

Evaluation of open-source versus commercial
healthcare interoperability tools

By

Supachai Parchariyanon, MD, BBA

A CAPSTONE PROJECT

Presented to Department of Medical Informatics & Clinical Epidemiology

Oregon Health and Science University

School of Medicine

In partial fulfillment of

Requirements of the degree of

Master of Biomedical Informatics

July 2011

i

Table of Contents

Table of Contents i

Acknowledgements ii

Abstract iii

Introduction 1

Materials and Methods 6

Results 9

Discussion 14

Conclusion 16

References 17

Appendix A: Java CAPS Solution and Architecture 19

Appendix B: Screen Captures of the Experimental Phase 21

ii

Acknowledgements

I would like to thank my advisor, Dr. Judith Logan, for her assistance and enthusiasm. Her

feedback and experiences helped into what is now this project. I would also like to thank Diane

Doctor for her wonderful support of distance learning students and without whom this project

would not have been possible. Thank you also to Dr. William Hersh and the other faculty at

OHSU’s Department of Medical Informatics & Clinical Epidemiology for providing such an

excellent environment in which to learn. Thank you to Dr. Nawanan Theera-Ampornpunt who

introduced me to Medical Informatics. Lastly, thank you to Assoc.Prof. Artit Ungkanont, deputy

dean of information technology, faculty of medicine, Ramathibodi Hospital, Mahidol University,

Thailand for his vision to create healthcare IT academic workforce and provide full scholarship

for me to pursue informatics degree.

iii

Abstract

Interoperability is one of challenges in health informatics and there are many tools on the market

to help informaticians break down silos of information and integrate them for the benefit of

patient care. This paper aims to evaluate tools for healthcare interoperability, both open-source

(Mirth Connect) and commercial (JAVA CAPS – Oracle Corporation, CA) to point out the

benefits and risks including recommendations on how to get started if one would like to adopt

such tools. There are 2 phases of the evaluation. The first phase focuses on data gathering and

analysis and the second phase emphasizes an experimental study of the tools’ efficiency. The

result is that Mirth Connect is easier to learn and use while Java CAPS has more enterprise

features and functions. The author recommends Mirth Connect as a solution to implement

nationwide in developing countries.

1

Introduction

Interoperability is a property referring to the ability of diverse systems and organizations to work

together (inter-operate).1 When we apply the term to healthcare as “healthcare IT

interoperability”, it refers to the ability of health systems and organizations to work together.

Health systems can include patient registration systems, clinical management systems such as

electronic health records (EHR) and ancillary systems such as radiology information systems

(RIS) or laboratory information systems (LIS).

There are 2 kinds of interoperability, syntactic interoperability and semantic interoperability. In

short, syntax is structure and semantic is meaning.2 If we have two health systems and they are

able to communicate and exchange data, then they have syntactic interoperability. This is as

equivalent to having spelling and grammar rules. The Health Level Seven (HL7) Version 2.x

messaging standard, and Digital Imaging and Communications in Medicine (DICOM) are

examples of standards for syntactic interoperability.

Semantic interoperability is the ability to automatically interpret the information exchanged

meaningfully and accurately to produce useful results, as defined by the end users of both

systems.3 The Health Level Seven International (HL7) Version 3.x messaging standard is an

example of a standard for semantic interoperability.

When we can transfer data from one system to another, we start to see benefit from health

2

information systems. Information exchange is a key component in any health information system

and that is where standards come into picture. According to HL7, there are 6 categories of

standards4 as shown in Table 1.

