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ABSTRACT

RIVER ROUTER FOR THE GRAPHICS EDITOR CAESAR

Jaya Holla.

Oregon Graduate Center, 1983

Supervising professor: Alan C. Bradley

A general river routing algorithm is described. It is assumed that

there is one layer available for routing and the terminals are on the boun-

daries of an arbitrarily shaped rectilinear routing region. All nets are two

terminal nets. No crossover is permitted between nets. A minimum

separation must be maintained between Vtires to prevent design rule vio-

lations. The separation and default width for all nets are obtained from a

parameter file. A command line option permits the user to change the

width. The algorithm assumes no grid on the routing plane. The number

of corners in a given route is reduced by flipping corners.

v
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1. INTRODUCTION

The complexity of circuits on a single chip has increased drastically

with the advances in VLSI technology and the software available for

design automation. Circuits with tens of thousands of transistors have

been designed and fabricated. These integrated chips usually have vari-
ous sets of data busses which interconnecl different circuit blocks on the

chip. At the chip planning stage, the designer can, in general determine

the order oi input and output busses of each block. If the input and out-

put busses are in the same sequence, it is possible to make the intercon-

nections between the blocks in a single layer. The problem of intercon-

necting pairs 0; pins in two rows with the same sequence on a single layer

is referred to as the" river routing problem" [1,2.3,4,7].

Ths thesis presents a routing algorithm which handles a more general

and practical river routing problem. The algorithm can handle arbitrarily

shaped contiguous reclilinear routing regions. The algorithm guarantees

a solution if one exists. The existence proof is given in [1].

Section 2 describes the interface of Caesar[6], a VLSI layout pro-

gram, to the river router. Section 3 describes the conversion of the Cae-

sar rectangles to a contiguous routing polygon. Section 4 outlines the

river routing algorithm. Section 5 deals with corner minimization.
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1.1. TERMINOLOGY.

A routing area is a continuous area between blocks of circuitry that can

be used for routing.

A terminal is either an input or outp~t pin on the boundary of the routing
region. It is characterized by a name and its location.

A net is a set of pairs of terminals to be interconnected by wires.

A routing segment is a horizontal or vertical wire segment, it is

represented as a rectangle of a particular layer specified by its lower left

and upper right coordinates.

A route path is a wire connecting two terminals and is characterized by a

starting terminal a set of horizontal and vertical route segments, and an

ending terminal.

A solution to a routing problem is a set of routing paths inside the rout-

ing area which connects the set of nets without design rule violations.

A channel is a rectangular space between circuit blocks.
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2. THE CAESAR INTERFACE

Caesar is an interactive system for creating and modifying VLSI cir-

cuit designs. It is based on the Mead and Conway[5J style of design, and

produces CIF [5J descriptions (Caltech Intermediate Form) suitable for

chip fabrication. It is a geometry editor that allows picture painting of

VLSI circuits and the combination of pictures hierarchically into larger

designs.

It is a two screen system. One screen, called the text display, may be

any standard CRT terminal cap~ble of running the screen editor vi. Cae-
sar is invoked from this terminal; commands are typed at its keyboard

and a command menu and several statistics about the chip design are

displayed on the text display. The second screen is the graphics display

and is used to display in color a piece of the circuit designed. A graphics

tablet must be attached to the color display. For further information

refer to "Editing VLSI Circuits with Caesar", User's Manual, John

Ouste1;'host [6J.

A cell is a piece of the design that can be stored and retrieved by

name. A separate disk file is used to hold the contents of each cell. Cae-

sar commands permit the designer to compose cells hierarchically into

larger systems.

Fig 1 is an example of a hierarchically composed system for Caesar.

The top level file main.ca has cells 1 through 6 included in it. Ce1l7.ca and
ce1l8.ca are included in ce1l2.ca.
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main.ea

cell1.ea ce1l2.ea ce1l3.ea ee1l4.ea ee1l5.ea ee1l6.ea

ce1l7.ea eellS.ea .---- - - --

Fig 1. Cell Hierarchy.

