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ABSTRACT 
 Identification of biologically relevant high-occupancy transcription factor binding sites (TFBS) 

in silico has historically been a difficult problem with a high error rate. Methods which utilize 

information in addition to the sequence of binding sites (e.g. chromatin information) have been shown 

to improve performance over strictly sequence-based methods; however, a number of questions about 

such methods remain unanswered: whether such models are suitable for multiple transcription factors, 

whether a general model or generalizable approach to the problem is possible, and what the effect of 

such prediction on biological inference is. In this work, we construct and evaluate a number of  

classifiers of position weight matrix-predicted TFBS (“occupancy classifiers”) based on four distinct 

transcription factors and demonstrate that such classifiers identify biochemically confirmed high-

occupancy sites at a high rate. I contrast and compare the algorithms and predictors used by these 

classifiers and demonstrate that efficient cross-classification of one factor by a classifier trained on 

another factor is possible. We then construct generalizable occupancy classifiers, combining data from 

several transcription factors and intended to operate on potentially arbitrary transcription factors; I 

evaluate several versions of these classifiers and demonstrate that they can perform comparably to 

classifiers trained on factor-specific information even when not provided with that information. We 

then demonstrate that occupancy classification is capable of recapitulating a statistically significant 

portion of protein interaction networks derived from biochemical studies of transcription factor 

binding, suggesting that biological inference from occupancy classification may be comparable to that  

expected from biochemical identification of TFBS. Finally, we use a generalizable classification 

method to identify novel binding sites for the TCF4 and c-Myc transcription factors in the human 

genome, prioritize these predictions using classification metrics and protein interaction information, 

and confirm the predictions via immunoprecipitation. These results demonstrate that occupancy 

classification can be used for multiple TFs, can be used in cross-classification or to generally classify 
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TFBS occupancy even in the absence of factor-specific training information, and that occupancy 

classification reproduces significant portions of a protein interaction network expected from 

biochemical TFBS identification. Occupancy classification is further validated by identifying novel 

binding sites forTCF4 and c-Myc which may be of import in various biological processes, including 

colorectal cancers. 
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Chapter 1: Background and Introduction 

1.1 Background: Transcription factors (TFs) are proteins which bind DNA and affect the rate of 

transcription of genes and other transcribed elements of the genome. Typically, transcription factors are 

thought to have an essentially local mechanism of action (affecting the transcription of genes within a 

few thousand base pairs of the site at which a given factor binds). The precise mechanism by which a 

transcription factor modulates transcription varies depending on the factor, and one factor may act in 

multiple ways, depending on the context in which it operates. Factors may participate directly in the 

assembly of transcription complexes and/or help recruit elements to the site where the factor binds, or 

they may block access of such proteins and hence repress transcription. Other TFs may be involved in 

the remodeling of local chromatin structure (such as methyltransferases which modify the methylation 

state of certain histone residues) and affect the accessibility of DNA indirectly via condensing DNA 

into inaccessible heterochromatin or freeing it into accessible euchromatin. (For a review of these 

concepts, see Fickett and Wasserman1). For purposes of defining a transcription factor for this 

dissertation/proposal, any of these mechanisms could define a  “transcription factor”; the only 

requirements for a transcription factor to be of potential interest in this work are that the TF must affect 

the rate of transcription of some gene product and it  must directly bind DNA to be of interest. 

Typically, eukaryotic gene regulation requires the participation of several TFs. Multiple factors bind at 

multiple sites upstream from the transcription start site. Because of this complexity, it can be difficult 

to discern which factors are responsible for regulating which genes; additional complexity is also 

introduced by the presence of  tissue-specific and temporally specific regulation; e.g. the tremendous 

diversity of roles attributed to the TGF-beta family of factors (for a review, see Massauge2). 

  

1.1.1 Difficulties of biochemical and in silico TFBS discovery: Though direct molecular studies are 

obviously the most accurate method for determining precisely which TFs bind at and may involved in 
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regulating a specific gene, such studies can be difficult and expensive to perform, and until recently 

were impossible to perform for entire genomes. As an example, consider Cawley et al.3, who were 

restricted to mapping TF binding sites only in chromosomes 21 and 22 due to the limitations of their 

tiling array process. Even with advances leading to true genome-wide TF binding site elucidation such 

as the Serial Analysis of Chromatin Occupancy4 and ChIP-seq5,6,7, only a handful of TFs have been 

mapped genome-wide in a small number of model systems and conditions. Historically, computational 

methods for predicting which TFs may bind and influence the transcription of genes of interest have 

therefore been important; it is reasonable to believe that they will continue to be of importance for the 

foreseeable future. Various in silico methodologies have been developed to predict TF binding sites in 

a given sequence. These can be classified broadly into matrix-based methods, which use predefined 

profiles of the composition of expected binding sites to scan input sequences looking for matches,and 

ab initio methods that attempt to derive potential motifs from a statistical overrepresentation of the 

putative motif's pattern in a set of input sequences. 

  

1.1.2 Matrix-based TFBS prediction: Matrix based methods are perhaps best exemplified by the 

TRANSFAC database8 and its related programs such as MATCH9. These methods use a database of 

position weight matrices10,11 (PWMs) and compare input sequences to each matrix in the database. 

PWMs are able to contain information regarding the degeneracy (the permissibility of variant bases at a 

base of the sequence) of the binding motifs; a particular subsequence which scores past a set threshold 

as a match to a particular matrix is tagged as a match. This approach can be effective at identifying 

binding sites in silico7; however, it does carry with it several disadvantages. First, one can only query 

for sequences for which a PWM exists; if a matrix does not exist for a particular factor of interest, it is 

simply not possible for a PWM-based method to discover a binding site for it. The degeneracy of 

binding motifs also essentially limits the PWM approach, causing high false positive rates  possibly 
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missing true binding motifs12. Even attempting to limit the number of results to a manageable level 

with stringent cutoffs for quality, a query of a sequence can frequently return an overwhelming number 

of discovered motifs.  

 

1.1.3 Ab initio TFBS prediction: Various ab initio methods for discovering motifs in sequences have 

been developed; perhaps the classic exemplar in the field is MEME13, based on expectation-

maximization. Other methods include Weeder14, which relies on an exhaustive classification and 

analysis of overrepresentation of all n-mers in a set of input sequences, and various methodologies 

based on Gibbs sampling such as MotifSampler15. These methods make no assumptions other than 

certain initial parameters when exploring sequences for motifs, and hence are suitable for finding 

similarities in a set of sequences which have not previously been characterized. However, these 

methods have their own set of limitations; they are dependent on both the choice of input set and choice 

of parameters, which can limit the ability of the algorithm to discover motifs if  either set of inputs is 

inadequate or incorrect. In particular, most methods assume that the input set comes from a set of 

transcriptional control elements derived from coregulated genes; however, if some of the genes are not 

in fact coregulated or if if the mechanisms for coregulation are heterogenous, this assumption and the 

results of the analysis may be invalid. There is also no guarantee that these methods will find 

biologically meaningful patterns within the input sequences; the motifs discovered may in fact bind 

nothing in vivo, and so any discovered motifs usually need to be confirmed experimentally.  While this 

is true of all computational motif discovery methods, in matrix-based approaches at least some 

evidence of binding is already observed for a given TF at a  motif. Alternatively, the motifs discovered 

can be compared to known motifs to attempt to determine their validity, but this saddles the ab initio 

methodologies with most of the drawbacks of motif-based methods as well, most crucially such 

methods' limited search space. 
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1.1.4 Limitations of in silico discovery: Most current methods of motif finding utilizing any approach 

allow for considerable room for improvement, due largely to the limitations of the available data. In the 

study by Tompa et al.16, the most accurate tool in the group of 13 assessed ab inito motif discovery 

programs (Pavesi et al.'s Weeder14) achieved an average per site specificity of only 0.17. While the 

Tompa et al. study is not an exhaustive enumeration of available methods (notably, it does not evaluate 

methods using phylogenetic support or other additional data beyond the input sequences), it does 

illustrate the considerable room for improvement of motif detection with regard to ab initio tools. The 

limitations of PWM-based methods have been generally recognized for some time, with such methods 

exhibiting high sensitivity but low specificity (see again Roulet et al.12).  

  

1.1.5 Integrative methods: With the limitations of motif discovery in mind, methods have been 

developed which attempt to exploit certain properties of regulatory regions to determine the likely 

functionality of discovered sites; in effect these methods try to integrate additional information to 

determine the likelihood of a discovered motif being “real,” sidestepping the issue of improving 

potential motif identification as such. Attributes used in such “integrative” methods have included the 

tendency for TFBS sites of the same type  to cluster near one another in cis-regulatory modules17, used 

by the ModuleFinder algorithm18, phylogenetic conservation19, or coregulation as implied by gene 

expression assays20.  These methods can show drastic improvement relative to less informed methods, 

either matrix based or ab initio; for example,  a very stringent phylogenetic approach using mouse, rat, 

and human sequences in concert with TRANSFAC demonstrated perfect sensitivity and specificity in a 

4000 bp region for experimentally confirmed GATA-1 sites22. Ultimately, however, the initial 

identification of potential TF binding sites is either based on matrices or on an ab initio statistical 

process;  depending on the specific method used, these advanced methods themselves suffer the 
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limitations of their parent methodology.. Furthermore, it is very possible that models of TF binding 

based upon sequence alone cannot achieve comparable performance to methods taking into account 

additional genomic and chromatin features due to the dependence of in vivo TF binding on such 

features. As such, these integrative methods seem to represent the viable future of computational TF 

binding site discovery.  A particularly promising variant of the integrative method is presented by Chen 

et al.22, who consider the occupancy of c-Myc binding sites in the human genome as predicted by 

PWM methods using a Bayesian network classifier23; this classifier utilizes multiple lines of 

information about the genomic context of a predicted site (its proximity to transcription start sites, CpG 

islands, and hypomethylation regions), the modification states of nearby histones (the distance to the 

nearest H3K9 acetylation island) and the conservation of the site across species in terms of its 

PhastCons score24 to predict whether a computationally derived site is high or low occupancy, with the 

prediction of high occupancy taken as a proxy to biological functionality. We term this type of TFBS  

prediction “occupancy prediction.”  Trained on a set of confirmed binding sites for c-Myc25 and 

validated with additional external biochemically derived binding data sets3,26 as well as corroborating 

microarray experiments, the classifier achieves reasonably high predictive ability (~71% of 

biochemically confirmed high-occupancy sites are predicted  correctly). Furthermore, the authors 

believe that the procedure is generalizable, using the classifier to predict the occupancy of CREB 

binding sites as well; unfortunately, these results are somewhat less conclusive, due to the high false 

positive rate of CREB site classification. While the classifier successfully identified a large proportion 

of high-occupancy sites according to the  Zhang et al study27 (1713/2195 correct predictions), it 

predicted an additional 3621 false positives. Chen et al. argue that many of these false positives may 

represent unknown true positive CREB binding sites due to the limitations of the Zhang et al. study, but 

absent further biochemical confirmation it is not possible to evaluate the validity of that claim. 
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1.1.6 Unanswered questions about integrative methods: Despite the promise of this type of  approach, a 

number of issues specific to this implementation remain unanswered at this time, many of which may 

impact the method's generalizability to other TFs and to sites located in regions of the genome for 

which the classifier is not yet evaluated.  The use of a single TF as the training example of the classifier 

(CREB analysis notwithstanding) leaves unanswered questions about the extensibility of the classifier 

to additional TFs. as does the use of a single genomic context (within 3kb of a transcription start site) 

for that TF leave questions about the applicability of the classifier for site occupying regions 

heterogenous to the training examples (such as TF binding sites positioned in intronic regions).  It is 

not clear that the predictors used by Chen et al. would be optimal for occupancy classification for other 

TFs; a single feature (predicted hypomethylation island distance)  provides the bulk of predictive 

ability. If the prediction proves inaccurate or binding sites for other TFs and/or in other genomic 

contexts that are less sensitive to hypomethylation, there may be consequences for predictive accuracy 

if an unmodified version of the Chen et al. Bayesian classifier is used to predict the occupancy of 

binding sites. Indeed, it is not entirely clear that the Bayesian framework itself is optimal or extensible 

for occupancy prediction. While Chen et al.  do use differences in the distribution of features between 

high and low-occupancy sites in selecting features for training their classifier, they do not indicate any 

exploration of  alternative machine learning  algorithms such as  support vector machines (SVM)28 as 

alternatives to the Bayesian network they ultimately used. It is possible that different predictor sets or 

even different classification methods may prove to be optimal for specific TFs or for TF binding sites 

occupying different genomic contexts.  Finally, from the standpoint of a biologist or translational 

researcher using TF binding site prediction data in their work, it  is unknown to what extent 

introduction of occupancy information as predicted by such a highly-integrative occupancy prediction 

framework into the construction of a protein interaction network model would actually change or 

confirm the structure or predictions made using such a network. 
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1.1.7 Possibilities of integrative methods: Nonetheless, the possibilities of an occupancy classifier 

integrating multiple sources of information to predict the occupancy of a predicted TF binding site of 

the kind proposed by Chen et al. are tremendous. A significant improvement in confirming the 

biological relevance of the results of a computational motif finding process could be of immense 

practical value to biology, considering the time and effort required to biochemically characterize TF 

binding motifs and the tremendous number of TFs whose binding sites have not been characterized in 

many (if any) genomes. A method of better determining the likelihood of binding at a given predicted 

TFBS and prioritizing predicted binding sites for further investigation and/or biochemical confirmation 

from the large number of binding sites resulting from matrix-based discovery methods methods, for 

example, would potentially allow a researcher interested in exploring a particular TF to focus his 

efforts on the sites most likely to be of interest to his analysis and/or to be biochemically confirmed. 