Category Name Description Example of standard

Messaging and data
interchange Standards

For clinical and administrative
data interchange purposes

Health Level Seven (HL7),
Digital Imaging and
Communications in Medicine
(DICOM)

Terminology Standards To understand the same
clinical terminology in
different settings

Systematized Nomenclature of
Medicine (SNOMED),
Logical Observation
Identifiers Names and Codes
(LOINC), International
Statistical Classification of
Diseases and Related Health
Problems (ICD)

Document Standards For clinical document
interchange

SOAP (Subjective, Objective,
Assessment, Plan), Clinical
Document Architecture
(CDA), Continuity of Care
Record (CCR)

Conceptual Standards To define the framework HL7 Reference Information
Model (RIM)

Application Standards To define how clinical
applications interact to one
another

Single Sign-on

Architecture Standards To define the way
infrastructure such as database
communicate to one another

Public Health Information
networks of the U.S. Centers
for Diseases Control and
Prevention (CDC) and the
U.S. National Disease
Electronic Surveillance
System

Table 1 : Categories of standards4 (California Healthcare Foundation)

3

A number of tools are available to help organizations comply with healthcare standards. For this

project, I selected Mirth Connect as an open-source tool and Java CAPS as a commercial-grade

tool to demonstrate healthcare standards and evaluate interoperability. Before going forward, I

would like to give an overview of both tools and their standard use in this study.

Mirth Connect

Since its launch in 2006, the Mirth Connect interface engine has become the most widely

downloaded open source software for healthcare data integration6. Started as the Mirth Project

sponsored by Mirth Corporation, the contributor and user community now stands at over 8,000

registered users worldwide. As described in Mirth Corporation website

(http://www.mirthcorp.com) “Mirth Connect is an open source standards-based healthcare

integration engine. Mirth Connect facilitates the routing, filtering, and transformation of

messages between health information systems over a variety of protocols (like LLP, Database,

and FTP) with support for numerous standards (such as HL7, XML, and DICOM).”

There are 3 components in Mirth Connect. Mirth Connect Server performs message filtering,

transformation, and transmission and also serves as the back-end of Mirth Connect; Mirth

Connect Administrator connects to Mirth Connect Server and serves as a graphical user interface

(GUI) tool to monitor interface activity and browse the message store; Mirth Connect Server

Manager serves as a GUI tool to manage the Mirth Connect service, displays log files, and

contains other configuration settings for the Mirth Connect Server.

4

Java CAPS

Java CAPS is a standards-based extensible software suite developed by Sun Microsystems7

which was acquired by Oracle Corporation on January 27, 2010. As a result, Java CAPS is now

an Oracle Product.

As described by Czapski8, “Java CAPS stands for Java Composite Application Platform Suite, is

a toolbox that supports many Enterprise Application Integration (EAI) styles, including database

sharing, backbone messaging infrastructure both event-driven and service-oriented architectures

and message transformation and routing can be implemented with support for numerous

standards (such as HL7, TCP/IP, etc.)”

There are 4 principal components of Java CAPS. The Logical Host is in charge of hosting the

applications deployed in it; this is where an instance of the Sun Enterprise Service Bus runs. The

Repository is a version control system for all projects, and enables users to access and modify

files when needed. The Enterprise Designer is a tool to create business processes, collaborations

and connectivity maps to manage its inputs/outputs and the message flow based on business

process execution language (BPEL). Finally, the Enterprise Manager is a web portal to monitor

information flow through BPEL diagrams generated by Enterprise Designer. It also includes

server logs, activities details and business processes parameters. More information about Java

CAPS solution and architecture can be found in Appendix A.

5

My first experience with Mirth Connect amazed me. It helped me transfer a file from one folder

to another server within a few seconds and with an easy to use GUI. Users can do the same with

little effort and training. My experience with Java CAPS, on the other hand, was challenging as I

had to be trained before I could understand the application and be able to use its tools effectively

and efficiently; this is not a “plug and play” application.

The ISO/IEC 9126 international standard

ISO/IEC 9126 International Standard for software product quality is a widely accepted reference

for terminology regarding the multi-faceted concept of software product quality9. There are 6

characteristics or dimensions namely, functionality, reliability, usability, efficiency,

maintainablilty and portability. As outlined in the standard10, functionality is a set of functions

and their specified properties; reliability is a capability of software to maintain level of

performance under stated conditions for a stated period of time; usability is the effort needed for

use, and on individual assessment of such use, by a stated or implied set of users; maintainability

is the effort needed to make specified modifications, and portability is an ability of software to

be transferred from one environment to another.

