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 Abstract 

Enormous data collection efforts and improvements in technology have made large-

scale genome-wide association studies (GWAS) a promising approach to better 

understanding the genetics of common, complex diseases. However, the limited success 

of these studies so far suggests that genetic susceptibility may be due to a combined 

effect of multiple genetic variants (or interactions between variants), and that there may 

be a significant amount of genetic heterogeneity among those affected with complex 

diseases. It is clear that new data analysis methods are needed to address these 

hypotheses.  

Using data from the NIMH-sponsored Bipolar Genome Study, this project attempted 

to discover groups of SNPs that are jointly associated with the disease, thereby explaining 

a greater portion of disease susceptibility than can be achieved by examining SNPs 

individually. A machine-learning technique, known as a genetic algorithm, was used to 

search for these multi-locus associations, and was guided by a variety of genomic 

information, such as protein-protein interactions, gene expression patterns, and gene 

functions.  

A subset of the data was used to tune the algorithm’s parameters and evaluate its 

performance. With the most appropriate parameters, and when allowed to run for a 

sufficient amount of time, the algorithm was consistently able to find multi-locus 

associations that met the conventional threshold for genome-wide significance. Also, it 

was able to discover these associations without performing a prohibitively high number 

of statistical tests.  
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When the algorithm was applied to the entire Bipolar Genome Study data set, three 

particularly interesting SNP pairs were discovered in the following genes: CREB1 and 

BMP7; GFRA1 and ENPP2; NDUFV2 and SLC35F1. Each SNP pair was significantly 

associated with the disease (chi-square p-values: 7.48 × 10-10, 1.17 × 10-7 and  

3.26 × 10-7), although none of the six SNPs had strong individual associations. 

Furthermore, a number of the genes implicated by these multi-locus associations have 

functions that are relevant to bipolar disorder and/or have been associated with the 

disease in previous studies. 

The results presented here show that in the absence of individual SNP associations in 

a GWAS it is nevertheless possible to find strong multi-SNP associations. This approach 

offers promise not only for primary analyses, but also for secondary analyses in order to 

further mine the large GWAS data sets already available. However, significantly larger 

sample sizes will be needed to search for larger multi-SNP associations (more than two 

SNPs). And further modification of this approach, by incorporating specific genetic 

models (such as additive or conditional models) directly into the algorithm, should 

further improve the algorithm efficiency and the interpretation of results. 
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1 Introduction 

1.1 Genome-wide Association Studies 

With the sequencing of the human genome and our growing understanding of the 

genetic variation among the human population, new techniques have emerged for 

investigating the genetic component of common diseases. It is now a fairly standard 

procedure to genotype close to a million positions of an individual’s genome in a single 

experiment. These variable positions in the genome are known as single-nucleotide 

polymorphisms, or SNPs (pronounced “snips”). By performing this large-scale 

genotyping on a sample of cases (patients with a specific disease thought to have a 

significant genetic component) and another sample of controls (healthy subjects) we are 

able to calculate correlations (or associations) between specific genotypes and the 

disease. This technique is referred to as a genome-wide association study (GWAS). When 

a specific genotype is seen significantly more frequently in cases than in controls, this 

suggests the genotype is in some way influencing disease susceptibility. For the most 

part, these studies are meant to generate hypotheses—they are a first step in the path to 

better understanding the biological mechanism of the disease.  

Two important assumptions underlie GWAS. First, that susceptibility to the disease 

under study is influenced by common genetic variants (the DNA variant’s frequency in 

the population is greater than one percent). Second, that the markers tested for association 

are either causal variants themselves, or are in linkage disequilibrium with causal 

variants. Hence, the design and interpretation of these studies depends heavily on our 
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knowledge of the genome structure within the study population. The validity of these 

assumptions has become a matter of serious debate [1]. 

In the past six years, over 800 large GWAS have been performed in an attempt to 

better understand the genetic component of complex diseases [2]. For some diseases, 

GWAS have proved successful and have provided significant insight into the nature of 

the disease. In the case of age-related macular degeneration, Klein et al. discovered an 

intronic SNP in the CFH gene with an odds ratio of 4.6 [3]. After sequencing the region, 

this SNP was found to be in linkage disequilibrium with a missense polymorphism in a 

region of the protein that binds C-reactive protein. This discovery has provided 

significant insight into the role of the inflammatory response in macular degeneration.  

For other diseases, however, the results from GWAS have been frustratingly 

inconclusive, with very little agreement among numerous studies in different patient 

populations. For instance, in the Wellcome Trust Case-Control Consortium (WTCCC) 

study [4] no associations of genome-wide significance (generally accepted as a p-value 

smaller than 5 × 10-7) were found for hypertension, despite the fact that there is evidence 

suggesting genetics play an important role in the disease. The sibling recurrence risk ratio 

for hypertension has been reported to be between 2.5 and 3.5. (The sibling recurrence risk 

ratio, also referred to as the sibling relative risk, is a standard way of estimating the 

genetic component of a disease, and is defined as the risk to siblings of an affected 

individual relative to the risk in the general population.)  

There are a number of hypotheses about the nature of complex diseases that may 

explain the limited success of GWAS so far: 
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1.  Susceptibility to complex diseases is due to many different genetic variants, each 

with a small effect. Our ability to detect these small effects may be hampered by a 

number of factors, such as insufficient sample size and noise caused by imprecise 

phenotype definition. 

2. Susceptibility may be due to interactions between multiple genetic variants. For 

the most part, GWAS so far have looked for associations with individual SNPs only [5].  

3. Some complex diseases may have a significant amount of genetic heterogeneity, 

meaning that the genetic variants that confer susceptibility in one family (or population) 

may be different from those in another. 

4. Phenotypic variation among sample populations may be large, and may in fact 

represent multiple sub-types of the disease of interest (each with a different genetic 

mechanism). Therefore, a precise phenotypic definition is important for reducing noise in 

the data and increasing the power of the study. 

5. Rare variants (rather than common SNPs) may play a significant role in causing 

common diseases [6, 7], though this is still a matter of debate. Dickson and colleagues [1] 

have recently shown that “synthetic” associations found in GWAS can actually be the 

result of common SNPs being linked to distant rare variants, and that rare variants may be 

the true causal agents in certain common genetic diseases. 

6. While GWAS focus on the association between SNPs and the disease of interest, 

there are other types of genetic variation that may also play a role in disease 

susceptibility. Copy number variation (CNV) is one type of variation that has attracted 

particular interest in psychiatric disorders [8, 9]. 
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7. Beyond genetic variation, there is also the possibility that epigenetic variation 

(variation without changes in the DNA sequence) plays a role in disease susceptibility. 

While this type of variation, particularly DNA methylation patterns, has been associated 

with some cancers, its role in common hereditary diseases is still an open question. 

This project will focus on addressing the first two of these hypotheses, with the hope 

of discovering groups of SNPs associated with the disease of interest. A more detailed 

description of the projects goals are described in the Specific Aims below. 

 

1.2 The Use Case: Bipolar Disorder 

Bipolar disorder, also known as manic-depressive illness, is a mood (affective) 

disorder that affects about 1 % of the US population. Although the experiences of bipolar 

patients can vary significantly, typical symptoms include episodes of mania—elevated 

mood or euphoria, increased energy, low attention span, grandiosity, etc.—and, in many 

cases, episodes of depression—persistent feelings of sadness, fatigue, lack of interest and 

motivation, sleep disturbances, etc.—that interfere with normal functioning.  

The official diagnostic criterion for bipolar I, according to the fourth edition of the 

American Psychiatric Association’s (APA) Diagnostic and Statistical Manual (DSM-IV), 

is at least one episode of mania (which is often, but not necessarily, accompanied by 

episodes of major depression). A diagnosis of bipolar II requires one or more major 

depressive episodes accompanied by at least one hypomanic episode (having an elevated 

mood and increased energy, but still fully functional).  

The clinical definition of bipolar disorder, particularly as it relates to highly recurrent 

forms of depression, is still a matter of some debate. Due to the large amount of variation 
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seen among patients with mood disorders, there is growing support for the concept of a 

bipolar (or manic-depressive) spectrum. Rather than attempting to place patients within 

pre-defined categories, patients would be characterized based on where they fall along a 

number of different dimensions (e.g., no mania to severe mania). While the spectrum 

model is a way to conceptualize the vast amount of variation among individuals (from 

normal temperament to severe affective disorder), it is also a way to reconcile the fact 

that many distinct disorders (e.g., unipolar depression, bipolar, schizophrenia) share 

common features and may indeed share common genetic causes [10].  

Despite the ongoing struggle to conceptualize the wide variety of clinical 

presentations among patients with mood disorders, it is essential for genetic researchers 

to have a precise definition of the trait (phenotype) under study. This is especially true 

given the evidence that certain features of bipolar disorder—for example, early age-of-

onset and rapid cycling—may be passed within families, indicating different genetic 

mechanisms than patients without these features [10].  

The disorder appears to have a significant genetic component. Family and twin 

studies have found bipolar disorder to have a heritability between 0.70 and 0.80, with a 

sibling recurrence risk ratio of approximately 10 [10]. These values are comparable to 

other disease, such as age-related macular degeneration (heritability = 0.6 – 0.7) and 

Crohn’s Disease (heritability = 0.5 – 0.6), for which GWAS have provided meaningful 

results [3, 11]. (Heritability is defined as the proportion of a population’s phenotypic 

variation that can be explained by genetic variation among individuals.) 

At least ten large-scale GWAS on bipolar disorder have been reported to date (see 

Appendix) [2]. The results from these studies vary widely. A study by Ferreira and 
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colleagues found 20 different SNPs associated with bipolar disorder (p-values < 10-5), 

while three other studies found no associations at all [12]. Despite the apparent discrepant 

results across studies, Baum and colleagues have compared two bipolar GWAS and 

suggest that, when not focusing solely on the top hits, there may be significant points of 

agreement [13]. In other words, given the heterogeneity among data sets, it may not be 

required that a strong association found in one data set also have a strong association in a 

second data set. Even a modest association may lend support for the association of 

interest. In their study, Baum and colleagues simply ask the question: “does the set of 

SNPs implicated by Baum et al. [14] show more evidence of association in the WTCCC 

sample than would be expected by chance?” 

Craddock and colleagues have modeled several possibilities for the mode of 

transmission of bipolar disease and found the most likely scenario is a multiplicative 

model by which disease susceptibility is due to the interaction of three or more genes [5]. 

However, up to this point, association studies have not looked at genetic interactions of 

this complexity. 

In general terms, it is thought that bipolar disorder is due to the interaction of multiple 

defective or dysregulated susceptibility genes, which lead to a periodic imbalance in 

brain chemistry (loss of homeostasis). The majority of hypotheses about the underlying 

biological mechanism of bipolar disorder relate to the disruption of signaling pathways, 

an imbalance (either an excess or deficiency) of neurotransmitters, or the dysfunction of 

neurotransmitter receptors. The major neurotransmitter systems implicated in bipolar 

disorder are the noradrenergic, dopaminergic, serotonergic, cholinergic, GABAergic and 
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glutamatergic systems. Various other hormones and proteins that function in the brain 

have also been associated with the disease [10].  

Still, the biochemical imbalances observed in patients with manic-depressive illness 

may be secondary effects, with the primary causes being defects in cellular signaling 

pathways [15]. Not only do signaling pathways regulate the various neurotransmitter 

systems linked to bipolar disorder, but they are also targeted by bipolar-associated 

hormones as well as some of the drugs used to effectively treat mood disorders [10].  

 

1.3 The Polygenic Model of Complex Diseases 

As discussed briefly above, in recent years, large genome-wide association studies 

have been successful in revealing a number of genes thought to play a role in complex 

diseases. Yet, in most cases, the genetic associations discovered have accounted for only 

a small portion of the “genetic component” of these diseases. It’s clear that new 

hypotheses about the way genetic variation affects disease risk need to be examined. One 

such hypothesis is the polygenic model of complex disease—that susceptibility to the 

disease is due to the combined effect of multiple genetic variants.  

A number of researchers have tested the polygenic hypothesis, with varying methods, 

and have discovered that, indeed, risk does increase when individuals carry multiple “risk 

alleles”, each having a weak association with the disease. Baum and colleagues 

performed a genome-wide association study of bipolar disorder and examined the 

additive effects of ten of the most significantly associated SNPs in their data. They found 

that the proportion of cases rises with the number of risk alleles carried, and that 

individuals with 19 or more risk alleles were 3.8 times more likely to be classified as a 
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case than as a control. However, they do clearly note that the variants studied confer only 

a susceptibility to the disease, given that many controls also carried a significant number 

of risk alleles [14].  

Purcell and colleagues examined the question of polygenic risk on a much larger 

scale. In the context of a large GWAS, they first defined large sets of SNPs (ranging from 

just under 1000 SNPs to over 38000 SNPs) that met various p-value thresholds. Next, 

they calculated scores for each individual in the GWAS based on the number of risk 

alleles carried (Purcell et al. are careful to use the term “score alleles” rather than risk 

alleles since many SNPs in the sets are sure to be false positives). They go on to show 

that these scores are significantly associated with schizophrenia, and also with bipolar 

disorder in two independent data sets [4, 16, 17].  

While both of these studies suggest an additive polygenic model of susceptibility in 

bipolar disorder, discovery of an interactive or conditional effect among SNPs is a more 

complicated matter due to the problem of combinatorial complexity—the enormous 

number of possible SNP combinations. But despite the difficulty of the problem, a 

number of different approaches have been used to discover multi-locus associations in 

GWAS [18, 19, 20, 21]. For the most part, previous studies have dealt with the issue of 

combinatorial complexity by reducing the number of SNPs included in the analysis or by 

looking only for SNP pairs, ignoring the possibility of higher-order interactions.  

Baum and colleagues (in the same study referenced earlier) looked for interactions 

among only those SNPs with the strongest individual associations. The most significant 

SNP interaction found was between SNPs in SORCS2 and DGKH (joint p-value =  

1.2 × 10-8). However, the SNP in DGKH had a strong individual association (p-value = 
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1.5 × 10-8, OR = 1.59) and the odds ratio for the SNP pair was not reported, so it is not 

clear whether this was a true interactive effect [14].  

Emily and colleagues used protein-protein interaction data to define the population of 

SNP pairs to be tested for multi-locus association within the WTCCC data set. They 

discovered a significant interaction between SNPs in PDGFRB and KITLG (p-value = 

8.32 × 10-8) [22]. In this case, neither SNP was individually associated with bipolar 

disorder, which makes this an interesting example of an interactive effect. And because 

the joint contingency table was reported, we can see that there appears to be a conditional 

effect, whereby the SNP in PDGFRB becomes significantly associated when conditioned 

on the T/T genotype of the SNP in KITLG. 

All of these studies support the idea of a polygenic model of susceptibility to bipolar 

disorder. Our aim was to build upon this work by developing a method that allows for a 

full-scale search for multi-locus associations, without necessarily reducing the number of 

SNPs in the analysis. In order to aid the biological interpretation of our results, we 

exploited the information gained from various other genomic datasets, such as protein-

protein interaction data and previous linkage studies. We also chose to limit the size of 

the SNP sets examined to between two and four SNPs. 
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2 Research Objectives 

2.1 Research Questions 

The overall goal of the dissertation was to use a computational technique to search for 

multi-locus genetic associations among a large-scale GWAS data set, and to show the 

feasibility and the usefulness of this approach. Essentially, the intention was to answer 

the following questions: Is it possible to perform a full-scale search (i.e., without 

necessarily reducing the number of SNPs in the analysis) for multi-locus associations? 

And, if we approach the GWAS analysis with a polygenic model of disease susceptibility 

in mind from the outset, are meaningful results discovered? 

