to verify that (1) we

can improve speech intelligibility by hybridizing acoustic features of clr speech over the

baseline speech and (2) we can synthesize the hyb speech without introducing major

artifacts. In Chapter 4, we continue to identify relevant features on limited /w/–/V /–/l/

word material (Specific Aim 1). Specifically, we describe the characteristics of a formant

contour as part of the spectral feature and its relationship with phoneme durations. We

determine whether vowel intelligibility can be improved by modifying formant steady-

state and formant transitions independent of the phoneme duration, and whether the

combination of formant frequencies and phoneme durations can be modified to maximize

intelligibility. The results of a series of perceptual experiments using young listeners are

discussed in both Chapters 3 and 4.

Chapter 5 describes the methodology of the formant contour model and preliminary

results (Specific Aim 2). With limited data (/w/–/V /–/l/ word), we further characterize

the effect of speaking style and speaking rate on formant contour by examining model

parameters. In Chapter 6, we expand the number of phonemes in a database, so that the
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context-independent formant target values are estimated using the formant contour model.

The dependency of speaking style on formant targets, estimation of data-driven consonant

targets, and speaker differences are discussed in this chapter. We elucidate whether a

speaker aims at either different positions of the articulators based on the speaking style,

or global positions regardless of the speaking style using modeled parameters.

Chapter 7 presents an application of the formant contour model to reduce formant-

tracking errors (Specific Aim 3). The first step is to extract formant model parameters

using an automatically-extracted formant contour. Next, the method to analyze the error

and binary classification of detecting tracking errors are described. Finally, the results

from the error analysis, error detection threshold, and F2 slope distribution of various sets

of the data are discussed.

Finally, Chapter 8 concludes this thesis by providing the contributions of the thesis,

possible applications, limitations of our findings, and future directions in this area of

research.



Chapter 2

Background

2.1 Introduction

A number of studies have shown that the intelligibility of speech spoken deliberately

clearly, referred to as clear (or clr) speech, is higher than that of speech spoken during

typical communication, referred to as conversational (or cnv) speech. Significant changes

in the acoustic features of clr speech, as compared to those of cnv speech, have been

found in previous studies. However, little is known about the cause of increased speech

intelligibility and the relationship between speech intelligibility and sets of acoustic fea-

tures that are typical in clr speech. In this chapter, we provided a review of those studies

regarding the importance of acoustic features to speech intelligibility.

In the next section “Conversational and clear speech” (Section 2.2), we summarize

prior work that studied differences between cnv and clr speech, for a variety of speakers,

in terms of speech intelligibility and in terms of acoustic characteristics. The speech intelli-

gibility levels measured in these studies include phoneme, word, and sentence intelligibility,

with and without semantic context. While intelligibility at one level (i. e. sentence) can

not be used to reliably predict intelligibility at a different level (i. e. word), there is a

dependency between phoneme, syllable, word, and sentence intelligibility levels [12]. For

example, while the identity of an unclear phoneme may be recovered from a larger (e. g.

word) context, phoneme intelligibility does impact word intelligibility. Therefore, we do

not restrict this review of prior work to only one level, but we include results from all

levels. General hypotheses about the importance of acoustic features that result from this

review of prior work then have to be tested under more controlled circumstances, such as

5
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with specific test materials and noise conditions.

In the section “Relationship between acoustic features and speech intelligibility” (Sec-

tion 2.3), we list a variety of acoustic features, grouped by prosodic and spectral features,

and their correlation with speech intelligibility. We suggest whether each feature could

contribute to increased intelligibility. The studies included in this section are not limited

to studies of the intelligibility of clr speech, but include studies that investigate speech

intelligibility more generally. Finally, in the section “Digital signal processing of speech to

increase intelligibility” (Section 2.4), we summarize existing signal-processing techniques

to improve speech intelligibility.

2.2 Conversational (CNV) and Clear (CLR) Speech

Conversational speech is the speech elicited when speakers are instructed to “speak in the

same manner as you would during an ordinary conversation” [79]. On the other hand,

clear speech, which is the outcome of a clear speaking style, is obtained by instructing

speakers to “speak clearly, as you would when talking to hearing-impaired listeners” [79].

These two types of speech, defined here as cnv and clr respectively, have commonly been

referred to as “conversational” and “clear” [e. g. 80]. However, these labels are ultimately

problematic since the term “clear” might imply intelligibility of the perceived speech,

whereas the term “conversational” might imply speech produced as part of a dialogue.

It is also possible that “conversational” speech has, in some cases, intelligibility equal to

that of “clear” speech. Therefore, in this thesis, we avoid confusion by using the terms

cnv and clr to specifically refer to only the style of speech generated in response to the

instructions mentioned.

An increase in loudness when people speak in the presence of background noise is called

the Lombard voice reflex [59]. Lombard speech is the outcome of the Lombard reflex, which

is produced when the noise is introduced to the speaker, while clr speech is produced

when the speaker believes that the listeners have hearing difficulty. Both speaking styles

have an effect on intelligibility, so that the resulting speech can be more easily understood

by listeners (or speakers themselves). A number of studies have investigated the effects
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of Lombard speech on speech intelligibility, as well as the acoustic features of Lombard

speech [83, 24, 47, 100]. However, it is not known how the acoustic properties of clr

speech and Lombard speech differ. In this thesis, the intelligibility and acoustic features

of only clr speech are investigated. In this section, we review prior studies that have

examined the intelligibility of cnv and clr speech under different conditions. Acoustic

differences between cnv and clr speech are discussed, as well as the effects of different

speakers.

2.2.1 Intelligibility of CNV and CLR speech

Many studies have tested intelligibility of cnv and clr speech under various condi-

tions [e. g. 79, 30, 29, 54, 65, 15, 67]. The increased average intelligibility of clr speech,

as compared to cnv speech, has been shown in studies of different types of listeners,

including normal-hearing listeners aged 18–32 [54, 65, 29, 67], normal-hearing listeners

aged 61–88 [40], hearing-impaired listeners aged 60–89 [79, 89, 105], simulated hearing-

impaired listeners aged 19–33 [67], cochlear-implant users [65], and school-age children

with and without learning disabilities [15].

In almost all cases, the average intelligibility of clr speech was higher than that of

cnv speech, across speakers. For example, intelligibility differences for hearing-impaired

listeners evaluating nonsense sentences spoken in the cnv and clr speaking styles were

found to be significant, with a difference of about 17 percentage points [79]. Picheny et

al. [79] concluded that the clr speech advantage was independent of listener, presentation

level, and frequency-gain characteristics. On the other hand, Ferguson and Kewley-Port

later reported that the clr speech benefit can be listener specific [30]. Their results

showed that vowel intelligibility of clr speech was not higher than cnv speech for elderly

hearing-impaired listeners when identifying the front vowels. The authors speculated that

this result may have been because increased F2 values were in a region where the hearing-

impaired listeners had a sloping hearing loss (i. e. 2000–2500Hz). Similarly simulated

hearing-impaired listeners performed better only for distinguishing sibilants in /s/-/S/,

and /z/-/Z/ pairs with a clr speaking style, and had decreased intelligibility for voiceless

non-sibilants in /f/-/T/ pairs in perception of fricative consonants [67]. These studies
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showed that the benefit from a clr speaking style was dependent on the characteristics of

a group of listeners, namely whether they have hearing loss and type of hearing loss [30, 67].

Intelligibility differences between cnv and clr speech have been demonstrated on a

variety of speech materials: vowels in /b/–/V /–/d/ context [30], VCV syllables identifying

fricatives [67], nonsense sentences [e. g. 79, 78], and meaningful sentences [14, 89]. Sentence

level materials are more similar to everyday communication environments, while word

level material with nonsense syllables provides more control over the phonemes that are

evaluated. The availability of semantic cues, which are present in meaningful sentences,

is an important factor that influences speech intelligibility [37]. Listeners can compensate

for deteriorated speech by using semantic cues. Elderly listeners are relatively better at

utilizing semantic cues than younger listeners, since linguistic knowledge is well preserved

with age, although aging can result in deteriorated speech understanding in the presence

of background noise [36, 82, 96, 108]. It is important to note that speech intelligibility at

the phoneme level should not be used to predict sentence-level intelligibility.

As shown in [30], the benefit from the clr speaking style might be different for young

listeners (age: 20–23 years) with normal hearing and elderly listeners (age: 60–89 years)

with hearing impairment. Ferguson and Kewley-Port concluded that the intelligibility

difference between cnv and clr speech varies according to the listener’s age and hearing

status (with or without hearing impairment). In summary, speech intelligibility of cnv

and clr speech has been examined using various speech materials and various listener

groups. In general, the average intelligibility of clr speech is higher than that of cnv

speech, although age and hearing status may affect the differences. In this thesis, we focus

on testing young listeners aged 18–40.

2.2.2 Acoustic differences between CNV and CLR speech

Previous work has examined acoustic differences between cnv and clr speech [15, 80, 55,

30]. Although these previous findings were not always in agreement because of variability

in speakers, speech materials, and analysis methods, we review the results that investigated

acoustic differences. Major findings can be grouped according to prosodic (a combination

of fundamental frequency, energy, and phoneme duration), spectral (such as formant and
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formant-normalized spectrum), and phonological features.

For prosodic features of clr speech, the fundamental frequency (F0) generally showed

a slight increase in mean and variability (or range) [80, 15, 55]. The consonant-vowel

energy ratio (CVR) was increased in clr speech, particularly for stops and fricatives (i. e.

energies of the consonants had greater relative energy in clr speech) [15]. In another

study, an increased CVR was found only in affricates of clr speech [55]. Picheny et

al. [80] reported greater root-mean square (RMS) intensities for unvoiced stop consonants

in clr speech than in cnv speech. Phoneme durations were lengthened, especially in the

tense vowels /i:/, /u/, /A/, and /O/ [80, 30, 31]. Pause durations were longer and their

occurrence was more frequent. As a result of prolonged phoneme durations and increased

pause durations, the speaking rate was significantly decreased from 160–200 words per

minute (wpm) in cnv speech to 90–100 wpm in clr speech [80, 55]. Increased amplitude

modulation for low modulation frequencies (up to 3–4Hz) of clr speech was also found on

a limited number of speakers [55]. We interpret this to mean that the depth of envelope of

the clr speech signal was amplified; therefore, syllables were better separated from each

other. The duration between the time of the burst and the onset of the voicing has been

defined as voice onset time (VOT). One of the talkers showed VOTs for voiceless stop

consonants increased in clr speech, which led to increased differences between voiced and

voiceless stop consonants [55].

For spectral features of clr speech, vowel formant frequencies showed an expanded

vowel space [80, 30, 15]. Long-term average spectra had higher energies at higher frequen-

cies [55], which can be interpreted as decreased spectral tilt. Although formant under-

shoot was observed with /w/–/V /–/l/ contexts in both cnv and clr speech, the amount

of second formant displacement from the target was significantly less in clr speech. The

formant displacement was dependent on vowel duration more for the lax vowels for both

cnv and clr speech, similar to the findings from Picheny et al. [80] that the formant

frequencies showed more variation in lax vowels [68].

For phonological features, studies have shown a number of differences between cnv

and clr speech. Vowel reduction (i. e. vowels becoming schwa-like), degemination (i. e.

two similar phonemes merged into one sound), and alveolar flaps occurred more often
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in cnv speech. On the other hand, bursts of the stop consonants in word final position

tended to be released more often in clr speech. Also, sound insertion of a schwa after a

voiced consonant occurred more often in clr speech [80, 55].

As a summary of acoustic differences, we conclude that prosodic, spectral, and phono-

logical features show differences between cnv and clr speech. The following are general

trends among the studies: (1) F0 mean and range for clr speech are increased relative to

cnv speech, (2) phoneme durations are longer in clr speech, (3) amplitude modulation

is increased for clr speech, (4) vowel spaces are increased in clr speech, (5) there are

higher energies at higher frequency regions in clr speech, and (6) phoneme insertions

(e. g. schwa) occur more often in clr speech. Even though many features are reported as

being different between the two speaking styles, different speakers in each study showed

different acoustic-phonetic effects. In the next section, the effects of different speakers on

speech intelligibility are discussed.

2.2.3 The effects of different speakers

A number of studies have looked at the effects of different speakers on the intelligibility

of clr speech [29, 89, 18]. It has been shown that both young and elderly speakers

need minimal instruction and practice in producing cnv and clr speech [89]. However,

longer-term training in producing clr speech can lead to changes in more types of speech

parameters, more stable changes, and better understanding of speech by listeners with

hearing loss [18]. Although simple instructions for eliciting clr speech yielded increased

intelligibility, training in producing clr speech caused substantial changes in clr speech

features; people with hearing loss performed as well as normal hearing listeners when

listening to a speaker who received clr speech training [18].

Prior work that found different speakers employ different strategies to produce clr

speech [30] led to a study examining 41 speakers producing /b/–/V /–/d/ utterances [29].

Ferguson demonstrated significant speaker differences in vowel intelligibility for normal-

hearing listeners [29], but the only factor that was found to be correlated with the increased

intelligibility of clr speech was gender, while other factors, such as speakers’ age and

communication experience with hearing-impaired listeners, were not. Also, Ferguson and
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Kewley-Port [31] demonstrated that “atypical talkers” produced significant perceptual clr

speech benefit over the cnv speech, but did not present spectral and durational effects, and

vice versa. Bond and Moore found that characteristics of these least-intelligible speakers

revealed shorter word and vowel durations, the least differentiated vowel spaces, minimal

cues for consonantal contrasts (e. g. the VOT in stop consonants), and the most varied

amplitude of stressed vowels [11].

It is unclear how the acoustic features from different speakers affect speech intelligi-

bility. The reason for less intelligible speech might not be the result of one “ambiguous”

feature, but a combination or interaction of several features. In this thesis, we focus on

examining relevant features from one speaker (Specific Aim 1). The speaker-dependency

of the relevant features (whether a set of relevant features from one speaker is applicable

to another speaker) will be examined in the future. It will be important to determine if

the strategies that one speaker utilizes to produce increased intelligibility are effective for

different speakers (Section 8.4.2).

2.3 Relationship between acoustic features and speech in-

telligibility

A number of studies have investigated the relationship between acoustic features and

speech intelligibility by evaluating a number of talkers who produced a range of speech

intelligibility levels. Some of these studies have computed the correlation between changes

in a certain acoustic feature (e. g., fundamental frequency) and speech intelligibility [e. g.

38]. Other studies have investigated the relationship between stimulus variability and

spoken word recognition [95]. In this section, we described acoustic features and their

relationship to intelligibility, classified into prosodic and spectral features as described in

Section 2.2.2. We summarized this section by listing all the acoustic features which may

(or may not) contribute to an increase in speech intelligibility. The studies covered in this

section are not limited to the intelligibility of clr speech, but are more general studies of

acoustic features and speech intelligibility [16, 38, 95].
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2.3.1 Prosodic features

Fundamental Frequency (F0)

The relationship between F0 and speech intelligibility has been investigated in many stud-

ies [e. g. 16, 38, 94, 31]. Bradlow et al. [16] found that there was no correlation between

mean F0 and sentence intelligibility when gender was taken into account. Manipulating

F0 values of synthesized speech with a global 10%, 20%, or 30 % decrease, or a 10 %,

20 %, or 30 % increase did not have an impact on word identification rate [94]. According

to the phonetic relevance hypothesis of Sommers and Barcroft [94], these results suggest

that F0 mean is not relevant to intelligibility.

The range of F0 (the difference between maximum F0 and minimum F0) was found in

one case to be significantly correlated with sentence intelligibility across a set of 20 speak-

ers [16], while Hazan and Markham [38] did not find significant correlations between F0

range and word intelligibility. These two studies had several differences, including speech

material (sentence versus word intelligibility), measurement of F0 values (logarithmic ver-

sus linear scale), and different speakers.

The question of whether F0 is an important cue for English phoneme identification

still remains debatable. Klatt [53] stated that English vowels can be described in terms

of the frequencies of the lowest three formants and formant transitions, regardless of F0

values. Also, according to O’Shaughnessy [76], in a nontonal language such as English,

F0 is virtually independent of phoneme identity. A study by Hoemeke and Diehl [43],

however, showed that perception of vowel height is influenced by the distance between F0

and F1. The relationship between F0 and F1 is not reflected in the F0 mean or range, and

so the impact of F0 on intelligibility may be characterized by a more complex relationship.

While clr speech usually shows higher mean F0 values, as shown in Section 2.2.1 [e. g.

80], the relationship between F0 values and speech intelligibility is still unclear.

Energy

Two types of energy measurement have been considered in a number of studies: one is

the relative energy ratio between consonants and neighboring vowels, or the consonant-

vowel-ratio (CVR), and the other one is overall energy. Hazan and Markham [38] found
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no significant correlation between word intelligibility and CVR for nasals, fricatives, or

stop consonants in naturally-produced speech. Hazan and Simpson [39] did demonstrate

that artificial enhancement of the CVR leads to improved intelligibility (on the order of 10

percentage points) at both the VCV word and nonsense sentence level. They concluded,

however, that it is not straightforward to determine which consonants to amplify or the

appropriate level of amplification. Furthermore, the amount of enhancement required to

improve intelligibility is much greater than can be produced by the human speech pro-

duction system. Even though the CVR was increased for stop release burst and fricatives

in clr speech as compared with cnv speech [15] (Section 2.2.1), we conclude from these

studies of energy that the CVR may not contribute to increased speech intelligibility of

naturally-spoken speech. However, artificial enhancement of the CVR could be an effective

method to improve intelligibility.

The overall energy (intensity) of the test stimuli is one of the factors that significantly

affects intelligibility [32]. Because overall intensity has a known impact on intelligibility

and is typically not a feature of interest, most studies normalize the overall amplitude

for both cnv and clr speech to the same value. Despite this energy normalization, clr

speech is still generally more intelligible than cnv speech; therefore, we conclude that

there are other features contributing to increased speech intelligibility.

Duration

A number of studies have looked at the effect of duration (at the phoneme, word and

sentence level) on speech intelligibility [54, 16, 38, 105]. Monosyllabic word duration was

found to be positively correlated with word intelligibility [38]. On the other hand, Bradlow

et al. [16] did not find speaking rate to be correlated with sentence intelligibility. In this

study, speaking rate was measured from overall sentence duration, which may be different

from speaking rate measured from individual word duration. Varying speaking rate, both

naturally and digitally, has resulted in impaired identification of spoken words, which

supports the importance of speaking rate for intelligibility [94]. The degree of correlation,

if any, may depend on the definition of speaking rate.

In a study from Krause and Braida [55], even when speaking rates were matched in
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cnv and clr speaking styles (with differences of no more than 25 wpm), clr speech still

had higher intelligibility. (For the normal rate, cnv speech was 45 % intelligible, while clr

speech was 59% intelligible). They concluded that clr speech has acoustic differences

other than speaking rate that are inherently different from cnv speech.

Hillenbrand et al. [41] stated that duration is an important cue for vowel identity.

Changing the vowel duration of /hVd/ syllables degraded vowel identity, and perception

of the following vowel contrasts were significantly affected: (/A/–/O/–/2/), and (/æ/–/E/).

Bradlow et al. [16] found a positive correlation between stop closure duration and rate of

/d/ detection as in “walled town”). A long duration of /s/ relative to the surrounding

vowels (as in “play seems”) led to syllable affiliation (“place seems”). This study showed

that inter-segmental timing is important for speech intelligibility.

It should be noted that the phoneme-level perceptions [e. g. 41] in nonsense syllables

could be less important in the case of word- or sentence-level perception, but in a controlled

experiment at the phoneme level we should pay attention to inter-segmental timing. We

speculate that one reason why stretching phoneme duration uniformly does not improve

speech intelligibility [81] is that the naturalness of inter-segmental timing is disrupted. It

may be possible to reduce errors in the inter-segmental timing of synthetic or modified

speech by taking the duration of each phoneme from naturally-spoken clr speech [e. g.

105], as reported in Section 2.4.

In summary, even though many studies have been conducted in terms of phoneme,

word, and sentence duration, the findings are not all in agreement. Therefore, it is difficult

to conclude whether speaking rate alone, or duration alone, are acoustic features that are

responsible for the increased speech intelligibility of clr speech.

Pauses

A combination of phoneme duration and pauses determines speaking rate, which has been

studied as one acoustic feature. Krause and Braida [55] found that when they controlled

the speaking rate in cnv and clr speech, the pause distribution (frequency and duration)

was nearly equivalent in both cnv and clr speech. They concluded that pause duration

and frequency are not necessary components of increased speech intelligibility. Krause and
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Braida [55], however, tested young (aged 18 to 29 years) listeners with normal hearing

in their perceptual experiments. We speculate that people with hearing loss or elderly

listeners (over 60 years) may be able to get benefit from frequent pauses and longer pause

durations. The importance of pauses still needs to be investigated further in the future,

based on the listeners’ age and hearing status.

Amplitude Modulation

The temporal envelope may play an important role in speech intelligibility [25, 26]. Drull-

man et al. [25, 26] suggested that amplitude modulation in the range between 4Hz and

16 Hz is the most important for sentence intelligibility, and that amplitude modulation

as low as 2Hz is important for phoneme identification. Liu and Zeng [66] examined the

importance of the temporal envelope and fine temporal structure (the complementary set

to the temporal envelope for representing amplitude) on speech perception in “auditory

chimera” speech. Their conclusion was that the temporal envelope contributes more to

the clr speech advantage at high signal-to-noise ratios, while the temporal fine structure

contributes more at low signal-to-noise ratios. However, the intelligibility of the auditory

chimera was poorer than that of the original cnv speech. Therefore, it is important to

mention that the presence of processing artifacts noted by the authors might have in-

fluenced their findings. Similarly, the results from Krause and Braida [56] showed that

altering the temporal intensity envelope had detrimental effect on intelligibility due to

processing artifacts, although increased modulation spectra of clr speech was reported

previously [55]. In conclusion, if the processing artifacts can be minimized by altering

the temporal intensity envelope, the importance of amplitude modulation can be further

investigated in the future.
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2.3.2 Spectral features

Formant Frequencies

The importance of formant movements for speech intelligibility has been examined us-

ing naturally-produced speech, synthesized speech with original formants, and flat for-

mants [42]. The synthesized signals with original formants had a higher vowel identifi-

cation rate than signals with flat formants, indicating that formant movement plays an

important role in vowel identification. Another study by Smits et al. [93] showed that the

formant transitions associated with prevocalic voiced stops are more effective than the

bursts of the same stops for stop identity, despite the fact that the relative importance of

formant transitions was shown to be highly dependent on the vowel context.

Turner et al. [104] investigated the effect of lengthening formant transitions of the

stop consonants on synthesized syllables with hearing-impaired listeners. As the formant

transition region of synthetic speech was lengthened (with a minimum of 5 ms and a

maximum of 160ms), the stop identification rates increased rapidly and were close to

perfect performance for transitions 20 ms and longer for normal hearing listeners, while not

all hearing-impaired listeners showed improvement with lengthened formant transitions.

They concluded that the more severe a listener’s hearing loss, the less benefit they obtained

from lengthened formant transitions [104].

Formant undershoot of the second formant frequency has been identified in the vowels

/i:/, /I/, /E/, and /ei/ for different speaking styles, including clr speech, but undershoot

is less dramatic in the clr speech style than in the cnv speaking style [68]. Chen [19]

also reported that in his CVC materials, the first and second formant frequencies of tense

vowels tended to reach their target frequencies and to have less variance in clr than in cnv

speech. However, Krause and Braida [55] showed that formant values extracted from the

vowel midpoints were not closer to the formant target frequencies nor less variant in clr

speech spoken at cnv speaking rate (clr/normal) than in cnv speech. Authors stated

that the formant contour of clr/normal speech might have reached to the formant target

frequencies closer than cnv speech, and that measurement at only one time point might

not be sufficient to capture the differences. They speculated that listeners might rely on
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the entire formant movement throughout a vowel rather than focus on the midpoint of a

vowel or the transition only. Studies on the size of the vowel space indicate that speakers

with larger vowel spaces are more intelligible than speakers with reduced spaces [38, 16].

In particular, speakers who had a wide F1 range (defined as the difference between F1 for

/i:/ as in “easy” and F1 for /A/ in “pot”) appeared to have higher intelligibility scores than

speakers with a smaller F1 range. The F2 range (defined as the difference between F2 for

/i:/ and F2 for /O/) was found to be significantly correlated with word intelligibility [38],

but was not found to be correlated with sentence intelligibility [16]. This difference may

be due to differences in speech materials or in the methods used to elicit speech material.

According to Ferguson and Kewley-Port [30], steady-state formant values for back vowels,

dynamic formant movement, and duration for front vowels are the primary cues for the

vowel identities with young normal-hearing listeners.

In summary, studies show that formant transitions of the stop consonants are an im-

portant feature [93]. From the study of Turner et al. [104], we expect that lengthening

formant transitions of the synthetic speech might be an efficient technique to improve

stop consonant identification for normal hearing listeners. On the other hand, lengthen-

ing formant transitions of natural speech might impact the vowel identity. The success

of Turner’s study on improving the stop identification rates may be because they used

synthetic syllables. We do not expect that Turner’s work on synthetic syllables can be

generalized to natural speech sentences, because stop consonants appear in a wider variety

of vocalic contexts, which leads to the importance of a more general coarticulation model.

We speculate that the vowel space (F1 and F2 range) is a significant feature for increased

speech intelligibility, and that formant transitions may also play an important role.

Spectral Balance

The spectral balance, as opposed to prosody, is another factor that may affect speech

intelligibility. Speakers tend to increase vocal effort and raise their overall energy to

make speech more intelligible. Liénard and DiBenedetto [63] found that increasing vocal

effort is correlated with increased values of F0, and formant amplitudes of F1, F2 and

F3. Also they found that the formant amplitudes in the higher frequency range increased
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more than those in the lower range, thereby decreasing spectral tilt by increasing vocal

effort. Formant bandwidths were significantly narrower in clr speech than in cnv speech,

both spoken at a normal rate (approximately 200 wpm), which indicates higher formant

amplitudes in the short-term spectra of clr speech as compared with cnv speech [55].

An increase in energy in the 1–3 kHz frequency range of the long-term average spectrum

(LTAS) has been found to be significantly correlated with intelligibility [55, 38]. Hazan and

Markham [38] also found that the slope of the LTAS was not correlated with intelligibility,

which may contradict previous findings since an increase in energy in the high frequency

range should be equivalent to a decreased slope of the LTAS. These two results (spectrum

energy and slope) indicate that the increased energy between 1–3 kHz did not lead to a

decrease of spectral slope. Amplifying the spectrum between 1000 and 3000 Hz yielded

an intelligibility increase over cnv speech levels, but did not reach clr speech levels [56].

These results suggest that the increased energy in the 1–3 kHz range of clr speech is

partially responsible for increased intelligibility of clr speech. Therefore, we expect that

an energy increase in the 1–3 kHz range and formant bandwidths may be a contributing

factor, but spectral balance (or return phase of the glottal source) may not be a significant

feature contributing to speech intelligibility.

Speaker Characteristics

It has been noted that speech quality has an effect on speech intelligibility. In particular,

variation in speaking style or voice type (normal, nasalized, child-directed, whispered,

excited, and elongated) within a presentation block reduced word intelligibility relative

to presentation with a single speaking style [94]. According to the phonetic relevance

hypothesis, this result indicates that the speech quality (resulting from different speaking

styles) is relevant to word intelligibility. Findings from subjective ratings were that less-

intelligible speakers were judged as sounding “mumbly, unpleasant, muffled, or weak”,

relative to the more intelligible speakers [38]. However, dimensions that are related to the

quality of voiced excitation (harsh/smooth, creaky/non-creaky, husky/not-husky) were

not found to be correlated with intelligibility [38]. Although subjective factors, such as

mumbly or unpleasant, may lead to a speech intelligibility decrease, voice quality is difficult
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to quantify and directly match to acoustic features other than glottal source parameters.

Another important aspect of speech intelligibility is the impact of gender difference.

Female speakers are generally more intelligible than male speakers [38, 16]. It is possible

that the wider F0 range of females is one of the characteristics that contributes to the

higher intelligibility of female speech relative to male speech. In addition, female speakers

tend to have a larger vowel space, more precise inter-segmental timing than male speakers,

and less frequent alveolar flapping [16, 15]. Therefore, it is not clear whether the observed

intelligibility difference, with 93.4% for female speech and 81.1 % for male speech in the

study from [16], was due to one factor or a combination of these factors.

2.3.3 Summary of acoustic features

The correlation results from prior studies do not necessarily imply that features that are

highly correlated with speech intelligibility are the cause of an improvement in speech

intelligibility. It is still not known which individual acoustic feature, or combination of

features, make speech more intelligible, or their relative contribution to increased speech

intelligibility. None of these prior studies have looked at the effect of a combination of

features, which may interact with each other.

Sommers and Barcroft [95] and Sommers et al. [94] hypothesized that variation in

features that are relevant to speech perception degrades speech intelligibility. It may be

true that stimulus variability in speech can affect speech intelligibility, but there can also

be other sources that degrade speech intelligibility. In some of their experiments, degraded

intelligibility could have been due to synthesized speech with features that are different

from what humans would normally produce, instead of the relevancy of the feature to

speech perception. Although using synthesized speech is one way to control feature values

(for example, F0 values), we speculate that the values used should be within the degree

found in natural speech in order to test perceptual relevancy in realistic settings.

Based on this prior work, we expect that formant transitions, temporal envelope, F1

and F2 ranges, energy in 1–3 kHz, formant bandwidth, and VOT are the acoustic features

that may be most responsible for increased speech intelligibility. F0 mean and CVR may

not be as important to speech intelligibility. Other features, including duration (speaking
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rate), F0 trajectories, F0 range, long-term energy, spectral balance (or glottal source char-

acteristics), and pause duration are not conclusively significant for speech intelligibility,

because of the unclear or contradicting results from prior studies.

2.4 Digital signal processing of speech to increase intelligi-

bility

In this section, we introduce signal processing schemes that modify some of the acoustic

features listed in Section 2.3, namely CV energy ratio, pause durations, phoneme dura-

tions, and temporal envelopes.

Elderly listeners have difficulty processing brief consonant cues such as the burst por-

tions of stops [37]. One of the approaches to improve consonant identification has been

to enhance the intensity of the consonants in consonant-vowel (CV) syllables. Successful

improvement has been obtained by amplifying the consonant energy in consonant-vowel

(CV) and vowel-consonant-vowel (VCV) sequences for normal hearing listeners [34, 39] and

hearing-impaired listeners [35]. After adjusting the degree of amplification of the burst

and aspiration, Hazan and Simpson also improved the intelligibility of nonsense sentence

materials [39]. Similarly, in a study by Skowronski and Harris amplifying the CV ratio,

what they called energy redistribution using voiced/unvoiced information (ERVU), as well

as increasing the spectral energy center of gravity by high-pass filtering (HPF), increased

monosyllabic word intelligibility over unmodified speech [92]. Another study showed that

lengthening only consonant durations in CV syllables did not affect intelligibility, using

normal-hearing listeners aged 65–72 [34]. In the same study, a combination of amplifying

the consonant energy and lengthening consonant durations improved consonant identifi-

cation, but the results did not improve relative to the stimuli with only consonant energy

amplification [34].