The aim of this capstone project is to evaluate Mirth Connect as an open-source tool for

healthcare interoperability and compare it with Java CAPS as a commercial tool based on The

ISO/IEC 9126 international standard; in addition, this project will point out risks, benefits and

investment needed if one would like to adopt such tools as healthcare integration engines.

6

Materials and Methods

In order to demonstrate both Mirth Connect and Java CAPS based on ISO/IEC 9126

international standard, the study was conducted in 2 phases, a data gathering and analysis phase

and an experimental phase. Extensive review of books, articles and journals related to both tools

was done in data gathering and analysis phase in addition to a self-study of a series of free

webinars provided by Mirth Corporation (http://www.mirthcorp.com/webinars/mirth-connect-

webinar) and 5-day, extensive training from x-tension (http://www.x-tention.at), a certified and

experienced Java CAPS implementor. The aim of this phase was to summarize 5 out of 6

dimensions of analysis: functionality, reliability, usability, maintainablilty and portability.

The standard provides a framework for organization to define a quality model for a software

application but does not include attributes as they vary between different software products. I

selected some of sub-characteristics of software from the standard that can be applied to

healthcare integration engines in order to summarize these dimensions and analysis (Figure1).

Figure 1 : Dimension and sub-characteristics for healthcare integration engine

Quality Evaluation for
Healthcare Integration

Engine Software

1. Functionality

1.1 Interoperability
1.2 Security

2. Reliability

2.1 Recoverability

3. Usability

3.1 Understandability
3.2 Learnability
3.3 Operability

4. Efficiency

4.1 Time
behavior
4.2 Resource
Utilization

5.
Maintainability

5.1
Changeabllity

6. Portability

6.1 Installability

7

For the experimental phase, focusing on the efficiency dimension, a simple experiment was

performed, based on the current load of the system and expected growth rate in the future. I

configured an environment using Virtual Machine, VMWare (http://www.vmware.com) with the

Intel® Xeon® CPU, X5670 2.93GHz, Harddisk 1 TB, Memory 3.81 GB and Microsoft

Windows Server 2003, R2 Enterprise edition, service pack 2, and installed Mirth Connect and

Java CAPS on this virtual machine. I then generated text files containing HL7 messages as

inbound messages to Mirth Connect and Java CAPS one system at a time and configured both

systems to have the same outbound interface path in the same virtual machine.

The setting was a laboratory information system (LIS) which is the source system and the

electronic medical record (EMR) which is the target system at the Faculty of Medicine,

Ramathibodi hospital, Mahidol University, Thailand. Text files were generated in 2 rounds

manually from the source system, the first round having 5,000 messages which is equal to 5,000

laboratory results and represents the average laboratory results volume per day at our institution;

the second round had 20,000 messages to represent an estimated 4-fold rising of laboratory

results volume in the next 4 years. After text files were generated, I recorded how long Mirth

Connect and Java CAPS took to complete routing of messages from the source system to the

target system and also monitored them via JConsole11which is out-of-the-box, Java monitoring

and management console that allows administrators to monitor the usage of various resources at

runtime.

As described by Chung12, the used memory and committed memory are the amount of memory

currently used and the amount of memory guaranteed to be available for use by the Java Virtual

8

Machine. My assumption is that less used memory and committed memory during runtime

means more efficiency of the tools. This also helps determine scalability and flexibility if the

concurrent load is higher in the future.

9

Results

Functionality. The results of the data gathering and analysis phase begins with the functionality

dimension which is comprised of the attributes interoperability and security. Both Mirth Connect

and Java CAPS have the same basic functionalities to cover healthcare data exchange. They both

support Transmission Control Protocol/Internet Protocol (TCP/IP), File Transfer Protocol (FTP),

HyperText Transfer Protocol (HTTP), File Directory, etc. One feature that Java CAPS can

handle better than Mirth Connect is message validation. Mirth Connect only sends messages

from source system to destination system as they are, without message validation, while Java

CAPS has a feature to validate the format of message and drop poorly formatted messages out of

the process.

