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ABSTRACT

STATISTICS OF POLYCHROMATICSPECKLE PROPAGATION THROUGHTHE

TURBULENT ATMOSPHERE

V. S. Rao Gudimetla
Oregon Graduate Center

Supervising Professor: Dr. J. Fred Holmes

Using the extended Huygens Fresnel principle, the effect of

the atmospheric turbulence on the statistical properties of a

polychromatic speckle field, generated by a diffuse target, is

studied in detail. The results, substantiated by experimental

data, indicate that the atmospheric perturbation increases the

variance of the received intensity substantially and is sensitive

to the wavelength, beam size and beam geometry. The results for

the covariance of the received intensity, normalized to the

variance, indicate that, at low turbulence levels, reduction 1n

vacuum speckle contrast ratio (VSCR) also reduces the normalized

covariance but, with further increase in the turbulence level,

reduction in the vacuum speckle contrast ratio increases the

normalized covariance. Also it is found that for small detector

spacings, the normalized covariance remains approximately constant
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even with substantial increase in the turbulence level. By

resolving the time delayed covariance of the received intensity

(TDC) , into coherent and incoherent terms, it is shown that for

large time delays, the time delayed covariance is determined by the

incoherent fluctuations and for poor vacuum speckle contrast ratio,

the time delayed covariance is not very sensitive to the wind

velocity.' Finally it is shown that due to the atmospheric

perturbation that the probability density function of the received

intensity changes from an M-distribution or a sum of exponential

distributions in vacuum to a K-distribution or a weighted sum of

K-distributions in the presence of the turbulent atmosphere.
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1.

CHAPTER I

INTRODUCTION

Of the two types of flow of liquids and gases, turbulent flow,

characterized by the random spatial and temporal fluctuations of

fluid mechanical parameters such as pressure, temperature and

velocity, is more common in nature as well as in technological

applications than laminar flow. A turbulent flow is characterized

by its rotational, three-dimensional, nonlinear, diffusive and

stochastic nature.l As examples, one can consider the turbulent

atmosphere around us, the spreading of admixtures in the air, flow

of gases in the interstellar nebulae, turbulent flow of water in

pipes, high speed jets from nozzles, etc. Monin and Yaglom2 list

several other examples and consider the theory of turbulent fields

in detail in their monumental treatise.

Since the turbulent environment is so common around us, it is

essential to understand the nature of turbulent fields and their

interaction with electromagnetic and acoustic waves. This 1S

either to find the limitations on designing electromagnetic and

acoustic systems in the turbulent environment or to use the effects

of the turbulent environment on them to understand the nature of

the turbulent fields. For example, the performance of a line of
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sight optical communication link or optical coherent radar is

severely limited by the turbulent nature of the atmosphere.

However, one can use the effects of the turbulent atmosphere to

remotely sense wind velocities and the strength of turbulence.

Other applications exist in connection with magnetohydrodynamics

and turbulent jets.

Great contributions to the theory of turbulence are made by

Reynolds, G. I. Taylor, Keller, Friedmann, prandtl, Von Karman,

Richardson, Kolmogorov, Obukhov and more recently by Kraichnan and

Malkus. The treatise by Monin and Yaglom2 should be consulted

for the vast amount of literature and diversity of problems in the

theory of turbulence. More recently Hil13,4 proposed a new

spectrum for the refractive index fluctuations of the turbulent

atmosphere which seems very useful. This model is used by Elliott,

et al.5 to describe the turbulence simulated in the laboratory.

Before the development of the ruby laser in 1960, two

monographs on the propagation of acoustic and radio waves in random

media were written by Chernov,6 and Tatarskii.7 These works

are useful to understand laser beam propagation through the

turbulent atmosphere. After translation of these works into

English by Silverman in 1961, very extensive theoretical and

experimental work was accomplished on the effects of the turbulent

atmosphere on the laser beam propagation. This work was reviewed

by Lee and Harp,8 by Lawrence and Strohbehn9 in 1970, by
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Fante,lO and by Prokhorov, et al.ll in 1975. More recently

Fante12 updated his earlier review. In addition there is an

updated monograph by Tatarskii,13 a textbook by IShimaru14 and

an edited monograph by Strohbehn.15 As stated earlier, most of

these works are about the effects of the turbulent medium on a

laser beam (on plane and spherical waves) in a line of sight

geometry in the context of single scattering. However,

Livingstone16 considered the effects of multiple scattering 1n

the turbulent atmosphere while Dashen,17 more recently developed

path integrals for waves in random media and considered turbulence,

characterized by more than two scales.

The problem of speckle propagation through the turbulent

atmosphere, which is immediately applicable to such problems as

Optical Radar, remote sensing of wind and Coherent Adaptive Optical

Systems (COAT systems), was considered by Holmes et al.19

Assuming a spatially coherent and monochromatic laser source as the

transmitter and a diffuse target at the other end of the path, Lee,

Holmes and Kerr18 estimated the effects of the turbulent

atmosphere and the cross wind on the propagation of the speckle,

generated by the diffuse target. Later this work was generalized

by Holmes et al.19 to include the effects of the log-amplitude

fluctuations and the feasibility of remote sensing of wind

determined.20 This work is by far the most complete formulation

presented on the speckle propagation through the turbulent
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atmosphere as it includes all the necessary formulations for the

useful first and second order statistics. In this thesis, the

monochromatic work cited will be extended by assuming the source to

be polychromatic. Fante21 calculated multiple frequency axial.

coherence functions and Carl Leader22 studied the propagation of

the spatially partial coherent sources but both works concern line

of sight propagation of a laser beam rather than speckle

propagation.

1.1 Outlines of the Thesis

In the next chapter, an introduction to speckle phenomena and

the reduction of speckle contrast due to the presence of a large

number of modes in the laser and due to the lack of coherence of

the laser source, when several frequencies are present, is

discussed. An important contribution, regarding the number of

patterns into which a given polychromatic speckle pattern can be

resolved is developed.

In Chapter III, the four point two-frequency amplitude, phase,

and cross correlation functions and the corresponding structure

functions are derived for a spherical wave. These are

generalizations of the results of Yura23 and Ishimaru.24

Limitations on the validity of these results are discussed at the

end of that chapter.
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In Chapter IV, a formulation for the time delayed correlation

function of the received intensity for a polychromatic speckle

field after propagation through the turbulent atmosphere is given.

This formulation will be used to develop .all other statistical

parameters of the received field in the subsequent chapters.

In Chapter V, using the results from the previous chapters,

expressions for the mean and the variance for the received

intensity are given and the results are compared with experimental

data. The effects of the source parameters (beam size, number of

modes, beam geometry, and wave length) and the propagation

parameters (path length and turbulence level) on the atmospheric

perturbation are discussed in detail and a very useful

phenomenological explanation for the behavior of the variance is

given.

In Chapter VI, the covariance of the received intensity 1S

derived and the results are compared with experimental data. The

relation of the covariance scale size to the Fresnel zone size, the

beam size at the transmitter and the lateral coherence length at

the target plane is discussed for a given value of the vacuum

speckle contrast ratio. Also variation of the covariance

(normalized to the variance) for different turbulence levels for

several values of the vacuum speckle contrast ratio is discussed.

Extensive numerical calculations have been used to obtain the

correct behavior of the covariance scale size for several values of
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the vacuum speckle contrast ratio to estimate the relative effects

of the partial coherence of the transmitter.

In Chapter VII, an approximate numerical approach to estimate

the time delayed covariance of.the intensity is described. Since

previously no numerical results were presented for the

monochromatic case, this method was applied to the monochromatic

case first and then extended to the problem of the polychromatic

case. Using the time delayed covariance function to measure the

cross wind along the path and the effects of the detector

integration time are also discussed. In addition the results for

the autocorrelation function of the received intensity and the

spectrum of the received intensity fluctuations are given.

In Chapter VIII, the probability density function of the

received intensity after propagation through the turbulent

atmosphere is considered and the results are compared with the

experimental data. Since the previously proposed exponential

probability density function18 for the intensity of a speckle

pattern in the turbulent atmosphere is correct under the phase

dominance assumption, only if the log-amplitude effects are not

.

considered, a new probability density function for the received

intensity fluctuations of the speckle pattern, including

log-amplitude effects, was derived first for the monochromatic case

and the results are extended to the polychromatic case.
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In Chapter IX, final conclusions for the theoretical and

experimental work in this thesis are given and the future

directions for the extension of this work are discussed.

The appendices include several programs, written by the author

for the numerical evaluation of the various statistical parameters

developed in this thesis.
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CHAPTER II

EFFECT OF THE COHERENCE OF A LASER SOURCE ON THE CONTRAST AND THE

NUMBER OF THE DOMINANT EIGENVALUES IN ITS SPECKLE PATTERN

A speckle pattern is formed when partially coherent light is

scattered off a rough surface or when coherent light propagates

~hrough a turbulent medium. Statistical properties of speckle

patterns are dependent on the coherence properties of the laser

source and the relevant turbulence parameters. If a surface is

very rough i.e. the standard deviation of the optical path

differences involved on the surface is very much greater than the

wave length of the incident light and the source is coherent as in

~he case of most lasers, running in a single axial and transverse

mode, the contrast of the speckle pattern is unity and the pattern

has a striking granular appearance. If the surface is not

sufficiently rough or if the incident light is not spatially or

~emporally coherent, the pattern gets washed out and the speckle

contrast reduces (note it is difficult to see speckles in white

light). Even though speckle-like phenomena are known elsewhere in

physics, for example the temporal statistics of incoherent

light,25 theory of narrow band electrical noise26 and radio

wave propagation,27 interest in speckle phenomena started with
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the working of lasers. There was some work on the polychromatic

speckle patterns by Ramachandran.28 Also Goodman29 in an

unpublished but well-known report, developed the statistics of the

speckle patterns and related the contrast of the speckle. pattern to

the roughness of the surface and bandwidth of the incident light.

He showed that in case of very rough surfaces, if the incident

light is spatially and temporally coherent, the statistics of the

field is Complex-Gaussian and so the intensity follows an

exponential distribution. Among other workers, parry,30,31

pedersen32,33 McKechnie34 and Dainty35 studied the effects of

poly~hromatic and partially coherent speckle patterns. The state

of art in the theory and applications of the laser speckle pattern

1S summarized in an excellent monograph edited by Dainty.36 A

more general theory of electromagnetic scattering off rough

surfaces is discussed in detail by Beckmann and Sphizhichono.37

In this chapter the effects of surface roughness and coherence

properties of the incident light on the contrast and the number and

magnitudes of dominant eigenvalues of the speckle will be studied.
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2.1 Effects of Surface Roughness and Bandwidth of the Incident

Light on the contrast and Number of the Dominant Eigenvalues

of the Speckle Pattern

The determination of the probability density function of the

intensity for a speckle pattern formed when a polychromatic source

of known spectral distribution is incident on a very rough surface

has been considered by various authors.

Using a Karhunen-Loeve expansion, the complex speckle field

A(x,k) at a point x in the polychromatic speckle pattern when

incident light is of unit intensity and wave number k can be

expressed as38,39

00

A(x,k) = L

i=l
a. 1f'.(k)
1 1

(2.1)

where the ai's are the random coefficients of the deterministic

functions 1f'i'

functions with

requiring that

The 1f'i'sare chosen to be complete orthonormal

respect to the source spectral distribution S(k) by

J 1f'.(k) 1f'.(k) S(k)dk = 0..
1 J 1J

(2.2)

If the speckle field due to any wavelength in the range where S(k)

1S nonzero is normally distributed, then the random coefficients

will also be normally distributed. In addition, they will be

uncorrelated and independent if the expansion functions are chosen
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to satisfy the Fredholm equation40

*
f S(k) fA (k,k') Ifi(k')dk' =

A. If.(k)
1 1

(2.3)

where

*
= <A(x,k) A (x,k')

and is the correlation function of the complex random fields. The

kernel of Eq.(2.3) is not symmetric but it can be made symmetric by

choosing a modified set of orthogonal functions, ~i' such that

the eigenvalue equation then becomes

co co

<I(x» = I

i=l

A.
1

and a 2 -
I -

(2.5)

i=l

Having solved Eq.(2.4) for the eigenvalues, the probability density

function for the intensity is given by29

N C.

P (1) = I A~I i=l 1

-I/A.
e 1 (2.6)

where

c. =
1

N
n
j*i

A./(A.- A.)
1 1 ]

A. .(k) = f IS[k) IS(k') fA(k,k')
.(k') dk' (2.4)

1 1 1

It follows that the mean intensity and the variance are given by
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One method of solving Eq.(2.4) for the N dominant eigenvalues is to

take N samples at appropriate wave numbers ki and solve the

resulting N linear equations for the corresponding eigenvalues.

Since the system of equations is homogenous, this can be

accomplished by diagonalizing the correlation matrix S,

[s] =
R(kl ,kl)
R(k2 ,kl)

R(kl,k2)
R(k2,k2)

R(kl,kN)
R(k2,kN)

(2.7)

where

(2.8)

However since N is not known a priori, either N must be initially

very large or successively increased, S diagonalized and the

resultant eigenvalues compared to determine if all the dominant

eigenvalues have been determined. Either approach could be very

time consuming and consequently a method of determining N without

first having to solve for the eigenvalues is needed.

Let IN be equal to the ratio of the sum of the N smallest

eigenvalues out of a total of 2N eigenvalues to the sum of all 2N

eigenvalues. Then since Ai < 1, if IN « 1, all the dominant
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eigenvalues will have been included. It should be noted that IN

equals the fractional error in the mean intensity that will result

if only the N largest eigenvalues are considered. Fukunaga41

considered a similar problem and using his results it can be shown

that

(2.9)

It should be noted that Eq.(2.9) approaches the ratio

described above only for N large enough such that IN is small.

If IN is now calculated using Eq.(2.9) for successively

increasing values of N, a point will be reached where IN 1S

suitably small and N has been determined. At this point the N

dominant eigenvalues are determined by diagonalizing the matrix 1n

Eq.(2.7) and then used in Eq.(2.6) to determine the probability

density function of the intensity. The question of what is a

suitably small value of IN will be addressed in the next

paragraph. The eigenvalues of matrix Eq.(2.7) are determined

numerically using the computer program given in Appendix A.

In order to investigate the question of what is an appropriate

value of IN to use as a cutoff point in determining N, the method

has been applied to the case of a Gaussian spectral
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distribution given by

1
[

2 2
JS(k) = exp -(k - k ) /2W (2.10)

I21T W 0

where W is the bandwidth and k is the wave vector. The rough

surface is assumed to have a Gaussian spectral correlation function

with 2Woz equal to ff5, and where oz2 is the optical path

variance on the surface. The results are shown in Figure 2.1 which

shows the probability density functions for several values of Nand

Table 2.1 which lists the corresponding eigenvalues and IN's. It

appears that since all the normalized eigenvalues are less than

unity, from Eq.(2.S) it follows that an error of 5% in the mean

value of intensity corresponds to an error, less than 5%, in the

variance, the actual reduction depending on the magnitudes of the

eigenvalues. This was investigated for the cases where 2Woz =

13, 115, 163, and 199 and it is noticed that the optimum choice of

samples for this example is approximately given by

In fact by substituting Eq.(2.8) for R(ki,kj) in Eq.(2.9) and

rearrang~ng the terms, it can be shown that the above choice of N

corresponds to about 6% error in the mean value of the intensity.

Also from Table 2.1 it is noticed that choosing N greater than the

number given by Eq.(2.9) in general does not change the



Figure 2.1 Probability density function of the intensity, on the
basis of the eigenvalues in Table 2.1 for different
values of N.
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Table 2.1- Dominant eigenvalues of a polychromatic speckle pattern

with Gaussian spectral density and Gaussian spectral

correlation on the surface corresponding to equally spaced

samples with N '"'4, 8, 12 and 18 for 2Wo = 115 (samplingz

range -3W to +3W).

Eigenvalues N'"'4 N = 8 N '"' 12 N = 18-
Al .458272 .510685 .399915 .39910

A2 .444980 .249931 .239950 .239947

A3 .047588 .121985 .143972 .143968

AI+ .047590 .061233 .086394 .086380

A5 .027674 .051834 .051824

A6 .017809 .031208 .031081

A7 .004421 .018553 .018611

A8 .003915 .011746 .011087

"9 .006182 .006520

"10 .004879 .003741

All .001399 .002066

"12 .001323 .001085

"13 .000525

"11+ .000111

A15 .000047

>'16 .000016

"17 .000009

"18 .000000

IN .337549 .122425 .058665 .026977

Normalized
Variance
from above

eigenvalues .41384978 .34839531 .2558 .25116

Normalized
Variance
from the
Theory .25 .25 .25 .25
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eigenvalues significantly. For comparison, the normalized variance

from the actual theory and as calculated from each set of

eigenvalues are also listed in the table.

An approximate probability density function for the intensity

that has been suggested by parry,43 Goodman42 and Barakat40

is an M-distribution given by

P(I) =~ IM-1 e-M1/<I)

(I)M r(M)

(2.11)

where r( ) is the gamma function. It is derived by assuming

that all the M dominant eigenvalues are equal. When this is not

true, then considerable errors can occur, particularly for values

of intensity around its mean value. This is illustrated in Figure

2.2 which shows the actual distribution and the corresponding

M-distribution (M = 4). Since the eigenvalues tend to be equal as

M becomes larger, the M-distribution is accurate only if M is

large. For the example given, there is substantial difference

between the actual and the approximate distribution for the values

of the intensity around the mean value.

Using a Gaussian model for the rough surface, the normalized

variance of the received intensity is given by32

(2.12)
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Figure 2.2 Comparison of the probability density function using
actual eigenvalues with the approximate M-distribution.
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where 2W is the bandwidth and oz2 is the optical path variance.

So either as the bandwidth increases or as Oz increases, the

normalized variance reduces. This effect has been used to measure

the roughness of the surfaces.33, Additional representations and

characterizations of Gaussian random processes in terms of

independent random variables are discussed by Pierre44 and Ray

and Driver.45

2.2 Dependence of Speckle Contrast on the Coherence of the

Incident Light

It has been shown by several workers36 that the contrast of

a speckle pattern reduces as the coherence of the incident laser

light reduces. McKechnie34 actually used this property to reduce

the contrast of speckle patterns. Lasers exhibit poor spatial as

well as temporal coherence properties, when running in several

longitudinal or transverse modes either in a pulsed or in a

continuous mode. Coherence properties of a ruby laser were first

studied by Collins, Nelson, Schalow, Bond, Barret and Kaiser.46

Berkeley and Wolga47 studied a pulsed ruby laser and noticed that

the fringe visibility, in a Young's interference experiment, 1S

dependent on the number of modes present in the laser. Chang and

Kilcoyne48 studied the partial coherence of pulsed multimode

radiation from a ruby laser and concluded that the pulsed radiation

is not coherent across the beam cross section and it should be
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treated as a sum of several coherent patches. This reduces the

fringe contrast in a Young's interference experiment as they had

noticed. Also the effect of the path differences involved when

several long.itudinal modes are present in the laser beam and its

effects on the visibility of the fringes is well known in

holography and has been worked out by Foreman49 and Cathey.SO

amplitude). CoilierS1 et al. considered use of gas lasers 1n

interferometry and showed that the fringe visibility is strongly

dependent on the number of modes present in the laser. When many

modes are present, the laser output may not be coherent across its

beam size as the beam size may be substantial compared to L/N. In

this section, a simple analysis, following Sotskii and

Goncharenko,S2 is presented to relate the degree of the coherence

of the laser and the number of modes present in the laser emission.

Assuming that the emission of the laser consists of N plane

harmonic waves with different frequencies (w's) and directions of

propagation (wave vectors k's) but with equal amplitude (unity),

the analytical signal V(x,t) of such a field is given byS3

Fringe visibility in this case is a periodic function of L/N where

L is the length of the cavity and N is the number of the

longitudinal modes (all modes are assumed to be of equal
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V(x,t)

NI

= L

j=l

e
i( k . x -w. t)

J J (2.13)

The mutual coherence function at two space time points,

(2.14)

where the angle brackets < > in this case indicate averag~ng

over time following the ergodic assumption. Using Eqs.(2.l3) and

(2.14), the mutual coherence function is given by

= L

j=l
(2.15)

For a stationary process, writing Xl - X2 = X and t2 - tl = T the

normalized complex degree of coherence is given by

Y 12(X, T) =

N
= O/N) L

j=l

i{k.x -w.t}
e J J (2.16)

The modulus of the above function is then given by

i(w
n

ws T + k
n ks x)

e
n,s=l

(2.17)
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The effect of the spatial modes will now be considered. Assuming

the laser radiation spreads in a small angle and T = 0, the spatial

wave vector of the s th mode is approximately given by

k = k + lIk
s 0 s

where

lIk = A s/(2a n)s 0 0 (2.18)

where a is the beam size, n is the refractive index of theo

medium and A is the wavelength. From this the spatial coherenceo

of the laser beam is given as

(2.19)

Consider now the temporal coherence by assuming x = 0 in

Eq. (2. 17) . For the lQngitudinal modes in a cavity of length L, it

1.S known

w
q

w = TIc/[nL(q- s)]s (2.20)

where q and s refer to mode numbers, n is the refractive index and

c is the velocity of light. Then the temporal coherence of the

emission is given by

(2.21)

It is clear from the above expressions that the radiation is

completely coherent if and only if the emission consists of a
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single longitudinal and transverse mode and that the coherence

length (~ime) quickly reduces as the number of modes increases.