To attempt to answer the above questions, the research was broken into two main 

parts: 

1. Algorithm Evaluation and Refinement  

2. Full-scale Analysis and Biological Interpretation of Top Hits 

 

2.2 Specific Aims 

Aim 1:  Evaluate the ability of a network-guided genetic algorithm to search for and 

discover significant multi-locus associations in the context of a large-scale GWAS.  

 

The evaluation will be done on a subset of the data, and will involve the measurement 

of various indicators of the efficiency and thoroughness of the search. In addition, the 

value of prioritizing genes in the network will be examined. The search algorithm will be 

guided by various types of information, such as previous linkage studies and gene 
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functions. An efficient and well-informed algorithm is essential given the extreme 

combinatorial complexity of the problem.  

Ultimately, this evaluation will provide an opportunity for tuning the algorithm’s 

parameters, which will give the best possible chance of producing meaningful results in 

the second half of the project. To determine the best parameter set and the most 

informative data types, the algorithm will be run multiple times with various inputs. 

 

Aim 2:  Compare the type and strength of associations (i.e., statistical significance and 

odds ratio) found when looking at groups of SNPs versus individual SNPs.  

 

A search for groups of SNPs associated with bipolar disorder will be conducted on 

the full data set. The main question is whether or not new genetic associations can be 

discovered by looking at multiple variants simultaneously, rather than simply looking at 

individual SNPs. The following hypotheses will be tested: 

Hypothesis 1: Disease susceptibility is due to multiple “hits” within a single 

biological pathway. The search will be limited to connected sub-networks (representing 

single pathways or functional modules) within the larger network. 

Hypothesis 2: Disease susceptibility is due to a combination of genetic variants in 

multiple distinct pathways. The search will allow for groups of disconnected nodes in the 

network (representing SNPs in multiple separate pathways or cellular processes). 
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Aim 3:  If any significant associations are discovered, provide a thorough review of the 

literature on the genes implicated, and present any supporting evidence for their role in 

the pathophysiology of bipolar disorder. 
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3 Data & Methods 

3.1 The Genotype Data 

The primary genotype data used in this study is from the Bipolar Genome Study 

(BiGS) [23], and is a combination of two independent datasets: 2035 individuals 

genotyped by the Genetic Association Information Network (GAIN) and 1865 

individuals genotyped by the Translational Genomics Research Institute (TGen) [24]. 

Both datasets were genotyped using the Affymetrix Human Genome SNP 6.0 array, with 

over 900000 SNPs. Genotype calls were made with the CRLMM algorithm [25]. 

The following criteria were used to filter out low quality samples/SNPs: low 

genotyping call rates per sample (< 0.97), excessively high or low sample heterozygosity 

rates, low genotyping call rates per SNP (< 0.95), low minor allele frequency (< 0.01), 

and deviation from Hardy-Weinberg Equilibrium (p-value < 10-6). After quality control 

measures were applied to the entire dataset, 916 cases and 1018 controls from the GAIN 

dataset, 1117 cases and 402 controls from the TGen dataset, and 636169 SNPs remained. 

Phenotypic information for all cases was collected with the Diagnostic Interview for 

Genetic Studies [26], and only cases diagnosed as bipolar I disorder (BPI) were included 

in the analysis. 

Genotype data from the WTCCC was used solely for the purposes of replicating 

significant associations found in the BiGS data. The WTCCC data consists of 1998 

bipolar disorder cases and 1500 controls. Genotyping was done with the Affymetrix 

GeneChip Human Mapping 500K Array Set, with approximately 500000 SNPs. And 
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imputation was performed for another 2139483 SNPs in the HapMap database. Genotype 

calls were made with the CHIAMO algorithm [4]. 

 

3.2 The Gene Interaction Network 

To constrain the search, and to facilitate the biological interpretation of results, SNPs 

were first mapped to genes within a gene interaction network. Interaction data was 

gathered from the STRING database (ver. 8.1) [27], while gene definitions were taken 

from Ensembl (ver. 54, NCBI build 36) [28]. A SNP was mapped to a gene if it fell 

within the gene itself or within a 3 kb window upstream or downstream of the gene. Of 

the 636169 SNPs that passed quality control, 217012 SNPs mapped to 12793 genes in the 

interaction network.  

 

 
Figure 1. The relational database used by the algorithm to navigate throughout the gene 

interaction network. 
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In an attempt to focus the search even further, we compiled results from various 

studies about the pathophysiology and genetics of bipolar disorder. Evidence from 

previous linkage studies, gene association studies, and gene expression studies was used 

to assign scores to genes in the interaction network. In addition, gene function 

information (Gene Ontology terms [29]) and network connectivity were also used to 

score genes. The algorithm is able to use the scores to prioritize the genes in the network 

as it searches for multi-locus associations. The following paragraphs explain how each 

type of evidence was used to assign score to genes in the interaction network. All the 

information used to assign gene scores, and references for all the studies used as evidence 

are listed in the Appendix. 

 

Linkage Regions and Gene Associations: Each linkage region and gene was 

categorized as having “weak” evidence, “moderate” evidence, or “strong” evidence based 

on the number of studies that reported each particular finding. If the finding had only one 

or two references it was considered weak evidence; if it had three, four or five references 

it was considered moderate evidence; and if it had more than five references it was 

considered strong evidence. Genes were assigned 1, 2 and 3 points for weak, moderate, 

and strong evidence of involvement in bipolar disorder, respectively. Points were 

assigned for each type of evidence separately, so if a gene was implicated in a linkage 

study and a gene association study it would be assigned points for both. 

Functional Concepts: The Gene Ontology (GO) terms for each gene were searched 

for concepts related to bipolar disorder, and 1 point was assigned each time a gene’s GO 

term matched a relevant concept. For example, if a gene’s GO terms were “acetylcholine 
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metabolism” and “dopamine receptor”, the gene would be assigned 2 points, since both 

GO terms contain a concept considered relevant to bipolar disorder. 

Gene Expression Data: Two publicly available data sets from the Gene Expression 

Omnibus (GEO) were used to prioritize genes in the interaction network: GSE5392 and 

GSE7036 [30, 31] (GSE5392 contains two data sets from different brain regions, and 

GSE7036 is a dataset of discordant monozygotic twins). Genes in the network were 

assigned 1 point for each data set in which it was significantly differentially expressed 

(unadjusted p-value < 5 × 10-4).  

Data from the GEO datasets are from Affymetrix arrays and were analyzed with the 

Affy package within the R statistical computing environment under the Bioconductor 

framework. All data from the Affymetrix arrays were Robust Multichip Average (RMA) 

background corrected, normalized and summarized at the probeset level with median 

polish, Perfect Match (PM) only. Two-sample t-statistics for tests of differences in means 

(case vs. control) were performed at the probeset level. A paired t-statistic was also 

performed for the twins dataset (GSE7036). 

Network Connectivity: Because of evidence showing that genes with high 

connectivity can sometimes play an important role in regulating the behavior of 

biological networks [32, 33], genes considered hubs in the interaction network were 

assigned higher scores. Genes with more than 200 connections were assigned 1 point, 

while those with more than 500 connections were assigned 2 points.  
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Once genes were assigned points for all evidence types, a scaling factor was applied. 

In this study, a scaling factor of 50 was used. For instance, a gene with a linkage score of 

1 would have a scaled linkage score of 50.  

Genes were assigned points for each type of evidence individually (i.e., each gene had 

a linkage score, a function score, a differential expression score, etc.). The scaled scores 

for each type of evidence were then summed to create a cumulative score. Genes without 

any evidence of involvement in bipolar disorder were simply assigned one point, so that 

they still had a small chance of being selected by the algorithm. 

 

3.3 The Algorithm 

A standard genetic algorithm was adapted to the task of searching for groups of SNPs 

that are jointly associated with bipolar disorder, in the context of a standard case-control 

GWAS. A genetic algorithm (GA) is a general purpose search and optimization algorithm 

based on the process of natural selection, and has been used in a variety of applications, 

from engineering design to RNA structure prediction [34, 35, 36, 37]. After all, natural 

selection can be seen as an algorithm for optimizing the fitness of a population of 

organisms, whereby the population repeatedly goes through the steps of selection, 

reproduction, and mutation, increasing the population’s fitness over the generations.  

For the GA, the population of organisms is replaced by a population of candidate 

solutions to some computational problem. And these candidate solutions go through the 

same steps of selection (an evaluation of how well a solution solves the problem), 

reproduction, and mutation. As the solutions evolve over time, the population moves 
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closer and closer to an optimal solution to the problem at hand. Figure 2 demonstrates a 

standard GA.  

 

 
Figure 2. A standard genetic algorithm. The conventional data representation used in a 

genetic algorithm is a bit string (upper left), where each bit is analogous to a gene and the 

entire string is analogous to a chromosome. These bit strings represent candidate 

solutions for the problem of interest, and can be interpreted as either a binary number, or 

a list of features to be selected (as in a classification problem). The steps taken by the 

algorithm are as follows: A) a population of bit strings is randomly created. B) A fitness 

function (lower left) is applied to each candidate solution to evaluate how well it solves 

the problem, and based on these fitness values half of the population is selected. C) These 

selected candidate solutions are then altered slightly through crossover (the top two rows) 

or mutation (the third row). D) Finally, the selected solutions (“parents”) and the newly 
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created altered solutions (“offspring”) become the new population for the next iteration 

(or “generation”). 

For the purposes of the current problem, the discovery of genetic associations, the 

algorithm is constrained by the structure of a gene interaction network, where each node 

in the network represents a gene and all SNPs that are located within or near that gene. 

Figure 3 gives a basic overview of the algorithm, and the algorithm’s mutation procedure 

is illustrated in Figure 4. The fitness value used by the algorithm is the p-value from a 

standard chi-square test, but any statistical test of association could have been used. A 

chi-square test was chosen because it is easily and quickly calculated. 

Two different hypotheses about the nature of the SNP groups were tested. Hypothesis 

1 requires that all members of a SNP group be within a connected sub-network of genes 

(i.e., each gene must interact with at least one other gene in the group). Hypothesis 2 is 

the more general case and does not require that the genes be directly connected. Because 

Hypothesis 2 does not require that the network connections between genes be preserved, 

an additional genetic operator, the crossover function, can be used to introduce variation 

into the population of SNP groups. In this case, uniform crossover with a probability of 

0.5 was used. This means that if two SNP groups were chosen for crossover (based on the 

specified crossover rate), the members of each group would be sorted and the two groups 

compared. Any non-matching members would then be swapped with a 50 % probability. 

Note that the size of the SNP groups was limited to between two and four SNPs. 
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Figure 3. The genetic algorithm applied to a gene interaction network. The nodes in the 

gene interaction network represent genes and the SNPs that lie within or near each gene. 

The algorithm first selects a gene and then randomly chooses one of the gene’s SNPs  

(top left). A) Using the structure of the interaction network, a population of SNP pairs is 

created randomly. B) The fitness of each SNP pair is calculated and, based on those 

fitness scores, half of the population is selected to become “parents” for the next 

generation. C) A specified proportion of parents are randomly altered, or mutated, to 

create “offspring”. D) The parents plus the offspring become the new population and the 

process repeats, beginning with the calculation of fitness for each of the new offspring. 
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Figure 4. The “mutation” of a SNP group can occur in three ways, and is 

constrained by the structure of the gene interaction network. The nodes labeled  

A-F represent genes (each of which contain one or more SNPs, as shown in 

Figure 3), and the edges represent some evidence for interaction between genes 

(e.g., physical interaction, correlated expression, etc.). 

As described above, because of the enormity of the search space, we compiled results 

from various studies about the genetics and pathophysiology of bipolar disorder in an 

attempt to force the algorithm to focus on certain areas of the network. Evidence from 

these studies, such as linkage regions or genes associated with the disease, was used to 

assign scores to genes in the interaction network. The algorithm is able to use the gene 

scores to preferentially select the most promising genes—those with prior evidence of 

involvement in bipolar disorder—as it searches the network for multi-locus associations.  
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These scores are used in two ways: 1) they influence the starting point of the search 

(i.e, the genes selected for the initial population of candidate solutions), and 2) they 

influence how the “mutation” procedure alters each SNP group. For instance, at the top of 

Figure 4, the algorithm is adding a gene to the group and must choose between genes C, 

D, E and F. If scores are applied to the gene interaction network, the algorithm will 

choose the gene—in a probabilistic manner—based on those scores. The algorithm won’t 

automatically select the gene with the highest score, but rather it will choose randomly, 

with a higher probability given to those genes with higher scores. 

Pseudocode for the algorithm, giving a more detailed description of the process, is 

included in the Appendix.  
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4 Results 

4.1 The Algorithm Evaluation 

Evaluation of the algorithm was done by performing multiple searches for multi-locus 

associations, and observing the effects of different parameter values. All analyses done in 

this stage of the project were done with only a subset of the data (TGen subjects 

only).The evaluation was done in four steps. First, to test the performance of the 

algorithm and to determine the most appropriate parameter values for the task at hand, a 

number of small-scale searchers were performed, each with different parameter 

combinations. While not meant to be a formal evaluation of all aspects of the algorithm, 

several features of the algorithm’s behavior were demonstrated. (Note: I use the term 

“search” to mean a single execution of the algorithm, and the term “run” to mean a set of 

several searches all done with the same parameter values.)  

Six different parameter combinations were tested for Hypothesis 1 and ten were 

tested for Hypothesis 2 (Table 1 and Table 2). For each parameter combination, five 

small-scale searches (200 generations) were performed and the results averaged. Various 

measures related to the effectiveness and efficiency of the search were recorded.  
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Run Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants* 

1 50 200 NA 0.2 Truncate 0 
2 100 200 NA 0.2 Truncate 0 
3 50 200 NA 0.4 Roulette 0 
4 100 200 NA 0.4 Roulette 5 
5 50 200 NA 0.6 Hybrid 5 
6 100 200 NA 0.8 Hybrid 10 

Table 1. Parameter combinations for the small-scale searches done under Hypothesis 1. 

*Migrants are the number of entirely new candidate solutions that are created randomly 

at the beginning of each generation (i.e., these new candidate solutions are not selected 

from the previous generation). 

Run Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants 

7 52 200 0.6 0.1 Truncate 0 
8 100 200 0.4 0.1 Truncate 0 
9 52 200 0.6 0.2 Roulette 0 
10 100 200 0.4 0.2 Roulette 5 
11 52 200 0.4 0.4 Hybrid 5 
12 100 200 0.6 0.4 Hybrid 10 
13 52 200 0.6 0.6 Hybrid 5 
14 52 200 0.2 0.6 Hybrid 5 
15 52 200 0.6 0.1 Hybrid 5 
16 52 200 0.2 0.1 Hybrid 5 

Table 2. Parameter combinations for the small-scale searches done under Hypothesis 2. 

Although the results vary significantly from one search to the next, certain trends 

were observed. For instance, it is clear that a higher mutation rate produces a broader 

search (more SNP groups are tested). This, of course, is expected since mutation is the 

method by which new candidate solutions (new SNP groups) are created. The same result 

can be achieved by increasing the GA population size (Figure 5). Furthermore, a larger 
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population size, when paired with an elitist selection method (one that necessarily selects 

the groups with the highest fitness), allows the algorithm to reach a good solution more 

quickly than a smaller population size (Figure 6). A larger population size increases the 

chance that good solutions (or potentially good solutions) are created in the early 

generations, and an elitist selection method ensures that those good candidates are carried 

on to the next generation. However, because of the tendency for the algorithm to become 

trapped in local minima, converging on a solution too quickly may be detrimental.  