The standard file format for a Caesar file is:
tech nmos

«polysilicon »
,e The rectangles that have to be painted red e/
<< diffusion> >

,e list of the rectangles that haveto be painted green e/

« metal »

/e list of the rectangles that have to be painted blue ./
« labels »

,e Label names and their position ./

«end »

2.1. CAESARMODIFIEDFOR TIIE RIVERROUTER.

In preparation for routing the user creates a new cell and places the fol-

lowing information in it:

1) The named pairs of terminals to be connected.

2) The area available for routing.

Caesar had no provision to create a new cell without leaving the

current editing session . A new function has been included in the list of

long commands to create a new cell. The function created is called
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":route cellname.ca". The new cell that is created has a rectangle of the

routing layer included in the file created. The designer then gets the cell

using the "getcell" command in Caesar. To incorporate the new cell into a

design layout, the cell must be positioned and copied at the required

spot. Choosing this as the current cell and subediting it now permits the

designer to include the necessary routing information.

A new layer has been added to the nmos. tech file to include a layer

caUed "routelayer". The routing area is specified by repeated positioning

and painting of the Caesar box with the routing layer to obtain the

desired rectilinear routing area. Terminal pairs to be routed are specified

using the long command ": label name" Caesar places the label name and

its coordirlates in the routing file. "Return" gets the designer back to the

original cell being edited. On exiting from Caesar all the routing informa-

tion is stored in the file which was created by route. The file contains the

rectangles of the route layer and the coordinates of the labels.

Rectangles are stored as :

rect xl yl x2 y2
The labels are stored as :

label name xl yl x2 y2 position(1 234)

The label's coordinates are stored as a rectangle. The Caesar box should

be compressed to a point when specifying the terminals.

The router can then be invoked from the Unix1shell. The command is :

router -[p d m [integer]] filename

The layers available for routing are:

p - Polysilicon.
d - Diffusion.

m - Metal.

1 Trademark of Bell Laboratories.
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A integer value in multiples of lambda can be specified to override the

default value in the parameter file. The route output will be included in

the specified file. Refer to Appendix A for more information.

Assumption: This cell does not already contain any paint of the layer that

will be used for routing.
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3. CONVERSIONOF THE RECTANGLESINTOA ROUl'ING POLYGON.

The Caesar tile, read in by the program, contains rectangles of the

routing area. The information contained within it has to be stored in data

structures for easy manipulation within the program.

For its internal representation Caesar decomposes an arbitrary rec-

tilinear polygon into horizontal rectangles. Fig 2 is an example of the

decomposition. Horizontal rectangles are convenient for polygon fill with

a pa~ticular color on the raster scan color display monitors. The rectan-

gles have to be converted into a contiguous routing area.

" " "

,......

"

....

" ~.

Fig 2. Arbitrary rectilinear routing region
decomposed into rectangles.

A meaningful representation from a programming viewpoint can be

obtained by viewing a rectangle as four directed line segments. There are

four types of line segments that are possible with Manhattan style design.
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The diagram below has the four possible cases. Note that by definition the

line segments traverse the routing area in a counter-clockwise direction.

i

..i

,
./

./ .
4':

.:

line in +x direction line in -x direction

....
.....

.... ..'
.........".

..........
'"

.......
......

.....
"

....

"'.

. ~.......
.....

line in +y direction line in -y direction

Fig 3. The four types of line segments.

To obtain a arbitrary rectilinear polygon area the line segments can

be looked upon as dividing the space into two sections, one that could be

included. in a polygon and the other that cannot be included in the

polygon. Only certain combinations of these line segments can be used to

obtain a meaningful representation. A rectangle can now be viewed as

four directed line segments which enclose an area.

The four directed line segments can give rise to eight types of

corners. Fig 4 shows these eight types of corners.
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L r
(a) (b) (c) (d)

x x

t Lr~x
(e) (r) (g) (b)

x

Fig 4. Eight types of corners that could occur.
The symbol "x"-denotes the routing area.

The first thing the routing program does is convert the list of rectan-

gles from the Caesar file into a contiguous rectilinear polygon to

represent the routing area. The rectilinear polygon or routing area is

represented by a circular, doubly linked list. The links represent the line

segments and the nodes represent the corners. Each node is tagged with

the type of line segment that it represents and with the type of corner.