The above theory is derived assuming a stationary laser emission.

For non-stationary emission, the mutual coherence function from

Eqs.(2.13) and (2.14), is given by

N
I

n>s=l
cos fk - kn s (2.22)x -w

n

Since the distribution of the frequencies (within the limits

of the width of the emission line) and the propagation directions

of the modes will be completely random for all the modes, the

second term in the numerator of Eq.(2.22) will be zero and the

coherence of the laser emission is given by

(2.23)

Thus for non-stationary emission, the laser radiation will be

partially coherent, the degree of coherence being determined by the

number of the modes.

As the degree of coherence of the incident laser source

reduces, the speckle contrast also reduces for a given roughness of

the surface. In applications, such as remote sensing of the

crosswind, pulsed lasers such as C02, Nd:YAG lasers are being

used. Coherence properties of these lasers are very poor and the

contrast of a speckle pattern, formed when these lasers are

scattered off an extremely diffuse target, is very low. Holmes et
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al.54 report a contrast of .142 for the speckle pattern,

generated when a pulsed Nd:YAG laser is scattered off a diffuse

target, located at a distance of 500 meters from the

transmitter-receiver p.lane and attributed it to a large number of

longitudinal and transverse modes. Fossey et al.55 reported a

speckle contrast of .55 when using an Argon laser (without etalon

in the cavity) in the same experiment and they attributed it to the

presence of several longitudinal modes in the laser. In addition

the following experiments were conducted by the author. Two almost

identical laser beams are superimposed and the resultant beam

scattered off white paper. Initially the contrast of the speckle

pattern due to each beam was found to be very high by blocking the

other beam. But when the contrast of the total speckle pattern was

measured with both the laser beams present, it was found to be poor

(the corresponding normalized variance is .45). This result was

independent of the fact whether the bright and dark patches of the

speckles due to each beam overlap or not. This indicates that both

patterns behave as if they are statistically independent. This 1S

true because there is no interference between two independent

lasers, when the detector integration time is too large to resolve

the beats between them. These results are summarized in Table 2.2,

where the mean, the second moment and the normalized variance of

the intensity of each speckle pattern and the total speckle pattern

are given {the slight variation in the normalized
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Table 2.2 DATA ON THE TWO BEAM SPECKLE EXPERIMENT

Average Second Normarized

Intensity Moment Variance Variance

First Beam (Ii) 187.39 67395 32280 .92

Second Beam (12) 182.39 63622 30356 .91

Superimposed
Two Beams

Position fn 372.59 203744 64291 .47

Position fF2 349.59 174697 52484 .43

Position #3 397.99 228892 70486 .445
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var1ance 1S due to the fact that in order to decorrelate the

speckle patterns by an order of speckle size, one of the beams has

to strike the target at a very small angle to the normal and the

resultant speckle pattern falls on the detector at an angle).

Figures 2.3 and 2.4 give the probability density function of the

intensity of the speckle pattern due to each beam separately. It

can be seen that the resultant statistics in each case is

approximately exponential. Figure 2.5 gives the probability

density function of the total speckle pattern when both laser beams

are superimposed for 3 different positions, such that in position

(1), the speckles due to each beam only overlap, in position (2)

the speckles due to each beam only partially overlap and in

position (3), the speckle patterns are completely decorrelated. It

is noticed that there is no significant difference in the nature of

the probability density function or in the normalized variance.

This reduction in speckle contrast is due to the fact that both the

laser beams, however identical they may be, are statistically

independent and thus remain incoherent with respect to each other.

In this case, the complex speckle field is no longer Gaussian and

scattered off a white paper target, was measured and was found to

be .34. Figure 2.6 gives the probability density function of the

so the fields due to each beam should be added on intensity basis.

In addition, the contrast of the speckle pattern, generated when an

argon laser beam, at .488 , wi thout an etalon in the cavity is
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speckle pattern, generated in this case. In Figure 2.7, the

cumulative experimental probability values are compared with the

theoretical values, using an M-distribution with M = 2.875. It can

be seen that there is an excellent agreement between the tneory and

the experiment.

In the above experiments, an ensemble average over a set of

rough surfaces was achieved by rotating the target very slowly.

The reduction in speckle contrast of the superimposed beam cannot

be due to the target rotation since for a single beam very high

contrast was observed. The intensity correlation between the two

speckle patterns is related to the correlation between the

corresponding field correlations. The correlation between the

fields from two different sources is zero. Had there been

correlation between the fields, a single speckle pattern of very

high contrast would have been observed. Over an ensemble of

patterns, the fields due to both beams would be added

incoherently. That both the speckle patterns are fundamentally

independent can be observed from Table 2.2 where the total average

is the sum of averages of both beams and the total variance is the

sum of variances. In addition, additional reduction in speckle

contrast can be due to the fact that individual longitudinal modes

may have a different phase curvature.
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2.3 Speckle Averaging

The speckle theory is closely related to the theory of

coherence. An important work in the theory of coherence is the

quantum mechanical representation of optical fields due to

Glauber56 who also showed that incoherent light of very narrow

bandwidth can be formed by superimposing several identical but

statistically independent lasers. In addition, classical models

were developed by Mandel and Wolf.57 The role of coherence

concepts in the speckle theory was examined recently by

Goodman. 58 Goodman also showed that a speckle pattern is only

locally stationary and thus the average of a speckle over an

ensemble of surfaces is not the same as the spatial average over

the pattern. Similarly due to nonergodicity, the average of the

speckle patterns over time is also not an ensemble average. So one

must, while studying the statistical properties of the speckle

averaging over both ensembles (sources and rough surfaces) must be

used.

2.4 Conclusions

In this chapter important aspects of speckle theory were

detailed. In particular, a very useful method for determining the

eigenvalues of a polychromatic or partially coherent speckle

pattern was developed. It must be noted that the criterion for N



1n Eq.(2.9) is not just a matter of selecting sufficient samples

for solving the Eq.(2.4) but emphasizes the fact that a

polychromatic or partially coherent speckle pattern can be resolved

into a few dominant Gaussian speckle patterns. Also the effects of

laser coherence on the contrast of speckle were discussed. Since

most of the sources for applications such as COAT systems, wind

sensing systems, etc., are pulsed laser sources, which run 1n

several longitudinal and transverse modes, the speckle contrast

from diffuse targets will be poor. Then the received speckle

pattern can be treated as a sum of several independent Gaussian

speckle patterns. This fact is used in the subsequent chapters to

study the effects of the turbulent atmosphere on a speckle pattern

with a poor vacuum speckle contrast ratio.
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CHAPTER III

FOUR POINT TWO FREQUENCY CORRELATION AND STRUCTURE FUNCTIONS

IN THE TURBULENT ATMOSPHERE

In order to develop the theory of polychromatic speckle

propagation through the turbulent atmosphere, the four point two

frequency amplitude correlation function, the four point two

frequency phase correlation function, the four point two frequency

correlation function for amplitude at one frequency and phase at

another frequency and finally the two frequency amplitude, phase

and wave structure functions are needed. Since the extended

Huygens Fresnel approximation is used in the subsequent theory, all

the above formulations should be developed for a spherical wave.

Since the four point two frequency correlations have not yet been

reported in the literature, these formulations are developed 1n

this chapter from fundamentals. The results in this chapter are

generalizations of the results of Yura23 and Ishimaru.24

3.1 FOUR POINT TWO FREQUENCY CORRELATION FUNCTIONS

Consider a spherical wave propagating through a random medium,

the refractive index of which is given by

(3.1)
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here nl(r) is the fluctuating part and nl «1. Choosing the z

aXis as the direction of propagation, the electrical field

satisfies the Helmholtz wave equation given by

(3.2)

Under frozen turbulence conditions, when a vector cross wind

of velocity V is present, the fluctuation part of the refractive

index term nl at time t, in plane z' is related to the random

spectral amplitude dV(K,z') py the relation63

co _ _ _
nl(p', z', t) = f eiK8(p' - Vt) dV(K, z')

-co
(3.3)

where p' is the transverse vector at z' and K is the spatial wave

vector of the refractive index fluctuatons. The random spectral

amplitude dV(K,z) satisfies the relationS9

*
<d v( K, z ) d v (K', z ' ) > = F (K,z-z') o(K-K')dK'dKn (3.4)

where the angle brackets < > indicate the ensemble average and

Fn(K,z) is the two-dimensional spectral density of the refractive

index fluctuations. If the random medium is assumed to be

stationary and dispersion is negligible, the spatial correlation of

refractive index fluctuations Bn(Xl,X2) is given by using

Eqs.(3.3) and (3.4), as
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(3.5)

the coordinate x being (p,z). Let r be a coordinate vector in the

transmitter plane and p be a vector in the receiver plane, both

planes being perpendicular to the direction of propagation, the

z-axis. To derive the correlation functions, it is enough to

consider only the line of sight geometry.

By using the Rytov method,60 the solution for Eq.(3.2) is

(3.6)

where U (r,p) is the solution in free space and ~(r,p) is theo

effect of the random medium. Then from the results of

Tatarskii 60,

ikR(x,p)e

R(x,p)

and

ikR(x,r)e
R(x,r)

(3.7)

where R(x,r) is the distance between the vector coordinates x and

r. By using the Hygens Fresnel approximation for ~(;,p)62,63 and

usingEq.(3.3)for nl(~),as ~ = Ul/UO
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1

- -
1

2
ik q-PI

2L
iklpl-;112

3 -J d x I e 2z I

(3.8)

In the above integral, PI is the transverse vector coordinate in

the plane ZI. The integration over PI can be extended to ~ ~, even

though the approximation is not valid for sufficiently large values

of Ipl. This is because, the integral over the region, Where Ipi

is large, is zero due to the rapid oscillations of the integrand 1n

this region. Then completing the integral over PI, we get

L ~

~(r,p) = ik J dZI J dV(K,ZI)
o

0.9)

The complex function ~(r,p) can be resolved into a real part

x(r,p), which represents the amplitude fluctuations and $(r,p),

which represents the phase fluctuations. Then from Eq.(3.9), we

get

L ~

= k J dz I J -i[(ZI/L) P + (1 - ZI/L) re
o

0.10)



and

</>( r, p)
*

= (1/2i)[~(f,p) - ~ (f,p)]

o _00

(3.11)

To find the four point, two frequency correlation functions,

consider two point sources at different frequencies ki and k2, the

positions of which are at coordinate vectors rl and rz, in the

plane z = O. Consider now two points in the receiver plane, their

positions being given by the transverse coordinates PI and P2 in

the receiver plane z = L. The four point two frequency amplitude

correlation function, is the correlation between the amplitude

fluctuations at a point PI in the receiver plane at a time tl due

to a point source at rl in the transmitter plane at a frequency ki

and the amplitude fluctuations at a point P2 in the receiver plane

at time t2 due to a point source at r2 in the transmitter plane at

L L 00

= kIk2 J dz I J dZ2 J F (K, zi - Z2) d~no o o



---r L -..' - '£" -, r ,£, -, -... .. -. ... "-

+ (l - zZ/L) rz Vtz] · i<]}

(3.12)

Changing the variables Zl and zz to ~ and n where 2n = Zl + zz and

~ = Zl - zz and noting that Fn(K,~) = 0 for I~I > Lo where Lo

is the scale length of inhomogeneties (outer scale), we get

L L ex)

= 2klkZ J dn J d~ f F (K,~) dZKn
o o o

i [ {(n - ~/ 2) L }pZ + {(le n - ~/2)/L} ~Z - Vtz] · i

~/2 )( L

n + ~/2)/(2Lkl)]

~/2)/(2Lk2)]n

Since in the region of important integration, the terms involving ~

may be neglected except in the spectral density Fn(K,~). As ~ =

o for I~I > Lo the limits of integration can be extended to ex).

Since

ex)

J F (K,~) d~ = 1f<p (K)n n
o

where <Pn(K) is the three-dimensional spectral density of

refractive index fluctuations, the four point two frequency

amplitude correlation function is given by
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o 0

where T = t1-t2, by assuming the fluctuations are stationary. For

isotropic turbulence this reduces to

= Cx(f1-f2,J1-J2,t1-tz,k1,k2) = CX(f,~,T,k1,k2)
L m

= 4~2k1k2 J dn J K dK ~ (K)n
o 0

(3.15)

where P = P1-J2 and r = r1-r2. By substituting the proper spectrum

of refractive index fluctuations in Eq.(3.14) or (3.15), depending

on whether the refractive index fluctuations are isotropic or not,

the amplitude correlation function for the two frequency, four

point case can be evaluated.

Now using Eqs.(3.11) and (3.4) and following the same

arguments used to derive the amplitude correlation function, it can

be shown that the four point two frequency phase correlation

function for the isotropic case is given by
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L Q)

= 41T~lk2 J dn J K «Pn(K)dKJo(KI~(PI-P2) + (l - ~) (rl-r2) - VTPo 0

. 2 2
cos[K n(1-n/L)/2kl] cos[K n(l - n/L)/2k2] (3.16)

Similarly the cross correlation function for the amplitude at

a frequency ki at a point PI in the receiver plane at a time tl due

Eqs.(3.10), (3.11) and (3.4). Following the same arguments as

earlier and considering the case of isotropic turbulence the cross

correlation function is given as

L Q)

= 41T~lk2 J dn J K «P (K) dK cos[K2 n(1-n/L)/2k2]
. n

o 0

Using these correlation functions the two frequency structure

functions can be evaluated.

to a point source at rl in the transmitter plane and the phase at a

frequency k2 at a point P2 in the receiver plane at time t2 due to

a point source at r2 in the transmitter plane is derived using
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3.2 FOUR POINT TWO FREQUENCY STRUCTURE FUNCTIONS

The four point two frequency amplitude structure function is

defined as

D Gl,Pl,tl,kl: r2,P2,t2,k2)X

= < [ X( r 1 ,PI, t 1 ,k 1) - X (r 2 , P 2 , t 2 ,k 2) ] 2)

= CX(o,kl) + CX(o,k2) - 2CX(rl-r2,Pl-P2,tl-t2,kl,k2)

Using Eq.(3.1S), we get

L IX>

+ 4~~22 J dn J K dK ~n(K) sin2[K2n(1-n/L)/2k2]
o 0

L IX>

-8~~lk2 J dn J K dK ~ (K) sin[K2n(1-n/L)/2kl]o 0 n

Similarly, the four point two frequency phase structure function is

defined as

D~(r1,Pl,t l,kl; r2,P2,t2,k2)

and using Eq.(3.16), this is derived as

L IX>
2 2

J J
2 2

D~ = 4~ kl dn dK ~n(K) cos [K n(1-n/L)/2kl]
o 0

2..2L IX> 22
+ 4~K2 J dn J dK ~ (K) cos [K nO-nIL) /2k2]n

o 0
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L ~

-8~2k1k2 J dD J dK ~ (K) cos[K2D(1-D/L)/2kl]n
o 0

Finally the two frequency wave structure function is defined as

and using Eqs.(3.18) and (3.19), this is given as

L ~

+ 4~2k22 J dD J dK K ~ (K)n
o 0

L ~

8~2k1k2 J dD J dK K ~ (K) cos[K2n(1-D/L)(1/kl-1/k2)]n
o 0

(3.20)

All the above correlation and the structure functions are

required in order to assess the effects of the turbulent atmosphere

on the polychromatic speckle propagation.

D'l' = D X + D'l'

L

= 42k12 J dD J K dK (K)n
0 0
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3.3 CHOICE OF THE SPECTRUM OF FLUCTUATIONS

In order to numerically evaluate the above functions for any

given data, the three-dimensional spatial spectrum for the

refractive index fluctuations in the turbulent atmosphere is

needed. The most famous and often used spectrum for optical

propagation through the turbulent atmosphere is the Kolmogorov

spectrum, given by63

<Pn (K) = .033 C 2 K-ll/3n
(3.21)

The above spectrum has been modified by Tatarskii63 as

(3.22)

where kro = 5.92/to to take into consideration the dissipation

of energy due to viscosity effects for eddy sizes less than the

inner scale of turbulence. For eddy sizes greater than the outer

scale of turbulence, the energy in the eddies must be less than

that predicted by the Kolmogorov spectrum. This effect is taken

into consideration by the Von-Karman spectrum given by63

<P (K)n
(3.23)

where ko = 2~/Lo. The spectra (3.22) and 3.23) are good models

only in the inertial sub-range, 2~/Lo ~ K ~ 2~/to. In this
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they behave like the Kolmogorov spectrum. Outside this range as

there is little theoretical basis and scant observational support

for these spectra, any predicted effects due to scale sizes outside

the inner ~nd outer scales of the turbulence may not be valid.

More recently, Hil13,4 proposed a new spectrum which takes into

consideration the effects of the inner scale. The

three-dimensional Hill spectrum is given by

(3 . 24)

Elliott et al.5 used this spectrum to describe the temperature

fluctuations of turbulence, in a heated tank and studied the

effects on the laser beam propagation. They also compared the

relative merits of the various spectra for describing the

temperature fluctuations of a turbulent medium.

A serious defect of the Hill spectrum is that there is no

outer scale term in the final expression for the spectrum. Since

phase covariance is strongly dependent on the outer scale size, it

is not possible to calculate the phase covariance even for

monochromatic wave propagation using the Hill spectrum. Similar

difficulties exist while calculating the phase covariance or the

structure functions for the two frequency case, if we use the Hill

spectrum. The Hill spectrum should be modified to include the

outer scale effects, in analogy with the Von Karman spectrum, for

use in phase calculations.



3.4 CONCLUSIONS

In this chapter all the necessary four point two frequency

correlation functions and the structure functions, are developed

starting from fundamentals and including the effects of the time

delay. Substituting kl = k2, in all the expressions (where k is a

wave number), corresponding results of the monochromatic case are

obtained. The Hill spectrum is radically different from the rest

as it predicts larger values for the variance and the covariance of

log-amplitude fluctuations for some values of the ratio of Fresnel

zone size to the inner scale of turbulence. For most of the

experimental data used in this thesis, the results predicted by the

Hill spectrum are approximately the same as the Kolmogorov

spectrum. Since the Kolmogorov spectrum is well tested and widely

used, all the computer programs in this thesis (except for the

phase calculations) were written using this spectrum. For phase

calculations, the Von Karman spectrum is used. Additional remarks

regarding the Hill spectrum follow at the end of Chapters V and VI.

The two frequency correlation and structure functions have not

been derived, even for simple cases for saturation conditions of

turbulence (i.e. Rytov variance> .3). However, following

Clifford64 who derived a form of log-amplitude covariance

function in saturation regime by convolving the unsaturated form of

log-amplitude covariance function at each point along the path with
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the short term modulation transfer function, it may be possible to

derive the saturated turbulence forms by knowing the two frequency

shor~ term modulation transfer function. However it will be shown

in Chapter V that for speckle propagation through turbulence, a two

frequency turbulence theory in saturation regime is rarely needed.

Also there is not enough experimental data to substantiate any

theory proposed. For speckle propagation through turbulence, the

unsa~urated forms of log-amplitude covariance and wave structure

func~ions are sufficient to develop a good theory.
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CHAPTER IV

THE INTENSITY CORRELATION FUNCTION FOR A POLYCHROMATIC SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

In the design of atmospheric optical systems, using speckle

patterns, such as compensation for atmospheric distortion, remote

sensing of cross wind, etc. the nature of the speckle pattern

produced by a diffuse target at the receiver plane ~s very

important. A very important statistical parameter in this

connection is the correlation function of the received intensity at

two space time points in the receiver plane. As will be shown

later, by knowing this correlation function and the mean intensity

at the receiver, all the necessary statistical parameters of the

intensity can be determined. The correlation function of the

received intensity for two space time points is defined as

where I(p. ,t.) is the intensity at a point p. at time t. in the~ ~ ~ ~

receiver plane. This generalized correlation function is evaluated

by determining the intensity at two space time points and taking an

ensemble average over both space and time as well as over an

ensemble of rough surfaces and atmospheres.



50

4.1 ANALYSIS

The path

in Fig. 4.1.

geometry for the problem under consideration is shown

The transmitter and the receiver are located at one

end of the path and the laser beam from the transmitter illuminates

a diffuse target at the other end of the path after propagation

through the turbulent atmosphere. The speckle pattern, formed

after the laser beam scattered from the diffuse target, propagates

back to the receiver through the turbulent atmosphere. It is

assumed that the back scattering is negligible and the outgoing and

the incoming radiation experience independent turbulence regions.

Also it is assumed that the transmitter consists of a number of

discrete frequencies given by ki, i = 1,2, ,N and that the

recelver bandwidth is very much smaller than any difference

frequency present in the transmitter (~w « wi - Wj) but large

enough to recover all the amplitude fluctuations in the turbulent

atmosphere. Let p, P and r denote the transverse coordinates in

the receiver, target and the transmitter planes respectively which

are perpendicular to the line of sight path if the receiver and the

transmitter are sufficiently close. It is known that the intensity

fluctuations in the turbulent atmosphere at different frequencies

are perfectly correlated for small bandwidths of the

transmitter.65,66 In order that the intensity fluctuations at

two different frequencies be decorrelated, very large bandwidth of

light or widely separated frequencies are needed.