 

 
Figure 5. The number of SNP groups tested increases with GA population size and 

mutation rate. Each column shows the results of five searches done with the same 

parameters. M = mutation rate; P = population size. (Runs 1 through 6). 
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Figure. 6. Larger population size, when paired with an elitist selection method, allows the 

algorithm to converge on good solutions more quickly. Here we show the generation at 

which the best solution was found. P = population size. (Runs 1 through 6). 

From the results of searches performed under Hypothesis 2, it appears the crossover 

rate had very little, if any, impact on performance. This suggests that exploring entirely 

new solutions created through mutation (and migration) is more important than 

recombining the current candidate solutions. But it is also clear that the impact of 

crossover depends on the selection method used and the rate at which new candidate 

solutions are introduced into the population (either through mutation or migration). 

However, a high crossover rate did not appear to have a negative effect, on solutions 

found or computation time (Figure 7), and it may be that the benefits of crossover were 

simply too subtle to be noticed in these small-scale searches. Crossover, as an additional 

method of creating diversity among candidate solutions, should not be discounted based 

on the results so far. 
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Figure 7. Algorithm run time was significantly impacted by the mutation rate, but NOT 

the crossover rate. M = mutation rate; C = crossover rate. (Runs 13 through 16). 

Run Best  
Fitness 

-Log10(Best) Gen. of 
Best 

Groups 
Tested 

1st Gen. to 
 0.005 

1st Gen. to 
0.001 

Time 
(sec.) 

1 1.16 × 10-3 3.788 154.6 892.6 53.6 87.8 147.2 
2 1.90 × 10-4 3.857 66.2 1604.4 7.4 13 268 
3 3.41 × 10-4 3.857 132 1739.6 32.2 83.4 258.4 
4 3.47 × 10-4 3.657 125.6 4219 11 74.2 488.8 
5 2.81 × 10-4 4.728 145.6 3433.8 10 81.8 402.4 
6 6.64 × 10-5 4.225 74.2 8018.4 4.8 18.8 1029 

Table 3. Results of small-scale searches done under Hypothesis 1. 
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Run Best  
Fitness 

-Log10(Best) Gen. of 
Best 

Groups 
Tested 

1st Gen. to 
 0.005 

1st Gen. to 
0.001 

Time 
(sec.) 

7 2.21 × 10-4 3.847 81.4 551 5 68.2 171 
8 1.14 × 10-4 4.810 27.2 992.4 3 6.4 389.4 
9 1.07 × 10-3 3.363 83.6 984.4 9.2 106 232.4 
10 1.59 × 10-4 4.926 121.8 3674.8 2.6 19.2 450.2 
11 5.90 × 10-5 4.637 115.2 3393.6 6.4 25.6 357 
12 1.37 × 10-5 5.190 50.2 6717.8 2.8 7.4 604 
13 1.72 × 10-5 4.945 81 3986.8 6.4 15.8 393.6 
14 1.84 × 10-5 4.945 89.4 3836.2 6 15.8 454.6 
15 3.52 × 10-5 5.094 144.2 2867.4 3.2 32 287.4 
16 2.12 × 10-5 5.832 120.4 2104.2 12 17.4 258.6 

Table 4. Results of small-scale searches done under Hypothesis 2. 

Results from the small-scale searches have revealed a number of important points 

about the behavior of the search algorithm. First, it’s clear that creating and maintaining 

diversity among the population of candidate solutions is essential. A fairly high mutation 

rate and the creation of a few entirely new candidate solutions (“migrants”) at each 

generation are important for broadening the search and discovering good solutions. 

Second, the Hybrid selection method appears to be the best choice. It ensures that a 

predefined number of “best” candidate solutions are passed on to the next generation, and 

it maintains diversity by allowing for probabilistic selection of the remaining candidate 

solutions. The effect of different selection methods can be seen in Figures 8, 9 and 10. 

Third, population size should be chosen carefully. A larger population size broadens the 

search and may allow for quicker discovery of good solutions, but also increases 

computation time. In addition, good solutions found early in a search may not always be 

the best possible solutions. 
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Run Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants 

17 100 1000 NA 0.6 Hybrid 10 
18 100 2000 NA 0.6 Hybrid 10 
19 150 1000 NA 0.6 Hybrid 15 
20 150 1500 NA 0.8 Hybrid 15 
21 50 5000 NA 0.8 Hybrid 5 

Table 5. Parameters for large-scale searches done under Hypothesis 1. 

Run Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants 

22 100 1000 0.6 0.4 Hybrid 10 
23 100 2000 0.6 0.4 Hybrid 10 
24 152 1000 0.6 0.6 Hybrid 15 
25 152 1500 0.6 0.6 Hybrid 15 
26 52 5000 0.6 0.6 Hybrid 5 
27 100 2000 0.4 0.4 Hybrid 10 

Table 6. Parameters for large-scale searches done under Hypothesis 2. 

The algorithm appears to have no problem exploring the vast majority of the gene 

interaction network. The large-scale searches visited between 85 % and 99 % of all genes 

in the network, and over 98 % of all chromosome cytobands. However, the majority of 

the search space complexity is due to the fact that multiple SNPs map to each gene 

(approximately 17 SNPs per gene on average). Despite nearly all genes in the network 

being visited during a typical large-scale search, fewer than 25 % of SNPs were ever 

included in a group and tested for association. So, while the search may be wide, its depth 

depends on how long the search is allowed to run. As seen so far, the algorithm may need 

many thousands of generations to adequately explore the search space.  

Also, typical of GAs, the algorithm appears to be rather sensitive to starting 

conditions and therefore is somewhat inconsistent. While nearly all parameter 
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combinations tested in this stage were able to find statistically significant multi-locus 

associations, the best solutions varied significantly from one search to the next (Figure 

11, and Tables 7 and 8). 

 

 
Figure 11. Results were inconsistent from one search to the next. Although differences in 

population size and run time didn’t significantly impact the results across runs, the best 

solution found varied significantly within runs. All runs shown here were carried out 

under Hypothesis 1. Each column shows the results of three searches. P = population 

size; G = number of generations the GA was allowed to run. (Runs 17 through 21). 

Run Best  
Fitness 

-Log10(Best) Gen. of 
Best 

Groups 
Tested 

1st Gen. to 
 0.005 

1st Gen. to 
0.001 

Time 
(sec.) 

17 4.25 × 10-6 6.9899 368.3 29210 4.3 15.3 3662 
18 4.77 × 10-7 7.4206 926.3 56630 14 22 10148 
19 9.73 × 10-7 6.0286 152 40922 3.3 12.3 6483 
20 1.55 × 10-6 6.1455 148.7 68213.3 2.3 7 12894 
21 8.38 × 10-7 6.1966 2803 76114 8.7 123.3 13753 

Table 7. Results of large-scale searches done under Hypothesis 1. Each row is the 

average of three searches. 
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Run Best  
Fitness 

-Log10(Best) Gen. of 
Best 

Groups 
Tested 

1st Gen. to 
 0.005 

1st Gen. to 
0.001 

Time 
(sec.) 

22 1.29 × 10-5 5.8454 567.7 30999 2.3 9 3257 
23 1.17 × 10-5 6.6555 318.3 58077 1.7 3 6952 
24 2.84 × 10-7 6.7865 905.7 47876 1 3.7 4978 
25 1.24 × 10-7 7.8837 696.7 72565 1.7 6 8723 
26 1.43 × 10-6 6.4416 1644 72883 3.7 10.3 8367 
27* 4.82 × 10-10 9.4461 297.7 24761 1.7 12 4746 

Table 8. Results of large-scale searches done under Hypothesis 2. Each row is the 

average of three searches. *Two of the searches in Run 27 were stopped early, when a p-

value of 5 × 10-10 was reached. 

These larger-scale searches also shed more light on the impact of GA population size 

on the algorithm’s efficiency. And it appears that the impact may be different for 

Hypothesis 1 versus Hypothesis 2. When searching for connected sub-networks 

(Hypothesis 1) it seems that there is no benefit to increasing the population size beyond a 

certain point. Although searches with larger population sizes reached their best solutions 

more quickly, they were never able to reach solutions as good as some found with a 

moderate population size. 

For Hypothesis 2, larger population size did appear to have some benefit. A larger 

search space (i.e., groups are not limited to connected sub-networks) and the addition of 

the crossover function as a source of variation in the population, may allow the algorithm 

to take advantage of a larger population size under Hypothesis 2.  

Table 9 shows the parameter values that were found to be most successful in the 

large-scale searches. 
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Hypothesis 1  

Population Size 100 
Mutation Rate 0.6 – 0.8 
Crossover Rate NA 

Selection Method Hybrid 
No. of Migrants 10 

Hypothesis 2  

Population Size 100 – 152a 
Mutation Rate 0.4 – 0.6 
Crossover Rate 0.4 – 0.6 

Selection Method Hybrid 
No. of Migrants 10 

 
Table 9. After testing a variety of parameter values in multiple small- and large-scale 

searches, these values produced the best results. aFor Hypothesis 2 the population size 

must be a multiple of 4. 

Next, in an effort to deal with the problem of inconsistency and to help improve the 

depth of the searches, two strategies were implemented. The first strategy was to run the 

algorithm for a longer time (10000 generations), while periodically (every 1000 

generations) re-initializing the GA population. In essence a new search, with a new 

starting point within the interaction network, is created every 1000 generations. The 

second strategy, similar to the first, was to re-initialize the population only when no 

improvement is seen in the previous 1000 generations. These searches were stopped if 

they reached a p-value < 5 × 10-10 (Table 10). 
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Run Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants 

28 100 10000 NA 0.6 Hybrid 10 
29 100 10000 NA 0.6 Hybrid 10 
30 100 10000 0.4 0.4 Hybrid 10 
31 100 10000 0.4 0.4 Hybrid 10 

Table 10. Parameters for large-scale searches with re-initialization. Runs 28 and 29 were 

done under Hypothesis 1, while runs 30 and 31 were done under Hypothesis 2. 

 
Figure 12. With a longer run time and periodic re-initialization of the GA population, the 

algorithm was able to consistently find solutions of genome-wide significance (p-values 

< 5 × 10-7; the dashed line). Runs 28 and 30 were re-initialized every 1000 generations; 

Runs 29 and 31 were re-initialized only when there was no improvement in the previous 

1000 generations. 
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Run Best  
Fitness 

-Log10(Best) Gen. of 
Best 

1st Gen. to
 5x10-7 

Groups Tested Unique SNPs 
Visited 

28 1.48 × 10-7 8.4116 6040 2419.3 226139 90249 
29 5.14 × 10-8 8.0987 7273 7223.3 262181 101586 
30 1.58 × 10-9 9.2314 4002 966 156835 64855 
31 2.09 × 10-8 8.1384 5053 1624.7 270091 94810 

Table 11. Results of large-scale searches with re-initialization. Runs 28 and 29 were done 

under Hypothesis 1, while runs 30 and 31 were done under Hypothesis 2. Runs 28 and 30 

were re-initialized every 1000 generations; Runs 29 and 31 were re-initialized only when 

there was no improvement in the previous 1000 generations. Each row is the average of 

three searches.  

Nearly all the larger-scale searches were able to find multi-locus associations with 

genome-wide statistical significance. And the strategy of increasing the search time while 

periodically re-initializing the GA population, improved the results further (Figure 12 and 

Table 11).  

Not only was it possible to find multi-locus associations, it was possible to do so 

while performing far fewer statistical tests than a standard GWAS. For instance, Run 30 

(three separate searches, with a total of 470467 SNP groups tested) was able to find 54 

multi-locus associations that are statistically significant even after Bonferroni correction 

(α = 1.063 × 10-7). Furthermore, nearly half of these associations (23 of 54) are 

interactions among three SNPs, which demonstrate the importance of looking for higher-

order interactions. These results highlight an advantage of this approach over previous 

methods, which have mostly looked for interactions among pairs of SNPs only. 

To examine whether the distribution of p-values found with the algorithm is different 

from what is expected by chance, large-scale searches were performed on two sets of 
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simulated data, one simulated using MERLIN [38] and another simulated with PLINK 

[39]. MERLIN is able to simulate genotype data while maintaining the patterns of 

missing data and linkage disequilibrium found in the actual bipolar disorder dataset 

(TGen). The distribution of p-values found when searching the simulated datasets was 

compared to the distribution of p-values found when searching the actual data (Figure 

13). Clearly, the search performed on the actual bipolar disorder data discovered an 

excess of SNP groups with p-values smaller than 10-7. Very similar results were seen 

with the data simulated in PLINK (data not shown). 

 
Figure 13. A quantile-quantile plot of the log scale p-values from a large-scale search for 

multi-locus associations among the actual bipolar disorder GWAS data versus data 

simulated with MERLIN. The simulated data was created so that no markers are 

associated with the disease. Also, patterns of missing data and linkage disequilibrium 

were simulated to match those of the real data. Red and blue dots represent the upper and 

lower bounds of a 95 % confidence interval for the simulated data quantiles. 
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The third step in the evaluation process was to perform a single-locus analysis, which 

revealed only two SNPs that had a significant association with the BPI group (p-values of 

2.70 × 10-9 and 1.97 × 10-7). Nevertheless, numerous multi-locus associations were found 

during the large-scale searches described in the previous section. To better understand the 

types of associations discovered, all statistically significant associations found during the 

most successful runs (Runs 28 – 31) were categorized in two ways. “Significant 

Interactions” were those where the joint p-value is smaller than all of the group members’ 

individual p-values. And SNP groups were said to be “Absent of Main Effects” if none of 

the group members had an individual p-value that reached genome-wide significance (p-

value < 5 × 10-7) (Table 12). 

 

Run Significant
Groups 

Significant
Interactions 

Absent of  
Main Effects 

28 37 26 16 
29 73 9 8 
30 169 88 84 
31 82 59 57 

Table 12. The algorithm is able to detect multi-locus associations both with and without 

main effects. It appears that the algorithm is more successful under Hypothesis 2 (Runs 

30 and 31). Each run represents the combined results of three searches. 

The algorithm was able to find statistically significant multi-locus associations, both 

with main effects and without (pure interactions), under Hypothesis 1 and 2. However, it 

appears that finding pure interactions is more difficult under Hypothesis 1. This is not 

surprising, given that Hypothesis 1 requires that a SNP group be part of a connected sub-

network, which limits the number of possible gene combinations. 
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Given the nature of the search algorithm there was some concern that the search may 

become focused on a small area of the gene network, and therefore a small area of the 

genome. To determine the distribution of these significant associations across the 

genome, the number of chromosomes, cytobands, genes, and SNPs present in the SNP 

groups were counted (Table 13). It’s clear that these multi-locus associations are made up 

of genes spread widely across the genome. For instance, in Run 30, three searches 

detected 169 significant associations that contained 164 different genes (174 SNPs) from 

23 chromosomes. 

 

Run Sig.  
Groups Chrs. Cytobands Genes SNPs 

28 37 19 37 39 51 
29 73 19 37 40 76 
30 169 23 119 164 174 
31 82 22 77 95 94 

Table 13. The most significant multi-locus associations contain SNPs that are spread 

across the entire genome. However, it appears that many of the SNP groups found during 

a single search are dominated by one or two SNPs that appear in multiple groups (Figure 

12). 

However, it is sometimes the case that a few SNPs dominate the most significant SNP 

groups. For instance, consider the situation where a SNP with a very strong main effect is 

directly connected to ten other SNPs in the interaction network. It is possible that the 

algorithm will report all ten of these SNP pairs (the one strongly associated SNP paired 

with each of its neighbors) as significant multi-locus associations (Figure 14). While the 

algorithm presented here is a good first step in the search for multi-locus associations, it 
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is obvious that the SNP groups found will have to be scrutinized before being considered 

for any further study.  