Traversing the linked list in the forward direction is equivalent to follow-

ing the routing area in a counter-clockwise direction.

The first rectangle from the Caesar file is set up in the linked list.

Other rectangles can intersect this routing area only in a positive x seg-

ment or in a negative x segment. The order of inclusion of a rectangle

with the route area depends on the type of intersection. As each rectan-

gle is included it is marked as included. The list of rectangles is
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repeatedly traversed as long as unmarked intersecting rectangles exist

on the list. At the end of this algorithm the designer is warned of any rec-

tangles that have not been included in the route area.

Algorithm for conversion of rectangles into a contiguous routing
area:

K: Linked list of rectangles sorted in decreasing y-coordinate.
k : element on the above list.

L : circular doubly linked list representing the routing area.

Each entry in the list represents a vertex on the routing area boundary.

Initialize L to the first rectangle on the list K.

Mark first rectangle on K as INCLUDED.

change =TRUE;

while change

begin
change =false;

Initialize k to be the first element on the list K;

while ( k <> NULL)

begin
if rectangle k is NOTINCLUDEDthen:

check rectangle for intersection with the routing area.

if it intersects the routing area then

begin

if routing area segment is parallel to +x axis

begin

include points in list L in the order 4123 after point 1;

(See Fig. 5 for inclusion order and definition of point1)
mark rectangle k =INCLUDED;

change =TRUE;

end; I if!
else

if routing area segment has direction parallel to -x axis

begin

include points in list L in the order 2341 after point 1.3 ;

( See Fig. 6 for inclusion order and definition of point1.3)
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mark rectangle =INCLUDED;

change =TRUE;

end f end if J
end f end if J
next rectangle on the list K;

end f inner while J
end f outer while I /. Continue as long as there are rectangles
to be included./

The terminal labels are stored in a convenient form and require no
further conversions to make it suitable for the router.

The data flow diagram below shows the interaction of the router with
Caesar.

router report

( user)

caesar filename

caesar

results

file

Fig 5. Top level data flow diagram for the router.
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Fig 6. Inclusion of a rectangle intersecting the routing area
in increasing x coordinale.
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the route area boundary
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d) Rectangle 2 included in the doubly linked list.
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2.1

2.2
1.4

1.3

1.1 1.2

b) Directed line segments

representing the routing area

1.4

1.1

2.3

1.2

d) Rectangle 2 included

Fig 7. Inclusion of a rectangle intersecling in decreasing x.
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after 1.3

a) The two rectangles c) rectangle 1 included
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4. GENERALRIVERROUTINGALGORITHM

An ordered list of segments is continuous if the starting point of

every segment, except for the first segment, is the ending point of the

previous one. A routing path is a continuous list of alternating horizontal

and vertical routing segments. A terminal connected with the first seg-

ment of a path will be called a starting terminal and the terminal con-

nected with the last segment is an ending terminal. The widths of the

routing segments are all the same and are predefined by the user.

The program checks for planarity of the terminal pairs to be routed.

The staT't and end terminals for each route are identified while checking

for planarity. The routing is done one net at a time while executing a

modified stack routine. Path selection is done by routing each net in

turn as close to the boundaries as possible.

After all nets have been routed unnecessary corners are removed by

flipping corners.

4.1. STARTING TERMINAL ASSIGNMENT.

For river routing, each routing net has exactly two terminals to be

connected. Asswne that every routing path is counter-clockwise along

the boundary. Every path has two possible choices along the boundary,

corresponding to lhe two possible choices of the starting terminal. Fig 8.
shows these two choices.
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rl

rl

Fig 8. Two possible paths for routing rl.

The starting terminal for a routing net is chosen independently of all

other nets. such that the shorter path is chosen. This is done by calculat-

ing the total length of the boundary segments counter-clockwise between

the arbitrarily chosen starting and ending terminals. and then comparing

to the length of the total routing perimeter. If the path ~ength is less than

half of the total length. the start terminal is marked as start. and the end

terminal is marked end. If otherwise. then the assignment is switched.

1'1
',,'1..'\1 .'r,

r .
"

I

/
,

,', ".",' /

.," " " . j 1

1 ...
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4.2. PLANARITYCHECK.