Transmitter

Receiver

Turbulence Speckle Field

Diffuse Target

Figure 4.1. Experimental and theoretical configuration of the path geometry for
target generated speckle pattern.

VI
......
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A widely used method of generating speckle field is to

illuminate a very diffuse target with the TEMOO laser beam at

several frequencies as shown in Fig. 4.1. The field distribution

at the transmitter is given as

U (r) =o

N
I

j=l
U (r,k.)
o ]

N
= I
j=l

(4.1)

where U (r,k.) corresponds to the field distribution at the
o ]

frequency k. and a and F are the characteristic beam radius and
] 0

focal length (assumed to be the same at all frequencies without any

loss of generality) respectively. The field at the target plane

before scattering from the target can be written, using the

extended Huygens Fresnel theory,23,62 as

N
U'(p) = L

j=l
U'(p,k.)

]

N
= I

j=l

(4.2)

where the random function ~l(...) represents the effect of the

turbulent atmosphereon the propagationof a sphericalwave from a
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point located at a point r in the transmitter plane to a point p in

the target plane, k is the wave number and L is the path length.

Similarly the field at the receiver can be written in terms of

the fields U(P,kj) at the target after scattering as

N
U(p) = I

j=l

i(k./2L)(p2_2p.P) + ~2(P,p,k.)

x f dP u(p,k .) e J JJ
(4.3)

The fields before and after scattering from the target are related

by the properties of the target. The complex random function is

gi ven as

~ = x + i<l> (4.4)

where x represents the log-amplitude perturbation of a spherical

wave due to the atmospheric turbulence and <1>,the phase

perturbation. Using the above three equations, the expressions for

the two point space-time correlation of the received intensity can

be developed. When N discrete frequencies are present as ~n

Eq.(4.1), the correlation of the received intensity is given as
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BI (p 1,P 2, T)

N N

= I I
i=l j=l

- *- - *-
<U(Pl,o,k.)U (P2,o,k.)U(P3,T,k.)U (P4,T,k.»

1 1 J J

(4.5)

where, using the generalized spherical wave mutual coherence

function,67 the function H( ) is given by

*
+ ~(P2,P3,T,k.) + ~ (P2,P4,T,k.)]>

J J
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(4.6)

The two frequency structure function D~ and the two frequency

log-amplitude covariance function Cx are given using the results

(4.7)

(4.8)

The dummy variable t represents the distance from the source to the

field point normalized by the total path L. The function H( )

of the previous chapter for the Kolmogorov spectrum as,

1 CD

D = 8132 2L J du cn2 (t) J du u- 8/ 3

0 0

and

1 CD

C = 8132 2 klk2L J dt C 2(t) J du u-8/3
X n

0 0
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is the two frequency fourth order mutual coherence function. Since

the target is perfectly diffuse, it can be assumed that at the

target the fields due to any particular frequency are gaussian

(spatially incoherent). If the coherence length of the source is

larger than the surface correlation length, the fields before and

after scattering can be related as

- *- - *-
<U(pl,o,k.)U (P2,o,k.)U(P3,T,k.)U (P4,T,k.»

~ ~ ] ]

if k. = k.
~ ]

if k. :f k.
~ ]

Substituting this result in Eq.(4.5) and completing the dPl and

dP3 integrations, the correlation of the received intensity ~s

given by

(4.10)
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N N
L L

i=l j=l

(4.11 )

and

(4.12)

In order to evaluate Eqs.(4.1l) and (4.12), the quantity

- *-
<U(P4,o,k.)U (P4,T,k.», Which is related to the incoherent speckle1 1

field at the target, must be calculated. Using Eqs.(4.l) and

(4.2),
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where the two frequency mutual coherence function is given by

(4.14)

In Eq.(4.13), changing the variables rl and r2 to Rand r where

we get

(4.15)

where the following relations are used.

2~



59

00 2

J R e-aR J (bR) dR = (1/2a2)oo

The mean intensity at the target, is needed to complete Eq.(4.11)

and can be evaluated by putting L = 0 in Eq.(4.15) and it is given

by
<I(P4,k.»1.

(4.16)

2 2 -3/5.
where P = (.545625C k L) 1.Sthe lateral coherence length.o n

Substituting Eq.(4.16) in Eq.(4.11) gives,

Cr 1 (p , L)

N N
= (1/'/r2L4)I I If dP2 dP4 k.2 k.2 U .2 U .2 (a 2/4L4)

i=1 j=1 1. J 01. oJ 0

[

2 2 2 2 5/3 5/3
x exp -rl 14a - r2 14a - (rl/p .) - (r2/p .)

o 0 01. oJ

(4.17)
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By changing the coordinates P2 and P4 to Rand P where p = P2-P4

and 2R = P2 + P4 and using the expansion68

co

J (k/L q
I
R :t p/2

1

) L E (+l)m J (k/L q R) J (k/L q p/2) cos(m4»)o m m m
m=o

(4.18)

where

4» = 4» - 4»R P
E = 1 and E = 2 if m = 0o m

ell is given by

N N
= [a 4/(4~2L8)] L L U. 2 U .2 k.2 k.2

o i=1 j=1 01 oJ 1 J

co

co

cos~4»R-4»p)}{ L
m2=0

E (+l)m2 J (k7L P/2V2) J (k:7[ R r2)
m2 m2 1 m2 J

x exp {4 e (p , P;r ,k. ,k. ) }
X 1 J

(4.19)
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Completing the integral over d6R gives us,

co

x f dp f RdR f rl drl f r2 dr2 [ L

ml=o

(k.2 a 2)/4L2 (l-L/F)2 r22} exp{4c x(p,P,T,k.,k.)}J 0 1 J
(4.20)

Changing the variables rl and r2 to r3 and r4 where

Eq.(4.20) can be rewritten as

co

I'
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(
-

)5/3 2 2 2 2 2 2 }- rttL/k. p . -r3 (a /4)(1-L/F) -r4 (a /4) (I-L/F)
J oJ 0 0

exp{4C (p,P,T,k.,k.)}
X 1 J

(4.21)

The integral over R can be accomplished by using the relation

(4.22)

Substituting Eq.(4.22) into Eq.(4.21) and completing the integral

over dr 3,

Q)

m=o
x [ 2

( r 3L/k . p .) 5/31 01 -(r3L/k. P .)5/3 -r32(a 2/2)(1-L/F)2}
J oJ 0

x exp{4C (p,P,T,k.k.)}
Xl]

(4.23)

Using the summation
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00

L
2

€ J (x) = J (2x)
m m 0

m=o

and dropping the index 3, the final result for Cll as a double

integral is given by

(
4 4

) ~ ~ 2 2 J
-

J= a 12TrL L L U. U. dp rdro . 1 . 1 01 OJ
1= J=

(rL/~. ) 51 3
1 01

-(rL/k. P .) 513
J oJ r2(a.2/2)(I_L/F)2} exp{4C (p,p,L,k. ,k.)}o X 1 J

(4.24)

Similarly, using the Eqs.(4.12) and (4.13) and following the same

arguments, Cl2 is given by

22 - 2222 2
x exp[-r2 12a - D'l'(0,-r2,-T) - r2 k. (a 12L )(1-L/F) ]010

(4.25)

written as
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=

[ 2 2 2 2 2 2 2 ]x exp -r3 L /(2k a ) - Dlli(o,-Lr3/k. - T) - (r3 /2)a (1 - L/F)o T 1 0

(4.26)

where

+ 2 C (p,p, T) ]X
(4.27)

The term Cl2 term is not derived in detail as it is a

straightforward generalization of the corresponding term for the

monochromatic case, worked out by Holmes et al.19

By adding Eqs.(4.25) and (4.26), the two point space time

correlation function of the intensity of a polychromatic speckle

pattern is given.
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4.2 CONCLUSIONS

The numerical evaluation of CI2 was not accomplished

previously when T is not zero for the monochromatic case. So the

two point space time correlation function of the speckle was not

numerically evaluated even for the monochromatic case to compare

with experimental data. In Chapter VII, an approximate method to

evaluate the above expression numerically is described. In the

next two chapters, expressions for the variance and the covariance

of the received intensity are developed using the above expression

and the mean intensity to be calculated later.

In summary, in this chapter, a very general second order

statistical parameter, the correlation function of the received

intensity when the transmitter consists of N discrete frequencies

is evaluated. This will be used in the subsequent formulations to

develop all the necessary statistical parameters.
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CHAPTER V

THE MEAN AND THE VARIANCE OF THE RECEIVED INTENSITY

In the previous chapter, a general formulation is developed

for the two point space time correlation function of the received

intensity. From this correlation function and the mean value, the

variance of the received intensity can be obtained. A more

meaningful parameter is the variance of the received intensity,

normalized to the square of the mean of the received intensity.

However the mean intensity cannot be evaluated from the two point

space time correlation function. In this chapter, we develop the

expressions for the mean and the variance and compare the results

with experimental data. The variance of the received intensity can

be used to obtain the turbulence level Cn2 of the atmosphere and

this can be used to compensate for the turbulence in the remote

sensing of wind.

5.1 MEAN INTENSITY

When the polychromatic speckle field has N discrete

frequencies, as described in the earlier chapter, the mean

intensity at a point p in the receiver plane is given for the

folded path geometry of Fig. 4.1 as

*
<I(p» = <U(p) U (p» (S.l)



(r(p» =
N N

.L L k. k./4.2L2 i(kj-ki)(L + p2/2L)
J=1 i=1 J 1 e

67

(5.2)

Under the assumption that the fields due to different frequencies

are uncorrelated, the fields at the target before and after

scattering are related as

*
(U(Pl,k.) U (P2,k.» =J 1

= 0 if k. :f: k.
1 J

Substituting Eq.(S.3) in Eq.(S.2),

N
2

J
-

(r(p» = l/~L e dp (r(p,k.»
j=l J

Substituting for (r(p,k.» from Eq.(4.16),J

N
(r(p» = L

j=l

(5.3)

(5.4)



68

N
<I(p» = L

j=l

x J [(k./L)pr]exp[-r2/4a 2o J 0

(5.5)

Using the integral

co

J p J (pr) dp = o(r)/ro
o

turbulence level and is sum of average intensities due to each

transmitted frequency ki.

5.2 THE VARIANCE OF THE RECEIVED INTENSITY

The variance of the received intensity is, by definition,

g~ven by

o 2 = <12) _ <1)2I (5.7)

where <12) is the second moment of the intensity and it is a

the mean intensity is given by

N N

<I(p» = L U .2(a 2/L2) = L <I.) (5.6)

j=l OJ 0 j=l J

where <I.) is the average intensity at the receiver due to the
J

field at the frequency k. in the transmitter. It is clear from the
J

above expression that the average intensity is independent of the
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special case of the correlation function when the two space time

points are the same. Therefore, <r2) can be calculated by putting

p = 0 and T = 0 in the equations for Br(p,T) in the previous

chapter. Thus

(5.8)

where

x exp [- r 2{ L 2 1 4a 2)( Ilk. 2o 1
+ 1/k.2) _ (rL/k.p .)5/3

J 1 oJ
(rL/k.p .)5/3

J oJ

(5.9)

and

x exp [4e (p, k. )]
X 1

(5.10)

Since p=O, integration over de can be completed in Eq.(5.9) andp

erl is given by
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N N

L L
i=1 j=1

u . 2 U .2 f pd p f rdr J (pr)
01 OJ 0

[ 2 2 2 2 Z 5/3
x exp -r (L /4a )(I/k. + l/k. ) - (r.L/k.p .)

o 1 J 1 01
(rL/k.p .)5/3

J oJ

(5.11)

Since T = 0 de and de integrations can be completed inp rz

Eq.(S.10) and Clz is given by

N

L
i=1

x exp [4C (p, k.) ]X 1
(5.12)

Since the expectation value of the intensity at each frequency is

given as

(5.13)

if the final expression for the variance of the received intensity

can be written as
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a 2 -
1 -

N N

I I <1.><1.> J pdp J rdr J (pr)
. 1 .

1
1 J 0

1= J=

x f 1(r , k. , k .) exp [4C (p , k. ,k. ) ]

1 J X 1 J

N 2
+ L <1.> J rdr f pdp J (pr)

.
1

1 0
1=

f2(r,k.) exp[4C X(P,k.)] - {I<1.>}21 1 1
(5.14)

where

fl(r,k.,k.)
1 J

= exp[-(r2L2/4a 2){1/k.2 + 1/k.2}
o J J

5/3 5/3
(rL/k.p.) - (rL/k.p .)

1 01 J OJ

(5.15)

and

(5.16)

The normalized variance of the received intensity can be

obtained now by dividing Eq.(5.14) on both sides by the square of

the expectation value of the total received intensity.
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5.3 NUMERICAL ANALYSIS

The term Cll can be evaluated by expanding the function fl

1n a Fourier-Bessel series70 as

fl(r,k.,k.)= I b (k.,k.)J (p r/Al(k.,k.)) (5.17)
1J m1J om 1Jm

where the coefficients bm's are given by

Al(k. ,k.)
2 2 1 J

b (k.,k.)= [2/{Al (k.,k.)Jl (p )}] J fl(r,k.,k.)
m1J 1J m 1J

o

J [p r /A 1(k. , k . ) ]rd r
o m 1 J

(5.18)

J (p ) = 0o m (5.19)

and Al is chosen such that fl(r) is negligible for some value of

r=Al, which is dependent on both k. and k.. Then Cr is given as
1 J 1

I b (k., k .) exp [4C (p /Al (k. ,k .), k., k . ) ]m1J xm 1J 1Jm
(5.20)

Similarly Cl2 can be evaluated by expanding the function f2 in a

f2(r,k.) = I C (k.) J (p r/A2(k.))1 m 10m 1
m

(5.21)

where
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A2{k.)
1

C (k.) = J fz{r,k.) J (p r/Az(k.»)rdrm 1 10m 1
o

(S.22)

J (p ) = 0o m (S.23)

and AZ is chosen such that fz is negligible for some value of

r = AZ' Then Clz is given as

CI2 = L C (k.) exp[4C (p /Az(k.),k.)]
m 1 X m 1 1m

(S.24)

It is convenient to let <I.> = G.<I>
1 1

so that L G.=l. The normalizedvariance of the received intensity1

is then given as

=
N N
L L

i=l j=l
G.G. II b (k.,k.) exp[4C (p /Al(k.,k.),k.,k.)]}
1J m1J Xm 1J 1Jm

N
+ L

i=l
G. z {I C (k.)exp[4C (p /A2(k.), k. )]} - 11 m1 xm 11

m
(S.2S)

For several problems of practical interest, all the frequencies are

sufficiently near enough that we can replace all the frequencies

under consideration by the center frequency. This approximation is

valid at least for pulsed sources which give a poor vacuum speckle

contrast when scattered off a rough target.
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By defining an atmospheric perturbation term AP(k. ,k.) as
1 J

AP(k.,k.) = <1.1.>/<1.><1.>
1 J 1 J 1 J

= L b (k. ,k.)exp[4C (p /Al(k. ,k.), k. ,k.)]
m1J Xm 1J 1Jm

(5.26)

the normalized variance of the received intensity 01 2 can be
N

written as

L G.2 AP(k. ,k.) +. 1 1 1
1

L L G. AP(k.,k.) - l.
. . 1 1 J
1 J

(5.27)

Eq.(S.27) can be used to predict the effect of the atmospheric

turbulence on the polychromatic speckle if the intensities of each

line or mode in the laser is known. If the bandwidth of the source

is small, a more convenient form, for Eq.(S.27) can be written in

terms of the vacuum speckle contrast ratio (VSCR), as

measured in vacuum. This measurement can be made in the laboratory

be known. In order to determine when Eq.(S.28) can be used, the

°1
2 nb exp[4Cx(p /A,k,k)]} [1 + (VSCR)2] - 1. (5.28)=

m m
N m

where k is the center frequency.

The VSCR is the square root of the normalized variance as

or over a short propagation path at almost zero turbulence level.

Eq.(S.28) is particularly useful in that knowledge of the

distribution of the modes making up the laser source need not
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parameter

AP(k. ,k.)/AP[(k. + k.)/2, (k. +
~ J ~ J ~

k. )/2) ]
J

has been calculated for various ratios of ki to kj' The

results are shown in Table 5.1. As can be seen, a large wavelength

difference is required before the complete form of the atmospheric

perturbation is required. Consequently Eq.(5.28) can be used for

most applications.

5.4 EXPERIMENTALRESULTS

Experimental measurements of the normalized variance of a

polychromatic speckle field were made at 1.06 ~ by Holmes et

al.54 Their results are compared with the theory developed here

in Fig. 5.1. A pulsed Nd:YAG laser running in several axial and

transverse modes at 10 pulses per second and focused onto a target

at 500 meters range was used as a polychromatic source. The data

shown in Fig. 5.1 represent a total of 12,200 pulses. A measured

VSCR of .135 was used to generate the theoretical values from

Eq.(5.28) for comparison. Good agreement was obtained between the

theory and experiment within about 5% error in the atmospheric

perturbation (this error may be due to spatial modes). The theory

developed in this chapter explains this result satisfactorily.
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TABLE 5.1. COMPARISONOF THETWO-FREQUENCYATMOSPHERIC PERTURBATIONS.

FOCUSEDTRANSMITTER,L = 500 METERS,a = 1.35 em.o

k - k.
i 3

ko

.1

.2

.3

.4

.5

.6

a 2 is specified at k
X 0

). = 0.488 J,Jmo

k. + k.
_:L J
- 2

a 2 = .1 a 2 = .2
X X

1.000 1.000

.99964 1.000

.9968 .9976

.99484 .9986

.990725 .9984

.9872 .99253
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0.4
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Focused Beam

ao = 3.81 cm
X = 1.06fLm
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0.0 0.1 0.2 0.3 0.4 0.5

Figure 5.1. Contrast ratio of the received intensity for a
polychromatic speckle field generated by a
multimode ~d:YAG laser versus the log-amplitude
standard deviation. Dots indicate the experimental
data. Solid line is the theoretical curve.
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5.5 DISCUSSION

As remarked earlier, the theory developed here correctly

Evaluations of the theoretical formulation, given by Eq.(5.28)

are shown in Fig. 5.2 for several values of the VSCR. It is

interesting to note that at high values of integrated turbulence,

the normalized variance returns to its vacuum value. This return

of the normalized variance is caused not by the saturation of the

turbulent atmosphere but by a transition from the dominance of

atmospheric perturbation by log-amplitude effects to dominance by

phase effects. From Eq.(5.28), it is obvious that the normalized

variance depends on the log-amplitude covariance. It is obvious

that it also depends on the transverse coherence lengths Poi and

Poj through parameters Al and A2.

In order to obtain the Eqs.(5.20) and (5.24), the functions fl

and f2 were expanded in a Fourier-Bessel series. These expansions

required that they become negligible for some values r = AI, A2 and

beyond. From examining the Eq.(5.25), it is clear that there are

three scale sizes, ao the speckle size at the receiver (same as

the beam size at low turbulence levels for a focused beam geometry)

explains the variance data, collected by Ho1mes54 et al. In

addition the theory predicts substantial increase in the variance

even for incoherent sources as will be shown later.



1.3

79

L = 500 meters

1.2~ Focused Beam

ao = 1.85 cm
X =0.488JLm

1.1

f 1.0
N

bt-t 0.3

0.2

0.1

0.0
0.0

\/SCR:: 0.2.2.36-
VSCR:: 0.0- ~I

0.01 0.1

(T2 --+X

10

Figure 5.2. Normalized variance of the received intensity versus

log-amplitudevariance for several values of vacuum
speckle contrast ratio.
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and the transverse coherence lengths Poi and Poj' At low

turbulence levels ao dominates fi and f2 and Al and A2 are

constants. Under these conditions, the normalized variance tends

to increase exponentially with the turbulence level since Cx is

. 1 2
proport10na to aX .

2
However as the turbulence level Cn

increases, Poi and Poj decrease and at some point they will

start to affect Al and A2 significantly. Now with further increase

1n the turbulence level, the parameters Al and A2 rapidly decrease

in value. This will cause Cx to be sampled further and further

out on the tail of the covariance curve. In the limit, as Cx

approaches zero, the atmospheric perturbation is unity and the

normalized variance returns to the vacuum value. Consequently, the

behavior illustrated in Fig. 5.2 does not require saturation to

occur. However if saturation does occur before the normalized

substanti~l amount of computation time). Otherwise the saturation

form of Cx should be used in Eq.(5.28). When the functions £1

and f2 are not dominated by Poi and Poj, the assumption that

variance returns to a point near its vacuum value, the process

proceeds more rapidly because of the saturation effects in Cx and

the shape of the bump in Fig. 5.2 is affected. Consequently, if

the func t ions f1 and f2 are dominated by Poi and Poj before the

onset of saturation, then a form of Cx that includes the

saturation effects does not need to be used (this saves a
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amplitude fluctuations are normally distributed and the use of the

generalized spherical wave mutual coherence function is strictly

valid. In order to substantiate the arguments further and to

estimate the effects of the other propagation parameters, the term

AP is calculated for different conditions of turbulence. Figure

5.3 shows the effect of the transmitter size on the atmospheric

perturbation term. As the beam size reduces, the term AP also

reduces.. Mathematically as a + 0, f1 and f2 + o.

