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Abstract  

Gene expression profiles and mass-spectrometry analysis of a plaque have revealed genes and 

proteins involved in an atherosclerotic plaque progression. Though differentially expressed 

genes in an atherosclerotic plaque progression have been identified previously, this is the first 

study that has combined gene expression data with proteins identified from different stages of 

plaque progression to identify pathways   and candidate genes affecting state of a plaque using 

a network approach.  We constructed an unstable plaque network with 59 genes of which 9 

were transcription factors, 10 genes were over expressed and 12 genes were under expressed. 

Of all genes and proteins found to be associated with a plaque progression, we further 

identified and prioritized candidate genes which could be potential biomarker or drug targets 

to prevent progression of a plaque. In this study we also show that just differential expression 

of genes does not identify genes which are associated with the disease state but not 

differentially expressed. 
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CHAPTER 1 – INTRODUCTION 

 

1.1 Systems biology 

 

A system is composed of several parts. A biological system is composed of genome, 

transcriptome and proteome. Understanding biological system as a whole in contrast to 

understanding just the parts is called systems biology (Kitano, 2002). Biological systems 

exhibit complex traits due to modifications of its components like positive and negative 

regulation, phosphorylation and acetylation, transcription and translational controls. In 

addition biological systems are robust, that is they are not affected by slight modifications in 

the system, in spite of the environmental or genetic pressures, they are under (Kitano, 2004). 

To get a comprehensive view of molecular events driving biological processes we need to 

understand systems dynamics, structure and key factors which drive the system.  

 

Using traditional bioinformatics like microarrays and mass spectrometry, numerous genes and 

proteins, which could be key drivers in a biological system causing disease were identified. 

Although the techniques revealed significant genes and proteins associated with a disease they 

do not reflect their relationships in a complex interacting system (T Ideker et al, 2001). With 

increase in quantitative high-throughput  biological tools and availability of databases like 

KEGG (Kanehisa & Goto, 2000), BIND(Bader et al., 2001), STRING(Szklarczyk et al, 2010) 

and HPRD (Peri et al, 2003) a   systems level integrating approach would reveal the 
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architecture  below a complex system, thereby providing insights into molecular mechanisms 

and  key drivers which in turn could be potential drug targets (Leroy Hood & Perlmutter, 

2004). 

 

A map in which the components of a system are represented as a node and the interactions or 

relations between them represented as edges is called a network.  Networks provide simple 

visual representations of complex biological system. According to Barabasi when a new node 

is added to a network it preferentially attaches to a node with high connections just as a new 

webpage is likely to have connections to a most popular websites. Hence networks exhibit a 

scale free topology following a power law P(k)~ck-� where P(K) is the fraction of node in the 

network with K connections, c is a constant and � parameter whose value ranges from 2 to 

3(Barabasi et al , 2000). Assembling genes and proteins into a scale free network is one of the 

systems approaches which allow us to identify key nodal points in a network.  

 

Scale free network exhibit central-lethality rule. According to central-lethality rule, in nature, 

essential proteins tend to be more connected than non essential proteins.  These proteins 

appear as hubs in a Protein-Protein Interaction (PPI) network. Additionally essential proteins 

are evolutionarily conserved and deletion of this essential protein is more lethal than a non-

essential protein.  Hence the essential proteins are of structural and functional importance.  

Also in a human interactome study it has been proven that proteins associated with human 

diseases are more interconnected than a non-disease protein (X. He & Jianzhi Zhang, 2006). 

Thus hub protein could serve as potential biomarkers for a disease. 
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1.2 Atherosclerosis 

 

Coronary heart disease accounts for 51% of deaths in United States according to statistics 

from National Centre for Health Statistics (NCHS) [Figure 1]. Statistics from NCHS also 

indicate that the prevalence rate of cardiovascular disease is around 80% among people of age 

60 to 80 [Figure 2]. Additionally American Heart Association (AHA) has predicted that the 

cost of treating cardiovascular disease will increase from $172 billion spent in 2010 to $276 

billion in 2030, 61% increase in treatment costs adding financial burden on American 

economy (Heidenreich et al, 2011). Among the cardiovascular disease, the biggest burden of 

disease lies in Myocardial infarction. Atherosclerosis is the leading cause of myocardial 

infarction or more commonly heart attack (Lusis, 2010).  

 

Atherosclerosis commonly referred to as hardening of the arteries is a condition affecting the 

arterial walls as a result of lipid deposition and chronic inflammation, which leads to 

formation of multiple plaques. An atherosclerotic plaque consists of a lipid core surrounded 

by connective tissue. Lipid core mainly composed of cholesterol, macrophage derived foam 

cells, cytokines and metalloproteinases. Connective tissue surrounding the lipid core is 

derived from smooth muscle cells.  American Heart Association has classified atherosclerotic 

plaques into six types based on histological observations (Stary et al, 1995).  Type I, II and III 

there is some amount of lipid deposition, endothelium remains intact. Type IV there is 

increase in lipid core and intimal disorganization. Type V is marked by formation of fibrous 

connective tissue around lipid core. Plaques with additional disruptions on the surface are 
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classified as type VI. Some cases calcium increases in fibrous connective tissues; such 

plaques are called calcific plaques.  Plaques can be further classified into two distinct types of 

plaque, stable and unstable plaque.  An unstable plaque is one in which a plaque ruptures 

causing blockage of coronary arteries leading to  myocardial infarction and stable plaque is a 

plaque which does not rupture. Type IV, V and VI can be considered unstable plaques. 