Following best practices for the analysis of GWAS data, we manually examined the 

clusters plots of SNPs in the most significant multi-locus associations. No anomalies 

were detected that would render the SNPs and corresponding associations as suspect.  

 

 
Figure 14. Some SNPs are found in multiple significant SNP groups. Here the columns 

represent each of the SNPs that were members of significant multi-locus associations 

found in the three searches of Run 28. In the first search (blue) there is one SNP that is 

involved in nearly all of the multi-locus associations (20 out of 23 SNP groups). 

Although the results shown so far are promising, it’s clear that the enormity of the 

search space poses a considerable challenge. One technique that may increase the 

chances of discovery is to assign scores to genes in the interaction network. Those genes 

with the highest scores (i.e., those thought to be involved in the disease of interest), and 

the SNPs located in or near them, will be preferentially chosen by the algorithm. While 
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this method may help to focus the search on the most promising genes, it does not reduce 

the search space outright.  

All searches done so far in this study were done with a uniform distribution of gene 

scores (i.e., all genes were equally likely to be selected by the algorithm). In the next 

stage of the algorithm evaluation, various types of evidence (linkage studies, association 

studies, gene expression studies, gene functions, and network connectivity) were used to 

score the genes in the network. Points were assigned based on the strength of the 

evidence for involvement in the disease (e.g., the number of studies that reported a 

particular finding). Details about how scores were assigned are given in the Methods 

section above, and references for all the studies used as evidence are listed in the 

Appendix. 

The distribution of cumulative gene scores (scores based on all of the evidence types 

combined) in the network follows an exponential distribution. Of the 12793 genes in the 

network, over half (6444 genes) are not implicated in bipolar disorder by any of the 

evidence compiled; 3643 genes have a score of 100 or greater (meaning they were 

implicated by a moderate amount of evidence); and only 45 genes have a score of 300 or 

greater (strong evidence for involvement in bipolar disorder). 

The genetics of bipolar disorder have been studied extensively, so there is a great deal 

of information about the genes and cellular processes that are hypothesized to play a role 

in the disease. But it is very difficult to say that what works in the case of bipolar disorder 

will also work for other diseases (or even other datasets). Here I will simply point out 

some examples that show the potential value of integrating prior knowledge about the 

disease when searching for multi-locus associations.  
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Three searches (Table 14) were performed for each evidence type alone, and another 

three searches were done with all evidence cumulatively (i.e., the scores from all 

evidence types were added together). P-values from the most significant multi-locus 

associations detected during these searches are shown in Figure 15. It’s difficult to make 

definitive conclusions from just a few searches, but it appears that linkage studies and 

gene association studies were helpful in guiding the search. The other evidence types 

were not helpful, and may actually have been detrimental. For instance, when the search 

was guided by network connectivity measures (focusing on hub genes) results appear 

worse than those achieved previously, without gene scores applied to the network. 

 

Population 
Size 

Generations Crossover
Rate 

Mutation 
Rate 

Selection Migrants 

100 3000 0.4 0.4 Hybrid 10 
Table 14. Parameter combination for large-scale searches with gene prioritization. All 

searches were done under Hypothesis 2. 

 
Figure 15. Not all evidence types were useful for guiding the search. Here we show the 

results from the searches done after gene prioritization. Each column represents the 
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results from three searches. L = linkage studies; G = gene association studies; D = 

differential expression; F = gene functions (GO terms); N = network connectivity (hubs); 

C = cumulative (all evidence types). 

When linkage regions previously associated with bipolar disorder were used to assign 

gene scores, the algorithm consistently found associations of genome-wide significance 

within 650 generations. Furthermore, of the 258 SNPs that were part of all the significant 

multi-locus associations discovered, 155 (60 %) lie within the linkage regions previously 

associated with the disease.  

When gene scores were based on previous implication in an association study, one 

search found a multi-locus association with the second smallest p-value (3.4 × 10-11) 

found among all the searches performed so far. This association contained one SNP with 

a main effect and another that is directly connected in the network to a gene (BDNF) that 

has been previously implicated in two association studies of bipolar disorder (see 

Appendix). 

To determine whether or not the gene scores were actually influencing the searches, 

gene scores from the top hits were compared between the searches done with the 

cumulative gene scores and Runs 30 and 31, which were done before gene prioritization. 

For SNPs from the top hits found by a search guided by cumulative gene scores, 86 % 

were in genes with a cumulative score of 100 or greater (moderate evidence of 

involvement in bipolar disorder). When gene scores were not used (Runs 30 and 31), only 

39 % and 44 % of top-hit SNPs, respectively, were in genes with cumulative scores of 

100 or greater. These results suggest that using a scoring method to prioritize the genes in 
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the interaction network may truly be able to improve the algorithm’s efficiency by 

focusing the search on a set of particularly promising genes. 

 

4.2 The GA vs. Random Search 

In the final stage of the algorithm evaluation an attempt was made to show the 

computational benefit gained from using the genetic algorithm. This was done by 

comparing the results achieved when searching the network using the GA versus the 

results achieved when using a purely random search (i.e., at each generation SNP groups 

were chosen randomly, without any information from previous generations). Three 

searches using the GA, and three random searches were performed. All searches were 

allowed to run for 10,000 generations, but were stopped early if a p-value of 5 × 10-10 

was reached.  

It’s clear that the GA was much more efficient in finding SNP groups with small p-

values compared to the purely random search. Although the random search was able to 

find SNP groups with p-values less than 5 × 10-10, the GA was able to find many more 

good solutions while performing far fewer statistical tests (Table 15). While fewer tests 

may not provide a statistical advantage for the GA, it definitely shows that the GA is able 

to find more good solutions given the same amount of computing time.  
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Search Type Total SNP 
Groups Tested 

Significant SNP Groups 
(p-value < 5 × 10-7) 

Genetic Algorithm 470467 168 
Random Search 1988215 43 

Table 15. The GA vs. Random Search. The GA was able to detect four times as many 

significant multi-locus associations, while performing four times fewer tests, compared to 

a purely random search. The numbers shown are the combined results of three searches. 

 

4.3  Multi-locus Associations Discovered 

The algorithm evaluation described above provided insight into the search algorithms 

capabilities, and provided a set of parameter values likely to produce the best possible 

results. But in the evaluation phase, none of the associations discovered were examined 

more closely to determine biological relevance—the focus was on the statistical 

properties of the results. The next step in the project was to apply the algorithm to the full 

data set (TGen and GAIN samples combined) in an attempt to find multi-SNP 

associations that might shed some light on the biology of bipolar disorder. 

Three separate searches were performed iteratively on the full data set. The first 

search was performed without the use of any prior knowledge about the genetics of 

bipolar disorder (i.e., information from previous linkage, association studies, etc. was not 

used to guide the search). The second search was identical to the first except that 14 

SNPs, which were detected as part of statistically significant multi-locus associations by 

the first search, and later determined to have bad cluster plots, were removed from the 

analysis. The third search used information from previous linkage and gene association 

studies to focus on a set of genes thought to be involved in bipolar disorder. As 
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mentioned previously, this information was merely used to increase the probability that 

certain genes (and therefore the SNPs mapped to those genes) are selected by the 

algorithm, but it does not actually remove any genes from the algorithm’s search space.  

In total, across all three searches, 1632639 SNP groups were tested for association. 

Although the searches discovered hundreds of multi-locus associations with chi-square  

p-values < 5 × 10-7, only the 25 SNP groups with the smallest p-values from each search 

were examined closely. None of these statistically significant multi-locus associations 

contained SNPs with individual p-values smaller than 5 × 10-7 (i.e., no main effects). 

This list of top hits was narrowed further by removing SNPs with bad cluster plots, 

and by discarding any SNP groups with very small numbers in their contingency table 

cells (most common in groups containing more than two SNPs). There was also a fair 

amount of overlap between SNP groups. For instance, when a SNP pair is strongly 

associated with the disease it is likely that a large number of triplets containing that pair 

will also be significantly associated. In most cases, the addition of the third SNP does not 

increase the strength of the association and so does not add any information. These 

uninformative triplets were discarded.  

The reporting of odds ratios in the context of multi-locus associations is a 

complicated matter. In the case of single SNPs it makes sense to set one of the 

homozygous genotypes as the reference genotype and then calculate odds ratios for the 

other two genotypes relative to that reference. But when looking at the joint effects of 

two SNPs there are four different double homozygous genotype combinations. Emily and 

colleagues chose to report odds ratios relative to the most common double homozygous 

genotype combination [22]. However, we preferred to first examine all contingency 
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tables—the joint contingency table, as well as the contingency tables for each individual 

SNP in the multi-locus association. By looking at the SNPs individually we were able to 

determine, for those with at least a weak association, which allele was the “risk allele”. 

Next we examined the joint contingency table to determine whether the multi-locus 

association fit an additive model (risk increases with the number of risk alleles) or a 

conditional model (the effect of one SNP depends on the genotype of a second SNP). 

Odds ratios were then reported in the context of these two specific models. 

The three SNP pairs that survived the data cleaning process and that fit either an 

additive or conditional model are discussed in detail below: 

 

The data suggests an additive or complementary effect between intronic SNPs in 

BMP7 (rs6127985) and CREB1 (rs10932201). Niether SNP was significantly associated 

with bipolar disorder in our data (chi-square p-values of 0.00282 and 0.000179, 

respectively). However, disease risk appears to increase with the cumulative number of 

risk alleles from the two SNPs (Table 20).  

 

BMP7 (rs6127985) 

Genotype Controls Cases OR 
1 959 1476 NS 
2 412 497 NS 
3 46 49 -- 

Table 16. Genotype frequencies for rs6127985. 1 = G/G, 2 = A/G, 3 = A/A. NS = Not 

Significant. (Chi-square p-value = 2.82 × 10-3) 
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CREB1 (rs10932201) 

Genotype Controls Cases OR 
1 369 658 1.28 (1.05, 1.56) 
2 747 952 NS 
3 304 423 -- 

Table 17. Genotype frequencies for rs10932201. 1 = G/G, 2 = A/G, 3 = A/A. (Chi-square 

p-value = 1.79 × 10-4) 

rs6127985 x rs10932201 

Genotype Controls Cases OR 
1,1 233 490 3.41 (1.72, 6.95) 
1,2 541 670 2.01 (1.03, 4.06) 
1,3 185 316 2.77 (1.39, 5.68) 
2,1 125 146 NS 
2,2 179 261 2.36 (1.18, 4.87) 
2,3 108 90 NS 
3,1 10 18 NS 
3,2 26 16 -- 
3,3 10 15 NS 

Table 18. Genotype combination frequencies for the SNP interaction. (Chi-square  

p-value = 7.48 × 10-10) 

Additive Model 

Risk Alleles Controls Cases OR 
0 10 15 -- 
1 134 106 NS 
2 374 595 NS 
3 666 816 NS 
4 233 490 NS 

Table 19. The ratio of cases to controls tends to increase with the burden of risk alleles 

from the two SNPs. (Chi-square test of trend in proportions p-value = 1.97 × 10-5) 
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Collapsed Additive Model 

Risk Alleles Controls Cases OR 
0 – 1 144 121 -- 
2 – 3 1040 1411 1.61 (1.24, 2.10) 

4 233 490 2.50 (1.86, 3.37) 

Table 20. When the groups are collapsed into low, moderate and high risk categories, the 

trend is much more apparent. (Chi-square test of trend in proportions p-value =  

2.86 × 10-11) 

An interactive effect between SNPs in GFRA1 (rs3781538) and ENPP2 (rs2305125) 

was found (Table 23), whereby the association of the SNP in GFRA1 is strengthened 

when conditioned upon the G/G genotype of the SNP in ENPP2.  

 

GFRA1 (rs3781538) 

Genotype Controls Cases OR 
1 524 650 -- 
2 697 1017 1.17 (1.01, 1.37) 
3 198 366 1.48 (1.20, 1.85) 

Table 21. Genotype frequencies for rs6127985. 1 = C/C, 2 = C/T, 3 = T/T. (Chi-square  

p-value = 2.82 × 10-3) 

ENPP2 (rs2305125) 

Genotype Controls Cases OR 
3 365 520 -- 
2 758 957 NS 
1 294 554 1.32 (1.08, 1.61) 

Table 22. Genotype frequencies for rs10932201. 1 = G/G, 2 = A/G, 3 = A/A. (Chi-square 

p-value = 1.79 × 10-4) 
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rs3781538 x rs2305125 

Genotype Controls Cases OR 
1,1 116 137 -- 
1,2 269 332 NS 
1,3 138 181 NS 
2,1 134 299 1.89 (1.35, 2.64) 
2,2 385 464 NS 
2,3 176 254 NS 
3,1 44 118 2.27 (1.46, 3.57) 
3,2 103 161 NS 
3,3 51 85 NS 

Table 23. Genotype combination frequencies for the SNP interaction. (Chi-square  

p-value = 3.26 × 10-7) 

Another interactive effect was detected between SNPs in SLC35F1 (rs1334834) and 

NDUFV2 (rs11661711), two genes involved in membrane transport (Table 26). In this 

case, the association with the SNP in SLC35F1 is strengthened when conditioned upon 

the A/A genotype of the SNP in NDUFV2. 

 

SLC35F1 (rs1334834) 

Genotype Controls Cases OR 
1 225 432 1.51 (1.24, 1.83) 
2 729 928 -- 
3 466 671 1.13 (0.97, 1.32) 

Table 24. Genotype frequencies for rs6127985. 1 = T/T, 2 = C/T, 3 = C/C. (Chi-square  

p-value = 9.70 × 10-5). 
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NDUFV2 (rs11661711) 

Genotype Controls Cases OR 
1 533 780 -- 
2 683 948 NS 
3 203 301 NS 

Table 25. Genotype frequencies for rs10932201. 1 = A/A, 2 = A/G, 3 = G/G. (Chi-square 

p-value = 0.7). 

rs1334834 x rs11661711 

Genotype Controls Cases OR 
1,1 69 174 2.34 (1.68, 3.28) 
1,2 119 211 1.64 (1.24, 2.19) 
1,3 37 46 NS 
2,1 295 318 -- 
2,2 324 466 1.33 (1.07, 1.66) 
2,3 109 143 NS 
3,1 169 287 1.57 (1.22, 2.03) 
3,2 240 270 NS 
3,3 57 113 1.84 (1.27, 2.68) 

Table 26. Genotype combination frequencies for the SNP interaction. (Chi-square  

p-value = 1.27 × 10-7). 

 

4.4 Replication Analysis 

Genotype data was obtained from the WTCCC for the purposes of replicating the 

three significant associations. Because of the different genotyping array used in the 

WTCCC study, it was only possible to examine the association with the SNPs in BMP7 

(rs6127985) and CREB1 (rs10932201) in this data set. Futhermore, the genotypes for 

SNP rs10932201 were arrived at through imputation, as this SNP was not directly 
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genotyped by the Affymetrix 500K Mapping array. Only genotypes with a call 

probability greater than 0.9 were included in the analysis.  

Neither SNP had even a borderline association with the disease in the WTCCC data, 

as was seen in the BiGS data. Also, for SNP rs6127985 the A allele would be considered 

the “risk allele” (the allele more common in cases than controls) in the WTCCC data. The 

opposite allele (G) was considered the “risk allele” in the BiGS data set. However, this 

discrepancy does not automatically discount this SNP. Because these SNPs should be 

considered merely as markers for a causal variant, it is possible that different marker 

alleles have become correlated with the true causal allele in different populations.  