Phenomenologically, this means that at the target the beam has

become large and smooths the effect of the amplitude fluctuations.

Such smoothing can also be achieved by defocusing or collimating

the transmitted beam so that the beam on the target becomes large.

This result is shown in Fig. 5.4 which shows that defocusing

reduces the atmospheric perturbation.

In the analysis above, the coordinate r is actually of

dimensions l/length. This is because the spatial coordinate at the

transmitter was normalized by kILo In the actual analysis, the

log-amplitude covariance is dependent on the relative size of r

with respect to the Fresnel zone size 1LlK. Therefore the important

parameter is r = (Pm/A) 'L/~ In the region, where the beam

sizeao is either completely or partially dominant, the AP term 1S

also affected by the wavelength via the Fresnel zone size. This

effect is very substantial as can be seen in Figs. 5.5 and 5.6,

where the AP term was calculated for two different path lengths at
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various wavelengths. As the wavelength decreases, the Fresnel zone

size increases and correspondingly Cx is reduced, thereby

reducing the atmospheric perturbation. Further in the case when

fluctuations at the short wavelengths. The above theory does not

take into account the effect of the inner scale size of the

turbulent atmosphere. When the speckle size is of order of the

inner scale size, the effects may be very substantial. It is

expected following the works of Hill and Clifford,73,74 that the

normalized variance may increase substantially depending on the

ratio of the Fresnel zone size to the inner scale.

widely separated frequencies are present, the scale size Al 1S

dominated by the larger wavelength which tries to smooth the

amplitude fluctuations. Thus most of the AP term comes from the
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CHAPTER VI

COVARIANCE OF THE RECEIVED INTENSITY OF A POLYCHROMATIC SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

The covariance of the received intensity of a speckle pattern

produced by a diffuse target in the presence of the turbulent

atmosphere is an important consideration in the design of adaptive

optics and remote sensing systems. For example, by choosing a

proper spacing between the detectors, the covariance function can

be made less sensitive to the wind velocity fluctuations along the

path. In the monochromatic case, the measurements by Pincus et

al.75 and the theoretical work of Holmes et al.54 show that the

covariance scale size is dominated by the beam size at low

turbulence levels and by the lateral coherence length (po) at the

target at very high turbulence levels. Thus the speckle size at

the receiver is of the order of the beam size (for the focused

geometry) at low turbulence levels and is of the order of the

lateral coherence length at very high turbulence levels. In

addition, knowledge of the proper choice of detector spacing 1S

required so that wind sensing is feasible either by the time

delayed covariance method or the slope method.Also knowledge of the

covariance scale sizes is required to obtain the joint probability

density function of the fields at the target.
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6.1 Analysis

The spatial covariance of the received intensity of a speckle

pattern is a measure of the correlation between the intensity

fluctuations at two points in space and is by definition, given by

(6.1)

The intensity correlation term can be obtained from the general

correlation function, developed in the fourth chapter by assuming a

zero time difference. Then

Cl(P) = Br(P, T = 0) - <1)2

<1>2 (6.2)

where P = PI - P2. The terms Cli and C12 are given as

N N
= I I

j=1 i=l

<1. ><1
J
. >

f f dr f d 6 J (pr )
1 pdp r p 0

fl(r,k.,k.) exp{4 C (P,P,k.,k.)}
1 J X 1 J

(6.3)

and

N
I

i=1

21T

f rdr f pdp f d6po

k.
f2(r,k.) exp[i L1 P P cos( 6 - 6 )]1 P p

(6.4)
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where the functions f1 and f2 are given by Eqs.(5.15) and (5.17).

The mutual coherence function H( ) is given by

1+-
2

1+ -
2 0) + 2C (P,p,T = 0) + 2C (P,p,T = 0)X X

(6.5)

Using the same Fourier-Bessel series as earlier, the covariance of

the received intensity is reduced to a simple one fold integral

given by

N N G.G. 2'11"

= L L _21 J f de {L b (k,,k,) x'
1

'
1

'11" P m1 J
1= J= 0 m

p
exp [4C (p, p = A (k

m
k ) , k" k.)]}

Xl", 1 J
1 J

N G,2 2'11"

+ L _21 f de {L C (k,) x'
1

'II" P m 1
1= 0 m

, T = o)} - 1 (6.6)

When all the frequencies are sufficiently near, the calculations

can be done at the midpoint of the band and this is g1ven as
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P

xH2(P,P= Am, T = o)} - 1 '
(6.7)

(6.8)

P

x H2(P,P = Am, T = o)} (6.9)

Then the covariance, normalized to the square of the mean intensity

is given as

N

C1 (p) = I
N i=1

N N

I G.G. (AINTl) + I
j=1 1 J i=1

G.2 (AINT2) - 1
1

(6.10)

As discussed earlier, for most problems of practical interest, the

N N G.G. 21T P
= L I 2...J. J de {I C exp [4C (p, p = Am, k)}

i=1 . 1 21T
P m X

J= 0

N G.2 21T k. P
+ L 2- J de {I C exp [i L1 Am cos (e -e ). 1 21T P m p p1= 0

Let

1
21T P

AINT1= - J de {I C exp[4C (p,p = Am, k)]}21T P m X0

and

1
21T

'k P
AINT2 =- J de {Ic exp[ Amcos(e-e)]21T P m p P0
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frequencies are sufficiently near that the knowledge of the mode

distribution of the laser is not necessary and Eq.(6.10) can be

written in terms of the vacuum speckle contrast ratio as

CI (p) = AINT1 + (VSCR)2 · (AINTZ) - 1
N

(6.10

In several problems of practical interest, a more useful parameter

is the covariance, normalized to the variance and this is given by

(6.12)

In this case, the results of Eq.(6.10) or (6.11) are divided by the

variance given by Eq.(S.2S) or (5.28) to obtain the normalized

variance.

Calculation of the covariance curve from Eq.(6.11) in general

requires a formulation for the four point two frequency

log-amplitude covariance function and the corresponding wave

structure function, which are valid for all turbulence levels. For

the path lengths and the parameters of the turbulence under

consideration here, it may be noted that using the unsaturated form

beyond the range of its validity still gives good results. The

reason for this is the same as discussed in the chapter on the

variance of the intensity. When all frequencies are sufficient ly

near, a saturated form72 of the log-amplitude covariance function

at the midpoint of the band can be used if it is required.
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6.2 NUMERICAL CALCULATIONS AND COMPARISON WITH THE EXPERIMENTAL

DATA

Figure 6.1 represents the comparison of the theory with the

experimental data collected by Holmes54 et al., using a"Nd:YAG

laser, running in several axial and transverse modes for a detector

spacing of 4.5 millimeters for several turbulence levels. Using a

vacuum speckle contrast ratio of .135, as earlier, the theoretical

values for the variance and the covariance at each turbulence level

were calculated and from these values a theoretical curve for the

normalized covariance (normalized to the variance) was generated in

Figure 6.1 for comparison with experimental data. Good agreement

between the theoretical and experimental values was obtained

within 5% error, thereby satisfactorily explaining the data. Since

a VSCR of .135 corresponds to a normalized variance of .015, it

corresponds to an almost incoherent source. The normalized

covariance in Figure 6.1 is almost constant for a very substantial

increase in the turbulence level. There is slight discrepancy

between the theory and experiment for values of Ox > 4. It can

be shown using the present results that the normalized covariance

remains constant for substantial increase in the turbulence level.

In Figures 6.2, 6.3 and 6.4, the experimentaldata collected by

Fossey and Holmes55 over a 910 meter path is compared with the

theory for different turbulence levels. Figure 6.5 represents

the comparison of theory with experiment over a 500 meter path.
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Figure 6.1. Normalized covariance of the received intensity
for a polychromatic speckle field generated by a
multimode Nd:YAG laser versus the log-amplitude
standard deviation. Dots indicate experimental
data. Solid line with circle indicates the
theoretical values.
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Figure 6.3. Normalized covariance of the received intensity of a
multimode argon laser versus the detector spacing for
a focused beam geometry.
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All the above data sets correspond to the focused beam geometry.

Figure 6.6 compares the theory with experimental data for a

defocused beam geometry. From these six figures, it is concluded

that at low turbulence levels, for focused beam geometry, there is

good agreement between the theory and the experiment. At high

turbulence levels, the agreement is not very good even for the

focused case. Also the defocused geometry did not give good

results for large detector spacings.

6.3 Discussion

The theory has correctly predicted the covariance behavior.

In order to obtain a deeper understanding of the covariance

behavior, the normalized covariance was calculated for a 500 meter

path length, with the beam focused on the target. The beam size

was assumed to be 3.81 centimeters and a wave length of 1.06 ~m was

used. The normalized covariance of the received intensity versus

the detector spacing is plotted for several values of VSCR 1n

Figures 6.7-6.12. It is noticed that at low turbulence levels as

the VSCR decreases, the normalized covariance also reduces for a

given value of detector spacing. With an increase in the

2
turbulence level, for some value of Cn , the VSCR does not affect

the normalized covariance. This is seen for the example, in Figure

2
.0877 ; all VSCR values give approximately the6.9 where aX =

same normalized covariance over a very large range of detector
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Figure 6.9. Normalized covariance of the received intensity
of a Nd:YAG laser versus detector spacing for
two values of vacuum speckle contrast ratio in
the unsaturated region of turbulence.
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spaclngs. With a further increase in the turbulence level,

reducing the VSCR does in fact increase the normalized covariance

for all values of detector spacings. This is seen in Figures

6.10-6.12. Figures 6.13 and 6.14.describe the variation of the

normalized covariance with respect to the turbulence level,

characterized by the Rytov variance, for different values of

detector spacing. In these two curves, it is noted that as the

VSCR reduces, the sensitivity of the normalized covariance to the

variations in the turbulence levels also decreases. This is indeed

the nature of the experimental data, observed in Figure 6.1. In

order to understand the behavior of the covariance, the total

contribution to the normalized covariance of the intensity of a

polychromatic speckle pattern can be resolved into a coherent

contribution (AINT2) and an incoherent contribution (AINTI -1.)

From the expression for the covariance of the polychromatic speckle

field, it can be seen that the coherent term is weighted by the

normalized variance (square of VSCR). At low turbulence levels,

the coherent term contributes more and thus, as the weighting

factor VSCR decreases, the net coherent contribution also reduces.

But the variance is still determined by the incoherent term. The

net result is that the normalized covariance is strongly dependent

on the coherent term. In this regime, the covariance scale size is

also dominated by the beam size. With further increase in the

turbulence level, the contribution of the incoherent term is more
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a Nd:YAG laser versus detector spacing for three
different values of vacuum speckle contrast ratio
in the saturated region of turbulence.
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substantial than the coherent term and thus reducing the VSCR does

not affect the covariance as much. With further increase in the

turbulence level, the contribution due to the incoherent term is

substantial and the fluctuations are correlated over larger

detector spacings for a partially coherent speckle pattern than for

a coherent speckle pattern. Thus as the VSCR reduces, the

normalized covariance increases. Extensive numerical calculations

support this argument very strongly. From this the insensitivity

of the normalized covariance for the variations in the turbulence

level at low values of VSCR can be explained. It now remains to

remark on the size of the speckle at the receiver both as a

function of both the turbulence level and of the VSCR. For a given

value of VSCR, the speckle size is dominated by the beam size ao

at low turbulence levels and by Po' the lateral coherence length,

at very high turbulence levels. For intermediate levels of

turbulence, it is dependent on both ao and Po. For a g1ven

turbulence level, as the VSCR reduces, the covariance is more

dominated by the amplitude fluctuations and the speckle size is

determined by the Fresnel zone size as well as the lateral

coherence lengths. Thus in the turbulence regimes (ox2 ~ .1 to

.3) where the amplitude fluctuations are most important, the

normalized covariance scale size essentially increases with the

reduction in VSCR. For widely separated frequencies, the

covariance scale size is dominated by the larger wave length as the



coefficients bm are dominated by it and the lateral coherence

length at this wave length plays a more dominant role.
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III

CHAPTER VII

TEMPORAL STATISTICAL PARAMETERS

The important temporal statistical parameters are the time

delayed covariance, the autocorrelation of the received intensity

and the temporal frequency spectrum of the fluctuations of the

received intensity. These parameters are necessary to estimate the

cross wind velocity and in the design of the remote sensing

systems.

In Chapter IV, a formulation was developed for the general

correlation of the received intensity. Using this, the time

delayed covariance can be estimated. Unfortunately, it is not

possible within a reasonable computation time to evaluate exactly a

part of the 2 point-space-time correlation function of the

intensity (CI2) which involves a fourfold integral. In this

chapter, an approximate numerical method to evaluate the time

delayed covariance of the received intensity and the

autocorrelation of the intensity is presented. Since the time

delayed covariance was not numerically evaluated even for the

monochromatic case previously and much experimental data was

available for this case, the theoretical results are compared with

this case to check the validity of formulation. The theory was
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then extended to the polychromatic case. It must be noted that the

numerical evaluation in this chapter is only approximate and one

should be careful in using this method elsewhere. In addition

expressions are given for the autocorrelation, which caD also be

evaluated by using similar numerical techniques, and for the power

spectrum of the intensity fluctuations.

7.1 Analysis

The time delayed covariance of the received intensity, by

definition, is given by

where I(Pi,ti) is the intensity in the receiver plane at a

space time point (Pi,ti)' The time delayed covariance (TDC) of

the received intensity can be normalized either to the square of

the mean or to the variance of the received intensity. In

Eq.(7.1), the terms CII and CI2 are given by Eqs.(4.24) and

(4.26). The term CII is given by

L L G.G. J dp J rdr J (pr) fl(r,k. ,k.)
..1J 0 1 J
1 J

x exp[4 C (P,P,t,k.,k.)]
X 1 J

(7.2)

C (P2,t2; PI,tl)

2= <I(P2,t2)I(PI,tl» - <I>

= CII(P,t) + CI2(P,t) - <1>2 (7.1)
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r 2L2 I I= exp[- (--- + --- )
4a 2 k.2 k.2

o 1 J

( rL )5/ 3k. p .
1 01

( rL )5/3k.p .
J oJ

and

(7.3)

where
2 r 2k.2

( e ) [ r2 2 1 2 L 2 ]f2 r2, = exp - - - D,,,(P,-r2,-T)- a (1 - -) (7.4)
r 2 2a 2 'I' 2L 2 0 F

o

and

+ 2C (p,p,T) + 2C (p,-p,T)]X X
(7.5)

and e is the angle between the vectors r2 and V and e is ther2 p
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angle between the vectors P and V.

Cll in Eq.(7.2) can be evaluated by expanding fl(r) in a

Fourier-Bessel series as was done earlier and this ~s g~ven as

N N 2l1:

L L G.G. J de {Lb (k.,k.)
.
1

'
1

~ J P m~ J~= J= 0 m

x exp [4C (P , p
x

P
m

= Al(K.,k.)
~ ]

, T,k.,k.)] }
~ ]

(7.6)

where the bm's are coefficients in the Fourier-Bessel ser~es ~n

(5.17). Even though this method was successful in evaluating C1z

in Eq.(6.4) for the covariance case, it cannot be successfully used

again as the angle erz is present in the exponential term of

fz(r) and thus the integration over derz is not possible. Thus

the estimation of ClZ involves a fourfold integral and the

integrand, again involves the double integrals due to log-amplitude

covariance function and the wave structure functions. Evaluation

of these integrals would require a very large amount of computation

time. However to estimate Clz approximately, in the integrand

the mutual coherence function Hz in the integrand can be rewritten

by using the relations

D1JI = DX + D 4> and

D (p) = 2[C (0) - C (p)]X X X
(7.7)
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C (~,~,T) - C (0)x x

C (P,-p,T) - C (o)}]x x (7.8)

The term in brackets {} is dependent on ep and can be written as

00

8~2 k. 2 L C 2 f x-S/3 dx f1 n

1
2

du cos2 [X u(l-u)L]k.
1o o

Jo (lpU + p(l-u) - VTlx) + Jo(lpu - p(l-u) - VTlx)]
2 (7.9)

In Eq.(7.9), one can consider that IpU-VTI is one vectorand p(l-u)

1S another vector and then use Grafls addition theorems68 for the

Bessel functions. We then get

00

where e is the angle between the vectors ~ and P. Using thisp

result, Eq.(7.9) is written as
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2

8w2 k.2 C 2 L f X-a/3 dx J du cos [X U(~-U)L]1 n .

o 0 1

x [1

(7.11)

In the integral (7.11),
2

2wl lIT, cos [X L~( l-u)]

it can be shown that as X changes from 0 to

decreases to a negligible value and x-a/3

decTeases from a very high value to a negligible value. This is

true for all values of u. We therefore conclude that the maximum

For a path length of 500 meters and a wave length of

2w
o to - .

{AL
.488 llm, the

con~ribution comes from the values of x ranging from

range of importance is 0 to 160. Numerical calculations confirm

this. Under this condition, if p and Vt are limited to a few

millimeters, the argument of the Bessel function is of the order of

.5 or less. For these values of the argument, J2(Z) is less than

3% of Jo(z). So, neglecting the higher order Bessel functions

(m > 1) in Eq.(7.11) does not lead to significant errors and

Eq.(7.11) is rewritten as

(XI

= 81r2 k. 2 C 2 L J x-a /3 dx J1 n
o 0

1

du cos

(7.12)
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Using this equation, H is approximately independent of 6p and

Eq.(7.8) can be written as

(7.13)

Substituting this in Eq.(7.3) and using Neumann expansions for sine

and cosine functions, we get

[ - 2
Ha = exp - D(o,P,o) - D(P,o,t) + 40X

m 1

2 2 2 J -8/3 J 2
+ 8w k. C L x dx d [X Lu(l-u)]

1 n 0 0 u COS 2k

x {I - Jo(XlpU-VTI) Jo(xpll-ul)}]



2
N G. k. 2

= L 12( L1) Jr2dr2Jd8 JpdPJd8 f2(r2,8)
i=1 (2'1r) r2 P r2

00

2 n~1 (_1)n J2n (~ PP) Jo(~ pr2)

cos

cos 2m+l(8 -8 )] x H (P,p,T)P r2 a

completing the integral over d8p, we get

2
N G. k. 2

= L 2~ (L1) J r2 dr2 J d8 J pdp f2(r2,8 )
i=1 r2 r2

cos(n8 )] H (p,p,T)r2 a
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(7.14)

(7.15)
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where

2
-r2

= exp[-Z2cx
o

222
r2 k. ex1 0

2L2
(7.16)

The first term in the integral can be evaluated by expanding the

function f2(r2,8r2) into a Fourier-Bessel series for several

values of 8r2 over 0 to 2~ and numerically integrating using

these values. This yields

1
TiT

2~

J [I b (8 ) {J (kL PP) x H (p,p,-r) }]d8
m r2 0 a r2o m

(7.17)

with p = (p L)/(Ak).m

The second term in the integral has 8r2 both in f2 as well

as in the function cos(n8r2). If the variation of f2 is very

dominates. For higher values of n this is true. For moderate

values of n (for example n = 2,3,4, etc.), the integrals may

contribute to the total term substantially. In fact it is found

that at moderate values of Rytov variance (ox2 ~ .15), the

coefficients are strongly dependent on 8r2. Finally the time

delayed covariance of the received intensity can be calculated

using Eq.(7.1). The above equations are normalized to the square

slow compared with the variation of cos n8r2 or if f2 does not

change much over the region of integration 0 to 2, the second, the

third, etc. integral can be neglected as the cos(n8r2)
term



120

of the mean received intensity. Normalization to the variance can

be similarly obtained. In the numerical analysis, the f2 was

expanded in the Fourier-Bessel series for several values of 8r2

and at each 8r2, th~ remaining integrals were evaluated.