 

Atherosclerosis begins with accumulation of lipids, invasion of immune cells and conversion 

of smooth muscle cells into fibrous cells. Epidemiological and genetic studies have indicated 

several   environmental and genetic factors   affect atherosclerosis (Lusis, 2010). Hence 

atherosclerosis is a multifactorial disease; more effective strategies are required not only to 

prevent atherosclerosis, but also to avoid the complications arising from it.   

 

1.3 Pathology of unstable plaque 

 

An artery is composed of  endothelial cells , the middle Smooth Muscle Cells and external 

adventia. Inner most layers of endothelial cells are called intima. Atherosclerosis begins when 

Low Density Lipoproteins (LDL) and cholesterol begin to accumulate on the artery walls 

(Intima). The accumulated lipoproteins get oxidized and the modified lipoproteins incites a 

inflammatory response in the endothelial cells resulting in release of proteins like cytokines 

(Gargalovic et al, 2006). This enables cells of the immune system (macrophages, T-

lymphocytes, monocytes) to migrate through the endothelial cells and enter intima. The 

macrophage takes in the lipoprotein molecules and becomes foam cells which mark beginning 
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of plaque formation.  Smooth muscle cells migrate from middle layers towards the intima and 

secrete fibrous collagen which forms a fibrous cap and forming a ‘plaque’. The foam cells 

and immune cells within the plaque  activates an inflammatory response and release  enzymes 

which cause rupture of fibrous cap resulting in thrombus formation, which when severe 

causes myocardial infarction or heart attack. In some cases it is observed that the fibrous cap 

is thicker and the plaque is less vulnerable to rupture.  This type of unruptured plaques is 

called Stable Plaque and plaques that rupture are Unstable Plaque [Figure 3]. 

 

 According to pathophysiological understanding instability in plaque is due to inflammation, 

hypoxia (decreased oxygenation) and micro vessel formation (Sluimer & Daemen, 2009) . 

However the exact mechanism or biology of progression of stable plaque to unstable plaques 

is yet not well understood. Several attempts to this at genetic level have been done. Plaque 

biology has been dissected with traditional bioinformatics approaches like microarray and 

mass spectrometry. Transcription studies have revealed significant mRNAs that might be 

causing plaque instability (Sluimer et al, 2007).  Proteomic studies have attempted to identify 

proteins involved in transforming a stable plaque into an unstable plaque. (Lepedda et al, 

2009;Bagnato et al, 2007;Slevin et al, 2006).  For a comprehensive understanding of 

underlying molecular mechanism in progression of a plaque from stable to unstable state we 

integrate results from transcriptome and proteomic studies.  
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1.4   Integrative approach 

 

In the past integrative analysis of Protein Protein Interaction (PPI) network and gene 

expression has given insights into functional roles underlying a pathological condition. A 

example of this approach is a human heart failure study where in a global PPI of human heart 

failure was assembled and the relations to differentially expressed genes was analyzed, 

leading to insights into underlying mechanisms of heart failure and identification of drug 

targets (Camargo & Azuaje, 2007). Another similar approach was taken combining 

expression profiles of pancreatic cancer and proteins associated with pancreatic cancer to find 

biomarkers of pancreatic cancer (Harsha et al, 2009). The goal of this study is to use a similar 

approach of integrating PPI and Differentially Expressed (DE) genes to identify pathways and 

genes involved in progression of stable plaque to unstable plaque.  

 

We hypothesize in addition to significant differentially expressed genes there could be genes 

which are not differentially expressed but are functionally important, an example for this case 

is a transcription factor, though it controls gene expression it may not be identified in a 

differential expression study as they are present in low amounts within a cell. Differentially 

expressed gene could affect other gene expression or processes, a example for this case can be 

a gene differentially expressed activating other processes like inflammation but the genes 

involved in the process may not be differentially expressed [Figure 4]. In this study further 

investigation on the candidate genes in unstable areas of the plaque is done using network 
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approach to identify candidate gene associated with progression of a plaque but may not be 

differentially expressed. 

 

1.5 Transcription factors 

 

Biological information flow from DNA follows central dogma. Flow of information from 

DNA to RNA is called transcription.  Flow of information from RNA to proteins is called 

translation.  Transcription is a complex process involving RNA polymerase and other 

regulating factors called transcription factors.  Rate of transcription is controlled by sequence 

preceding a gene. This region is called promoter region. Promoter region contains Upstream 

Activation Sequence (UAS) or Upstream Repressing Sequence, based on binding of 

transcription factors to these sequences, transcription is activated or repressed. Hence 

transcription factors affect rate of transcription by binding specifically on a promoter (Lee & 

Young, 2000). 