Despite this difference, there does appear to be a trend towards higher risk of disease 

with a greater burden of “risk alleles” (Table 30). While this is far from strong support 

for this association, it does suggest that SNPs in BMP7 and CREB1 should remain 

candidates for susceptibility markers in bipolar disorder. And an additive effect between 

these genes should be examined further in other data sets.  

 

BMP7 (rs6127985) from WTCCC 

Genotype Controls Cases OR 
1 1015 1305 -- 
2 383 476 NS 
3 36 54 NS 

Table 27. Genotype frequencies for rs6127985. 1 = G/G, 2 = A/G, 3 = A/A. (Chi-square 

p-value = 0.69) 
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CREB1 (rs10932201) from WTCCC 

Genotype Controls Cases OR 
1 413 553 NS 
2 643 911 1.23 (1.02, 1.49) 
3 309 354 -- 

Table 28. Genotype frequencies for rs10932201. 1 = G/G, 2 = A/G, 3 = A/A. (Chi-square 

p-value = 0.074) 

Additive Model from WTCCC 

Risk Alleles Controls Cases OR 
0 206 220 -- 
1 524 709 1.27 (1.01, 1.59) 
2 441 553 NS 
3 125 171 NS 
4 7 19 2.53 (1.00, 7.29) 

Table 29. The ratio of cases to controls tends to increase with the burden of risk alleles 

from the two SNPs, although the trend is not statistically significant. (Chi-square test of 

trend in proportions p-value = 0.13) 

Collapsed Additive Model from WTCCC 

Risk Alleles Controls Cases OR 
0 206 220 -- 

1 – 2 965 1262 1.22 (0.99, 1.52) 
3 – 4 132 190 1.34 (1.00, 1.83) 

Table 30. When the groups are collapsed into low, moderate and high risk categories, the 

trend is more apparent. Note: The categories are defined differently than in the BiGS data 

to avoid having small numbers in any of the cells. (Chi-square test of trend in proportions  

p-value = 0.036) 
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Unfortunately, it was not possible to test for the other two associations in the 

WTCCC data, because two of the SNPs (one from each SNP-pair) were not genotyped 

(or imputed) in the WTCCC study. An attempt was made to use adjacent SNPs as 

surrogates for the actual SNPs of interest. However, when these surrogate associations 

were tested, neither association was significant. Negative results from these tests do not 

necessarily mean a negative result for the actual SNPs of interest, and therefore they do 

not provide any useful information. Moreover, when these adjacent SNPs were examined 

more closely it was evident they were not significantly correlated with the SNPs of 

interest.  

Additional replication of all associations will need to be done in other data sets.  

 

4.5 Supporting Evidence for the Associations 

The replication analysis done with the WTCCC data set failed to provide much 

support for the associations detected in the BiGS data. Still, there is a wealth of 

information in the literature about the genetics and pathophysiology of bipolar disorder 

that may be able lend additional evidence for the implicated genes, and shed some light 

on the possible roles they play in the disease. A thorough search of the literature revealed 

a number of studies that have previously associated the genes of interest with bipolar 

disorder, and others which provide an explanation for how these genes may be involved 

in the disease.  

BMP7 and CREB1: There is evidence that both BMP7 and CREB1 play a role in 

neuron development, specifically axon guidance and axonogenesis [40, 41]. In addition, 

both genes have been shown to have significant or borderline differential expression in 
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post-mortem brain tissues of bipolar disorder patients [42, 30]. One study suggests a 

borderline association between BMP7 and major depressive disorder [43], while other 

studies suggest CREB1 is associated with mood disorders and lithium response [44, 45]. 

The complementary nature of BMP7—a member of the TGF-beta superfamily—and 

CREB1 can possibly be explained by the fact that they are both downstream components 

of the signaling cascade activated by brain-derived neurotrophic factor (BDNF) (Figures 

16 and 17) [46, 47, 48, 49, 50]. 

 

 
Figure 16. The BDNF signaling cascade. CREB is a downstream target of the signaling 

pathway, and is believed to activate the expression of genes involved in neurogenesis and 

cell survival. Figure taken from Shaltiel, et al. (2007) [50]. 
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Figure 17. BDNF-induced expression of BMP7. Figure taken from Ortega, et al. (2010) 

[47]. 

GFRA1 and ENPP2: While no direct biochemical relationship between these genes 

has yet been described, both genes do appear to be involved in the same biological 

processes, namely neuroprotection.  

ENPP2 encodes an enzyme responsible for the production of lysophosphatidic acid 

(LPA), which is involved in a number of processes possibly relevant to bipolar disorder, 

such as myelination and calcium transport [51, 52]. A number of studies have also shown 



57 

LPA to be released after CNS injury, and another has shown LPA to be present in higher 

concentrations in the CSF of Parkinson’s disease patients [53, 54, 55]. Both findings 

suggest a role in the response to brain injury or nuerodegenerative disease. Additionally, 

one study has shown ENPP2 to be differentially expressed in the temporal cortex of 

major depressive disorder patients [56]; it is also within a linkage region (8q24) that has 

been repeatedly implicated in bipolar disorder [57, 58, 59, 60, 61]. 

GFRA1 is a receptor for glial cell line-derived neurotrophic factor (GDNF), which 

has long been known to be involved in the protection of dopaminergic and motor 

neurons. A number of studies have shown that GDNF promotes survival and can even 

restore damaged or dying dopamine neurons [62, 63, 64, 65]. There is some evidence for 

lower expression and lower serum levels of GDNF in bipolar patients [66, 67]. 

The interactive effect of GFRA1 and ENPP2 could possibly be explained by their 

involvement in the activation of phosphatidylinositol 3-kinase (PI3K) (Figures 18 and 19) 

[68, 69, 70]. 
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Figure 18. The GDNF signaling cascade. The signaling molecule PI3K is a downstream 

target of the pathway. Figure taken from Bahuau, et al. (2001) [69]. 
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Figure 19. The LPA signaling cascade. The signaling molecule PI3K is shown to play an 

intermediary role in this pathway also. Figure taken from Moolenaar, et al. (2004) [70]. 

SLC35F1 and NDUFV2: Although no specific function has been identified for 

SLC35F1, it belongs to a family of nucleotide-sugar transporters, and has been found to 

be highly expressed in brain tissue from both adult and fetal samples [71]. SLC35F1 lies 

within a linkage region (6q22) previously associated with bipolar disorder [58, 72, 73, 

74], and was found to have at least borderline differential expression in the dorsolateral 

prefrontal cortex of bipolar patients [30].  

NDUFV2 encodes a subunit of the mitochondrial complex 1. This gene has been 

implicated in bipolar disorder previously [75, 76, 77, 78], and resides in a linkage region 

(18p11.2) associated with bipolar disorder in multiple studies [79, 80, 81, 82]. There is 

some evidence that mutations in a number of the genes encoding subunits of complex 1 
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are associated with neurological disorders, including Parkinson’s disease. And recently, 

Andreazza and colleagues found a significant decrease in complex 1 activity in the 

prefrontal cortex of bipolar patients [83]. 
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5 Discussion & Conclusions 

Detection of multi-locus associations is becoming an important way to extend the 

amount of information gained from a GWAS. While the method I have presented shows 

promise, this is an area of research that remains relatively unexplored, and there are a 

number of challenges that still need to be addressed.  

Determining the threshold for statistical significance has always been a major issue in 

genomic studies. In 1995, Lander and Kruglyak provided an important summary of the 

statistical issues relevant to genetic studies of complex traits. And while their discussion 

was aimed specifically at genome-wide linkage analyses, their arguments are directly 

applicable to GWAS. Following Lander and Kruglyak’s description of a linkage study, 

the process of a genome-wide association study can be demonstrated by three fairly 

simple steps: 1) perform a scan of a large number of SNPs across the entire genome, 2) 

calculate an appropriate measure of association at each SNP position, and 3) identify 

SNPs with association measures that deviate substantially from the null hypothesis of no 

association. However simple these three steps appear, the crucial question remains: since 

the measure of association “fluctuates substantially just by chance across an entire 

genome scan, what constitutes a ‘significant’ deviation?” As Lander and Kruglyak 

explain, it’s clear that the true significance (or importance) of any particular measure of 

association, say a p-value of 5 × 10-7, depends on how often such a p-value occurs by 

chance across the entire genome [84]. 

By convention, a false-positive rate of 5 % is considered acceptable, and is often used 

in biological and epidemiological research. When multiple statistical tests are performed 
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on the same data set, the probability of a false-positive test result occurring increases, and 

the threshold for statistical significance must be adjusted accordingly. For instance, in the 

case of a GWAS, where 106 SNPs are tested for association, a significance level of  

5 × 10-8 will provide the same 5 % probability of a false positive occurring in the analysis 

(i.e., the 5 × 10-8 threshold provides a 95 % probability that no false-positive results will 

occur in the entire analysis) [85]. 

Because of the varying number of SNPs analyzed in GWAS, the conventional 

thresholds used have ranged between 10-5 and 10-8, with the more stringent significance 

levels being more common. As Lander and Kruglyak pointed out in 1995, the selection of 

a standard threshold for statistical significance would have important consequences for a 

relatively young area of research. Too lax a threshold would flood the field with false-

positive results, and would have a negative impact on the credibility of these types of 

studies. Too strict a threshold would cause initial studies to fail to produce meaningful 

results, and might inhibit progress in the field. However, thanks to improvements in 

technology over the past decade, GWAS are being conducted routinely, and hundreds, if 

not thousands, of genetic associations have been reported in the literature. We now have 

the opportunity to examine the overall outcome of the application of these theoretical 

thresholds for statistical significance. Has the application of the standard threshold 

produced a high proportion of replicable results, or has it led to the reporting of large 

numbers of false-positive associations? 

The Human Genome Research Institute maintains a database of all published large-

scale GWAS, which includes 42 diseases (or traits) that have been examined by five or 

more studies [2]. In an attempt to estimate the probability of replication for genetic 
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associations at various levels of statistical significance, 5 of the 42 well studied 

diseases/traits were chosen randomly (breast cancer, Crohn’s disease, Parkinson’s 

disease, LDL cholesterol, and smoking behavior). For each disease, the proportion of 

gene associations (at various significance levels) that were reported in at least two studies 

was recorded, and the results were averaged across the five diseases (Figure 20). 

 

 
Figure 20. The probability of a genetic association being reported in multiple studies 

increases with the statistical significance of the association.  

As expected, the likelihood of replication increases with smaller and smaller p-values. 

However, it is interesting to note that for associations with p-values near what is 

considered the standard threshold for statistical significance (between 10-5 and 10-11), the 

probability of being reported in two or more studies is less than 50 %. In fact, it appears 

that a p-value smaller than 10-15 may be required for there to be a high level of 

confidence in an association.  
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The question remains whether or not the significance threshold used for single-SNP 

associations is appropriate for studies looking for multi-locus associations (SNP 

interactions). There are two things that make the search for multi-locus associations 

different from the standard GWAS: 1) the enormous amount of combinatorial 

complexity, especially when looking for higher-order SNP interactions (i.e., interactions 

among groups of more than two SNPs), means that the number of possible statistical tests 

is increased substantially, and 2) the high level of correlation among statistical tests due 

to that fact that many SNP groups will have individual members in common. The first 

observation suggests that the threshold for statistical significance may need to be more 

stringent for multi-locus associations than for single SNP associations, simply due to the 

increased number of statistical tests. However, because the tests are not independent, it 

may not be necessary to adjust the significance threshold for all possible SNP 

combinations. Emily and collegues calculated a “number of effective tests”, which takes 

into account the correlation among SNP groups [22]. Although they tested approximately 

3000000 SNP pairs for association in the WTCCC data set, they concluded that the 

effective number of tests ranged from 506173 to 600010 across the seven diseases in the 

data set, which correspond to significance thresholds very similar to those used in a 

standard GWAS (between 8.3 × 10-8 and 9.9 × 10-8).  

It is difficult to estimate the null distribution of p-values—those expected to occur by 

chance—when searching for multi-locus associations. I have presented one possible 

method, which involves using simulated genotype data, but there are other options as 

well. Some have suggested that certain computation-based tests, such as permutation 

tests, may be appropriate for addressing the huge multiple-testing problem of large-scale 
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GWAS [86]. The computational burden of permuting large data sets (i.e., randomly 

assigning case/control labels) and performing multi-locus association analyses for each 

permutation will be very heavy. However, this type of analysis may have benefits over 

the use of idealized simulated data. Cross-validation, or sample splitting methods, may 

also give us some insight into the distribution of p-values expected by chance, and 

therefore may help determine an appropriate threshold for statistical significance in 

multi-locus association studies [19].  

Although not many studies have done full-scale, genome-wide searches for multi-

locus associations, it appears that the significance thresholds used so far for reporting 

multi-locus associations have not been substantially different than those used for single-

SNP associations (refer to examples in section 1.3). But interactions among SNPs are 

becoming an area of focus for researches exploring the genetic component of complex 

diseases, and it is only a matter of time before these types of studies become 

commonplace. The more data sets that are explored in this way, the better prepared we 

will be to interpret the significance of the results.  

 

Beyond the question of statistical significance, the search for multi-locus associations 

also presents a considerable computational challenge, particularly when looking for 

higher-order interactions among SNPs. As seen from the results presented, one of the 

limitations of using of a genetic algorithm to search for multi-locus associations is the 

inconsistency of the results. While the algorithm may be able to reliably find good 

solutions (i.e., SNP groups with small p-values), the solutions may differ from one search 

to the next. Not being able to definitively say that all significant multi-locus associations 
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have been found can be somewhat troubling. However, as a hypothesis generating 

technique the GA is clearly successful. 

Moreover, we have suggested a number of ways to increase the consistency and 

thoroughness of the algorithm. For example, allowing the algorithm to run for an 

extended period of time will undoubtedly make for a more thorough search. And 

assigning scores to the genes in the interaction network—highlighting those genes 

thought to be most promising—is able to focus the algorithm on a smaller search space. 

Given the large number of genes and genetic variants that are now commonly 

examined in a single genetic study, gene prioritization has become an important area of 

research. Gene prioritization is a significant part of most genomic studies both after the 

primary analysis is done—such as narrowing down a list of dozens, possibly hundreds, of 

genes located within a linkage region—and as preparation before an analysis is done—

such as testing for association among a limited set of candidate genes, rather than testing 

all genes across the genome.  

There are two techniques that have been commonly used for gene prioritization, and 

are particularly relevant for multi-locus analyses. The first is the network-based 

approach, most commonly utilizing protein-protein interaction data, although other types 

of relationships between genes or proteins can be used (e.g., functional information). For 

the network-based approach, the hypothesis is that genes directly connected in the 

interaction network are more likely to have similar properties (e.g., functions, disease 

associations, etc.) than genes that are not connected in the network. Therefore, given a set 

of known genes, it is possible to use the relationships defined by the network to predict 

an additional set of candidate genes [87, 88]. 
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The second technique is to perform a multi-stage analysis. In the first stage, all genes 

are analyzed individually, either in the same data set or a separate one. The results from 

this first stage are then used to produce a smaller set of candidate genes for the analysis in 

the second stage [14]. Alternatively, rather than simply using the results of the first-stage 

analysis to exclude genes from further study, the first-stage results could be used to guide 

a search for multi-locus associations in the second stage [89].  

The algorithm presented in this dissertation is able to incorporate both of these gene 

prioritization techniques. And while it has shown promise as a hypothesis generating 

method, even without incorporating any disease-specific information, I believe it 

represents an ideal method for secondary analyses—mining available data sets for multi-

locus associations after a group of candidate genes (or pathways, or cellular processes, 

etc.) have already been identified.  