7.2 The Autocorrelation and Frequency Spectrum of Intensity

Fluctuations

The autocorrelation of the received intensity can be obtained

by putting P = 0 in the expression for the time delayed covariance

of the intensity. The normalized autocorrelation can similarly be

obtained. The corresponding frequency spectrum of the fluctuations

is given by taking the Fourier transform of the autocorrelation of

the received intensity and this is given as

S(w) = (7.18)

7.3 Theoretical Results and Comparison with the Experimental Data

Using Eqs.(7.6) and (7.15), numerical results are obtained and

compared with the experimental data in Figures 7.1, 7.2, and 7.3

2
for several values of the turbulence level (Cn ) for a path

length of 500 meters and different conditions of the beam geometry

(focused or collimated) and for different values of VSCR. The

results are compared with the available data for the monochromatic

case. 54 Comparison of the theory with experimental data for a
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L= F =500 meters
ao=1.84cm
~ = 0.488 J.Lm
Cn2= 6 x 10-14 m -2/3
P = 4.5 mm
V= 1.2 m/sec

o V5CR= 1
l:. VSCR=0.7
[J VSCR = 0

-5 -4 -3 -2 -I 0 1 2 3 4

T (Time delay in milli seconds)

5

Figure 7.1. Time delayed covariance of the received intensity versus
the time delay at a detector spacing of 4.5 mm for an
argon laser at several values of vacuum speckle contrast
ratio. The smooth curve for VSCR = 1 refers to the

experimental data.
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Figure 7.2. The ti~e delayed covariance of the received intensity
versus ti~e delay for an argon laser at three values
of VSCR at a detector spacing of 4.5 mm (collimated
beam). The smooth curve for VSCR= 1 refers to the
experimental data.
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Figure7.3. The time delayed covariance of the received intensity
versus time delay for an argon laser at three values
of VSCRat a detector spacing of 4.5 rom (collimated
beam). The smooth curve for VSCR = 1 refers to the
experimental data.
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focused path of 500 meters shows that the approximate evaluation is

reasonably good for small time delays. Figures 7.2 and 7.3 compare

the theory with the experimental data for a collimated beam. As

expected earlier time delayed covariance is substantially less than

that of a focused beam. When the effective time delay VT is

positive, there is substantial difference between the theory and

the experiment for large time delays. When effective delay VT is

negative good agreement is obtained between the theory and

experiment consistently over all sets of the data. Consequently it

is concluded that the approximate numerical evaluation is not

accurate at large time delays. This lack of agreement may also be

due to the fact that the time delay is comparable with the detector

integration time. The shapes of both theoretical and experimental

curves are consistent with the phenomenological theory and peaks

are on the opposite sides of zero time delay for the opposite

directions of the wind. It was observed experimentally that the

sensitivity of the time delayed covariance of intensity to the wind

fluctuations along the path is very substantial. Figure 7.4

compares the theoretical autocorrelation function of the intensity

with the corresponding experimental data. The agreement is not

good at all. No attempts have been made to get the frequency

spectrum of the fluctuations due to the same reason and the

additional complexity of one more integration from zero to

infinity.
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c
o Defocussed

L = 500 meters
Qo=1.35-cm
).=0.488cm.
Cn2 = 1.4 x 10-13 m2/3
W = 1.3 m/sec
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Figure7.4. The autocorrelationof the received intensity versus
time delay for an argon laser. The smooth curve refers
to experimental data. Circles indicate theoretical points.
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7.4 Discussion

As in the case of the covariance, the time delayed covariance

of intensity can be resolved into an incoherent part and a coherent

part. The coherent part will be weighted by the square of the

VSCR. For very low values of VSCR, the coherent term is no longer

a dominant term and the variation of the time delayed covariance of

intensity depends on the incoherent term. Thus the ability to

sense the cross wind will be very poor even for small detector

spacings. For moderate values of VSCR, the shapes of VSCR, the

shapes of the TDC versus time delay curves resembles that of the

monochromatic case and for very large time delays the time delayed

covariance of intensity asymptotically approaches the incoherent

term. Phenomenologically, the received intensity pattern is

dependent on the target and is controlled by the turbulence level

as well as the wind speed. However the statistical features of

this pattern such as TDC are strongly dependent on the turbulence

level and the angle between the transmitter coordinate V and the

wind direction and the correlation is maximum if both of them are

in the same direction and least if they are in the opposite

direction. The speckle size at the receiver is the same as the

covariance scale size (being dominated by the beam size at the low

turbulence level and by the lateral coherence length at very high

turbulence levels). Initially, for very small IVTI, both the space
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time points are in the same speckle and thus correlation is

maximum, or order of the covariance. However when IV!I becomes

very large, both the same points are not in the same speckle and

thus the correlation is decided by the correlation between the

amplitude fluctuations (incoherent fluctuations). That is why, in

all sets of data, the time delayed covariance of intensity curve

approaches the incoherent term asymptotically even for the case

when the VSCR is unity. The time delayed covariance of intensity

becomes zero when the effective space-time distance between the two

points under consideration exceeds the correlation distance of the

amplitude fluctuations. It is further noted that for very low

values of VSCR, the incoherent term dominates and the wind effects

are not substantial.
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CHAPTER VIII

PROBABILITY DENSITY FUNCTION OF THE INTENSITY FOR A LASER SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

In this chapter, the theory of wave propagation through the

~urbulent atmosphere and speckle theory will be used to derive the

probability density function for the intensity of a polychromatic

speckle pattern after propagation through the turbulent

atmosphere. Since the previously proposed probability density

function of the intensity of a monochromatic speckle pattern 1S

correct only if the phase but not the amplitude effects are

considered and since the amplitude effects are very strong, in this

chapter, the probability density function is developed first for

~he monochromatic case and the results are then generalized to

include the polychromatic case. The analysis that follows assumes

that both the log-amplitude and phase fluctuations are Gaussian

distributed and that the intensity fluctuations of a spherical

wave, after propagation through the turbulent atmoshere, can be

described by a log-normal or Rice-Nakagami distribution. This will

be used to derive the probability density function of the intensity

of the ~peckle field after propagation through the turbulent

atmosphere. The results so derived will then be extended to the

case of the polychromatic or partially coherent speckle patterns
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and finally the analytical results will be compared with

experimental data, available for both monochromatic and

polychromatic speckle patterns.

8.1 Analysis

Goodman29 has shown that the probability density function of

the intensity for a fully developed (i.e. Gaussian) speckle pattern

is given by

(8.1)

where A is the average intensity and A2 is the variance of the

intensity. If however such a speckle pattern is propagating

through the turbulent atmosphere, then it is known75 that the

nature of the probability density function is changed from its

vacuum value by the turbulent atmosphere. When there is no

turbulence, the speckle pattern is stationary and does not evolve.

However, when turbulence is present, it has been observed that the

brightness of each speckle seems to be modulated by the

turbulence. At low turbulence levels, the transverse coherence

length in the receiver plane due to turbulence is much larger than

the vacuum speckle size. This gives rise to large turbulence

induced speckles that encompass groups of smaller target induced

speckles. If the same target induced speckle field is observed for
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an ensemble of atmospheres, the target speckle field will rema1n

the same since the target and the atmosphere are independent; but

the atmospheric speckle will change from sample to sample in the

ensemble and. will modulate in a random manner the brightness of the

target induced speckles. Consequently, the model proposed is that

the conditional statistics (given the mean value) of the target

induced speckles have the same statistics as the vacuum speckle

field but now the mean value is a parameter, whose statistics are

determined by the turbulence. The joint density function for the

intensity and the mean value, which is now a parameter, can be

formed from the conditional density function for the target speckle

intensity by multiplying it by the marginal density function of the

mean. This result can then be integrated over the mean value to

find the marginal density function for the received intensity and

can be expressed as

Pr(I) = J Pr(I/A = x) PA(x)dx
o

(8.2)

where PI(I/A = x) is the vacuum speckle density function for the

intensity and PA(x) is the density function for the turbulence

induced fluctuations of the parameter A. Problems of this type

where one or more of the parameters of the distribution take on

different values for different samples in the ensemble are called

problems of compound distribution.8l
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For a coherent spherical wave propagating through the

atmosphere, it is well known that the probability density function

(PDF) of the received intensity can be approximated at turbulence

leve~s below saturation by Rice-Nakagami or log-normal

distribution.77,78,79 However, saturation of scintillations

never comes strongly into play in the problem of speckle

propagation through turbulence because the received intensity

becomes dominated by the turbulence induced phase fluctuations,

which are log-normal and never saturate at a Rytov variance below

that at which saturation of the log-amplitude fluctuations occurs.

A more detailed explanation of this effect is contained in Chapter

v. Consequently it is proposed that the distribution of the

intensity of a spherical wave in the turbulent atmosphere be used

for the distribution of the mean intensity parameter in Eq.(8.l)

and it should be valid for all turbulence levels. This leads to a

K-distribution for the PDF of the intensity for a monochromatic

speckle pattern after propagation through the turbulent atmosphere

with the parameters of the distribution dependent on the

propagation variables. The above described model is based on the

phenomenological observations of the effects of the turbulence on

the speckle and therefore may not be rigorously correct. However

it leads to very useful results that agree with experimental data

for both monochromatic and polychromatic cases in a regime where

maximum deviation from the model is expected.
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(8.3)

where

<x> = a + 6

and

a 2 = 62 + 2a6x

Nakagami27 has shown that the Rice-Nakagami distribution can be

approximated by an equivalent M-distribution given by

P (x) =x

Mx
uM M-l <x>
M""- x e

M
r(M) <x>

(8.4)

If the parameters of the distribution are related as

<x> = a + 6

The higher order moments of the M-distribution are given by

n
= <x> r(n + M)

Mn r(M)
(8.5)

It is desirable to use the M-distribution as an approximation

to the Rice-Nakagami distribution because its use results in a form

The PDF for a Rice-Nakagami distribution is given by

1 a + x
Io(Z'?)p (x) = - e 6x 6
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of solution that can be readily reduced to numbers and also it 1S

much easier to relate the parameters of the distribution to the

propagation variables. rn order to assess how well the

M-distribution approximates the PDF of the intensity. in Eq.(8.2),

the mean square error given by

co

E2 = J [PrO/ A = ) PRN(x) - Pr(I/ A = ) PM(x) F dxo

where PRN(x) is the PDF for a spherical wave propagating through

the turbulence and ~(x) is the M-distribution should be

evaluated. This has been done using a Rice-Nakagami distribution

for PRN(x) and Eq.(l) for Pr(r/A = x), It was found that the

RMS error decreases as M increases and that for M greater than 5,

the error is less than 3%.

For the M-distribution of Eq.(4), the corresponding PDF for

y = R.n«~) can be written as

Py(Y) = J1

My - MeYe
r(M)

Then for y small and M becoming very large, the above equation

approaches

P (y)=
Y

e-Ml1

211'
1M
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which shows that y = ~n«~» is normally distributed with

normalized variance equal to 11M. Thus the log-normal distribution

can also be approximated by an M-distribution.

Utilizing Eq.(8.2) with Eq.(8.1) for Pr(r/A = x) and Eq.(8.4)

for P (x), the PDF for a fully developed speckle pattern afterx

propagation through the turbulent atmosphere is given by

(8.6)

Completing the integral in Eq.(8.6),30 it becomes,

M + 1
-r 1M - 1

2
r(M) (8.7)

where KM-l is a modified Bessel function of order M-l. Eq.(8.7)

is the K-distribution proposed by Jakeman and pusey82 elsewhere

to model the non-Gaussian fluctuations in optical scattering on the

basis of analogy with random walk. Parry and pusey83 used the

same distributon to describe the fluctuations of laser beam in

moderately strong turbulence regimes. The moments of the

K-distribution are given by

n
«

x>
)r(n + M) r(l + n) ~= r(M) (8.8)
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Using Eq. (8.8)

< 1> = <x> = A

and the normalized variance is given by

(J 2
IN

= 1 + 1M (8.9)

It should be noted that 012 in Eq.(8.9) is due to the combined

effects of the speckle and the. turbulence and can be obtained in

terms of the strength of turbulence, path length, wavelength and

beam size from Chapter V.

The cumulative PDF of the intensity will also be needed for

comparison with the experimental data. It is given by

From previous work,19 it is known that for the case under

consideration the normalized variance of the intensity starts at

unity with no turbulence and as the turbulence increases, it rises

above unity and reaches a peak value near 1.25 around a Rytov

variance of .1 to .15. As the level of turbulence increases

further, the normalized variance decreases and asymptotically

approaches unity again at very high turbulence levels. From

I

FI(I) = J PI(I) dI
0

M

= 1 - «> 1)2 -rho KM( 2' M<> ) (8.10)
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Eq.(8.9), it can be seen that the corresponding value of M starts

off at infinity and decreases to about 8 and then increases to

infinity again as the turbulence increases. Clifford and Hill84

have shown that as M approaches infinity, the K-distribution

asymptotically reduces to an exponential distribution.

Consequently the result, given by Eq.(8.7) for the PDF,

asymptotically approaches the correct distributions, known at very

high and very low turbulence levels.

8.2 Extension to Polychromatic and Partially Developed Speckle

Patterns

The intensity of a polychromatic speckle in vacuum follows an

M-distribution.40 This is determined by resolving the total

speckle pattern into a set of (fully developed) Gaussian speckle

patterns, each having an exponential PDF for its intensity. If all

the N patterns are of equal average intensity, then the PDF of the

intensity for the total polychromatic speckle pattern is given by

an M-distribution with M = Ml = N. If all the component speckle

patterns are of equal average intensity, then the PDF of the total

intensity is given by29
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(8.11)

N

A = L
i=1

A.
1

and where the average intensity of each component speckle pattern

is given by Ai = aiA and where the average intensity of each

component speckle pattern is given bM-distribution. Using an

M-distribution with M = M2 for the turbulence effects and combining

this with Eq.(8.4), the overall PDF of the intensity for the

polychromatic speckle patterns is given by

N
N-Z -1/ a. Aa. 1

P(I) = L
1 e

N -X
i=1 IT (a. - a.)1 ]

j=1
j=i

where the mean intensity is given by

Ml M2 Ml-1 00 MZ-Ml-1 _ MlI _ M2X

P (I) = M2 M2 I J x <x>
dx

I M2
x e

<x> r(M2)r(Ml) 0

PI(I)

Ml + M2
Ml + M2 _ 1

= (MIM2)
2

Z
I 2

r(Ml)r(Ml) Ml + M2

<x>

* (ZI MIM21 ) (8.12)
2 - M1 <x>
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The moments of the intensity of the above distribution will also be

needed later for comparison with experimental measurements. They

are given by

= <I>1+ (1 + l...) (1 + ! ) (1 + 1. )
M2 M2 Ml

and the normalized variance of the received intensity is given by

a 2 = (1 +.! ) (1 +.! ) - 1IN M2 Ml
(8.14)

If the PDF for the polychromatic speckle intensity is a sum of

exponentials as in Eq.(8.11), then Eq.(8.12) will be modified to

n <x>nr(n + M2) r(n + Ml) (8.13)<I > =
Mln M2n r(M2) r(Ml)

from which <I> = <x> = A
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where the corresponding moments of the intensity are given by

(8.16)

and where

N

L

i=l

- 1 + n

= r(n + 1)
A N

i
N
n

j=l
j*i

(8.17)

(A. - A.)
1 J

Goodman42 has shown that a partially developed speckle

pattern can be resolved into a sum of Gaussian speckle patterns and

therefore the PDF of the intensity follows either an M-distribution

or a sum of exponential distributions as in the case of the

polychromatic speckle patterns. Consequently the above work also

applies to the case of the propagation of partially developed

speckle patterns throughout the turbulent atmosphere. As was the

M2 + 1 M2 - 1
2

PrO) = 2 M2
I

2

M2 5

r(M2) <x>2 + 2' - N

N - M2 _ 1
N a 2 2

x L
1

K (21 M )Ni=l n (a. - a.)
l-M2 a.<x> I (8.15)

1 J
1

j=l
j*i
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case for a monochromatic speckle, when the strength of turbulence

approaches zero or infinity, the PDF approaches the vacuum result

for the target induced speckle.

8.3 Relation Between The Distribution Parameters and the

Propagation Variables

The required parameters for the distribution are the average

intensity and M or Ml and M2. The average intensity is independent

of the turbulence level, and so can be calculated using the speckle

theory. The parameters M and M2 however are determined by the

atmospheric fluctuations and thus are dependent on the strength of

the turbulence, path length, beam size, focal length and the wave

length. In accordance with the theory developed herein, M and M2

can be derived using Eq.(8.9) and Eq.(8.14) or Eq.(8.16)

respectively. Consequently, if the relationship between the

normalized variance of the received intensity and the propagation

variables is known, M or M2 can be determined and the PDF defined.

A very useful path geometry was considered in previous

chapters, in which the laser receiver and the transmitter are

located at one end of the path and a target is located at the other

end of the path. For this problem in Chapter V, expressions for

the variance have been developed. By using the expressions for the

variance from Chapter V and the expression for the variance from

(8.14), the Ml and M2 can be related to the propagation variables.
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8.4 Experimental Data and Comparison with Theory

The theory proposed here is compared with the experimental

data collected by Fossey and Holmes.55 The previously proposed

PDFl8 did not agree with the experimental data as it did not take

into account the amplitude effects. As will be shown here,

K-distributions are very good approximations for the intensity

fluctuations of both monochromatic and polychromatic speckle

patterns.

Experiments were conducted at a height of 2 meters above flat

agricultural land. The transmitter consists of an argon ion laser,

operating at .488 ~m Coherent Radiation Lab Model 52) with an

intracavity etalon to yield an output in single longitudinal mode

for the monochromatic experiments. The etalon was removed for the

polychromatic experiments to allow the laser run in several

longitudinal modes. In order to separate the received signal from

the background illumination, the outgoing beam was moduated at 100

kHz. Scotchlite (3M sprint marking paper) was used as the target

material because it provides a directional return with a gain of

1000 to lover a perfect Lambertian surface but still imparts

random phase to an incident monochromatic laser beam to form a

speckle contrast of unity in the absence of turbulence.

Measurements were made with a focused beam at two turbulence levels

and with path lengths of 300, 500 and 900 meters. The
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polychromatic source was used in the 500 meter path measurements

and the monochromatic source for other path lengths.

In each case the received normalized variance of the intensity

was close to the peak of the curve of the variance of intensity

versus the Rytov variance, at which point the maximum deviation of

the PDF from the vacuum speckle result should occur and provide the

best test of the theory. In order to compare the experimental data

with theory in each case, the mean and the variance of the received

intensity were used to calculate the proper parameter values of the

distribution (since the line strength of the distribution of the

laser source is not known, it is assumed that all the lines are of

equal strength). Then using the formulations, derived for the PDF

and the moments, the third and the fourth moments of the intensity

and the cumulative PDF were calculated and compared with

experimental data. The results are summarized in tables 8.1 and

8.2 and Figures 8.1 through 8.4. Except for one set of the data at

300 meter path length, which has shown significant deviation for

the fourth moment of the intensity, the results are very good. All

the cumulative density plots show good agreement between the theory

and the experiment.

8.5 Discussion

In this chapter, a very important result, which will be useful

in several applications of speckle propagation through turbulence



TABLE 8.1. COMPARISONOF CALCULATEDAND MEASUREDMOMENTSOF THE INTENSITY FORA

MONOCHROMATICSPECKLE PATTERNIN THE TURBULENTATMOSPHERE

Experimental Normalized <In> <In> <In>
Conditions Variance n Theory Experiment Theory

n
<I >

Experiment

L = 9.10 meters 3 4.773 x 103 4.564 x 103 .9566

F = 910 meters 1. 2504

a 1. 35 ems
4 2.171 x 105 2.168 x 105 .9983

a
0

}. = .488 \lms 3 4.086 x 103 3.910 x 103 .9569

1.17

4 1.675 x 105 1. 692 x 105 1. 010

L = 300 meters 3 2.291 x 104 2.085 x 104 .9101
1. 37

F = 300 meters
4 1. 896 x 106 1. 741 x 106 .9183

a = 2.52 cms
0

A. = .488 \lms 3 4.761 x 104 4.339 x 104 .9114

1. 2049 ......
J::'-

4 4.517 x 106 3.521 x 106 .78 w



TABLE 8.2 COMPARISON OF CALCULATED AND MEASURED MOMENTS OF THE INTENSITY FOR A POLYCHROMATIC

SPECKLE PATTERN IN THE TURBULENT ATMOSPHERE

Experimental Conditions Higher Moments of the Intensity

L = 500 meters

F = 500 meters

ex = 1. 35 cmso
A = .488 \.lIDS

Experimental Values

Normalized

Variance M

<13>
Experiment

<14>
Experiment

3
<I >Theory <I4>Theory

Data in Vacuum .328667 Ml = 3.043 .9949 .9814

Set 1 .638057 M2 = 4.295 1.081 1.282

Data in the
Turbulent Set 2 .487012 M2 = 8.390 1.036 1.162
Atmosphere

Set 3 .453380 M2 = 10.650 1.026 1.093

....

.p-

.p-
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Figure e.l. Comparison of theoretical and experimental probability
functions for a monochromatic speckle pattern.
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Figu~e 8.2. Comparison of theoretical and experimental cumulative

density functions for a monochromatic speckle pattern.
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o-Theory
. - Experimental data

L:: 500 meters

F:: 500 meters

Beam Size:: 1.85 cms

CTI~ :: 0.328667 (Vacuum)

CTl~ :: 0.48712 (Turbulence)

Figure8.3. Comparison of theoretical and experimental cumulative
density functions for a polychromatic speckle pattern.
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O'1~ = 0.638057 (Turbulence)
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9

Comparison of theoretical and experimental cuculative
density functions of a polychromatic speckle pattern.
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has been developed. An alternate approach is to assume that the

phase and the amplitude fluctuations are independent and due to

phase randomization, the intensity follows an exponential

.distribution and due to log-amplitude fluctuations, the intensity

follows an M-distribution. Then since phase and amplitude effects

are multiplicative, the overall intensity can be treated as a

product of two random variables, suitably normalized. This also

then leads to a K-distribution as this formulation is equivalent to

what was developed earlier in this chapter.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

In this chapter, the results obtained in the previous chapters

and their limitations and directions for future work will be

summarized. Using the Huygens Fresnel approximation the manner in

which the turbulent atmosphere effects a polychromatic speckle

field, generated by a diffuse target was studied in detail. The

effects of the atmospheric perturbation on the various statistical

parameters of a polychromatic speckle parameters such as the

variance, covariance, time delayed covariance, autocorrelation and

the probability density function of the received intensity, was

studied in detail.