More accurate tools would hopefully sallow for biologists to construct more accurate models of 

transcriptional regulation by allowing more confident integration of binding predictions into such 

models, as well. As an example, consider the work of Roth et al.29, who use TRANSFAC-based 

prediction of TF binding sites as a source of information in constructing a hypothetical transcriptional 

control network for the initiation of puberty in mice. Though their hypothetical network is guided not 

only by prediction of TF binding but also considerable experimental evidence, the application of an 

effective strategy for predicting occupancy of specific sites could allow these or similar researchers 

constructing such a hypothetical network to have better confidence in the addition or elimination of a 

specific binding site for a specific TF as a possible effector of transcriptional control of a gene in the 

network; that said, the practical effect of occupancy prediction itself on the structure of such networks 

is an open question. It is clear that an accurate and generalizable highly-integrative occupancy 

classification method could have wide-ranging impact, particularly for fields such as cancer and 



8 

development wherein transcriptional control (or its aberrations) are of paramount importance.  This 

suggests that a larger scale evaluation of the best methodologies for, extensibility of and practical 

applications involving highly-integrative classification methods is a worthwhile endeavor. 

 

1.2 Specific Aims and Methods: With these issues and open questions in mind, in this work we perform 

a number of experiments to further advance our understanding of the performance of occupancy 

classification methods, defined as such methods which utilize combined information from multiple data 

sources about the sequence features and chromatin structure surrounding an instance of a 

computationally predicted TF binding site to predict the most likely occupancy class of that site (high 

or low occupancy). The Chen et al. Bayesian classifier and its set of associated predictors is taken as a 

starting point for these experiments; however, the experiments will investigate both additional, 

alternative methods of classification and alternative predictors of occupancy. We have set out to 

accomplish the following specific aims: 

 

Aim 1) Investigate the best methodologies for and generalizability of the highly-integrative occupancy 

classification approach  by constructing best classification schemes for classifying occupancy of 

predicted TF binding sites for the TFs c-Myc, STAT1, GABP, SRF1, and TCF4 for sites in proximity 

to transcription start sites (defined as within 3kb of a TSS, “in-window) in the human genome. Best 

classification schemes will be those specific classifiers which achieve best Area Under Curve (AUC) 

score of classification for a given TF in a given genomic context using one of the following machine 

learning algorithms: 

1. Bayesian network 

2. SVM 

3. Combination of multiple classifiers of the above types through e.g. stacking30 to construct a 
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generalizable occupancy classifier. 
 
 

and some combination of features from those enumerated below:   

1. Features relatedto nearest hypomethylation region 

2.  Features related to nearest CpG island 

3. Features related e to nearest histone acetylation island 

4. Features related to nearest histone methylation islands 

5. Features related to the nearest TSS 

Based on these results, investigate the performance of TF-specific and generalizable occupancy 

classifiers to determine the viability and overall performance of occupancy classification in cross-

classification and generalized occupancy classification scenarios. 

 

 

Aim 2: Investigate the effects of occupancy classification on the topology of protein interaction 

networks derived from occupancy classification information as the basis of their construction in 

comparison to those based on biochemical TF binding information, using the best classifiers 

constructed for the TFs c-Myc and TCF4 in aim 1. In addition, we investigate the effects on topology 

of a combined network of c-Myc and TCF4 targets incorporating occupancy information and use a 

combination of prediction quality measures and network-based metrics to make predictions of shared c-

Myc and TCF4 predicted targets likely to be involved in colorectal cancer processes of interest. For this 

analysis, the PathwayCommons31 protein interaction and pathway database for humans will be used. 

 

1.2.1 Selected algorithms: We have selected the algorithms to be used in this experiment due to their 

demonstrated performance in difficult classification problems. The selected classification 
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methodologies are thought to provide a representative spectrum of current classification and machine 

learning algorithms. Bayesian network and SVM methods are standard algorithms used in machine 

learning.  Bayesian networks, which predict the probability of membership in a particular class for a 

given test data point based on the probability of the states of associated predictors being in the given 

state for that class, have been shown to have direct effectiveness in the question of occupancy 

prediction by Chen et al., and are generally considered to be powerful classification options even in the 

reduced naïve Bayes form (which ignores interdependencies between predictors). SVM classification 

algorithms seek to establish a separating hyperplane between instances of training data in the classes 

which maximizes the separation of the closest instances of each class (“the margin”); they are 

considered to be among the most powerful machine learning techniques, and are able to adapt to 

nonlinearities and relationships among the data by projecting data into higher dimensional spaces (the 

“kernel trick”), as well as make allowances for classes which cannot be linearly separated (“soft 

margins”). Finally, the combination classification methods used in the construction of generalizable 

occupancy classifiers involve combination of outputs from multiple classifiers to arrive at a final 

answer; for purposes of these experiments such classifiers exploit classifier stacking, a method of 

classifier combination which uses cross validation to construct a classifier (the “level-1” classifier) 

using the input of several other classifiers (“level-0” classifiers). The specific implementations of each 

classifier used in the Weka32 classification package are used throughout this work, with some 

modifications to adapt to the specific requirements of the experiments. 

 

1.2.2 Selected TFs: The TFs selected for classification in aim 1 have been selected for a combination of 

practical and theoretical reasons. TCF4 is a primary actor in the Wnt signaling pathway, an important 

pathway in a number of developmental and carcinogenic processes33, notably in defining colorectal 

cancer stem cell populations34.  Similarly, c-Myc is both the TF  for the Chen et al. classifier and a 
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known target gene for TCF435, and both the factors have long been implicated in the causative process 

of colon cancer34,36.  STAT1 is a member of the Jak-STAT signaling pathway, a primary pathway for 

modulating cellular response to cytokine signaling and implicated in a variety of disease processes37.  

Finally, GABP has the somewhat unique property of being a preferential activator of bidirectional 

transcription start sites38, and is involved in a number of important biological processes, notably cell 

cycle control at the neuromuscular junction39. All of the chosen data sets have been constructed using 

the well-annotated human genome for which all potential occupancy predictors we have selected are 

readily available or derivable; restricting to human-derived data also avoids complications that may be 

due to species-specific effects, though it unfortunately excludes potentially interesting data sets such as 

the CREB SACO data set4. In addition, all selected TFs are thought to be transcriptional activators (or, 

in the case of c-Myc, to operate as one in the presence of beta-catenin) and to be generally active in 

many tissues as opposed to being tissue specific transcription factors.  These are important attributes to 

avoid potential confounding effects by either the inclusion of transcriptional repressors, which may not 

respond to the same chromatin cues, or by tissue specific effects, since many of the data sets we intend 

to use were derived from different cell lines. Unfortunately, since the data sets were constructed using 

different technologies (ChIP-PET for c-Myc, ChIP-chip for TCF4, and ChIP-seq for STAT1, GABP, 

and SRF) and different cell types, undesirable technical variation may be introduced into our 

experiments. However, at the time of this study’s design, relatively few high quality binding data sets 

in human beings were available. It was our judgment that these factors represented sufficiently high 

quality data in conjunction with our desired traits (activating activity, tissue nonspecific action) and 

potential for relevant biological discovery from our analyses. Critically, all the factors also had 

position-weight matrices available for initial discovery to be possible. 

 

1.2.3 Selected predictors: The predictors used in this work have been selected due to demonstrated or 
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anticipated association with regulation of transcriptional activity or TF occupancy. Distances to 

hypomethylation region, CpG island, histone acetylation island and TSS have been demonstrated to be 

directly significant at least in the case of c-Myc by Chen et al. Unfortunately, the methods used to 

predicted CpG island distance and hypomethylation region distance used by Chen et al. have not been 

made publicly available; however, a number of CpG island prediction schemes exist, including the 

UCSC Genome Browser's40 CpG Island prediction track, and a map of genome-wide DNA 

hypomethylation in human leukocytes has recently become available41. For this project the Shann et 

al.methylation map and the UCSC Genome Browser's CpG Island prediction track will be used. 

Distances to histone methylation islands have been shown to indicate regions of  both reduced and 

increased transcriptional activity42, and at least HK9A modification has been already shown as a useful 

predictor of occupancy for c-Myc22; it is reasonable to believe that other modifications are likely to 

have predictive value for occupancy classification as well. A map of human histone methylation in 

positions H3K4 and H3K27 in T cells is included in the Roh et al. data set42; an expanded number of 

histone methylation type mappings in the same cell type are available43.  

 

1.2.4 Selected protein interaction database: Finally, we have chosen the PathwayCommons database for 

our basis for constructing protein interaction networks. This is due to the integration of multiple data 

sources in the PathwayCommons database, such as the Human Protein Reference Database (HPRD)44 

and the Reactome45 database, among others. This integration allows us to cast a wide net in terms of the 

possible interactions we may incorporate in our networks. Additionally, in future work it would be 

possible to segregate information from PathwayCommons based on sources (either in terms of database 

or in terms of methodology).  
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Chapter 2: Occupancy Classification of PWM-predicted transcription factor binding sites. 

2.1 Introduction and Background: In this chapter, we implement several versions of the occupancy 

classification approach to the problem of identifying true TFBS, in which machine learning techniques 

integrate information from multiple data sources to predict the occupancy or functionality of a given 

predicted binding site. Similar  techniques that have incorporated additional genomic landscape 

information have shown improvement in performance over purely sequence-based techniques; 

however, an evaluation of the applicability of such techniques using multiple machine learning 

methods and multiple transcription factors has been lacking. We analyze the performance of these 

occupancy classifier versions, which use multiple machine learning methods as classifiers, several 

types of chromatin features and DNA sequence information features as predictors, and multiple 

publicly available chromatin immunoprecipitation (ChIP)-based TF binding data sets as training and 

test data set, and contrast and compare the results across transcription factors. We also compare the 

predictors most commonly selected among factors and use the best classifier built for each TF for 

cross-classifications of each TF, including a held-out TF (SRF). Our results demonstrate the viability of 

occupancy classification for many TFs and for use of classifiers trained on one TF to cross-classify 

sites for a different TF.  

 

2.2 Methods: We identified regions of the human genome on chromosomes 1-22 found to bind a TF 

according to chromatin immunopreciptation for the factors c-Myc26, TCF446, STAT16, GABP7 and 

SRF7. These regions were mapped to the UCSC Genome Database hg18 build of the human 

genome40,47, using a custom MySQL database (MySQL AB). We chose these TFs because each had 

high-quality whole-genome datasets available and all are thought to function primarily as 

transcriptional activators, either individually or in the beta-catenin/TCF4 complex in the case of TCF4. 

SRF was held out for later analysis as a  blinded TF; no predictive models were constructed using SRF 
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data. TRANSFAC8 PWMs for the factors were used to predict TFBS in the genome, using the TFBS 

Perl package48 and a 95% similarity threshold; the scope of the analysis was limited to regions within 

+/- 3kb of an annotated transcription start site (TSS) for the 4 TFs in the analysis. Predicted TFBS 

within 1kb of the center of an empirically identified TF binding region were considered to be “high-

occupancy” sites, while any other predicted site was considered low-occupancy. For each TF, we 

constructed ten sample data sets, each with 200 high-occupancy and an approximately equal number of 

low-occupancy sites per sample; there was some variation in the number of low-occupancy sites due to 

randomization.  Individual predicted binding sites may appear in multiple data sets, but are only 

represented once in a given sample data set. We then trained Bayesian Network and SVM classifiers, 

using the Weka machine learning environment and the LibSVM SVM library49, to discriminate 

between the sites using a variety of features. The features used were distances to nearest histone 

modification islands42,43, nearest hypomethylation island as identified in leukocytes41, and nearest CpG 

islands and nearest TSS as identified in the UCSC Genome Browser (hereafter referred to as TFBS-

feature distances). We additionally incorporated distances between these nearest chromatin features to 

the nearest chromatin feature of a given type (hereafter referred to as feature-feature distances). These 

features are visually summarized in Figure 2.1. Feature-feature distances were capped at a maximum of 

10kb between features to speed construction of the data sets. The specific classification algorithms used 

were: 

 

(1)A BN using the K2 network-building algorithm50, MDL-based discretization for binning51, and the 

CFS-subset algorithm52 for attribute selection.  

 

(2)A linear-kernel SVM using default parameters, with distance features normalized to a 0-1 scale. 
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(3)A linear-kernel SVM with attributes preprocessed into bins using the same MDL-based 

discretization technique. 

 

2.2.1 Evaluation: We evaluated the classifiers's ability to discriminate high and low occupancy sites 

using 10-fold cross-validation of each sample and the area under the curve (AUC) metric (resulting in a 

10x10 cross-validation), and compared the algorithm and feature sets used for the best-performing 

classifier for each TF. For each TF, we also constructed classifiers on a per chromosome basis as 

described above, extracting training data from the other chromosomes. We also evaluated the 

performance of each best classifier on the other TFs in the study, using each sample as a training set 

and classifying each other sample from the other three TFs. Additionally, we evaluated the difference 

in performance between the classifiers when the feature-feature distances were excluded from the 

feature set, using cross-validation and the AUC as described previously. Finally, we performed an 

analysis of the agreement between TFs on relevant features based on number of times of a feature's 

inclusion in the cross-validation classifier using Cohen's kappa measure53 as implemented in the e1071 

package for R 2.754, and performed a cross-classification of the held-out SRF data set with each TF to 

further examine cross-classification performance. 

 

2.3 Results: For the four TFs we analyzed (c-Myc, TCF4, STAT, and GABP) and features we 

utilized(distances to histone modifications, DNA hypomethylation, CpG islands and TSS) we found 

that the BN-based classifiers consistently outperformed SVM-based classifiers for all TFs, and 

achieved average AUC scores ranging from .71 (TCF4) to .94 (GABP) (See Table 2.1 and Figure 2.2).  

AUC Scores achieved in per-chromosome classification were comparable to those achieved in cross-

validation (Table 2.2). The resultant classifiers have naïve Bayesian network structures. Both TFBS-
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feature and feature-feature distances are predictive, but the feature-feature distances appeared to be the 

dominant predictors for all TFs. No features of either type appear to be universally predictive across all 

TFs.  Classification of other TFs by a classifier trained on a different TF was universally inferior to 

performance of a classifier trained on the TF of interest, excepting the case of SRF. All TFs were 

capable of accurate cross-classification of the held-out SRF data set. 