Increasing pause durations in a sentence for people with hearing loss [105] or inserting

pauses between words in a sentence for both young and old people with and without

hearing loss [36] did not improve the intelligibility of meaningful sentences. We speculate

that one of the reasons for this negative result could be that inserting pauses between
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words disrupts the normal prosodic contour of a sentence, or pausing may simply not be

an important component of speech intelligibility. Although Liu and Zeng [66] obtained a

13 % absolute improvement by inserting pauses between words to slow down the speaking

rate, they did not exclude pauses when calculating root-mean-square (rms) values used in

energy normalization, which resulted in increased energy in sentences with longer pauses.

Therefore, the improvement they observed might have been a result of increased SNRs

during level normalization.

Lengthening phoneme durations to decrease the speaking rate has also not improved

intelligibility [73, 105]. Uchanski et al. analyzed the length of phoneme durations in clr

speech and non-uniformly lengthened the phoneme durations of cnv speech to match the

durations in clr speech, using a segment-by-segment time-scaling method [105]. Intelligi-

bility of the slowed cnv speech was worse than the original cnv speech. The researchers

cited degradations introduced by the signal processing (signal-processing artifacts) as the

probable reason for the failure of this approach.

From prior studies on the importance of the temporal envelope for the intelligibility

of manner of articulation and voicing [e. g. 25], Narne and Vanaja amplified the depth

of modulation of the speech envelope by 15 dB [71]. The results showed the envelope-

enhanced speech had improved consonant identification rates by listeners with auditory

neuropathy. Another study by Kusumoto et al. [57] showed that modulation enhancement

of the temporal envelope from 1 to 16Hz improved consonant recognition rates by 6

percentage points in a reverberant condition with normal-hearing listeners. It is important

to note that these improvements were either on CV syllables or on CVC words. As

Hazan and Simpson [39] pointed out, a successful speech modification technique for word

recognition does not necessarily transfer to improvements in sentence recognition.

In summary, a very limited number of studies [e. g. 39] have succeeded at modifying

speech to improve intelligibility at the sentence level. One of the possible reasons for

negative results may be that one aspect of the speech signal (e. g. duration or energy)

was modified and other features remained intact. It may be necessary to modify sets of

features that interact with each other. Also, the degree of modification may not have been

natural in some studies. Finally, the speech modification process itself may have caused
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unnaturalness. In this thesis, extracting feature(s) from naturally-spoken clr speech and

modifying the corresponding features of cnv speech in a controlled manner will allow

evaluation of the impact of a set of features. A successful modification will have potential

applications in novel signal processing algorithms for hearing aids and other assistive

listening devices, for post-processing speech output from general-purpose communication

devices, such as telephones and video playback devices, and for objective measures of

speech intelligibility.

2.5 Conclusion

Our hypothesis is that if one (or a combination) of acoustic features contribute to increased

speech intelligibility, appropriate modification of those features in cnv speech will improve

speech intelligibility. Therefore, we have listed prior research on acoustic features that

may contribute to speech intelligibility. To summarize the results of this prior work,

it is plausible that formant transitions, temporal envelope, F1 and F2 ranges, formant

bandwidth, and VOT contribute to increased speech intelligibility.

In this thesis, we examine (1) which specific acoustic features are responsible for the

increased speech intelligibility of clr speech, and (2) if it is possible to modify these

features to improve speech intelligibility (Specific Aim 1). In the future, it will be worth

investigating how the degree of contribution from those features might vary depending

on a listener’s age and hearing status (See 8.4.3). For example, for elderly listeners who

might have temporal processing deficits, temporal (or prosodic) features may be required

for increased intelligibility.

The reason why the majority of prior signal processing techniques have not been suc-

cessful may be because of (1) signal-processing artifacts, which introduce clicks, noise,

or distorted sounds, or (2) only one feature was modified even though one feature may

have interacted with other features. Therefore, it is necessary to minimize the effects of

signal-processing artifacts. To address the second reason, a combination of features were

modified for an improved intelligibility. In this thesis features are taken directly from

naturally spoken speech, either from cnv or clr speech, to eliminate the possibility that

the degree of modification exceeds that of typical human speech production.



Chapter 3

The importance of spectral and prosodic

features to sentence intelligibility

3.1 Introduction

A “hybridizaton” algorithm is proposed to approach our specific aim 1, which is to de-

termine which acoustic features of clr speech are relevant to speech intelligibility. The

hybridization algorithm replaces a single feature or a combination of features of cnv

speech with those of clr speech. “Hybridized” (hyb) speech is the synthesized speech

whose features consist of both cnv and clr features. By examining the intelligibility of

hyb speech, it is possible to determine whether the specified clr features contribute to

improved intelligibility of cnv speech.

In this chapter1, Experiments 3–1 through 3–3 are conducted to verify that (1) hyb

speech can have improved intelligibility over the baseline (cnv speech) and (2) it is pos-

sible to create hyb speech without introducing major artifacts, by examining hyb speech

quality. We build tree structures, which contain a set of clr speech features that con-

stitute part of the hyb feature set. The rest of the hyb feature set are obtained from

cnv features. Features at each node are tested to determine if those clr features are

relevant or not. Figure 3.1 shows an example of a tree structure with acoustic feature

types at each node. If one set of features (e. g. spectrum) at one node yields significant

improvement over cnv speech, the feature set would be split further (e. g. formant and

1Part of this chapter was published in Kusumoto et al. and Kain et al. [58, 48].
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Figure 3.1: Suggested acoustic features and tree structure. (∗FNS is formant-normalized
spectrum.)

formant-normalized spectrum) to identify the specific aspects of that feature which con-

tribute to improved intelligibility. If no improvement is observed, then the set of features

would be repartitioned (e. g. spectrum plus duration).

In a preliminary experiment, we tested the importance of the prosodic group of fea-

tures (Energy, F0, Duration, Non-speech) and the spectral group (Spectrum, Phoneme

sequence) for elderly subjects (age 66–75) with hearing sensitivity less than 35 dBHL at

frequency ranges from 250–4000Hz. The intelligibility of clr speech was shown to be

significantly better than that of cnv speech, however the synthesized speech (or hyb

speech) did not yield improvement with either feature set (prosodic or spectral). Our

hypotheses for the negative results in hyb speech were (H1) phoneme duration in the

prosodic feature group can not be separated from the spectral feature group without a

negative impact on intelligibility and (H2) speech processing artifacts of the hyb speech

degraded the speech signal. In this chapter, we focus on determining relevant features

for young (18–40) subjects instead of elderly subjects. We address the two hypotheses in

Experiments 3–1 through 3–3.

3.2 Text materials and recording

We used seventy syntactically and semantically valid sentences in our experiments [87] (i.e.

“His shirt was clean but one button was gone”) (listed in Appendix A). Each sentence

contains five keywords for scoring (underlined in the example above). Four keywords out

of five are monosyllables and one is a disyllable. Each sentence is relatively short, which

reduces the possibility of testing the effect of memory. The manipulation of prosodic
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cues in speech production is facilitated by using sentence material as opposed to isolated

syllables and words.

One male, who is a native speaker of American English with no professional training

in public speaking, was recruited as a speaker for our experiments. First, he recorded 70

sentences spoken in the cnv speaking style, followed by the same 70 sentences spoken in

the clr speaking style. For the cnv speech, he was instructed to recite the text materials

in a way that he uses to communicate in his daily life. When recording clr speech, he

was instructed to speak clearly, as he would when communicating with elderly listeners or

hearing-impaired listeners.

The recording was completed in a sound-treated booth (Whisperroom) located inside

a control room. An administrator monitored the recording in the control room to ensure

that the speaker pronounced each sentence correctly. Two display monitors were used,

one inside the booth for the speaker and one in the control room for the administrator.

The text of each sentence was displayed simultaneously on both monitors. Recordings

were made using a head-mounted, close-talking microphone (AKG HSC200), positioned

approximately 5cm and off-axis from the speakers mouth. The speaker recorded the

materials at his own pace by clicking “record”, “stop”, and “next” buttons on the monitor

with the mouse. The speech signals were recorded digitally at a sampling rate of 44.1 kHz

with 16 bit resolution, and then downsampled to 22.05 kHz.

3.3 Hybridization algorithm

The hybridization algorithm is a digital signal processing technique that replaces certain

acoustic features from cnv speech with those of clr speech. In this series of experiments,

the algorithm replaces the following acoustic features: fundamental frequency (f), long-

term energy (e), phoneme duration (d), spectrum (s), phoneme sequence (p), and non-

speech events such as pauses (n). A hyb “configuration” (described in Table 3.2) indicates

the source of acoustic features in each kind of hyb speech (either from cnv or clr speech).

Figure 3.2 represents the hybridization algorithm (as an example with the hyb-d con-

dition), which consists of several stages: preparation of the database (Stages: 1–5), feature

extraction (Stage: 6), hyb configuration (Stage: 7), and waveform synthesis (Stage: 8).
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(1) Phoneme 
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(5) Parallelization between 
CLR and CNV Speech (features P, N)

Figure 3.2: An example of hybridization algorithm.
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3.3.1 Stage 1: Phoneme labeling

Initial phoneme identities and the time points at phoneme boundaries are obtained using

an existing forced-alignment system [44]. The system works by converting the text material

into phoneme pronunciations with choices of substitutions, insertions, and deletions (e. g.

no word-final burst release /t/) using a custom pronunciation dictionary. An automatic

speech recognition (ASR) system recognizes the phoneme sequence with the constraint of

the given pronunciation of the sentence. The output of the ASR system provides phoneme

identities and the time points of the phoneme boundaries. A trained labeler checks and

adjusts the phoneme identities and boundaries manually.

3.3.2 Stage 2: Glottal closure instants (GCIs) detection

The time points when a speaker’s vocal folds become fully closed, which are called glottal

closure instants (GCIs), are necessary for the pitch-synchronous signal processing. The

“Praat” software package is used to automatically detect GCIs [10]. Then, a trained labeler

checks, adds, deletes, and adjusts GCIs to ensure maximum correctness of the locations of

GCIs. The distance between two GCIs also yields the rate of vocal-fold vibration, known

as fundamental frequency (F0).

3.3.3 Stage 3: Placement of auxiliary marks

The hybridization algorithm is a pitch-synchronous frame-by-frame processing algorithm.

Analysis frames span three neighboring GCIs (in voiced regions) or auxiliary marks (in

unvoiced regions). For the decision of whether a region is voiced or unvoiced, we use the

distance between two consecutive GCIs. If the distance is greater than 16ms (62.5 Hz),

the region is considered unvoiced. The auxiliary marks are placed approximately every

10 ms over the entire unvoiced region, adjusting slightly so that two consecutive marks are

not closer than 10 ms to each other.

3.3.4 Stage 4: Phoneme alignment between CNV and CLR speech

The phoneme sequences from clr speech are often different from cnv speech, even when

the speaker read the same text material. Most commonly observed differences are (1) the

burst tends to be released at the end of the word in clr speech (e. g. /t/); and (2) tense

vowels are reduced in cnv speech (e. g. /i:/ to /I/). The hybridization algorithm requires

an identical phoneme sequence between cnv and clr speech. Therefore, we insert, delete
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Table 3.1: An example of the phoneme alignment operation and corresponding paralleliza-
tion for a hyb-p configuration. The first two columns represent the phoneme sequence
of cnv and clr speech. The third column represents whether the phoneme or pause is
inserted or deleted when the hyb configuration is Phoneme=clr and Non-speech=cnv.
In this example, while the plosive closure /d(^)/ is an exact match, clr plosive release
/d(_)/ is inserted into the cnv speech.

CNV CLR Operation HYB
b b - b

I i - I ; i
s s - s

aI aI - aI

d(^) d(^) - d(^)

- d(_) insertion d(_)

- (.) deletion -

or substitute appropriate phonemes into cnv or clr speech according to the phoneme

sequence (p) feature in the hyb configuration. At this stage, only a text operation is

carried out, with no speech waveform manipulated.

We use the Dynamic Time Warping (DTW) algorithm to align the phoneme identities

between cnv and clr speech. In the DTW algorithm, the physiological aspects of each

phoneme are represented using a phonetic feature vector, with the scale 1–10 for manner,

1–8 for place, 1–10 for height of articulation, and 1–5 for voicing (shown in Table B.1, Ap-

pendix B). After the Euclidean distance, in this four-dimensional feature space, between

cnv and clr feature vectors is obtained, the optimal alignment is determined by minimiz-

ing the cumulative Euclidean distance. As a result of the alignment, each phoneme in one

speaking style is aligned with one of the phonemes in the other speaking style, either by

exact match or substitution (one-to-one mapping). If no one-to-one mapping exists, then

the phoneme is assigned to a deletion or insertion. A trained labeler checks and adjusts

the final alignment to ensure maximum correctness.

The phoneme sequence (p) is one of the features specified in the hyb configuration

(Stage 7). Non-speech events (n) are treated separately from the phoneme sequence.

Based on the phoneme and non-speech sequence of a hyb sentence, an insertion or deletion

operation in each speaking style may take place. The example of hyb-p operation on the

word “beside” is aligned with cnv and clr phoneme sequences in Table 3.1. In the table,

phoneme sequences of the cnv and the clr speech are shown in the first two columns.

The operation (ins/del) in the third column is identified by aligning the two phoneme
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sequences. The configuration hyb-p is the case where the feature p is taken from clr and

non-speech events (pause) from cnv speech, which results in hyb phoneme sequence as

shown in the fourth column.

3.3.5 Stage 5: Parallelization of original waveforms of CNV and CLR

speech

Given the hyb phoneme sequence from Stage 4, the “parallelization” of cnv and clr

speech waveforms is carried out by inserting or deleting the portion of waveform that con-

tains the corresponding phoneme. For example, hyb-p shown in Table 3.1, the waveform

of /d(_)/ is copied from clr speech, and inserted after the closure of the burst /d(^)/, when

the clr-p configuration is targeted. In this stage, hybridization of phoneme sequence (p)

and non-speech features (n) are completed.

3.3.6 Stage 6: Feature extraction

Acoustic features from cnv and clr speech are extracted individually. The following six

features, tested in Experiments 3–1 through 3–3, are extracted as follows: (a) Long-

term Energy (e): After an A-weighted filter [46], root-mean-square (rmsA) values are

calculated at each analysis frame. The energy contour is smoothed over time by first taking

a median filter over 10 frames and then taking a Hanning window (5 frames) centered at

the center pitch mark in each analysis frame. (b) Fundamental frequency (F0) (f):

F0 values are calculated by inverting the distance between two consecutive GCIs, which

exist only in voiced regions. No F0 values exist when the auxiliary marks are placed

(unvoiced segment). (c) Phoneme Duration (d): The phoneme and pause durations

are obtained from Stage 1 (phonemic labeling) as described above. (d) Spectrum (s):

Linear Predictive Coding (LPC) is a low dimensional approximation of the speech signal

that represents the spectral envelope associated with formant information. After pre-

emphasis (factor of 0.98) on the waveform in one frame, the speech waveform is analyzed

by LPC with order 24. The LPC residuals are used to excite the LPC filter in the process

of waveform synthesis (Stage 8 described below). (e) Phoneme sequence (p) and (d)

Non-speech (n): The phoneme sequence and non-speech features are determined at Stage

4. The waveform operation is completed at Stage 5.
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Table 3.2: hyb configurations indicating the source of six acoustic features either from clr
or cnv speech. Experiments 3–1 through 3–3 are conducted testing eight hyb conditions.
Original cnv and clr speech are included in all experiments.

Exp. Conditions Energy F0 Duration Spectrum Phoneme Non-speech
cnv cnv cnv cnv cnv cnv cnv

1. hyb-efn clr clr cnv cnv cnv clr
1. & 2. hyb-dsp cnv cnv clr clr clr cnv

2. hyb-d cnv cnv clr cnv cnv cnv
2. hyb-sp cnv cnv cnv clr clr cnv
3. hyb-p cnv cnv cnv cnv clr cnv
3. hyb-s cnv cnv cnv clr cnv cnv
3. hyb-ds cnv cnv clr clr cnv cnv
3. hyb-efpn clr clr cnv cnv clr clr

clr clr clr clr clr clr clr

3.3.7 Stage 7: HYB configuration

In preparation for waveform synthesis, sets of hyb features are taken from particular

subsets of clr features and from the complementary subset of cnv features. Table 3.2

shows hybridization configurations used in the experiments and indicates the source of

features in the eight conditions of hyb speech. The features include energy (e), F0 (f),

duration (d), spectrum (s), phoneme sequence (p) and non-speech events such as pause or

breath noise (n). The feature p determines insertion or deletion of a phoneme when the

phoneme sequence of clr speech does not match that of cnv speech. Likewise, the feature

n determines insertion or deletion of non-speech events when clr speech has pauses more

or less often than in cnv speech, leading to insertion and deletion, respectively.

3.3.8 Stage 8: Feature replacement and waveform synthesis

In the final step of the hybridization algorithm, we replace a specified single feature, or a

combination of features, of the cnv speech with the same type of features extracted from

the clr speech. A hyb speech waveform is synthesized by residual-excited, linear pre-

dictive coefficient (LPC) synthesis using pitch-synchronous, overlap add (PSOLA) similar

to the work by Taylor et al. [101]. Waveform modifications, according to the specified

configurations, are carried out at this stage as follows except for phoneme insertions and

deletions (Stage 5).

For the energy modification, a gain factor contour is calculated by the ratio between

the desired and the original energy contour. The gain contour is first filtered by a tenth-

order median filter and then smoothed using a zero-phase low-pass filter. For the F0
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modification, the distances between two consecutive frames are altered to meet the desired

F0 values. For the duration modification, each frame is either repeated or deleted to meet

the desired phoneme durations.

After applying LPC filters on the windowed LPC residuals (excitation signals of the

LPC filters), each frame is overlapped by one pitch period and added together to construct

speech waveforms using an asymmetric trapezoidal window.

3.4 Phonetic and acoustic characteristics

In this section, phonetic and acoustic characteristics of our speech corpus are described.

3.4.1 Phonetic characteristics

Phonetic characteristics in clr speech include vowel modification and phoneme insertion

(or deletion). The results of phoneme alignment between cnv and clr speech (Stage 4 in

Section 3.3.4) showed 69 labels from clr speech (including 14 non-speech events (n) and

22 unvoiced burst releases) being inserted into cnv speech, while 7 labels from cnv speech

(including 3 non-speech events) being inserted into clr speech. The mean occurrence of

non-speech events is 0.1714 and 0.3286 per sentence for cnv and clr speech, respectively.

Phoneme substitutions (e. g. /i:/ to /I/) from clr to cnv speech occurred 104 times out

of 2175 labels in cnv and 2237 labels in clr speech.

3.4.2 Acoustic characteristics

Table 3.3 shows a summary of the values of acoustic features (phoneme duration, funda-

mental frequency, energy, and long-term average spectrum). The mean of each feature

over 70 sentences, the standard deviation, p values, and Cohen’s d effect size are reported.

Phoneme duration: Total sentence duration, total vowel duration, duration of the last

vowel in the sentence, total consonant duration, the longest vowel duration, the

longest consonant duration, mean stop burst duration (/b/, /d/, /g/, /p/, /t/, and

/k/), and total pause duration (non-speech event) are measured per sentence.

Fundamental frequency (F0): The F0 values (in Bark) are averaged over all vowel

regions. The range is obtained by taking the difference between maximum and

minimum F0 values over the entire sentence.
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Table 3.3: Summary of the values of acoustic features of clr and cnv speech. Mean,
standard deviation (in parentheses) over 70 sentences, p values, and Cohen’s d effect size
are shown. Degree of freedom df are all equal to 69. Asterisks are shown for significance.
Num Feature cnv clr p-values Cohen’s d

1 Total dur. (sec)∗ 1.7720 (0.1793) 2.2997 (0.2585) < 0.0001 2.3722
2 Total V dur. (sec)∗ 0.6160 (0.1022) 0.8140 (0.1522) < 0.0001 1.5274
3 Last V dur. (sec) 0.1185 (0.0475) 0.1329 (0.0564) < 0.0001 0.2762
4 Total C dur. (sec)∗ 1.1560 (0.1676) 1.4857 (0.2235) < 0.0001 1.6691
5 Longest V dur. (sec)∗ 0.1460 (0.0355) 0.1872 (0.0489) < 0.0001 0.9642
6 Longest C dur. (sec)∗ 0.1319 (0.0290) 0.1607 (0.0343) < 0.0001 0.9068
7 Stop burst dur. (sec)∗ 0.0282 (0.0100) 0.0335 (0.0124) < 0.0001 0.4705
8 Burst count 3.9571 (1.6805) 4.4571 (1.7749) < 0.0001 0.2893
9 Total pause dur. (sec)∗ 0.0054 (0.0148) 0.0165 (0.0301) 0.0016 0.4680
10 Pause count∗ 0.1714 (0.4160) 0.3286 (0.5028) 0.0038 0.3407
11 Vowel F0 (Bark)∗ 1.0250 (0.0548) 1.0469 (0.0494) 0.0009 0.4198
12 Vowel F0 range (Bark)∗ 0.5067 (0.1211) 0.6835 (0.1952) < 0.0001 1.0885
13 Vowel energy range (rms) 0.0935 (0.0194) 0.1002 (0.0216) 0.0164 0.3264
14 Cons. energy range (rms) 0.1126 (0.0201) 0.1058 (0.0240) 0.0048 0.3072
15 CV energy ratio (dB) -10.8283 (3.1076) -11.7212 (2.8478) 0.0168 0.2996
16 LTAS 500−3000 Hz (dB) 70.8501 (4.3108) 71.7552 (5.2317) 0.0969 −
17 LTAS 1000−2000 Hz (dB) 54.5146 (3.5854) 55.0141 (4.3958) 0.2746 −
18 LTAS 500−2000 Hz (dB) 69.1079 (4.3845) 69.8638 (5.3574) 0.1650 −
19 LTAS 1000−3000 Hz (dB) 58.0040 (3.6378) 58.9866 (4.3979) 0.0356 0.2435

Energy: The root-mean square (RMS) energy for vowels and consonants in energy-

normalized sentences are examined. The RMS energy range is computed by taking

the difference between maximum and minimum RMS energy values. The (CV) en-

ergy ratios are calculated by dividing the RMS energy of the consonants /b/, /d/,

/g/, /p/, /t/, /k/, /f/, /v/, /s/, /z/, /m/, and /n/ by the RMS energy of the

following vowel and converting to the dB scale [39].

Spectrum: The long-term average spectrum (LTAS) of each energy-normalized sentence

is calculated in four frequency bands (500–3000 Hz; 1000–2000 Hz; 500–2000 Hz;

1000–3000 Hz), measured in dB [38].

Formant frequency: First and second formant trajectories and formant bandwidths are

extracted using the Snack Sound Toolkit (http://www.speech.kth.se/snack [91])

in the vowel regions. The formant values are taken from the middle of the vowel.

Formant information is measured for the following 37 features: the mean F1 and

mean F2 values of seven vowels /i:/, /I/, /u/, /E/, /æ/, /2/, and /A/ and corre-

sponding bandwidths (BW), and the mean distance between F1 and F2 frequencies

of these seven vowels. The mean distance between F1 of /i:/ and F1 of /æ/ (for
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Table 3.4: Summary of the values of formant frequencies of cnv and clr speech. Formant
frequencies are converted to Bark scale, while bandwidths are measured in Hz. Mean,
standard deviation (in parentheses) over 70 sentences, p values (degrees of freedom), and
Cohen’s d effect size are shown. Asterisks are shown for significance.
Num Feature cnv clr p-values (df) Cohen’s d
20 F1 range∗ 1.8663 (0.6062) 2.4190 (0.3942) 0.0007 (14) 1.0810
21 F2 range 3.5123 (2.2350) 3.1944 (1.7455) 0.5181(6) −
22 F1−F2 dist. /i:/∗ 9.5385 (0.9352) 9.9292 (0.8162) 0.0060 (41) 0.4451
23 F1−F2 dist. /I/ 7.8363 (1.2866) 7.6693 (1.0688) 0.9363(40) −
24 F1−F2 dist. /u/ 7.4171 (1.9794) 7.0163 (1.7491) 0.7627(13) −
25 F1−F2 dist. /E/ 6.5741 (1.1287) 6.1749 (1.0035) 0.0061 (35) 0.3738
26 F1−F2 dist. /@/ 5.5591 (1.2283) 5.4430 (1.2161) 0.1084(22) −
27 F1−F2 dist. /2/∗ 5.6557 (0.8945) 5.1884 (0.9628) 0.0002 (57) 0.5029
28 F1−F2 dist. /A/∗ 3.8370 (0.6642) 3.1374 (0.5333) < 0.0001 (35) 1.1615
29 F1 /i:/ 3.4364 (0.3645) 3.4975 (0.4197) 0.3341(41) −
30 F2 /i:/∗ 12.9749 (0.7366) 13.4267 (0.5277) < 0.0001 (41) 0.7051
31 F1 /I/∗ 3.7207 (0.3695) 4.0441 (0.3097) < 0.0001 (40) 0.9486
32 F2 /I/ 11.5570 (1.1566) 11.7134 (1.0267) 0.0113 (40) −
33 F1 /u/ 3.3978 (0.2470) 3.4603 (0.1666) 0.3892(13) −
34 F2 /u/ 10.8149 (1.9994) 10.4766 (1.7975) 0.6782(13) −
35 F1 /E/∗ 4.3698 (0.6379) 4.9770 (0.5488) < 0.0001 (35) 1.0205
36 F2 /E/ 10.9439 (0.8791) 11.1518 (0.7706) 0.0131 (35) 0.2515
37 F1 /@/∗ 5.2538 (0.8072) 5.7584 (0.5256) 0.0011 (22) 0.7408
38 F2 /@/ 10.8129 (0.9509) 11.2014 (1.0150) 0.0411 (22) 0.3950
39 F1 /2/∗ 4.0082 (0.5535) 4.2845 (0.3871) 0.0002 (57) 0.5785
40 F2 /2/ 9.6640 (0.7035) 9.4730 (0.8073) 0.0725(57) −
41 F1 /A/∗ 4.6753 (0.5759) 5.3405 (0.4087) < 0.0001 (35) 1.3321
42 F2 /A/ 8.5123 (0.4450) 8.4778 (0.5744) 0.6917(35) −
43 F1 BW /i:/ 53.8484 (39.5396) 51.0692 (52.3017) 0.4989(41) −
44 F2 BW /i:/ 355.1191 (284.6750) 368.3416 (378.6380) 0.7362(41) −
45 F1 BW /I/ 86.7463 (55.6818) 77.2378 (52.6412) 0.0774(40) −
46 F2 BW /I/ 399.1492 (181.7969) 422.0937 (343.5215) 0.9147(40) −
47 F1 BW /u/ 45.6365 (26.0220) 49.6726 (22.1960) 0.7583(13) −
48 F2 BW /u/ 404.3236 (137.1914) 517.7733 (201.7040) 0.1028(13) −
49 F1 BW /E/ 123.4645 (77.2469) 137.9733 (96.1892) 0.5785(35) −
50 F2 BW /E/ 436.4626 (181.7730) 431.3602 (433.6370) 0.9155(35) −
51 F1 BW /@/ 222.2775 (86.9371) 228.6250 (106.2508) 0.1558(22) −
52 F2 BW /@/ 458.0514 (162.3406) 470.3792 (343.2922) 0.8346(22) −
53 F1 BW /2/ 122.9606 (84.3485) 96.8572 (65.4114) 0.1561(57) −
54 F2 BW /2/ 470.4471 (452.3613) 405.9840 (255.6977) 0.3822(57) −
55 F1 BW /A/ 208.7103 (141.2040) 177.3777 (90.9007) 0.1201(35) −
56 F2 BW /A/ 207.5404 (71.4986) 187.4356 (152.2285) 0.3702(35) −
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Figure 3.3: Formant frequency of 8 vowels in cnv and clr speaking styles with one
standard deviation in F1–F2 space.

the F1 range), and the mean distance between F2 of /u/ and F2 of /i:/ (for the

F2 range) were included in order to estimate the vowel space. Figure 3.3 shows

the formant frequencies of each vowel with ±1 standard deviation in F1–F2 space.

Formant values were not manually corrected, and may contain formant tracking er-

rors. Table 3.4 shows the summary of formant frequencies of clr and cnv speech.

The mean of each feature over 70 sentences, standard deviation, p values (degree of

freedom), and Cohen’s d effect size are reported.

This particular speaker successfully made both phonetic and prosodic changes (phoneme

duration, F0, and energy) in his clr speech production. However, spectral differences were

focused on particular vowels (i. e. /E/, /A/), and formant bandwidths do not appear to be

different between clr and cnv speech. LTAS had increased energies at higher frequencies

(1000–3000 Hz), which was consistent with the findings of Krause and Braida’s study [55].

3.5 Perceptual experiment

3.5.1 Normalizing energy of speech and noise

It is important to eliminate the possibility that the increased intelligibility of clr speech

is solely due to an overall energy increase as compared to cnv speech. Therefore, in our

speech recordings, the long-term energy of all sentences in the recordings was normalized
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digitally. We calculated root-mean-square values of non-pausal portions of the sentences

after A-weighted filtering (rmsA) [46]. We equalized the rmsA values digitally for all

sentences by applying individual gain factors to each sentence, while keeping the global

peak value within a threshold value (80 % of the quantization limit) to avoid peak clipping.

In our experiments, the stimuli were presented in a 12-talker babble noise, which is an

uncorrelated accumulation of speech from 12 talkers to simulate an everyday listening

environment. The 12-talker babble noise has similar frequency characteristics as our test

stimuli, and is widely used in tests that measure speech intelligibility. It was originally

developed for the test of speech perception in noise (SPIN) [9]. The level of the noise

relative to the level of the signal is defined as the signal-to-noise ratio (SNR).

3.5.2 Obtaining SNR–50 level

The word recognition test was carried out under the condition of added noise. The level

of noise is set at the SNR–50 threshold level for each subject, to minimize between-

subject variability. SNR–50 is that signal-to-noise ratio (SNR) level at which the subject

can identify test sentences in the presence of noise 50% of the time. The administrator

controls a program, written in Matlab, for the SNR–50 test. The subject’s task is to repeat

the sentence aloud to the administrator immediately after they listen to a sentence. The

administrator determines whether the subject has a positive or negative response for each

sentence. The response is counted as positive when the subject can repeat four or more

keywords (out of five) correctly. The response is counted as negative when the subject

can repeat less than four keywords.

In the adaptive procedure [62], the SNR level is set to −3 dB as a start point. The first

sentence is repeated until the subject can obtain a positive response, by increasing SNR

levels (the noise level decreases). After the first positive response, a different sentence is

presented to the subject each time. The noise level is increased (SNR decreases) when

the response is positive, and the noise level is decreased (SNR increases) when negative.

When the SNR is increased or decreased based on the subject’s response (e.g. a positive

response followed by a negative response), the count of “reversal” is incremented. The

increment or decrement of the SNR starts with a 2 dB step size, and after 3 reversals the

step size is decreased to 1 dB. The test is continued until 8 reversals are accomplished. The

final SNR–50 level is estimated by averaging the SNR from the 3rd reversal to 8th reversal

points. Twenty-two sentences are available to obtain the SNR–50 for each subject. The

pool of sentences used in SNR–50 level was different from the intelligibility experiments
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Table 3.5: Average SNR–50 with standard deviations in parentheses obtained in Experi-
ments 3–1, 3–2, and 3–3.

Experiments Subjects’ age SNR–50 in dB
Verification–cnv 22–33 −2.52 (0.84)
Verification–clr 22–33 −4.26 (1.25)

3–1. cnv 21–39 0.58 (0.88)
3–2. cnv 19–39 −0.24 (1.11)
3–3. cnv 18–35 0.22 (1.44)

(shown in Appendix A).