The results, substantiated by the experimental data suggest

that the variance can be significantly increased by the atmospheric

perturbation. The dependence of the atmospheric perturbation on

the beam size, focusing geometry and wavelengths, was also

studied.

It was found that the covariance, normalized to the variance,

remains pratically unchanged for a substantial increase in the

turbulence level for small separations. Also for low values of the

turbulence level, it is found that reducing the vacuum speckle

contrast ratio in fact reduces the normalized covariance while for
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higher levels of turbulence, it increases the normalized

covarlance. In fact there is a turbulence level at which the

vacuum speckle contrast ratio does not effect the normalized

covariance. Also the relative roles of the various scale sizes

were studied.

By resolving the total contribution to the time delayed

covarlance, into a coherent and an incoherent contribution, an

approximate method for calculating the time delayed covariance to

compare with the experimental data was developed. It is found that

at low values of VSCR, the time delayed covariance is not affected

substantially by the wind velocity. Also it is noticed for very

large time delays, the incoherent fluctuations determine the time

delayed covariance.

Finally it was shown that the atmospheric perturbation changes

the exponential statistics in vacuum to a K-distribution, whose

order is dependent on the normalized variance, in case of the

monochromatic speckle pattern. For the polychromatic case, the PDF

of the intensity in the turbulent atmosphere, follows a

K-distribution of higher order or a weighted sum of

K-distributions, as shown in the last chapter. The theory is

accurate in that it reduces asymptotically to the monochromatic

case, worked out by Holmes et al.19 for a vacuum speckle contrast

ratio of unity and to the results of Clifford et al.85 for the

incoherent case when the vacuum speckle contrast ratio tends to be
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zero.

Additional results can be obtained by assuming other possible

three-dimensional spectra for other applications. Results in this

thesis are approximately valid fo~ the propagation of partially

coherent speckle pattern. Since in most applications pulsed

sources are used and their coherence properties are very poor, the

effect of the turbulent atmosphere can be best described by using

the methods in this thesis. In addition related speckle problems,

such as the number of the dominant eigenvalues of a polychromatic

speckle pattern, the effect of the laser coherence on the contrast

of the speckle pattern and the problem of averaging in the theory

of the speckle pattern were discussed in detail. It is further

shown that for several problems of practical interest, the source

can be completely characterized by the vacuum speckle contrast

ratio.

There are some important extensions to this work. For

example, the Hill spectrum could be used to obtain the effects of

the inner scale on the variance and the covariance. Also two

frequency saturated forms for the log-amplitude covariance and

other correlation functions can be developed from fundamentals

since they have not yet been evaluated. The results developed 1n

this work on PDFs can be used to understand the nature of the

fluctuatoins of the laser beam in the turbulent atmosphere.

Another promising area is multifrequency adaptive optics. Also,
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the effects of the turbulent medium, characterized by more than two

scales of turbulence is not known. The applicability of the

results in this thesis for other problems such as

magnetohydrodyaamics, should be investigated.
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APPENDIX A

This appendix consists of a program called EIGENS which

estimates the eigenvalues of a symmetrical matrix. This program

was used for the results of Chapter II.

The input matrix A(i,j) was defined in the program since this

program was written to solve Eq.(2.7). Otherwise, it can be

defined by input data. Matrix dimensions are 12 by 12. This can

also be changed by changing the dimension statement. The output is

given by the output matrix A(i,j) itself.
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182
181

21
481

22
184
183

45

78
32

23
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PROGRA" NA"E IS EIGENS
DIMENSION A(12.12). B( 12.12), R( 12.12)
DII'IENSIOH H<12.12). G( 12. 12)
PROGRA" TO CALCULATE THE EIGENVALUES OF THE
"ATRIX IN CHAPTER II.
CAll CONTRL<2,'EUCLID'.8,e)
CAll CONTRlC2,'GGGGGG'.9,8)
N=12
AN=-N
X=SQRT(48.)/2.
DEl=2./AN
WRITE(S,19)
FORMAT('SPECKlE INPUT MATRIX')
P3=4./49.
DO 181 1=1,12
DO 182 "=1,12
ACI. J )-EXP( -(I-J )**2*X*X*P3/2. )
CONTINUE
CONTINUE
DO 481 1=1,12
WRITE(8.21) (ACI.J),J-1.12)
FORI'IAT(8(2X,F18.6»
CONTINUE
ANORM=8.
DO le3 1=1.12
DO 184 J=I.12
IF(I.EQ.J) GO TO 22
ANORM-ANOR"+A(I.J)**2
CONTINUE
CONTINUE
CONTINUE
FTH= . 1 E-87

ATH=SQRT(ANORM)/AN
DO 681 1=1.12
11=1+1
DO 6B2 J=I 1.12
P=ABS( A( I. J ) )-ATH

IF( ABSCA( I, J) )-ATH) 682.6B2,32
DO IB5 l=1.12
DO le6 "=1.12
IF(l.EQ.M) GO TO 23
RCl,M).e.
GO TO 186
R(l.'O=l.
CO TO 186
CONTINUE
CONTINUE
Al=-A(I,J)
AMUc8. ~h( A( I. I )-AC J.J»
IF(Al.EQ.e.) GO TO 682
FcSIGNCI. .AMU)
O"EGA-F*Al/CABS(SQRT(Al*Al+A"U*A"U»)
)(aOI'lEGA/ABS< SQRT( Z..( (1 .'tSQRT« 1. -O"EGA.*2»»»
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VzABS(SQRT(l.-X*X»
R(I.I)z'"
R(J.J)-.,.
R(I.J)=X
R(J.I)=-)(
CAll l'I"lT(C.A.I~.12.12,12)
CAll "TRN(H.R,12)
CAll ""LT(B.H,C.12.12,12)
DO IB? ll=1.12
DO IB8 l2-1.12
A(Ll,l2)=B(l1,l2)

18e CONTINUE
18?' CONTINUE
682 CONTINUE
681 CONT INUE

TH=(ATH-FTH)*lB88.
IF(TH) 9B.'B,91

91 CONT INUE
ATH-ATH/AH
GOT 0 45

98 CONTINUE
WRITE(8,18)

18 FORI'IAT('EIGEHYAlUES THE I'IATRIXOUTPUT')
PHI=22./7.
DO 581 1-1.12
DO 582 .1=1.12
A( I, J )=I>EL*A( I, J )/2.

5B2 CONTINUE
581 CONTINUE

WRITE(9,33) N
33 FORI'IAHI2)

DO 281 1-1.12
DO 2B3 .1=1.12
IF(A(I.J)-.BBBB1) 2B3,77,77

77 WRITE<S.29) I,J.A(!.J)
29 FORI'IAT<2Xd4,2X,I4,2X,FIB.6)

WRITE(9.34) A(I.J)
34 FORI'IAT(F8.6)
2B3 CONTINUE
281 CONTIHUE

CAll COHTRL(4,B,8,B)
CAll COHTRL(4,B,',B)
CAll EXIT
EHe
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APPENDIX B

This appendix consists of three programs. The first program

1S called VARlll. This evaluates the atmospheric perturbation term

of Chapter V, for the Kolmogorov spectrum of refractive index

fluctuations. The input data is the the path length, wave length,

focal length, beam size called alpha, the value at which function

f1 of Chapter V should be chopped and also number of data points

and the corresponding Rytov variance values (for a maximum of 14

points). For more data points, the program can be suitably

modified. Further details are given at the beginning of the

program. This program uses the saturated form of log-amplitude

variance for Rytov variance .3 and the unsaturated form for> .3.

It is found however that using unsaturated form in the saturated

region did not change the atmospheric perturbation values much and

in fact saved a lot of time. Some approximations of log-amplitude

covariance functions are due to Dr. R. A. Elliott of OGC. The

second program, called RA02FF, is used to calculate Table 5.1 in

this thesis. This program calculates the correlation of intensity

fluctuations at two different frequencies. Input data is path

length, wave length, beam size, focal length and turbulence level.

The program evaluates the intensity correlation for about 60%

bandwidth in the center frequency kO. The third program is called
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RAOGXX. This program is written to calculate the atmospheric

perturbation using the Hill spectrum especially for the turbulence

simulation facility developed and tested by R. A. Elliott, et al.

The program was written to evaluate the atmospheric perturbation

for the possible values of Cn2 reached in the tank.
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783

NA"E OF PROGRAM IS YAR111
PROGRA" TO CALCULATE THE AT"OSPHERIC PERTURBATION
FOR ALL LEVELS OF TURBULENCE
PROGRA" USES THE UNSATURATED FORM OF LOG-A"PLITUDE
COYARIANCE FUNCTION FOR LOW TURBULENCE VALUES AND
SATURATED FOR" OF lOG-A"PLITUDE COYARIANCE FUNCTION
DUE TO YURA AND CLIFFORD AT HIGH TURBULENCE LEYELS.
SO"E APPROXIMATE NUMERICAL SERIES FOR THE
LOG-A"PLITUDE COVARIANCE FUNCTIONS ARE DEVELOPED
BY DR.R.A.ELLIOTT OF O.G.C. AND THESE FORMS
ARE USED IN THE SUBROUTINE H AHD FUNCTION
SUBPROGRA" F3(V).
OUTPUT CONSISTS OF THE PROPAGATION DATA AND EACH
ARGU"ENT AND THE CORRESPONDING MAGNITUDE OF THE
LOG-A"PLITUDE COVARIANCE. ALSO EACH
B" AND FINAL VALUE OF THE AT"OSPHERIC PERTURBATION
(GIYEN AS SIG"A)'ARE PRINTED.
IF THE FREQUENCIES ARE WIDELY SEPERATED
THE PROGRA" SHOULD BE "ODIFIED USING THE PROGRA"S
RA02FF AND CX2FF .

DI"ENSION PM(15).AJ1(15).CX(,).CN2I(14)
DIMENSION BM( 18 >.SIC"AX( 14)
DATA P" /2.4B48,5.5281,8.'537,11.7915.14,93B9.

C18.B711,21.211'.24.3525,27.4935.38.'346,33.7758,
13'.9171,48.8584,43.1998.46.3412/

DATA AJI /.51915,-.3428', .27145.-.23246,-.2B635.
1-.18773, .17327,-.1'17B.-.15218, .1441",-.1373,
1 .131325, - . 12 'B 7, . 1234), - . 11721/

IN THE ABOYE DATA P"'S ARE ZEROS OF ZEROTH ORDER
BESSEL FUNCTION. AJ1'S ARE THE VALUES OF FIRST ORDER
BESSEL FUNCTION AT VALUES OF PM.
PROGRA" GENERATES AT"OSPHERIC PERTURBATION VERSUS
RYTOY YARIANCE FOR A MAXI"U" OF 14 DATA POINTS.
IF YOU HEED "ORE DATA POINTS, PROGRA" CAN BE
MODIFIED ACCORDINGLY.
IHPUT DATA FIRST LINE IS PATH LENGTH, FOCUS. BEAM
SIZE AND WAYELENGTH
READ(S,782) PATH,FOCUS,ALPHB,AWAYE
FOR"AT(2X,F7.2.2X,F7.2,2X,F'.4.2X.E11.4)
CHOP IS THE HEGLIGIBLE YALUE ASSIGNED TO THE
FUHCTION Fl IN THE THEORY
REAI)(S,7B3) CHOP
FORMAT< F7. 5)
READ(5,7B4) NDATA
FOR"AT( 12)
HDATA IS THE NU"BER OF POINTS SPECIFYING THE RVTOY
YARIANCE WHERE THE YARIANCE IS CALCULATED
SIGMAX IS THE RVTOY YARIANCE
DO 8" l-l,NDATA
READ(5,'87) SIGMAX( I>
FOR"AT< F5. 2)
CONTINUE
DO 781 ICN2-1,NDATA
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COHST I=PATH**( 11./6. )
COHST2=(44./<7.*AWAVE»*.(7./6. )
CN2I (ICH2 )=SIGI'IAX( I CH2 )/( CONST I*COHST2*. 124)

7Bl CONTINUE
DO ~9 INDEX=LNDATA,1
CH2=CH2I( INt>EX)
WRITE(4,4B) PATH,FOCUS.ALPHB
WRITE(6,4B) PATH. FOCUS. ALPHa

4 B F 0 Rf'JAT( 2X , , PAT H=' , F 5 . B , 2 X , , F 0 CUS =' , 3 X, F 5 . B, 2 X , , ALP HB
WRITE(4,41> CH2.AIdAVE
WRITE(6,41) CH2.AIdAYE

4 1 FOR MAT( 4 X . ' CH2 = ' . 4 X , E 1 B . 4 , 2 X. · AIdAVE =' , 2 >c:, E 1B . 4 )

PHI=22./7.
AK=2..PHI/(AWAVE)
ARHO=1.B~21S.CN2*AK*AK*PATH

C THE HEXT STEP DECIDES THE RANGE TO GET BMS
AJ=1 ./(2. *ALPHB:u2)
A2=1./(ARHO**( 1.2»
A=(Al+A2)**(-.S)/lBB.

22 X=Fl(PATH.CH2.AWAYE,ALPHB,FOCUS,A)
IF<ASS(X).LT.CHOP> GO TO 23
A=A* 1 .1
GO TO 22

23 WRITE(4,17S) A
175 FORt1AT(2X, 'A=' ,2X,EI4.6)

C CALCULATION OF BMS FOLLO~S
C GENERALLY 6 COFFECIENTS ARE ENOUGH. IF !'lORE RE(WIF.:ED
C CHANGE 6 IH STHTEMEHT 29 TO THE REQUIRED HUMBER

"=1
29 IF<f'J.GT.6) GO TO 25

C TRAPEZOIDAL INTEGRATION TO GET BMS
AR=B.
BR=A
DR=( BR-AR)*. 5
PXI1=P/'I( 1'1)

SUl'll=FX(PATH.CH2,AIdAVE.ALPHB,FOCUS,PXM.A,AR)+2.*
IFX(PATH,CH2,AWAYE,ALPHB,FOCUS,PXM.A,DR)+FX(PATH,CN2,
2AWAYE,ALPHB.fOCUS,PXI'I,A.8R)

SUI'tA=SUl'll*DR*.S
HR=1

26 HR=2 * HR
TDR=DR
DR=I>R 5
R=AR+DR
DO IBI IR=LNR
SUl'll=SUM1+2.*FX(PATH,CN2.AIdAVE,ALPHB;FOCUS,PXM,A,R)
R=R+TDR

lEI 1 CONT I HUE
SUI12=SUI11*DR*.S
IF(ABS(SUM2-SL1I'\A>.LE.ABS( .Bl*SUI12» CO TO 6E.6
SUHA=SUM2
CO TO 26

666 IF(HR.CT.16) CO TO 667

SUMA=SUI'I2
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667
CO TO 26
eM(M)=SU~2.2./«A.AJ1("»**2)
"="+1
CO TO 2'
CONTINUE
SUPlC-B.
DO IB3 1'1=1.6
WRITE(4.28) M,BM(M)
WRITE(6.28) M/BM(M)
SUI'IC=SUI1C+BI'I<M)
FORMAT(4X, 'M=' I I4/5X,'BM(IO=) ,FIB.7)
CONTINUE
WRITE(6,~4) SUI1C
WRITE(4.94) SUMC
FORMAT<lBXI'SlIMC= I, F 19.7 >
CALCULATIONS FOR CX(M) FOLLOW
SIMPLE EXPRESSION IS USED FOR SIGMAT LESS THAN
OR EQ. .3 AND CLIFFORD EXPRESIION FOR GT OR EQ. .3
"C=l
IF(MC.GT.6) GO TO 33
RHO=PATH*PM(I'IC)/(A*AK)
SIGMAT= .124*AK**<7./6. >*PATH**<11./6. )*CN2
WRITE(4.93) SIGMAT
WRITE(6.93) SIGMAT
FORMAT(4X, 'SIGMAT='.E14.6)
SIGMAT IS THE SAME AS SIGMAX
IF(SIGI'IAT.LE..3) GO TO ~2B
CX(HC)=FVV(RHO,SIGMAT,AWAVE.PATH)
CX<MC) IS THE lOG-AMPLITUDE COVARIANCE FUNCTION
FYV IS THE LOG-AMPLITUDE COYRAIHCE IH STRONG
TURBULENCE REGIME, DEVELOPED BV VURA AHD CLIFFORD.
THIS IS A DOUBLE INTEGRAL. ONE OF THE INTEGRALS IS
APPROXIMATED BY AN ASYMPTOTIC SERIES BY
DR.R.A.ElLIOTT OF OCC.
FOR DETAILS SEE REFERENCES 54 AHD 72 OF THIS THESIS
GO TO 921
CONTINUE
CX(I1C)=FCX(RHO,CN2,AWAYE.PATH)
FGX IS THE lOG-AMPLITUDE COYARIANCE FUNCTION IN
LOW TURBULENCE LEYEL AND IS AGAIN A DOUBLE INTEGRAL.
ONE OF THE INTEGRALS WAS APPROXIMATED BY A SERIES

BY DR.R.A.ElLIOT . THIS IS SUBROUTINE H BELOW.
WRITE(4,511) MC,CX(MC),RHO
WRITE(6.511) I1C,CX(MC),RHO
FORMAT< 4)( I · '" C=' I I 4, 5 X, · CX( 1'1C ) = I lEI 4 . 6 , 2 X, I RHO = I lEI 4 .
IF(CXO'C).LE..BB1) GO TO 52B
I1C=MC+l
GO TO 32
I1ClcMC+1
DO 521 II'Icl'lCL6
CX(IM)IIOB.
CONTINUE
CONTINUE
COFFSI1I1B.

25

28
1B3

32

51 1

52B

521
33
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DO 522 M=1.6
COFFSM=COFFSM+BH(H).EXP(4..CX(M»
CONTINUE
SIGMA=COFFSM+1.-SUMC
SIGMA IS THE ATMOSPHERIC PERTURBATION
WRITE(4,524) SIGMAT,SIGMA
WRITE(6,524) SIGMAT,SICMA
FORHAT<4X, 'SIGHAT=',E18.6,5X, 'SIGMA='.,EI4.6)
THE NORMALIZED YARIANCE OF THE RECEIVED INTENSITY
FOR A MONOCHROMATIC SPECKLE IS GIVEN BY
YAR=2..SIGHA-1.
FOR A POLYCHROMATIC SPECKLE, THE YARIANCE
OF INTENSITY IS GIYEN AS
YAR-( 1.+YSCR.VSCR )"'SIGI'tA-1.
CONTINUE
STOP
END
FUNCTION AJB(X)
AJB IS THE BESSEL FUNCTION OF ZEROTH ORDER AND FIRST
IF (X . GT .3.) CO TO 71
XI-X/3.
AJB=1.-2.249~~97*X1..2+1 .26562B8*>: 1.*4-. 3163866*X 1"'*

16+.B444479.X1**8-.BB39444*Xl**IB+.8B821"')(1**12
GO TO 72
X2-3./X
FO=.79788456-.BBBBBB77*X2-.BB55274*X2"'*2-.BBBB951*X2

1...*3+.B8137237.X2 4-.BBB728B5*>:2**5+.BBBI4476*>:2**6
THETA=X-.7853~a16-.B4166397*X2-.BBBB3954*X2**2+

I.B8262573*X2**3-.8BB54125"'>:2**4-.BBB29333*X2**5+
1.89B13558*)(2**6
AJB=FO*COS(THETA)/SQRT(X)
GO TO 72
CONTINUE
RETURN
END
FUNCTION F3(Y)
Q=.7*Y
IF(Q.GT.4.712389) GO TO 61
Ql =Q**( 1./3. )
CQ=3..( .37278-Ql/4. +Ql**7/448. -Ql**13/299S2

I+Q1**I~/(28B1.664EB3)-Q1**2S/(36e64.E84)
FF4=7.B2*Y**(S./6. )*GQ
CO TO 62
Q2=Q**( -1 ./6. )
GQ1=.6*Q**(-5.l3. )
GQ2=. 7~7Be4S6*C:OS( Q+. 7e53~8 16 )...( Q2**( 19. )-

113.194444*Q2**(31. )+42B.38966*Q2**<43.»
CQ3=. 797S8456*SIN(Q+. 78539816 )*( 3. 1666667*Q2**< 25)

1-68. 1712~6*Q2**( 37. )+3812. 7926*Q2**( 49»
GQ=GQI-GQ2-GQ3
FF4=~.4S.Q**(5./6. )*CQ
CO TO 62 .