 

 

In atherosclerotic plaque progression from stable to unstable state, ever stage can have 

characteristic gene expression profiles. Presences of transcription factor or combination of 

transcription factors present in plaques govern these expression profiles by stimulating 

multiple rounds of transcription of a gene or by repressing gene expression. Hence to 

understand molecular mechanism of transcription regulation in unstable plaque, identification 

of transcription factor binding sites or transcription factors present in unstable plaque is 

required. 
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1.6 Biomarker  

 

Technological advances are moving trend in medicine towards predictive, preventive and 

personalized medicine. To achieve this goal, indicators for abnormal state or a pathological 

condition has to be known. In medicine a Biomarker is considered as indicator for 

pathological condition, proteins whose expression are high in a pathological condition and can 

be measured quantitatively are used as biomarkers. Disease based biomarkers have been 

identified based on protein expression. Matrix metalloproteins and P53 proteins are examples 

of disease based biomarkers (Jezierska & Motyl, 2009;Gasparini et al, 2011). Their 

expression is found to be significant during early stages of breast-cancer, hence can serve as a 

biomarker. Though there has been significant success to the endeavor of finding disease 

related biomarkers through gene and protein expression measurements yet several challenges 

remains due to underlying complexity of the disease. Measuring genes and proteins separately 

does not characterize entire molecular mechanisms involved during progression of a disease. 

Moreover it is important to identify a disease specific potential biomarker, not all proteins 

associated with a disease serve as biomarker.   In this study we address this issue with respect 

to atherosclerotic plaque progression from stable to unstable state. We specifically integrate 

gene expression from stable versus unstable plaques and proteins from different stages of 

plaque progression to identify potential biomarkers indicating progression of a plaque.  
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CHAPTER 2 – METHODS 

 

2.1 Literature search for gene expression data 

 

Two databases of gene expression data, Gene Expression Omibus (GEO) and Array Express 

were searched for mRNA expression experiments on stable versus unstable athersclerotic 

plaque.  

Further selection of expression study was limited to those satisfying following criteria: 

1. Stable and unstable plaque used in th study should be from same patient. 

2. mRNA extaracted should be from all different cells of a plaque (endothelial cells, 

smooth muscle cells, macrpphages etc) 

These criteria avoids interpatient variability . 

 

 

Two gene expression studies were found satisfying above criteria. First gene expression data 

was got from supplementary tables of differential expression study of stable and unstable 

plaques, raw data for this study was unavailable (Papaspyridonos et al, 2006) .  Plaques in this 

study were classified by macroscopic observations by vascular surgeons. Plaque with intact 

fibrous cap was classified stable and those with ulcerated surface were classified unstable. 

This classification was further confirmed by histological analysis. Total of 11 plaques were 

used for RNA extraction, 4 of them were stable and 7 unstable. The plaques were obtained 

from 3 patients. RNA extracted was hybridized to Affymetrix array U133. Though 
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interplaque and intraplaque approach was used in this study, we used expression results from 

intraplaque analysis where in plaques from same patient was used.  

 

 

Second gene expression data  was got from array express , accession number E-MEXP-268 

(Ijäs et al, 2007). Plaques in this study were identified based on prior clinical symptoms. 

Patient who suffered ipsilateral stroke or ischemia were considered positive for presence of 

unstable plaque. From 4 positive patients both stable and unstable plaques were obtained for 

the study. These plaques were further subjected to histological examinations.  RNA from 

these plaques was hybridized to Affymetrix U95Av2 arrays.  

 

 CEL files obtained from array express was normalized using Affy Bioconductor package in 

R (Gentleman et al., 2004) . Normalization was done to adjust individual probe hybridizations 

so as to make biologically meaningful interpretations of the signal intensities.  Multest 

package was then used to perform paired t-test on normalized intensities of stable and 

unstable plaques; this was followed by False Discovery Rate (FDR) correction. Fold change 

of genes was calculated from ratio of mean of intensities from stable plaque to mean of 

intensities from unstable plaques and converted to log 2.  
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2.2  Protein Protein Interaction (PPI) Network 

 

Literature was searched to select studies which identified proteins present in stable and 

unstable plaque. Proteins identified from following studies were used as a seed for protein 

protein interaction network (PPI) : 

 

1. Proteins from 35 atherosclerotic plaques were extracted and subjected to mass 

spectrometry . The plaques were classified into three histological categories of early , 

intermediate and advanced. Total of 806 unique proteins were identified to be present 

in atherosclerotic plaque (Bagnato et al, 2007). 

 

2. Proteins were extracted from 5 stable and 12 unstable plaques of different patients and 

hybridized to glass protein mictoarrays having 512 antibodies to identify proteins 

which are differentially expressed . Protein expression showed 21 proteins were higly 

expressed in unstable plaque and 3 proteins were highly expressed in stable plaque 

(Slevin et al, 2006) 

 

3. Plaques from 48 patients were obtained , histologically they were classified as 19 

stable and 29 unstable plaques. Proteins extracted from plaques were subjectd to mass 

spectrometry. Proteins identified were further analyzed using western blot to compare 

expression between stable and unstable plaques. 9 proteins were found to be 

differentialy expressed (Lepedda et al, 2009). 
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4. Additionally 106 proteins associated with unstability of a plaque was identified from 

literature. 

 

 

Total of 984 proteins , after removal of duplicates, was used as a seed for PPI. Human Protein 

Reference Database (HPRD) was used as a source for PPI intially . PPI in HPRD based solely 

on experimental evidence, 41% from in vivo experiments, 33% from in vitro experiments 

24% from both in-vitro and in-vivo, 2% from yeast two hybrid experiments (Peri et al., 2003). 