In term of interoperability, Java CAPS empowers users with flexibility to manipulate the

messages via Enterprise Designer13 while Mirth Connect out-of-the-box features limit that the

messages received must be in a correct syntax to be processed.

In terms of security, both have user authentication by username and password but Java CAPS has

a role-based user management feature where an administrator can assign the right to access some

features based on the role of the users.

Reliability. For the reliability dimension, I focused on recoverability. For Java CAPS, as it

breaks down all message channels into services, if one service is not available, the other services

are not affected e.g. if laboratory results data is sent from a LIS to an electronic medical record

10

and a separate clinical research repository system via Java CAPS, there are 3 services running in

this scenario, one service is for the LIS to Java CAPS and another 2 services are running for Java

CAPS to the electronic medical record and to the clinical research repository system. If the

clinical research repository system is not functioning, laboratory results data will still be

available to the electronic medical record. Mirth Connect uses the same concept but in a

different way, e.g., Mirth Connect specifies one service from the source to destination as one

channel, so if we use the same scenario as above, there are only 2 services, the LIS to the

electronic medical record and the LIS to the clinical research repository system. It is meaningful

that if the LIS is down, the messages queued in Java CAPS are still able to proceed since the

other 2 services are available; on the contrary, the messages queued in Mirth Connect cannot be

processed as the 2 services which connect to the LIS are also down.

Usability. For the usability dimension, Mirth Connect’s functionality can be managed via GUI

tools which are the Dashboard (a bird-eye-view of all channels and message statuses), Channel

management (a specific view for each channel, to enable and disable channels), and Message

tasks (tools for sending, importing, removing and reprocessing messages.) Java CAPS’s

functionality can be managed via GUI tools which are the Enterprise Designer (a tool to create

business processes and connectivity maps), the Enterprise Manager (a tool to monitor

information flow) and Watch Beyond (a tool to monitor messages and services statuses). I

defined usability as an ability to understand, learn and operate the tools, and for Mirth Connect, I

can understand its concept very easily, was able to learn how to use it from webinars, and

required minimal support from Mirth Corporation's support forum14. Java CAPS, on the other

11

hand, is a more complicated application, such that I needed a book and more extensive training

to understand its features and functions and could only operate it with third party support.

Maintainability. For the maintainability dimension, I focused on the attribute changeability.

Both Mirth Connect and Java CAPS allow users to do some programming to better validate and

Dimension Mirth Connect Java CAPS

Functionality
Interoperability Supports HL7 Version 2 &

Version 3, National Council
for Prescription Drug
Programs (NCPDP),
American National Standards
Institute ASC X12/EDI, XML,
DICOM, Delimited text

Same as Mirth Connect

Security Username and password
authentication

Role-based username and
password authentication

Reliability
Recoverability Low High

Usability
Understandability Easy Complicate

Learnability High Low

Operability Easy Complicate

Maintainablilty
Changeability Easy with GUI but has no

library to support developer, if
one needs to program
something which is not a
standard feature, one needs to
do it from scratch

Easy with GUI and has its
own library to import to help
developer to program it faster

Portability
Installability Yes Yes with option to manage

multiple domains

TABLE 2 : Dimensions Comparison between Mirth Connect and Java CAPS

12

manipulate messages; interestingly, for Mirth Connect, users need to program from scratch while

Java CAPS has its own library that users can import to allow faster development.

Portability. For the portability dimension, I focused on the attribute installability. Mirth

Connect has an installer which helps you install on any server or machine. Java CAPS needs to

be installed on specific servers as recommended by Oracle15

I have summarized and compared the dimensions of Mirth Connect and Java CAPS in Table 2.