 

2.3.1 Comparison of Algorithms: In all cases, the BN classifier outperformed either of the SVM-based 

classifiers (see Table 2.1). The resulting network structures of the classifiers were equivalent to naïve 

Bayesian networks after discretization and attribute selection, with no edges between the predictors 

despite the use of the K2 algorithm. We attempted to use the Tree-Augmented Naïve Bayes algorithm23 

to induce additional structure in the networks, but this resulted in a marginally worse classification 

performance. Similarly, use of more sophisticated polynomial and radial basis function kernels for the 

SVM-based classifiers did not improve performance over the linear kernel, nor did manual adjustment 

of the slackness parameter of the optimization function. Typical size of the networks was on the order 

of 50 relevant predictors. 

 

2.3.2 Contribution of Feature-Feature Distances to Classification: A surprising result of the 

classification experiments was the dominance of feature-feature distances over TFBS-feature distances 

in the best-performing classifiers. We therefore decided to rerun classification as above using TFBS-

feature distances only. For this and all subsequent analyses, we chose to only construct BN classifiers 

as they had outperformed SVMs previously. In all cases, average AUC of classification improved with 

the inclusion of feature-feature distances relative to TFBS-feature distances only (see Table 2.3 and 

Figure 2.1). As with overall classification performance, it is difficult to determine how much of the 

variance in improvement is attributable to biological differences in the TFs versus technical differences 
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in the generation of the data sets. In general, however, the gain in performance tends to drop for ChIP-

Seq data vs. data generated from other techniques. From a biological standpoint, the gain in 

performance could be interpreted from the point of view of the “histone code” hypothesis57; the 

predominance of feature-feature distances may be indicative of combinations of histone modifications 

in the proper proximity to one another to encourage the recruitment of TFs to a predicted site.  

 

2.3.3 Individual Chromosome Classification: We additionally constructed BN classifiers using feature-

feature distances for each individual chromosome and TF, generating training data from the other 

chromosomes. Performance was quite comparable on average to the performance achieved in the 

randomly sampled data sets, with the exception of STAT(Table 2.2). However, c-Myc and TCF4 

showed considerable variance in performance between chromosomes relative to STAT and especially 

GABP, which were more consistent per chromosome; this effect was likely due to the lesser coverage 

of the binding data sets for c-Myc and TCF4.  It is most likely that this coverage effect does not reflect 

a true lack of binding sites e.g. the low number of high-occupancy sites identified on chromosomes 21 

and 22 for c-Myc does not reflect a genuine dearth of binding sites on those chromosomes (as 

evidenced by Cawley et al.3, who discovered considerably more sites on these chromosomes with a 

high-quality tiling array approach.  (See Table 2.4).  

 

2.3.4 Common Predictors Across TFs: To identify whether or not common predictors were shared 

across the TFs, we performed a frequency count of all predictors which appeared in at least one 

classifier instance for all four TFs, over all cross-validations.; see Table 2.5 for top ten such predictors. 

The degree of concordance between the TFs once again appears to have a relationship with the method 

of generation of the data sets, with GABP and STAT showing relatively higher concordance with one 

another, using Cohen's kappa calculated over all attributes (average kappa = .47).  c-Myc and TCF4 
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had less concordance with each other or with STAT or GABP (highest average kappa between any 

other combination of TFs was STAT-TCF4, with kappa = .43, see Table 2.6. Additionally, while the 

other 3 TFs have at least one predictor that is selected in 80+ builds of the classifier, TCF4's most 

commonly selected feature (distance to TSS) is selected only in 60 classifiers, and was only rarely 

selected by the other TFs. No specific predictor appears to be universally applicable to all of the TFs in 

this study. It is notable that 9 of the top 10 most commonly selected predictors involve distances to 

H3K4me3 modification islands (in particular, the top 3 feature pairs H3K4me2-H3K4me3, 

H3K27me1-H3K27me3, and TSS-H3K4me3, as well as H4K20me1-H3K4me3), as presence of 

H3K4me3 (as well as H3K4me2, H3K27me1 and H4K20me1) histone modification islands have been 

shown to be correlated with higher gene expression levels43, which is biologically consistent with the 

generally accepted functions of the TFs in this study. While individual per-predictor probabilities 

varied depending on training set and subsequent binning, in general assigned probabilities behaved in a 

way consistent with biological evidence (e.g., closer distances with respect to the H3K4me histone 

mark usually assigned higher probabilities for high-occupancy to the TFBS site in question). Average 

class-conditional probabilities for high-occupancy sites in both the cross-classification and per-

chromosome classification for the smallest distance bin in the top 10 most frequently occurring 

predictors are summarized in Tables 2.7a (cross-classification, reflecting averages only for two-bin 

cases and not including closest distance bins for three or more bins) and 2.7b (per chromosome, all 

cases). 

 

2.3.5 Cross-Classification Performance: We additionally explored the classification performance 

achieved using one TF's classifier on the data for the other three TFs. Cross-classification performance 

may both be an indicator of the suitability of one TF for predicting occupancy of another (perhaps for 

exploratory modeling purposes), as well as a general indicator of the commonality of features 
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influencing occupancy of a TFBS. For this experiment, each of the ten samples from the previous 

experiments was used to train a BN classifier using the entire TF sample as training data. This classifier 

was then tested using  each sample from each other TF, resulting in 100 AUC values for each TF-TF 

pair. We compared the average AUC of these values to the average AUC values achieved in cross-

validation (Table 2.8 and Figure 2.3). Both TFBS-feature and feature-feature distances were included. 

In general, the classification performance achieved appears to correspond well with that achieved in the 

cross-validation experiments. Both STAT and GABP achieve cross-classification performance on one 

another comparable to that achieved in cross-validation; this result is sensible in light of the number of 

predictors that the two TFs were found to have in common during the predictor frequency analysis.  

 

2.3.6 Cross-Classification of SRF: SRF represents a unique data set relative to the other TFs in that its 

dataset appears to contain multiple strong motifs that differ from the “canonical” SRF binding 

sequence; the TRANSFAC SRF PWM accounts for only about 33% of the sites reported by Valouev et 

al. After restricting to the 3kb window about the TSS, only 46 high-occupancy and 421 low-occupancy 

sites were identified. Because of this low sample size, we chose to exclude SRF from the general 

analyses described above. However, the data set does represent a tractable “use case” scenario for 

“blinded” occupancy classification; we hence decided to investigate the cross-classification 

performance of the classifiers trained on the TFs previously analyzed on the SRF dataset. SRF appears 

to be highly amenable to cross-classification (Table 2.9). While the SRF dataset is quite small, these 

results both indicate that occupancy classification can operate well on datasets with smaller sample size 

and an imbalance of high and low-occupancy TFBS sites and that the method used to generate a 

binding data set likely plays an important role in the accuracy of the evaluation of our classifiers, as the 

SRF data set is a ChIP-Seq data set and classification performance is comparable to that achieved on 

GABP and STAT. This is likely due to coverage differences; despite its smaller size, the SRF data set 



20 

is likely more complete in terms of covering most SRF TFBS with 95% similarity to the canonical 

PWM.  

 

2.4 Discussion:  While we were able to achieve good performance with occupancy classification 

overall, considerable variation in performance and in predictors was observed between the TFs.  These 

differences may be attributed to both biological and technical factors affecting the TFs and the 

predictor data sets. 

 

2.4.1 Biological factors: Biological differences between the TFs are likely at play; for example, GABP 

is thought to bind at the majority of human bidirectional promoters36, and this may imply a stronger or 

more specific dependence on chromatin environment cues relative to the other factors. Conversely, c-

Myc has been shown to have considerable binding activity outside of the window of analysis used in 

these experiments3,  This result may suggest that c-Myc TFBS occupancy in general may not be as 

sensitive to the chromatin environment local to the 5' region of genes.  

 

2.4.2 Technical Factors: In addition to biological differences between TFs, differences between the 

methods with which the TF binding data and histone modification data were obtained may have 

contributed to differences in classification performance. For example, GABP and c-Myc also represent 

temporal and technical extremes, with c-Myc data generated in 2004 via paired-end ditag techniques 

vs. GABP data generated in 2008 via ChIP-seq; this illustrates the difficulty of separating technical 

from biological variation in performance  in these results. We suspect that differences between the 

techniques used to generate the binding data we utilized,  particularly with regard to site coverage, 

explain many of the discrepancies in performance between TFs. This is indicated by both the consistent 

trend towards better performance on TFs where ChIP-seq-based data sets were available, as well as the 
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per-chromosome analysis. Another difficulty arises from potential differences in the chromatin 

environment in the cell lines from which binding data was generated versus the cell lines from which 

histone modification and hypomethylation data was generated; ideally, all of the data for a given TF 

and predictors would be derived from the same cell lines. However, such data is not to our knowledge 

publicly available, and in its absence determining the exact contribution of potential cell line factors to 

the difference in classification performance for each TF is not possible. There is evidence that variation 

in histone modification proximal to core promoters or a TSS is less pronounced across cell types as 

compared to variation at enhancer regions57, however, and this suggests that cell line variations are may 

be less  likely to have a severe detrimental effect on our classification performance. 

 

2.4.3 Summary: Even with the potential technical and biological limitations of the study, these results 

demonstrate that occupancy classification can perform quite well at classifying occupancy of TFBS 

predicted using PWMs in the promoter region of genes. Additionally, we demonstrate that the 

predictors we use are viable for application in occupancy prediction and that those predictors are 

selected in a manner consistent with the known biology of TF binding. The importance of feature-

feature distances for prediction is also demonstrated. Our comparison of algorithms suggests that 

Bayesian network methods may be more effective candidates for implementing occupancy classifiers 

than methods using SVM algorithms. Finally, we demonstrate that accurate cross-classification of TFs 

by a classifier trained on a different TF is possible, using both our four training TFs on one another and 

on the SRF factor, which was held out for the entire training phase of all classifiers. This is an 

important result, as it demonstrates that occupancy classification can potentially operate with good 

performance on TFs for which training data is unavailable, suggesting that a generalizable occupancy 

classifier capable of handling many different TFs for which biochemical training data may not be 

available is a possibility worth further exploring. 
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Chapter 3. Generalizable Occupancy Classifiers 

3.1 Background: Both per-TF occupancy classification and accurate cross classification are possible 

using the occupancy classification scheme developed in chapter 3. However, the question of 

generalizability remains unanswered; is it possible to construct a classifier capable of accurate 

occupancy classification for an arbitrary TF? While in the most general sense this question is likely not  

possible to exhaustively answer, we endeavor in this chapter to address the general plausibility of the 

idea of a generalizable occupancy classifier. We do this by utilizing the data sets described in Chapter 

3.to construct classifiers which either combine data from multiple TFs into a single training set or 

combine multiple classifiers into a single classifier via stacking30. We compare the performance of 

these classifiers to classifiers trained on single TFs, and demonstrate that the performance of these 

classifiers is comparable to that of single-TF classifiers. We believe that this indicates that a classifier 

capable of achieving good occupancy classification performance on an arbitrary TF is a reasonable 

proposition, and that the methods we present in this chapter represent viable methods of achieving such 

a classifier. 

 

3.2 Methods: Data for the c-Myc, TCF4, GABP and STAT TFs was used as in chapter 3.to construct 

generalizable occupancy classification schemes. SRF was once again held out as a blinded test set. Ten 

training/test splits were derived randomly from the combination of TF binding data. A training set 

consisted of 50 low and 50 high-occupancy sites per TF, with a test set consisting of 50 high and 500 

low occupancy sites. This skewing of the ratio of high to low occupancy sites  was thought to better 

reflect a biologically relevant ratio of high to low sites as observed in the analysis in Chapter 3, 

particularly with respect to SRF.  

 

3.2.1 Generalizable Classification Schemes:The generalizable classification schemes we constructed 



23 

can be divided into three types: 

1) Single-TF classifiers, in which a classifier was trained on only the training data of a 

single TF in a given training/test split. 

2) Combined classifiers, in which a classifier was trained on the combined training data of 

a given training/test split as a single training set without discrimination between the TFs. 

3) Stacking classifiers, in which the stacking method of Wolpert30 was used to combine 

disparate classifiers  (the “level-0” classifiers) with a classifier trained to discriminate high and low 

occupancy sites based on the output of the level-0 classifiers (the “level-1” classifier). For this purpose 

we utilized the Perceptron53 algorithm as the level-1 classifier; initial experimentation with alternative 

level-1 classifiers (e.g. Bayesian network, simple voting) did not produce comparable results to those 

achieved with the Perceptron. 

 

Stacking classifiers are further subdivided into two types; classifiers whose level-0 classifiers consist of 

classifiers trained on data from individual TFs in a given training-test split (“Stacking 1” classifiers), 

and those combining a Bayesian network and an SVM as their level-0 classifiers that had been trained 

on the entirety of the training set for a given train-test split without discriminating between TFs 

(“Stacking 2” classifiers). The general structure of the classifiers is visualized in Figure 3.1 and Figure 

3.2 respectively.  Additional variation was applied to examine the impact of specific TFs on 

classification performance in the form of “holdout” classifiers, in which a specific TF was removed 

from the training set; otherwise, data from all four TFs, including the one to be tested on, were 

included in the training set. Both Bayesian Networks and SVMs were employed as combined or level-0 

classifiers, while Bayesian networks were used exclusively for the purpose of single TF classification. 

For purposes of evaluation, the AUC score and TP/FP and TN/FN rates were recorded for each 

classifier and combined into an average statistic for each method. 
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3.3 Results: The overall results of the analysis are presented in Table 3.2 and Figure 3.3. In general, the 

generalizable occupancy classification schemes performed comparably to single TF classification 

schemes for a given TF, in 3 of 4 cases outperforming the single-TF classifier for a given TF. 

Generalizable classifiers generally also outperform single-TF classifiers used for cross-classification. 

Some loss of performance was observed for the single TF classifiers relative to that achieved in chapter 

2; this loss of performance may be due to the imbalance of high to low occupancy sites in the test data, 

or to differences in experimental methodology (cross-validation vs. single classification run).  