3.5.3 Speech corpus verification

The goal of the first verification experiment was to verify that all cnv sentences are intelli-

gible in the absence of background noise (e. g. for example, to find any mispronunciation).

Five young listeners (mean age: 28.5) listened to all 70 sentences in the cnv style. If the

subject responded with five out of five keywords correctly, the sentence was recored as

positive. The mean sentence intelligibility rate was 98.57%. It confirmed that the cnv

sentences are intelligible. It was assumed that the intelligibility of clr sentences would

be even higher than cnv sentence intelligibility.

In the second verification experiment, we compared the intelligibility differences be-

tween cnv and clr speech under the noise condition. The purpose of this experiment was

to examine whether cnv and clr speech have inherent intelligibility differences. Eight

young listeners (mean age: 25.1) listened to sentences both in cnv and clr speaking

styles. SNR–50 values were obtained in both styles (Section 3.5.2). None of the sentences

were presented more than once to the same subject. A sentence was marked correct if

the subject correctly identified four out of five key words. The results from this verifi-

cation experiment show SNR–50 levels were −2.52 (0.84) and −4.26 (1.25) for cnv and

clr speech, respectively. There were significant (α =0.05) main effects of speaking style

(F (1, 28) =7.32, p =0.012). This confirmed that the speech corpus reflects inherent dif-

ferences between cnv and clr speech.
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3.6 Experiment 3–1: The effects of duration and spectral

features from CLR speech

As discussed in Section 3.1, we conducted a preliminary experiment with elderly listeners

and “prosodic” and “spectral” feature groups. Results from this experiment did not

show any improvement over the baseline cnv speech. We developed two hypotheses to

explain these results. (H1) phoneme duration in the prosodic feature group can not be

separated from the spectral feature group without a negative impact on intelligibility

and (H2) speech processing artifacts of the hyb speech degraded the speech signal. In

Experiment 3–1, we examined (H1); whether “phoneme duration, in the prosodic feature

group, can not be separated from the spectral feature group” by evaluating the speech

intelligibility of hyb speech taking both phoneme duration and spectral features from clr

speech. Eight subjects (2 females and 6 males) who were in the age range 23–40 (mean:

28.38) participated in Experiment 3–1. All of them had normal hearing (self-reported)

and were native speakers of American English.

3.6.1 Procedures and apparatus

The experiments were carried out on a portable PC (VIA Samuel 2, 599 MHz, 224 MB of

RAM) and the sound was produced by a high-quality sound device (M-Audio USB Duo).

Each subject listened to the stimuli binaurally through a pair of circumaural headphones

(Sennheiser 280 Pro) in a quiet room. For the SNR–50 test, the energy of the noise was

adjusted according to the desired SNR level. For the intelligibility experiments, the noise

level was set at each subject’s SNR–50 level. The energy of the sentence was acoustically

calibrated at 65 dBA throughout the experiments. The administrator proceeded with the

experiment, considering the subjects pace, by controlling a program written in Matlab to

present the stimuli. After obtaining the SNR–50 level, the intelligibility experiments were

carried out. Subjects were instructed to repeat the sentence aloud as best as they could

after they listened to each sentence. They were informed that they were going to listen to

semantically valid sentences, with given sample sentences. They were encouraged to guess

when unsure or when they could not make out the meaning of the sentence.

Forty-eight sentences out of 70 were presented in a Latin square design in the intel-

ligibility experiments. Each subject heard twelve sentences per condition, and none of

the sentences were repeated. All four conditions were counterbalanced for each subject so

that each condition was heard an equal number of times by the end of the experiment.
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The order of the conditions was randomized, while the sentence order was kept same for

all of the subjects.

3.6.2 Stimuli

The SNR–50 noise level was estimated for each subject to account for between-subject

differences, and the estimated noise level was used for the intelligibility experiments (Sec-

tion 3.5.2). For setting SNR–50, the stimuli were the original cnv speech without any

modification. A total of 22 sentences were available for SNR–50 testing.

For the intelligibility experiments, four conditions of stimuli were tested in Experi-

ment 3–1. The conditions included original cnv and clr speech, and two hyb speech

configurations, namely hyb-efn and hyb-dsp, in order to examine the importance of

matching the source of phoneme duration and the source of spectral features (Table 3.2).

The first hyb speech configuration, hyb-efn (Energy, F0, Non-speech) replaced energy,

F0, and non-speech features from cnv speech with those from clr speech. The second

hyb speech configuration, hyb-dsp (Duration, Spectrum, Phoneme) replaced phoneme

duration, spectrum and phoneme sequence from cnv speech with those from clr speech.

3.6.3 Results and discussions

In Experiment 3–1, the average SNR–50 level was 0.58 dB (standard deviation: 0.88) (Ta-

ble 3.5). Figure 3.4 shows the mean intelligibility rates in percent and standard deviations

for the 4 conditions. The mean intelligibility of cnv was 68.75% (12.4), while that of clr

was 93.75 % (11.57). The hyb speech had 61.46 % (19.89) and 91.67 % (8.91) for hyb-efn

and hyb-dsp, respectively.

The results from the 8 subjects were analyzed for statistical significance using the

arc-sine transformation [6] given by the equation,

x = arcsin

√
r + 3/8
n + 3/4

(3.1)

where r represents the number of sentences a subject identified correctly, and n represents

the number of sentences presented. The planned t−test showed that clr speech was

significantly better than cnv speech (t(7) = 5.5795, p = 0.0004) for this particular speaker

with young subjects.

The hybridized speech hyb-dsp, consisting of a combination of phoneme duration

and spectrum features from clr speech, yielded significant improvement over the baseline
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Figure 3.4: Intelligibility rates (in percent) in Experiment 3–1. Significant differences are
shown with asterisks (∗: p < 0.05).

cnv speech (t(7) = 4.3467, p = 0.0017). Therefore, it supports hypothesis H1 which is

that the source of phoneme duration and spectrum should not be different for improved

intelligibility. However, the hypothesis is not confirmed because hyb speech with phoneme

duration only and spectrum only were not tested on young subjects. On the other hand,

F0 and energy from clr speech did not help to improve intelligibility (p = 0.1146). In

Experiment 3–2, the effect of individual features (d and s) is further examined.

3.7 Experiment 3–2: The effects of individual features ver-

sus combined features and signal processing artifacts

As a result of Experiment 3–1, a combination of phoneme duration and spectrum from

clr speech yielded a significant improvement in intelligibility over cnv speech. To fur-

ther test hypothesis H1, which is that phoneme durations should not be separated from

spectral features in order to maintain high intelligibility, phoneme duration only, spectral
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features only, and a combination of both phoneme duration and spectral features from

clr speech were tested. To test hypothesis H2, which is that the hybridization algorithm

introduces artifacts that cause decreased intelligibility, possible sources of artifacts in the

hybridization algorithm were addressed and a new implementation was developed, which

is referred to as Implementation 2. The intelligibility and the quality of the hyb speech

produced by Implementation 2 compared with hyb speech from Implementation 1.

Twelve subjects (11 females and 1 male) who were in the age range 19–40 (mean:

29.17) participated in Experiment 3–2. For the subject recruitment, the same criteria as

in Experiment 3–1 were used.

3.7.1 Implementation 2

We addressed four possible sources of artifacts and approaches to reduce the artifacts for

improved speech quality.

1. Insertion of auxiliary marks in voiced phonemes can cause unnecessary

duplication of frames.

Auxiliary marks were placed when the distance between GCIs was greater than a

minimum threshold (16 ms, corresponding to 62.5 Hz). However, the voiced region

may have lower fundamental frequency than this minimum threshold if the speech

sound is glottalized. Glottalization is a phenomenon that occurs when the vocal folds

vibrate irregularly or at very low frequency (e.g. less than 70 Hz). In addition, errors

in the judgment of voicing or misplacement of GCIs can be problematic. Therefore,

phoneme identity was used to force voiced phonemes to be excluded from having

auxiliary marks. This allowed GCIs located farther apart than 16 ms. When the

speech is hybridized, glottalized portions of the phonemes sound glottalized, as in

the original.

2. Duplicating frames that contain bursts, as found in affricates, plosives

and flaps, can cause audible artifacts.

Duration or F0 modification requires the duplication of frames. Because of the

impulse-like changes in energy that occur in bursts, duplicating those regions of

phonemes can be problematic. Therefore, the duplication of frames was prevented

in bursts such as affricates (/Ù/), /Ã/), plosives (/p/, /t/, /k/, /b/, /d/, /k/), and

flaps (/Rt/, /Rd/, /Rn/). To simplify the implementation, duration or F0 were not

modified in those phonemes.
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3. Duplicating frames in unvoiced-to-voiced transitions may deteriorate the

naturalness of phoneme transitions.

These transitory frames are unique in terms of energy, pitch period, and formant

frequency locations. The duplication of these frames during duration modification or

F0 modification may cause unnaturalness in hyb speech waveforms. Therefore, du-

plication in frames of unvoiced-to-voiced transitions was prevented, and duplication

was only performed at phoneme centers.

4. Phoneme insertions and deletions can cause signal discontinuities.

In the step of parallelization (Stage 5 in Section 3.3.5), the waveform of the phoneme

was inserted or deleted according to feature p, which can cause signal discontinuity.

The signal discontinuity can lead to audible clicks at the concatenation points, which

possibly reduces intelligibility and naturalness. Therefore, to smoothly fade in and

fade out required waveforms using linearly weighted windows with one pitch period

at concatenation points during phoneme insertion and deletion operations.

3.7.2 Quality experiments

In order to test the quality of the signals generated by Implementation 2, perceptual com-

parisons were made on pairs of segments using comparison-mean-opinion scores (CMOS).

CMOS is a scoring scale with five discrete choices that indicate whether the first presented

stimulus was (2) much better, (1) slightly better, (0) about the same, (−1) slightly worse,

or (−2) much worse. The subjects listened to each pair of stimuli three times in sequence,

and were allowed to repeat the stimuli any number of additional times. The administrator

conducted the experiment by controlling a program written in Matlab to present stimuli.

3.7.3 Stimuli

For the SNR–50 test, the stimuli were the original cnv speech without any modification

(the same as in Experiment 3–1 (Section 3.6.2)).

For the intelligibility experiments, six conditions were tested in Experiment 3–2. The

conditions included original cnv and clr speech, and four hyb speech configurations,

namely hyb-dsp2, hyb-d2, hyb-sp2, and hyb-sp (subscript 2 indicates that the signal

was processed by Implementation 2). Three out of four sets of the hyb speech were

processed using Implementation 2. The first set of hyb speech examined the combined

effect of phoneme duration, spectral features, and phoneme sequence from clr speech
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(hyb-dsp2: Duration, Spectrum, Phoneme). The second set of hyb speech examined the

effects of only phoneme duration from clr speech (hyb-d2: Duration). The third set of

hyb speech examined the combination of spectral features and phoneme sequence from

clr speech (hyb-sp2: Spectrum, Phoneme). Lastly, the fourth set of hybrid speech was

the same configuration as hyb-sp2, but it was processed using Implementation 1 (hyb-

sp). In Experiment 3–2, 48 sentences were tested with a Latin square design (8 sentences

per condition).

For the quality experiment, to examine the speech quality with Implementations 1 and

2, fragments of the sentences, such as syllables, words, or phrases, were chosen as stimuli.

First, all the segments that were affected by any four modifications in Implementation

2 were selected (Table 3.6). The detected segments included (1) the phonemes (vowels,

nasals, flaps, and approximants) that are allowed to have very low F0 due to glottalization

in voiced sounds by having pitch-epoch marks farther than the minimum threshold (16 ms),

(2) the frames that contain, bursts as found in affricates, plosives and flaps, which are not

duplicated in the process of duration or F0 modification, (3) the frames that contain

unvoiced-to-voiced transitions, which are not be duplicated in the process of duration or

F0 modification, (4) concatenation points where the phonemes are inserted or deleted by

using linearly weighted windows during phoneme insertion and deletion operations.

By visual inspection of the spectrogram of the segments and by listening to segments

that were processed by Implementation 1, 24 segments were manually selected. Then, the

segments processed by both Implementation 1 and 2 were presented as stimuli.

3.7.4 Results and discussions

Intelligibility experiments

The average SNR–50 level was −0.24 dB (1.11) (Table 3.5). Figure 3.5 shows the mean

intelligibility rates in percent and standard deviations for the 6 conditions. The intelli-

gibility rates of cnv and clr were 65.63 % (19.31) and 89.58 % (sd: 10.44), respectively.

The intelligibility rates of hyb-dsp2, hyb-d2, hyb-sp2, and hyb-sp were 81.25 %(15.54),

75.00%(15.99), 76.04 % (12.45), and 58.33% (24.03), respectively.

The results from the 12 subjects were analyzed for statistical significance using the arc-

sine transformation as described in Experiment 3–1 (Section 3.8.2). The intelligibility of

clr speech was significantly better than the intelligibility of cnv speech (t(11) = 5.6336,

p <0.0001).

A paired t−test comparison between hyb-dsp2 and cnv (t(11) = 3.1278, p = 0.0048),
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Figure 3.5: Intelligibility rates (in percent) in Experiment 3–2. Significant differences are
shown with asterisks (∗: p < 0.05).

as well as hyb-sp2 and cnv speech (t(11) = 2.2658, p = 0.0223) showed a significant

improvement in intelligibility for both configurations. The other hyb condition, hyb-

d2 was not significantly different from cnv speech (p = 0.139). A comparison of the

Implementations 1 and 2 for one condition, namely between hyb-sp2 and hyb-sp (t(11) =

3.2895, p = 0.0036), indicated a significant difference in intelligibility with Implementation

2.

The first hypothesis (H1) discussed in Section 3.6.3 was that phoneme durations were

not independent of spectral features; the source of these two features can not be separated

while maintaining intelligibility. The hyb feature set that consists of a combination of

features dsp from clr speech had higher intelligibility than the hyb feature set that

consists of features d or sp only, which supports hypothesis H1. However, the combination

of features sp also yielded significant improvement over cnv speech; therefore, hypothesis

H1 was not completely confirmed. The second hypothesis (H2) was that the signal-

processing artifacts in hyb speech might have decreased intelligibility. The current results
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Table 3.6: Comparison Mean Opinion Score (CMOS) results comparing Implementations
1 and 2. Asterisks are shown for significance (α= 0.05).
Category Num. of samples HYB configuration CMOS
1: No auxiliary marks 6 efdn −0.53 (0.82)∗

2: No duplication of stops 6 dp 0.56 (1.12)∗

3: Unvoiced to voiced transition 6 efdn −0.06 (0.80)
4: Phoneme insertions 6 dp 0.40 (0.99)∗

showed the intelligibility of hyb-sp2 (processed by Implementation 2) was significantly

better than hyb-sp (processed by Implementation 1), which confirms hypothesis H2.

In Experiment 2, the hyb-d, hyb-sp, as well as hyb-dsp conditions were evaluated to

examine individual effects of duration and spectrum. In the case of hyb-sp and hyb-dsp,

it is still not clear whether the improvement of hyb-dsp was more due to a large number of

phoneme insertions, which is a characteristic of clr speech, or the effects of duration and

spectrum. To determine the contribution of phoneme insertions, the next experiment was

planned for the comparison between hyb-p, hyb-s, hyb-ds, and hyb-efpn individually.

Quality experiments

Table 3.6 shows the average CMOS results in each category over 12 subjects. The t−test

was used to examine whether the average CMOS in each category is greater than 0 (which

means that Implementation 2 improved the speech quality), or equal to or less than 0

(which means that Implementation 2 did not improve the speech quality).

Category 1 The mean of −0.53 was significantly lower than 0 (t(71) = 5.4498, p = 3.45

× 10−7). Not allowing very low F0 due to glottalization in the voiced regions led

to de-glottalization of the phonemes that were glottalized in the original. On the

other hand, allowing very low F0 in the voiced regions could lead to hybridization

of glottalized phonemes and non-glottalized phonemes accurately. Even though the

de-glottalized phonemes were perceived as sounding slightly better, it is not clear

that this preference relates to intelligibility. Using Implementation 2, the glottalized

vowels in hyb speech were better controlled in the hybridization algorithm.

Category 2 The mean of 0.56 was significantly higher than 0 (t(71) = 4.1911, p = 3.45

× 10−5). Restricting the number of duplicates of the frames that contain bursts in

the processing of F0 and duration modifications led to significantly improved speech

quality.
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Category 3 The mean of −0.06 was not significantly different from 0 (p = 0.28). The

results showed that restricting the number of duplicates of the frames that contain

unvoiced-to-voiced/voiced-to-unvoiced transitions did not make any difference for

perceptual preference.

Category 4 The mean of 0.40 was significantly higher than 0 (t(71) = 3.4589, p = 4.60 ×
10−4). By applying a ramping window in Implementation 2, audible discontinuities

were reduced, as compared with Implementation 1.

Overall, in two out of four categories the speech quality was improved in Implementation

2, though one category resulted in reduced quality.

3.8 Experiment 3–3: The effects of phoneme insertions from

CLR speech

One of the characteristics of clr speech is that bursts of stop consonants in a word final

position are often released. Inserting /@/ after voiced consonants is also found in clr

speech [80, 55]. In Experiment 3–3, the contribution of the clr phoneme sequence was

tested. Our hypothesis was that the improvement of hyb-dsp in Experiment 2 was due to

the contributions of either duration or spectral features (or both), but not the phoneme

insertions, and that the occurrence of phoneme insertions was not frequent enough to

provide significant improvement.

Eighteen subjects (10 females and 8 male) who were in the age range 18–35 (mean:

24.06) participated in Experiment 3–3. For the subject recruitment, the same criteria as

in Experiments 1 and 2 were used.

3.8.1 Stimuli

For SNR–50, the stimuli were the original cnv speech without any modification, the

same as in previous experiments (Section 3.6.2). For the intelligibility experiments, six

conditions of stimuli were tested in Experiment 3–3. The conditions included original cnv

and clr speech, and four hyb speech configurations, namely hyb-p2 (Phoneme), hyb-s2

(Spectrum), hyb-ds2 (Duration and Spectrum), hyb-efpn2 (Energy, F0, Phoneme, and

Non-speech).

Previously, Experiment 2 showed the intelligibility of hyb-dsp2 and hyb-sp2 were

significantly higher than baseline cnv speech. In order to examine the contributions of



46

CNV HYB-P2 HYB-S2 HYB-DS2 HYB-EFPN2 CLR
  

30

40

50

60

70

80

90

100

C
o
rr

e
c
t 
Id

e
n
ti
fi
c
a
ti
o
n
 (

%
)

*

*

*

Figure 3.6: Intelligibility rates (in percent) in Experiment 3–3. Significant differences are
shown with asterisks (∗: p < 0.05).

phoneme sequence, the individual features of spectrum and phoneme were tested in hyb-

p2 and hyb-s2. The combination of hyb-ds2 was also tested. Experiment 1 showed

the combination of features efn (Energy, F0, and Non-speech) were not contributing

features to improved intelligibility of clr speech. We again tested this condition by

adding phoneme features (p) to the features efn, to determine whether the phoneme

sequence improves hyb-efn speech intelligibility. For the experiment, 48 sentences were

tested with a Latin square design (8 sentences per condition).

3.8.2 Results and discussions

The average SNR–50 was 0.22 dB (1.44) (Table 3.5). Figure 3.6 shows the mean intelligi-

bility rates in percentage and standard deviations for 6 conditions. The mean intelligibility

of cnv speech was 72.22 % (14.57), while that of clr was 84.72 % (sd: 11.79). The in-

telligibilities of hyb speech were 65.97 % (19.56), 72.92% (19.76), 81.94 % (14.36), and

64.58% (15.01) for hyb-p2, hyb-s2, hyb-ds2, hyb-efpn2, respectively.
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The results from the 18 subjects were analyzed for statistical significance using the

arc-sine transformation as previously described in Section 3.6.3. The intelligibility of

clr speech was significantly better than the intelligibility of cnv speech (t(17) = 3.524,

p < 0.003).

A paired t−test comparison between cnv speech and hyb-p2, hyb-s2 revealed neither

having a significant difference (p = 0.40, and 0.83, respectively). On the other hand,

hyb-ds2 yielded a significant improvement over cnv speech (p = 0.05). These results

indicate that the contribution of phoneme sequence was not significant. Obtaining a

significant improvement in the hyb-ds2 condition suggested that the previous results

from hyb-dsp2 were most likely due to the contribution of ds, not due to the phoneme

sequence. In the case of hyb-efpn2, the intelligibility was significantly decreased from

cnv speech (p < 0.01). From the results in Experiment 1, which did not show a significant

difference for hyb-efn, by adding the p feature the intelligibility was decreased, despite

the improvements of Implementation 2. It may be possible that the phoneme insertion

(or deletion) operations from clr to cnv caused unnaturalness in the phoneme sequence.

These results suggest that for this speaker the combination of ds and dsp had signif-

icant effects on intelligibility, but not the individual features d, s, or p. In fact, having

feature p caused an intelligibility decrease from cnv speech.

3.8.3 Phoneme Confusions

To further investigate effects of features from clr speech at the phoneme level, the re-

sponses from 18 subjects were transcribed and phoneme confusions were analyzed in each

condition. First, correct word sequences were aligned with subjects’ response at word

level.

For example,
(1) Smoky fires LACK FLAME AND # heat

(2) Smoky fires # FROM # THE heat
The sequence (1) is the correct response, and the sequence (2) is an example of the sub-

ject’s response. The words “LACK” and “AND” were deleted, while the word “THE”

was inserted, “FLAME” was substituted with “FROM”. In this analysis, word deletions

and insertions were disregarded. Then, substituted words (in this example “FLAME” and

“FROM”) were aligned at phoneme level,
(1) /f/ /l/ /ei/ /m/

(2) /f/ /õ/ /2/ /m/
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Table 3.7: The error patterns, in percent, for substitution errors (voicing, manner, place,
and height) and insertion/deletion errors at the phoneme level.

Total Count voice manner place height Total Count Ins. Del.
Condition: cnv

V ( 6) 0.0 33.3 50.0 83.3 V ( 3) 33.3 66.7
C ( 6) 83.3 50.0 66.7 50.0 C (10) 20.0 80.0

Condition: hyb-p

V ( 4) 0.0 25.0 100.0 50.0 V ( 7) 85.7 14.3
C ( 7) 42.9 42.9 85.7 57.1 C (14) 85.7 14.3

Condition: hyb-s

V ( 5) 0.0 0.0 60.0 80.0 V ( 2) 0.0 100.0
C (15) 60.0 40.0 86.7 20.0 C (17) 47.1 52.9

Condition: hyb-ds

V ( 5) 0.0 40.0 40.0 100.0 V ( 2) 0.0 100.0
C (10) 20.0 10.0 90.0 40.0 C (11) 54.5 45.5

Condition: hyb-efpn

V ( 8) 0.0 0.0 37.5 100.0 V ( 5) 20.0 80.0
C ( 5) 0.0 20.0 100.0 20.0 C (15) 60.0 40.0

Condition: clr

V ( 1) 0.0 0.0 0.0 100.0 V ( 3) 66.7 33.3
C ( 2) 50.0 50.0 50.0 50.0 C (16) 62.5 37.5

In this case, /l/ and /ei/ were substituted with /õ/ and /2/, respectively. For the sub-

stitution errors, each phoneme is characterized in terms of voicing, manner, place, and

height.

The error patterns, in percent, for substitution errors (voicing, manner, place, and

height) and insertion/deletion errors are shown in Table 3.7. The total numbers of errors

for vowels and consonants are indicated in parentheses. The percentage of the error types

(count in each type of errors divided by the total number of errors) is indicated in each

row. One substitution error can consist of more than one error type, therefore the sum of

error percentages can be greater than 100 %. The consonant confusions showed that major

substitution errors were the place of articulation in all hyb conditions. The insertion errors

of consonants were more common than deletion errors in most of the hyb conditions and

clr speech, while the opposite was true for cnv speech. Though vowel confusion at the

phoneme level was less frequent, vowel substitution errors were mostly height errors.
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3.9 Conclusions

From these experiments, it was confirmed that the intelligibility of cnv speech can be

improved by replacing features from cnv speech with those of clr speech. These results

present the first known case in which sentence-level intelligibility of cnv speech has been

improved by modification of the speech signal using clr speech features. We confirmed

the hypothesis that the earlier version of the hybridization algorithm could be improved

by 4 major modifications to the algorithm in Implementation 2.

The hypothesis that the source of phoneme durations should be matched with that

of spectral features was not completely supported, since significant improvement was ob-

tained in one case with spectrum modification but without duration modification. How-

ever, the third experiments suggest that the interaction between spectrum and duration

may still be worth investigating.

In a series of experiments, tree structures were built with nodes in the tree specifying

features from clr speech to determine relevant features. Figure 3.7 represents the tree

structures obtained from Experiments 1 through 3. In Experiment 1, the feature combi-

nation hyb-efn and hyb-dsp were tested. Because hyb-dsp had improved intelligibility

over cnv speech, features dsp were split into d and sp in Experiment 2. As a result of

Experiment 2, hyb-sp as well as hyb-dsp conditions were effective. In Experiment 3–3,

on the other hand, features dsp were again repartitioned into ds and p to examine the

contribution of the phoneme sequences separately from the spectral feature. In these ex-

periments, the speech corpus from only one speaker was utilized, hence it may not be

straightforward to generalize the results for different speakers. One study showed, for

example, that different speakers employ different strategies to produce clr speech [30].

Our other work [5] (not reported here) examining the features that are relevant to

classify cnv and clr speaking style using machine learning techniques showed that only

about 9 features (mostly prosodic features) out of 56 features are needed to capture the

most predictive power. The results from this chapter indicate that the features that are

important for speaking style classification and for intelligibility may be different.

In conclusion, a combination of the features spectrum (s) and duration (d) was suffi-

cient to improve intelligibility of cnv speech for this speaker and this sentence material,

while F0, energy, phoneme sequence, and pause information were not. Therefore, the

following chapters focus on the spectral and duration features. In the next chapter, we

describe the effect of formants and duration on vowel intelligibility and a method to modify

formant frequencies.
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(a) In Experiment 3–1, a combination of duration (d), spectrum
(s) and phoneme sequence (p) improved intelligibility of cnv
speech.
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(b) In Experiment 3–2, a combination of spectrum (s) and
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(c) In Experiment 3–3, a combination of duration (d) and spec-
trum (s) improved intelligibility of cnv speech.

Figure 3.7: Tree structures obtained from Experiments 3–1 through 3–3. Significance as
compared with original cnv speech was shown with the asterisks (p < 0.05).



Chapter 4

The effect of formant contours and

phoneme durations on vowel intelligibility

4.1 Introduction

From the series of experiments discussed in Chapter 3, the combination of phoneme dura-

tion and spectral features from clr speech was effective to improve sentence intelligibility

of cnv speech. Spectral features can be considered as a combination of formant frequen-

cies and formant-normalized spectrum (glottal source and nasal resonance information).

As a result of an unpublished pilot study, differences in the formant-normalized spectrum

were not observed between cnv and clr speech for the particular speaker in the speech

corpus used in Chapter 3. Therefore, the relationship between formant frequencies as a

spectral feature and phoneme durations is examined in this chapter1. Although meaningful

sentences with 5 keywords were used previously, meaningful consonant-vowel-consonant

(CVC) words were used in this chapter to focus on understanding formant dynamics.

It is known that the degree of formant undershoot depends on speaking style, word

stress, vowel duration, and neighboring consonants [64]. The study in Furui [33] showed

that the formant transition region, where the slope is the greatest, is the most important

region for syllable (consonant-vowel-consonant) identification. Speaking styles have sig-

nificant effects on the formant transition at the phoneme boundaries [68]. However, it is

not clear how much the observed formant undershoot and the formant transitions of cnv

speech are detrimental to vowel intelligibility, as compared with the clr speech.

The objectives of the study in this chapter are as a continuation of Specific Aim 1, (1)

to characterize formant steady-state values and formant transitions with different speaking

1Part of this chapter was published in Amano-Kusumoto and Hosom [2].
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rates and styles, (2) to determine whether vowel intelligibility can be improved by modify-

ing formant steady state values and formant transitions independently of phoneme dura-

tion, and (3) to determine whether the combination of formant frequencies and phoneme

durations can be modified to maximize intelligibility.

In this chapter, the study of Moon and Lindblom [68] was extended by testing cnv

and clr speech spoken at different speaking rates. The contributions of speaking style,

speaking rate, and vowel identity to intelligibility levels were examined. Next, we examined

whether acoustic features of formant steady-state (SS) values (and transitions) contribute

to the improved intelligibility of clr speech, by creating hybrid (hyb) speech. hyb speech

is, in this case, a synthetic speech signal that contains acoustic features from both cnv

and clr speech, which is similar to the method discussed in Chapter 3 (Section 3.3). The

formant contours of cnv speech were modified to match the SS and transitions of clr

speech.

4.2 Text materials: CVC words

As an extension of Moon’s study [68], the four front vowels (/i:/, /I/, /E/ and /ei/) sur-

rounded by the consonants /w/–/l/ at two speaking rates (slow and fast) were recorded

in this study. The /w/–/V /–/l/ context with front vowels provides large second formant

(F2) movement between consonants and the vowel due to coarticulation.

4.2.1 Speech Material

Four test words (wheel, will, well, and wail) in a carrier sentence were repeated 16 times

each. The carrier sentence “it’s easy to tell the size of a WORD” was used to facilitate

the use of prosodic manipulation upon the elicitation of cnv and clr speech at different

speaking rates. The word of interest was equally stressed. The total of 64 sentences was

randomized and the order of sentences was kept the same for each speaking style. Speech

materials were spoken in four speaking styles (cnv/slow, cnv, clr, and clr/fast).

4.2.2 Recordings

The speech signals were recorded digitally at a sampling rate of 16 kHz with 16 bit res-

olution. One male speaker, a native speaker of North-American English, recorded the

speech materials in four recording sessions. The recording of cnv speech was followed by

clr speech in the first and second recording sessions, using the speaker’s own distinction
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Table 4.1: Formant SS values of four vowels in four speaking conditions. Standard devia-
tions are shown in parentheses.

Conditions /i:/ /I/ /E/ /ei/
F1 cnv/slow 316.48 (16.29) 441.85 (10.35) 635.10 (39.81) 482.63 (30.34)

cnv 375.59 (26.46) 457.96 (11.72) 581.24 (51.43) 498.34 (33.58)
clr 319.29 (15.67) 439.29 (13.61) 685.48 (24.09) 414.77 (22.31)

clr/fast 332.97 (12.85) 472.32 (26.45) 664.21 (17.03) 498.97 (26.01)
F2 cnv/slow 2163.11 (76.86) 1526.42 (45.47) 1374.37 (49.37) 1773.94 (50.32)

cnv 1830.81 (105.50) 1304.65 (54.24) 1215.76 (43.07) 1601.06 (47.71)
clr 2439.31 (43.59) 1724.17 (70.38) 1547.69 (76.45) 2113.96 (50.34)

clr/fast 2273.69 (71.17) 1527.14 (83.17) 1468.93 (50.30) 1963.60 (56.89)

between cnv and clr speech production. For the third session, cnv speech was spoken

at a deliberately slow rate of the speaker’s choice. For the fourth session, clr speech was

recorded at a fast speaking rate. A speaking rate other than natural is indicated after

the speaking style, e. g. clr/fast and cnv/slow. It was not the goal of this study to

match the speaking rate of clr/fast speech with cnv speech, or to match the rate of

cnv/slow speech with clr speech. The purpose was to have variety of speaking rates

with cnv and clr speaking styles. The average speaking rates, measured excluding pause

durations, were 149 wpm, 365 wpm, 179 wpm, and 289 wpm for cnv/slow, cnv, clr, and

clr/fast, respectively.