F3-FF4
RETURN

72

61

62
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END
FUNCTION FF2(V)
IF(V.LT..Bl) CO TO '5
FF2=SIN(V)..2/(V..( 11.1'.»
CO TO '6

65 VP='y'..(1./6.)
FF2.VP-.3333333.VP..13+.B~~44~44.YP..25
CO TO 66

66 CONTINUE
RETURN
END
FUNCTION Fl(PATH.CN2,AWAYE,ALPHB,FOCUS.22)
22=22/ALPHB
Xl=EXP(-2Z.Z2/2. )
AK=44./(7..AWAYE)
X3=I.B921S.CN2.PATH*AK*.2
23=22..(5./3. )
X2=EXP(-)(3.23)
X4=AK.(I.-PATH/FOCUS).22.ALPHB/(2..PATH)
X5=EXP(-X4*X4*2.)
Fl=Xl.X2*XS
RETURN
END
SUBROUTINE GAUSSU(RHO.SIG,AWAYE,PATH,Al,A2,Y,ANSU1)
Cl=(Al+A2)*.5
C2=(A2-Al)*.5
Ul=-.238691S*C2+Cl
U2=.238691S*C2+Cl
U3=-.6612B94.C2+Cl
U4-.6612B94*C2+Cl
U5=-.932469S.C2+Cl
U6=.932469S*C2+Cl
Wl=.4679139
W2=1J1
&13=.3697616
W4=W3
11I5".1713245
11I6=1&15

UA1=Wl*FM(RHO,SIC.AWAYE,PATH,Ul,Y)
UA2=W2*FM(RHO,SIC,AIJAYE,PATH,U2,Y)
UA3=W3*FM(RHO,SIG.AWAYE,PATH,U3,Y>
UA4=IJ4*FM(RHO,SIC.AWAYE.PATH,U4.Y)
UAS=IJ5*FM<RHO.SIC,AWAYE.PATH,U5.Y)
UA6=IJ6*FM<RHO,SIG.AWAVE.PATH,U6,Y)
ANSU1=C2*<UAl+UA2+UA3+UA4+UAS+UA6)
RETURN
END
SUBROUTINE VGAUSS(RHO.SIG,AWAYE,PATH,AY1,AY2,ANSYY)
Dl-(AY1+AY2)..S
D2=(AY2-AV1)*.S
Yl=-.2386915*D2+Dl
V2=.238691S*D2+Dl
Y3=-.6612B94.D2+Dl
Y4=.6612B94*D2+Dl
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Y5--.932469S*D2+D1
Y6=.9324695*D2+Dl
"1=.4679139
"2=1.11
"3=.36B7616
W4zW3
"S-.1713245
"6.=1.15

V~1=W1*UGAU5S(PATH.RHO.SIG,AWAYE.V1 )
VA2=W2*UGAUSS(PATH.RHO,SIG,AWAYE,Y2)
VA3=W3*UGAUSS(PATH,RHO,SIG,AWAYE,Y3)
Y~4=W4*UGAUSS(PATH.RHO,SIG,AWAYE.Y4)
YA5=WS*UGAUSSCPATH.RHO,SIG,AWAYE,VS)
Y~6=W6*UGAUSS(PATH.RHO,SIG,AWAYE,Y6)
AHSYV=D2*CYA1+YA2+VA3+YA4+YA5+YA6)
RETURN
END
FUNCTION F"(RHO,SIGMAT,AWAYE.PATH,U,Y)
lFCY.LE.B.> GO TO 251
I'F(AB5(U).LE. .BB1.0R.ABS(U).GE..99) GO TO 251
AJ<XX=U*<1 .-U)

I~(AXXX.GE.B.) GO TO 991
WRITE<6.232> AXXX

232 FORMAT(FI4.S)
991 COHTINUE

F" 14=EXP( -51 GMAT*F3( Y >*( U*( 1. -U) )*.( 5./6. »
F" 1 1 = ( U * < 1 . - U ) ) * * ( ( 5 . ) 16 . )

PHI=22.17.
FI112X=SQRT< (4. .PH I*Y*U )/C 1. -U»
FM12Y=SQRT<AWAYE*PATH)
F"12=FMI2X*RHO/FMI2Y
FfU3=FF2(Y)
F~=FM11*FM13*F"14*AJB(FM12)*2.95*SIGMAT
C'O TO 252

251 FM=B.
2S2 CONTINUE

RETURH
E~D
FUNCTIOH UGAUSSCPATH,RHO,SIGMAT,AWAYE,y)
AU=B.
Sllal.
"U=2
THSU-B.

5Bl AHSU-B.
DO SB2 IU=l,NU
AHU=HU
AI-AU+( IU-l. >*<aU-AU )/ANU
R2=AU+CIU>*(BU-AU)/AHU
CALL GAUSSU(RHO.SIGMAT,AWAYE.PATH,Al,A2,V.AHSU2)
AHSU-AHSU+AHSU2

S82 COHTINUE
IF(ABS(AHSU-THSU).LE.ABS( .B2*AHSU» GO TO SB3
THSU=AHSU
tlU-NU*2
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GO TO 581
5B3 UCAUSS:a:ANSU

RETURN
END
FUNCTION FX(PATH.CN2,AWAVE,ALPHB,FOCUS,PXM,A,R)
FXX=Fl(PATH.CN2,AWAVE.ALPHB.FOCUS,R)
FX=FXX*R*AJBCPX"*R/A)
RETURN
END
FUNCTIOH FVYCRHO,SIG"AT.AWAVE,PATH)
THSX=B.
ANSX=B.
A"i=B.
IFCSIG"AT.LE.l.) GO TO 721
BY=1 .I( 2. *SI GHAT)

GO TO 722
721 B'I=I.
722 DELTA=BY
123 H'r'=2

THSY-B.
5B8 AHSY-B.

DO 5B9 IY=I,NY
ANY=NY
AV l=AY+( I Y-l. )*( BY-AY )/AHY
AY2=AY+IY*(BY-AY)/ANY
CAll YGAUSS(RHO.SIGHAT,AWAVE,PATH,AY1,AY2,ANSV2)
AHSY=ANSY+ANSY2

5B9 CONTINUE
IFCABSCAHSY-TNSY).LE.ABS( .B2*ANSY» GO TO SUI
THSY=ANSY
HY=NY*2
WRITEC6,461) AHSY

461 FORMAT(5X,EI4.6)
IFOI'l'.GE.4.AHD.ABS(AHSY).LE..BB1) GO TO 51B
GO TO 588

51B ANSX=AHSX+ANSY
IF( ABse ANSX-THSX). LE. ABse .B2*AHSX » GO TO 732
AY=AY+DELTA
BY=9Y+DELTA
THSX=AHSX
IF(ABS(AHSX).LE. .BBl) GO TO 732
GO TO 723

732 FVY=AHSX
RETURN
END
SUBROUTINE GAXCRHO,CH2,AWAVE,PATH,Al,A2,ANSU1)
Clc:(Al+A2)*.5
C2=(A2-Al)*.5
Ul=-.23S691S*C2+Cl
U2=.23S6915*C2+Cl
U3=-.'612894*C2+Cl
U4=."12B94*C2+Cl
US--.932469S*C2+Cl
Ui=.9324695*C2+Cl



166

"121.4679139
.,2=Yl
"3=.3£B7£1£
.,4=W3
"5=.1713245
.,6=Y5
UA1=Wl*F"XX(RHO,CN2,AWAVE,PATH,Ul)
UA2=W2*F"XX(RHO,CN2,AWAYE,PATH,U2)
UA3=W3*F"XX(RHO,CN2,AWAVE,PATH,U3)
UA4=W4*F"XX(RHO,CN2,AWAVE,PATH,U4)
UA5=WS*F"XX<RHO,CN2,AWAYE,PATH,U5)
UA£=W6*FMXX(RHO.CN2,AWAYE,PATH,U6)
ANSU1=C2*(UA1+UA2+UA3+UA4+UA5+UA6)
RETURN
END
FUNCTION FGX<RHO,CN2,AWAYE,PATH)
AU=B.
SU=l.
HU=2
TNSU=B.

SBI ANSU=B.
DO 5B2 IU=l,NU
ANU=NU
Al=AU+( IU-l. )*( BU-AU )/ANU
A2=AU+(IU)*(BU-AU)/ANU
CALL GAX(RHO,CN2,AWAVE,PATH,Al,A2,ANSU2)
ANSU=ANSU+ANSU2

SEl2 CONTINUE
IF(ABS<AHSU-THSU) .LE.ABS( .B2*AHSU» GO TO 583
TNSU=ANSU
HU=NU*2
CO TO 5B1

SEl3 FGX=ANSU
RETURN
END
FUNCTION F"XX<RHO,CN2,AWAYE,PATH,U)
PHI=22./7.
AI<=2.*PHI/AWAYE
A1 =SQRT( (U*< 1. -U )*PATH )/( 2. *AI<»

A2=ABS(RHO*(I.-U»
CALL HS(Al,A2,CC)
F"XX=.132*PHI*PHI*AK*AI<*PATH*CN2*CC
RETURN
END
SUBROUTINE HS(A.B,C)
DI"ENSION C2(9),C3( IB)
INTEGER F1
DOUBLE PRECISION G2,G3,HK,BB,G,C,H
DATA C2/9.645B£E-3,-.S13572E-2,.298B32E-l,

1 -.54B2513EB,.2B5£255E2
1 ,-I .35296E3, 1.37215E5,-1. 9892E7, 3 .9B89E9/
DATA C3/3.36111,-13.49112,-6£.B8151,.38S934E3,

1 .2£2£497E4,-.2B44B4£E5,
1 -. 1791784E£, .1747£ 11E7, 1.8776B4E7, -2. 2B3577E81
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Z-B*B/( 8*-=-*A)
HHa.SS9167*B**(1.6666667>
IF (Z.GT.12.S6) GO TO 28B
H=31

C POWER SERIES EXPANSION OF HCA.B]
HI-N+l
HK=S./(36*4)
BB=Z*Z*HK
G2=1.+BB
N3=N/2+1
DZ=Z*Z
TZ=I>Z*DZ
DO 1B J=1,H3
I=2*J-l
HK=-HK*(6.*I+1. )*(6.*1+7. )/«6.*(1+2. >*( 1+3. »**2>
IF(J.EQ.l) GO TO 12
HK=HK*OZ
GO TO 1 B

12 HK=HK*TZ
18 G2=G2+HK

HK=S./6.
BB=HK*Z
G3=BB
00 11 J -8, H3
I=2*J
HK=-HK*(6.*I+l. )*(6.*1+7. )/«6.*<1+2>*<1+3»**2)
IF(J.EQ.B) GO TO 13
HK=HK*DZ
GO TO 11
HK=HK*OZ*Z
G3=G3+HK
G=(.2S8819B4*G2+.96S92S83*G3>
C=2.97S41427S*A**1.6666667*G
C=-HH+C
RETURN

C ASV"PTOTIC EXPANSION OF HCA.B]
28B ZZ=I/Z

D1-S.525982*8**I.'66'67
Gl=C2(1)*ZZ**2+C2(2)*ZZ**4+C2(3)*ZZ**6+C2<4>*ZZ**8

1 +C2(S)*ZZ**IB+C2(6)*ZZ**12+C2(7>*ZZ**14+C2(S>*ZZ*.
1 16
G2=I+C3(2)*ZZ**2+C3(4)*ZZ*.4+C3(6>*ZZ.*6+C3(S)*ZZ.*S

1 +C3(1B)*ZZ*lB
G3=C3(1 )*ZZ+C3(3)*ZZ**3+C3(S>*ZZ**S+C3(7).ZZ.*7+

1 C3(9)*ZZ**9
PO=2.66666667
H=1.S63S8S3*Gl+SIN(Z)*ZZ**PO.G2*.14971BS-.1497*

1 COSCZ>*ZZ**PO*C3
C--H*01
RETURN
END

13
11

IBB
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C HA"E OF THE PROGRAI'I IS RA02FF
C HOTATIOH OF THE PROGRAI'IYAR111 APLLIES HERE
C CALCULATION OF <I(Kl) I(K2)} YERUS RATIO
C OF WAYELEHGTHS(KI/K2) AT A GIYEH POIHT
C IN THE RECEIYER PLANE AT VARIOUS VALUES
C OF IHTEGRATED TURBULENCE. THIS IS USEFUL
C IN STUDYING THE DEPENDENCE OF TWO FREQUEHCY
C AT"OSPHERIC PERTURBATION OH THE FREQUEHCY
C DIFFERENCE (SEE CHAPTER Y ,TABLE ON THE
C CO"PARISION OF TWO FREQUENCY AHD SINGLE
C FREQUEHCY AT"OSPHERIC PERTURBATION).
C THE TWO FREQUENCY LOG-AI'IPLITUDECOYARIANCE
C C(R,Kl,K2) IS STUDIED IH AHOTHER PROGRAI'I.
C THIS PROGRAI'IIS VALID ONLY AT LOW
C TURBULENCE LEVELS (RYTOV VARIANCE< .3).

DII'IEHSION PI'I(IS),AJ1(15),.CX(6)
DI"EHSION B"(IB)'
DATA P" 12.4848,5.52Bl,8.6537,11.7915.14.93B9,

CI8.B711,21.2116,24.3525,27.4935,3B.6346,33.7758,
136 .91 7 1,4 S .B 58 4,43. 1998,46. 34121

DATA AJI 1.51915,-.342B6, .27145,-.23246,-.2B635,
1 -. 18773, . 1 7327, -. 161 7B, - . 15218, .144166, - .1373,
1 .131325, - . 12 6B 7, .1239, -. 117211
READ(5,7B2) PATH,FOCUS,ALPHB,AWAVE

7B2 FORI'IAT(2X,F7.2,2X,F7.2,2X,F6.4,2X,E11.4)
READ(5,7B3) CHOP

7B3 FORI'IAT(F7.5)
READ(5,787) CH2

7B7 FORI'IAT(E1B.4)
AKB-44./(7.*AWAYE)
DO 99 .IJJ-l,6
BETA=IJJ*.l
AK1-AKB+AKB*BETA*.5
AK2-AKB-AKB*BETA*.5
WRITE(4,4S) PATH,FOCUS,ALPHB
WRITE(6,4S) PATH,FOCUS,ALPHB

4B FORI'IAT<2X, 'PATH=' ,F5 .B,2X,' FOCUS=', 3X,F5.B
1 ,2)(,'ALPHB-',F6.4)
WRITE(4,41) CH2,AWAVE,BETA
WRITE(6,41) CN2,AWAYE,BETA

41 FOR"AT<4X, 'CN2-',4X,EIB.4,2X, 'AWAYE=',2X,
1 E1S.4,'BETA-',F6.3)
PHI=22.17.
ARHO=I.B9215*CN2*AK1*AK1.PATH

C THE HEXT STEP DECIDES THE RAHGE TO GET B"S
AI-I ./( 2. *ALPHS*.2)
A2=1 . I(ARHO..( 1.2»
A=(Al+A2)..(-.S)/1BB.

22 X-Fl(AK2,PATH,CH2,AK1,ALPHB,FOCUS,A)
IF(ABS()().LT.CHOP) GO TO 23
A=A.1 .1
GO TO 22

23 URITE(4,17S) A



_ _.4 . _ _ . ____ . - --. .. - - _. -. - - . - - --

169

175 FORHAT<2X, 'A=' ,2X,£14.6>
C CALCULATION OF B"S FOllOWS

Hal
29 IF<H.GT.6) GO TO 25

AR-B.
BR-A
DR-< BR-AR )*.5
PX"-PH(H>
SU"I-FX(AK2,PATH,CH2,AK1,AlPHB,FOCUS,PXP1,A,AR)+
1 2.*FX(AK2,PATH,CN2,AK1,AlPHB,FOCUS,PXM,A,DR)+
2 FX(AK2,PATH,CN2,AK1,AlPHB,FOCUS,PX",A,BR)
SUMA-SUl'll*DR*.5
NR:II1

26 NR-2*NR
TDR-DR
DR-DR*.5
R=AR+DR
DO lBl IR=1,NR
SUM1=SUI'I1+2.*FX(AK2,PATH,CH2,AK1,ALPHB,

I FOCUS,P)(H,A,R)
R=R+TDR

181 CONTINUE
SUH2-SUH1*DR..S
IF(ABS(SUH2-SUI'IA).lE.ABS( .Bl.SUI'I2» GO TO 6"
SUMA"SU"2
GO TO 26

666 IF(NR.GT.16> GO TO 6'7
SUMA=SUI'I2

GO TO 26
667 BPI<PI)-SUH2*2./«A*AJ1<PI»**2)

"=M+ 1
GO TO 29

25 CONTINUE
SU"C-B.
DO IB3 "=1,6
WRITE(4,28) ",BI'I(I'I)

WRITE(6,28) 1'1,8"(")
SUHC-SU"C+BI'I< PI)

28 FORP1AT<4X,'"=', I4,5X,'811(1'I)=' ,FIB. 7>
1133 CONTINUE

WRITE(6,94) SUI'IC
WRITE(4,94) SUI'IC

94 FORHAT(IBX,'SUI'IC-',FIB.7)
C CALCULATIONS FOR CX(I'I> FOllOW

HC-l
32 IF<I'IC.GT.6) GO TO 33

RHOaPATH*p"(HC)/(A*AK2)
SIGI'IAT-.124*AKB..(7./6.).PATH.*(11./6.)*CN2
WRITE<6,93) SIGHAT

93 FORHAT(4X,'SIGPlAT-',EI4.6)
CX(HC)-FVV(AK2,RHO,CH2,AK1,PATH)
WRITE(4,511) I'IC,CX(I'IC),RHO
WRITE<6,511) PlC,CX<PlC),RHO

511 FORP1AT<4)(, '"Ce', 14, 5X, 'CX(I'IC)=', E14 .6,
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1 2 X, , RH0=' , E14 . 6 )
IF(CX("C>.LE..BU) GO TO 52B
"C="C+l
CO TO 32

52B "Cl="C+l
DO 521 I"="Cl,'
CX(I")al.

521 CONTINUE
33 CONTINUE

COFFS"-I.
DO 522 "=1,'
COFFS"=COFFS"+8"(")*EXP(4.*C)«"»

522 COHTINUE
SIC"A=COFFS"+I.-SU"C
WRITE(4,524) SIGKAT,SIG"A
WRITE(6,524) SIG"AT~SIC"A

524 FOR"AT(4X, 'SIG"AT=',EI8.6,5)(,'SIG"A=',EI4.6)
WRITE(4,555)

555 FOR"AT< '111111')
99 CONTINUE
199 CONTINUE

STOP
END
FUNCTION AJ80<)
IF ( )( . GT . 3 .) GO TO 71
Xl=)(/3.
AJ8-1.-2.2499997*Xl**2+1.2£5£288*Xl**4-.31'38"*Xl**

16+.8444479.Xl**8-.BB39444*Xl**IB+.88B21*Xl**12
CO TO 72

71 X2=3./X
FO=.79788456-.88B88877*X2-.BBS5274*X2**2-.8BBB951*X2

1**3+.B8137237*)(2**4-.8BB72885*X2**5+.BBBI4476*X2.*,
THETA=X-.78539816-.B41'6397*X2-.IBBB3954*X2.*2+

1.IB262573*X2**3-.18854125*X2**4-.BBB29333*X2**5+
1 .IBBI3558*x2**6

AJB=FO*COS<THETA)/SQRT(X)
GO TO 72

72 . CONTI NUE
RETURH
END
FUNCTIOH Fl(AK2,PATH,CN2,AK1,ALPHB,FOCUS,Z2)
ZZ=Z2/ALPHB
81=AK2/AKI
B2=AKI/AK2
Xl=EXP( -ZZ*ZZ*. 25*( 1 .+Bl*Bl»
X3=.545625*CN2*PATH*(AK2**2)*( 1.+92**( .3333333»
Z3=Z2**(5./3.)
X2-EXP(-X3*Z3)
X4=AK2*<I.-PATH/FOCUS)*Z2*ALPHB/(2.*PATH)
X5=EXP(-X4*X4*2.)
FI-Xl*X2*XS
RETURN
END
SUBROUTINE CAUSSU(AK2,RHO,CN2,AK1,PATH,A1,A2,Y,AHS)



171
Cl-(Al+A2)*.~
C2=(A2-A1)*.~
U1=-.238691S*C2+C1
U2=.23S691S*C2+Cl
U3=-.6612894*C2+C1
U4=.6612894*C2+C1
US=-.9324'9S*C2+Cl
U6=.93246'S*C2+Cl
W1=.4619139
W2=Wl
W3=.3681616
W4=W3
WS=. 1113245
W6=WS
UA1=W1*F"(AK2.RHO.CN2.AK1.PATH.U1.Y)
UA2=W2*F"(AK2.RHO.CN2.AK1.PATH.U2.Y)
UA3=W3*F"(AK2.RHO.CN2.AK1.PATH.U3.Y)
UA4=W4*F"(Ak2.RHO.CN2.Akl.PATH.U4.Y)
UA5=W5*FM(AK2.RHO.CN2.AK1.PATH.U5.Y)
UA6=W'*F"(AK2.RHO.CN2.AK1.PATH.U6.Y)
ANS=C2*(UA1+UA2+UA3+UA4+UA5+UA'>
RETURN
END
SUBROUTINE YGAUSS(AK2.RHO,CH2.AK1.PATH.AV1.AV2.ANS)
Dl-<AY1+AY2)*.S
D2=(AV2-AY1)*.S
Yl=-.238691S*D2+Dl
Y2=.23S691S*D2+D1
V3=-.6612B94*D2+Dl
V4=.6612894*D2+D1
V5=-.932469S*D2+Dl
Y6=.9324695*D2+D1
W1=.4619139
1.12=1.11

W3=.3681616
W4=1.I3
W5=.1113245
W6=W5
VA1=Wl*UGAUSS(AK2.PATH.RHO.CN2,AK1.Y1)
VA2=W2*UGAUSS(AK2.PATH.RHO.CH2,AK1.Y2)
YA3=W3*UGAUSS<AK2.PATH.RHO,CN2,AK1,Y3)
VA4=W4*UGAUSS(AK2.PATH.RHO.CN2,AK1,Y4)
YA5=WS*UGAUSS<AK2.PATH.RHO.CN2,AK1.Y5)
VA6=W6*UGAUSS(AK2.PATH.RHO.CN2,AK1,Y6)
ANS=D2*(YA1+YA2+YA3+YA4+YA5+YA6)
RETURN
END
FUNCTION F"(AK2.RHO,CN2.AK1,PATH,U,V)
IF(Y.LE.B.) CO TO 251
IF(ABS(U).LE..BB1.0R.ABS(U).CE..99) CO TO 251
AXXX=U*( 1 .-U)
IF(AXXX.CE.B.) GO TO '91
WRITE(6.232) AXXX

232 FOR"AT(F14.8)
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991 CONTINUE
Ft1t1=(U.( 1.-U) )..« 5.)/6.)
PHI=22.17.
Ft112X=SQRT«4..PHI.Y.U)/(I.-U»
WAYEL-44./(1..AK1)
Ft112Y-SQRT(WAYEL.PATH)
Ft112=Ft112X.RHO/Ft112Y
BB=AKI/AK2
Ft1 131:51 H( Y ).51 H( BB.Y )/( BB.( y..( 11 ./Ei. »)
CONS=. 36S5824Ei*CH2.( AK1..( 7./6. ) ).( PATH**( 11 . lEi. »
Ft1=COHS.Ft111.AJB(Ft112).Ft113
GO TO 252

251 Ft1=B.
252 COHTIHUE

RETURH
END
FUNCTIOH UGAUSS(AK2,PATH,RHO,CN2,AK1,Y)
AU=B.
BU=I.
NU=2
TNSU=B.