Combined classifiers gave the best overall performance, though the Stacking 1 methodology was 

capable of achieving superior TN rates. The Stacking 2 methodology was generally inferior to both 

combined and Stacking 1 methods.  The trend across all generalizable classification methods was an 

increase in TN rate at the cost of some TP performance in comparison to the single-TF classifier, with 

the notable exception of GABP. Holdout classifiers did suffer some degradation in performance if the 

TF of interest in analysis was withheld; typically, this resulted in a loss of between .01-.05 AUC 

relative to a classifier of the same type including the TF of interest in its training set. Performance on 

SRF with the Combined and Stacking 1 classifiers was comparable for the former and slightly worse 

for the latter than that observed with single-TF classifiers in Chapter 2 (see Table 3.3) 

 

3.4 Discussion: Overall performance of the generalizable classifiers was highly satisfactory in 

comparison to single-TF classifiers, suggesting that a generalizable occupancy classification scheme is 

a reasonable project and that a classifier utilizing either combined TF training sets or a combination of 

individual TF classifiers is a good candidate for such a scheme. While the Combined type classifiers 

had best overall performance, depending on the expected ratio of true binding sites to false positives, 

the more specific Stacking 1 classifiers may be preferable (e.g., in the case of genome wide 
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classification, potentially). The performance of holdout classifiers in which the TF to be classified was 

not part of the training set did show some degradation relative to single TF classifiers or when the TF 

to be classified was included in the training set. This result is not unexpected, however, and the 

degradation in performance is fairly modest. This is an important result for the applicability of 

generalizable occupancy classification in a practical setting, as one of the primary use cases for such a 

classifier would likely be to attempt to classify predicted TFBS for which biochemical data was not 

necessarily available. To summarize, these results indicate that generalizable occupancy classifiers can 

perform well in classification of predicted TFBS in the promoter region about a gene, even if lacking 

direct biochemical examples of high occupancy sites for the TF in question. If TF-specific training dat 

is available, they may be able to outperform a classifier based on that training data alone, as there 

appears to be added value in the addition of training data from other TFs in training the classifier. As 

such, the generalizable occupancy classifiers presented here are excellent candidates for either the 

extension of incomplete biochemical TF binding data sets or for de novo prediction of TFBS when 

biochemical TF binding data for a TF is unavailable.  
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Chapter 4: Similarity of protein interaction networks derived from occupancy prediction to those 

derived from biochemical TF binding data 

4.1 Background: Prediction of TFBS is a difficult task in silico, and despite advances in biochemical 

methods is still incomplete for many TFs in many organisms and cell types. The occupancy 

classification paradigm presents an opportunity for researchers to make accurate inference of potential 

TFBS in silico for purposes of targeting further biological experiments, for hypothesis generation, or 

for assembly and refinement of biological models. However, genome-wide occupancy classification 

can produce a large number of potential high-occupancy sites and corresponding target genes, 

including inevitable false positives. In these circumstances, a method of prioritizing targets for further 

investigation through a combination of prediction quality metrics and analysis of potential impact  of a 

target gene's biological function on a biological question of interest will be useful to researchers as an 

additional guide to researchers for the TFBS/target gene predictions in downstream analysis; one such 

metric of  potential impact may be a gene's position in a transcriptional control or protein-protein 

interaction network. Furthermore, it is important as a confirmation of the validity of occupancy 

prediction that a reasonable degree of the network structure of e.g. protein-protein interaction networks 

implied by biochemical analysis of TF binding is recovered from the predicted version of the network 

as well, even if a large proportion of the initial PWM-based predictions are eliminated by a stringent 

occupancy classification procedure. We show that the gene targets returned by our occupancy 

prediction method returns a statistically significant portion of the protein-protein interaction network 

generated from biochemical binding data as compared to randomly generated networks even at strict 

thresholds for predicted high-occupancy of nearby TFBS.  

 

4.2 Methods: TFBS targets were identified on chromosomes 1-22 from biochemical binding data for 

the TFs c-Myc and TCF4 . Predicted TFBS were then identified using the Stacking 1 method described 
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in 3.2. We chose the Stacking 1 method in preference to the other methods we presented in Chapter 3 

for two reasons. First, we believe that in the genome-wide application the superior TN rate of the 

approach would be beneficial; secondly, the Stacking classifiers produce a more tractable range of 

conditional probabilities for analysis than the Combined BN classifiers, whose conditional probabilities 

showed little variance among positive or negative predictions. Ten versions of the generalizable 

classifier, each with different training sets, were constructed; these were identical to those described in 

chapter 3 and did include data about the TF of interest to the network analysis. Target genes were 

identified in the UCSC genome assembly (hg18)40,47. Biochemical target genes were identified as any 

gene with the midpoint of a biochemically identified binding region within 3kb of its TSS. Predicted 

target genes were identified with two protocols: either the most equivocal site (probability of high-

occupancy closest to .5) or the site with the highest probability of high-occupancy within 3kb of the 

TSS of the gene were selected as representative TFBS for a given gene, and as prediction thresholds 

were varied through the experiments genes were identified as target genes as their representative site 

for the  specified protocol met the threshold. Target genes were mapped to ENSEMBL56 identifiers and 

then to gene names using the Bioconductor 2.5 R package54,59. Interaction networks were then created 

using the PathwayCommons31 interaction network database and all interaction types; we chose to use 

all data sources and interaction types so as to consider as wide a number of sources of data as possible. 

Networks consisted of the target genes and their first neighbors. PathwayCommons is highly 

interconnected and use of other graph searches generally resulted in the recovery of a very large portion 

of the network which showed little variation between predicted and randomly generated networks or 

even between TFs.  

 

4.2.1 Network Similarity Metric for Connected Target Gene Nodes: To assess the congruency of the 

predicted networks with those generated with occupancy prediction, we used two methods. Method 1 is 
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a variation on Balasubramanian. et al. (See Figure 4.1)60. To summarize, the method determines the 

statistical significance of the overlap between two networks by comparing the number of common 

edges  between the two networks of interest versus the number of common edges  between one of the 

networks of interest  and a number of randomly generated networks in the following manner: 

1) Protein interaction networks are constructed based on two data sources; in this case, the  

biochemical binding data and the predicted TFBS binding, as described above. 

2) The number of edges in common between the two networks is counted 

3) A number of randomly generated networks are created, and the number of edges in 

common with one of the  networks of interest is counted; in this case, the biochemically 

derived network serves as the reference network. 

A p-value is then assigned as the (number of random networks with equal or greater number of 

connected nodes present in original graphs/total number of random networks). In the original method, 

one of the networks of interest was permuted via either label or edge randomization to generate the 

random networks; however, as the question of interest is whether occupancy prediction is generating 

networks which preserve more of the biochemically-derived network structure to those generated by 

random selection of genes, we generated our random networks by randomly selecting a number of 

genes equal to the number of target genes selected by occupancy classification from the genes mapped 

to PathwayCommons and generating the resulting network from this random selection 1000 times. We 

repeated this process for selection thresholds of conditional probability of each site from 1 to 0 in 

increments of .05. We refer to this analysis as edge preservation, as it evaluates whether a statistically 

significant proportion of edges indicated by the biochemical binding data-based network are included 

in (“preserved”) in the occupancy classification-based network. . We also repeated this analysis for c-

Myc using the c-Myc Target Database61 
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4.2.2 Network Similarity Metric for Hub Preservation: For method 2, we examined the preservation of 

hubs between the biochemically derived and predicted networks. For this purpose, we defined a hub 

gene as a gene with a connectivity in the upper 5% of the connectivity distribution for the biochemical 

network. The number of genes which were identified as hubs according to this criteria in both the 

biochemical and the predicted network was counted. We then generated 1000 random networks, as in 

method 1, and compared this number of hub genes preserved in the occupancy predicted network 

versus the number of hub genes preserved by the networks in this random ensemble, and varied the 

selection threshold as described for method 1. Rather than using an exact p-value as in Method 1, 

significance was determined versus a normal approximation of the distribution of random network hub 

preservation. We refer to this analysis as hub preservation hereafter. 

 

4.3 Results: For both c-Myc and TCF4, occupancy predicted networks preserved a statistically 

significant number of connected nodes and hubs versus a randomly selected ensemble of networks at 

an alpha of .05. This result held at most of the thresholds for sites with positive conditional probability 

greater than .5 for most variations of the classifier for both the equivocal and highest-probability site 

selection criteria.  

 

4.3.1 Edge Preservation Analysis: Results of the edge preservation analysis are visually summarized in 

Figures 4.2-4.7. Lines in each figure represent the average p-value for all ten classifiers at the given 

threshold. For most of the thresholds, a significant number of edges were preserved on average by the 

ten classifier variations versus the random ensemble. The statistical significance of this preservation 

tended to be higher at a given threshold for the highest-probability site selection criteria than the most 

equivocal, and the threshold at which the preservation was significant tended to be higher for the 

former selection criteria; these results are intuitively sensible, as the most equivocal site selection 
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criteria is more restrictive for most of the genes in the analysis than the highest probability site 

selection criteria. In the regions where significance was not achieved in the extremes of the threshold 

spectrum, either not enough sites were selected to exceed the edge preservation of the random networks 

(in the higher end of the threshold spectrum) or that so many sites were selected that the number of 

preserved edges were essentially identical (in the lower end of the threshold). 

 

4.3.2 Hub Preservation Analysis: Results similar to those observed in the edge analysis were observed 

in the hub preservation analysis, as can be seen in Figures 4.8-4.11  Once again, these graphs represent 

the average p-value for all ten classifiers at the given threshold. Thresholds which do not have a 

corresponding average p-value indicate that either too few or too many sites were selected, and no 

distribution of random networks different from the predicted network was possible to generate. For the 

c-Myc biochemically derived network, hubs were defined as nodes with a connectivity (k) of 13 or 

greater; for TCF4, the required k for a hub was 27. At reasonable predictive thresholds for 

classification of .4-.8 a significant number of hubs were preserved by occupancy classification versus 

random networks using both selection criteria for both TFs; this result is somewhat less clear for c-Myc 

hub preservation using the most equivocal site selection criteria.  

 

4.4 Discussion: In this chapter, we demonstrate that a version of the generalizable occupancy 

classification scheme developed in Chapter 3 is capable of identifying high-occupancy sites for two 

disparate TFs such that the target genes identified by such sites reconstruct a statistically significant 

portion of a protein interaction network arrived at by biochemical identification of binding sites and 

target genes versus a random network background.  This is demonstrated for two network metrics, the 

number of target genes connected in the biochemically derived network which retain edges in the 

occupancy predicted network, and the number of hub genes preserved between the two networks. 



31 

While the networks generated by low thresholds of occupancy classification also generate statistically 

significant network preservation in some cases, this is not unexpected since unfiltered PWM results 

represent the upper bound of potential recall for occupancy classification. In combination, the results 

from our two preservation analyses suggest that protein interaction networks constructed from 

occupancy prediction are likely to contain many of the same features as a network constructed from 

biological data.. These results are significant as they suggest that researchers can be comfortable using 

stringent thresholds for occupancy prediction and will likely recover a significant portion of a protein 

interaction network based on a biochemical TF binding experiment..Additionally, it indicates that 

methods utilizing protein interaction networks which base their inputs on the results of occupancy 

prediction are likely to capture many of the salient features of a network based on biochemical 

evidence for a given TF. Since such methods provide important and powerful tools for hypothesis 

generation or the construction of systems biology models, the ability to use occupancy classification in 

lieu of or as a supplement to biochemical TF binding data for such methods improves the flexibility of 

the methods and extends the range of biological problems they may be used to address into problems 

where TF binding data may be inadequate or even nonexistent. 
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Chapter 5: Use-case of protein interaction data to prioritize selection of c-Myc/TCF4 shared target 

candidates and confirmation of TCF4 and c-Myc binding in human colorectal cancer cells 

5.1 Background: The number of potential high-occupancy TFBS and subsequent candidate target genes 

returned from a genome-scale occupancy classification analysis can be quite large, and may contain a 

significant number of false positive sites and target genes. Without additional guidance, it is possible 

that a researcher utilizing occupancy classification may have some difficulty in prioritizting  these 

candidate sites/genes for subsequent followup and confirmation. While it is likely that many 

researchers using occupancy classification may have a driving biological question, such as interest in 

members of a particular pathway or family of genes, that may inherently limit the number of interesting 

candidates to a manageable number, such a driving question is not assumed to exist by the occupancy 

classification method; indeed, some biological questions by their very nature may require an analysis of 

a large or genome-scale data set, such as the extension of an incomplete TF binding data set. For such 

questions, it is plausible to assume a researcher may desire some algorithm or heuristic for narrowing 

down the number of potential candidate genes for carrying forward into additional analysis. We present 

in this chapter a method utilizing a combination of quality scores, inter-classifier agreement, and 

metrics based on protein interaction networks to address a specific biological question: the search for 

potentially important shared c-Myc and TCF4 targets. It has been well established that the b-

catenin/TCF4 complex and c-Myc are important regulators of a number of biological processes and are 

in particular involved in oncogenesis. They are of particular import in colorectal cancers. Previous 

work has demonstrated that approximately 60% of genes involved in the Wnt signaling pathway in 

Apc/Myc double mutant mouse intestinal cells that were normally upregulated when APC is inactivated 

are not upregulated in the absence of functional c-Myc; many such genes are thought to be regulated by 

b-catenin/TCF4. The loss of upregulation without c-Myc, even with an excess of b-catenin due to the 

loss of APC, suggests that there may be a large number of genes which are targets for both the TCF4 
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and c-Myc transcription factors62.It is reasonable to assume that the binding data used to train our 

occupancy classifiers in this work does not represent a complete picture of the targets of either TF due 

to both technical limitations of the parent studies and the temporal and contextual nature of TF binding, 

and neither would the mere intersection of those data sets represent a catalog of the shared targets of 

the two TFs. With occupancy classification, we have an opportunity to extend the list of targets for 

both c-Myc and TCF4 and to thereby identify potential shared targets between the two.  We show how 

occupancy classification combined with the selection method described below allows for a principled 

selection of potential target genes for further analysis, confirm several predicted targets via chromatin 

immunoprecipitation,  and demonstrate how the method serves as a model for similar analyses in the 

future. 