Next we need lo determine if a single layer roule is possible. Con-

slraints are imposed on the order in which the nets are rouled. A nel is

rouled only after all nets have been rouled which have both terminals on

lhe counter-clockwise portion of the routing area boundary between the

starting and the ending terminals of the nel.

A simple check can be performed to check whether the terminals as

they appear along the boundary of the polygon can be connected without

intersecting lines. This is analogous to checking whether a set of

parentheses is properly balanced, as formulated by the following algo-

rithm[ 4]:

Initialize a stack S to be empty.

Cut the boundary of the routing polygon at any vertex and

straighten it oul.

Scan the list of terminals from left to righl. For each termi-

nal compare the net identificc.tion to the one on the top of

the stack. If they are equal then pop one, else push it on the.
stack.

If at the end the stack is empty, the nets are properly ordered. Oth-

erwise they are not routable in a single layer.

Correctness[ 4]: The first occurrence of a terminal in a net is treated as

an opening (left) parenthesis and the second occurrence as a

closing(right) parenthesis. Regardless of where the boundary has been

cut, the pattern is planar if and only if the parenthesis in the

expression(obtained by the above interpretation) are properly balanced.

The correspondence is demonstrated in Fig 9.
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6 6 5 3

B 4

B 4

cut 5 3 2 1 1 2

532 1 124 4 3 5 6 6 8 8
( ) ( )

Fig 9. The planarity check is equivalent to balancing parentheses.

4.3. NET ORDERING.

A modified stack routine discovered by C. P. Hsu [1] is used to take

into account the information about the starting and ending terminals.

The algorithm eliminates the dependency of the routed nets on the spot

where the cut was made in the routing area.

A circular singly linked list consisting of all terminals ordered in

counter-clockwise direction according to their positions on the routing

boundary is set up. The terminals have to pass the planarity check before

this algorithm is executed.
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The nets are routed in the order determined by the following algo-
ritmn:

Initialize slack S lo empty.
i = 1 ; /. Index for lhe nets ./
N = Total number of nets.

T = any terminal in the circular list.

Every starling terminal is marked as NOTPUSHED.

Every ending terminal is marked as NOTMATCHED.
while i <= N

begin

if T is a starling lerminalthat is NOTPUSHED,

begin

push T on S ;
mark T as PUSHED;

end

else

begin

if T is an ending terminal that is NOTMATCHED

begin

if T and the top element of S belong to the same net

begin
mark T as MATCHED

pop the element from S;
increment i ;
route /. Dothe rode here ./

end;

end;

end;
T=nexl terminal on the list;

end;

4.4. ROUTING PARAMETERS.

The layers available for routing are polysilicon, diffusion and metal.

To prevent short circuiting between wire runs in these layers a minimum

separation between wires must be maintained.
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The routes have to obey design rule constraints. The information

about the minimum spacing between routes is read in from a parameter

file. The routepararn file is:

lambda 2

NP 2

NM 3

ND 2

; lambda =2 microns

2 ; width and spacing for polysilicon in lambda

3 ; width and spacing for melal in lambda
3 .; width and spacing for diffusion in lambda

Fig 10. Parameter File for the router.

4.5. PATH SEARCHING

At lhis stage the routing area is represented by a doubly linked cir-

cular list. Each time a matching pair of start and end terminals are

identified in the modified stack routine the program goes through lhe fol-

lowing sequence:

1) Set up the route path. Perform design rule checks on the

new vertex points generated.

2) Check path segments for design rule violations.

3) Create reduced route area if 1 and 2 were successful.



20

4.6. ROUTE PATII

The route path starts at the start terminal and follows the route area

in a counter clockwise direction hugging the route area boundary while

maintaining a certain distance from the edges. The section of the route
area boundary between the start and the end terminal is checked for

channels with a width less than the minimum width. Any channel which is

too narrow is replaced by the appropriate line segment. Fig 11 shows how

the minimum width for a channel is calculated and Fig 12 shows the

replacement of narrow channels in the route area boundary.

Roule palh

...............