PPI from in-vitro experiments could be false. For example  yeast two hybrid assay may 

indicate proteins A and B interact together and  proteins B and C interact together this does 

not imply that proteins A and C interact  . Moreover rate of false positive PPI from yest two 

hybrid assay has been estimated to be 70% (Deane, 2002). To consider A and C as true 

interactions more evidence supporting the interactions has to be incorporated which can be 

done using STRING (Szklarczyk et al, 2010). STRING  database include predicted protein 

interactions along with known PPI. It integrates information regarding a PPI from multiple 

sources such as geomic context, highthrouhput experiments, coexpression and literature .A 

confidence score is assigned to each PPI based on supporting evidences. This eliminates false 

interactions in the network resulting in high confidence network. So STIRNG was used as a 

source for PPI instead of  HPRD . 
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 STRING map’s proteins back to gene from which they were encoded . 984 proteins used as 

seed mapped to 523 genes. In the network the nodes represent gene . Edge joins interacting 

genes or genes whose proteins form a complex. The network is further extended to include 

proteins interacting with seed proteins by adding two neighbors to seed proteins. 

 

PPI network was visulized using Cytoscape (Shannon et al, 2003). Cytoscape is a open source 

software, serves as a tool for network visualization,  manipulation and integration of data .  

PPI was overlaid by expression of genes whose differential expression between stable and 

unstable plaques was significant. However two expression datasets were not combined as they 

are from different array’s and patients from whom plaques were obtained for gene expression 

analysis vary .  

 

 

2.3 Transcription factor binding site prediction 

 

Promoter region of significant Differentially Expressed (DE) genes from both gene expression 

datasets were examined for transcription factor binding sites. Transcription factor binding site 

were predicted using TRANSFAC, a database of eukaryotic transcription factors, target genes 

and binding sites (Matys, 2003).  TRANSFAC uses MATCH algorithm, which search the 

promoter region of a gene for transcription factor binding site based on position weight matrix 

(Kel, 2003). Promoter window of 1000 base pairs was examined to identify overrepresented 

transcription factor binding sites. A p-value cut-off of 0.05 and human housekeeping genes as 
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a background were used for transcription factor binding site prediction. Predicted 

transcription factors were then mapped to the PPI network. 

 

2.4 Topology of the unstable plaque network 

 

Integrating significant differential gene expression , PPI and transcription factors gave 

unstable plaque network . The nodes in the network were classified based on degree of 

connectivity. Highest degree of connectivity in the network was around 80; very few genes 

had such high connectivity [Figure 5]. To capture more unstable plaque associated hub genes 

any gene with greater than 50 neighbors was chosen as superhubs. Degree connectivity less 

than 20 was satisfied by 50 % of the network nodes, to keep criteria for hub gene stringent 

node with connectivity degree greater than 20 and less than 50 were chosen as hub.  

 

STRING assigns a combined confidence score to edges based on evidence from literature, 

genomic context, high throughput experiments and lab experiments.  Edges with a score of 

less than 0.7 were removed to obtain a network with moderate confidence. This was followed 

by two filtering steps: 

 

1. Nodes which are not differentially expressed or those which are not interacting with 

any of the differentially expressed genes were removed. Interactions with such nodes 

are present in the network because of their presence in STRING database and may not 

be associated with unstable plaques.   
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2. Sample size of first and second data set for gene expression was 3 and 4 respectively. 

Due to small sample sizes statically power would be low if we consider superhubs and 

hubs having differentially expressed neighbors from single dataset. Hence such 

superhubs and hubs were eliminated. 

 

Gene expression and proteins used as a seed for PPI are associated with unstable plaque, but 

PPI data from STRING are not plaque associated. Therefore the network was filtered to 

remove any node which is not differentially expressed or not connected to any of 

differentiallly expressed gene , interaction of such node exist in the network because they 

were present in STRING and not associated to plaque progression. 

 

 

2.5 Comparison of unstable plaque network to random  network  

 

Radom networks of unstable plaque network were generated by shuffling of edges between 

the nodes using random network plug-in of Cytoscape. This method of generating random 

networks is called a stub-rewiring approach where in maintaining degree of connectivity of 

nodes the edges are shuffled; in this process edges of nodes may vary and may not have 

degree as in original network which would indicate the nodes are noise and not true signals 

(Banks et al, 2008).  
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2.6 Gene ontology 

 

Superhub and hub genes of unstable plaque network were accessed for over representing gene 

ontology categories. Overrepresented biological processes involved in a plaque progression 

were identified by hypergeometric test between annotations of superhubs and hub genes in 

network versus whole human genome annotation followed by FDR correction.  

 

2.7 Mapping to pathways 

 

Genes in unstable plaque PPI network were mapped on to cellular signaling pathways to 

identify pathways involved in conversion of a stable plaque to unstable plaque. DAVID, was 

used for mapping genes to pathways. DAVID is a bioinformatics tool released in 2003; it is 

aimed at extracting biological annotations from a list of genes. Functional analysis in DAVID 

is influenced by quality of gene list used. Our gene list was ‘good’ gene list satisfying 

following characteristics as suggested by DAVID (Huang et al, 2009) : 

 

1. Gene lists contains important genes involved in processes such as chemokine 

production, angiogenesis, response to wounding, inflammation, foam cell 

differentiation and adhesion. Hence is disease specific.  

 

2. Genes pass significant statistical thresholds (fold change > 2, p-value < 0.05). 
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3. Up-regulated and down-regulated genes involved in disease associated biological 

processes rather than being spread across all other biological processes. 
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CHAPTER 3 – RESULTS 

 

3.1 Literature search for gene expression data 

 

Two studies satisfied our criteria of gene expression, first criteria being gene expression must 

be from stable vs unstable plaque, second criteria being gene expression study should include 

mRNA from all cells present in a plaque . 