 

5.2 Methods: Potential candidate genes and protein interaction networks were constructed as described 

in 4.2 for both c-Myc and TCF4, using ten variations of the Stacking 1 classifier. Each variation was 

trained on a unique combination of training data from all four TFs utilized in this study, as described in 

Chapter 3, and used to predict both TCF4 and c-Myc occupancy for chromosomes 1-22. After 

constructing the resulting protein interaction networks as described in Chapter 4, we decided to focus 

our attention on genes fitting the definition of “hub” described in 4.2 (e.g. connectivity k > 95% of the 

connectivity distribution of a biochemically-based network), since such hub genes have the potential to 

effect a number of biological processes through their multiple protein interactions. Our selection 

criteria resulted in a k = 27 requirement in the TCF4 network, while a minimum of  k = 13 was used to 

define a hub for c-Myc, as in 4.2. Shared hubs were identified  from the intersection of the hubs of the 

networks resulting from each pair of classifier variation predictions (e.g., Variation 1 c-Myc and 

Variation 1 TCF4, Variation 1 c-Myc and Variation 2 TCF4, and so on). Because of the non-uniform 

distribution of these agreement scores, non-parametric methods (e.g. Spearman’s rho) were used to 



34 

evaluate the classifier pair agreements scores. Some shared hubs were what we term “secondary hubs”: 

i.e., while heavily connected to predicted target genes, we did not predict direct binding of one or both 

of the TFs  at those genes themselves. The number of pairs of classifiers which identified a shared hub 

in both networks was noted, assigning one “point” per pair of classifiers, and resulting in a total score n 

out of 100 possible pairs of classifier variations and transcription factors; we refer to this as the 

classifier agreement pair score for that predicted hub. We then ranked the predicted hub genes by this 

score. We repeated this process for high-occupancy conditional probabilities of .5, .6, .7, and .8 using 

both the most-equivocal and highest-probability site selection criteria. A workflow of the overall 

protocol used in this and subsequent portions of the analysis can be found in Figure 5.1.  

 

5.2.1 Analysis of External Supporting Evidence for Candidate Genes: To examine the face validity of 

the predictions and to identify potential targets as good candidates for a further analysis, we examined 

the support a given prediction had from outside sources. In the case of c-Myc, since we believe the 

binding data used for classifier construction to be particularly incomplete, we used the c-Myc Target 

Database61 as a source of support for a given target. In the case of TCF4, we felt the binding data we 

chose was sufficiently large that it was a reasonable, albeit incomplete, snapshot of TCF4 binding. 

Predicted hubs were identified as being supported by none, one, or both of the data sources.  From this 

data, we selected a list of potential targets which we felt were good candidates for further examination.  

 

5.2.2: Prioritization of Candidate Genes: Candidate genes were prioritized according to the following 

criteria: 

 

1) Biological interest with respect to colorectal cancer: We chose to prioritize predicted targets 

which had potential function in colon cancer processes; we additionally chose to focus on 
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targets with transcription factor and signaling activity, as well as targets with potential 

involvement in cytoskeletal reorganization. 

2) Existing support from our data sources: Using the TCF4 binding data and the c-Myc Target 

Database as references, we chose targets which were not supported for binding of TCF4 and c-

Myc in the reference data sources. Some potential target genes (e.g., CDC2/CDK1, SLK) had 

been shown to bind one or the other of the TFs of interest, but not both; in such cases we felt it 

reasonable to retain such genes for confirmation both to assess concordance with our supporting 

information as well as to confirm binding of the factor that did not have previous evidence 

indicating such binding 

3) Classifier pair agreement score: We used this score as a guide to selecting potential target genes 

for confirmation, preferring genes with a higher score. Interestingly, some highly scoring genes 

(e.g. CHUK) were secondary hubs with regard to c-Myc; however, the high score of the targets 

indicates that it is possible for these target genes to be heavily involved with other c-Myc 

targets without being direct targets themselves, a phenomenon of potential interest; in 

combination with the biological function of these targets it was thought to be worthwhile to 

carry some of these genes forward for confirmation. Conversely, some genes of interest (e.g. 

SP1) had relatively low scores, and were selected primarily on the basis of biological function. 

 

5.2.3 Confirmation of TCF4 and c-Myc binding by immunoprecipitation in HCT116 human colorectal 

cells: The method of confirmation of TF binding was as described in Bottomly et al60: the primary 

alteration to the protocol was the inclusion of c-Myc immunoprecipitation (Myc antibody Millipore 05-

419) alongside TCF4. Otherwise, cells, conditions and preparations were as described. The same 

control region was used for both TCF4 and c-Myc. 
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5.3 Results: We decided to identify ~20 potential targets  for further analysis, as it was felt this was a 

reasonable number for ChIP confirmation. During initial review of the data, we found that using the 

highest-probability site selection criteria led to a very large number of potential candidates (~700, for a 

threshold  of .5). We found that a threshold of .6 in conjunction with most equivocal site selection led 

to a reasonable number of candidates for analysis (118); this list is reproduced in Table 5.1. We 

proceeded with support analysis and candidate selection from this basis. 

 

5.3.1 Results of External Support Analysis and Candidate Selection: Initially, a total of 45 (38%) of our 

predicted targets had preexisting support from either or both of the c-Myc Target Database and the 

TCF4 binding data set used for training. It is important to remember that the genes identified as target 

genes in these data sources are likely to be incomplete; indeed, the very lack of support for the 

predicted targets is a motivation for developing this method. A higher classifier agreement pair score 

did not appear to significantly coincide with the presence of existing support for binding (Wilcoxon 

rank sum test in R, p=.12), nor did significant  correlation exist with that score (Spearman correlation 

test in R, p=.12)  suggesting that the number of agreeing pairs is best viewed as a heuristic. However, 

in light of the supporting data sources being almost certainly incomplete, it is possible that true targets 

might actually have higher classifier agreement pair scores  if supporting data set with more complete 

coverage of (e.g., a ChIP-seq based data set) were used. With this in mind, we proceeded to select our 

recommended potential targets for further investigation that are annotated as such in Table 5.2; the 

biological rationale for each selection is also explained in Table 5.2.  

 

5.3.2: Chromatin Immunoprecipitation of predicted TCF4 and c-Myc target genes: We selected a 

subset of 18 of the predicted target genes in Table 5.2 for confirmation via ChIP, as viable primers 

could not be designed for all the genes (see Table 5.3 for primer sequences). Initially, we confirmed 
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TCF4 binding. Of the 18 selected targets, 13 showed binding of at least 1.5 times the control in the 

experiment; we consider these confirmed predictions of TCF4 binding at the promoters of these genes, 

giving a confirmation rate of 72%. Of the 13 confirmed genes, 11 had no support in the TCF4 binding 

data set; both of the target genes with support from the TCF4 . binding data were confirmed (see Figure 

5.1). We did not attempt to confirm c-Myc binding at all 18 candidate genes, since 6 of the hub genes 

identified are secondary hubs for c-Myc. Additionally, due to technical limitations, an additional eight 

target genes could not be tested for c-Myc binding, as the predicted binding sites were too far apart for 

the same primers to be used to detect both TCF4 and c-Myc binding. Of the 18 TCF4 targets assayed, 6 

were further  tested for c-Myc binding. Of those 6 genes, all 6 showed binding of 1.5 times the control 

or better for c-Myc for a confirmation rate of 100% (see Figure 5.2). In total, these results indicate four 

direct shared targets of TCF4 and c-Myc of 12 possible targets, with a fifth (CDC2) which has evidence 

of c-Myc binding in the c-Myc Target Database but which could not be confirmed in this study. 

Additionally, we predict and demonstrate TCF4 binding in the region near the TSS of the GTF2F2 

gene. GTF2F2 is indicated as a c-Myc target gene by the c-Myc Target Database, but we do not predict 

c-Myc binding at GTF2F2 with our occupancy classification and prioritization protocol. The overall 

results of the ChIP experiments are summarized in Table 5.4 

 

5.3.3 Improvement of correlation of classifier agreement pair score with support: As noted above, 

initially, number of classifier pairs in agreement about a gene did not significantly correlate with 

support from binding data and/or literature. However, if the TCF4 and c-Myc binding data 

subsequently derived from our predictions is included,  the association between classifier agreement 

pair score and support becomes significant (Wilcoxon rank sum test p-value > .001), with a correlation 

coefficient of .3 (Spearman's rho, p-value = .001).  This suggests that the agreement between multiple 

occupancy classifiers is a useful metric for prioritization of target selection in future analyses using 
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similar protocols to this analysis. 

 

5.3.4 Overall performance of protocol: The protocol described here was capable of successfully 

prioritizing a small number of predictions for validation from a large number of initially predicted 

high-occupancy TFBS binding sites and associated genes. Depending on the specific classifier used, 

approximately 3000-4000 genes possessed predicted high occupancy sites and could be mapped to the 

PathwayCommons database for network analysis. Restriction by requiring a minimum of a .6 

conditional probability of high-occupancy at all predicted TFBS and imposing hub criteria reduced this 

number to 118 candidate genes. Of these candidate genes, 13 of 18 tested sites were confirmed to show 

TCF4 binding, while 6 of 6 genes assayed for c-Myc showed binding. Of the TCF4 sites, only 2 of the 

13 were previously supported by the TCF4 . binding data we utilized for classifier construction, while 

only 2 of the 6 genes binding c-Myc were previously supported in the c-Myc Target Database. Of 20 

total predictions of binding at a gene which were tested, 15 (75%) were confirmed. None of the 4 

shared TCF4 and c-Myc targets that demonstrated direct binding could have been identified from the 

intersection of the c-Myc Target Database and the biochemical TCF4 binding . data we used. Of the 5 

TCF4 direct targets which showed up as secondary hubs for c-Myc in our analysis, only one was 

supported in the TCF4 binding data as a direct target. Interestingly, all five of these TCF4 direct targets 

show up as secondary hubs for a c-Myc network built using the c-Myc Target Database as the basis and 

k = 13 as the minimum hub connectivity criteria, suggesting that their interaction with multiple c-Myc 

targets has some degree of existing support; furthermore, only one of these genes (SP1) is identified as 

a secondary hub if the biochemical c-Myc binding data is used as the basis for the protein interaction 

network (i.e., they do not appear as hubs in the biochemically derived network for c-Myc). These 

overall results, including the existing support for the predicted genes, is summarized in Table 5.5. 
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5.4 Discussion: We provide in this chapter an example of the application of occupancy classification 

for purposes of addressing a specific biological question. We demonstrate a method of combining the 

results of multiple occupancy classifiers, prediction quality data, and protein interaction network data 

to prioritize the results of a genome wide prediction of target genes for two TFs (c-Myc and TCF4), 

and confirm a sizable majority of the predictions biochemically for both factors.  Furthermore, there is 

no reason to believe that mutual targeting of genes between two TFs is a phenomenon exclusive to c-

Myc and TCF4. This method provides an explicit way to perform occupancy classification experiments 

to add weight to or explore the possibility of such mutual targeting phenomena. Finally, this method 

presents occupancy classification as part of an integrated process of analysis of a biological question, 

incorporating quality metrics internal to the process of occupancy classification along with biological 

knowledge and graph theoretic analysis, demonstrating occupancy classification as a valuable addition 

to the arsenal of computational techniques available for researchers interested in computational 

prediction of transcription factor binding sites and target genes. 

 

5.4.1 Discussion of potential biological significance of confirmed target genes: From the perspective of 

colorectal cancer, many of the genes identified could have considerable significance. We restrict 

discussion here to the targets with biochemical evidence from our experiments of both TCF4 and c-

Myc binding (TRAF2, SLK, IQGAP1, THRAP3). Recent evidence63 indicates a role for TRAF2 in 

prevention of apoptosis of colorectal cancer cells; amplification of its expression by c-Myc and/or an 

activated TCF4/ß-catenin complex could confer a selective advantage to a tumor cell population. 

TRAF2 was a known c-Myc target but was not identified as a TCF4 target previously. The SLK kinase 

has been shown to be important in cell motility in breast cancer64; while the Hatzis et al. screen did 

identify TCF4 binding at this gene, we believe the discovery of c-Myc binding is novel.  IQGAP1 is 

implicated in cell motility and cytoskeletal reorganization, and recently has been shown to be a 
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prognostic marker for the severity and likely invasiveness of colorectal cancers65. While the literature 

does not have extensive information about the role of THRAP3 in colorectal cancers, a recent study has 

indicated that THRAP3 complexes with the SNIP1 protein and other proteins, and that this complex 

may be key in regulating the stability of Cyclin D1 RNA, overexpression of which has been associated 

with malignancy66. Overall, many of the TCF4 and c-Myc targets we identify here are members of the 

NF-kappa-ß signaling pathway (TRAF2, CHUK) involved in suppression of the pathway, or are 

otherwise involved in cell cycle control or transcriptional activation (CDC2, CRKRS, THRAP3, SP1). 

A considerable number of the targets have roles in cell motility and cytoskeletal reorganization 

(ANP32A, IQGAP1, PAK4, SLK), which has been shown to influence tumor invasiveness. 

Additionally, we believe many of these sites may be biologically “normal” sites which could be  active 

in non-cancerous tissues, despite identifying these binding sites in a colon cancer cell line. Both the 

chromatin feature data used to predict binding and the original biochemical binding data used to train 

our classifiers were derived from multiple cell lines, and recent evidence56 indicates that at least histone 

modifications show reduced variability across cell lines at promoter regions. While it is impossible to 

definitively determine whether or not the identified binding sites are active in normal tissue from these 

results, our ability to identify these sites with many heterogenous data sources in concert with the 

conservation of epigenetic modification in promoter regions  suggest that it is possible these sites are 

active in normal tissues as well. 

ACKNOWLEDGEMENTS: The author would like to thank Dr. Gregory Yochum and Sydney Kyler 
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Chapter 6: Discussion of results, relevance, and future directions  

6.1 Significance of initial classification and cross-classification experiments: Results of the initial 

classification experiments presented in Chapter 2 indicate that occupancy classification is in fact a 

viable method of discriminating true high occupancy TFBS sites from low occupancy sites from a set 

of sites predicted by position-weight matrix and that occupancy classifiers trained on one TF can 

successfully classify predicted TFBS sites belonging to another TF. While the results of this analysis 

are necessarily limited in scope, this does not invalidate those results as a validation of occupancy 

prediction. Furthermore, these results are in accord with previous results and recent developments  in  

the field of TFBS binding prediction and serve to advance the field of research and add to the body of 

knowledge regarding TFBS binding site prediction in silico. 