Rouling boundary

Minimum widlh = 2 ·widlh + 3 ·dislance

Fig 11. Calculation of minimum channel width.
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yl > y2 y2
yl = y2

~
yl = y2

yl < y2 yl > y2

Fig 12. Different cases for narrow channel elimination of the route boundary.

(Dashed lines represent the new segment.)

A route path point is oblained by calculating new vertex coordinales

for each route area corner encountered while following the route area.

xl = x2 T xl < x2 xl >

- . I
x2.y2

xl.yl
I

xl = x2 xl < x2 xl > x2
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Two new points are generated for each corner point on the route boun-

dary. One point is a minimum distance away and the other one is a dis-

tance plus the specified width away from the route area corner. This

latter point is later used when creating new route area after this route

has been successfully completed. A check for inclusion within the route

area boundary is performed on these two points.

4.7. DESIGN RULEVIOLATIONCHECKS

The route divides the routing area into two sections. Fig 13 demon-
strates this division. One section reflects the corners in the route itself

and the program derives these points by following the constraints

imposed by design rules and the desired width The rest of the route

area boundary, not reflected in the route will have to be checked for vio-
lations.

.. -,' "

;:~~/
"~:': '"

/
:.;..:: ..:: , ,..:::: ,.

....
r. .'

:::: / rl

« //~ /

.................

.........

......

........

....

.'
....

..'

, .......

........
....

......
....

.... ........ .......

.'
.....

rl

Fig 13.The route path divides the routing area into two sections.
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The possible sources for the design rule violations can be categorized

into two main categories. The violation could occur atlhe central portion

or at the end points of the line segments that comprise the route path.

Fig 14 below identifies the central portion and the end points of a line

segment.

End points or the line segmenl
Route Area

Cenlral section or the line segment

Route path

ror rl

..... ..' ............ .'

rl rl

Fig 14. Sections of a line segment.

The check for end point violation is performed during the path

search. A third point is generated which is a minimum distance away

from the innermost point. If this lies within the route area then the

corners do not have any violations. Refer to Fig 15 for a violation exam-

ple.
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Corner separalion does nol

salisfy Mead-Conway design rules.

..... ..........

Poinl 3
Roule Area

Roule palh ..............

Point 2

Poinl 1
.'

Fig 15. Example of corner violation.

Two types of checks are made for checking violations which could

occur in the central portion of the route path. A route path is composed

of several line segments. All segments of the route area which are parallel

to and within the range of each line segment of the route should be a

minimum distance away. The distance is obtained from the Mead Con-

way[5] desjgn rules. See Fig 16. The second check is done to check for

intersection of orthogonal lines of the routing area with the line segment
of the route. A violation occurs if either of these checks turn out to be

true. Refer again to Fig 16 for example of this second type of violations.
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Space violalion

......'
........

/ .'

Roule boundary
<E--

Inlersection violation.

.........
..........' .... .' ...........

..... Route path
.....

Fig 16. Violations in the central portion of a route path.

If any design rule violations occur while this section of the program is

executed, a partial route up to the violating one, is included in the Caesar

file. The designer can then add more space where necessary.

4.8. CREATION OF NEW ROUfING AREA.

Each route alters the routing area available to the subsequent

routes. The linked list representing the area available for routing is

changed to reflect the new area available for routing. In the example

below the shaded region represents the routing area for r2 after rl has
been routed.
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Fig 17. Shaded portion represents routing area for r2.
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5. CORNER MINIMIZATION

After the puth search has been successfully completed for all nets

with no design rule violations, a solution exists. Every net has a unique

path associated with it. All paths are pushed outward against the boun-

daries and the excess space remains in the center of the routing area.

5.1. CORNER FLIPPING AND CHECKING.

The corner minimization is done in a systematic way by flipping

corners toward the inside of the routing region. The corners are minim-

ized one at a time. The order in which the paths are minimized is in the

reverse order of the path search sequence. The net routed last is minim-
ized first.

Every corner of the path belongs to one of eight cases.

Fig 16. Eight possible cases of a corner.

(Cases (a)-(d) are flipped to the corresponding cases (e)-(h) below.)