The reduced search space that comes with secondary analyses will address, to some 

extent, the computational and statistical issues discussed earlier. However, it is important 

to remember that any candidate genes fed into the algorithm can (and probably should) be 

chosen with a more permissive threshold than is used conventionally. This will ensure 

that the search capabilities of the algorithm are fully exploited, and it will also ensure that 

the possibility of discovering multi-locus associations without main effects is not ignored.  

The main advantage of the method presented here is its flexibility. The algorithm is 

able to search for multi-locus associations within a full-scale GWAS dataset, and can 

search for interactions among any number of SNPs (of course the size of the SNP group 

is limited by the study sample size, since large SNP groups will result in very sparse 

contingency tables). And testing different genetic models or hypotheses is merely a 
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matter of changing the fitness function within the GA. For instance, rather than looking 

for interactions between SNPs, one could easily look at the additive risk of multiple 

alleles, similar to the analysis done by Baum and colleagues [14].  

We have shown that our algorithm is able to discover significant multi-locus 

associations, even among SNPs that are not strongly associated with the disease. There 

has been some controversy about the idea of gene interactions without main effects, but 

our results and others [90] suggest the possibility of such interactions should not be 

ignored. This is true for the simple fact that any threshold used to define a significant 

main effect is arbitrary, and using such a threshold necessarily excludes any interactions 

that may be found among SNPs with a weak but real association with the disease.  

There are numerous ways that the genetic algorithm described here can be adapted to 

fit the needs of researchers interested in similar problems, and I believe it has the 

potential to extract a great deal of information from the wealth of large-scale GWAS data 

already available. 

 

Apart from evaluating the algorithm and showing the feasibility of performing a 

large-scale search for multi-locus associations, the second goal of this dissertation was to 

apply the method to a real-world dataset in the hope of finding biologically meaningful 

results that may provide insight into the processes involved in bipolar disorder.  

From this real-world analysis a number of lessons were learned. The ability to 

discover significant multi-SNP associations, even in the absence of main effects, was 

confirmed. However, as the top hits were examined more closely, it became clear that 

interpreting how the effects of each individual SNP were combining to produce a joint 
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effect was far from straightforward in most cases. Many of the multi-SNP associations 

that achieved statistical significance appeared to be the result of small numbers in the 

contingency table cells. And very few of the associations demonstrated an obvious 

additive or conditional effect. 

By incorporating more specific genetic models directly into the algorithm, it may be 

possible to remove much of the noise (i.e., false positives, or low confidence 

associations) from the results. This can be done fairly easily by improving the GA’s 

fitness function. Rather than using a contingency table with all possible genotype 

combinations, the fitness function could include a test of trend (for an additive model), or 

specific conditional models (i.e., data stratification).  

Finally, it was clear that sample size was a limitation when looking for associations 

with more than two SNPs. Larger sample sizes, or different analysis techniques, will be 

needed to avoid false positives due to small numbers in the contingency table cells (i.e., 

very rare genotype combinations). Although, it may be possible to alleviate this problem 

somewhat by restricting the analysis to only very common SNPs, such as those with a 

minor allele frequency greater than 10 %.  

In terms of the biological significance of the multi-SNP associations discovered, it is 

interesting that all three of the SNP interactions discussed above have some relation to 

Parkinson’s disease and, in turn, neuroprotection. This suggests there may be disease 

processes in common between bipolar disorder and Parkinson’s disease. Indeed, at least 

two studies have shown an increase risk for developing Parkinson’s disease among 

patients with affective disorders [91, 92]. It is possible that defects in neuroprotective 

processes, and an inability to correct the damage or perturbation caused by certain 
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exposures (substance abuse, psychological trauma, etc.), may contribute to a 

susceptibility to bipolar disorder.  
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6 Future Work 

Developing methods for revealing the genetic component of complex diseases is an 

exciting area of research. And the polygenic view has the potential to produce significant 

advances in our understanding. There are a number of areas that hold particular promise 

and may yield important results in the near future.  

One of the most serious issues facing GWAS is the lack of reproducibility, which is 

thought to be due, in part, to heterogeneity—in terms of both genetic risk factors and 

phenotypes—among patient populations. Addressing this problem of heterogeneity will 

be important for understanding the genetics of all common complex diseases. This has 

been particularly apparent from the studies of bipolar disorder.  

Making an effort to carefully and precisely define the phenotypic characteristics of 

cases in genetic studies will be a necessary step for improving agreement across studies. 

And collaboration across disciplines will be needed for understanding what phenotypic 

characteristics will be most important.  

Exploring the question of genetic heterogeneity will require creative new analysis 

techniques. It will be crucial to move beyond the search for associations with single DNA 

variants, and towards associations with entire biochemical pathways or modules of genes 

involved in a common cellular process. This type of analysis has already begun to be 

developed and has been referred to as “network-based association studies” [93, 94]. The 

goal of these studies is to search a large gene interaction network to find sub-networks 

associated with the trait of interest. For example, to find sub-networks containing a 
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higher proportion of genes individually associatiated with the trait than would be 

expected by chance (i.e., clusters of associated genes). 

However, as association studies progress from single SNPs to entire pathways and 

sub-networks, it will be important to make a special effort to focus on the interpretability 

of results. Making sure studies incorporate specific models of how the effects of multiple 

genes can combine to produce a disease state is a good way to increase the potential that 

result can be translated into information that is clinically relevant. 

Finally, extending association studies even further will be possible by including 

different types of genetic variation such as CNVs, rare variants, insertions and deletions, 

etc. New sequencing technologies will undoubtedly allow for these types of advances to 

be made. 

 

Many of these techniques are natural extensions for the work presented in this 

dissertation. And given the flexibility of the network-guided genetic algorithm, I hope to 

be able to incorporate many of these techniques—from performing analyses with 

alternative phenotype definitions, to utilizing new statistical methods adapted for 

network-based association studies—into my future research endeavors. 

 

 

  



73 

 

 References 

1. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create 

synthetic genome-wide associations. PLoS Biol. 2010 Jan 26, 8(1):e1000294. 

PMID: 20126254 

2. Hindorff LA, Junkins HA, Mehta JP, and Manolio TA. A Catalog of Published 

Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies. 

Accessed April, 2011. 

3. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, 

SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable 

C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. 

Science. 2005 Apr 15, 308(5720):385-9. PMID: 15761122 

4. Wellcome Trust Case Control Consortium. Genome-wide association study of 

14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 

Jun 7, 447(7145):661-78. PMID: 17554300 

5. Craddock N, Khodel V, Van Eerdewegh P, Reich T. Mathematical limits of 

multilocus models: the genetic transmission of bipolar disorder. Am J Hum Genet. 

1995 Sep, 57(3):690-702. PMID: 7668299 

6. Kohn Y. Focus on rare genetic variants in bipolar disorder: how outliers help 

understand complex disorders. International Journal of Neuropsychopharmacology. 

2005 Dec, 8(4):491-493. PMID: 16202180 

7. Meyer J, Johannssen K, Freitag CM, Schraut K, Teuber I, Hahner A, Mainhardt C, 

Mössner R, Volz HP, Wienker TF, McKeane D, Stephan DA, Rouleau G, Reif A, 



74 

Lesch KP. Rare variants of the gene encoding the potassium chloride co-transporter 

3 are associated with bipolar disorder. International Journal of 

Neuropsychopharmacology. 2005 Dec, 8(4):495-504. PMID: 16098236 

8. Alaerts M, Del-Favero J. Searching genetic risk factors for schizophrenia and 

bipolar disorder: learn from the past and back to the future. Hum Mutat. 2009 Aug, 

30(8):1139-52. PMID: 19626716 

9. Tam GW, Redon R, Carter NP, Grant SG. The role of DNA copy number variation 

in schizophrenia. Biol Psychiatry. 2009 Dec 1, 66(11):1005-12. PMID: 19748074 

10. Goodwin FK and Jamison KR. Manic-Depressive Illness: Bipolar Disorders and 

Recurrent Depression, 2nd edition. New York: Oxford University Press, 2007. 

11. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, 

Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, 

Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm 

LP, Steinhart AH, Targan SR, Xavier RJ; NIDDK IBD Genetics Consortium, 

Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, 

Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos 

M, Vermeire S, Louis E; Belgian-French IBD Consortium; Wellcome Trust Case 

Control Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad 

T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam 

R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, 

Parkes M, Georges M, Daly MJ. Genome-wide association defines more than 30 

distinct susceptibility loci for Crohn's disease. Nat Genet. 2008 Aug, 40(8):955-62. 

PMID: 18587394 



75 

12. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, 

Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, 

Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, 

Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, 

Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, 

McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, 

Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, 

Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, 

McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, 

Owen MJ, Purcell SM, Sklar P, Craddock N; Wellcome Trust Case Control 

Consortium. Collaborative genome-wide association analysis supports a role for 

ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008 Sep, 40(9):1056-8. 

PMID: 18711365 

13. Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, Noethen MM, Craddock 

N, McMahon FJ. Meta-analysis of two genome-wide association studies of bipolar 

disorder reveals important points of agreement. Mol Psychiatry. 2008 May, 

13(5):466-7. PMID: 18421293 

14. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, 

Cichon S, Rietschel M, Nöthen MM, Georgi A, Schumacher J, Schwarz M, Abou 

Jamra R, Höfels S, Propping P, Satagopan J, Detera-Wadleigh SD, Hardy J, 

McMahon FJ. A genome-wide association study implicates diacylglycerol kinase 

eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol 

Psychiatry. 2008 Feb, 13(2):197-207. PMID: 17486107 



76 

15. Manji HK, Lenox RH. Signaling: cellular insights into the pathophysiology of 

bipolar disorder. Biol Psychiatry. 2000 Sep 15, 48(6):518-30. PMID: 11018224 

16. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher 

PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation 

contributes to risk of schizophrenia and bipolar disorder. Nature. 2009 Aug 6, 

460(7256):748-52. PMID: 19571811 

17. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, 

McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs 

GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, 

Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck 

M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick 

EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM. Whole-genome 

association study of bipolar disorder. Mol Psychiatry. 2008 Jun, 13(6):558-69. 

PMID: 18317468 

18. Nunkesser R, Bernholt T, Schwender H, Ickstadt K, Wegener I. Detecting high-

order interactions of single nucleotide polymorphisms using genetic programming. 

Bioinformatics. 2007 Dec 15, 23(24):3280-8. PMID: 18006552. 

19. Gayán J, González-Pérez A, Bermudo F, Sáez ME, Royo JL, Quintas A, Galan JJ, 

Morón FJ, Ramirez-Lorca R, Real LM, Ruiz A. A method for detecting epistasis in 

genome-wide studies using case-control multi-locus association analysis. BMC 

Genomics. 2008 Jul 31, 9:360. PMID: 18667089. 



77 

20. Zhang X, Huang S, Zou F, Wang W. TEAM: efficient two-locus epistasis tests in 

human genome-wide association study. Bioinformatics. 2010 Jun 15,26(12):i217-

27. PMID: 20529910. 

21. Moore JH, White BC. Genome-wide Genetic Analysis Using Genetic 

Programming: The Critical Need for Expert Knowledge. Genetic Programming 

Theory and Practice IV, R. Riolo, T. Soule, B. Worzel, eds., Springer, New York, 

pp. 11-28, 2007. 

22. Emily M, Mailund T, Hein J, Schauser L, Schierup MH. Using biological networks 

to search for interacting loci in genome-wide association studies. Eur J Hum Genet. 

2009 Oct, 17(10):1231-40. PMID: 19277065 

23. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, Byerley W, 

Coryell W, Craig D, Edenberg HJ, Eskin E, Foroud T, Gershon E, Greenwood TA, 

Hipolito M, Koller DL, Lawson WB, Liu C, Lohoff F, McInnis MG, McMahon FJ, 

Mirel DB, Murray SS, Nievergelt C, Nurnberger J, Nwulia EA, Paschall J, Potash 

JB, Rice J, Schulze TG, Scheftner W, Panganiban C, Zaitlen N, Zandi PP, Zöllner 

S, Schork NJ, Kelsoe JR. Genome-wide association study of bipolar disorder in 

European American and African American individuals. Mol Psychiatry. 2009 Aug, 

14(8):755-763. PMID: 19488044 

24. Smith EN, Craig DW, Schork NJ, Kelsoe JR, The Bipolar Genome Study. Genome-

wide Association of Bipolar Disorder Suggests an Enrichment of True Associations 

in Regions Near Exons. (73), Presented at the 60th Annual Meeting of the 

American Society of Human Genetics, Nov. 2, 2010, Washington, D.C. 



78 

25. Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration, normalization, and 

genotype calls of high-density oligonucleotide SNP array data. Biostatistics. 2007 

Apr, 8(2):485-99. PMID: 17189563. 

26. Nurnberger JI Jr, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, 

Harkavy-Friedman J, Severe JB, Malaspina D, Reich T. Diagnostic interview for 

genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. 

Arch Gen Psychiatry. 1994 Nov, 51(11):849-59. PMID: 7944874 

27. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, 

Roth A, Simonovic M, Bork P, von Mering C. STRING 8--a global view on 

proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009 

Jan, 37(Database issue):D412-6. PMID: 18940858. 

28. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, 

Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon 

L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, 

Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, 

Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster 

M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, 

White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, 

Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek 

P. Ensembl 2009. Nucleic Acids Res. 2009 Jan, 37(Database issue):D690-7. PMID: 

19033362. Available at: www.ensembl.org. Accessed May, 2009. 



79 

29. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. 

Nature Genet. 2000 May, 25(1):25-29. Available at: www.geneontology.org. 

Accessed May, 2009. 

30. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene 

expression analysis of bipolar disorder reveals downregulation of the ubiquitin 

cycle and alterations in synaptic genes. Mol Psychiatry. 2006 Oct, 11(10):965-78. 

31. Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J, Mowry B, 

Hayward N. Expression profiling in monozygotic twins discordant for bipolar 

disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry. 

2007 Sep, 12(9):815-25. PMID: 17440432 

32. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein 

networks. Nature. 2001 May 3, 411(6833):41-2. PMID: 11333967  

33. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao 

W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, 

Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS. Analysis of oncogenic 

signaling networks in glioblastoma identifies ASPM as a molecular target. Proc 

Natl Acad Sci U S A. 2006 Nov 14, 103(46):17402-7. PMID: 17090670 

34. Holland JH, Adaptation in Natural and Artificial Systems, 2nd Edition. MIT Press, 

1992. 

35. Forrest S. Genetic algorithms: principles of natural selection applied to 

computation. Science. 1993 Aug 13, 261(5123):872-8. PMID: 8346439  



80 

36. Man KF, Tang KS, Kwong S. Genetic algorithms: concepts and applications [in 

engineering design]. IEEE Transactions on Industrial Electronics. 1996 Oct, 

43(5):519-534. 

37. van Batenburg FH, Gultyaev AP, Pleij CW. An APL-programmed genetic 

algorithm for the prediction of RNA secondary structure. J Theor Biol. 1995 Jun 7, 

174(3):269-80. PMID: 7545258 

38. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of 

dense genetic maps using sparse gene flow trees. Nat Genet. 2002 Jan, 30(1):97-

101. PMID: 11731797  

39. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, 

Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome 

association and population-based linkage analyses. Am J Hum Genet. 2007 Sep, 

81(3):559-75. PMID: 17701901. 

40. Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR. Intra-axonal 

translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell 

Biol. 2008 Feb;10(2):149-59. Erratum in: Nat Cell Biol. 2008 Mar, 10(3):370. 