4.3 Acoustic analysis of speech materials

In this section, we analyze the acoustic characteristics of our speech corpus. All words

were annotated and segmented automatically using forced alignment [44]. Formant con-

tours of the word of interest were extracted using the Snack Sound Toolkit [91]. A trained

transcriber manually corrected phoneme boundaries and formant contours. Acoustic anal-

ysis included measurement of vowel steady-state (SS) frequency, formant slope, and the

relationship with vowel duration.

4.3.1 Vowel steady-state values

Formant SS values were extracted at the midpoints of each vowel for each sample. The

average of F2 SS values over 16 samples in each vowel (/i:/, /I/, /E/, /ei/) in four conditions

(cnv/slow, cnv, clr, clr/fast) are shown in Table 4.1. SS values of F1 and F2 were

submitted to one-way analysis of variance (ANOVA) examining the effect of speaking

style. Prior to the analysis, F1 values were converted to the distance from the center
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Table 4.2: F2 slope (Hz/ms) at vowel onset and offset, for four vowels in four speaking
conditions. Standard deviations are shown in parentheses.

/i:/ /I/ /E/ /ei/
Vowel onset cnv/slow 17.50 (3.61) 10.27 (2.68) 7.30 (2.12) 10.34 (2.50)

cnv 16.50 (4.83) 8.13 (2.12) 6.74 (1.45) 11.96 (2.23)
clr 32.35 (6.85) 18.56 (5.63) 12.87 (2.04) 20.59 (2.16)

clr/fast 35.53 (4.73) 15.74 (2.19) 12.49 (1.67) 19.16 (2.12)
Vowel offset cnv/slow −6.53 (2.33) −4.93 (1.66) −2.31 (1.57) −6.26 (1.55)

cnv −10.56 (2.46) −5.89 (2.51) −3.94 (1.46) −10.06 (2.81)
clr −15.83 (2.73) −6.79 (1.40) −4.93 (1.49) −12.62 (2.31)

clr/fast −14.81 (2.51) −5.61 (2.28) −4.49 (0.90) −11.46 (3.64)

(500Hz). Both F1 and F2 SS frequencies, the main effect of speaking style was significant

(p = 0.0011, p = 3.8378 × 10−11, respectively). Multiple comparison showed that both

F1 and F2 SS values of clr speech are significantly higher than those of cnv speech.

The effect of speaking rate on formant frequencies was tested using a pairwise, two-

tailed t−test comparing cnv/slow and cnv speech, as well as clr/fast and clr speech,

for each vowel. All vowels in comparison pairs for F1 and F2, except for the F1 of the

vowel /ei/ in cnv conditions and F1 of the vowel /I/ and /ei/ in clr conditions, were

significantly different (p < 0.001).

Speaking style caused a significant effect on both F1 and F2 SS values with /w/–

/V /–/l/ contexts, even with different speaking rates combined. This indicates that for

clr speech front vowels, the vowel space is expanded along both F1 and F2 dimension.

Speaking rate (cnv/slow and cnv, or clr and clr/fast) also had a significant effect

on F2 SS values, as well as F1 SS values for some vowels.

4.3.2 F2 slope

Since speaking style had a significant effect on F2 SS only, F2 slope is further analyzed in

this section. The F2 slope was measured over the 20ms at phoneme boundaries by fitting

a straight line to the observed data. Table 4.2 shows the average F2 slope for four vowels

in four conditions. F2 slopes at the transition from pre- and post-vocalic consonant of the

vowel for each speaking style were submitted to a one-way ANOVA. The main effect of

speaking style was significant both at onset and offset transitions (p < 0.0001 and p = 2.13

× 10−9). The post-hoc analysis showed that, as expected, F2 slopes of clr speech are

steeper than those of cnv speech both at onset and offset transitions.

A significant effect was not shown for the effect of speaking rate on F2 slope at the
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Table 4.3: Vowel durations (ms) of four vowels in four speaking conditions. Standard
deviations are shown in parentheses.

/i:/ /I/ /E/ /ei/
cnv/slow 268.13 (49.83) 154.38 (30.54) 174.38 (33.66) 267.50 (36.06)

cnv 98.75 (8.85) 78.13 (10.47) 88.75 (12.58) 118.75 (15.00)
clr 229.38 (18.79) 141.88 (23.44) 151.88 (24.82) 236.25 (15.86)

clr/fast 151.88 (21.98) 100.63 (12.37) 120.00 (13.17) 172.50 (15.28)

vowel onset transitions for all vowels, based on a pairwise t−test comparing cnv and

cnv/slow speech (p = 0.1927, 0.0904, 0.5547, 0.0797) as well as clr and clr/fast speech

(p = 0.5236, 0.0165, 0.4364, 0.0327), while all vowels showed a significant effect at the vowel

offset transitions (p < 0.01) except for /I/ (p = 0.2663) and /E/ (p = 0.0131) in cnv

comparisons.

The results suggest that, in general, F2 slopes are determined by the speaking style,

independent of speaking rate at vowel onset. Consistent with the study by Moon [68] (in

which F2 slope was measured from two points, 25% down from the F2 peak and 25 % up

from middle of /w/), these results showed the movement of articulators producing clr

speech was faster than in cnv speech. On the other hand, the duration of the vowel was

not the key determinant of the rate of moving the articulators. It is also an important

finding that differences in speaking rate caused changes in F2 slopes at the vowel offset

for most of the vowels.

4.3.3 The relationship between F2 steady-state frequencies and vowel

durations

Vowel duration (ms) was measured from the beginning to the end of the vowel. The

average vowel duration is shown in Table 4.3 for the four vowels in the four conditions.

Figure 4.1 shows the F2 SS frequencies as a function of vowel duration, where outliers

in terms of duration were detected using a modified z-score test (outliers are shown with

stars in the figure) [45].

Zi =
∣∣∣∣ 0.6745(xi − x̄)
median(xi − x̄ )

∣∣∣∣ (4.1)

where xi represents each sample, and x̄ is the average over 16 samples of the vowel per

condition. The criteria for detecting an outlier was Zi > 3.5.

According to the study from Lindblom [64], the degree to which a vowel reaches its

target has an exponential relationship with the vowel duration. Therefore, an exponential
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Figure 4.1: Formant frequencies as a function of vowel duration in four conditions. Outliers
in terms of vowel duration are represented with asterisks. Two lines show the fitted
exponential curves in clr and cnv speaking styles separately.

function (Ae−λt) was fitted in each group of speaking styles by varying parameters A and

λ to minimize the sum of squared errors.

As a result of permutation test in multiple regression [75, 20], the effect of speaking

style regardless of speaking rate was significantly different for all vowels (p < 0.0001).

Pairwise two-tailed t−tests showed that cnv/slow has longer phoneme duration than

clr speech for all vowels (p=0.0034, 0.0309 0.0198 and 0.0024, respectively). The results

showed that despite the duration of clr speech being less than that of cnv/slow speech,

F2 values of clr speech for all vowels are higher than those of cnv/slow speech.

Picheny et al. reported that the differences in duration between cnv and clr speech

are greater for tense vowels than for lax vowels [80]. Similarly in our study, we found that

the duration differences in lax vowels were much less than in tense vowels. On the other

hand, in the study by Moon and Lindblom [68] investigating duration dependencies of F2
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Figure 4.2: F2 slope (Hz/ms) frequencies as a function of vowel duration with four condi-
tions. Outliers in terms of vowel duration are represented as asterisks.

frequencies with clear and citation form of speech, F2 changed little with longer vowel

duration for tense vowels (especially for the vowel /i:/), while lax vowels showed longer

duration resulting in higher F2 values. In our study, duration dependencies on F2 values

showed that longer duration for both tense and lax vowels caused higher F2 values, unlike

Moon’s study [68].

4.3.4 The relationship between F2 slope and vowel durations

Similar to Figure 4.1 in the previous section, Figure 4.2 shows the F2 onset slope as a

function of vowel duration, where duration outliers were detected using a modified z-

score test (outliers are shown with stars in the figure) [45]. Unlike F2 SS values, the F2

slope does not appear to change as the vowel duration becomes longer, with the possible

exception of the vowel /I/ in the clr style.
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As a result of acoustic analysis of our speech corpus, vowel F2 steady-state values have

a relationship with both speaking style and speaking rate, while F2 slopes at phoneme

boundaries vary based only on speaking style for vowel onset and both on speaking style

and rate for vowel offset. F1 SS values were not different based on speaking style.

4.4 Experiment 4–1: Intelligibility of naturally spoken CNV

and CLR speech at different speaking rates

A perceptual experiment was conducted to examine whether the effects of clr speech vary

based on speaking rate and vowel identity. Krause and Braida [54] concluded that fast

spoken clr speech from speakers with professional public speaking has an intelligibility

advantage over cnv speech. We investigate if their finding holds in our speech corpus,

and also look at vowel identity as a factor in intelligibility. Four vowels (/i:/, /I/, /E/

and /ei/) with one phoneme context (/w/–/V /–/l/) were tested, in four speaking styles

(cnv/slow, cnv, clr, and clr/fast).

Ten adults, aged between 19 and 38 years, were recruited for Experiment 4–1. All lis-

teners were native speakers of North-American English with self-reported normal hearing.

4.4.1 Normalizing loudness

It is important to keep the loudness of vowels constant in test words, since loudness plays

an important role for speech intelligibility. First, the root mean square value of the vowel in

a test word (RMSv) was calculated. The gain factor (Gv) was then obtained for the vowel

to have a normalized RMSv value. Finally, the energy of the test word was multiplied by

Gv.

4.4.2 Normalizing F0 contour

The different speaking styles (clr and cnv) resulted in differences in F0, which is con-

sistent with previous work [80, 55]. Since it is unknown whether increased F0 values in

clr speech contribute to its increased intelligibility, in order to evaluate the importance

of only formant values and phoneme duration, the F0 contours were normalized over the

four conditions.

First, an F0 contour model was derived from clr/fast based on the F0 onset values of

each phoneme (/w/, /V /, /l/), the F0 offset values of the /l/, and the maximum F0 value

in /V /. These five points in the F0 contour model were the average values of clr/fast
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Figure 4.3: F0 contour model used to normalized F0 values for the four conditions. Red
circles from the left- to right-hand side indicate (1) onset of /w/, (2) onset of /V /, (3)
maximum point of /V /, (4) onset of /l/, and (5) offset of /l/.

Table 4.4: F0 values of clr/fast for the F0 contour model.
/i:/ /I/ /E/ /ei/

p1 (onset of /w/) 101.97 101.04 101.25 99.88
p2 (onset of /V /) 124.91 123.43 117.91 119.11

p3 (Max F0) 131.63 127.06 135.17 122.10
p4 (onset of /l/) 95.51 102.13 98.49 90.76
p5 (offset of /l/) 86.50 87.14 102.97 85.41

Mean F0 107.72 105.69 104.14 103.10
Word duration (sec) 0.42 0.38 0.40 0.45
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speech over 16 repetitions for each vowel. An F0 contour was then derived by interpolating

these five points with cubic spline interpolation. The clr/fast speech was chosen for the

F0 contour model, because the resulting F0 modification in each condition did not require

lowering F0 values, which may lead to more noticeable signal artifacts.

Figure 4.3 shows the F0 contour model with values shown in Table 4.4. The F0 contour

model was stretched to match the duration of each phoneme with the observed data in

each condition. In the F0 modification stage, the F0 values of each sample in all four

conditions were modified to the values of F0 contour model.

4.4.3 Procedures and apparatus

The perceptual experiment took place individually for each listener in a perceptual testing

booth (Whisper Room, SE2000 series). A listener was seated in front of a computer

monitor, listening to stimuli through circumaural headphones (Sennheiser HD 280 Pro),

binaurally. A forced-choice test was used with four buttons, corresponding to the four

choices (“wheel”, “will”, “well”, “whale”), appearing on the user-interface screen.

12-talker babble noise was used to simulate a noisy environment. The energy of the

noise was adjusted to meet the desired SNR–50 level for each listener. The SNR–50 level

refers to the signal-to-noise (SNR) ratio at which a listener can correctly identify the

stimuli in the cnv speaking style 50 % of the time. The SNR–50 level was obtained for

each listener using the up-down adaptive procedure described in Section 3.5.2 [62].

The listeners were tested in three sessions: the first two sessions were used for ob-

taining the listener’s SNR–50 level, and the third session was for the vowel identification

experiment. SNR–50 values from the second session were used for the vowel identification

experiments, while the values from the first session were disregarded. The total of 144

stimuli (4 /w/–/V /–/l/ words × 4 speaking styles × 9 repetitions) were tested using a

Latin Square design.

4.4.4 Results and discussions

The results of Experiment 4–1 are shown in Figure 4.4, representing percent correct rates

for each vowel identity in all four conditions, averaged over 10 listeners. The average

noise level (SNR–50) was −1.08 dB (std: 2.11). Percent correct rates were converted to

rationalized arcsine units (RAUs) prior to statistical analysis [97]. The effect of vowels

(/i:/, /I/, /E/ and /ei/) and speaking styles (cnv/slow, cnv, clr and clr/fast) were

submitted to a two-way repeated-measures analysis of variance (ANOVA).
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(d) Vowel /ei/

Figure 4.4: Percent correct rates for four vowels in four conditions (two speaking styles
and two speaking rates).

The results of two-way ANOVA (vowel identities × speaking styles) show that the

main effects of vowels and speaking styles were significant (p = 0.001 and p < 0.0001).

For the tense vowels (/i:/ and /ei/), clr speech was significantly more intelligible than

cnv speech (both p < 0.01). On the other hand, for lax vowels (/I/ and /E/) the effects

of speaking style were not significant (both p > 0.05).

The confusion matrices are shown in Figure 4.5, representing responded and presented

vowels on the horizontal and vertical axes, respectively. The numbers represent the per-

centage of responses, with a maximum of 100 % per vowel. The confusion pattern in cnv

speech, which had the least intelligibility compared with any other speaking style, showed

that listeners tended to perceive the vowel /i:/ as /I/ (“wheel” as “will”) (73.33 %), and
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(d) clr/fast speech

Figure 4.5: Confusion matrices representing responded and presented vowels on the hori-
zontal and vertical axes, respectively. The diagonal responses are the correct answers; the
percentage is shown at the center of each circle.

the vowel /ei/ as /E/ (44.44%) and /I/ (40.00%) (“whale” as “well”) and “will”). In

general, with 16-talker-babble noise at the SNR–50 level, tense vowels with short vowel

durations were more often perceived as lax vowels, while long tense vowels tended to be

identified correctly.

The speaking rate affected intelligibility, showing that clr/fast speech is less intel-

ligible than clr speech, and that cnv speech is less intelligible than cnv/slow speech.

This indicates that the faster speaking rates resulted in less intelligible speech. Figure 4.6

shows percent correct rates based on the vowel duration of the stimulus. It is clearly
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Figure 4.6: Percent correct rates as a function of vowel durations for each vowel in four
conditions in Experiment 4–1.

shown that the shorter vowel durations have less percent correct rates. The one exception

is in the cnv/slow data, which shows a notch at one duration per vowel. This seems

to be an anomaly that is not indicative of the underlying trend. For cnv speech, it is

uncertain whether the cause of less intelligible tense vowels is due to short vowel duration

or the large amount of formant undershoot.

Krause and Braida’s study showed that the benefit of clr speech is extended to normal

speaking rates (approximately 200 wpm), but the fastest speaking rate with a clr speech

benefit was observed at 218 wpm. Similarly, our results also show that it may not be

possible to obtain a level of intelligibility equal to that of clr speech at a fast speaking

rate (289 wpm) for naturally−produced speech. In Experiment 4–2, we examine whether

it is possible to improve vowel intelligibility by modifying formant frequencies with and
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without modifying word duration.

4.5 Hybridization algorithm

The hybridization (hyb) algorithm proposed here is a signal processing technique that

modifies certain acoustic features of cnv speech to match those of clr speech, similar to

the one described in Chapter 3 [48]. Four front vowels (/i:/, /I/, /E/ and /ei/) were ex-

amined to test whether it is possible to improve vowel intelligibility by modifying formant

contours in a word.

Results from acoustic analysis (Section 4.3) revealed that cnv and clr speech had

inherently different F2 SS values and different F2 slopes at phoneme boundaries. Experi-

ment 4–1 showed that the vowel intelligibility for /i:/ and /ei/ was higher for clr speech

than cnv speech, and that short durations negatively impacted the intelligibility of tense

vowels. These results motivated us to examine whether intelligibility could be improved by

reducing the degree of formant undershoot, or whether cnv speech with modified formant

contours is inherently less intelligible than clr speech because of the short duration of

cnv speech. The formant transition region is known to be important for vowel percep-

tion [33], therefore the formant transition region in addition to F2 SS value was tested

in a perceptual experiment. The stimuli consisted of enhanced formant SS values only,

or both enhanced SS values and formant transitions in hybrid speech (Section 4.5). Our

hypothesis was that formant SS values (and possibly transitions) of clr speech contribute

to improved intelligibility, independent of duration.

The first step of the hybridization algorithm was to extract target formant SS and/or

formant transition values from clr speech. Then, the hyb formant contours with these

target values were designed. The third step was to modify formant values of cnv speech by

analysis and synthesis methods to match the target formant contours. Although acoustic

characteristics revealed differences in only F2 SS values and F2 slopes, in formant modifi-

cation it was necessary to modify F1 through F4 frequencies to prevent, for instance, F2

being raised higher than F3.

4.5.1 Hybridization conditions

Three hyb conditions were evaluated to test the effect of SS values, transitions, and vowel

duration (hyb-m, hyb-mt, and hyb-cd). The term hyb-m indicates that formant SS
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values of hyb speech at midpoints are those of clr speech. Similarly, the term hyb-

mt indicates that SS values at phoneme midpoints and formant transitions at phoneme

boundaries of hyb speech are those of clr speech. Finally, the third condition hyb-cd

indicates that the entire formant contour (not only SS values and transitions) and phoneme

durations of hyb speech are those of clr speech. The reason to include phoneme durations

in hyb-cd is because our previous study showed that changing the combination of short-

term spectra and phoneme durations improved the sentence intelligibility over that of cnv

speech [48]. This condition goes one step further, examining only the formant contour (not

the formant-normalized spectrum) and phoneme duration. Also, hyb-cd provides a test

of the quality of our hybridization method with formant modification.

HYB-M: CLR steady-state values at midpoints

The target SS values were extracted at the midpoints of each phoneme /w/, /V / and /l/

of clr speech, and averaged over 16 samples per word. The process of designing a hyb-m

formant contour required a weighting function for each formant contour (F1 through F4)

shown in Figure 4.7(a). The weighting function was designed to be linearly ascending or

descending to describe the ratio between the target SS values and the cnv SS values at

the midpoint of each phoneme, using phoneme duration from cnv speech. The points

at the beginning and ending of the weighting function were set to a ratio of 1.0 to avoid

any discontinuities from the unmodified preceding and following waveform. Then, the

original cnv formant contour was multiplied by the weighting function to obtain the hyb-

m formant contours. The resulting hyb-m formant contour has target SS values from clr

speech. Figure 4.7(b) shows the original cnv (dashed line) and hyb-m formant contour

(solid line) after the weighting function was applied.

HYB-MT: CLR steady-state values at midpoints and formant transitions

In addition to the target SS values, target transitions at phoneme boundaries over a 20 ms

range were extracted and averaged over 16 samples of clr speech per word. In designing

the weighting function to include phoneme transitions, the ratio was calculated between

target values and cnv formant values (F1 through F4) at midpoints of the phonemes,

and at three points near the phoneme boundaries for both /w/ to /V / and /V / to /l/.

Similar to the previous condition hyb-m, the weighting function for each formant was

designed to be linearly ascending or descending to describe the desired ratio, as shown in

Figure 4.8(a). Then, the original cnv formant contour was multiplied by the weighting



66

5 10 15 20 25 30
0.5

1

1.5

Sample point

R
at

io

 

 

F1
F2
F3
F4

(a) Weighting functions applied to the cnv formant contours

1.6 1.7 1.8 1.9 2
0

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

(b) Formant contours (F1 through F4) of the word “wheel”. Dotted lines are
formant contours of cnv speech, and solid lines are the modified contours
in hyb speech. The circles on the formant contours indicate the SS values
of clr speech.

Figure 4.7: hyb-m condition. The hyb-m contour was obtained by multiplying original
cnv contours with weighting functions (a). Vertical dashed lines in (a) and (b) represent
phoneme boundaries.

function. In this way, the formant contours of hyb-mt were guaranteed to have SS values

and transitions at the phoneme boundaries that were identical with target values. The

formant contours of hyb-mt (solid line) and the original cnv speech (dashed line) are

shown in Figure 4.8(b).
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(b) Formant contours (F1 through F4) of the word “wheel”. Dotted lines
are cnv formant contours, and solid lines are the modified contours hyb-
mt. The circles and triangles on the formant contours indicate the SS values
and the transitions of clr speech, respectively.

Figure 4.8: hyb-mt condition. The hyb-mt contour was obtained by multiplying original
cnv contours with weight functions (a). Vertical dashed lines in (a) and (b) represent
phoneme boundaries.

HYB-CD: CLR formant contours with phoneme durations

Unlike hyb-m and hyb-mt conditions, the process of designing hyb-cd formant contours

did not require a weighting function. Because phoneme durations were modified to match

clr speech at the synthesis stage, formant contours from clr speech were copied as hyb-

cd formant contours. As shown in Figure 4.9, the formant contours of hyb-cd (solid line)
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Figure 4.9: hyb-cd condition. Formant contours (F1 through F4) of the word “wheel” are
shown. Dotted lines are cnv formant contours, and solid lines are the modified contours.
The duration of each phoneme is stretched to match that of clr speech.

have longer phoneme durations than the original cnv speech (dashed line). This condition

still has the glottal source of cnv speech.

4.5.2 Speech synthesis with HYB formant contours

For all three hyb conditions, after new formant contours were designed, the original cnv

speech was analyzed, the existing formants were removed by inverse filtering, and the hyb

speech was synthesized with new formant contours.

First, the speech waveform was analyzed with a pitch-synchronous frame that spans

two pitch periods with a one pitch period overlap. The speech signal S(z) (z-transformation)

can be represented as S(z) = Q(z)× V (z), where Q(z) is the residual signal, and V (z) is

a vocal tract transfer function. V (z) can be modeled as complex pole pairs represented as

V (z) =
1

4∏
k=1

(1− r(k)ejθ(k)
z−1)(1− r(k)e−jθ(k)

z−1)

(4.2)

r(k) = e−πf
(k)
b /Fs (4.3)

θ(k) =
2πf

(k)
f

Fs
(4.4)
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where f
(k)
f is the k-th formant frequency, f

(k)
b is its bandwidth, Fs is the sampling fre-

quency.

Four resonant frequencies (F1 through F4) in one frame were removed by applying an

inverse filter (VCNV (z)) that was designed with formant frequency values from cnv speech.

The residual signal (QCNV (z)) from inverse filtering contained primarily the glottal source

and higher formants spoken in the cnv style.

The new hyb formant contours (F1 through F4) were used to design all-pole digital fil-

ters acting as vocal tract filters (VHY B(z)). The bandwidths of each filter were unchanged

from those of the original cnv speech. The speech waveform in each frame was obtained

by applying the all-pole digital filters (VHY B(z)) to the residual signal (Q(z)).

For hyb-cd, it was required to stretch the phoneme duration to match that of clr

speech. At the synthesis stage, residual signals were repeated as necessary to obtain the

desired clr phoneme durations. The hyb-m and hyb-mt conditions had no duration

modification. In all cases, the pitch-synchronous overlap-add method was used to create

the final waveform.

4.6 Experiment 4–2: The effects of formant contours and

phoneme durations on vowel intelligibility

A perceptual experiment was conducted to examine whether hyb speech with clr speech

formant values with and without stretching phoneme durations is more intelligible than

cnv speech. Six adults, aged between 19 and 34 years, participated in Experiment 4–2.

4.6.1 Procedures and apparatus

Four vowels (/i:/, /I/, /E/ and /ei/) with /w/–/V /–/l/ contexts were tested in 12-talker-

babble noise at each listener’s SNR–50 level. The stimuli used in Experiment 4–2 were

the three types of hyb speech (hyb-m, hyb-mt, and hyb-cd) and the original cnv and

clr speech as a baseline. All stimuli had a normalized energy value and F0 contour

as described in Sections 4.4.1 and 4.4.2. The experimental procedure was the same as

in Experiment 4–1 (Section 4.4.3). A total of 320 stimuli (4 /w/–/V /–/l/ words × 5

conditions × 16 repetitions) were presented to each listener.
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(d) Vowel /ei/

Figure 4.10: Percent correct rates for five conditions. Significant differences are shown
with asterisks (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001, ∗∗∗∗: p < 0.0001).

4.6.2 Results and discussions

The results of Experiment 4–2 are shown in Figure 4.10. The average SNR–50 used for

the background noise was −4.44 dB (std: 0.97). Percent correct rates were converted

to the rationalized arcsine units (RAUs) prior to statistical analysis [97]. The planned

t−test revealed that the difference in vowel intelligibility between cnv and clr speech

was significant for tense vowels (both p < 0.001). For the vowel /i:/, the intelligibility

differences between cnv and all three hyb conditions were significant (hyb-m, p = 0.0043;

hyb-mt, p = 0.0016;hyb-cd, p < 0.0001). For the vowel /ei/, only hyb-m and hyb-

cd speech improved vowel intelligibility over cnv speech (p = 0.0388, p < 0.001). The
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difference in results between hyb-m and hyb-mt for the vowel /ei/ suggests the importance

of the overall formant trajectory, especially for diphthongs. For example, the variability

of the F2 contour of diphthongs was studied by Weismer and Berry [107]. Their results

showed the effect of speaking rate was not a simple compression or expansion of some

prototype formant contour. From the results of our experiments, it is not yet clear how

the contour should be modified to maximize intelligibility for diphthong (/ei/). Because

of the lack of intelligibility difference between cnv and clr for lax vowels, there was no

room for the formant modification to improve the intelligibility of cnv speech.

The confusion patterns (Figure 4.11) showed that “wheel” in cnv speech was perceived

as “will” 39.58% of the time, while the correct response occurred 36.46 % of the time.

The “wheel”–“will” confusion was improved to 26.04 %, 22.92%, and 4.17 % for hyb-m,

hyb-mt, and hyb-cd, respectively. The vowel /ei/ in “whale” was often confused with

/I/ in “will”, at 40.63 %, 25.00 %, and 32.29 % in cnv, hyb-m and hyb-mt conditions.

However, “whale” was perceived as “wheel” in hyb-mt (30.21%) much more than in hyb-

m (12.50%). Similar to the results in Experiment 4–1, the short tense vowels were more

often perceived as lax vowels. It is worth noting that the vowel /ei/ was confused with

/i:/ in hyb conditions, even at short durations.

In summary, for the vowels /i:/ and /ei/, even with short durations, the formant mod-

ification targeting clr SS values was effective to significantly improve vowel intelligibility.

The hyb-cd results confirm that the hybridization algorithm can yield high-quality and

highly intelligible speech when modifying formant frequencies. It can also be concluded

that spectral tilt and formant bandwidth were not important contributions to the improved

intelligibility of clr speech for our normal-hearing listeners and this speaker.

4.7 Conclusions

In this chapter, we examined the effect of formant contour and phoneme durations, and

developed a technique to improve vowel intelligibility. The results of acoustic analysis

showed that F2 SS values were determined based on speaking style and rate, while F2

slopes at the phoneme boundary vary based only on speaking style and F1 SS values were

not different regardless of speaking style and rate.

The results of the first perceptual experiment showed that it may not be possible to

obtain a level of intelligibility equal to that of clr speech in naturally-spoken fast speech.

The shorter tense vowel was often identified as lax vowel.
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We proposed a hyb algorithm to modify formant frequencies to match those of clr

speech, as well as to lengthen the phoneme durations of cnv speech to those of clr speech.

The second perceptual experiment showed that (1) the hyb algorithm can successfully in-

crease the intelligibility of cnv speech to clr intelligibility levels by formant and duration

modification (hyb-cd), (2) vowels with short durations can have significantly improved

intelligibility by formant modification, and (3) spectral tilt and formant bandwidths did

not contribute to improving intelligibility.

Similar to the results in Chapter 3, the results in this study are also limited to one male

speaker, which cannot be easily generalized to different speakers. To further understand

the relationship between formant contour and phoneme duration, we parameterize the

characteristics of the formant contour using a formant contour model (Chapter 5). In

addition, we increase the number of consonants and vowels in the CVC format, and number

of speakers (Chapter 6).
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Figure 4.11: Confusion matrices representing responded and presented vowels on the hor-
izontal and vertical axes, respectively. The diagonal responses are the correct answers;
the percentage is shown at the center of each circle.



Chapter 5

Effect of speaking style and speaking rate

on formant contours with limited

phoneme contexts

5.1 Introduction

In Chapter 4, vowel intelligibility of cnv speech was significantly improved by modify-

ing formant contours to resemble those of clr speech. The condition where formant

steady-state values of cnv speech were matched to those of clr speech was effective,

without modifying phoneme durations. However, synthesizing the formant contour with

clr speech steady-state values required a method to systematically modify the formant

transitions. In this chapter1, we examine the formant transition characteristics of clr

speech. The effect of speaking style and speaking rate is investigated within the context

of a formant contour model.

Weismer and Berry [107] showed that the effect of speaking rate on F2 cannot be

captured by linear compression or expansion of some prototype contour. By using the

proposed formant contour model, the effect of speaking rate and style on formant contours

is characterized with a formant coarticulation coefficient and formant target values.

In a study by Broad and Clermont [17], formant contours of vowels in C1V C2 contexts

(/b/, /d/, /g/) were decomposed into coarticulation functions (exponential functions)

and vowel target values. In this study, by extending Broad and Clermont’s work, we

modeled the formant contours of C1V C2 words for the first four formants using sigmoid

functions for coarticulation. The results of the formant contour model can be applied,

for example, to synthesize formant contours in text-to-speech synthesis. In this chapter,

1Part of this chapter was published in Amano-Kusumoto and Hosom [3].
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the method to model formant contours (Section 5.2), the results of the formant model

on vowels in /w/–/V /–/l/ and /t/–/V /–/l/ contexts (Section 5.3), analysis of model

parameters (Section 5.4), and the relationship between model slope parameter s and F2

slope (Section 5.4.3) are discussed.

A formant contour model is employed (1) to characterize the effect of speaking style

and speaking rate on formant contours, and (2) to develop a method to synthesize natural

formant contours.