 

6.1.1 Limitations of Analysis: Regarding the limitations of the analysis, an obvious limitation is that 

only five total TFs were used in the study. Unfortunately, at the time of the conception and execution of 

the study, high-quality TF binding data sets in humans were relatively rare. The decision to limit the 

analysis to activating transcription factors only further limited the potential selection of TFs. However, 

it is unrealistic to assume that any analysis of this type could exhaustively cover all possible TFs, and 

indeed biochemical binding data for all possible TFs would largely eliminate the need for such an 

analysis altogether. Additionally, the lack of high-quality data sets for binding motivated the use of 

older data sets whose coverage and resolution are not to the standards of more modern techniques, 

which in turn required the use of a relatively large window about the center of biochemically defined 

binding regions to define high-occupancy sites for the analysis. It is possible that this large window 

resulted in misidentification of sites that may not truly be high-occupancy. The impact of this effect  

may be mitigated for the higher quality techniques somewhat, as the likelihood of a high-occupancy 

site not possessing a corresponding biochemical hit is lessened. This means that the odds of a true low-



42 

occupancy site being misidentified in the region surrounding a true high-occupancy site are most likely 

lower for these techniques; this may be reflected in the generally superior results of the ChIP-seq 

derived GABP and STAT binding sites, though some of this performance improvement is almost 

certainly due to the improved coverage of these data sets relative to c-Myc and TCF4 (c.f., the 

considerable increase in per-chromosome performance variability observed in Chapter 2). Nonetheless, 

it is unlikely that the large window used to define high occupancy sites constitutes a serious weakness 

of the analysis; given higher quality data, however, it would be preferable to define as narrow a 

window for defining a high occupancy site as possible. 

 

6.1.2 Comparison to existing work: In comparison with other work in the field, the analysis presented 

addresses several unanswered questions about occupancy classification. The most directly comparable 

work is that of Chen et al., who constructed a c-Myc classifier using a Bayesian network and distances 

to various DNA and chromatin features as well as sequence conservation. However, while Chen et al. 

do begin  to address the issue of cross-classification by attempting to cross-classify CREB binding sites 

using their classifier, they do not address the issue of algorithm comparison in any capacity. The 

analysis presented in this work both addresses the issue of cross-classification of TFs in greater depth 

than Chen et al. as well as addressing two distinct algorithms for classification. Two additional novel 

features separate this analysis from that of Chen et al.; the construction of our data sets from raw 

binding data and the use of feature-feature distances in the classifiers. Chen et al. use a data set which 

quantitatively identifies the level of several c-Myc binding sites. In contrast, this analysis uses only 

binding data which is not quantitated beyond presence/absence (i.e, quantitative levels of protein 

binding are not used to segregate high and low occupancy sties, as in the Chen et al. study), and yet 

achieves reasonable performance, demonstrating that quantitation is not a prerequisite for training 

accurate occupancy classifiers. The use of feature-feature distances is to our knowledge unique for 
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purposes of identifying high occupancy TFBS, and is not present in Chen et al. A more recent work is 

that of Won, Ren, and Wang67, which uses a Hidden Markov Model-based approach to accurately 

identify binding sites for 13 distinct TFs in mouse. The approach of Won, Ren, and Wang has certain 

advantages over the analysis presented here, notably that it was able to address many more TFs with an 

overall higher data quality. The HMM-based approach additionally is able to address enhancer regions 

distinct from promoter regions, which this analysis does not address. With that said, the Won, Ren, and 

Wang approach by no mean supplants the analysis presented here. Our analyses are performed in 

distinct species (human vs. mouse) and utilize distinct TFs, though the Won, Ren and Wang analysis 

does use c-Myc and a STAT family member. It also does not seem as if the HMM-based approach 

necessarily outperforms the approach presented in this analysis; the AUC values presented in the Won, 

Ren and Wang analysis do not greatly exceed those achieved by Bayesian networks on the high-quality 

data sets in this analysis, and the degree to which this improvement is due to differences in the 

definition of high-occupancy sites, differences in quality of TF binding data, cell line differences in 

histone modification data, and of course differences between species is not possible to determine.  The 

HMM-based classifier also does not address the issue of cross-classification directly in terms of the 

effect of one TF being used to train a classifier distinct from the TF the classifier is used to perform 

occupancy classification on, as it appears that an individual model is trained per TF in HMM-based 

method. Won, Ren and Wang do not appear to address the use of feature-feature distances in any 

fashion, though they claim to implicitly capture a periodicity of histone modification signals with their 

model. Finally, the method presented in this work is agnostic to the method used to identify potential 

TFBS, whereas the identification of TFBS is intimately tied into the HMM model used by Won, Ren 

and Wang; the ability to overlay the methods of this work transparently onto any given binding site 

discovery algorithm may be useful in generalizing occupancy classification or to tailoring it to specific 

needs. However, the analyses do share important common features, notably the reliance on histone 
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modifications as primary inputs to the classifier. While the two approaches present competing methods 

for achieving occupancy classification, they both make important contributions to the literature 

regarding binding site prediction in silico. 

 

6.1.3 Summary of significance: The work presented in chapter 3 provides considerable additional 

support to the body of literature demonstrating that occupancy classification is a viable approach to 

improving in silico TFBS prediction, by confirming that an occupancy classification approach is viable 

for several different TFs, by comparing multiple algorithms with regard to their suitability for the task 

of occupancy classification, by showing that quantitated binding data is not necessary to train accurate 

classification models, through the introduction of feature-feature distances to the repertoire of features 

for occupancy classification, and by demonstrating that accurate cross-classification is possible for 

several different cominbations of TFs. This last point in particular is important, as it has not been well 

demonstrated in the literature to date and opens the door to the possibility of constructing a 

generalizable occupancy classification scheme. 

 

6.2 Significance of the generalizable occupancy classification experiments: The generalizable 

occupancy classification experiments presented in chapter 3 represent an additional contribution to the 

literature of occupancy classification above and beyond the cross-validation and cross-classification 

experiments of chapter 2. though they share many similar features. Arguably, most of the weaknesses 

of the analysis of chapter 3 are retained since the generalizable occupancy classifiers derive directly 

from those developed in chapter 2. however, as discussed in 6.1, most of these weaknesses are 

unavoidable byproducts of the available data sets and are incidental to the results reported. Many of the 

strengths of the cross-validation and cross-classification analysis are carried over to this work as well: 

in particular, the focus on cross-classification of TFs for which the classifiers used are not trained and 
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the contest of multiple algorithms for the task. These strengths are integral to the unique contributions 

the work makes to the literature regarding occupancy classification. 

 

6.2.1: Comparison to existing work in the field: Once again a comparison may be drawn between this 

work and that of Won, Ren, and Wang. As discussed in 6.1.2, the HMM-based approach used by these 

authors is inherently designed as a generalizable approach, with the advantage of additionally handling 

enhancer regions in addition to promoter regions. The work here nonetheless possesses unique 

attributes which set it apart from the work of Won, Ren, and Wang. Notably, the aforementioned paper 

does not engage in comparison of potential algorithms, as this work does in some detail. Also, the use 

of cross-classification and “holdout” variations of the classifier to assess the impact of leaving a TF out 

of the training set and to determine the performance of the method on TFs which were not included in 

the training data set are not replicated in the work of Won, Ren and Wang, due to the necessity to train 

individual models per TF in their method. Most of the other salient similarities between the two 

approaches are summarized in 6.1 and need not be repeated here. 

 

6.2.2 Summary of significance: Ultimately, the primary contribution of the analysis of generalizable 

occupancy classification presented in this work is the demonstration that a generalizable occupancy 

classifier is possible. Beyond the cross-classification procedure used in chapter 2, this work 

demonstrates that combinations of TF training set data are capable of producing generalizable 

classifiers equalling or exceeding the performance of a single-TF classifier, and of performing with 

little loss of accuracy in comparison to a single TF classifier if that TF has not been used to train the 

generalizable classifier in question. The work compares and contrasts a number of approaches to 

combination of the training data and to algorithms used for classification, illustrating strengths and 

weaknesses and suggesting the applicability of specific variations to specific needs (e.g., the use of a 
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Stacking type classifier in genome-wide prediction for purposes of leveraging its high TN rate). This 

analysis provides strong evidence for the viability of generalizable occupancy classifiers for TFBS as 

well as demonstrating and comparing several methods for the construction of such classifiers. 

 

6.3 Significance of network analysis and shared c-Myc and TCF4 target prediction: The analysis of the 

similarity of protein interaction networks derived from biochemical TF binding data vs. those derived 

from occupancy prediction and the subsequent use of network metrics to predict shared c-Myc and 

TCF4 targets is to our knowledge unique in the field. 

  

6.3.1 Significance of network similarity analysis: The analysis presented in chapter 4 provides 

additional support to the assertions of accuracy of generalizable occupancy classification; it 

demonstrates that occupancy classification reconstructs a statistically significant portion of the  

network structure as biochemical data in terms of adjacent nodes and in terms of hub identity as 

opposed to that achieved by random selection of an equal number of nodes to construct a network. In 

the most permissive case utilizing the highest probability site selection criteria, our best classifier 

variation identifies 920 hub genes for TCF4 at the .8 high-occupancy threshold, of which 115 (12.5%) 

are included in the TCF4 binding data. By contrast, the unfiltered TCF4 PWM identifies 1412 hub 

genes, of which 175 (12.3%) are included in the TCF4 network. Over a third of the genes indicated by 

PWM hits may be discarded while still retaining two-thirds of the PWM-identified hubs; while this 

may seem like a modest improvement, the incomplete coverage of the TCF4 binding data must be 

considered. We believe it is likely that an even higher percentage of the hubs identified by occupancy 

classification would be confirmed given binding data with better coverage. To some extent, this 

supposition is borne out given our success in identifying novel TCF4 binding sites in Chapter 5. In 

contrast to the highest-probability criteria, the more stringent most-equivocal criteria identifies only 47 
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hub genes at the .8 threshold, but 13 (27%) are included in the TCF4 binding data; the resultant 

selection is also significant in terms of edge and hub preservation versus the random network 

background. This result indicates that even if a large number of PWM-identified TFBS are discarded 

by a stringent occupancy classification threshold, a significant amount of structure in the biochemically 

derived network is retained. These results are themselves  useful contributions to the field, as they 

suggest network models may be constructed using occupancy classification with some confidence that 

their results are likely to replicate the results that would be expected from use of  biochemical binding 

data as a basis for the analysis. 

 

6.3.2: Significance of common c-Myc and TCF4 target selection and prioritization: By demonstrating 

the use of occupancy classification in conjunction with network metrics derived from a protein 

interaction network to address the biological question of shared c-Myc and TCF4 targets in chapter 5, 

this work demonstrates a unique way in which occupancy classification can be used to address a 

specific biological question, as well as providing a framework by which questions of the same type 

may be addresses in future. The protocol is admittedly arbitrary in its selection of quality and network 

metric cutoffs for selection and the selection of genes is biased in favor of those most likely to be of 

import to colorectal cancer processes; as well, the use of the most equivocal selection criteria may bias 

selection to genes near fewer predicted TFBS. Nonetheless, the potential target list is arrived at in a 

principled fashion and the cutoffs for selection are obviously adjustable to suit the needs of a particular 

biological problem. The approach is conceivably directly extensible as is to any pair of TFs that are 

thought to share common target genes, making it an excellent candidate for both hypothesis generating 

research and for building additional confidence in or extending existing models of TF cooperativity or 

competition in silico. Finally, this method identified a large proportion of targets which were shown to 

be true targets of a TF of interest in the analysis via chromatin immunoprecipitation as well as four 
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targets which were confirmed to be shared between the two TFs of interest, validating both occupancy 

classification and the target prioritization algorithm as useful tools for extending the known targets of a 

given TF, as well as identifying new targets of the TCF4 and c-Myc transcription factors whose 

potential regulation by these TFs may have important roles in the pathology of colon cancer or in other 

biological processes. 

 

6.4 Future Directions and Potential Extensions/Applications of Occupancy Classification: At the 

completion of this work, many questions and potential extensions and applications of the Occupancy 

Classification paradigm remain unexamined. 

 

6.4.1 Extension to additional TFs, cell types/species, and genomic contexts:  Most obviously, there 

remain a considerable number of TFs which are not addressed in this work, and it is possible that the 

framework presented here may not be applicable to occupancy classification for all of them. Notably, 

the study design deliberately rejected TFs with primarily deactivating or expression-suppressing 

activity. Whether or not the generalizable classification scheme presented here would operate 

accurately on such factors is unknown. Similarly, the design focused exclusively on a relatively small 

promoter region about the TSS of genes; whether or not the methods presented here are good fits for 

predicting occupancy of TFBS in enhancer regions or for TFBS located intergenically or in the 3' 

regions of genes is an open question. Many of the histone modifications used to make predictions of 

high occupancy are correlated with higher gene expression41, which, while biologically sensible for 

activating TFs, may not be applicable to deactivating factors or to factors operating outside of the 

promoter regions of genes. Certainly, the question of cell line variation affecting classification accuracy 

or the viability of interspecies occupancy classification remain unexamined, though such work may 

require biochemical data which is unavailable at this time (e.g histone modification data derived from 
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multiple cell lines or in multiple species). Future work examining these issues would be of tremendous 

value in further developing occupancy classification as a method. 

 

6.4.2: Algorithmic and methodological questions of interest: A number of algorithmic issues with 

occupancy classification remain unaddressed. Of course, there remain a myriad of machine learning 

techniques that were not used in the comparison of algorithms presented in this work, and it is entirely 

possible that there may be approaches which outperform the Bayesian network approach that proved 

superior here. More interestingly, since the occupancy classification method in this work is agnostic to 

the source of the TFBS predictions it classifies, the effect of the source of those predictions on the 

accuracy of occupancy classification is unknown.  How occupancy classification operates on 

predictions from ab initio TFBS discovery methods, for example, is unknown, nor have we addressed 

the effects of using PWMs derived from alternate methods of PWM construction such as protein-DNA 

interaction models68. The ability of ab initio discovery procedures to identify common potential TFBS 

between genes also suggests the possibility of using such methods to identify most likely candidates for 

TFBS for a gene set and then to further use occupancy classification to add weight to or cast doubt 

upon those predictions. For purposes of exploring novel sets of potentially coregulated genes such an 

approach could be quite powerful in discovering common TFs underlying coregulation. 