Experimental Phase

Time behavior. Mirth Connect took 2 minutes and 6 seconds and 5 minutes and 28 seconds to

complete a transfer of 5,000 messages and 20,000 messages respectively. Java CAPS took 33

minutes and 26 seconds and 6 hours, 15 minutes and 15 seconds to complete a transfer of 5,000

messages and 20,000 messages respectively. The result of the experimental phase of evaluation

which shows the efficiency dimension of Mirth Connect and Java CAPS is in Table 3. In

addition, screen captures of these processes can be found in Appendix B.

Resource Utilization. Mirth Connect took 2,630 Kbytes as used memory and 5,056 Kbytes as

committed memory to complete a transfer of 5,000 messages and took 2,834 Kbytes as used

memory and 5,056 Kbytes as committed memory to complete a transfer of 20,000 messages.

Java CAPS took 415,092 Kbytes as used memory and 1,015,808 Kbytes as committed memory

to complete a transfer of 5,000 messages and took 496,697 Kbytes as used memory and 667,120

Kbytes as committed memory to complete a transfer of 20,000 messages.

13

Measure Mirth Connect Java CAPS

Time Behavior
To complete 5,000 messages
transfer from LIS to EMR

2 minutes and 6 seconds 33 minutes and 26 seconds

To complete 20,000 messages
transfer from LIS to EMR

5 minutes and 28 seconds 6 hours, 15 minutes
 and 15 seconds

Resource Utilization
5,000 messages :
Used memory

2,630 Kbytes 415,092 Kbytes

5,000 messages :
Committed memory

5,056 Kbytes 1,015,808 Kbytes

20,000 messages :
Used memory

2,834 Kbytes 496,697 Kbytes

20,000 messages :
Committed memory

5,056 Kbytes 667,120 Kbytes

Table 3 : Efficiency Comparison between Mirth Connect and Java CAPS

For the initial investment, Mirth Connect is free, even though you might need a training to help

you gain familiarity with its functionality faster. On the other hand, Java CAPS license will cost

you $US 43,000 and with an annual fee of $US 8,500.

14

Discussion

From the results, we can see that Mirth Connect and Java CAPS share common functionalities

and interoperability but there are 3 points worth discussing here.

1. Mirth Connect has a very limited monitoring tool. Concerning a big hospital with over

20,000 messages a day, a monitoring tool which includes email alerts would be very helpful

to the administrator of the system; Java CAPS has such a feature while Mirth Connect does

not.

2. Java CAPS efficiency, resource utilization and scalability need to be well analyzed prior to

implementation. The reasons why Java CAPS took a longer time to process a message

compared to Mirth Connect is because of its architecture. It needs to communicate with other

modules before sending out a message while Mirth Connect is just a store-and-forward

application. Therefore, Java CAPS needs bigger and better hardware and it comes with

ability to manipulate messages better.

3. Java CAPS cost and long term investment. The biggest part of the story is the investment

cost, while Mirth Connect you might be able to set up, run and maintain by your own team,

for Java CAPS you would need an expert to help you from start. Apart from the initial

investment for the software, also consider the cost of service which is usually not less than

the cost of the software itself.

This study has some limitations. First, it was not intended to evaluate a comprehensive list of

studies that measured quality model of a software or software evaluation framework, particularly

15

because such a list would be prohibitively long. Since the goal was never to comprehensively

describe the evaluation framework used by all studies on software evaluation, but instead to

describe the real experience so that insights could be gained that would lead to well-informed

conduct of future studies, I feel that this study has accomplished its goal.

Another limitation is time limitation, as Java CAPS can take years to understand all features and

functions, this study may not covered everything in Java CAPS but the fundamental knowledge

and real experience were described in this study.

There are many possible future studies concerning healthcare integration engine include but not

limited to adoption of healthcare integration engine, cost and benefit study, and outcome study of

healthcare integration engine implementation.

16

Conclusion

I would recommend Mirth Connect as an healthcare interoperability tool of choice for Thailand

for a countrywide implementation concerning the cost of investment and I encourage to set up

the global communities for Mirth Connect to share problems and solutions, tips and techniques

for implementation and community itself is able to help one another by developing a better

monitoring tool to make Mirth Connect even better.