PMID: 18193038 

41. Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ. BMP gradients steer 

nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on 

ADF/cofilin. J Cell Biol. 2007 Jul 2, 178(1):107-19. PMID: 17606869 

42. Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G, Guitart X, Manji HK. Altered levels 

of extracellular signal-regulated kinase signaling proteins in postmortem frontal 



81 

cortex of individuals with mood disorders and schizophrenia. J Affect Disord. 2010 

Jul, 124(1-2):164-9. PMID: 19913919 

43. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, Reinalda 

MS, Slager SL, McGrath PJ, Hamilton SP. A genomewide association study of 

citalopram response in major depressive disorder. Biol Psychiatry. 2010 Jan 15, 

67(2):133-8. PMID: 19846067 

44. Mamdani F, Alda M, Grof P, Young LT, Rouleau G, Turecki G. Lithium response 

and genetic variation in the CREB family of genes. Am J Med Genet B 

Neuropsychiatr Genet. 2008 Jun 5, 147B(4):500-4. PMID: 18189280 

45. Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, 

SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and 

antidepressant response in Mexican-Americans. Mol Psychiatry. 2009 Dec, 

14(12):1105-18. PMID: 19844206 

46. Juhasz G, Dunham JS, McKie S, Thomas E, Downey D, Chase D, Lloyd-Williams 

K, Toth ZG, Platt H, Mekli K, Payton A, Elliott R, Williams SR, Anderson IM, 

Deakin JF. The CREB1-BDNF-NTRK2 Pathway in Depression: Multiple Gene-

Cognition-Environment Interactions. Biol Psychiatry. 2011 Jan 5. PMID: 21215389 

47. Ortega JA, Alcántara S. BDNF/MAPK/ERK-induced BMP7 expression in the 

developing cerebral cortex induces premature radial glia differentiation and impairs 

neuronal migration. Cereb Cortex. 2010 Sep, 20(9):2132-44. PMID: 2003854 

48. Cox S, Harvey BK, Sanchez JF, Wang JY, Wang Y. Mediation of BMP7 

neuroprotection by MAPK and PKC IN rat primary cortical cultures. Brain Res. 

2004 Jun 4, 1010(1-2):55-61. PMID: 15126117 



82 

49. Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, 

Krieglstein J. Transforming growth factor-beta 1 increases bad phosphorylation and 

protects neurons against damage. J Neurosci. 2002 May 15, 22(10):3898-909. 

PMID: 12019309 

50. Shaltiel G, Chen G, Manji HK. Neurotrophic signaling cascades in the 

pathophysiology and treatment of bipolar disorder. Curr Opin Pharmacol. 2007 

Feb, 7(1):22-6. PMID: 1705533 

51. Fukushima N. LPA in neural cell development. J Cell Biochem. 2004 Aug 1, 

92(5):993-1003. PMID: 15258920 

52. Uemura T, Green M, Corson TW, Perova T, Li PP, Warsh JJ. Bcl-2 SNP rs956572 

associates with disrupted intracellular calcium homeostasis in bipolar I disorder. 

Bipolar Disord. 2011 Feb, 13(1):41-51. PMID: 21320251 

53. Goldshmit Y, Munro K, Leong SY, Pébay A, Turnley AM. LPA receptor 

expression in the central nervous system in health and following injury. Cell Tissue 

Res. 2010 Jul, 341(1):23-32. PMID: 20495828 

54. Okudaira S, Yukiura H, Aoki J. Biological roles of lysophosphatidic acid signaling 

through its production by autotaxin. Biochimie. 2010 Jun, 92(6):698-706. PMID: 

20417246 

55. Guo J, Sun Z, Xiao S, Liu D, Jin G, Wang E, Zhou J, Zhou J. Proteomic analysis of 

the cerebrospinal fluid of Parkinson's disease patients. Cell Res. 2009 Dec, 

19(12):1401-3. PMID: 19949427 

56. Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for 

signaling and oligodendroglial abnormalities in the temporal cortex from patients 



83 

with major depressive disorder. Mol Psychiatry. 2005 Mar, 10(3):309-22. PMID: 

15303102 

57. McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG, Addington AM, 

MacKinnon DF, Potash JB, Mahoney AT, Chellis J, Huo Y, Swift-Scanlan T, Chen 

H, Koskela R, Stine OC, Jamison KR, Holmans P, Folstein SE, Ranade K, Friddle 

C, Botstein D, Marr T, Beaty TH, Zandi P, DePaulo JR. Genome-wide scan of 

bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 

4q32, 2p12, and 13q12. Mol Psychiatry. 2003 Mar, 8(3):288-98. PMID: 12660801 

58. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW, Abou 

Jamra R, Albus M, Bacanu SA, Baron M, Barrett TB, Berrettini W, Blacker D, 

Byerley W, Cichon S, Coryell W, Craddock N, Daly MJ, Depaulo JR, Edenberg HJ, 

Foroud T, Gill M, Gilliam TC, Hamshere M, Jones I, Jones L, Juo SH, Kelsoe JR, 

Lambert D, Lange C, Lerer B, Liu J, Maier W, Mackinnon JD, McInnis MG, 

McMahon FJ, Murphy DL, Nothen MM, Nurnberger JI, Pato CN, Pato MT, Potash 

JB, Propping P, Pulver AE, Rice JP, Rietschel M, Scheftner W, Schumacher J, 

Segurado R, Van Steen K, Xie W, Zandi PP, Laird NM. Combined analysis from 

eleven linkage studies of bipolar disorder provides strong evidence of susceptibility 

loci on chromosomes 6q and 8q. Am J Hum Genet. 2005 Oct, 77(4):582-95. PMID: 

16175504 

59. Cichon S, Schumacher J, Müller DJ, Hürter M, Windemuth C, Strauch K, Hemmer 

S, Schulze TG, Schmidt-Wolf G, Albus M, Borrmann-Hassenbach M, Franzek E, 

Lanczik M, Fritze J, Kreiner R, Reuner U, Weigelt B, Minges J, Lichtermann D, 

Lerer B, Kanyas K, Baur MP, Wienker TF, Maier W, Rietschel M, Propping P, 



84 

Nöthen MM. A genome screen for genes predisposing to bipolar affective disorder 

detects a new susceptibility locus on 8q. Hum Mol Genet. 2001 Dec 1, 10(25):2933-

44. Erratum in: Hum Mol Genet. 2002 Jul 1, 11(14):1685. PMID: 11741836 

60. Avramopoulos D, Willour VL, Zandi PP, Huo Y, MacKinnon DF, Potash JB, 

DePaulo JR Jr, McInnis MG. Linkage of bipolar affective disorder on chromosome 

8q24: follow-up and parametric analysis. Mol Psychiatry. 2004 Feb, 9(2):191-6. 

PMID: 14966477 

61. McInnis MG, Dick DM, Willour VL, Avramopoulos D, MacKinnon DF, Simpson 

SG, Potash JB, Edenberg HJ, Bowman ES, McMahon FJ, Smiley C, Chellis JL, 

Huo Y, Diggs T, Meyer ET, Miller M, Matteini AT, Rau NL, DePaulo JR, Gershon 

ES, Badner JA, Rice JP, Goate AM, Detera-Wadleigh SD, Nurnberger JI, Reich T, 

Zandi PP, Foroud TM. Genome-wide scan and conditional analysis in bipolar 

disorder: evidence for genomic interaction in the National Institute of Mental 

Health genetics initiative bipolar pedigrees. Biol Psychiatry. 2003 Dec 1, 

54(11):1265-73. PMID: 14643094 

62. Lin L-F, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: A glial cell line-

derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993, 

260:1130–1132. PMID: 8493557 

63. Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, 

Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived 

neurotrophic factor in Parkinson disease. Nature Medicine. 2003, 9:589–595. 

PMID: 12669033 



85 

64. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement 

of bilateral motor functions in patients with Parkinson disease through the unilateral 

intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 

2005, 102:216–222. PMID: 15739547 

65. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, 

Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, 

Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, 

Coffey RJ, Traub M. Randomized controlled trial of intraputamenal glial cell line-

derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006, 

59:459–466. PMID: 16429411 

66. Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T, 

Funato H, Watanabe Y. Altered expression of neurotrophic factors in patients with 

major depression. J Psychiatr Res. 2008 Oct, 42(14):1145-53. PMID: 18313696 

67. Zhang X, Zhang Z, Sha W, Xie C, Xi G, Zhou H, Zhang Y. Effect of treatment on 

serum glial cell line-derived neurotrophic factor in bipolar patients. J Affect Disord. 

2010 Oct, 126(1-2):326-9. PMID: 20350767 

68. Xing B, Xin T, Zhao L, Hunter RL, Chen Y, Bing G. Glial cell line-derived 

neurotrophic factor protects midbrain dopaminergic neurons against 

lipopolysaccharide neurotoxicity. J Neuroimmunol. 2010 Aug 25, 225(1-2):43-51. 

PMID: 20471698 

69. Bahuau M, Pelet A, Vidaud D, Lamireau T, LeBail B, Munnich A, Vidaud M, 

Lyonnet S, Lacombe D. GDNF as a candidate modifier in a type 1 



86 

neurofibromatosis (NF1) enteric phenotype. J Med Genet. 2001 Sep, 38(9):638-43. 

PMID: 11565554 

70. Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs of 

lysophosphatidic acid signaling. Bioessays. 2004 Aug;26(8):870-81. PMID: 

15273989 

71. Nishimura M, Suzuki S, Satoh T, Naito S. Tissue-specific mRNA expression 

profiles of human solute carrier 35 transporters. Drug Metab Pharmacokinet. 2009, 

24(1):91-9. PMID: 19252338 

72. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL, Moe PR, 

Samavedy N, El-Mallakh R, Manji H, Glitz DA, Meyer ET, Smiley C, Hahn R, 

Widmark C, McKinney R, Sutton L, Ballas C, Grice D, Berrettini W, Byerley W, 

Coryell W, DePaulo R, MacKinnon DF, Gershon ES, Kelsoe JR, McMahon FJ, 

McInnis M, Murphy DL, Reich T, Scheftner W, Nurnberger JI Jr. Genomewide 

linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the 

National Institute of Mental Health Genetics Initiative. Am J Hum Genet. 2003 Jul, 

73(1):107-14. Erratum in: Am J Hum Genet. 2003 Oct, 73(4):979. PMID: 12772088 

73. Schulze TG, Buervenich S, Badner JA, Steele CJ, Detera-Wadleigh SD, Dick D, 

Foroud T, Cox NJ, MacKinnon DF, Potash JB, Berrettini WH, Byerley W, Coryell 

W, DePaulo JR Jr, Gershon ES, Kelsoe JR, McInnis MG, Murphy DL, Reich T, 

Scheftner W, Nurnberger JI Jr, McMahon FJ. Loci on chromosomes 6q and 6p 

interact to increase susceptibility to bipolar affective disorder in the national 

institute of mental health genetics initiative pedigrees. Biol Psychiatry. 2004 Jul 1, 

56(1):18-23. PMID: 15219468 



87 

74. Middleton FA, Pato MT, Gentile KL, Morley CP, Zhao X, Eisener AF, Brown A, 

Petryshen TL, Kirby AN, Medeiros H, Carvalho C, Macedo A, Dourado A, Coelho 

I, Valente J, Soares MJ, Ferreira CP, Lei M, Azevedo MH, Kennedy JL, Daly MJ, 

Sklar P, Pato CN. Genomewide linkage analysis of bipolar disorder by use of a 

high-density single-nucleotide-polymorphism (SNP) genotyping assay: a 

comparison with microsatellite marker assays and finding of significant linkage to 

chromosome 6q22. Am J Hum Genet. 2004 May, 74(5):886-97. PMID: 15060841 

75. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I, Kato T, 

Osumi N, Higuchi T, Niwa S, Yoshikawa T. Genome-wide expression analysis 

detects eight genes with robust alterations specific to bipolar I disorder: relevance to 

neuronal network perturbation. Hum Mol Genet. 2006 Jun 15, 15(12):1949-62. 

PMID: 16687443 

76. Zhang J, Li X, Wang Y, Ji J, Yang F, Feng G, Wan P, Lindpaintner K, He L, He G. 

Association study on the mitochondrial gene NDUFV2 and bipolar disorder in the 

Chinese Han population. J Neural Transm. 2009 Mar, 116(3):357-61. PMID: 

19194776 

77. Xu C, Li PP, Kennedy JL, Green M, Hughes B, Cooke RG, Parikh SV, Warsh JJ. 

Further support for association of the mitochondrial complex I subunit gene 

NDUFV2 with bipolar disorder. Bipolar Disord. 2008 Feb, 10(1):105-10. PMID: 

18199248 

78. Washizuka S, Iwamoto K, Kazuno AA, Kakiuchi C, Mori K, Kametani M, Yamada 

K, Kunugi H, Tajima O, Akiyama T, Nanko S, Yoshikawa T, Kato T. Association 

of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder 



88 

in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry. 

2004 Oct 1, 56(7):483-9. PMID: 15450783 

79. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner 

G, Rollins DY, Moses T, Sanders AR, Karkera JD, Esterling LE, Zeng J, Ferraro 

TN, Guroff JJ, Kazuba D, Maxwell ME, Nurnberger JI Jr, Gershon ES. A high-

density genome scan detects evidence for a bipolar-disorder susceptibility locus on 

13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA. 1999 

May 11, 96(10):5604-9. PMID: 10318931 

80. Berrettini WH, Ferraro TN, Goldin LR, Weeks DE, Detera-Wadleigh S, Nurnberger 

JI Jr, Gershon ES. Chromosome 18 DNA markers and manic-depressive illness: 

evidence for a susceptibility gene. Proc Natl Acad Sci USA. 1994 Jun 21, 

91(13):5918-21. PMID: 8016089 

81. Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C, Clark CD, 

McInnis MG, Simpson SG, Breschel TS, Vishio E, Riskin K, Feilotter H, Chen E, 

Shen S, Folstein S, Meyers DA, Botstein D, Marr TG, DePaulo JR. Evidence for 

linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J 

Hum Genet. 1995 Dec, 57(6):1384-94. PMID: 8533768 

82. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI 

Jr, Craddock N, DePaulo JR, Baron M, Gershon ES, Ekholm J, Cichon S, Turecki 

G, Claes S, Kelsoe JR, Schofield PR, Badenhop RF, Morissette J, Coon H, 

Blackwood D, McInnes LA, Foroud T, Edenberg HJ, Reich T, Rice JP, Goate A, 

McInnis MG, McMahon FJ, Badner JA, Goldin LR, Bennett P, Willour VL, Zandi 

PP, Liu J, Gilliam C, Juo SH, Berrettini WH, Yoshikawa T, Peltonen L, Lönnqvist 



89 

J, Nöthen MM, Schumacher J, Windemuth C, Rietschel M, Propping P, Maier W, 

Alda M, Grof P, Rouleau GA, Del-Favero J, Van Broeckhoven C, Mendlewicz J, 

Adolfsson R, Spence MA, Luebbert H, Adams LJ, Donald JA, Mitchell PB, Barden 

N, Shink E, Byerley W, Muir W, Visscher PM, Macgregor S, Gurling H, Kalsi G, 

McQuillin A, Escamilla MA, Reus VI, Leon P, Freimer NB, Ewald H, Kruse TA, 

Mors O, Radhakrishna U, Blouin JL, Antonarakis SE, Akarsu N. Genome scan 

meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J 

Hum Genet. 2003 Jul, 73(1):49-62. PMID: 12802785 

83. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and 

oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with 

bipolar disorder. Arch Gen Psychiatry. 2010 Apr;67(4):360-8. Erratum in: Arch 

Gen Psychiatry. 2010 Dec, 67(12):1254. PMID: 20368511 

84. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for 

interpreting and reporting linkage results. Nat Genet. 1995 Nov, 11(3):241-7. 