 

6.4.3 Model perturbation: An unexplored facet of occupancy classification in this work involves model 

perturbation. As many of the occupancy classifiers in this work are essentially probabilistic modesl of 

the effects of particular chromatin modifications and sequence factors on the occupancy of a given 

TFBS, it is possible to determine the most likely effect on any given TFBS of a change in the state of 

those factors using such occupancy classifiers. As epigenetic remodeling increasingly is shown to be a 

vital factor in developmental and disease processes, the ability to theoretically permute the state of 
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epigenetic modifications affecting TFBS occupancy and to observe the likely effect of those changes 

on a given TFBS could be quite valuable in understanding why particular modifications lead to 

particular perturbations in biological behavior. An accurate occupancy classification model as 

presented in this work allows researchers to perform exactly this type of experiment and to thereby 

generate hypotheses or construct models of the effects of epigenetic changes on TFBS occupancy and 

its effect on biological processes.  

 

6.4.4 Possibilities for network-based and other multi-method analyses: Finally, the possibilities of 

network-based analyses are by no means completely explored in Chapters 4 and 5 of this work; only 

the outlines of their possibilities are sketched. Indeed, the question of integrating occupancy 

classification with other types of information such as expression, genome-wide association and protein 

interaction data is an extremely fertile field of study. The form and effect of such integration is highly 

dependent on the question being addressed in the study; while the work presented in Chapter 5 

provides a strong framework for addressing the specific question of TFs targeting mutual genes and 

shows a method for extracting potential targets from genome-wide occupancy prediction for further 

study in an informed manner, such a framework may not be appropriate for other circumstances or data 

types. It is the hope of this author that this work, in conjunction with others addressing similar 

questions, will sufficiently illustrate the possibilities of occupancy classification to not only spur 

development of occupancy classification methods, but also to find ways to fully exploit occupancy 

classification's possibilities as part of an integrated approach to modeling gene regulatory behaviors 

and discovering and elucidating their roles in biological and disease processes of interest. 
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TABLES 

 Table 2.1 - Average AUC score for each classifier and TF (10 data sets, 10-fold cross-
validation) 
 

TF BN SVM SVM (Discretized) 
c-Myc 0.74 0.71 0.69 
TCF4 0.71 0.67 0.66 
STAT 0.83 0.78 0.75 
GABP 0.94 0.91 0.9 

 

 Table 2.2 - Average AUC for per chromosome classification experiments 
TF Avg. ROC 
c-Myc 0.75 
GABP 0.94 
STAT 0.83 
TCF4 0.83 

 Table 2.3 - Comparison of average AUC between BN classifiers trained on all available 
features vs. only TFBS-feature distances  
Factor All TFBS Only 
c-Myc 0.74 0.72 
TCF4 0.71 0.69 
STAT 0.83 0.82 
GABP 0.94 0.92 

  

 Table 2.4a-d  - Per-chromosome AUC, true positive rate, true negative rate, and High and 
Low Occupancy Site Count for all TFs 
 
Table 2.4a: c-Myc 
 
Chromosome AUC TP TN High Low 

1 0.86 0.7 0.96 47 5115 
2 0.83 0.77 0.83 13 3399 
3 0.84 0.52 0.89 21 2679 
4 0.73 0.5 0.84 10 1771 
5 0.81 0.33 0.88 9 2360 
6 0.86 0.82 0.84 11 2270 
7 0.64 0.33 0.92 18 2911 
8 0.82 0.43 0.84 14 1997 
9 0.79 0.72 0.73 39 2504 

10 0.96 0.8 1 10 2471 
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11 0.88 0.82 0.78 33 3174 
12 0.79 0.74 0.84 65 2651 
13 0.17 0 0.93 1 1043 
14 0.72 0.84 0.36 45 5166 
15 0.52 0 1 9 1747 
16 0.86 0.77 0.8 64 3220 
17 0.57 0.33 0.8 15 3996 
18 0.89 0.7 0.86 10 702 
19 0.83 0.64 0.84 137 4260 
20 0.6 0.27 0.89 11 1581 
21 0.63 0.18 0.85 17 929 
22 0.89 0.72 0.9 46 2124 

 
Table 2.4b: GABP 
 
Chromosome AUC TP TN High Low 

1 0.95 0.95 0.84 442 2052 
2 0.93 0.96 0.79 328 1247 
3 0.94 0.97 0.81 275 1115 
4 0.92 0.95 0.78 128 616 
5 0.94 0.94 0.83 226 735 
6 0.93 0.95 0.78 240 887 
7 0.94 0.96 0.81 263 1145 
8 0.93 0.93 0.79 213 725 
9 0.94 0.94 0.81 239 910 

10 0.94 0.93 0.87 175 800 
11 0.92 0.95 0.78 365 1314 
12 0.95 0.96 0.85 267 1107 
13 0.89 0.91 0.79 81 276 
14 0.94 0.95 0.84 129 1071 
15 0.95 0.93 0.83 147 722 
16 0.95 0.95 0.87 287 1332 
17 0.93 0.92 0.84 359 1573 
18 0.96 0.98 0.87 65 236 
19 0.9 0.93 0.76 549 1771 
20 0.93 0.95 0.81 173 624 
21 0.95 0.94 0.88 47 291 
22 0.95 0.98 0.78 155 788 

 
Table 2.4c: STAT 
 
Chromosome AUC TP TN High Low 

1 0.83 0.63 0.87 1740 15180 
2 0.81 0.57 0.92 833 11092 
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3 0.81 0.64 0.86 953 8100 
4 0.81 0.64 0.88 287 5835 
5 0.83 0.62 0.92 636 6498 
6 0.85 0.69 0.89 849 7589 
7 0.82 0.6 0.9 605 7251 
8 0.83 0.61 0.9 543 4813 
9 0.85 0.66 0.92 656 6467 

10 0.76 0.49 0.92 621 6560 
11 0.83 0.69 0.85 817 8167 
12 0.8 0.59 0.88 968 7488 
13 0.87 0.72 0.91 179 2831 
14 0.91 0.69 0.95 531 10516 
15 0.85 0.62 0.92 481 5551 
16 0.86 0.66 0.91 674 5904 
17 0.84 0.65 0.88 1034 7325 
18 0.82 0.62 0.93 144 2504 
19 0.85 0.79 0.77 962 7637 
20 0.81 0.59 0.85 445 3583 
21 0.83 0.58 0.91 120 1813 
22 0.76 0.63 0.8 239 3757 

 
Table 2.4d: TCF4 
 
Chromosome AUC TP TN High Low 

1 0.71 0.71 0.57 66 10840 
2 0.85 0.53 0.9 53 8584 
3 0.78 0.58 0.85 113 6539 
4 0.91 0.81 0.81 36 4643 
5 0.87 0.7 0.87 135 5137 
6 0.86 0.78 0.78 106 5599 
7 0.51 0.06 0.92 16 5251 
8 0.78 0.65 0.82 51 3729 
9 0.83 0.63 0.88 41 4832 

10 0.76 0.73 0.69 83 4825 
11 0.87 0.85 0.76 92 5546 
12 0.89 0.83 0.81 80 5492 
13 0.91 0.73 0.92 26 2257 
14 0.9 0.63 0.9 35 6595 
15 0.87 0.82 0.83 55 4224 
16 0.76 0.42 0.83 26 3784 
17 0.85 0.75 0.76 76 4678 
18 0.89 0.86 0.67 28 1890 
19 0.86 0.84 0.76 32 4208 
20 0.84 0.79 0.81 28 2310 
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21 0.9 0.71 0.84 7 1298 
22 0.87 0.5 0.93 6 2095 

 

 Table 2.5 - Top 10 most frequently occurring predictors in the occupancy classifiers (per-
TF and cumulative) 

Predictor GABP c-Myc 
STA
T TCF4 Total 

H3K4me2-H3K4me3 80 8 83 57 228 
H3K27me1-H3K4me3 84 11 87 43 225 
TSS-H3K4me3 85 47 50 22 204 
H3K79me1-H3K4me3 69 26 79 25 199 
H3K79me2-H3K4me3 97 12 55 34 198 
H4R3me2-H3K4me3 61 40 74 23 198 
H3K79me2-TSS 81 44 51 20 196 
H4K20me1-H3K4me3 68 10 82 30 190 
H3K79me3-H3K4me3 30 36 72 49 187 
H3K9me1-H3K4me3 78 10 77 13 178 

 Table 2.6 -Pairwise Agreement on Inclusion of Features into Classifiers (Average Kappa, 
553 features, n=100 per feature) 
TF 1 TF2 Kappa 
GABP STAT 0.47 
STAT TCF4 0.43 
GABP  TCF4 0.41 
STAT c-Myc 0.39 
c-Myc TCF4 0.36 
GABP c-Myc 0.34 

 Table 2.7: Class-conditional probabilities for top predictors  
Table 2.7a: Average class-conditional probability of high-occupancy status for smallest distance bin for 
top 10 most frequently occurring features in cross-validation (two-bin cases only) 
 
Feature c-Myc GABP STAT TCF4 
H3K4me2-H3K4me3 0.65 0.91 0.59 0.54 
H3K27me1-H3K4me3 0.38 0.91 0.52 0.42 
TSS-H3K4me3 0.82 0.97 0.78 0 
H3K79me1-H3K4me3 0.63 0.87 0.58 0.46 
H3K79me2-H3K4me3 0.49 0.88 0.55 0.42 
H4R3me2-H3K4me3 0.3 0 0.54 0.43 
H3K79me2-TSS 0.6 0.93 0.7 0.6 
H4K20me1-H3K4me3 0.28 0.91 0.49 0.38 
H3K79me3-H3K4me3 0.86 0.82 0.57 0.59 
H3K9me1-H3K4me3 0.38 0.92 0.54 0 
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Table 2.7b: Average class-conditional probability of high-occupancy status for smallest distance bin for 
top 10 most frequently occurring features per-chromosome(all cases) 
 
Feature c-Myc GABP STAT TCF4 
H4K20me1-H3K4me3 0.79 0.91 0.58 0.67 
H3K4me2-H3K4me3 0.6 0.93 0.57 0.7 
H3K79me3-H3K4me3 0.81 0.92 0.53 0.72 
TSS-H3K4me3 0.94 0.98 0.67 0 
H3K79me2-H3K4me3 0.43 0.91 0.56 0.57 
H3K27me1-H3K4me3 0.66 0.91 0.57 0.5 
H3K79me1-H3K4me3 0.93 0.91 0.55 0.72 
H3K79me2-TSS 0.92 0.87 0.68 0.6 
H4R3me2-H3K4me3 0 0.82 0.52 0.74 
H3K9me1-H3K4me3 0.68 0.92 0.47 0.56 
 

 Table 2.8 - Average AUC in cross-classification experiments 
Training/Test TF c-Myc TCF4 STAT GABP 
c-Myc x 0.64 0.79 0.86 
TCF4 0.65 x 0.78 0.91 
STAT 0.69 0.69 x 0.92 
GABP 0.67 0.69 0.83 x 

 Table 2.9 - Average AUC for SRF cross-classification experiments 
Classifier AUC 
SRF (cross-val) 0.88 
GABP 0.88 
c-Myc 0.86 
STAT 0.89 
TCF4 0.86 
 

 Table 3.1 - Results of Generalizable Classification Experiments 
 

Test Set Train 
Average 

AUC 
Average 

TP 
Average 

TN 
c-Myc Combine (BN) (TCF4 Holdout) 0.7 0.52 0.76 
 Combine (BN) (GABP Holdout) 0.69 0.62 0.67 
 Combine (BN) (STAT Holdout) 0.69 0.51 0.77 
 Combine (BN) 0.69 0.51 0.76 
 Stacking 1 (NN) (TCF4 Holdout) 0.68 0.47 0.79 
 STAT 0.68 0.6 0.66 
 Combine (SVM Variant) 0.67 0.72 0.55 
 GABP 0.67 0.34 0.88 
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 c-Myc 0.67 0.65 0.61 
 Stacking 1 (NN) (GABP Holdout) 0.67 0.6 0.66 
 Combine (BN) (c-Myc Holdout) 0.67 0.47 0.78 
 Stacking 1 (SVM Variant) 0.67 0.43 0.82 
 Stacking 2 0.67 0.56 0.72 
 Stacking 1 (NN) 0.67 0.47 0.79 
 Stacking 1 (NN) (c-Myc Holdout) 0.65 0.42 0.82 
 Stacking 1 (NN) (STAT Holdout) 0.65 0.4 0.82 
 TCF4 0.62 0.58 0.62 
     
GABP GABP 0.93 0.89 0.84 
 Combine (BN) (c-Myc Holdout) 0.92 0.97 0.72 
 Combine (BN) 0.92 0.97 0.7 
 Combine (BN) (STAT Holdout) 0.92 0.97 0.71 
 Combine (BN) (TCF4 Holdout) 0.92 0.97 0.7 
 Stacking 1 (NN) (c-Myc Holdout) 0.92 0.93 0.77 
 Stacking 1 (SVM Variant) 0.91 0.94 0.77 
 Stacking 1 (NN) (TCF4 Holdout) 0.91 0.94 0.73 
 Stacking 1 (NN) 0.9 0.96 0.74 
 Stacking 1 (NN) (STAT Holdout) 0.9 0.92 0.78 
 Combine (BN) (GABP Holdout) 0.9 0.98 0.6 
 STAT 0.89 0.97 0.59 
 Stacking 2 0.88 0.96 0.65 
 Stacking 1 (NN) (GABP Holdout) 0.87 0.98 0.59 
 TCF4 0.84 0.93 0.57 
 Combine (SVM Variant) 0.81 0.94 0.48 
 c-Myc 0.74 0.82 0.55 
     