L r
(a) (b) (c) (d)

D, D D Dx

tLr
;It

(h) x(e) (f) (g)
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Since every path is routed in the counter clockwise direction four of

the cases can have their corners flipped toward the inside of the routing

region. The top four corners Fig. 18 are converted into the corresponding

ones below. A constraint segment list is generated to check for design

rule violations. If the new corner violates any design rule, it is not

flipped. Two corners are eliminated if the corner flip is successful. See

Fig 19. All points on the new line segment are checked to ensure no

design rules are violated. See Fig 20 for an example of a violation.

New segmenls

rl

Roule palh for rl

rl

Fig 19. Dashed lines represent the new segments.

rl

Rouling area boundary inlersecls new segmenl

roule palh

for rl

~
I

rouling area

boundary

rl

Fig 20. Violation in the new segmeni.
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A different minimization routine is used if two concave corners occur

one after the other in the route. There are twelve such cases. Fig 21

shows these twelve cases. The minimization routine generates one line

segment as represented by the dashed line in the diagram below. The new

segment is checked for design rule violations. If it violates a design rule

then it is not kept.

xl.yl x2.y2

---rT
yl = y2 '

yl > y2 yl <' y2

~
yl = y2

--+--'
yl < y2 yl > y2

~
x2,

I
I
I

xl,~

l' :. I

xl =x2 . xl < x2 xl >

_1 _1-
x2.12

I
I
I

xl.yl .
xl =x2 xl < x2 xl > x2

Fig 21. Twelve cases for corner elimination in a path.
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5.2. ROUTING AREAFOR MINIMIZATION.

The routing area available for corner flipping for the first route path

to be mirlimized is the routing area remaining after the last route . A new

routing area for corner flipping is set up for each following net. Two

linked lists are needed for the minimization routing area. One is the origi-

nal routing area specified by the designer and the second one is the list

representing the routing area for minimization. The original routing area

is modified to include labels in the order that they appear on the routing

area. Three types of points exist in the original list now, vertices from the

original routing area, start label points and end label points.

For each ret the start and end points are identified in the original

routing area. The new linked list is created by traversing in the counter

clockwise direction the route area, starting at the ending terminal of the

route to be minimized, if a terminal point is encountered then the points

of its route are included. The order of inclusion depends on the type of

terminal encountered. If it is an end terminal then the route's points are
included in the reverse order. If it is a start terminal then the route's

points are included in the same order. Points on the original routing area

between the start and end points of this net on the original list are

skipped. The traversal of the original list continues from the net terminal

and proceeds to the start point of the net being minimized. Finally points

on the net being minimized are included in the routing area.

In Fig 22 the minimization routing area is set up for H2. The numbers

indicate the order in which the points are included. The example illus-
trates the inclusion order when a start terminal is encountered while

traversing in the counter-clockwise direction after the end point of R2. In

Fig 23 the minimization routing area for net Hl is set up. The end point of

net H2 is encountered while traversing the list in the counter-clockwise



direction. The order of inclusion is different from the first example.
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Fig 22. Setting up minimization route area for R2.

The inclusion order is denoted by the numbers.
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Fig 23. Minimization area for Rl.
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The example below has three terminal pairs to be routed and minim-
ized. The route was done in the order: 3 2 1. The minimization is done in

the reverse order, 1 2 3. In the example below the shaded portion

represents the routing area available for minimizing net 1.
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Fig 24, Shaded portion represents minimization routing
area for net 1.

In the diagram below routes 1 and 2 have been minimized, the

shaded area represents the route area available for the minimization of

terminal pair 3.
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6. CONVERSION TO CAESAR FORMAT.

The route paths are stored as line segments and th~y have to be con-

verted into rectangles suitable for Caesar. The line slJgments are con-

verted into horizontal rectangles of the layer specified by the designer.

An example of a route done by the program before minimization is

shown in Fig 26. Nets after minimization is shown in Fig 27.