 

First study chosen for gene expression data was from Papaspyridonos et.al (Papaspyridonos et 

al, 2006).  The results from their intraplaque analysis indicated 168 genes to be differentially 

expressed, of these 93 were down regulated and 75 up regulated. Fold change of 168 (2 

duplicates removed) differentially expressed genes was greater than 2 fold.  As raw data was 

unavailable, scale of fold change and FDR correction was not known.  However differential 

expression of genes was further confirmed by Sybr Green assays. 

 

 Second study chosen for gene expression data was from Ijas et.al (Ijäs et al, 2007).  Of 12,625 genes 

28 genes had fold change greater than one on a scale of log 2. To capture more significant 

genes, FDR correction of 0.05 was used as criteria for choosing significant genes, which 

resulted in 175 significant genes, of these 99 were down regulated and 76 up regulated. 

 

Of all significant genes from two datasets, overlap of 3 genes was found between them.  

MAP1B, MAGED2, PKD2 are the significant differentially expressed genes found in both 
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datasets [Figure 6]. Though only 3 genes overlap, gene ontology reveals 24 common 

biological processes between two datasets [Figure 6]. Increase in overlap of biological 

processes is expected as the two datasets represent same pathological condition of plaque 

instability.  

 

 

3.2 Protein Protein Interaction network 

 

Mass spectrometry and protein microarray analysis of protein extract from atherosclerotic 

plaques have revealed  824 unique proteins   involved in atherosclerosis (Bagnato et al, 

2007;Lepedda et al, 2009;Slevin et.al,2006).  In addition to these proteins , 160 proteins 

associated with atherosclerotic plaques were identified from literature. A initial unstable 

plaque PPI  network was assembled using these  984  proteins as input to STRING.  The 984 

proteins were mapped to 523 genes and 5384 interactions. The network was extended by 

adding one neighbor  to include proteins interacting with seed proteins. This resulted in PPI 

network with   526 nodes and  5503 edges. Adding two neighbors resulted in network of 539 

nodes and 5810 interactions.  

 

 

Edges have a confidence scores assigned by STRING. Scores ranges between and 0.4 to 1 . 

The network was filtered to remove edges below the score of 0.7 to obtain a network with 

moderate confidence. After filtering step the final network has 483 nodes and 3373 edges.  
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3.3 Transcription factors 

Transcription factor binding sites were predicted 1000 base pairs upstream of significant 

differentially expressed genes from both datasets. A total of 272 transcription factors were 

predicted using TRANSFAC. Of the 272 transcription factors, 11 transcription factors 

mapped to PPI network. After filtration steps 9 transcription factors remained in final unstable 

plaque network. Of them two transcription factors STAT1 and HIF1A were hubs. Other 

transcription factors were PPARA, REST, TAL1, HMGA1, PDX1, NR1H2 and NR1H3. 

EP300 and TP53 are transcription factors which were eliminated in final unstable plaque 

network. 

 

3.4 Unstable plaque network 

 

Integration of   significant gene expression from both datasets, PPI network and transcription 

factors yielded an unstable plaque network. PPI network of proteins found in plaques served 

as a backbone structure, significant differential gene expression from both the datasets was 

overlaid on this PPI. Topological examination revealed 16 superhubs and 111 hubs. Network   

filtration to remove nodes which are not differentially expressed or those which are not 

interacting with any of the differentially expressed genes and elimination of superhubs and 

hubs which had differential expression genes as neighbor from one dataset only, gave final 

unstable plaque network. The final unstable plaque network had the following metrics: 

• Superhubs : 12 

 Down regulated : 1  
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• Hubs : 20 

 Upregulated : 2 

 Downregulated : 2 

 Transcription factors : 2 

• Downregulated genes : 9 

• Upregulated genes : 8 

• Transcription factors : 7 

 

 

3.5 Unstable plaque network versus random network 

 

 

As a check for false positives , unstable plaque network was compared to random networks by 

a stub-rewiring approach. A node whose degree of connectivity modified from its original 

connectivity would indicate noise. In our unstable plaque network all of the nodes had the 

degree preserved in all 1000 random network generated. Each random network was generated 

with 1000 shuffling of edges for each node [Table 5]. Since the degree of connectivity of 

nodes was preserved we can say there was no noise in network in terms of topology .This is 

reflected by the 0 standard deviation in topological measure of node degree across original 

network and random networks.  However there is deviation of 0.005 in cluster coefficient 

indicating variation in neighbors of nodes in random networks. 
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3.6 Annotation of superhub and hub genes 

Final 12 superhubs and 20 hubs were further validated for their roles in progression of a 

plaque based on their annotations. Functional annotations indicate that hub and superhub 

genes are involved in regulation of angiogenesis, chemokine production and foam cell 

differentiation [Table 6]. All the processes which would be expected to take place during 

progression of a plaque. 