5.2 Method: Modeling formant contours

The formant contour is modeled as a linear combination of target formant values of C1,

V , and C2. The equation of the formant contour model is given as

F̂(t) = d1(t; s1, p1)TC1 + (1− d1(t; s1, p1)− d2(t;−s2, p2))TV + d2(t;−s2, p2) ·TC2

= d1(t; s1, p1) · (TC1 −TV ) + TV + d2(t;−s2, p2) · (TC2 −TV ) (5.1)

where F̂(t) is the formant contour of a CV C word as a function of time t, as in a study by

Niu and van Santen [74]. TC1 , TV , and TC2 are the target formant vectors of the prevocalic

consonant (C1), vowel (V ) and postvocalic consonant (C2), respectively. Each target

formant vector consists of the first four formant values (dimension 4 × 1). The function

d (t; s, p) represents the degree of coarticulation of C1 and C2, which is proportional to the

differences in target formant values. The exponential curve for the degree of coarticulation

in Broad and Clerment [17] was changed to the sigmoid function

d (t; s, p) =
1

1 + es(t−p)
(5.2)

This sigmoid function restricts the coarticulatory effects to be smoothly and monotonically

decreasing or increasing. The coarticulation function d (t; s, p) is characterized with two

coefficients s (slope) and p (slope position) of the sigmoid functions. While the formant

contour is defined in Broad’s study [17] from the onset to the offset of the vowel in C1V C2

contexts, we model the formant contour from the beginning of C1 to the end of C2 for

sonorant consonants.

Figure 5.1 shows examples of coarticulation functions d1 and d2. Five values of s (from

0.0 to 1.2) for each function with fixed p value are shown where total word length equals

to 0.3 (sec). The greater s value is associated with steeper slope, while the function values

have limits from 0 to 1.
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Figure 5.1: Examples of coarticulation function with fixed p for each function where total
word length equals to 0.3 (sec).
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5.2.1 Estimating model parameters

Four coefficients in d (t; s, p) are estimated by minimizing the error function Err1, while a

total of 12 target values from F1 to F4 (TC1 , TV , and TC2) are estimated by minimizing

Err2.

Err1(k) =
w

∑T
(k)
2

t=T
(k)
1

(
F̂(t)(k) − F(t)(k)

)2

N (k)
(5.3)

Err2 =
K∑

k=1

Err1(k) (5.4)

where F(t)(k) and F̂(t)(k) are the observed and estimated (with given parameters) formant

contours in the k-th word, respectively. N (k) is the number of frames from T
(k)
1 to T

(k)
2 .

K is the number of words (K = 4) used in the training set for a particular style. The

contribution to the error from F1 and F2 are weighted more than F3 and F4, represented

as w =
[
1 1 0.25 0.01

]
. The error is not divided by the sum of the weights, because

it does not affect the ranking. Formant frequencies are converted from Hertz to Bark

frequency scale, which ranges from 1 to 24 and corresponds to the first 24 critical bands

of hearing [103]. Err2 is approximately K times greater than Err1.

The time t ranges from T1 to T2, which are determined from the consonant’s manner

of articulation. When C1 (or C2) is an approximant (i. e. /w/ or /l/), T1 (or T2) is located

at the middle of C1 (or C2), respectively. The time t does not start at t = 0 and end at the

end of the word, because of the coarticulation effects on C1 from the phoneme preceded

by C1 and the effect of weak energy at the end of the word on C2. When C1 (or C2) is an

unvoiced consonant (i. e. /t/), T1 (or T2) equals the onset (or offset) of V , respectively.

While coarticulation functions d (t; s, p) are estimated for each token (k), formant

target values, TC1 , TV , and TC2 , are estimated in two ways. One is to estimate one set of

target values for each speaking style (style-dependent target), and the other is to estimate

one set for all speaking styles (global target). The difference is whether a speaker is

thought to have a distinct formant target depending on the speaking style, or an identical

formant target regardless of speaking style. For global-target estimation, Equation 5.4

becomes

Err2′ =
S∑

style=1

K∑
k=1

Err1(k) (5.5)



78

where S is the number of speaking styles (S = 4).

For better estimation, parameters are constrained as follows:

• d1(t; s1, p1) + d2(t;−s2, p2) ≤ 1.0.

• s > 0 in Equation 5.2.

• p in Equation 5.2 is within 50 ms of the corresponding phoneme boundary.

• 200 < F1 < 900, 400 < F2 < 3000, 1800 < F3 < 3700, 2500 < F4 < 5000.

• F2− F1 > 200, F3− F4 > 200, F4− F3 > 200.

Model parameters are estimated using a hill-climbing approach. First, coefficients s in

d (t; s, p) are initialized with s = 0.7 for both functions, while coefficients p are initialized

to be the corresponding phoneme boundaries. For style-dependent target estimation,

formant target values for /w/, /V / and /l/ are initialized with the observed values at

the middle of each phoneme for the approximants, while the targets for the consonant /t/

are initialized with values from the table provided by Allen et al. shown in Table C.1 [1].

For global-target estimation, all target values are initialized with the values provided by

Allen et al.. The initial step size is 0.1 for s, 1.0 frame for p, and 50 Hz for the formant

target. We evaluate one parameter at a time. The order of evaluating parameters is

s1, p1, s2, p2 for Err1, and F1C1 , F1V , F1C2 , F2C1 , F2V , F2C2 , and so on for Err2. One

iteration is completed when all four (or twelve) parameters are evaluated in Err1 (or

Err2). For each parameter, every time Err1 (or Err2) increases, the direction of the

change is switched. After each parameter is evaluated in both directions, we switch to the

next parameter. When the error reduction is less than 10 % of the previous error value at

the end of an iteration, the step size is halved. The iterative process continues until the

error reduction becomes less than a threshold (ε = 10× 1.0−5), or the maximum iteration

(30) is reached. The step size at the exit must also be less than 0.001 for s and 0.01 for

p, otherwise the iteration continues.

The outputs from this operation are s and p for the d (t; s, p), and the target formant

matrix [TC1 ,TV ,TC2 ] (4× 3).

5.3 Results of formant contour model

We now describe the results of the formant contour model on the corpus from Chapter

4. For the experiments, we used four /w/–/V /–/l/ words (wheel, will, well, and wail)
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and one /t/–/V /–/l/ word (tool). Each word was repeated 16 times in cnv, cnv/slow,

clr/fast and clr styles; intelligibility was previously examined in Chapter 4.4. The

total of 320 (5 words × 4 styles × 16 repetitions) samples were analyzed.

We compare the modeled formant contour with the observed data in training or test

sets. In Equation 5.3, the number of words used (K) is 4 in the training set and 12 in

the test set. F̂(t)(k) in Equation 5.1 is computed with the specified s1 and s2 (i. e. values

shown in Table 5.1) in d (t; s, p), and target values (TC1 , TV , TC2) estimated with either

style-dependent or globally estimated formant targets. The slope location represented by

p is not our point of interest. Therefore, p1 and p2 are adjusted to provide the best fit

by minimizing Err1 in Equation. 5.3 given s1, s2, and the target values. A more detailed

description is provided below in Section 5.3.1.

5.3.1 Goodness of fit

The normalized sum of least squares was calculated as,

E
(k)
s,target =

w
∑T

(k)
2

t=T
(k)
1

(
F̂(t)(k) − F(t)(k)

)2

N (k)
(5.6)

where F(t)(k) and F̂(t)(k) are the observed and estimated formant contours in the k-th

word, respectively. The weight (w) was set to
[
1 1 0.25 0.01

]
as in Section 5.2.1. The

error is not divided by the sum of the weights, because it does not affect the ranking.

N (k) is the number of frames from T
(k)
1 to T

(k)
2 , which contribute to the error. Es,target is

calculated for each word k, and its subscripts s, target indicate that the error depends on

the variables s and formant target values. Mean Es,target values over the samples in the

training and test sets are reported.

Figures 5.2(a) and 5.2(c) show examples of estimated formant contours in the test set

with Averagevowel,style value for s and style-independent target values (the word “wheel”

in clr and cnv speaking style). Solid lines are estimated formant contours (F1 through

F4), while the observed data are shown in a thick dotted line during their contribution

to the error (from T
(k)
1 to T

(k)
2 ). The estimated style-independent target values are repre-

sented with circles, which are common in both speaking styles (Figures 5.2(a) and 5.2(c)).

Blue vertical lines represent beginnings and endings of the phoneme, while red vertical

lines represent the slope location (p), indicating steepest point of the slope, which was

adjusted to best fit the given data. Figures 5.2(b) and 5.2(d) show examples of estimated
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Table 5.1: Experiment in goodness of fit with different configurations and error rates (in
Bark squared). Cfg. 8 shown in bold font is used for further analysis in Section 5.4.

Cfg. Coefficient s1 and s2 Target Values F(t)(k) Mean Es,target

1 Estimated Style-dependent Training set 0.0426
2 Averagevowel,style Style-dependent Training set 0.0591
3 Averagevowel,style Style-dependent Test set 0.0764
4 Averagevowel Style-dependent Test set 0.0879
5 Averagestyle Style-dependent Test set 0.0861
6 Global mean Style-dependent Test set 0.0943
7 Random value Style-dependent Test set 0.3155
8 Estimated Globally estimated Training set 0.0656

(estimated with

global target)

9 Averagevowel,style Globally estimated Training set 0.0732
10 Averagevowel,style Globally estimated Test set 0.0833
11 Averagevowel Globally estimated Test set 0.0993
12 Averagestyle Globally estimated Test set 0.0913
13 Global mean Globally estimated Test set 0.1056
14 Random value Globally estimated Test set 0.3676
15 Estimated Generic values Training set 0.4233

(estimated with

generic target)

16 Averagevowel,style Generic values Training set 0.4305
17 Averagevowel,style Generic values Test set 0.4322
18 Averagevowel Generic values Test set 0.4415
19 Averagestyle Generic values Test set 0.4446
20 Global mean Generic values Test set 0.4556
21 Random value Generic values Test set 0.6716
22 Random value Random values Test set 5.0718

d1(t; s1, p1) and d2(t;−s2, p2) with Averagevowel,style value for s1, s2 and best-fit values for

corresponding p1 and p2.

In order to evaluate the error range for this model, we model formant contours with

six different values of coefficient s for d (t; s, p), and four sets of target values. For the

coefficient s, the following six values are evaluated: (1) estimated s for each sample in

training (estimated per token), (2) estimated s averaged over four samples in the training

set for each speaking style and vowel (Averagestyle,vowel), (3) estimated s averaged over

16 (4 samples × 4 styles) samples (Averagevowel), (4) estimated s averaged over 20 (4

samples × 5 vowels) samples (Averagestyle), (5) estimated s averaged over 80 (4 samples ×
4 styles × 5 vowels) samples (global mean), and (6) pseudo-random values from a uniform
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(a) Estimated (solid lines) and observed
(dotted lines) formant contour spoken in clr
style in the test set. The estimated formant
target values, which are optimized globally,
are shown (circle).
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(b) Estimated d1(t; s1, p1) (solid line) and
d2(t;−s2, p2) (dashed line) for clr speech
with Averagevowel,style s values (s1 = 0.9096
and s2 = 0.4390).
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(c) Estimated (solid lines) and observed
(dotted lines) formant contour spoken in
cnv style in the test set. The estimated
formant target values, which are optimized
globally, are shown (circle).
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(d) Estimated d2(t;−s2, p2) (solid line) and
d (t; s2, p2) (dashed line) for cnv speech with
Averagevowel,style s values (s1 = 0.4740 and
s2 = 0.3352).

Figure 5.2: The results of formant contour model (Cfg. 10) for the word “wheel” in two
speaking styles (clr and cnv). In all cases, blue vertical dash-dot lines show the phoneme
boundaries, while vertical red dashed lines represent p1 and p2.
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Figure 5.4: Mean Es,target value for each vowel in four conditions.
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distribution between 0 and the maximum estimated value of coefficient s (random value).

For the target values, the following four sets of values are evaluated: (1) estimated targets

for each speaking style (style-dependent target), (2) estimated targets for all speaking

styles (globally estimated), (3) generic values provided by Allen et al. [1] independent of the

speaking style (generic values shown in Table C.1 in Appendix C), and (4) random values

with a uniform distribution with the restrictions of 200 < F1 < 900, 400 < F2 < 3000,

1800 < F3 < 3700, 2500 < F4 < 5000, F2 − F1 > 200, F3 − F4 > 200, F4 − F3 >

200 (random values). Note when the target values are changed, d (t; s, p) functions are

estimated with given target values. For example, for Cfg. 9 in Table 5.1, coefficients s1 and

s2 for d (t; s, p) are estimated with global target values in the training set, and averaged

over four samples. The errors are evaluated as compared with the observed formant

contours (F(t)(k)) in either the training or the test sets. Twenty two configurations in

total were designed for the error analysis. For the configurations involving random values

(Cfg. 7, 14, 21 and 22), the process of obtaining Es,target was repeated ten times and

averaged over all samples.

Table 5.1 shows the configuration number, the source of coefficients s, source of target

values, formant contours to be evaluated, and the resulting mean Es,target values over

all samples. These configurations, and their order were selected in order to evaluate

the performance of the model. It was expected that the error within a set of target

values (Cfg. 1–7, 8–14, and 15–21) would increase with each configuration, and that the

error would increase from style-dependent to globally-estimated to random target values.

While Cfg. 1 (0.0426) shows the minimum error, Cfg. 22 (5.0718) shows the maximum

error expected in the modeling.

As a result of error analysis, the Es,target difference between Cfg. 2 (0.0591) and 3

(0.0764) shows the difference between the training and test sets with style-dependent

target values. The Es,target difference between Cfg. 9 (0.0732) and 10 (0.0833) shows

the difference between the training and test sets with global target values. In general,

the errors with style-dependent target values are smaller than those with global target

values. It indicates that style-dependent target values allow the formant contour model

to fit the data better than the globally estimated target values. On the other hand, the

difference in errors between Cfg. 9 and 10 is smaller than that of Cfg. 2 and 3. It shows that

globally estimated targets provide estimations that generalize better than style-dependent

targets. Relatively little over-fitting to the training set was observed in global-target

values. Cfg. 5 or 12 Averagestyle (0.0861, 0.0913) yielded smaller error than Cfg. 4 or 11
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Averagevowel (0.0879, 0.0993). This indicates that coefficients s1 and s2 are more sensitive

to the speaking style than vowel identity, as the error increases with average over the style

(Averagevowel). These results confirm our expectations of the model.

In order to understand the relationship between difference in errors and perceptible

change, we computed the approximate just noticeable difference (JND) from previous

work. Kewley-Port and Watson report that thresholds for formant-frequency discrim-

ination are about 14Hz in the F1 frequency range (below 800 Hz) and about 1.5% in

the F2 frequency range [51]. According to their results, the thresholds for the neutral

vowel (F1=500 Hz, F2=1500Hz) are 14Hz (1.2039 Bark squared) and 23 Hz (2.2350 Bark

squared) for F1 and F2, respectively. Our approximated JND of the neutral vowel is

2.2350 Bark summed over all 4 formants. The errors in Cfg. 1–6 and Cfg. 8–13 (Table 5.1)

are within the approximated JND, even though thresholds only for F1 and F2 are consid-

ered.

Figure 5.3 shows mean Es,target distribution for 21 configurations for the vowel /i:/ in

two conditions, cnv and clr styles (other two speaking styles are not shown). For the

error difference between the cnv and clr styles, in general the formant contour model fits

better in clr style except for Cfg. 17–20. This is because the F1 contour of cnv speech

usually has an abrupt drop towards the end of the word as shown in Figure 5.2(c). The

formant contour model does not fit well in this region, which causes higher error in the

cnv style. In both speaking styles, the error gradually increases from Cfg. 1 to Cfg. 7, from

8 to 14, and from 15 to 21 as coefficient s changes from a specific to a more generalized

value. The error in the clr style is larger than cnv speech in Cfg. 17–20, because the

generic values in those configurations are far from the observed clr formant contour and

the gap between the generic target and observed values was not compensated with the

degree of coarticulation (s) only in Cfg. 17–20.

Figure 5.4 shows mean Es,target distribution in Cfg. 3 and 10 for each vowel in four

conditions. The Es,target difference in Cfg. 3 and 10 is particularly large for /ei/ in clr

condition. We speculate that in Cfg. 10, with globally estimated targets, formant move-

ments of clr speech are too dynamic to model with only coefficients s1 and s2 in d (t; s, p)

function, as opposed to Cfg. 3 which uses style-dependent target values.
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5.4 Characterizing formant shapes in terms of speaking styles

and speaking rates

In this section, we analyze the effect of speaking rates and styles on formant contours by

examining coefficient s1 and s2 in the d (t; s, p) function and the estimated target values.

5.4.1 Estimated d (t; s, p) parameters

We examine whether coarticulation functions (d (t; s, p)) depend only on speaking style or

on the combination of speaking style and speaking rate. We use the results from Cfg. 8,

in which target values are estimated globally. Setting the target values constant for all

speaking styles (global target) allows us to examine the differences in d1(t; s1, p1) and

d2(t; s2, p2) functions as a function of speaking style.

The characteristics of formant slope are represented by coefficient s1 and s2 in Equa-

tions 5.2. Figure 5.5 shows the estimated mean values of coefficient s1 and s2 in d (t; s, p)

for the four conditions. A higher coefficient indicates steeper slope.

The effects of speaking style on the coefficient s in d (t; s, p) in each vowel were analyzed

with a one-way analysis of variance (ANOVA). The results of s1 (C1 to V transition)

showed that the main effects of speaking style were significant for all vowels, (F/i:/(1, 14) =

102.5, p = 8.0137× 10−8, F/I/(1, 14) = 11.43, p = 0.0045, F/E/(1, 14) = 26.65, p = 0.0001,

F/ei/(1, 14) = 99.96, p = 9.3663 × 10−8, F/u/(1, 14) = 7.93, p = 0.0137). Post-hoc tests

(HSD) for speaking style effects by all vowels showed that the slope was steeper for the

clr speech than the cnv speech (p < 0.05).

The results of s2 (V to C2 transition) showed that the main effects of speaking

style were significant for two vowels /i:/ and /ei/, (F/i:/(1, 14) = 27.17, p = 0.0001,

F/ei/(1, 14) = 35.87, p = 3.31562×10−5), but not the vowels /I/, /E/, and /u/ ( p = 0.2071,

p = 0.9572, p = 0.2839, respectively), Post-hoc tests (HSD) for speaking style effects by

two vowels (/i:/, and /ei/) showed that the slope was steeper for the clr speech than the

cnv speech (p < 0.05).

A two-sample t-test was performed comparing the differences between cnv and cnv/slow,

and between clr and clr/fast. None of the vowels showed a significant difference in s1

due to speaking rate (p > 0.05). In terms of s2, the difference between cnv and cnv/slow

was significant for the two vowels (/i:/ and /ei/) shown with asterisks (∗∗ in Figure 5.5),

while none of the vowels showed a difference between clr and clr/fast (all p > 0.05).

The question of whether coarticulation functions (d (t; s, p)) depend only on speaking
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Figure 5.5: Average values of coefficient s1 in d1(t; s1, p1) (red) and d2(t; s2, p2) (blue)
functions for four conditions in each vowel. Asterisks (∗) on the right-hand side indicate
significant main effect of the speaking style (p < 0.05). The significant differences between
speaking rates (t-test, p < 0.01) are indicated with asterisks (∗∗).
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style, or the combination of speaking style and speaking rate, can be answered as follows:

In general, slopes are determined independent of the speaking rate, but are dependent on

the speaking style. The effect of speaking rate, when observed, is often observed at the

offset of the vowel. It is not yet clear if the dependency of the slope on the speaking rate

(cnv and cnv/slow difference) is perceptually important. The slopes s1 and s2 in clr

speech are generally steeper than those of cnv speech.

5.4.2 Estimated formant target values

Figure 5.6(a) shows the results of estimated formant targets (Cfg. 1–7). The observed

data are shown in blue bold (clr style) and in red italics (cnv style) in all three figures.

Style-dependent target values for clr speech (shown in red) and for cnv speech (shown

in blue) are estimated separately and shown in boxes. Figure 5.6(b) shows the results of

globally estimated formant targets (Cfg. 8–14). Figure 5.6(c) shows the generic formant

targets (Cfg. 15–21). The estimated values of the front vowels tend to be located at the

most extreme F1 and F2 values, regardless of local or global estimation. This is due to

a characteristic of the formant model, in which the formant values cannot be estimated

in the direction of overshoot (which is not observed in normal speech), but only in the

direction of undershoot (which is common in normal speech).

Although the estimated target values are far away from the observed cnv formant

values, the mean values in error between clr and cnv speech are reasonably close (Fig-

ure 5.3). This indicates that we can model formant contours with formant target values,

that do not depend on speaking style.

Our hypothesis in estimating formant target values is that a speaker sets either different

formant target values for different speaking styles, or one global target value per vowel

regardless of speaking style. With limited data from one CV C context, it is difficult

to develop a reasonable answer to this hypothesis. We address this hypothesis when we

increase the number of words with a variety of phoneme contexts (Chapter 6).

5.4.3 Relationship between model parameters and F2 slope

The F2 slope at the phoneme boundary represents one parameterization of the dynamics

of the formant contour. We examine whether the direct measure of F2 slope and the

coarticulation coefficient s are correlated.

The F2 slope was measured over the 20ms at the phoneme boundary by fitting a
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(a) Style-dependent formant target values (Cfg. 1–7).
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(b) Globally estimated formant target values (Cfg. 8–
14).
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Figure 5.6: Three sets of formant target values (style-dependent, globally estimated, and
generic target values). The observed data are shown in blue bold (clr style) and in red
italics (cnv style) in all three figures.
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straight line to the observed data at C1V and V C2 transitions. The vowel /u/ in /t/–/V /–

/l/ is excluded from this analysis because its formant shape is monotonically decreasing,

while those of front vowels in a /w/–/V /–/l/ context have a concave shape. The mean

over the 16 repetitions and four front vowels of F2 slope for clr and cnv styles were

20.91Hz/ms, 11.09Hz/ms at vowel onset and 9.57 Hz/ms, 6.31 Hz/ms at vowel offset,

respectively (described in Chapter 4.3.2). Similar to the results in Section 5.4.1, the main

effect of speaking style, both at C1V and V C2 transitions, was significant (both p < 0.05).

Speaking rate had a significant effect only at the vowel offset using paired t-tests between

cnv and cnv/slow (p < 0.05), and clr and clr/fast (p < 0.05). Being consistent with

the study by Moon and Lindblom [68], this indicates that the movement of articulators

producing clr speech was faster than in cnv speech. On the other hand, the speaking

rate was not a key determinant of the rate of movement of articulators at the vowel onset

transition.

Figure 5.7 shows the relationship between the direct measurements of F2 slope and co-

efficient s1 and s2 in the d (t; s, p) function with four speaking conditions (cnv, cnv/slow,

clr, and clr/fast). The estimated coefficients s1 and s2, which represent a coarticula-

tion measure of F1 through F4, are strongly correlated with the F2 slope (Hz/ms) (Pear-

son’s correlation coefficient r = 0.8527, p < 0.05). If the direct measure of F2 slope is

good enough to predict coarticulation effects in the formant contour model, the parameter

estimation may be simplified in the future, requiring only target estimation.

5.5 Conclusions

In this chapter, we discussed a method to model the formant contour with coarticulation

functions (d (t; s, p)) and target values. We presented preliminary results on five vowels

with /w/–/V /–/l/ and /t/–/V /–/l/ contexts, and discussed the characteristics of formant

shapes by examining estimated coefficients s1 and s2 in d (t; s, p). The advantages of

modeling the formant contour are the following.

• It allows us to analyze formant targets separately from the coarticulation effects.

• It allows us to parameterize the coarticulation effects.

• It helps to synthesize natural formant contours with given phoneme durations.

Our results from analysis of modeled formant contours indicate: (1) the slope depends

on speaking style for the vowels at onset, and depends on speaking style and the speaking
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in d1(t; s1, p1) (vowel onset) and d2(t;−s2, p2) (vowel offset) functions. All four speaking
styles were combined.

rate for some vowels at offset, and (2) slopes at the vowel onset are steeper for clr speech

than for cnv speech for the front vowels. The direct measurement of F2 slope was strongly

correlated with coarticulation coefficients, which may lead to less parameters to estimate.

The results from analyzing goodness of fit of the model indicate that the errors in the

vowel /ei/ in general are higher. The vowel /ei/ may require two targets, as it is considered

a diphthong. We may also need to investigate different basis functions, other than the

sigmoid function, for coarticulation functions d (t; s, p). One idea is to use a non-symmetric

sigmoid function which is characterized with two coefficients for the slope. Estimating the

coarticulation function d (t; s, p) per formant also leads to a better fit, although it requires

more parameters to estimate. There is a trade off between fewer parameters to estimate

and higher error in estimated formant contours. The selection of the better model depends

on whether the difference between the complex and simple model makes any perceptual

difference. Due to the scope of this thesis, we do not further investigate such models.

When we obtain a variety of CV C words, we expand the formant contour model into

context-independent formant contour model. Then, we determine whether the speakers

have different target values for clr and cnv speech (Chapter 6).



Chapter 6

Effect of speaking style on formant

contours with a variety of phoneme

contexts

6.1 Introduction

Previously, we successfully improved intelligibility of cnv speech to clr speech levels by

modifying formant contours and durations to resemble those of clr speech (Chapter 4).

However, synthesizing a formant contour based on clr speech steady-state values (or

targets) and cnv speech durations requires a method to appropriately control the formant

transitions, since formant transitions are an important perceptual cue for intelligibility [33],

as well as the entire contour for diphthongs.

In order to capture the difference in formant contour shapes as a function of duration

and speaking style, we presented a method to model formant contours and results of

model parameter estimation, with a limited number of consonants and vowels (/w/–/V /–

/l/ and /t/–/V /–/l/ words) (Chapter 5). The importance of this model is that we can

synthesize realistic formant contours with a given phoneme duration, as opposed to linear

compression or expansion of existing contours. Analyzing the model parameters also allows

us to characterize the difference in speaking style. The contour model fitted well to the

observed data (error as low as 0.2062Bark1) with a linear combination of style-dependent

target values and coarticulation functions.

In Chapter 5, we raised an important question in estimating formant target values;

whether a speaker sets different formant target values for different speaking styles, or

1Note that the error rate reported in this chapter was changed to Bark from Bark squared in previous
chapter.

91
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Table 6.1: Number of occurrences (percentage) of the vowels in our speech corpus and
CMU dictionary.

Vowel Our speech corpus CMU dictionary
i: 37 (15.29%) 574 (16.01%)
I 37 (15.29%) 482 (13.44%)
E 31 (12.81%) 450 (12.55%)
æ 36 (14.88%) 460 (12.83%)
u 24 (9.92%) 333 (9.29%)
U 6 (2.48%) 73 (2.04%)
2 25 (10.33%) 335 (9.34%)
A 46 (19.01%) 878 (24.49%)

SUM 242 3585

one global target value per vowel regardless of speaking style. To investigate the style

dependency of the target values, we estimate formant targets by two methods, style-

independent and style-dependent estimation on a variety of CV C words in this chapter2.

The mean error rate is examined to compare the performance from the two methods.

In this chapter, we present a newly developed speech corpus (consonant-vowel-consonant

words) with two speaking styles (Section 6.2), and acoustic analyses of the speech cor-

pus (Section 6.3). We briefly describe the previously developed formant contour model

(Section 6.4). In Experiment 6–1, we discuss the parameter estimation procedure (style-

independent and dependent), the goodness of fit, and analysis of estimated model param-

eters (Section 6.5). Experiment 6–2, we focus on style-independent target estimation with

an increased amount of training data. We report on the data-driven consonant target val-

ues, as opposed to a rule-based approach (Section 6.6). Finally, we discuss the similarities

and dissimilarities between two speakers in terms of speech production and the behavior

of the contour model (Section 6.7).

6.2 Text material and recording (CVC words)

6.2.1 Creating CVC words

242 CV C meaningful words, consisting of 23 initial and final consonants and 8 vowels, are

created. The vowels in the list include both front (/i:/, /I/, /E/, /æ/) and back (/u/, /U/,

/2/, /A/) vowels, excluding diphthongs. The vowel /O/ (as in caught) is combined with

2Part of this chapter was published in Amano-Kusumoto et al. [4].
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Table 6.2: Number of occurrences (percentage) of the consonants in our speech corpus
and CMU dictionary.

Our speech corpus CMU dictionary
Consonant Prevocalic (C1) Postvocalic (C2) Prevocalic (C1) Postvocalic (C2)

p 12 (4.96%) 19 (7.85 %) 179 (4.99%) 198 (5.52 %)
t 13 (5.37%) 24 (9.92 %) 171 (4.77%) 243 (6.78 %)
k 14 (5.79%) 23 (9.50 %) 279 (7.78%) 338 (9.43 %)
b 20 (8.26%) 8 (3.31 %) 256 (7.14%) 117 (3.26 %)
d 15 (6.20%) 18 (7.44 %) 212 (5.91%) 179 (4.99 %)
g 9 (3.72%) 9 (3.72 %) 133 (3.71%) 125 (3.49 %)
s 15 (6.20%) 19 (7.85 %) 201 (5.61%) 233 (6.50 %)
S 7 (2.89%) 7 (2.89 %) 175 (4.88%) 119 (3.32 %)
f 11 (4.55%) 7 (2.89 %) 139 (3.88%) 120 (3.35 %)
v 2 (0.83%) 3 (1.24 %) 68 (1.90%) 42 (1.17 %)
T 3 (1.24%) 3 (1.24 %) 41 (1.14%) 84 (2.34 %)
D 2 (0.83%) 0 (0.00 %) 16 (0.45%) 8 (0.22 %)
z 2 (0.83%) 11 (4.55 %) 78 (2.18%) 248 (6.92 %)
Ù 6 (2.48%) 10 (4.13 %) 74 (2.06%) 131 (3.65 %)
Ã 10 (4.13%) 5 (2.07 %) 126 (3.51%) 41 (1.14 %)
l 21 (8.68%) 21 (8.68 %) 257 (7.17%) 358 (9.99 %)
õ 17 (7.02%) 7 (2.89 %) 286 (7.98%) 290 (8.09 %)
j 7 (2.89%) 0 (0.00 %) 81 (2.26%) 0 (0.00 %)
w 14 (5.79%) 0 (0.00 %) 170 (4.74%) 3 (0.08 %)
m 18 (7.44%) 17 (7.02 %) 214 (5.97%) 200 (5.58 %)
n 9 (3.72%) 22 (9.09 %) 189 (5.27%) 375 (10.46 %)
N 0 (0.00%) 9 (3.72 %) 0 (0.00%) 126 (3.51 %)
h 15 (6.20%) 0 (0.00 %) 234 (6.53%) 4 (0.11 %)

SUM 242 242 3585 3585

Table 6.3: List of places of articulation and groupings.
Place of Articulation Consonant

1 Labial (Lbl) p, b, m
2 Labio-Dental (L-D) f, v
3 Dental (Dtl) T, D
4 Alveolar (Alv) t, d, s, z, n
5 Palato-Alveolar (P-A) S, Ù, Ã
6 Palatal (Plt) j
7 Velar (Vlr) k, g, N
8 Glottal (Glt) h
9 Lateral l
10 Rhotic õ

11 Labialized velar w
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Table 6.4: Number of occurrences of C1 (left column)–V (top row) combinations in our
speech corpus. C1 is grouped by the place of articulation.

i: I E æ u U 2 A sum
1 (Lbl) 7 6 5 12 3 2 5 10 50
2 (L-D) 1 0 2 3 2 0 3 2 13
3 (Dtl) 0 3 0 1 0 0 1 0 5
4 (Alv) 12 9 7 4 7 1 7 7 54
5 (P-A) 3 3 5 3 2 1 1 5 23
6 (Plt) 0 0 2 1 2 0 1 1 7
7 (Vlr) 2 4 1 5 3 2 1 5 23
8 (Glt) 2 2 2 3 1 0 1 4 15
9 (l) 6 2 2 3 2 0 1 5 21
10 (õ) 2 4 1 2 2 0 3 3 17
11 (w) 2 4 4 0 0 0 1 3 14

sum 37 37 31 37 24 6 25 45 242

Table 6.5: Number of occurrence of V (left column)–C2 (top row) combinations in our
speech corpus. C2 is grouped by the place of articulation. The transitions from V to 6
(Plt), 8 (Glt) and 11 (w) are rare in English and not available in our corpus.