Fig 26. Nets before minimization.
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Fig 27. Nets after minimization.
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7. CONCLUSION

In summary, the general river routing algorithm routes all nets

against the boundaries of the routing area and then tries to minimize the

number of corners. A planarity check ensures that the nets are routable

in a single layer. The starting terminal assignment, tries to select a

shorter path for each net and spread the nets against all boundaries. This

assignment does not create any crossovers. Based on this assignment the

net order is determined by using a stack. The nets are routed when a

matching pair is discovered in the stack routine. The paths are generated

by closely following the routing area in a counter-clockwise direction.

Finally, the corner minimization is done in the reverse net order by

flipping the corners toward the inside of the routing reglon. This step gen-

erates a final layout Vvithpaths distributed throughout the routing area.

7.1. IMPLEMENTATION.

The general river router was written in the programming language

"c" and implemented on the VAX11/780 running Berkeley Unix 4.1c.

The major part of the time developing the tool was spent in learning

and implementing "c" and the rest of the time was spent in implementing

the algorithm.

7.2. EXPERIMENTALRESULTS.

The route in Fig 28 was produced by the routing program. There were

14 terminal pairs and the execution time was 4.7 seconds. A larger exam-

ple with 46 terminal pairs for routing took 1 minute and 44 seconds for

the router to route. See Fig 29.
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Appendix

Manual page for the router.
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ROUTER(1) CADToolbox User's Manual ROUTER ( 1 )

router - automatic river route generator.
SYNOPSIS

router -[p d m [integer]] filename.ca
DESCRIPTION

River Routing refers to the interconnection of pairs of terminals in two rows with
the same sequence using a single layer. with no crossovers and no internal
blockage.
The information required by the router is:

1) The pairs of terminals to be connected.
2) Routing area encompassing the terminals and specifying the area
available for routing. The terminals have to lie on the edges of the routing
area. The routing area should not contain any totally enclosed patches of
the routing layer.

The following long Caesar commands can be used to specify the routing informa-
tion.

route filename: Creates a new file with a rectangle of the routing layer.

getcell filename: Gets the cell and displays it on the screen.

subedit: Subedit the current cell.

paint t : Paints the area under Caesar's bounding box with the routing
layer.

label text: Places the text at the spot specified by the bounding box. See
note below. .

return: To gel out of the subedit.

Note: Pairs of terminals with the same name are connected. Specification of the
right edge (Right when looking into the routing area) of a route external to the
routing area and ending on its edge, ensures continuity.

The bounding box should be squished to a point when specifying the terminal
labels for routing. If not the lower left edge of the rectangle is taken as the coor-
dinate for the terminal.

After creating the routing file , exit from caesar and at the command line give
the route command: router -[pdrn[integer]] filename. ca. The routing layer has
to be specified in the command line. The width and spacing for that layer is read
in from a parameter file called routeparam located in ""cad/lib. A default value
for width from ""cad/lib is used unless specified in the command line. The route
will be added in the input file. The next invocation of caesar will display the
route.

The options are :
-p Route using the polysilicon layer.
-d Route using the diffusion layer.
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ROUTER ( 1 ) ROUTER ( 1 )CADToolbox User's Manual

-m Route using the metal layer.
Integral value in lambda of the required width of all routes. Default values are
used if a value is not specified.

FILES
-cad I src /local /route. c
"C" Source code for the router.

cad Ibin/route
Executable object code file obtained frQm using the "C" compiler.

f
t
J

cad/lib/routeparam
default parameter file for width and spacing of the routed paths.

SEE ALSO

caesar: Graphics layout editor.
M.S. thesis :"River Router for the Graphics Editor Caesar".

AUTHOR
Jaya Holla
Oregon Graduate Center.

DIAGNOSTICS

Error messages are generated if unrecognized flags are found on the command
line.

I
i
,

The program checks for pairs of terminals to be routed. An error message is
sent to stdout when a mismatch occurs, Le. a river route in one layer cannot be
performed. The contents on the route stack are included in the error message.
A partial route without minimization up to the mismatched point is written in
the caesar tile.

~
Ignores labels not on the routing edge and continues with routing if no other
error condition occurs. However an error message gives label names and coordi-
nates of the terminal.

Generates an error message if any routing layer rectangles from the Caesar file
do not intersect with the rest of the routing area.

BUGS
The program may give an illegal route when the routing area includes non-
contiguous area. e.g. is doughnut shaped.
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