 

3.7Mapping to pathways  

 

To obtain comprehensive view of biological processes involved in conversion of a stable 

plaque to unstable plaque, hub and superhub genes were mapped to cellular signaling 

pathways using DAVID.  Pathways mapped were: 

1. Focal adhesion  

2. Cytokine-cytokine receptor interaction 

3. Sustained angiogenesis 

4. Apoptosis 

5. VEGF signaling pathway 

Cellular signaling pathways are not isolated; they are interconnected forming a network of 

interaction. An external stimulus from oxidized lipids and hypoxia can trigger the activation 

of the interconnected pathways. 
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CHAPTER 4 – DISCUSSION 

 

4.1 Gene expression profiles and protein concentrations  

Despite limitations in our knowledge of dynamic biological functions affecting state of a 

plaque, integrating genes with PPI reveals underlying interconnectivity of the perturbed 

molecular network during a plaque progression.  

 

Gene expression profiles of atherosclerotic plaques have revealed significant DE genes in an 

atherosclerotic plaque (Martinet, 2002; McCaffrey et al, 2000; Peri et al, 2003). However 

gene expression and protein concentrations are not correlated because of variation in gene 

copy number; post translational modifications and variation in splicing events. This is further 

reflected in poor mapping of gene expression profiles on to PPI network. Of 178 significant 

DE genes from Ijas et.al dataset only 7 genes mapped to PPI network. Of 168 significant DE 

genes from Papaspyridonos et.al  22 genes mapped to PPI network.  Hence instead of 

correlating gene expression and protein concentrations we scaffold   gene expression profiles 

with PPI network to identify   genes involved in a plaque progression. Network is further 

extended by adding genes interacting with seed genes.  This approach has revealed EGF and 

HSPD1 novel genes which are not part of our seed list. 

 

EGF was novel superhub not included in our seed list. As a response to inflammation 

monocytes begin to infiltrate into plaques and transforms into macrophage.  EGF receptors 
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are found to be present on surface of the monocytes and macrophages which can be used as 

indicator of plaque progression. Presence of  EGF in atherosclerotic plaques has been 

confirmed by macrophage co-localization staining (Lamb et al, 2004).  

 

Pub med search indicates 110 citations indicating role of HSPD1, the heat shock proteins in 

atherosclerosis. Recent review on heat shock proteins indicated their role in immunogenic and 

protective response to stress induced in atherosclerosis.  Hence it could be a potential drug 

target (LU & KAKKAR, 2010).  

 

4.2 Topology 

 

Topology of the network indicates not all hub and superhub genes are significantly 

differentially expressed. Therefore this confirms our hypothesis; solely relying only on DE 

genes data would mean loss of information.  

 

Unstable plaque network has hub and superhub genes having DE genes as neighbors from 

both dataset. Superhub and hub gene with DE genes from single gene expression dataset were 

eliminated since sample size of gene expression datasets were small, affecting statistical 

power.  



25 
 

 HMOX1 and SOD2 are highly expressed in plaque to overcome oxidative stress. While 

CCL5, CASP3  and  EGFR are superhub and hub genes downregulated in unstable plaque PPI 

network.  

 

4.3 Odds of data 

 

Examination of overlap between significant DE genes showed only 3 genes overlap between 

two gene expression datasets. Such low overlap could be because of   : 

 

1. Plaques used for gene expression analysis were obtained from different sets of 

patients.  

 

2. Different methods were used for plaque classification as stable or unstable. 

 
 

3. Two gene expression datasets could be reflecting different mechanisms involved in a 

plaque progression.  

 

4. In addition to proteins identified to be present different stages of plaque progression 

from mass spectrometry and protein microarrays, 160 proteins included in our seed list 

was from literature. These 160 were based on clinical perspective, hence may not be 

comprehensive.  
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4.4 Gene ontology of superhub and hub genes 

Biological activity of superhub and hub genes in affecting state of a plaque was confirmed by 

their functional roles. Angiogenesis, secretion of chemokines and foam cell differentiation,   

specific functions which promote plaque vulnerability were considered as most important. 

These are in line with histomorphological features identified by Shah et.al. (Shah, 2003) 

According to Shah et.al increase neovascularity (angiogenesis), inflammatory cell infiltration 

(mediated by cytokines ) and high lipid content dispositions a stable plaque to unstable plaque  

by increasing vulnerability and leading to rupture. The study by Sluimer et.al and Mause et.al 

(Sluimer et.al, 2010;Mause & Weber, 2009) has shown that angiogenesis alone can increase 

vulnerability of a plaque by providing way for entry of leukocytes and erythrocytes. We can 

say this study confirmed  pathophysiological mechanism of unstable plaque as predicted by 

Shah et.al . 

 

4.5 Mapping of superhub and hub genes to Pathways  

Superhub and hub genes mapped to the following pathways: 

i. Focal adhesion  

 

Focal adhesion refers to recruitment of proteins serving as adhesion molecules. Lipid 

deposition and oxidation on the endothelium causes inflammatory response triggering 

adhesion cascade. Adhesion molecules like ICAM1 and VCAM present on the surface of 

endothelial cells interact with monocytes and T-lymphocytes enabling them to enter the 
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plaque through junctions of endothelium cells (Watanabe & Fan, 1998). Increased amount of 

soluble  ICAM1 were detected in plasma of subjects suffering from atherosclerosis indicating 

ICAM1 could serve as a biomarker for atherosclerosis (S.-J. Hwang et al, 1997).  IL8, BCL2, 

IL1B, COL1A1, TGFB1, THBS1, TGFB1, IFNG, SERPINE1 are other focal adhesion 

molecules identified in this study which are associated with plaque progression. 