1 2 3 4 5 6 7 8 9 10 11 sum
(Lbl) (L-D) (Dtl) (Alv) (P-A) (Plt) (Vlr) (Glt) (l) (õ) (w)

i: 5 4 1 12 2 0 3 0 7 3 0 37
I 7 0 0 14 6 0 8 0 2 0 0 37
E 1 2 0 16 3 0 4 0 5 0 0 31
æ 10 1 0 16 4 0 6 0 0 0 0 37
u 5 2 2 11 0 0 1 0 3 0 0 24
U 0 0 0 2 1 0 3 0 0 0 0 6
2 3 1 0 12 4 0 5 0 0 0 0 25
A 13 0 0 11 2 0 11 0 4 4 0 45

sum 44 10 3 94 22 0 41 0 21 7 0 242
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/A/, since the vowel /O/ is often pronounced as /A/ in West-Coast American English.

The consonants include stops, fricatives, affricates, approximants, nasals, and aspira-

tion. The number of phoneme occurrences (percentage in parentheses) are listed in the

middle column in Table 6.1 for vowels and Table 6.2 for consonants. The phoneme distri-

bution in our speech corpus is matched with the distribution found in the CMU dictionary

in order to make the test material reflect, as closely as possible, typical patterns found in

English. The right column in Tables 6.1 and 6.2 shows the number of phoneme occurrences

(percentage in parentheses) of the vowels and of the consonants in the CMU dictionary.

All words are listed in Table D.1, Appendix D.

Consonants can be grouped by the place of articulation, which influencies the formant

contour shape. Places of articulation include bilabial (/p/, /b/, /m/), labio-dental (/f/,

/v/), dental (/T/, /D/), alveolar (/t/, /d/, /s/, /z/, /n/), /palato-alveolar (/S/, /Ù/, /Ã/),

palatal (/j/), velar (/k/, /g/, /N/), glottal (/h/), and individual consonants (/l/, /õ/, /w/).

The place of articulation is summarized in Table 6.3. The number of occurences of C1 to

V transition, and of V to C2 transition, is listed in Tables 6.4 and 6.5, respectively.

The CV C words are pronounced in carrier sentences, which facilitates speakers to ma-

nipulate prosodic information upon the elicitation of cnv and clr speech. The following

five sentences are used:

• I know the meaning of the word WORD.

• Make a sentence using the word WORD.

• Use a dictionary to look up the word WORD.

• Her last name sounds like the word WORD.

• I’m tired of hearing the word WORD.

These sentences provide neutral meaning and have a consistent phoneme /d/ followed

by the test word in a sentence-final context. The stress is not placed on the test word.

6.2.2 Recordings

Two speakers (one male: JPH and one female: ETH) are recorded in order to examine the

effect of different speakers, with two repetitions per word. Speaking styles include cnv

and clr styles with the following instructions, based on previous literature [18]:
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1. We introduce speakers to the concept of cnv and clr speech and discuss differences

in speaking rate, articulation, F0 fluctuation, and pausing [18]. Also, we encourage

speakers to “enunciate consonants more carefully and with greater effort than in

cnv speech and avoid slurring words together” [40].

2. We have speakers listen to audio samples of cnv and clr speech.

3. As practice sessions, we record 5 sentences of cnv and clr speech.

4. We listen to the recorded speech, and we listen to audio samples of corresponding

cnv and clr speech.

5. We discuss potential improvements in terms of acoustic differences of cnv and clr

speech.

6. We record cnv speech in two sessions, and clr speech in two sessions. Each session

takes place over four consecutive days. At the beginning of each session, we review

the above instructions.

6.2.3 Feature extraction

The initial estimates of the following features were extracted using existing software:

phoneme boundaries (forced-alignment) [44], glottal-closure instants (CSLU toolkit) and

formant contours (Snack Sound Toolkit (http://www.speech.kth.se/snack) [91]).

Then, trained labelers manually corrected all features by visually inspecting the wave-

form, spectrogram, and phoneme identity. To ensure the best accuracy of formant tracking,

the following screenings were completed: (1) any samples that had neighboring formants

closer than 200Hz were detected and manually corrected, and (2) any samples that were 3

standard deviations away from the vowel mean value for each speaking style were detected

and manually verified or corrected. The results of formant synthesized speech described

below (Section 6.2.4), were utilized to identify incorrect phoneme boundaries, GCIs, and

formant frequencies.

6.2.4 Perceptual validation

The accuracy of formant frequencies were verified using a formant analysis-by-synthesis

procedure. The assumption was that if formant frequency values in the voiced segment

were incorrect, the listeners might incorrectly identify the formant-synthesized word.
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Vowel regions as well as voiced consonants (only liquid, approximant and glide) were

synthesized with existing formant contours and an artificial glottal source (OQ = 0.6, SK

= 0.75 with the Rosenberg glottal source model [86]). For the initial consonant /h/, the

formant values were excited with white noise. Other features, such as vowel duration, F0

values, and energy remained the same as in the original sample. For the words starting

with consonants /S/, /T/, and /h/, a ramping window was used at the beginning of the

consonant. The formant bandwidths from the original speech were smoothed, so that

neighboring frames had differences less than 20Hz. The other consonants were copied

from the original waveform. As the result of perceptual testing using four listeners, any

words that were identified incorrectly were detected, then those formant frequency values

and/or phoneme boundaries were manually corrected.

6.3 Acoustic analyses of CVC words

In this section, we analyze the acoustic features of the CV C words in our speech corpus.

The analyses include visual inspection of formant contour shape and quantitative analyses

of formant steady state values, formant transitions, and phoneme durations. We examine

differences in cnv and clr speaking styles and speaker characteristics.

6.3.1 Formant contour shape

Figures 6.1(a)–6.1(d) show the F2 contour shape from middle of C1 to the middle of

V , without normalizing the time scale of both cnv and clr speech for two speakers.

The vowel is restricted to /i:/, while C1 is grouped as approximants (/õ/, /l/, /w/) in

Figures 6.1(a) and 6.1(c) and non-approximants in 6.1(b) and 6.1(d). Each contour is the

average of two tokens centered at the vowel onset (t = 0ms).

For both male and female speech, the cnv duration is shorter than clr duration in

every case. The contour values for the male speech are more clustered than the female

speech. For the male speech, the formant contour reaches higher formant frequencies in

clr speech than cnv speech, and the vowel onset values for non-approximant tokens are

higher in clr speech than cnv speech.

6.3.2 Formant steady state values

Formant steady states (SS) were measured at the middle of the vowel. Figure 6.2 shows

the mean of each vowel (with ±1 standard deviation) in F1–F2 space for cnv (solid red
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(a) Male speech: C1 is approximant (/õ/, /l/,
/w/)
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(b) Male speech: C1 is non-approximant

−150 −100 −50 0 50 100 150
500

1000

1500

2000

2500

3000

ll
rr

rr

w
w

w

w

l

l

l

l

l

l

l

l

l

l

Time (ms)

F
re

qu
en

cy
 (

H
z)

Vowel /i:/

 

 

CNV
CLR

(c) Female speech: C1 is approximant (/õ/, /l/,
/w/)
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Figure 6.1: F2 contour shape from middle of C1 to middle of V (/i:/) for cnv (red solid
lines) and clr (blue dashed lines). All contours are centered at the C1 − V boundary
(0 ms).

lines) and clr (dashed blue lines) speech. The figure shows that the clr speech vowel

space is expanded, with lower /u/ F2 and higher /i:/ F2, and that cnv vowels have greater

variability. Comparing male and female speech, female speech has a larger vowel space

and more overlap between cnv and clr speech.

6.3.3 Formant transition

Previous studies have suggested that the formant transition is an important perceptual

cue for intelligibility [33]. As shown in the study by Krause and Braida [55], the analysis
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Figure 6.2: Formant steady-state values (with ±1 standard deviation) in F1/F2 space for
cnv and clr speech. The phonemes shown with dashed blue lines are for clr speech,
and solid red lines are for cnv speech.

of the formant transition is often difficult since a different place of articulation in the

consonant leads to a different shape of contour, and there are not so many of the same CV

transition pairs available in the dataset. In this study, regardless of the contour shape, the

formant transition is analyzed at ±20 ms (+20ms or −20 ms when C1 or C2 is unvoiced).

The formant transition is measured using the following equation, based on delta values

that are used as a spectral change measure in automatic speech recognition (ASR) [33],

δ[t] =
∑W

w=−W w · y[t + w]∑W
w=−W w2

(6.1)

where w is a window size (W = 2), in 10ms frames. The time point t is given either at

vowel onset (T1) or the vowel offset (T2).

In order to compare style differences in cnv and clr speech, the F2 slope values are

plotted in Figures 6.3(a) (male speech) and 6.3(b) (female speech) for the vowel /i:/. In

this figure, the slope values (δ[t]) of clr speech are averaged over 2 tokens (x-axis), and

slope values of cnv speech are also averaged over two tokens (y-axis). The black diagonal

lines represent no difference between cnv and clr speech. For the positive slope values,

any points below the black line (and for the negative slope values, any points above the

black line) indicate that clr slope is steeper than cnv slope. These cases are found at

the vowel onset when prevocalic consonants are approximants (/õ/, /l/, /j/, /w/) in both
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Figure 6.3: F2 onset slope difference of the vowel /i:/ between clr and cnv speaking
style.

Table 6.6: Mean vowel duration (ms) of 8 vowels (standard deviation) in two speaking
styles.

Male speech Female speech
Vowel cnv speech clr speech Ratio cnv speech clr speech Ratio
/i:/ 146.39 (39.81) 308.62 (101.82) 2.10 145.86 (39.21) 275.22 (124.41) 1.89
/I/ 101.17 (18.55) 173.58 (44.14) 1.72 130.66 (28.67) 180.92 (62.93) 1.38
/E/ 123.07 (22.05) 216.61 (44.82) 1.76 154.75 (27.18) 234.39 (85.78) 1.51
/æ/ 173.54 (27.70) 372.23 (99.23) 2.13 209.67 (41.61) 352.64 (114.18) 1.68
/u/ 151.99 (43.53) 311.51 (98.18) 2.05 153.54 (36.33) 292.88 (132.62) 1.91
/U/ 106.38 (15.34) 196.82 (63.99) 1.85 118.83 (25.17) 190.76 (72.59) 1.61
/2/ 117.83 (23.07) 214.22 (45.98) 1.82 151.96 (27.68) 250.74 (84.87) 1.65
/A/ 156.26 (27.40) 322.76 (93.57) 2.07 178.61 (40.63) 294.85 (110.29) 1.65

male and female speech. However, these patterns were not found in vowel offset slopes.

6.3.4 Phoneme duration

Speaking rates, excluding pause duration longer than 10 ms, were 309wpm (cnv) and

126 wpm (clr) for male speech, and 291 wpm (cnv) and 120 wpm (clr) for female speech.

Vowel durations of the word of interest were measured to reflect speaking rate. Table 6.6

shows the mean (standard deviation) for the two speaking styles, and the ratios between

mean clr and cnv durations for each speaker.



101

Table 6.7: Average F0 values of cnv and clr speech at the phoneme boundary. Only
voiced consonants (approximants) are averaged over 484 samples per speaking style. Peak
F0 values are not necessarily within the vowel.

Male speech Female speech
Value point cnv speech clr speech cnv speech clr speech
Word onset 88.55 110.50 158.41 179.40
Vowel onset 91.11 143.72 161.44 200.39
Vowel offset 80.89 90.50 146.50 160.11
Word offset 76.96 77.58 151.53 161.11

Maximum value 93.36 149.14 166.14 208.04
Mean value 86.43 121.00 155.04 181.74

The results of a two-sample t-test show that clr speech durations were significantly

longer than those of cnv speech for all vowels (p < 0.0001, p < 0.01 for male and female

speech, respectively). Male speech had more dramatic changes (average 1.93 ratio) in

clr speech production than the female speech (average 1.62 ratio). For both speakers,

the duration of tense vowels was more susceptible to the speaking style than lax vowels,

being consistent with the previous result from Picheny et al. [80]. Both prevocalic and

postvocalic consonants were also longer in clr speech than in cnv speech. Approximants

(/õ/, /l/ /j/, /w/) of clr speech are 2.35–3.29 times as long as those of cnv speech for

male speech, and 1.97–2.73 times longer for female speech. The smallest changes between

cnv and clr speech observed in consonants (voiced stops) are ratios of 0.95–1.37 for male

and 0.98–1.53 for female speech. The consonant position also makes a difference in clr

speech production. For example, consonant /l/ ratios were 3.29 (C1) and 2.09 (C2) for

male, and 2.73 (C1) and 2.45 (C2) for female. In general, prevocalic consonants C1 are

more prolonged than postvocalic consonants (C2) for both speakers.

6.3.5 Fundamental frequency (F0) contours

The fundamental frequency (F0) values were calculated by inversing the distance between

GCIs during the voiced segment (described in Section 6.2.3). Table 6.7 shows the average

F0 values of cnv and clr speech at five points (word onset/offset, vowel onset/offset, max

value) and mean values. clr speech production resulted in higher F0 mean values and

variation as compared with cnv speech. The F0 values were averaged over 484 samples

per speaking style with only available points (no F0 values within unvoiced segments). For

both speakers, the difference between cnv and clr speech is larger at word onset (and

at the F0 peak) than at word offset, indicating that clr speech has a more dynamic F0
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contour.

In summary, the features described above (formant contours, formant steady-state

values, phoneme durations, F0 contours) indicate differences in speaking styles, which

are consistent with previous studies [80, 55]. The results show that our speech corpus

demonstrates clr and cnv speech characteristics, and that the male speaker had larger

acoustic differences in clr speech than the female speaker.

6.4 Formant contour model

As described in Section 5.2, the equation of the formant contour model is given as

F̂(t) = d1(t; s1, p1)TC1 + (1− d1(t; s1, p1)− d2(t;−s2, p2))TV + d2(t;−s2, p2) ·TC2

= d1(t; s1, p1) · (TC1 −TV ) + TV + d2(t;−s2, p2) · (TC2 −TV ) (6.2)

where F̂(t) is the estimated formant contour of a CV C word as a function of time t, as

in a study by Niu and van Santen [74]. TC1 , TV , and TC2 are the target formant vectors

of the prevocalic consonant (C1), vowel (V ) and postvocalic consonant (C2), respectively.

The target formant vectors consist of the first four formant values (4 × 1 dimension). The

function d (t; s, p) represents the degree of coarticulation of C1 and C2, and is proportional

to the differences in target formant values.

6.4.1 Coarticulation function

The exponential curve for the transition function in Broad’s study [17] has been changed

to a sigmoid function, which is called a coarticulation function in this study:

d (t; s, p) =
1

1 + es(t−p)
(6.3)

It is characterized by two coefficients, s (slope) and p (slope position) of the sigmoid

function. Examples of coarticulation functions are shown in Figure 5.1 in Chapter 5.

While the formant contour is defined in Broad’s study [17] from the onset to the offset of

the vowel in C1V C2 contexts, we model the formant contour from the middle of C1 to the

middle of C2 in cases of approximants, as shown in the study by Amano-Kusumoto and

Hosom [3].

6.4.2 Constraints on parameters

Parameters are very gently constrained for a better model:
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• d1(t; s1, p1) + d2(t;−s2, p2) ≤ 1.0.

• s ≥ 0 in Equation 6.3.

• p1 (or p2) in Equation 6.3 may range from middle of C1 (or V ) to the middle of V

(or C2).

• 200 < F1 < 1000, 400 < F2 < 3000, 900 < F3 < 3700, 2500 < F4 < 5000.

• F2− F1 > 200, F3− F4 > 200, F4− F3 > 200.

When the value s1 or s2 approaches zero, the slope of coarticulation function d becomes

shallow. When this happens, the constraint d1(t; s1, p1) + d2(t;−s2, p2) ≤ 1.0 must be en-

forced, since a shallow slope results in an unrealistically high contribution of the consonant

throughout the utterance.

6.5 Experiment 6–1: Speaking style dependencies of target

formants

We fitted the formant contour model to our speech corpus of two different speaking styles

for both male and female speech. The parameters were learned on training sets and tested

on test sets with a jackknife procedure. First, the total of 968 tokens in a data set were

randomly partitioned into 20 test-set groups. For the style-independent target estimation,

each test-set group contains 48 (or 49) tokens of two speaking styles. On the other hand,

for the style-dependent target estimation, each test-set group contains 48 (or 49) tokens

of only one speaking style. The training dataset consists of tokens that are not present in

the test-set group. The number of training data should be same for style-independent and

style-dependent target estimation. Therefore, for the style-independent target estimation,

each training group contains 436 (or 435) tokens from both speaking styles, while for style-

dependent target estimation, each training group contains 436 (or 435) tokens of only one

speaking style. We ensured that each training group contains at least two tokens of each

phoneme.

6.5.1 Estimating model parameters: Style-independent targets

We estimate model parameters (s1, p1,s2, p2) per token, and formant target values T for

each phoneme for both speaking styles. (This is called context-independent and style-

independent target estimation.)
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The error function to estimate parameters (s1, p1,s2, p2) is

Err1(k) =

√√√√w
∑T

(k)
2

t=T
(k)
1

(
F̂(t)(k) − F(t)(k)

)2

N (k)
(6.4)

where F(t)(k) and F̂(t)(k) are the observed and estimated formant contours for the k-th

word, converted to Bark scale. N (k) is the number of frames from T
(k)
1 to T

(k)
2 . The

contribution to the error from F1 and F2 are weighted more than F3 and F4, represented

as w =
[
1.0 1.0 0.25 0.01

]
. The error is not divided by the sum of the weights, because

it does not affect the ranking. T
(k)
1 (or T

(k)
2 ) is located at the middle of C1 (or C2) when

C1 (or C2) is an approximant. Otherwise, T
(k)
1 (or T

(k)
2 ) is located at the C1V (or V C2)

boundary.

Formant targets are estimated by minimizing,

Err2 =
S∑

style=1

K∑
k:phn∈k

Err1(k)
style (6.5)

Err1(k) is summed over all the words (k) that have a particular phoneme (phn) and over

all speaking styles. K is the number of words (K = 218) used in the training set per style.

A total of 436 (or 435) words for both styles were used. The Err2 value is comparable with

both Err3 values from each speaking style (below in Section 6.5.2). S is the number of

speaking styles (S = 2). Model parameters are estimated using a hill-climbing approach,

the same as in Chapter 5.2.1.

6.5.2 Estimating model parameters: Style-dependent targets

We estimate model parameters (s1, p1,s2, p2) in d (t; s, p) per token, and formant target

values T for each phoneme in each speaking style. (This is called context-independent

and style-dependent target estimation, where one set of formant values is estimated per

phoneme for each speaking style.)

The same error function (Equation 6.4) is used to estimate parameters (s1, p1,s2, p2),

while Equation 6.5 is changed to

Err3style =
K∑

k:phn∈k

Err1(k)
style (6.6)

Err1(k) is summed over all the words (k) that have a particular phoneme (phn) for each

speaking style. K is the number of words (K = 436) used in the training set. The initial
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Table 6.8: Mean error Es,target (in Bark) and standard deviation in parentheses in training
and test sets. Style-independent II is the result of an increased amount of training data
(described in Section 6.6).

Training set Test set
cnv clr cnv clr Average

Male speech

Style-Indep.
0.2740 0.2975 0.3076 0.3104 0.3090

(0.1246) (0.1091) (0.1572) (0.1164) (0.1383)

Style-Dep.
0.2592 0.2747 0.2780 0.2851 0.2815

(0.1242) (0.1041) (0.1362) (0.1107) (0.1241)

Style-Indep. II.
0.2881 0.3005 0.3020 0.3079 0.3049

(0.1323) (0.1121) (0.1398) (0.1182) (0.1294)

Female speech

Style-Indep.
0.3404 0.3727 0.3679 0.3990 0.3834

(0.1517) (0.1770) (0.1607) (0.1925) (0.1779)

Style-Dep.
0.3345 0.3547 0.3568 0.3857 0.3712

(0.1573) (0.1685) (0.1650) (0.1893) (0.1781)

Style-Indep. II.
0.3532 0.3790 0.3666 0.3941 0.3804

(0.1529) (0.1798) (0.1614) (0.1900) (0.1767)

Male speech Model validation
0.1063 0.1010 0.1014 0.0929 0.0972

(0.0516) (0.0412) (0.0521) (0.0311) (0.0416)

values and the hill-climbing approach for the optimization method are the same as in

style-independent target estimation.

6.5.3 Results: Goodness of fit

The root mean square error E
(k)
s,target (in Bark) is calculated for each word k as in Equa-

tion 6.4. The subscripts s, target indicate that the error depends on the variables s and

target, while the value p for slope position is adjusted to the best fit in each token. Mean

E
(k)
s,target values over the samples in the training and test sets are reported for each style

in Table 6.8. The error difference between training set and test set is relatively small,

indicating little over-fitting to the training set. The error rate was successfully reduced

with style-dependent target estimation both in training and test sets.

Figures 6.4(a) and 6.4(c) represent the modeled formant contour of the word “yes” (/j E

s/) (solid lines) as well as observed contour (dotted lines) in both cnv and clr styles of the

male speech. The initial values (circles in Figures 6.4(a) and 6.4(c)) are taken from Allen et

al. [1]. The estimated target values (crosses) are the result of style-dependent targets for

each speaking style. Figures 6.4(b) and 6.4(d) show the corresponding coarticulation

functions (d1(t1; s1, p1) and d2(t2; s2, p2)). The slope of the coarticulation functions show
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(a) Modeled formant contour (solid lines) and
observed contour of clr style (dotted lines).

The E
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(b) Coarticulation functions d (t; s, p) for clr
style. s1 = 0.4102, s2 = 0.2188.
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(c) Modeled formant contour (solid lines) and
observed contour of cnv style (dotted lines).

The E
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s,target was measured as 0.1964 Bark.
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(d) Coarticulation functions d (t; s, p) for cnv
style. s1 = 0.3672, s2 = 0.7203.

Figure 6.4: The results of formant contour model for the word “yes (/j E s/)” of male
speech. Circles (same in (a) and (c)) are the initial values, while crosses are estimated
values with style-dependent estimation (different in (a) and (c)). The estimated target
values are the average of 10 groups per speaking style from the training set. The coartic-
ulation parameters (s and p) are adjusted to minimize the error with given target values
per token. Blue vertical dash-dot lines show the phoneme boundaries, while vertical red
dashed lines represent p1 (left) and p2 (right).

how fast the contour moves from C1 to V or V to C2 targets. The E
(k)
s,target values were

0.1803 Bark (Figure 6.4(a)) and 0.1964 (Figure 6.4(c)) in clr and cnv styles, respectively.

The test-set results were submitted to four way analysis of variance (ANOVA) (2

speakers × 2 methods × 2 speaking styles × 8 vowel identities). All of the main effects were

significant (F (1, 3870) = 206.74, p < 0.0001, F (1, 3870) = 10.5, p = 0.0012, F (1, 3870) =
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Figure 6.5: Histograms of s values for each speaker.

9.65, p = 0.0019, F (7, 3864) = 5.85, p < 0.0001, respectively). The post-hoc analysis

(HSD) showed that the model fitted better with the male speech than female speech. The

style-dependent estimation had slightly lower error rate, but significant. cnv speech was

better fitted to the model than clr speech. The error rate on words with the vowel /u/

was significantly different from vowels (/i:/, /I/ and /E/) and the vowel /i:/ was different

from /æ/ at α = 0.0018 (0.05/28) level, but no other combinations were significantly

different.

The reason for the error difference between male and female speech might be solely

due to the fact that female speech has a higher standard deviation in formant steady state

values, as shown in Figure 6.2(b). Particularly, the female speaker pronounced the vowel

/æ/ in clr style as /j–æ/ (as a diphthong), which makes the error increase. Modeling

diphthongs may require two sets of vowel targets.

The main effect of speaking style and significant interaction between speaker and

speaking style (F (1, 483) = 6.38, p = 0.0116) indicates that clr speech had a higher

error than cnv speech for the female speech. In general, words with the vowel /u/ had a

higher error rate, perhaps because the contour /u/ has high variability due to neighboring

consonants. Although this variability can be captured by the model in theory, the wide
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Figure 6.6: Histograms of vowel contribution for each speaking style and each speaker.

difference in observed values may make parameter estimation less robust.

At last, the parameters s and p in the coarticulation functions were adjusted per token,

given the mean estimated target values shown in crosses in Figure 6.7(a) and 6.8(a), which

resulted in mean error rates of 0.1017 (SD: 0.1141) (cnv) and 0.1024 (0.0791) (clr) for

the male speech, and 0.1437 (SD: 0.1433) (cnv) and 0.1767 (0.2044) (clr) for the female

speech, respectively. The resulting parameters s and p were used to synthesize the formant

contour (male only in Section 6.5.4) and to characterize the parameter s (Section 6.5.5).

6.5.4 Formant model validation

In order to test the robustness of parameter estimation, we re-estimated parameters using

synthetic formant contours as the observed values. The formant contour was synthesized

with previously estimated formant target values (style-independent targets, the mean of 20

values) and coarticulation functions d (t; s, p) from male speech plus noise. The noise was

created by uniformly distributed random values with zero mean. The standard deviation

of the noise was 0.4467 Bark, which is the mean error rate corresponding to F1 only from

the male speaker, style-independent target estimation in Table 6.8.

As a result, re-estimated target values were close to the originally estimated targets.
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Figure 6.7: Estimated style-independent vowel target values in F1−F2 space. The means
of each phoneme from style-independent target estimation are shown in black crosses.
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Figure 6.8: Estimated style-independent consonant target values in F1−F2 space. Selected
consonants are shown for C1 (filled blue: /t/, /õ/, /l/, /j/ and /w/) and C2 (open red:
/t/, /õ/ and /l/).

The difference between initially estimated formant targets (shown in Figure 6.7(a)) and

re-estimated formant targets with synthetic formant contours was, on average, 3.64, 7.75,

9.26, and 13.27Hz for F1 through F4, respectively. The error was calculated between

re-estimated formant contours and synthetic formant contours (shown in Table 6.8). Very

small error rates in the training and test sets confirms that the parameter estimation
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Figure 6.9: Estimated style-dependent vowel formant target values in F1−F2 space for
cnv style (open red) and clr style (filled blue). The means of each phoneme from
style-dependent target estimation are shown in black crosses, while the means from style-
independent target estimation are shown in black squares.

process is robust.

6.5.5 Estimated d (t; s, p) parameters

Parameters s1 and s2 in the coarticulation functions tell us the transition slope regardless

of the target value. We analyze s1 and s2 parameters comparing cnv and clr speech,

which were estimated with style-independent targets. The style-independent targets were

used to characterize coarticulation parameters so that the effect of speaking style was

observed in the coarticulation parameters.

Our previous study with style-independent targets (Chapter 5) showed that the slopes

at the vowel onset are steeper for clr speech than for cnv speech for the front vowels,

while slopes at the vowel offset are steeper for the vowel /i:/ and /ei/for male speech.

This effect may depend on the phoneme context and the speaker. Therefore, we first

re-evaluated these earlier results by analyzing s in only the words with C1 =/w/ and V =

front vowels for s1 (vowel onset transition), and V = /i:/ and C2 = /l/ for s2 (vowel offset

transition). These pairs are the cases where significant differences between cnv and clr

speech were reported in Section 5.4.1.

Prior to the analysis, outliers in terms of the root mean square error E
(k)
s,target in Equa-

tion 6.7 were excluded using a modified z−score test. The criteria for detecting an outlier
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Figure 6.10: Estimated style-dependent C1 target values: Selected consonants (/t/, /õ/,
/l/, /j/ and /w/) are shown in F1−F2 space for cnv style (open red) and clr style (filled
blue). The means of each phoneme from style-dependent target estimation are shown
in black crosses, while the means from style-independent target estimation are shown in
black squares.

was Zi > 3.5.

Zi =

∣∣∣∣∣ 0.6745(E(k)
s,target − Es,target)

median(E(k)
s,target − Es,target)

∣∣∣∣∣ (6.7)

63 tokens for male speech (E(k)
s,target = 0.2755 − 0.4364 Bark) and 54 tokens for female

speech (E(k)
s,target = 0.4772− 2.0356 Bark) out of 968 tokens per speaker were excluded.

For male speech, the mean s1 values for C1 = /w/ to V = front vowels transitions

were 0.4313 (SD: 0.0848) and 0.5447 (0.1284) for cnv and clr speech, respectively. A

two-sample t−test showed that the mean of clr s1 was higher than the mean of cnv

s1 (df = 37, p = 0.0012), which confirms the earlier result. On the other hand, mean

s2 values from V = /i:/ to C2 = /l/ in our corpus were 0.2585 (SD: 0.0324) and 0.2348

(0.0291) for cnv and clr speech, respectively. The mean s2 values of cnv were greater

than those of clr speech (df = 23, p = 0.0336), which is opposite from the prior results.

The prior study’s significant difference in s2 may have been due to a bias caused by a

smaller set of phonetic contexts.

For female speech, the mean s1 values for C1 = /w/ to V = front vowel transitions

were 0.5542 (SD: 0.1351) and 0.5875 (0.1706) for cnv and clr speech, respectively. The

difference was not significant (df = 38, p = 0.2488). The mean s2 values from V =
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Figure 6.11: Estimated style-dependent C2 target values: Selected consonants (/t/, /õ/
and /l/) are shown in F1−F2 space for cnv style (open red) and clr style (filled blue).
The means of each phoneme from style-dependent target estimation are shown in black
crosses, while the means from style-independent target estimation are shown in black
squares.

/i:/ to C2 = /l/ were 0.2990 (SD: 0.0326) and 0.2028 (0.0502) for cnv and clr speech,

respectively. Similar to the results of male speech, cnv parameter (s2) had steeper values

than those of clr speech (df = 26, p = 1.1915× 10−6) at the vowel offset.

Then, we analyzed s parameters on all words excluding the above-mentioned outliers.

The average s1 values for male speech were 0.5506 (SD: 0.5255) and 0.6381 (0.5747) for

cnv and clr speech, respectively, and the average s2 values were 0.4437 (SD: 0.4418)

and 0.6013 (0.5590), respectively. For female speech, the average s1 values were 0.6008

(SD: 0.5010) and 0.6607 (0.5996) for cnv and clr speech, and the average s2 values were

0.4886 (SD: 0.4319) and 0.6121 (0.5905), respectively.

For both speakers, the histograms of s1 and s2 show bimodal distributions where a

second peak exists at approximately 1.6–1.7 (male) and 3.3–3.4 (female), for both s1 and

s2 values (Figures 6.5). The second peak is observed when the maximum slope (p value)

is located in the non-approximant consonant, in which case the slope does not have much

impact on the error. For those tokens, the shape of the formant contour is flat and there

is not much movement in the voiced region, which lead to higher s1 and s2 values. Further

research is required to understand the effect of speaking style on s values (i. e. investigating

further constraints on p in d (t; s, p) values).
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Figure 6.12: Observed F2 contours for C1= approximant, V = /E/ in both cnv (red solid
lines) and clr (blue dashed lines) speech. All contours are centered at the C1−V boundary
(0 ms).