17

Reference

(1) Wikipedia. Interoperability. 2010; Available at: http://en.wikipedia.org/wiki/interoperability.
Accessed Nov 18, 2010.

(2) Mead CN. Data Interchange Standards in Healthcare IT—Computable Semantic
Interoperability: Now Possible but Still Difficult, Do We Really Need a Better Mousetrap?
J Healthc Inf Manag;20(1):71.

(3) HL7 E-LEARNING COURSE, HL7 Argentina. Introduction to Healthcare Interoperability.
2010.

(4) California Healthcare Foundation, Clinical Data Standards Explained 2004 Available at:
http://www.iha.org/pdfs_documents/calinx/FactSheetClinicalDataStandardsExplained.pdf.
Accessed Sep 2, 2011.

(5) Wikipedia. Semantic Interoperability. 2010; Available at:
http://en.wikipedia.org/wiki/Semantic_interoperability. Accessed Nov 18, 2010.

(6) The Mirth Story. 2011; Available at http://www.mirthcorp.com/company/the-mirth-story.
Accessed Aug 21, 2011

(7) Java CAPS. 2011; Available at: http://en.wikipedia.org/wiki/Java_Caps. Accessed Aug 21,
2011

(8) Java CAPS Basic. Implementing common EAI Patterns; Czapski M, Krueger S, Walker A,
Prentice Hall; 2008

(9) International Organization for Standardization. ISO/IEC 9126-1: Software engineering -
product quality - part 1: Quality model, 2001.

(10) Correia, J.P.; Kanellopoulos, Y.; Visser, J.; , "A survey-based study of the mapping of
system properties to ISO/IEC 9126 maintainability characteristics," Software Maintenance,
2009. ICSM 2009. IEEE International Conference on , vol., no., pp.61-70, 20-26 Sept. 2009

(11) Chung M.; Monitoring and Managing Java SE 6 Platform Applications; Available at
http://java.sun.com/developer/technicalArticles/J2SE/monitoring. Accessed on Aug 21, 2011

(12) Chung M.; Using JConsole to Monitor Applications; Available at
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html. Accessed on Aug 21, 2011

(13) Java CAPS Basic. Implementing common EAI Patterns; Czapski M, Krueger S, Walker A,
Prentice Hall; 2008., pp.203

18

(14) Mirth Connect Forums; Available at
http://www.mirthcorp.com/community/forums/forumdisplay.php?f=3. Accessed on Aug 21,
2011

(15) Planning for Java CAPS installation; Available at
http://download.oracle.com/docs/cd/E19509-01/820-3741/jcapsinstall_intro/index.html.
Accessed on Aug 21, 2011

19

Appendix A : Java CAPS Solution and Architecture

Java CAPS Architecture

Figure 1 : Java CAPS Solution Context

Source : Java CAPS Basic; Implementing common EAI Patterns; Czapski M, Krueger S, Walker
A, Prentice Hall; 2008

20

Figure 2 : Java CAPS Architecture

Source : Java CAPS Basic; Implementing common EAI Patterns; Czapski M, Krueger S, Walker
A, Prentice Hall; 2008

21

Appendix B : Screen Captures of the Experimental Phase

Mirth Connect took 2 minutes and 6 seconds to process 5,000 messages

Figure 1&2 : Mirth Connect, Start time and End time

Figure 3&4 : JConsole of Mirth Connect

Mirth Connect took 5 minutes and 28 seconds to process 20,000 messages

22

Figure 5&6 : Mirth Connect, Start time and End time

Figure 7&8 : JConsole of Mirth Connect

23

Java CAPS took 33 minutes and 26 seconds to process 5,000 messages

Figure 9&10 : Java CAPS, Start time and End time

Figure 11&12 : JConsole of Java CAPS

24

Java CAPS took 6 hours, 15 minutes and 15 seconds to process 20,000 messages

Figure 13&14 : Java CAPS, Start time and End time

Figure 15&16 : JConsole of Java CAPS