 

ii. Cytokines 

Activated macrophages and lymphocytes within a plaque secrete cytokines. Role of cytokines 

in an atherosclerotic plaque has been studied since 1980. Cytokines play a regulatory role. 

They regulate apoptosis, angiogenesis, permeability of endothelial cells, activation of 

adhesion molecules and MMP expression (Tedgui et.al, 2006). IL6, HIF1A, HMOX1, IL1B 

cytokines associated with plaque instability appeared as hub and superhub genes  in unstable 

plaque PPI network . 

 

iii. Angiogenesis 

Angiogenesis means formation of new vessels. Pathway assessment of the unstable plaque 

PPI network and gene ontology indicate angiogenesis to be a critical process associated with 

progression of a plaque. IL6, HIF1A, HMOX1, VEGFA, IL1B, FGF2 are hub and superhub 

genes associated with angiogenesis. 
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iv. Apoptosis 

As atherosclerotic plaque progresses, there is increase in lipoproteins in the necrotic core 

which undergo oxidation forming oxysterols which have apoptotic effects (Reviews & 

Biology, 1999). In addition to oxysterols, cytokines, reactive oxygen species and growth 

factors leads to deregulation of apoptosis and activation of fas/fas pathway in plaque affecting 

plaque stability (Geng, 2001) . CASP3, CASP1, FAS are apoptosis related superhub and hub 

genes present in unstable plaque PPI network.  

 

v. VEGF signaling pathway 

Smooth muscle cells derived fibroblast connective tissue forms cap of a plaque. With 

progression of a plaque the thickness of the cap increases decreasing oxygen within core of 

the plaque resulting in condition called hypoxia. Hypoxia induces transcription factor HIF1A   

binds to promoter region of VEGFA causing increase in expression of  VEGFA (Olsson et.al, 

2006). Increase in VEGFA triggers angiogenesis increasing plaque instability.  

 

All the pathways are interconnected forming a cascade. Superhub and hub genes have 

prominent biological roles in deciding a state of a plaque. Though their presence in unstable 

plaque has been confirmed and their roles in atherosclerosis been studied, no study has 

validated the genes to be a marker for deciding a state of a plaque. Undoubtedly through 

further validation these genes could be used as potential markers whose presence would 

indicate conversion of a stable plaque to an unstable plaque.  
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CHAPTER 5- CONCLUSION 

 

5.1 Limitations of the study 

 

Data limitation 

 

Although  search in published and publicly available data indicated several mRNA expression 

studies which have been done identifying significant differentially expressed genes in a 

atherosclerotic plaque ,  we limited our search for publicly available mRNA expression data.  

The search was limited to differentially expressed genes between stable and unstable human 

atherosclerotic plaques. This was done to identify key genes and pathways which indicate 

plaque progression from stable to unstable state. Of the few studies looking at differential 

expression of mRNA in stable versus unstable plaques Papaspyridonos et.al was one of the 

most appropriate for our study but due to improper deposition of data and lack of clear 

explanation of deposited data, we used additional data set from Ijas et.al to probe into our 

question.  

 

 

Proteins used as seed for PPI are limited to the ones which are physiologically validated in a 

plaque based on mass spectrometry and glass bead microarray techniques. It may not be a 

comprehensive list of proteins involved in plaque progression. 
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Analysis limitations 

 

 Sources for PPI present in STRING database are from experiments like co-

immunoprecipitation, yeast two hybrid, high-throughput experiments and predicted 

interactions. From the experiments and predictions interacting proteins are identified but not 

their directionality.  Hence in unstable plaque PPI network directionality of the network is not 

known. This also limits the PPI to the ones present in the STRING database, which may not 

be comprehensive. 

 

Sample size in both the studies was small affecting statistical power. Plaques from 3 patients 

were included in Papspyridonos et.al study and plaques from 4 patients were included in Ijas 

et.al study. This limited us from co-expression analysis of the significant differentially 

expressed genes. 

 

5.2 Future directions 

 

  An atherosclerotic plaque progresses through several stages from its initial state of lipid 

deposition to formation of an unstable plaque. Analysis of samples from a single stage would 

provide a snapshot of association of genes to plaque progression. This would be insufficient 

for obtaining comprehensive view of biological processes contributing to a state of a plaque. 

To overcome this limitation samples from series of patients and series of plaques at every 

stage would be required.  
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Several common biological processes appear to occur in complex diseases like cancer and 

atherosclerosis. For example angiogenesis, process where new vessels are formed is seen in 

cancer and atherosclerosis. To satisfy nutritional requirement of new cells formed in cancer, 

new vessels are formed. To overcome hypoxia or reduced amount of oxygen in plaque due to 

fibrous cap formation, plaques develop new vessels. Hence to differentiate a plaque specific 

processes patient selection has to be constrained. Additionally careful phenotyping of plaque 

is required.  Ideal samples would be plaques from patients suffering from atherosclerosis only 

and no other disease conditions. 

 

Superhub and hub genes can be further validated by laboratory experiments using mouse 

models or immunohistochemical techniques to confirm their role in plaque progression. 

 

The integrative approach can be extended to include metabolomic data and high throughput 

sequence data to gain more insights into molecular functions involved in plaque progression.  