6.5.6 Contribution of the vowel target

In addition to the parameters s and p, the combination of d1 and d2 provides us with im-

portant information about the contribution of the vowel. The vowel contribution is shown

as C(t) = 1 − (d1(t; s1, p1) + d2(t;−s2, p2)) in Equation 6.2, expressing the contribution

of the vowel target and formant undershoot. The values of C range between 0.0 and 1.0.

The value 0.0 means no influence of the vowel, and 1.0 shows the fully-articulated vowel.

Figure 6.6 shows the histogram of maximum vowel contribution (maxt=T1···T2 C(t)) with
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style-independent targets. For both male and female speech, approximately 60% of clr

speech tokens reach close to 1.0 within the vowel region, while 25 to 30% of cnv speech

tokens reach close to 1.0. The shallow slope in s and/or p locations that are close to each

other can result in lower vowel contribution. The difference between cnv and clr was

not always present in the value of s (Section 6.5.5), however the combination of s and p

in vowel contribution revealed a difference in formant undershoot.

6.5.7 Estimated formant target values

The parameter estimation process resulted in 20 sets of formant target values with style-

independent target estimation, and 10 sets each for two speaking styles with style-dependent

target estimation. Figures 6.7 (TV) and 6.8 (TC1 and TC2) show estimated style-

independent target values from the 20 different training sets.

Figures 6.9 (TV), 6.10 (TC1) and 6.11 (TC2) show estimated style-dependent target

values from the 10 different training sets, while mean values from style-independent targets

are shown in squares as a comparison. Selected consonants (/t/, /õ/, /l/, /j/ and /w/)

are shown.

The estimated vowel target values (TV) are tightly clustered with different data par-

titions both for style-independent and style-dependent target estimation. The estimated

vowel target values from style-independent estimation (shown in black squares in Fig-

ure 6.9) are closer to the clr targets (filled blue triangles) than those from the style-

dependent estimation.

For the voiced consonants (TC1and TC2) /w/, /j/, /õ/ and /l/, where formant values

are available, the estimated target values are tightly clustered, similar to the vowels. The

consonant /õ/ in the C1 position, in particular, shows two distinct target classes for cnv

and clr speaking styles. For the voiced stop consonants /b/, /d/, /g/ (not shown in these

figures), even though formant values are not available, the estimated targets are closely

clustered, while the unvoiced consonants (only /t/ is shown in Figures 6.8, 6.10 and 6.11)

show more scattered estimated values.

Previously, the formant contour model was fitted to words with a limited context

(/w/–/V /–/l/ and /t/–/V /–/l/) in Chapter 5. Results showed that the estimated target

values tended to be located at the most extreme F1 and F2 values. Unlike this previous

study in which we had limited phoneme contexts, the current style-independent target

estimation yields higher error because the model cannot reduce the error simply through

extreme target values.
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Figures 6.12 show observed F2 contours for C1 approximants and the vowel /E/, for

both speaking styles and for both speakers. The clr formant contour reaches F2 of vowel

/E/ at a higher frequency, regardless of context, compared with cnv speech. Because the

model works well in the direction of undershoot, in the style-independent target estimation,

the model tends to put target /E/ at the extreme position (high F2 value) for /w, l, õ/–

/E/ transition. On the other hand, for /j/-/E/ transition, the model works well when the

target is at a lower F2 value. Therefore, the style-independent estimation yielded a larger

error.

In summary, based on the lower test-set error from model fitting, the style-dependent

target is more likely to reflect human speech production. However, it may not be a fair

comparison between the two estimations, because of the number of parameters and amount

of training data we used in this experiment. We further examine the style-dependency of

the targets in next section.

6.6 Experiment 6–2: Data-driven consonant target

The formant contour model allows us to estimate formant targets in unvoiced consonants

using only available formant data. It is possible because of the symmetric characteristics

of the sigmoid function as a coarticulation function, in which unvoiced-consonant targets

are projected using the formant transition information. The sigmoid function fits well to

sonorant vowel data, and so it is natural to extend this function to unvoiced consonants.

In this section, we examine the estimated consonant target values using this data-driven

approach, as opposed a rule-based approach.

Model parameters (s1, p1, s2, p2 and T) were estimated in 20 groups of training sets

with style-independent target estimation. The amount of training data was increased from

the previous estimation (Section 6.5.1). 460 tokens (K) were used in the training set per

style, which comes to the total of 920 training tokens from both styles in Equation 6.5. The

additional constraint of vowel contribution was added, so that d1(t; s1, p1)+d2(t;−s2, p2) ≥
0.40 was met at least one time. The hill-climbing approach was used for the model

parameter estimation.

As the result of style-independent estimation, Figures 6.13(a) and 6.13(b) show the

estimated consonant formant targets for the male and female speaker, respectively, where

only bilabials and alveolars are shown. Each phoneme is plotted with 20 target values

from each training group, which is more tightly clustered than in the case of the smaller
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set of training data (Figure 6.8). With the increase in training data, the formant targets,

especially for the unvoiced consonants, became more consistent estimates.

The effects of place of articulation were observed in F2 for both speakers. Mainly,

the speakers produce bilabial and alveolar in different F2 target positions. With little

variation, F2 of alveolars are located between 1500Hz and 2000 Hz. A difference in F2

targets based on consonant position was also observed, where C2 targets were usually

higher than C1 targets. It should be noted that the estimated targets depend on the

speaker for some consonants, as well. As shown in Figures 6.13(a) and 6.13(b), F1 of

prevocalic /t/ has a mean of 511 Hz for the male speaker and 390Hz for the female

speaker. The estimated /p/ targets for the female speaker are not as consistent as other

consonant targets. In order for the unvoiced consonant to be consistently estimated, the

model requires formant movement within the vowel (mainly at the formant transition).

The words with C1 =/p/ for female speech show a flat formant contour, which might have

led to non-consistent /p/ targets. The mean values of estimated targets for all consonants

are reported for two speakers along with generic values by Allen et al. [1] in Table E.1,

Appendix E.

Mean E
(k)
s,target values over the samples in the training and test sets are reported for

each style in Table 6.8 (Style-Indep. II. condition). The mean error rate in the training

sets was slightly higher than the previous results described in Section 6.5.3, but slightly

lower in the test sets. The smaller error difference between training and test sets indicates

the style-independent targets with an increased amount of training data are better esti-

mates of the model than previous style-independent estimation. The error rate from the

style-independent estimation was still slightly higher than the style-dependent case, which

suggests the style-dependent estimate is still a slightly better model of formant contours.

The test-set results were submitted to three way analysis of variance (ANOVA) (2

speakers × 2 speaking styles × 8 vowel identities). All of the main effects were significant

(F (1, 1934) = 121.04, p < 0.0001, F (1, 1934) = 5.95, p = 0.0148, F (7, 1928) = 15.23,

p < 0.0001, respectively). Similar to the previous results (Section 6.5.3), the post-hoc

analysis (HSD) showed that the model fitted better with the male speech than female

speech. cnv speech was better fitted to the model than clr speech. The error rate on

words with the vowel /u/ was significantly different from vowels (/i:/, /I/, /E/, /U/, /2/,

and /A/), the vowel /i:/ was different from /æ/ and /A/, and the vowel /I/ was different

from /æ/ at α = 0.0018 (0.05/28) level. The error rate varies based on the vowel identities

more than we found in the previous estimation (Section 6.5.3).
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In summary, we estimated consonant targets consistently by increasing the amount of

training data with style-independent target estimation, even for non-approximants. The

estimated targets demonstrate the expected characteristics of place of articulation, and

also show differences in consonant position and speaker differences. These results are the

first known report of a data-driven approach to estimating consonant targets.

6.7 Discussion: Speaker dependency

In this chapter, the number of speakers was increased to two (male and female) to exam-

ine speaker differences. Since one speaker per gender was recorded, we focus on speaker

differences rather than gender differences. First of all, both speakers were able to produce

clr speech significantly differently from cnv speech, in terms of formant steady-state val-

ues, formant transitions, phoneme durations, and F0 (Section 6.3). However, the formant

contour plots and formant steady-state values showed that the female’s speech has more

variability between cnv and clr speech in the vowel space, which resulted in a higher fit-

ting error. The contribution of the vowel for both speakers demonstrated a similar effect,

namely that the clr style has more likely fully-articulated vowels than the cnv style.

When the amount of training data was matched per training group with style-independent

and style-dependent estimation, the estimated formant target values showed similar re-

sults for both male and female speakers (Section 6.5.7). That is, the estimated target

values are well clustered for the vowels and approximants, and not as well clustered for

non-approximants. Although the estimated values for unvoiced consonants might not be

similar between the two speakers, the estimated target values are better clustered with

style-dependent than style-independent target estimation for both speakers.

When the amount of training data was increased per training group, for style-independent

estimation, well-clustered consonant targets were obtained even for non-approximants

(Section 6.6). Both speakers demonstrate a difference in F2 based on the place of articu-

lation.

6.8 Conclusions

In this study, we presented a newly-developed speech corpus of CV C words with cnv

and clr speaking styles, and analyzed the acoustic characteristics of this corpus. A

previously developed formant contour model (Chapter 5) was verified on this greater

variety of phoneme contexts with a linear combination of coarticulation functions and
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style-independent formant target values. The model demonstrated relatively low error

rates on training and test data, well-clustered formant target values for approximants

from the training dataset, and a small error rate from model validation. A larger variance

in the female speech resulted in a higher fitting error rate than for the male speech.

The characteristics of clr formant dynamics are partially found in the parameters of

the coarticulation functions (/w/–/V /–/l/ context only), as well as in the contribution of

the vowel. These characteristics may be useful for formant-based speech synthesis in the

future.

We examined whether style-dependent targets would yield a better model of human

speech production, compared with style-independent targets. The mean test-set error rate

was reduced with style-dependent target estimation, while both cnv and clr formant

contours were fitted equally well. On the other hand, with the doubled size of training

data with style-independent estimation, the estimated consonant targets are found to be

much more tightly clustered. The estimated targets might depend on the size of training

data. Due to the limited amount of data in our CV C speech corpus, it is not possible to

increase the size of training data for style-dependent estimation. We speculate that with

a larger amount of training data, the clustering of unvoiced consonants in style-dependent

estimation could be as good as, or better than, style-independent estimation. Although it

is not conclusive about the style dependency of the target, because of the reduced test-set

error, the style-dependent target is more likely.

The perceptual effects of the modeled formant contour are not yet confirmed. In the

future, the formant contour model will need to be validated using a re-synthesized signal

and perceptual testing. When the original and re-synthesized signals are not perceptually

different, we will be able to use model-based formant synthesis to create a speech signal

as natural as the original signal. This future plan for perceptual evaluation is discussed

in Section 8.4.1.
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Figure 6.13: Estimated style-independent consonant target values (showing only bilabials
and alveolars) in F1−F2 space with larger amount of training data. The blue and red
fonts represent C1 and C2 values, respectively. The means of each phoneme from style-
independent target estimation are shown in triangles (C1) and squares (C2).



Chapter 7

Applications of the formant contour

model

In previous chapters (Chapters 3 and 4), the spectrum, and formant frequencies in partic-

ular, is shown to be a relevant feature for the increased intelligibility of clr speech. Other

researchers have investigated abnormalities in formant frequencies or F2 rate in dysarthric

speech [69, 52], which may contribute to the reduced intelligibility of dysarthric speech.

In addition, other studies have showed that formant information, especially transition

information, can be used to diagnose learning disability [13] and stuttering as distinct

from non fluency [85]. Also, modifying the formants has been shown to be an effective

way to improve vowel intelligibility of dysarthric speech [49]. In these studies, extracting

formant values is an important process for analysis and synthesis. To obtain accurate

formant information, the annotators usually correct formant-tracking errors manually, by

visually inspecting the spectrogram and using phonemic information. Manual correction

of formant frequencies is not an easy task and is labor intensive, requiring knowledge of

the speech signal in cases of ambiguous or invisible resonant frequencies. Therefore, errors

in formant tracking prevent researchers from examining a larger number of data samples.

In this chapter, we investigate methods to reduce or detect formant contour errors

made by existing software, as one potential application of the formant contour model.

We apply the formant contour model (Chapter 6) using automatically-extracted formant

contours without manual correction. We examined (1) whether the modeled contour

can reduce formant-tracking errors, (2) whether we can detect tokens that have formant-

tracking errors using only automatically-extracted formant information, and (3) whether

we can improve the accuracy in extracting F2 slope.

120
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7.1 Experiment 7–1: Reducing formant-tracking errors

We examined whether we can model formant contours using automatically-extracted for-

mant values instead of manually-corrected formants. Automatically-extracted values may

contain formant-tracking errors, which may influence the robustness of parameter estima-

tion. Then, we tested how much we can reduce formant-tracking errors. We used the

same 242 CV C corpus described in Section 6.2, from the same two speakers.

The formant contour was initially extracted with the Snack Sound Toolkit [91, 90],

which uses ESPS Waves+ libraries [28]. Without manual correction, it contains formant-

tracking errors. We refer to automatically-extracted formants as autoFrm, and manually-

corrected formants as handFrm. Figures 7.1(a)–7.1(d) show the observed steady-state

values of autoFrm and handFrm for two speakers, taken at the vowel midpoints.

7.1.1 Formant target estimation

The autoFrm contours were fitted to the formant contour model by adjusting parameters

(s and p per token, and global targets T). The method to estimate model parameters

was identical with Section 6.6. 20 groups of training sets, which have 920 tokens for both

speaking styles per training group, were used in style-independent target estimation. The

style-independent target estimation was used because it has more applicable situations for

future use than style-dependent target estimation. The errors in Equations 6.4 and 6.5

were minimized iteratively using the hill-climbing method.

Estimated vowel targets from autoFrm and handFrm are shown in Figures 7.2(a)–

7.2(b). 20 values per vowel from 20 training groups are shown in blue (autoFrm) and

red (handFrm), while mean values of 20 estimated targets are shown in black downward

triangles (autoFrm) and squares (handFrm). For all cases, the estimated vowel targets

are tightly clustered as seen in previous results (Section 6.6). For male speech, the vowel

F1 values with handFrm are higher than those with autoFrm; especially 63Hz, 75 Hz

and 54Hz higher in vowels /E/, /æ/ and /2/ than autoFrm cases, respectively. Larger

differences were found in female speech. Not only F1 differences in F1 of /E/, /æ/, and

/2/, but also F1 of /A/ and F2 of /i:/ and /I/ were different by 60 Hz, 206 Hz and 92 Hz,

respectively. The target values using handFrm were at more extreme positions in the

F1–F2 space.
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(d) Female: handFrm

Figure 7.1: The steady-state values of autoFrm and handFrm for two speakers. cnv and
clr tokens are shown in red and blue, while mean values are shown in black.

7.1.2 Re-estimating coarticulation parameters

With a given estimated target, the modeled formant contour fitted well to the autoFrm

contour, because of the flexibility in coarticulation functions, even if autoFrm contained

formant-tracking error(s). An example of autoFrm with a tracking error and the corre-

sponding fitted model are shown in Figure 7.3(a). In this example, a formant-tracking

error in the second half of the vowel /2/ was observed. Since p2 was located in the middle

of the vowel, the modeled contour was away from the handFrm contour, but fitted the

autoFrm contour well. We restricted the p range to prevent cases like this, and increased
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Figure 7.2: Estimated vowel target from the training data using autoFrm (blue) and
handFrm (red). Formant targets are style-independently estimated. The black markers
show the mean of 20 values.

the minimum amount of vowel contribution (C(t) = 1− (d1(t; s1, p1) + d2(t;−s2, p2))).

The coarticulation parameters (s and p) were re-estimated given mean estimated target

values with these extra constraints. The constraints were:

• C(t) ≥ 0.75 was met at least one time.

• p1 (or p2) in Equation 6.3 was placed either at the end of C1 or beginning of V (or

the end of V or beginning of C2).

The modeled contour is shown in Figure 7.3(b) with re-estimated s and p values. We

refer to this modeled contour as autoFrmModel. With extra constraints, p values are

located close to the phoneme boundaries, and autoFrmModel is closer to handFrm. The

model was also fitted to the handFrm data with the same constraints, which we refer to

as handFrmModel.

When coarticulation parameters (s and p) were estimated, the target values of /h/,

/k/, /g/, and /N/ were changed, because these consonants are largely influenced by their

neighboring vowel. The target of /h/ was set to the observed vowel values at the CV

boundary. For /k/, /g/, and /N/ in a front vowel context (determined by F2 value ≥
1500 Hz), F2 was set to F2+F3

2 , while F1, F3 and F4 were set to the estimated target values

for corresponding consonant. For /k/, /g/, and /N/ in a back vowel context (determined

by F2 value < 1500 Hz), all four formant targets were set to the estimated target values
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(a) Modeled formant contour (solid lines) with-
out the extra constraint and observed contour
(dotted lines). Black dash-dot lines are the
handFrm contour. The model contour was fitted
well to the autoFrm contour containing formant-
tracking errors.
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(b) Modeled formant contour (solid lines) with
the extra constraint and observed contour (dot-
ted lines). Red lines (p1 and p2) are restricted to
be close to C1V/V C2 boundaries. Black dash-
dot lines are the handFrm contour.

Figure 7.3: An example of the contour model before and after re-estimatation of the coar-
ticulation parameters. The word is “fun (/f 2 n/)” (male speech) in cnv style. Blue
vertical dash-dot lines show the phoneme boundaries, while vertical red dashed lines rep-
resent p1 (left) and p2 (right).

for the corresponding consonant, same as other consonants. Each formant contour was

then synthesized with mean formant target values and re-estimated s and p values.

7.1.3 Error analysis

The error was calculated as

Err(k) =

√√√√w
∑T

(k)
2

t=T
(k)
1

(
F1(t)(k) − F2(t)(k)

)2

N (k)
(7.1)

where w =
[
1.0 1.0 0.25 0.01

]
, and N (k) is the number of frames from T

(k)
1 to T

(k)
2

for a particular token k. The error is not divided by the sum of the weights, because it

does not affect the ranking. T
(k)
1 (or T

(k)
2 ) is located at the middle of C1 (or C2) when

C1 (or C2) is an approximant. Otherwise, T
(k)
1 (or T

(k)
2 ) is located at the C1V (or V C2)

boundary.

F1(t)(k) and F2(t)(k) were set as follows:

Err1: F1(t)(k)=autoFrm and F2(t)(k)=handFrm.

Err2: F1(t)(k)=autoFrmModel and F2(t)(k)=handFrm.
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Figure 7.4: Histograms of Err1 through Err4 for the male speaker. Filled bars are the
tokens that have Err1 ≤ 0.4, and open bars are the tokens that have Err1 > 0.4.

Err3: F1(t)(k)=handFrmModel and F2(t)(k)=handFrm.

Err4: F1(t)(k)=autoFrmModel and F2(t)(k)=autoFrm.

The mean error rates of these four conditions are shown in Table 7.1. Since handFrm

was based on autoFrm, Err1 can be zero when autoFrm does not have a formant-tracking

error, while Err2, Err3, and Err4 cannot be zero except in exceptionally rare cases. To

focus on problematic tokens, a subset of tokens were selected based on the threshold of

Err1 > 0.4. 184 tokens of cnv speech (38.02 %) and 47 tokens of clr speech (9.71 %)

were selected for the male speaker, and 140 tokens of cnv speech (28.93 %) and 95 tokens

of clr speech (19.63 %) were selected for the female speaker.

For the male speech, the mean error was reduced from 1.6000 in Err1 to 0.4562 in
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Figure 7.5: Histograms of Err1 through Err4 for the female speaker. Filled bars are the
tokens that have Err1 ≤ 0.4, and open bars are the tokens that have Err1 > 0.4.

Err2, showing that autoFrmModel was closer to the “correct” formant contours. The

standard deviation was also reduced from 1.5852 to 0.2858. Similarly for female speech, the

mean error was reduced from 1.4940 in Err1 to 0.5785 in Err2. The standard deviation

was also reduced from 2.3366 to 0.4864.

Figures 7.4(a)–7.4(d) show the histograms of Err1 through Err4 for tokens with

Err1 ≤ 0.4 and for tokens with Err1 > 0.4 for the male speaker. The histograms

show that 56 outliers in Err1 (Err1 > 2.0) were removed in Err2 (maximum value of

Err2 was 1.6502). 121 out of 231 tokens (52.8 %) had Err2 < 0.4. In terms of Err3

(handFrmModel as compared with the handFrm), 199 out of 231 tokens (86.15 %) had

Err3 < 0.4. For those tokens (initially had Err1 > 0.4), the model worked well at reduc-

ing the error from autoFrm. On the other hand, 45 tokens (49 tokens) out of 231 had
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Table 7.1: The mean error rate (standard deviation) in four conditions. 184 tokens (or
140 tokens) of cnv speech and 47 tokens (or 95 tokens) of clr speech for male (or female)
are selected based on the threshold of Err1 > 0.4.

All tokens Selected tokens (Err1 > 0.4)
cnv clr Total cnv clr Total

Male speech

Err1
0.7560 0.1449 0.4505 1.8071 0.7894 1.6000

(1.3363) (0.2651) (1.0102) (1.7027) (0.4323) (1.5852)

Err2
0.3255 0.1709 0.2482 0.4984 0.2930 0.4562

(0.2609) (0.1173) (0.2165) (0.2995) (0.1333) (0.2858)

Err3
0.2085 0.1466 0.1776 0.2118 0.1788 0.2050

(0.1825) (0.1092) (0.1535) (0.2141) (0.0982) (0.1964)

Err4
0.5153 0.1989 0.3571 1.0103 0.6218 0.9312

(0.8954) (0.2345) (0.6730) (1.2963) (0.5197) (1.1898)

Female speech

Err1
0.4987 0.4292 0.4640 1.3731 1.6722 1.4940

(1.2737) (1.3115) (1.2925) (2.1265) (2.6173) (2.3366)

Err2
0.3223 0.3927 0.3575 0.4828 0.7195 0.5785

(0.2847) (0.4372) (0.3704) (0.3196) (0.6357) (0.4864)

Err3
0.2498 0.2932 0.2715 0.2350 0.3014 0.2619

(0.2392) (0.3552) (0.3035) (0.1963) (0.2450) (0.2193)

Err4
0.4626 0.4707 0.4666 0.9653 1.1192 1.0275

(0.9433) (0.7627) (0.8574) (1.6002) (1.3851) (1.5157)

Err2 > 0.4 (or Err3 > 0.4). Those tokens show that the model contour was still different

from the “correct” formant contours.

For female speech, the histograms show a similar trend to that of male speech (Fig-

ures 7.5(a)–7.5(d)). The maximum Err1 value is 16.5160, while the maximum Err2 value

went down to 3.7358. Similar to the male speech, 105 out of 235 tokens (44.68%) had

Err2 < 0.4. 195 out of 235 tokens (82.98%) had Err3 < 0.4. The 31 outliers in which

Err1 > 2.0 were reduced to 8 cases for Err2 (Err2 > 2.0), and to 6 cases for Err3

(Err3 > 2.0). On the other hand, the number of tokens which had Err2 > 0.4 among

those for which Err1 ≤ 0.4 was 135 (57.45 %) for Err2 and 127 (54.04%) for Err3. Those

are the cases when the model did not work well.

The autoFrm contours tend to have more formant tracking errors in cnv speech than

in clr speech, because of the low energy of resonant frequencies in cnv speech. Many

errors in Err1 were often seen on the words with /h/, /õ/, nasals, and unvoiced stops, or

the vowels /æ/ and /A/ for the male speaker. In addition to these phonemes, the words

with /i:/ often had a tracking error for the female speaker. When the model did not work

well (Err1 ≤ 0.4 and Err2 > 0.4 (or Err3 > 0.4)), many of the words were associated
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Table 7.2: The performance rate (%) with several detection thresholds (θ1 = 0.4).
θ2 = 0.2 θ2 = 0.3 θ2 = 0.4

Detected as Detected as Detected as
True class Positive Negative Positive Negative Positive Negative

Male
Positive 89.18 10.82 77.06 22.94 66.23 33.77
Negative 32.43 67.57 15.47 84.53 6.11 93.89

Female
Positive 82.13 17.87 68.09 31.91 62.55 37.45
Negative 47.48 52.52 28.24 71.76 18.69 81.31

with the consonants /s/ or /l/. In particular, as described in Section 6.5.3, the model had

high error rates on words with the vowel /u/.

For both speakers, the Err4 results are included in Table 7.1, because the next ex-

periment examines the accuracy of detecting tokens that have formant-tracking errors.

(This detection can not be done by referencing the handFrm data.) In general, Err4

distributions have similar outliers (Err4 > 2.0) as Err1 (18 outliers for male and 31 for

female).

Our method to reduce formant-tracking errors is different from other algorithms such

as Lee’s approach [60]. One advantage of our method is that we set the vowel contribution

(C(t)) less than one, which allows us to model coarticulation functions that do not reach

the target. In contrast, Lee’s algorithm could miss correct formant values due to strong

coarticulation, since the correct formant values may exist outside of the search range.

A disadvantage of our method is that even when automatically-extracted formant

contours do not have a tracking error (equal to handFrm), the model yields errors to

some extent. Our results showed that the model yields a mean error rate as low as 0.1776

for male speech and 0.2715 for female speech (Err3 for all tokens). (Err3 is when the

model is fitted to the manually corrected-formant contour.) The reason for this error is

partly because the model does not fit well when the estimated target is below the observed

contour (if contour is convex) or above (if concave).

In summary, we have been able to estimate model parameters using automatically-

extracted formant contours. The estimated vowel formant targets using autoFrm were

close to those of handFrm, except for the F1 values of /E/, /æ/, and /2/ for the

male speech. The female speech showed a larger F1–F2 space of handFrm targets than

autoFrm targets. The estimated vowel targets were well clustered across training groups

for both speakers. The mean error rate for selected tokens in autoFrm was reduced

using autoFrmModel. In the next experiment, we examine the possibility of detecting
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Figure 7.6: ROC curve for two speakers.

formant-tracking errors using the error between autoFrm and autoFrmModel.

7.2 Experiment 7–2: Detecting formant-tracking errors

In this section, we examine how well we can detect tokens that have formant-tracking

errors using autoFrmModel data. Our “correct” answer as to whether a particular token
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has an error is determined by Err1. Previously (Section 7.1.3), a total of 231 tokens out of

968 were considered to have a formant-tracking error based on the threshold of Err1 > 0.4

(a threshold θ1 = 0.4). When we set the threshold for Err4 to be 0.2 (θ2 = 0.2) given

θ1 = 0.4, we correctly flagged 206 tokens out of 231 (89.18 %) as having a formant-tracking

error, and correctly identified 498 tokens out of 737 (67.57%) as no error. When we set

θ2 to 0.3, the number of correctly identified as an error was decreased to 178 (77.06 %),

and the number of correctly identified as no error was increased to 623 (84.53%). The

results of sensitivity and specificity with θ2 = 0.2 through 0.4 are shown for both speakers

in Table 7.2.

Then, we changed the threshold of Err1 (or θ1) from 0.2 to 2.3 for the male speaker (0.2

to 9.0 for the female speaker) to characterize the error detection performance. Receiver

operating characteristic (ROC) curves are shown in Figures 7.6(a) and 7.6(b). As θ2 was

varied from low to high, more tokens were classified as no error (decreasing sensitivity),

and also less false negatives were detected (increasing specificity). When a higher θ1 was

used, corresponding to more significant errors, classification performance increased.

One study on formant-tracking algorithms showed that a conventional formant-tracking

algorithm has a 13.00 % error for male speech and 15.82 % error for female speech [60]. We

assume that the ESPS formant-tracking algorithm has a similar error rate. The error rates

13.00% and 15.82% were converted to θ1 = 0.83 for the male and θ1 = 1.6 for the female.

The area under the ROC curve was 0.9435 (θ1 = 0.83, ROC curve shown in magenta) and

0.9213 (θ1 = 1.6, ROC curve shown in cyan) for male and female speech, respectively.

Lee et al. improved their formant-tracking error rate to 5.03% (male) and 3.73%

(female) using phonemic information [60]. We took another measurement for the case

assuming that the error rate was similar to that of Lee’s algorithm. The θ1 = 2.3 was

equivalent to 5.03 % error (49 tokens) for the male speaker, while θ1 = 9.0 was equivalent

to 3.73 % error (10 tokens) for the female speaker. The area under the ROC curve was

0.9894 (θ1 = 2.3, ROC curve shown in black) and 0.9989 (θ1 = 9.0, ROC curve shown in

green) for male and female speech, respectively.

For this type of problem, detecting formant-tracking errors, false positives (missing a

token with an error) are more critical than false negatives (detecting a correct token as

an error). This is true whether the user is looking for reliable formant data and removing

bad tokens or looking for tokens to correct manually. The user should choose θ2 that

yields maximum sensitivity, while specificity is reasonably high. The actual performance,

however, will depend on θ1, or how much of a difference is necessary to qualify as an error.
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Table 7.3: The mean error rate of the F2 slope (Hz/ms) at the vowel onset and off-
set positions. The F2 values from autoFrm (Err1), autoFrmModel (Err2), and
handFromModel (Err3) are compared with those of handFrm per token, averaged over
C1 − V and V − C2 results.

C1 − V slope V − C2 slope
cnv clr Total cnv clr Total

Male

Err1
29.2111 13.7493 21.4802 91.0437 21.0100 56.0269

(225.3951) (55.0472) (164.1602) (539.9426) (246.3304) (420.8963)

Err2
15.5952 14.1357 14.8654 16.3280 12.7018 14.5149

(26.7646) (29.3005) (28.0562) (32.7154) (40.4759) (36.8264)

Err3
15.5631 14.1083 14.8357 13.6895 9.4296 11.5595

(26.7463) (29.2764) (28.0349) (23.4201) (15.4325) (19.9366)

Female

Err1
51.2548 22.5451 36.8999 112.2834 94.4392 103.3613

(282.2140) (74.3125) (206.7506) (602.1887) (481.6179) (545.0374)

Err2
28.3735 29.6626 29.0181 20.7707 24.7869 22.7788

(64.4309) (67.6788) (66.0438) (44.3864) (67.6797) (57.2363)

Err3
28.3278 29.7524 29.0401 17.8760 12.1120 14.9940

(64.3721) (67.6377) (65.9949) (35.4843) (22.3340) (29.7721)

In summary, we examined how well we can detect formant-tracking errors by using the

error between automatic formant values and the model contour estimated from automatic

formant values. The performance rates were shown to be well above chance level for both

speakers, which shows that this application can be a useful tool for such speech analysis.

7.3 Experiment 7–3: Extracting F2 slope

The third application is to extract F2 slope using the formant contour model. The formant

transition contains important information for speech intelligibility [33]. Many studies have

shown F2 slope (or delta, transition) to be a useful acoustic measure for analysis of the

speech of ALS patients [50, 69], for stuttered speech [85], and for dysarthric speech [52].

We found that the formant tracking algorithm often makes an error at a voicing transition

(unvoiced to voiced or voiced to unvoiced). This is the point of interest, where the F2

slope is measured. In this study, we extract the F2 delta values using three sets of data:

autoFrm, autoFrmModel and handFrm. If the results of autoFrmModel are similar to

those of handFrm, F2 slope analysis becomes a less labor intensive process.