STAT Combine (BN) 0.82 0.63 0.87 
 Combine (BN) (c-Myc Holdout) 0.81 0.61 0.89 
 Combine (BN) (TCF4 Holdout) 0.81 0.62 0.87 
 Combine (BN) (GABP Holdout) 0.81 0.7 0.79 
 GABP 0.81 0.45 0.96 
 Combine (BN) (STAT Holdout) 0.81 0.61 0.88 
 STAT 0.8 0.69 0.77 
 Stacking 1 (NN) (TCF4 Holdout) 0.79 0.57 0.89 
 Stacking 1 (SVM Variant) 0.79 0.54 0.91 
 Stacking 1 (NN) (c-Myc Holdout) 0.79 0.53 0.91 
 Stacking 1 (NN) (GABP Holdout) 0.79 0.69 0.78 
 Stacking 1 (NN) 0.78 0.59 0.9 
 Stacking 2 0.76 0.63 0.83 
 Stacking 1 (NN) (STAT Holdout) 0.76 0.5 0.92 
 Combine (SVM Variant) 0.75 0.71 0.68 
 TCF4 0.74 0.67 0.71 
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 c-Myc 0.71 0.62 0.72 
     
TCF4 Combine (BN) (c-Myc Holdout) 0.7 0.43 0.86 
 Combine (BN) 0.69 0.45 0.85 
 Combine (BN) (STAT Holdout) 0.69 0.43 0.85 
 GABP 0.68 0.28 0.94 
 Combine (BN) (GABP Holdout) 0.68 0.51 0.77 
 Stacking 1 (SVM Variant) 0.68 0.37 0.89 
 Stacking 1 (NN) (c-Myc Holdout) 0.68 0.36 0.89 
 STAT 0.67 0.52 0.75 
 Combine (BN) (TCF4 Holdout) 0.67 0.43 0.84 
 Stacking 1 (NN) (GABP Holdout) 0.67 0.53 0.76 
 Stacking 1 (NN) (TCF4 Holdout) 0.67 0.39 0.87 
 Stacking 1 (NN) 0.66 0.4 0.87 
 Combine (SVM Variant) 0.66 0.57 0.67 
 Stacking 2 0.66 0.46 0.81 
 Stacking 1 (NN) (STAT Holdout) 0.65 0.35 0.89 
 TCF4 0.65 0.54 0.7 
 c-Myc 0.6 0.46 0.72 
 

 Table 3.2 - Results of SRF classification with Generalizable Classifiers 
 

SRF Results 
Average 

AUC 
Average 

TP 
Average 

TN 
Combined 0.88 0.83 0.83 
Stacking 1 0.86 0.71 0.87 
 

 Table 5.1- Predicted shared hub genes of c-Myc and TCF4 with all sites exceeding .6 
probability of high-occupancy 
 
Gene No. Agreements Support 
SFRS1 90 3 
MAGOH 90 3 
PCBP1 90 2 
CDC2 90 1 
RPL30 90 1 
IQGAP1 90 0 
CHUK 90 0 
EIF3D 90 0 
ACTR2 90 0 
GTF2F1 90 0 
HIST1H2BH 81 1 
RUVBL2 81 1 
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PLEC1 81 0 
RPL35 72 1 
SRRM2 72 1 
RPS11 72 0 
EIF4A2 72 0 
RPL13A 63 1 
TRAF6 63 0 
PAK4 63 0 
BCLAF1 63 0 
PRKDC 54 1 
HSP90AB1 54 0 
CDC40 54 0 
THRAP3 54 0 
HNRNPH1 45 2 
SLK 45 2 
EEF1A1 45 1 
PTPN11 45 0 
CRKRS 45 0 
GRB2 45 0 
SHC1 45 0 
U2AF2 45 0 
HSPD1 45 0 
TUBB2C 45 0 
ANP32A 40 2 
IGF1R 40 0 
IKBKB 40 0 
RPL37 36 3 
TUBB 36 2 
ANXA6 36 1 
MAPK1 36 0 
DHX9 36 0 
RPS29 27 3 
NCL 27 1 
GTF2F2 27 1 
HSPA8 27 1 
ATP5A1 27 0 
ACVR2B 24 0 
IKBKE 18 2 
TRAF2 18 1 
RPS7 18 1 
ACTB 18 0 
RPL23A 18 0 
CPSF2 18 0 
HNRNPA2B1 18 0 
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CCND1 16 3 
CDKN2A 16 1 
GRSF1 12 1 
MAP3K1 9 3 
RPL15 9 3 
TUBA4A 9 2 
EEF1G 9 2 
MATR3 9 2 
MAPK3 9 1 
RPS9 9 1 
RPS16 9 1 
RPL7 9 1 
RPS13 9 1 
RPL3 9 1 
SNRPD2 9 1 
SLC25A4 9 1 
U2AF1 9 1 
SP1 9 0 
EGFR 9 0 
HSP90AA1 9 0 
CAMK2D 9 0 
RUVBL1 9 0 
HSPA1L 9 0 
TGFBR1 9 0 
RPS3A 9 0 
LYN 9 0 
HNRNPF 9 0 
DYNLL1 9 0 
PABPC1 9 0 
AURKB 9 0 
RPS14 9 0 
TNFRSF14 9 0 
CBL 9 0 
RCC2 9 0 
HIST1H4A 9 0 
CREBBP 9 0 
CAPZB 9 0 
LUC7L2 9 0 
NEK9 9 0 
JUN 9 0 
UGDH 9 0 
SCIN 9 0 
LUZP1 9 0 
POLR2J 9 0 
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EIF3K 9 0 
TNPO1 9 0 
NUDT21 9 0 
HNRNPA0 9 0 
PABPN1 9 0 
SFRS9 9 0 
AP2A1 9 0 
AP2B1 9 0 
AP2M1 9 0 
HLA-B 9 0 
HSPA5 9 0 
BMPR1A 8 0 
BTRC 8 0 
CSTF3 7 3 
HIPK1 7 0 
POLR1E 7 0 
RB1 6 1 
TRIP6 3 0 
Support: 1 = c-Myc Target Database59, 2 = Hatzis et al.44 binding data, 3 = Both 

 Table 5.2 - Prioritized shared c-Myc/TCF4 predicted targets for additional analysis 
 
Gene Biological Import 
ACTR2 Component of ARP2/3 complex, involved in cell shape and motility 
ACVR2B TGF-beta superfamily receptor kinase 
ANP32A Implicated in multiple processes including apoptosis, tumor suppression 
BCLAF1 Transcription factor, apoptosis inducing protein 
CDC2 Cell cycle control, Wnt pathway member 
CDKN2A Kinase, tumor suppressor 
CHUK NF-kappa-B inhibitor 
CRKRS RNA splicing factor, cell cycle related 
EIF4A2 RNA helicase 
GTF2F1 General transcription factor 
GTF2F2 General transcription factor 
HSP90AB1 Chaperone, may stabilize mutant oncogenic proteins 
IGF1R Insulin-like growth factor receptor 
IKBKB NF-kappa-B signaling factor 
IKBKE Noncanonical NF-kappa-B factor, implicated in breast cancers 
IQGAP1 Cell adhesion and motility 
MAPK1 MAP kinase family member 
PAK4 Cytoskeletal reorganization 
PLEC1 Cytoskeletal element 
PTPN11 Transcription regulation, cell migration 
RUVBL2 Helicase, DNA repair, oncogenesis 
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SLK Kinase, apoptotic regulation 
SP1 Transcription factor, cell growth, apoptosis 
SRRM2 RNA preprocessing 
THRAP3 Transcriptional Coactivator 
TRAF2 Apoptosis, MAPK and N-kappa-B signalling 
TRAF6 NF-kappa-B pathway member, TNF receptor family 
TUBB2C Tubulin, cytoskeletal involvement 

 Table 5.3 – Primers used for TCF4 and c-Myc ChIP experiments ((L)eft and (R)ight) 
Primer Sequence 
THRAP3 L TCAATACCCCAGTAGCACCCATTT 
THRAP3 R GGAAAGCCTCAAGCACCCTGAAAG 
IKBKE L GCGTCTGCCACTCATAGCATCTG 
IKBKE R TCCGTCAATCTCTTTCCCAGCATA 
ACTR2 L TGGGCTGACATTGGAGTATGGAAC 
ACTR2 R CAGGGCTTGGTGTGTTATTGCTTC 
ACVR2B L TAAATGACCACTCCCCGCCCTA 
ACVR2B R GCAGAAAGAGGCTGACTTCCCTGA 
CDK1 L ACTGTGCCAATGCTGGGAGAAAAA 
CDK1 R GAAAGAAAGAGGAAAGGGCGGCTA 
CHUK L CATTCACAGAGACACACACGCACT 
CHUK R GTGGGACCTTGGGCAGTATTTGG 
SLK L CCCCTGGTCCTTATCCTGTCCTTC 
SLK R TGTTCCACCGTAAACCCGACTTCT 
IKBKB L TCCTCACTGCCTCCACTTTCTCTG 
IKBKB R TCCCCCTATTCACTGTCCCAAGAT 
TRAF2 L TCTGAATGCTTGGAGGAGACTTACC 
TRAF2 R GCCTTTGGTGAAATGGAGACCTT 
TRAF6 L CCAGCCTTTGTGTATCCCTCCCTA 

TRAF6 R 
GATTCTCTTGCTCTTCCTTTTCTCCA
G 

SP1 L GGCTCCACCAAAACACGGATAAAG 
SP1 R TGAGGCTAAAGTGCGGATAAGTCA 
HSP90AB1 L GCCGACAAGAATGATAAGGCAGTT 
HSP90AB1 R GATAGATGCGGTTGGAGTGGGTCT 
PTPN11 L TGTCTTCTTTTCCTCCTACCCCTCA 
PTPN11 R CGGCTCCCTTCCTTTCCATCTC 
GTF2F2 L AGGCATTTCTCTCTCCAGCAGCAT 
GTF2F2 R GGCACCATCTCAAGTCACACCATTT 
ANP32A L CTGCCCAAACTCCCAACTCCAT 
ANP32A R ATTTCTGCCTCCCTCTCGCTTTCA 
IQGAP1 L AATCTGGTGACTGCTGCCGAATCT 
IQGAP1 R ATGAAAGCCCTCCAACCCCACTCT 
CRKRS L TGAAAGCGAAGCACGAAACATC 
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CRKRS R TCCCTCACACAGACCCAGTCACAC 
PAK4 L CCCTAGCGGAGCAGATGAATGAGT 
PAK4 R GCAATACGCCCTCCTTGGGTTTTA 
 

 Table 5.4 – Summary of Results of TCF4 and c-Myc ChIP Experiments to Confirm 
Prioritized Targets 
Table 5.4a - Results of TCF4 ChIP 

 

Gene TCF4 Binding? 
HSP90AB no 
TRAF6 no 
ANP32A yes 
PAK4 yes 
IQGAP1 yes 
ACTR2 yes 
CHUK yes 
CRKRS yes 
CDC2 yes 
PTPN11 no 
TRAF2 yes 
ACVR2B yes 
SLK yes 
IBKBB no 
IBKBE no 
THRAP3 yes 
SP1 yes 
GTF2F2 yes 
 

Table 5.3b - Summary of c-Myc binding 

 

Gene c-Myc 
IQGAP1 yes 
PTPN11 yes 
TRAF2 yes 
SLK yes 
IBKBE yes 
THRAP3 yes 

 Table 5.5 - Summary of existing support for TCF4 and c-Myc binding at prioritized target 
genes 
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Gene Known TCF4 Known c-Myc 
HSP90AB No binding Not assayed 
TRAF6 No binding Not assayed 
ANP32A Yes Not predicted 
PAK4 No Not assayed 
IQGAP1 No No 
ACTR2 No Not predicted 
CHUK No Not predicted 
CRKRS No Not predicted 
CDC2 No Yes, not assayed 
PTPN11 No binding No 
TRAF2 No Yes 
ACVR2B No Not assayed 
SLK Yes No 
IBKBB No binding Not assayed 
IBKBE No binding Yes 
THRAP3 No No 
SP1 No Not assayed 
GTF2F2 No  Yes, not predicted 
“Yes” indicates literature evidence existed previous to our ChIP experiments 

“No” indicates that we were unable to find evidence of TF binding previous to our ChIP experiments 
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FIGURES 

 Figure 2.1 – Visual representation of TFBS-Feature and Feature-Feature distances 
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 Figure 2.2 – Average AUC values for all classifier variants in single TF classification 
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 Figure 2.3 – Average AUC values for cross-classification experiments 
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Figure 3.1 – Schematic of Stacking 1 classifier 
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 Figure 3.2 – Stacking 2 classifier diagram 
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 Figure 3.3 – Average AUC for Generalizable Classification Experiments  
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 Figure 4.1 – Edge Preservation Analysis Diagram (Adapted from Balasubramanian et al. 
2004)57  
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 Figure 4.2 - P-values of connected edge preservation analysis, most equivocal site 
selection criteria (c-Myc) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.3- P-values of connected edge preservation analysis, highest probability site 
selection criteria (c-Myc) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.4 - P-values of connected edge preservation analysis, most equivocal site 
selection criteria (c-Myc Target Database) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.5- P-values of connected edge preservation analysis, highest probability site 
selection criteria (c-Myc Target Database) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.6- P-values of connected edge preservation analysis, most equivocal site 
selection criteria (TCF4) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.7 - P-values of connected edge preservation analysis, highest probability site 
selection criteria (TCF4) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.8 - P-values of hub preservation analysis, most equivocal site selection criteria 
(c-Myc) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.9 - P-values of hub preservation analysis, highest probability site selection 
criteria (c-Myc) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.10 – P-values of hub preservation analysis, most equivocal site selection criteria 
(TCF4) 

 
Solid line represents average p-value for 10 classifier variations 
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 Figure 4.11 - P-values of hub preservation analysis, highest probability site selection 
criteria (TCF4) 

 
 

Solid line represents average p-value for 10 classifier variations 
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 Figure 5.1 – Illustration of Protocol Workflow for Prioritizing Shared Hubs for Biochemical 
Confirmation 
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 Figure 5.2 – Chromatin Immunoprecipitation Confirmation of Binding at Predicted TCF4 
Target Genes 
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 Figure 5.3 – Chromatin Immunoprecipitation Confirmation of Binding at Predicted c-Myc 
Target Genes 

 