 

PPI databases are ever growing with a continuous cycle of computational predictions and 

experimental validations. This necessitates reproducing this study in future including new 

validated and predicted PPI which may reveal new biomarkers.  
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TABLES 

Superhubs  Nodes 
satisfying 
the criteria 

Superhubs 
from seed  
Genes 

Superhubs from 
added neighbors 

Superhubs 80 having  
neighbors 

1 1 0 

Hubs having 70 
neighbors 

5 5 0 

Hubs having 60 
neighbors 

7 7 0 

Hubs having 50 
neighbors 

16 15 1 

 

Table 1 : Count of superhubs satisfying criteria of having n (80,70,60,50) neighbors. 

 

Hubs  Nodes 
satisfying 
the criteria 

Hubs 
from seed 
proteins 

Hubs from added 
neighbors 

Percentage of 
hubs from added 
neighbors not in 
seed list 

Hubs having 5 
neighbors 

333 318 15 4% 

Hubs having 10 
neighbors 

249 234 15 6% 

Hubs having 15 
neighbors 

174 166 8 4% 

Hubs having 20 
neighbors 

127 122 4 3% 

Hubs having 25 
neighbors 

79 76 3 2% 
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Hubs having 30 
neighbors 

56 55 1 1% 

Hubs having 35 
neighbors 

42 41 1 2% 

 

Table 2  : Count of hubs satisfying criteria of having n (5,10,15,20,25,30,35) neighbors 

and percentage of hubs which are not part of seed list.  

 

Topological 

Measure 

APPI Network Random APPI Networks 

Average 

Random Networks Standard 

Deviation 

Clustering Coefficient 0.421452 0.103042 0.005267 

Average Degree 13.86037 13.86037 0 

Degree Distribution -1.09379 -1.09379 0 

Mean Shortest Path 3.150165 2.71451 0.010678 

 

Table  3 :  Average and standard deviation of  topological measures of PPI network and 

1000 random networks of PPI network .   
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Hub gene Downregulated neighbors 
from Papaspyridonos et.al 

Upregulated 
neighbors from 
Papaspyridonos 
et.al 

Downregulated 
neighbors from Ijas 
et.al 

Upregulated 
neighbors from 
Ijas et.al 

ICAM1 JAM3 HMOX1 CCL5  
FGF2 EGFR F11R CCL5  
IFNG SOD3 SOD2 CCL5  
VIM EGFR,TPM2,TPM1,TAGL

N 
ENO1 CASP3  

IL2 DSTN  CCL5  
CYCS HSPB1 CTSB,SOD2 CASP3,UQCRQ  
VCAM1 JAM3,EGFR SOD2 CCL5  
STAT1 EGFR  CASP3,CCL5  
TLR4 RGFR HMOX1 CCL5 MSR1 
PPARG EGFR HMOX2 CASP3  
SOD2 SOD3 HMOX1 CASP3  
HIF1A EGFR ENO1,HMOX1 CASP3,CCL5  
ACTA1 TPM2,TPM1,EGFR,TAGL

N,HSPB1,MYLK 
 CASP3  

TNF EGFR HMOX1 CASP3,CCL5  
FAS EGFR,HSPB1  CASP3  
HMOX1  SOD2 CASP3  
EIF3S10 EGFR  CASP3  
CASP1  CTSB CASP3  
SOD1 SOD3,HSPB1 IDH1,SOD2 CASP4  
HSPD1 HSPB1 SOD2 CASP3 PPIA 
 

Table 4 : Hubs with DE neighbors in both gene expression data sets. 
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Superhub Total 
number 
of nodes 
connected 
to 
superhub 

Down regulated nodes 
connected to superhub 
from Papaspyridonos et.al 

Up regulated nodes 
connected to 
superhub from 
Papaspyridono et. al 

Down 
regulated 
nodes 
connected 
to 
superhub 
from Ijas 
et.al 

Up 
regulated 
nodes 
connected 
to superhub 
from Ijas 
et.al 

IL6 73 EGFR HMOX1 CCL5   
AKT1 61 EGFR,SOD3,HSPB1,P

FMK,GAS6 
HMOX1,SOD2 CASP3 MSR1 

TP53 58 EGFR SOD2 CASP3,C
CL5 

  

VEGFA 58 CTSB,EGFR HMOX1 CCL5   

TGFB1 58 HMOX1 FMOD CCL5 PPIA 
MMP9 58 EGFR CTSS,CTSB CASP3,C

CL5 
  

IL1B 58 EGFR SOD2,HMOX1   GRAP2 

CD44 58 EGFR   CASP3   
ITGB1 56 JAM3,MYLK F11R CASP3   

IL8 56 JAM3,MYLK F11R CCL5   

EGF 54 EGFR HMOX1 CASP3   
F2 53 EGFR   CASP3,C

CL5 
  

 

Table 5 : Superhubs with DE neighbors in both gene expression data sets. 
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Biological Process  Genes  Corrected p-
value  

Regulation of Angiogenesis  IL6,HIF1A,HMOX1,VEGFA, 
IL1B,FGF2  

3.98E-11  

Regulation of Chemokine 
production  

IL6,HIF1A,HMOX1,IL1B  1.94E-08  

Foam cell differentiation  TGFB1  3.35E-03  

 

Table 6 : Functional annotation of superhub and hub genes 
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Figure 7: Count of proteins used to build PPI network. Blue indicates count of proteins, 

identified to be present in different stages of plaque progression using mass 

spectrometry and microarrays. Pink indicates count of proteins identified from 

literature. 

 

Figure 8: Flow chart of method used in this study 
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