The F2 delta values (δ[tcv] and δ[tvc] (Hz/ms)) were extracted by fitting a line over

the range of t±20 ms of the CV/V C boundary. When formant values were not available

in consonants, only values from t=0ms to 20 ms at the CV boundary (or t=−20 ms to
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Figure 7.7: Histograms of δ[tcv] and δ[tvc] for the male speaker for the selected tokens
(Err1 > 25 Hz/ms).

0 ms at the V C boundary) were computed.

The error was analyzed in terms of the difference between extracted F2 slope of

autoFrm and handFrm, autoFrmModel and handFrm, and handFrmModel and handFrm,

on a per token basis. The squared error was reported for three datasets: Err1 : autoFrm,

Err2 : autoFrmModel, and Err3 : handFrmModel, averaged over all C1−V transitions

(Errcv) and V −C2 (Errvc) transitions. The results are shown in Table 7.3 for both speak-

ers. Overall, Err1 slope was reduced from 56.0269 to 14.5149 in Err2 for male speech,
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Figure 7.8: Confidence interval of the δ[tcv] and δ[tvc] for the male speaker.

and from 103.3613 to 22.7788 for female speech. The standard deviation was also reduced

from 420.8963 in Err1 to 36.8264 in Err2 (male), and from 545.0374 to 57.2363 (female).

The V − C2 slope had higher Err1 values than C1 − V slope.

Then, tokens that have Err1 > 25.0 (Hz/ms) were further analyzed. A total of 113

tokens of δ[tcv] and 131 tokens of δ[tvc] were selected from the male speaker, while 187 of

δ[tcv] and 208 of δ[tvc] were from the female speaker. The δ[tcv] and δ[tvc] distributions are

shown in Figures 7.7(a)–7.7(f) (male) and Figures 7.9(a)–7.9(f) (female). At the bottom

of each histogram, the mean (circles) and standard deviation (lines) of each dataset are

shown. Both speakers show that the F2 slope of autoFrm has many outliers, most of

which were removed in autoFrmModel cases. The histograms of autoFrm show flat

distributions, while those of handFrm and autoFrmModel have peaks around 0 Hz/ms.

The confidence intervals of the three distributions are shown in Figures 7.8 (male) and

7.10 (female). The distributions of autoFrmModel overlap with those of handFrm well,



134

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
CV

] (Hz/ms)

C
ou

nt

(a) handFrm

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
VC

] (Hz/ms)

C
ou

nt

(b) handFrm

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
CV

] (Hz/ms)

C
ou

nt

(c) autoFrm

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
VC

] (Hz/ms)

C
ou

nt

(d) autoFrm

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
CV

] (Hz/ms)

C
ou

nt

(e) autoFrmModel

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

δ[t
VC

] (Hz/ms)

C
ou

nt

(f) autoFrmModel

Figure 7.9: Histograms of δ[tcv] and δ[tvc] for the female speaker for the selected tokens
(Err1 > 25 Hz/ms).

except for the female at V C boundary.

The tokens that have high error rates (Err1 > 25) were often associated with the

vowels /æ/ and /A/. Regarding the consonants, the F2 slope of /h/ and /l/ had higher

Err1cv and Err1vc rates, respectively. These F2 slope results are consistent with findings

from previous results, where we analyzed the formant-tracking errors (described in Sec-

tion 7.1.3). On the other hand, the words that have higher Err2 values were associated
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Figure 7.10: Confidence interval of the δ[tcv] and δ[tvc] for the female speaker.

with vowels /i:/ and /I/, and consonants /p/, /l/, /m/, and /b/. In these cases, the dif-

ference is large between vowel F2 target (high) and consonant F2 (low), regardless of the

observed slope (the contour can be flat). We speculate that the model sometimes makes

errors when extracting F2 slope in these phoneme contexts. In the future, when s and p

values are estimated (Section 7.1.2), minimizing the error in the delta domain may lead

to more accurate F2 slope extraction with the contour model.

7.4 Conclusions

In this chapter, we discussed three potential applications of the formant contour model: (1)

reducing formant-tracking errors, (2) detecting tokens that have formant-tracking errors,

and (3) better estimation of F2 slope values. Our results in the first experiment showed

that the model parameters using automatically extracted formant values provide a good
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fit to the data and can reduces tracking errors. The second experiment showed that error

detection accuracy using the error between autoFrm and autoFrmModel was well above

chance level. The area under the ROC curve was 0.9435 (θ1 = 0.83) and 0.9213 (θ1 = 1.6)

for male and female speech, respectively.

Finally, we examined whether F2 slope values extracted from autoFrmModel are more

closely related with those of handFrm F2 slope compared with autoFrm. The mean error

rate of the F2 slope was reduced from 56.0269 (autoFrm) to 14.5149 (autoFrmModel).

Also, the F2 slope histograms of autoFrmModel had distributions more similar to that

of handFrm for both speakers.

From above results, the formant contour model and proposed parameter estimation

method has demonstrated potential for use in speech analysis and synthesis tools. It may

also be useful for low bit rate speech coding. It should be noted that manually corrected

phoneme boundaries were used throughout this chapter, for model parameter estimation

and F2 slope extraction. Still more work will be needed to fully automate the process.



Chapter 8

Conclusion

8.1 Contributions of the thesis

Specific Aim 1: To identify high-level acoustic features that are relevant to

increased intelligibility of CLR speech. As the result of Experiments 3–1 through

3–3 in Chapter 3, we found that the combinations of (1) phoneme duration, spectrum and

phoneme sequence, (2) spectrum and phoneme sequence, and (3) phoneme duration and

spectrum were the relevant features. Relevant features were defined in Section 1.1 as the

acoustic features that are important to increased intelligibility of clr speech. These three

combinations of features yielded significant improvement over the cnv speech of this par-

ticular male speaker. Furthermore, as the result of Experiments 4–1 and 4–2 in Chapter 4,

front-vowel intelligibility can be significantly improved by modifying the formant contour,

with and without changing phoneme durations. Spectral balance and formant bandwidth

did not seem to have an effect on intelligibility as we obtained intelligibility matching clr

speech levels with those features remaining the same.

Throughout the perceptual experiments in Chapters 3 and 4, we developed algorithms

to effectively modify certain acoustic features of cnv speech, so the resulting synthetic

“hybridized” (hyb) speech has better intelligibility than that of cnv speech, potentially

as good as that of clr speech. In Chapter 3, a pitch-synchronous, residual-excited, linear

predictive coefficient (LPC) analysis and synthesis method was used to modify spectral

information, F0, and phoneme duration1. In Chapter 4, in addition to phoneme duration,

formant contours were modified. First, formant contours were designed prior to formant

modification so that the cnv formant contour obtained clr steady-state and transition

values. Formant values were then modified by removing existing formant values by inverse

1Both Alexander Kain and I were responsible for the implementation of this algorithm.
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filtering, and by applying the target formant filter at each time frame. Perceptual results

showed that hyb speech had better intelligibility with clr formant steady-state values.

These results indicate that we are able to modify acoustic features of cnv speech without

introducing excessive signal-processing artifacts.

As described in the Background (Section 2.3.3), we predicted which features may (or

may not) be responsible for increased intelligibility of clr speech based on prior work

that investigated correlations between cnv and clr speech. From other research, we

concluded that formant transitions, temporal envelope, F1 and F2 ranges, energy in the

1–3 kHz range, formant bandwidth, and voice onset time (VOT) are acoustic features that

may be responsible for increased intelligibility of clr speech. F0 mean and consonant-

vowel-ratio (CVR) may not be as important to speech intelligibility. Other features,

including phoneme duration (speaking rate), F0 trajectories, F0 range, long-term energy,

spectral balance (or glottal source characteristics), and pause duration are not conclusively

significant for speech intelligibility, because of the unclear or contradicting results from

prior studies.

In this thesis, VOT, F1 and F2 range, CVR, and temporal envelope were not explicitly

tested. Pause duration was not tested individually as studied in [66], but the results of Ex-

periments 3–1 through 3–3 showed that the combination of pause (non-speech sequence),

energy, and F0 did not help to improve intelligibility of cnv speech. Therefore, the pause

information, energy, and F0 are not likely to be relevant features for this speaker. With-

out formant bandwidth modification and glottal source characteristics, we were able to

improve intelligibility of cnv speech. Therefore, formant bandwidth and glottal source

characteristics may also not be relevant features. The formant transitions were tested

with formant steady-state values at the vowel mid point (Section 4.6). Experiment 4-2

showed improved vowel intelligibility with limited phoneme contexts. Therefore, the for-

mant transition can be a relevant feature. Although our expectation was not clear about

the impact of phoneme duration, because of the improved sentence and vowel intelligibility

along with spectral (formant) information, phoneme duration (or speaking rate) is likely

to be a relevant feature.

In this study, sentence materials (Chapter 3) and a limited numbers of words (Chap-

ter 4) were used. The results cannot be easily generalized to other speakers without further

testing. However, these results are a significant step forward to better understanding which

acoustic-phonetic features cause clear speech to be more intelligible than ordinary conver-

sational speech. Finally, one significant contribution of this work is demonstrating that
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cnv speech intelligibility can be significantly improved through the use of clr features.

Specific Aim 2: To develop a model of relevant features that have been

identified as a result of Specific Aim 1. We developed a model of formant con-

tours to characterize the relationship between formants and phoneme durations, which

is the combination of the two most relevant features from Specific Aim 1 (described in

Chapters 5 and 6). In the model, the formant contour was decomposed into formant

targets and coarticulation functions. While formant targets were estimated globally (with

style-independent or style-dependent targets), slope and slope location parameters in the

coarticulation functions were estimated per token. During the parameter estimation pro-

cess, the error was minimized between the observed and modeled formant contour. With

three sets of formant target values (style-independent targets, style-dependent targets, and

generic values) in a limited number of /w/–/V /–/l/ words, error values were as low as

0.2062Bark. An analysis of the relationship between estimated parameters in the coartic-

ulation functions (s1 and s2) and a direct measure of F2 slope showed a strong correlation

(r =0.8527), indicating the potential to use the direct measure of F2 for computing coar-

ticulation parameters (Chapter 5).

With a larger set of CV C words and an additional speaker, we successfully modeled

the formant contours with global targets (either style-independent or style-dependent),

slope, and slope location parameters, as described in Chapter 6. The formant contours of

the male speaker (specific to this speaker) fit the model better than those of this female

speaker, due to the high variance of the female speech formant values. One advantage of

the formant contour model is that we can parameterize the coarticulation effects, analyze

the formant targets separately from coarticulation effects, and synthesize formant contours

with any specified phoneme duration.

A further experiment showed that the style-independent targets were found to be

tightly clustered, even for the unvoiced consonants. The estimated consonant targets

demonstrated the effect of place of articulation in F2 values. Although some differences

between the two speakers were observed, the data-driven approach for the unvoiced-

consonant targets is shown to be robust when we have a sufficient amount of training

data. We include the complete list of consonant targets, which is the first known dataset

obtained by a data-driven approach, in Appendix E.

Specific Aim 3: To develop applications of the formant contour model.

We examined three possible applications of the contour model (Chapter 7). First, we
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investigated whether we can reduce formant-tracking errors made by existing speech anal-

ysis software. We estimated the model parameters with style-independent target estima-

tion using automatically extracted formant contours. Even with formant-tracking errors,

the estimated vowel targets were found to be close to the targets estimated with manu-

ally corrected formant contours. The error, measuring the difference between manually-

corrected formant contour and automatically-extracted formant contour, was reduced from

1.6091Bark to 0.4562 Bark for the male speaker, and 1.4940 Bark to 0.5785 Bark for the

female speaker, when evaluating tokens with high error (> 0.4 Bark).

The second application of the formant contour model considers the possibility of de-

tecting tokens that have formant-tracking errors. For both speakers, the ROC curves

showed that the error between modeled contour (estimated with autoFrm) and automat-

ically extracted contour is a useful measure of detecting formant-tracking errors. When

larger errors were made by the tracking software, better performance of this application

was observed. This may be a useful application for speech analysis and synthesis. Using

the model, the user can determine which tokens to select (throw away) or which tokens

need be corrected manually.

Finally, the third application is to extract F2 slope values from the formant contour

model using only automatically extracted formants. The F2 slope distributions showed

similar results between manually corrected data and model data. Since F2 slope informa-

tion is used to diagnose speech-related disorders, automatic F2 slope extraction may be

very useful to medical applications.

8.2 Constraints and limitations

In the hybridization algorithm, prior to speech modification, we extracted phonetic fea-

tures such as time-aligned phoneme labels. Features (glottal-closure instants, LPC anal-

ysis, and formant contours) were extracted offline. Manual correction of phoneme labels,

glottal-closure instants, and formant frequencies were necessary for accurate analyses and

good quality of synthetic speech. In Chapter 7, we showed that the parameters of the

formant contour model can be estimated using automatically extracted formant contours.

Likewise, an algorithm which does not require manual correction of features is one next

step for future development. Such an algorithm will allow us to evaluate much larger

datasets.

For the formant contour model, phoneme identity was an essential feature, since the
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targets were estimated per phoneme. The model constraints were, in part, based on the

manner of articulation. Also, the word sequence studied was always consonant-vowel-

consonant (CV C), which makes the contour model more simple. It would be more useful

for application to automatic speech recognition (ASR) if the model can be applied to any

phoneme sequence or ultimately sentence.

The number of differences between cnv and clr features depended on the speaker, as

discussed in Chapter 6. In this study, the number of speakers was limited to one (male)

in Specific Aim 1 and two (male and female) in Specific Aims 2 and 3. The results from

these chapters were specific to these speakers. Therefore, these results may not be easily

generalizable to other speakers. Investigating speaker-independent features is discussed

below in future work (Chapter 8.4.2).

8.3 Applications

In this section, we list possible applications from the findings in Specific Aim 1.

8.3.1 Assistive listening devices

The digital signal processing techniques in current hearing devices includes linear or non-

linear amplification in wide/narrow band channels, noise reduction, feedback cancellation,

and sound source separation using a directional microphone. The results from this thesis

might be applied to portable or wearable devices, including a hearing aid, that possibly

transform the input speech (assumed to be cnv speech) into an approximation of clr

speech. Such a device might be tuned to meet an individual’s needs to compensate for

any hearing difficulties.

Different acoustic features can be incorporated depending on the application devices.

For pre-recorded speech or video (e. g. DVD), real-time processing is not necessary. There-

fore, more powerful processing and time warping techniques are possible. Whereas, for a

hearing aid, reducing computational cost with real-time processing becomes a challenging

topic. In particular, slowing down the speaking rate is not an optimal solution because

of the potential asynchrony between the audio signal and visual representation. One

possible processing scheme might be slowing down the steady-state portions (vowels and

approximants) and speeding up the silence portion, as proposed in [72].
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8.3.2 Objective measures

The articulation index (AI), later revised and standardized as the speech intelligibility

index (SII), is an objective measurement to predict a listener’s audibility, which is highly

correlated with the intelligibility of the speech on a particular listener [7]. The SII is calcu-

lated with acoustic measurements (or estimates) of speech spectrum level, noise spectrum

levels, and the listener’s auditory threshold. Band importance functions (numerical value

in each frequency band characterizing the relative importance of the frequency to speech

intelligibility) are applied to each frequency band, and summed across all frequency bands

into a single index. A variety of speech materials, such as the nonsense syllable test [77],

CID-W22 [98], NU6 monosyllables [102, 99], Diagnostic Rhyme Test (DRT) [106, 27], short

passages [21], and SPIN mono-syllables [8] are taken into consideration in the frequency

importance function. The SII value ranges from 0.0 and 1.0, indicating low to high audi-

bility. The speech spectrum is usually estimated with normal, raised, loud, and shouted

vocal efforts. Due to the limitation of SII in non-stationary noise conditions, Rhebergen

and Versfeld [88] have extended the SII for predicting speech intelligibility taking fluctu-

ating noise, interrupted noise, and multiple-talker noise into consideration. The approach

in their study measures the standard SII in a short-term window and averages over the

entire speech segment, which yields an SII value for a particular condition.

As shown in the results of Specific Aim 1, speech intelligibility can be heavily affected

by the speaking rate. Since the standard SII does not take any temporal features into

account, speech intelligibility with different phoneme durations might end up in the same

index value, when long-term spectral measures are equal. Similar to the extended SII,

a direct measure of phoneme durations might better predict speech intelligibility. The

results of this thesis can be applied to objective measures, such as SII, which incorporate

a direct measure of speaking rate. More accurate prediction of speech intelligibility may

result in more appropriate decisions for hearing aid fitting and counseling.

8.4 Future work

8.4.1 Perceptual effects of the formant contour model

The formant contour model described in Chapter 6 resulted in an average fitting error

of 0.2815–0.3834Bark for style-independent/dependent target estimation for both male

and female speech. Whether the fitted model within this error range makes a perceptual

difference is not yet answered. Perceptual evaluation using synthetic speech with modeled
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The color red is associated with cnv, while blue is with clr speech. The word wheel is
shown in this example.
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contours is an important next step. Possible test conditions include two types of synthetic

formant contours using estimated model parameters as shown in Figure 8.1. In the first

condition, Figures 8.1(a) and 8.1(b) show the coarticulation functions with cnv parame-

ters and the formant contour before and after modification with cnv target values. This

condition is to validate the formant contour model of cnv speech, where cnv parame-

ters of coarticulation functions and cnv target values are used. In the second condition,

Figure 8.1(c) shows coarticulation functions with cnv and clr parameters with cnv du-

ration. Figure 8.1(d) shows the original cnv formant contour and synthetic contours with

clr target values but cnv duration. This condition is to evaluate whether it is possible

to improve cnv intelligibility by modifying the formant contour using clr model param-

eters but cnv duration. If the second condition is evaluated to have better intelligibility

than the original cnv speech, there is the potential for real-time processing applications.

These two examples of synthetic formant contours (and possibly other conditions) will be

examined in perceptual experiments in the future.

8.4.2 Speaker dependency

Prior work that found different speakers employ different strategies to produce clr speech [30]

led to a study examining 41 speakers producing CV C utterances [29]. Ferguson demon-

strated significant speaker differences in vowel intelligibility for normal-hearing listen-

ers [29]. As described in Section 2.2.3, it will be necessary in the future to examine

whether a set of relevant features from one speaker is valid for different speakers. To

accomplish this goal, we introduce an inter-speaker hybridization method, where we take

acoustic features from one speaker and synthesize hyb speech using the complementary

features of a different speaker. The intelligibility of the resulting hyb speech will indicate

which features are speaker independent.

8.4.3 Speech perception by elderly listeners

40–45 % of people over the age of 65, and about 83 % over the age of 70, experience

significant sensorineural hearing loss [22]. In addition, listeners over 60, regardless of their

hearing levels, often have difficulty understanding speech in the presence of background

noise [61, 84] and reverberation [70]. Presbycusis, a hearing disorder associated with

aging that is characterized by high-frequency hearing loss, is also characterized by reduced

speech understanding ability. From a five-year longitudinal study, Divenyi et al. [23] found

that decline in speech understanding ability accelerated significantly with aging, relative
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to the decline of audiometric measures. Therefore, speech understanding involves the

combination of auditory and cognitive functions.

The clr speech benefit by elderly hearing-impaired listeners (aged 60–89) has been

reported in [79, 89, 30, 105]. Moreover, studies have shown that the benefit of clr

speech depends on the characteristics of a group of listeners, namely whether they have

hearing loss and the type of hearing loss [30, 67]. According to a study by Ferguson and

Kewley-Port [30], talkers who produced front vowels with significantly higher F2 values

were less intelligible due to the listeners’ type of hearing loss. The authors speculated that

this result was because increased F2 values were in a region where the hearing-impaired

listeners had a sloping hearing loss (i. e. 2000–2500 Hz). Therefore, the acoustic features

that we found relevant based on the perceptual results from young listeners (Specific Aim

1) might be different for different groups of listeners. For example, temporal features

might be more important for elderly listeners who may have temporal processing deficits.

In the future, we will need to evaluate what acoustic features are relevant for elderly

listeners with or without hearing loss. We assume that in speech signal processing for

elderly listeners, if an optimum acoustic signal is provided at the early stages of auditory

processing, the cognitive load at later stages of processing will be minimized, which may

lead to maximizing speech understanding.
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Appendix A

IEEE-Harvard sentences

Seventy sentences from IEEE-Harvard sentences [87] were used in experiments in Chap-

ter 3. These sentences were grouped into two according to the informal perceptual experi-

ments. In order to maximize the intelligibility difference between cnv and clr speech, we

identified 48 sentences with larger differences in acoustic characteristics between cnv and

clr speech. Remaining twenty-two sentences were used to set the noise level (SNR-50)

prior to the intelligibility experiments.
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1. The birch canoe slid on the smooth planks.

2. Glue the sheet to the dark blue background.

SNR-50 3. It’s easy to tell the depth of a well.

4. These days a chicken leg is a rare dish.

5. Rice is often served in round bowls.

6. The juice of lemons makes fine punch.

7. The box was thrown beside the parked truck.

8. The hogs were fed chopped corn and garbage.

9. Four hours of steady work faced us.

10. A large size in stockings is hard to sell.

11. The boy was there when the sun rose.

12. A rod is used to catch pink salmon.

13. The source of the huge river is the clear spring.

14. Kick the ball straight and follow through.

SNR-50 15. Help the woman get back to her feet.

16. A pot of tea helps to pass the evening.

SNR-50 17. Smoky fires lack flame and heat.

18. The soft cushion broke the man’s fall.

19. The salt breeze came across from the sea.

SNR-50 20. The girl at the booth sold fifty bonds.

21. The small pup gnawed a hole in the sock.

22. The fish twisted and turned on the bent hook.

23. Press the pants and sew a button on the vest.

24. The swan dive was far short of perfect.

25. The beauty of the view stunned the young boy.

26. Two blue fish swam in the tank.

27. Her purse was full of useless trash.

28. The colt reared and threw the tall rider.

29. It snowed, rained, and hailed the same morning.

30. Read verse out loud for pleasure.

31. Hoist the load to your left shoulder.

32. Take the winding path to reach the lake.

33. Note closely the size of the gas tank.

34. Wipe the grease off his dirty face.

35. Mend the coat before you go out.



BIBLIOGRAPHY 158

SNR-50 36. The wrist was badly strained and hung limp.

37. The stray cat gave birth to kittens.

SNR-50 38. The young girl gave no clear response.

39. The meal was cooked before the bell rang.

40. What joy there is in living.

41. A king ruled the state in the early days.

42. The ship was torn apart on the sharp reef.

43. Sickness kept him home the third week.

SNR-50 44. The wide road shimmered in the hot sun.

45. The lazy cow lay in the cool grass.

46. Lift the square stone over the fence.

47. The rope will bind the seven books at once.

48. Hop over the fence and plunge in.

49. The friendly gang left the drug store.

50. Mesh wire keeps chicks inside.

51. The frosty air passed through the coat.

52. The crooked maze failed to fool the mouse.

53. Adding fast leads to wrong sums.

SNR-50 54. The show was a flop from the very start.

SNR-50 55. A saw is a tool used for making boards.

SNR-50 56. The wagon moved on well oiled wheels.

SNR-50 57. March the soldiers past the next hill.

SNR-50 58. A cup of sugar makes sweet fudge.

59. Place a rosebush near the porch steps.

SNR-50 60. Both lost their lives in the raging storm.

SNR-50 61. We talked of the side show in the circus.

SNR-50 62. Use a pencil to write the first draft.

SNR-50 63. He ran half way to the hardware store.

SNR-50 64. The clock struck to mark the third period.

SNR-50 65. A small creek cut across the field.

SNR-50 66. Cars and buses stalled in snow drifts.

67. The set of china hit the floor with a crash.

SNR-50 68. This is a grand season for hikes on the road.

SNR-50 69. The dune rose from the edge of the water.

SNR-50 70. Those words were the cue for the actor to leave.
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Phonetic feature
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Table B.1: Phonetic feature values.
Phoneme voicing manner place height

/i:/ 1.0 2.0 4.0 4.0
/I/ 1.0 2.0 4.0 3.0
/E/ 1.0 2.0 4.0 2.0
/@/ 1.0 2.0 4.0 1.0
/I/ 1.0 2.0 5.0 3.0
/@/ 1.0 2.0 5.0 2.0
/@
�
/ 2.0 2.0 5.0 2.0

/u/ 1.0 2.0 6.0 4.0
/0/ 1.0 2.0 5.0 4.0
/U/ 1.0 2.0 6.0 3.0
/2/ 1.0 2.0 5.2 2.0
/O/ 1.0 2.0 6.0 0.5
/A/ 1.0 2.0 6.0 1.0
/Ç/ 1.0 3.0 5.0 2.0
/Ä/ 1.0 2.5 5.5 2.0
/ei/ 1.0 1.0 4.0 2.5
/aI/ 1.0 0.0 5.0 2.5
/Oi/ 1.0 0.0 5.0 2.0
/iU/ 1.0 0.0 5.0 3.5
/aU/ 1.0 1.0 6.0 2.5
/oU/ 1.0 2.0 6.0 2.0
/p/ 4.0 7.0 1.0 7.0
/t/ 4.0 7.0 3.0 7.0
/k/ 4.0 7.0 8.0 7.0
/b/ 3.5 7.0 1.0 7.0
/d/ 3.5 7.0 3.0 7.0
/g/ 3.5 7.0 8.0 7.0
/Ù/ 4.0 6.5 3.5 6.0
/Ã/ 3.0 6.5 3.5 6.0
/m/ 1.0 4.0 1.0 7.0
/n/ 1.0 4.0 3.0 7.0
/N/ 1.0 4.0 8.0 7.0
/f/ 4.0 6.0 1.0 6.0
/T/ 4.0 6.0 2.0 6.0
/s/ 4.0 6.0 3.0 6.0
/S/ 4.0 6.0 4.0 6.0
/h/ 2.0 2.0 5.0 2.5
/h
�
/ 1.0 2.0 5.0 2.5

/v/ 3.0 6.0 1.0 6.0
/D/ 3.0 6.0 2.0 6.0
/z/ 3.0 6.0 3.0 6.0
/Z/ 3.0 6.0 4.0 6.0
/l/ 1.0 3.0 3.0 6.0
/õ/ 1.0 3.0 5.5 2.0
/j/ 1.0 3.0 4.0 4.0
/w/ 1.0 3.0 6.0 2.0
/l
"
/ 1.0 2.5 3.0 6.0

/m
"
/ 1.0 3.5 1.0 7.0

/n
"
/ 1.0 3.5 3.0 7.0

/Rt/ 2.5 7.0 3.0 7.0
/Rd/ 2.0 7.0 3.0 7.0
/Rn/ 2.0 4.0 3.0 7.0



Appendix C

Generic tables by Allen et. al.

Table C.1: Generic values (Hz) provided by Allen et al. [1]. F4 is given by F3+1000 (Hz).
Phoneme F1 F2 F3 F4

/i:/ 300 2045 2960 3960
/I/ 435 1700 2585 3585
/E/ 575 1605 2515 3515
/æ/ 635 1575 2450 3450
/u/ 335 1075 2200 3200
/U/ 475 1140 2370 3370
/2/ 620 1220 2550 3550
/A/ 700 1220 2600 3600
/ph/ 400 1100 2150 3150
/th/ 400 1600 2600 3600
/kh/ 300 1990 2850 3850
/b/ 200 1100 2150 3150
/d/ 200 1600 2600 3600
/g/ 200 1990 2850 3850
/Ù/ 350 1800 2820 3820
/Ã/ 260 1800 2820 3820
/m/ 480 1270 2130 3130
/n/ 480 1340 2470 3470
/N/ 480 1900 2800 3800
/f/ 340 1100 2080 3080
/T/ 320 1290 2540 3540
/s/ 320 1390 2530 3530
/S/ 300 1840 2750 3750
/h/ 500 1500 2500 3500
/v/ 220 1100 2080 3080
/D/ 270 1290 2540 3540
/z/ 240 1390 2530 3530
/l/ 310 1050 2880 3880
/õ/ 310 1060 1380 2380
/j/ 260 2070 3020 4020
/w/ 290 610 2150 3150
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CVC word list

Table D.1: List of 242 CVC words used in Chapters 6 and 7.
Word Word Word Word Word Word Word Word
shop leap fall lean loop van red moon
news bees tip juice use bar zoom dog
hug gas whose chief dash ten pop shook
room heat fun goose check far leak sick
bus loss shell log tar set lock seize
did feet pot rock dish reed leave gem
pitt rod suit tap coop lamb neck peas
ban was bed nun jam nut gym ham
chef leaf run rough ridge lid led sip
dip fat wig ram car mass mess cod
rim rich shock cheese tongue calm took will
mall ship kid cat loose badge hop long
had pen gang this rob wedge big job
mesh lap cot tube pub bean hiss wheel
seem thumb fool kin beef watch mom wash
bad kneel yell fuss teach rear thing lack
kiss well den jazz pack ring sit knit
fuzz bag which food hedge wed jean gun
thin gap lease teeth shoot move moose deep
pin duke youth book patch hit yam lick
dock hawk hot leg sob pitch duck back
yes deer roof tool lot good knob pet
sing such miss king lung bush gear ran
walk map vet seek have weep hen mad
that cab ball deal batch deck mud boss
yacht sad chalk beach sun could numb wish
cool top heel bun man mill young bomb
mob dot fan fell get jog team rush
zeal gel chip moss much judge geek meal
tooth seal piece deaf nag says hall wet
chat cop
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Appendix E

Mean estimated consonant target

Table E.1: Mean consonant target values described in Chapter 6 for both speakers.
Male speech Female speech Generic values

C1 target C2 target C1 target C2 target
Phoneme F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

/p/ 163 1283 434 1029 890 1709 476 1324 400 1100
/t/ 511 1994 416 1592 342 1730 379 2123 400 1600
/k/ 380 2281 358 1217 384 2588 269 2212 300 1990
/b/ 192 1082 151 954 153 1255 243 1271 200 1100
/d/ 322 1987 317 1686 352 2349 295 2245 200 1600
/g/ 204 2140 150 1274 263 2516 150 2030 200 1990
/Ù/ 205 1698 398 1612 423 1746 510 2371 350 1800
/Ã/ 345 1916 150 1643 330 2246 253 2136 260 1800
/m/ 458 1083 150 912 346 1333 337 1285 480 1270
/n/ 296 1881 185 1797 316 2320 315 2055 480 1340
/N/ – – 258 2524 – – 269 2646 480 1900
/f/ 415 1234 383 1385 385 1366 490 1692 340 1100
/T/ 158 1199 347 1638 274 2088 273 2072 320 1290
/s/ 362 1534 356 1514 364 1750 355 1843 320 1390
/S/ 343 1813 398 1482 350 1982 619 2322 300 1840
/h/ 583 1804 – – 745 2484 – – 500 1500
/v/ 150 1402 324 737 151 2620 166 1013 220 1100
/D/ 391 1098 – – 166 1737 – – 270 1290
/z/ 338 1763 316 1520 433 1948 306 1827 240 1390
/l/ 348 898 411 777 338 1183 474 938 310 1050
/õ/ 340 1025 440 1177 305 1060 447 1371 310 1060
/j/ 315 2337 – – 311 2615 – – 260 2070
/w/ 308 674 – – 266 608 – – 290 610
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