PMID: 7581446 

85. Risch N, Merikangas K. The future of genetic studies of complex human diseases. 

Science. 1996 Sep 13, 273(5281):1516-7. PMID: 8801636 

86. Hoh J, Ott J. Mathematical multi-locus approaches to localizing complex human 

trait genes. Nat Rev Genet. 2003 Sep, 4(9):701-9. PMID: 12951571 

87. Jiang JQ, Dress AW, Chen M. Towards prediction and prioritization of disease 

genes by the modularity of human phenome-genome assembled network. J Integr 

Bioinform. 2010 Nov 22, 7(2). PMID: 21098881 



90 

88. Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for 

prioritization of candidate disease genes. Am J Hum Genet. 2008 Apr, 82(4):949-58. 

PMID: 18371930 

89. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and 

signalling circuits in molecular interaction networks. Bioinformatics. 2002, 18 

Suppl 1:S233-40. PMID: 12169552 

90. Musani SK, Shriner D, Liu N, Feng R, Coffey CS, Yi N, Tiwari HK, Allison DB. 

Detection of gene x gene interactions in genome-wide association studies of human 

population data. Hum Hered. 2007, 63(2):67-84. PMID: 17283436 

91. Nilsson FM, Kessing LV, Bolwig TG. Increased risk of developing Parkinson's 

disease for patients with major affective disorder: a register study. Acta Psychiatr 

Scand. 2001 Nov, 104(5):380-6. PMID: 11722320 

92. Shiba M, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, 

Schaid DJ, Rocca WA. Anxiety disorders and depressive disorders preceding 

Parkinson's disease: a case-control study. Mov Disord. 2000 Jul, 15(4):669-77. 

PMID: 10928577 

93. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu 

W, Uitdehaag BM, Kappos L; GeneMSA Consortium, Polman CH, Matthews PM, 

Hauser SL, Gibson RA, Oksenberg JR, Barnes MR. Pathway and network-based 

analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet. 

2009 Jun 1, 18(11):2078-90. PMID: 19286671 

94. Califano A, Butte A, Friend S, Ideker T, and Schadt E. Integrative Network-based 

Association Studies: Leveraging cell regulatory models in the post-GWAS era. 



91 

Available from Nature Precedings (2011) 

<http://dx.doi.org/10.1038/npre.2011.5732.1> 

 

  



92 

 

 Appendix 

 Algorithm Pseudocode 

Main_GA (M, N, P) { 
 Population = Randomly create M groups of SNPs  // Create_population(M) 
 Do the following for N generations { 

 Calculate the fitness of each of the M group of SNPs  // Fitness(M) 
 Parents = Select M/2 of the SNP groups based on their fitness 
 Offspring = Mutate each parent with probability P 
 New Population = Parents + Offspring 
 } 
 Calculate the fitness for each group of SNPs in the final generation 
} 
 
 
Create_population (M) { 
 Get all genes from the database and create a roulette wheel based on gene scores 

 Do the following M times { 
 Gene1 = Spin the roulette wheel to select a gene 
 Get all SNPs that mapped to Gene1 
 Create another roulette wheel based on the location of the SNP (intragenic, 5’, 3’) 
 SNP1 = Spin the roulette wheel and select a SNP 
 
 Get all genes that interact with Gene1 
 Create a roulette wheel based on interaction score 
 Gene2 = Spin the roulette wheel to select a gene 
 Get all SNPs that mapped to Gene2 (and are not SNP1) 
 Create another roulette wheel based on the location of the SNP (intragenic, 5’, 3’) 
 SNP2 = Spin the roulette wheel and select a SNP 
 
 Add this Gene pair/SNP pair to the population 
 } 

} 
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Fitness (M) { 
 Do the following for each of the M SNP groups in the population { 
 Get all SNPs in the group 
 Create a contingency table with all genotype combinations for the SNP group 
 Fill the contingency table with counts of all genotype combos for cases and controls 
 Calculate a Chi-Square p-value for the contingency table 
 } 
} 
 
 
Select (M, T, H, K) { 
 Migrants = Create_population(K)  // Create K new SNP groups to maintain diversity 
  

If (T = “Truncate”) { 
 Get all SNP groups and their fitness 
 Parents = the (M/2 – K) SNP groups with the smallest p-values 
 } 

 
If (T = “Roulette”) { 

 Get all SNP groups and their fitness 
 Create a roulette wheel based on –log10(fitness) 
 Parents = Spin the roulette wheel (M/2 – K) times 
 } 

 
If (T = “Hybrid”) { 

 Get all SNP groups and their fitness 
 Best Groups = the H SNP groups with the lowest p-values  
 Create a roulette wheel based on –log10(fitness) for the remaining SNP groups 
 Parents = Spin the roulette wheel (M/2 – K – H) times 
 Parents = Parents + Best Groups 
 } 
 
 Add Migrants and Parents to the next generation 
} 
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Mutate (M, P) {  // For Hypothesis 1 
 Get all M/2 SNP groups that were selected from the previous generation 
 Do the following for all M/2 SNP groups { 
   Mutate with probability P { 
 Get the size of the SNP group 
 Determine which actions are possible (Remove, Add, Alter) 
  Randomly select which action to take 
 If (Remove = TRUE) { 
 Get all genes/SNPs in the group 
 Randomly select a SNP to remove 
 If two or more interacting genes remain, they are added to the population 
 Else, a new group is created 
 } 
 If (Add = TRUE) { 
 Get all genes/SNPs in the group 
 Get all genes that interact with the group  
 Create a roulette wheel based on gene scores and interaction scores 
 Spin the roulette wheel to choose a new gene to be added to the group 
 Get all SNPs in this gene and create a roulette wheel based on SNP location 
 Spin the roulette wheel to choose a SNP 
 } 
 If (Alter = TRUE) { 
 Get all genes/SNPs in the group 
 Randomly select a gene/SNP to remove 
 If two or more interacting genes remain { 
  Old Group = the remaining interactions from the original group 
 Get all genes that interact with these remaining genes 
 Create a roulette wheel based on gene scores and interaction scores 
 New Gene = Spin the roulette wheel to choose a gene to add the group 
 Get all SNPs in gene and create a roulette wheel based on SNP location 
 New SNP = Spin the roulette wheel to choose a SNP 
 New Group = Old Group + New SNP 
 } 
 Else { 
 Get all genes that interact with the remaining genes 
 Create a roulette wheel based on gene scores and interaction scores 
 New Gene = Spin the roulette wheel to choose a gene to add the group 
 Get all SNPs in gene and create a roulette wheel based on SNP location 
 New SNP = Spin the roulette wheel to choose a SNP 
 New Group = New SNP + SNP from the original group 
 } 
 } 
 } 
 } 
} 
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 Compiled Research on Bipolar Disorder 

Linkage Regions Associated with Bipolar Disorder: 
Cytoband Genomic Coordinates References 
4p16 chr4:1-10900000 1, 2, 3, 4, 5 
4q32 chr4:155100001-170400000 5, 6, 7 
4q35 chr4:182600001-191273063 6, 8, 9 
6q16-22 chr6:92100001-130400000 10, 11, 12, 13 
8q24 chr8:117700001-146274826 6, 10, 14, 15, 16 
12q24 chr12:107500001-132349534 5, 6, 17, 18, 19, 20 
13q31-33 chr13:77800001-109100000 21, 22, 23, 24, 25, 26 
16p12-13 chr16:1-27600000 4, 7, 16, 20, 27, 28, 29, 30, 31, 32, 170 
18p11.2 chr18:7200001-15400000 22, 33, 34, 35 
18p11.3 chr18:1-7200000 28, 35 
18q12 chr18:23300001-41800000 31, 35, 36 
18q21-23 chr18:41800001-76117153 6, 28, 31, 34, 35, 37, 38, 39, 40, 41, 42 
21q22 chr21:30500001-46944323 43, 44, 45, 46 
22q11-13 chr22:11800001-49691432 21, 22, 25, 26 
Xq24-27 chrX:116800001-146900000 47, 48, 49, 50 

 

Genes Associated with Bipolar Disorder: 
Ensembl Gene ID Gene Symbol Other Gene 

Names 
References 

ENSG00000179869 ABCA13  51 
ENSG00000159640 ACE  52, 53 
ENSG00000135744 AGT  54 
ENSG00000142208 AKT1  55, 56, 57 
ENSG00000151150 ANK3  58, 59, 60, 61 
ENSG00000176697 BDNF  62, 63 
ENSG00000151067 CACNA1C  59, 64 
ENSG00000093010 COMT  65 
ENSG00000132437 DDC  66, 67 
ENSG00000162946 DISC1  68 
ENSG00000184845 DRD1  69, 70, 71, 72, 73 
ENSG00000149295 DRD2  74, 75, 76 
ENSG00000069696 DRD4  65, 77 
ENSG00000182346 DAOA G72, G30 81, 82 
ENSG00000022355 GABRA1  83 
ENSG00000011677 GABRA3  84 
ENSG00000186297 GABRA5  85, 86, 87 
ENSG00000183454 GRIN2A  88, 89 
ENSG00000150086 GRIN2B  89, 90 
ENSG00000149403 GRIK4  91, 92, 93, 94 
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ENSG00000100077 ADRBK2 GRK3 95, 96 
ENSG00000082701 GSK3B  97, 98, 99 
ENSG00000102468 HTR2A  100, 101, 102 
ENSG00000147246 HTR2C  102, 103, 104 
ENSG00000164270 HTR4  105 
ENSG00000158748 HTR6  106 
ENSG00000141401 IMPA2  107, 108, 109, 110, 111 
ENSG00000166086 JAM3  112 

ENSG00000189221 MAOA  
113, 114, 115, 116, 117, 
118 

ENSG00000149294 NCAM1  119, 120, 121, 122, 123 

ENSG00000178127 NDUFV2  
124, 125, 126, 127, 128, 
129, 130 

ENSG00000151322 NPAS3  131, 132 
ENSG00000157168 NRG1  59, 133, 134 
ENSG00000170890 PLA2G1B PLA2A 135, 136, 137 
ENSG00000124181 PLCG1  138, 139 
ENSG00000112033 PPARD  140 
ENSG00000141873 SLC39A3 ZIP3 112 
ENSG00000142319 SLC6A3 DAT1 141, 142 

ENSG00000108576 SLC6A4 
SERT, HTT, 
5HTT 

143 

ENSG00000162009 SSTR5  144, 145 
ENSG00000180176 TH  146, 147, 148, 149, 150 
ENSG00000204490* TNF TNFA 151, 152, 153 
ENSG00000129167 TPH1 TPH 154, 155, 156 
ENSG00000139287 TPH2  157, 158, 159 
ENSG00000109501 WFS1  160, 161, 162 
ENSG00000100219 XBP1  163, 164, 165 
ENSG00000128245 YWHAH  166 

 

Functional Concepts Relevant to Bipolar Disorder [167]: 
acetylcholine 
adrenergic 
calcitonin 
cAMP 
catecholamine 
cholecystokinin 
cholinergic 
corticotropin 
dexamethasone 
dopamine 
GABA 
glucocorticoid 
glutamate 
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glycogen synthase 
g-protein 
lithium 
neurotransmitter 
neurotensin 
noradrenergic 
norepinephrine 
opiate 
opioid 
oxytocin 
phosphoinositide 
protein kinase C  
serotonin 
somatostatin 
substance P 
thyrotropin 
tryptophan 
valproate 
vasoactive intestinal polypeptide 
vasopressin 

 

Previous Genome-wide Association Studies on Bipolar Disorder: 
First Author Genomic 

Region 
Gene SNP-Risk Allele Odds 

Ratio 
P-value 

Smith [61] 19q13.11 DPY19L3 rs2111504-T 1.74 2.00E-6 
Scott [171] 2q11.2 Intergenic rs6733011-G 1.17 0.000003 
Scott 3p21.1 ITIH1,  

NEK4 
rs1042779-A 1.19 2.00E-07 

Scott 4q12 KIT rs2537859-T 1.16 0.000004 
Scott 5q15 MCTP1 rs17418283-C 1.21 1.00E-07 
Scott 3q26.1 NR rs7427021-G 1.16 0.000005 
Scott 2p12 CTNNA2 rs13409348-G 1.2 0.000003 
Scott 9q34.13 NR rs2905072-A 1.21 0.000006 
Scott 17q21.33 NR rs1035050-T 1.17 0.000009 
Scott 15q23 NR rs6494849-A 1.23 0.000007 
Scott 19p13.3 NR rs7250872-T 1.21 0.000002 
Scott 11q13.1 NR rs2242663-T 1.2 0.000001 
Scott 8p12 NR rs6990255-T 1.33 0.000006 
Scott 1p32.1 NF1A rs472913-C 1.18 2.00E-07 
Hattori [172] NR NR NR NR NS 
Ferreira [59] 10q21.2 ANK3 rs10994336-T 1.45 9.00E-09 
Ferreira 9q33.3 NR rs4130590-? 1.16 0.000003 
Ferreira 11q14.1 NR rs12290811-A 1.2 4E-06 
Ferreira 15q14 C15orf53,  rs12899449-? 1.2 4.00E-07 
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RASGRP1 
Ferreira 2q11.2 Intergenic rs2314398-? 1.17 0.000003 
Ferreira 6q25.2 NR rs17082664-G 1.22 4E-06 
Ferreira 3p22.3 NR rs4380451-? 1.18 4E-06 
Ferreira 12q13.12 CACNA1C rs1006737-A 1.18 7.00E-08 
Ferreira 10q22.3 NR rs703965-? 1.15 8E-06 
Ferreira 3p26.2 NR rs1601875-? 1.14 7E-06 
Ferreira 18p11.32 NR rs7226677-G 1.24 7E-06 
Ferreira 15q25.1 NR rs2278702-? 1.21 0.000006 
Ferreira 11q24.2 NR rs544368-T 1.22 0.000006 
Ferreira 9q31.3 NR rs7042161-? 1.15 0.000006 
Ferreira 1p21.2 NR rs1948368-? 1.15 0.000006 
Ferreira 3p24.3 NR rs11720452-? 1.15 0.000005 
Ferreira 14q11.2 NR rs12436436-C 1.3 0.000005 
Ferreira 14q13.1 NR rs8015959-T 1.59 0.000005 
Ferreira 3p24.3 NR rs3821396-A 1.23 0.000005 
Ferreira 9p13.3 NR rs216345-T 1.15 4E-06 
Ferreira 15q14 NR rs16966460-G 1.26 4E-06 
Sklar [173] NR NR NR NR NS 
WTCCC [174] 16p12.1 PALB2,  

NDUFAB1, 
DCTN5 

rs420259-A 2.08 6.00E-08 

WTCCC 6p21 NR rs6458307-? 1.19 4E-06 
WTCCC 3q27 NR rs683395-G 1.47 0.000005 
WTCCC 14q32.33 NR rs11622475-C 1.13 8E-06 
WTCCC 14q23.1 NR rs10134944-T 1.45 7E-06 
WTCCC 2q37 NR rs2953145-C 1.84 7E-06 
WTCCC 20p13 NR rs3761218-C 1.03 7E-06 
Baum [175] 13q14.11 DGKH rs1012053-A 1.59 2.00E-08 
Cichon [176] 19q13.11 NCAN rs1064395-A 1.17 2.00E-9 
Djurovic [177] NS NS NS NS NS 
Lee [178] 7p21.1 SP8 rs2709736-G 1.44 5.00E-7 
Lee 15q26.1 ST8SIA2, 

C15orf32 
rs8040009-C 1.4 6.00E-6 

*Only associations with p-value < 10-5 are shown; NR = Not Reported; NS = Not 

Significant. Data from http://genome.gov/gwastudies; 
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