581 ANSU=B.
DO 582 IU=I,HU
AHU=HU
AI =AU+( IU-l. ).( BU-AU )/ANU
A2=AU+(IU).(BU-AU)/AHU
CALL GAUSSU(AK2,RHO,CN2,AK1,PATH,Al,A2,Y,AHSU2)
ANSU:aANSU+ANSU2

5~2 CONTINUE
IF(ABS(ANSU-TNSU).LE.ABS( .B2*AHSU» GO TO 583
THSU=ANSU
NU-NU*2
GO TO 581

5~3 UGAUSS=ANSU
RETURN
END
FUNCTION FX(AK2,PATH,CH2,AK1,ALPHB,FOCUS,PXt1,A,R)
FXX=Fl(AK2,PATH,CN2,AK1,ALPHB,FOCUS,R)
FX=FXX.R.AJB(PXt1.R/A)
RETURN
END
FUNCTION FVY(AK2,RHO,CN2,AK1,PATH)
SIGt1AT=.124.AK1..(7.1€.. )*(PATH*.(11./Ei. ».CH2
THSX=B.
AHSX-B.
AY=B.
IF(SIGt1AT.lE.l.> CO TO 721
BY=I./(2..SICt1AT)
GO TO 722

721 BY=I.
722 DELTA-BY

IF(AK1.CT.AK2) BY=BY.AK2/AKI
IF(AK1.CT.AK2) DELTA=DELTA*AK2/AK1

723 HY=2



THSV=B.
588 AHSV=B.

DO 589 IV=I,N'I'
AN '1'= N'I'

A 'I'I=AY+( I V-I. )*( BV-AY )/AHY

AY2=AY+IY*<BY-AY)/AHY
CALL YGAUSS(Ak2,RHO,CN2,Akl,PATH,AY1,AY2,AHSY2)
ANSY=ANSV+ANSY2

589 CONTINUE
IF(ABS(AHSY-TNSY).LE.ABS( .B2.AHSY» GO TO 518
TNSV=ANSY
HY=NY*2
WRITE(',4'1) AHSY

4'1 FOR"AT(SX,EI4.')
IF(HY.GE.4.AND.ABS(AHSY).LE..BB1) CO TO ~18
GO TO SI8

S1B ANSX=ANSX+ANSY
IF(ABS(ANS)(-TNSX>.LE.ABS( .B2.AHSX» CO TO 732
AY=A'I'+OELTA

By::rBV+DEL TA
TNSX=ANSX
IF(ABS(ANS)().LE. .BI1) CO TO 732
GO TO 723

732 FYY=ANSX
RETURN
END
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48

HA"E OF PROGRAM IS RAOG~X
PROGRA" TO CALCULATE THE AT"OSPHERIC
PERTURBATION USING HILL SPECTRU" FOR THE
SI"ULATIOH TANK YALID OHLY AT LOW
LOW TURBULENCE REGI"ES.HEED TO BE CHANGED
FOR STRONG TURBULENCE REGI"ES.
DI"ENSIOH P"(15),AJ1(15),CX(6),CN2I(6)
DI"EHSIOH B"(19) .
DATA P" 12.4B48,5.5281,8.6537,11.7915.14.93B9,

CI8.B711,21.2116,24.3~25,27.4'35,3B.6346,33.77~8,
136.9171,48.B584,43.1998,46.34121

DATA AJI 1.51915,-.34286, .27145,-.23246,-.2B635,
1-.18773, .17327,-.1617B,- .15218, .144166,- .1373,
1 . 131325, - . 12687 , . 1239, - . 11721/

DATA CH2I/l.E-ll,5.E-ll,l.E-IB,2.E-IB,5.E-IB,
1 I.E-B9/

READ( 5, 444) PATH
FORMAT< F4. 2)
READ(5,445) FOCUS
FORI1AT(F4.2)
READ(5,446) ALPHB
FORMAT< F5. 3)
READ(5,447) AWAYE
FORHAT< F6. 3)
AWAYE-AWAYE*<1.E-96)
REAO(5,7B3) CHOP
FORHAT(F7.5)
REFRACT lYE INDEX IS 1.361;IT SHOULD BE
CHANGED FOR OTHER SIMULATING "EI>IUI1S
DO 99 INDEX=I,6,1
CN2=CN2 I< IHDEX)
WRITE(4,4B) PATH,FOCUS,ALPHB
WRITE(6,4B) PATH,FOCUS,ALPHB
FORHAT< 2)(, 'PATH=',F7 .2,2>:,' FOCUS=' ,3X,F7 .2,2X,

1 'ALPHB=',F6.4)
WRITE(4,41) CH2,AWAYE
WRITE(6,41) CH2,AWAYE
FOR"AT<4X,'CH2=',4X,EIB.4,2X,'AIdAYE=',2X,ElB.4)
PHI=22./7.
AK-2.*PHI*1.361/(AWAYE)
ARHO=I.B9215.CH2*AK*AK*PATH

THE NEXT STEP DECIDES THE RANGE TO GET Bt1S
Al-1./(2.*ALPHB.*2)
A2-1./(ARHO..(1.2»
A=(Al+A2)..(-.5)/IBB.
X-Fl(PATH,CH2,AWAYE,ALPHB,FOCUS,A)
IF(ABS(X>.LT.CHOP) CO TO 23
A=A*l .1
GO TO 22
WRITE(4,175) A
FOR"AT(2X,'A-',2X,EI4.6)
CALCULATION OF Bt1S FOLLOWS

"-I

41
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29 IF<".GT.6> CO TO 25
AR-S.
BR-A
DR-( BR-AR h. 5
P)(H=PK( ")
SU"1.FX<PATH,CN2,AW~YE,ALPHB,FOCUS:PXM,A,AR)

1+2..FX(PATH,N2,A~AYE,ALPHB:FOCUS,PXM,H,DR)
2+FX(P~TH,CH2,AWAYE,ALPHB,FOCUS,PX",A,BR)
5UI'IA-SO"l*DR*.5
NR-1 .

26 HR=2*HR
TDR=DR
DR-DR*.S
R=AR+DR
DO lS1 IR=I,HR
SUHl.SU"1+2.~FX<PATH,CN2,AWAVE,ALPHB,FOCUS,PX",A,R)
R=R+TDR

181 CONTINUE
SUI12=SU"l*DR*.5
IF(ABS(SUI42-SLII'IA).LE.ABSC.BI*SUI'I2» GO TO 666
SUI'IA=SUH2
GO TO 26

666 IFCHR.CT.16) GO TO 667
SUHA= 5U"2
GO T02 6

'67 BMCH)=SUH2*2./(CA*AJICI1»..2)
11=11+1
GO TO 29

25 COHTINUE
SUI'IC=8.
DO 193 11=1,6
~RITE(4,28) 11,811(11)
WRITE<6,28> 11,8H(I1)
SUHC=SU"C+BI1( 11)

28 FORMAT( 4X,'I1=', I4,5X,' BI'I(11)=', FIB. 7)
IB3 CONTINUE

WRITE<6,94) SUI1C
WRITE<4,94) SUI1C

<34 FORMAT( IBX,' SUI1C=', F 19.7)
C LOC-A"PLITUDE COVARIANCE FUNCTION OF A SPHERICAL WAY
C AT lOW TURBULEHCE LEYELS IS USED IN THE NUMERICAL
C EVALUATION. THIS SHOULD BE 110DIFIED FOR STRONC
C TURBULENCE COHDITIONS.
C CALCULATIONS FOR CXCI1) FOLLOW

RVTOY=FYY<B.,CH2,AWAYE,PATH)
WRITE<4,18S> RYTOY
WRITE(6,lS8> RYTOY

188 FORI'IAT<2X,!RYTOY=',EI4.£)
I1C=1

32 IF<I'IC.GT.6) GO TO 33
RHO=PATH*PH(HC)/<A*AK)
CX("C)-FYY(RHO,CH2,AWAYE,PATH>
WRITE<4,SII) I'IC,CX(I1C>,RHO
WRITE(6,SI1) "C,CX(MC),RHO
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511 F (jRMAT( 4)( ~ '" C=' , 14, 5)(, , C)(( 11C) = ' , E14 . 6 ,2)( , , RH0 =' ~E 14 .
IF<C)«"C).LE..8Bl) GO TO 528
"C="C+1
GO TO 32

52B "C1="C+1
DO 521 1t1=I1C1.6
CX(ll'l)=B.

521 CONTINUE
33 CONTINUE

COFFSI1=B.
DO 522 "=1,6
COFFSI1=COFFSt1+Bt1(")*EXP<4.*C)«"»

522 CONTINUE
SIGI1A=COFFSI1+1.-SUMC
WRITE(4.524) SIGMA
WRITE(6.524) SIGMA

524 FORMAT<4)(, , SIGMA:' ~E 14.6)
99 CONTINUE

STOP
END
FUNCTION AJB()()
IF ( X . GT .3.) GO TO 71
)(1=X/3.
AJ8-1.-2.24""7*Xl*.2+1.2656288*)(I.*4-.316386'*Xl*.

16+.9444479*Xl**8-.9939444*Xl**le+.88B21*><I**12
GO TO 72

71 X2:o:3./X
FO=.79788456-.8B8BB877*X2-.BB55274*X2**2-.BBBB951*X2

1.*3+.e8137237*X2..4-.9BB72885*X2**S+.BeB1447~*X2**'
THETA=X-.7853981'-.B4166397.X2-.BBBB3~54*X2**2+

I.B9262573.)(2.*3-.98B54125*X2**4-.BBB29333*X2..5+
1 .89913558.)(2*.'

AJ9=FO-COS(THETA)/SQRT(X)
GO TO 72

72 CONTINUE
RETURN
END

. FUNCTION Fl(PATH,CN2,AWAYE,ALPH8,FOCUS,Z2)
ZZ=Z2/ALPHB
X!-EXP(-ZZ*ZZ/2.)
AK=44.*1.361/(7..AWAYE)
X3=I.B9215*CN2-PATH*AK*-2
Z3=Z2-.(5./3. )
X2=EXP(-X3.Z3)
X4=AK*(1.-PATH/FOCUS)*Z2*ALPHB/(2..PATH)
X5=EXP(-X4*X4*2.)
FJ-Xl*X2*X5
RETURN
END
SUBROUTINE GAUSSU(RHO,CH2~AWAYE,PATH,Al.A2,V,AHSU1)
Cla(Al+A2)..5
C2=(A2-Al )*.5
Ula-.2386915.C2+Cl
U2=.238691S*C2+C1



U3a-.6612B94*C2+Cl
U4=.6612B94*C2+Cl
U5=-.9324695*C2+Cl
U6=.932.6'5*C2+Cl
"1=..679139
"2=1.11
"3=.3687616
"4=1.13
"5=.1713245
"6=WS
UA1=Wl*FH(RHO,CH2,AWAYE,PATH,Ul,Y>
UA2=W2*FH(RHO,CH2,AWAYE,PATH,U2,Y>
UA3=W3*FM<RHO,CH2,AWAYE,PATH,U3,Y)
UA4=W4*FM(RHO,CN2.AWAYE,PATH.U4,Y)
UAS=WS*FH<RHO,CN2,AWAVE,PATH,US,Y)
UA6=W6*FH<RHO,CN2,AWAYE,PATH,U6,Y)
AHSUI-C2*(UA1+UA2+UA3+UA4+UA5+UA6)
RETURN .

END
SUBROUTIHE YCAUSS(RHO,CN2.AWAYE,PATH,AY1,AY2,AHS)
Dl=(AY1+AY2)*.S
D2=(AY2-AY1)*.5
Yl=-.238691S*D2+Dl
Y2=.238691S*D2+Dl
Y3=-.6612B94*D2+Dl
Y4=.6612B94*D2+Dl
YS=-.93246'S*D2+Dl
Y6=.93246'S*D2+Dl
"1=.4679139
"2=Wl
"3=.36B7616
W4=1rJ3
1.15=.1713245
W6=1rJ5
YA1=Wl*UCAUSS(PATH,RHO,CH2,AWAYE,Yl )
YA2=W2*UGAUSS(PATH,RHO,CH2,AWAYE,Y2)
YA3=1.I3*UGAUSS(PATH,RHO,CN2,AWAYE,Y3)
YA4=W.*UCAUSS(PATH,RHO,CH2,AWAYE,V4)
YAS=I.IS*UGAUSS(PATH,RHO,CH2,AWAYE,YS)
YA6=W6*UGAUSS(PATH,RHO,CH2,AWAYE,V6)
AHS=D2*(VA1+VA2+VA3+VA4+VA5+YA6)
RETURN
EHD .

FUHCTION F"<RHO,CH2,AWAYE.PATH,U,Y)
1F ( V . lE . B . > CO TO 251
IF(ABS(U).lE..8B1.0R.ABS(U>.CE..") GO TO 251
AXXX=U*( 1 .-U)
AK=44.*1.361/(7.*AWAYE)
All=.BBBS5
TERM 1 =( (2. *AK )/( PATH*U*( 1 .-U» ).*( .5)
FI6al.llB72B7*(AK*.( 1.S».(PATH*.( 1.5»*CH2
Fl1=( 1.+SQRHV>.TERH1*ALI )/('1'.*(1.5»
F12=EXP(-Y*All*TERHt>
F1J. ( U*( 1 . -u ». *< .5 )

177
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F14-SIN<V)**2.
TER"2-RHO*SQRT<Y)*TER"1*U
F15=AJB(TER"2)
F17-FYC(CN2.AWAYE,PATH,U,Y)
F18=EXP(-FI7)
F"=Fl1*FI2*FI3*F14*FI5*Fl'*F18
CO TO 252

251 F"=B.
252 CONTINUE

RETURN
END
FUNCTION UCAUSS(PATH.RHO,CN2,AWAYE,Y)
AU=B.
BU=I.
NU=2
TNSU=B.

581 AHSU=B.
DO 582 IU=l,HU
ANU=HU
Al =AU+( IU-l. ).( BU-AU )/ANU
A2=AU+(IU)*(BU-AU)/ANU
CALL CAUSSU(RHO,CH2.AWAYE,PATH,Al.A2,Y,ANSU2)
ANSU-AHSU+ANSU2

5B2 CONTINUE
IF(ABS(AHSU-THSU).LE.A8S( .B2*AHSU» GO TO 51:13
THSU=AHSU
NU=NU.2
GO TO 581

5B3 UGAUSS=ANSU
RETURN
END
FUNCTION FX(PATH.CH2,AWAYE,ALPHB,FOCUS,PX~,A,R)
FXX=Fl<PATH.CN2.AWAYE,ALPHB.FOCUS.R)
FX=FXX*R*AJB(PX"*R/A)
RETURN
END
FUNCTIOH FYY(RHO.CH2,AWAYE.PATH)
THSX=B.
AHSX=B.
AV-B.

721 BV=I.
722 DELTA=BY
723 NV=2

TNSV-B.
5BS ANSV=B.

DO 5B9 IY=I,NY
ANV-NV
AVlcAY+<IY-l. )*(BY-AV)/ANY
AY2-AV+IV*<BY-AV)/ANV
CALL VGAUSS(RHO.CN2,AWAYE,PATH,AV1,AV2,ANSV2)
ANSV-ANSV+ANSY2

5139 CONTINUE
IF(ABS(ANSV-THSY).LE.ABS( .B2*ANSY» CO TO 518
TNSY-ANSY



H'r'=H'r'*2
URITE(6,461) AHS'r'

461 FOR"AT(5X,E14.6)
IF(HV.GE.4.AND.A9S(ANSY).LE..BB1) GO TO 51B
CO TO 588

51B AHSX=AHSX+AHSV
IF(A9S(AHSX-THSX).LE.ABS( .82*ANSX» GO TO 732
AY=AV+DELTA
B'r'=BV+DELTA
THSX=AHSX
IF(ABS(ANSX).LE..BB1) GO TO 732
GO TO 723

732 F'I''I'=AHSX
RETURH
END

179
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APPENDIX C

This appendix consists of the computer program called COVAR

written to evaluate the covariance, normalized to the square of the

average intensity. In order to make the data useful for a wide

range of VSCR values, the coherent and incoherent parts are printed

separately for each spacing and propagat.ion data. The input is

path length, wave length, beam size and focal length. The

turbulence data corresponds to 9 data points where the Rytov

variance is specified under SIGI(9). The spacings are .005 meters

to .030 meters with an increment of .005 meters. These data points

are called PI (initial spacing), P2 (final spacing) and DELP

(increment in spacing). By changing these values, the program can

be used for arbitrary spacings. The coherent part in the output is

called AINT2 and the incoherent part is called AINTI.
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DI"ENSION P"<IS),~Jl(IS),CX1(6),CX2(6)
C PROGRA" HA"E IS COYAR
C PROGRA" TO CALCULATE THE SPATIAL COVARIANCE AT
C LOW TURBULENCE LEYELS.IT ALSO GIYES GOOD
C RESULTS FOR THE STRONG TURBULEHCE CONDITIONS
C FOR REASONS EXPALINED IN THE TEXT.
C P1 IS THE INTIAl DETECTOR SPACING, P2 IS THE FIHAl
C DETECTOR S~ACING AND DELP IS THE INCREMEHT.
C Pl,P2 AND DELP SHOULD BE CHANGED FOR THE
C DESIRED VALUES OF THE SPACING, UNDER CONSIDERATION.
C OUTPUT CONSISTS OF ALL THE PROPAGATION DATA,
C DETECTOR SPACING VALUES AND THE COHERENT TE~M(AIHT2)
C AND THE INCOHERENT TERM<AIHT1). FOR DETAILED
C "EANIHG OF THESE TERMS, SEE THE CHAPTER OH THE
C COYARIANCE (CHAPTER VI).
C PROGRA" CAN BE CHANCED, IF THE FREQUNCIES ARE
C WIDELV SEPERATED BY USING THE PROGRAMS RA02FF
C AND CXX2FF. .

C SICI IS THE RYTOY YARIANCE
C THIS PROGRAM GENERATES DATA FOR SEVERAL VALUES
C OF DETECTOR SPACINGS , FOR 9 VALUES OF THE
C RYTOY YARIANCE ,SPECIFIED IN THE DATA.
C THE INPUT CAN BE SUITABLY MODIFIED, DEPENDING
C ON THE PROBLE" ,UNDER CONSIDERATION.

DI"ENSION CN2I(3),BM<18>
DATA P" 12.4848,5.5281,8.6537,11.7915,14.93B9,

CI8.8711,21.2116,24.3S25,27.4935,3B.6346,33.7758
C,36.9171,4B.BS84,43.1998,46.34121

DATA AJI I.S191S,-.34286, .27145,-.23246,-.2B635,
C -.167738773,.17327,-.16178,-.15218, .144166,
C -.1373,.1313245,-.12687, .1239,-.117211
DATA CN2I I1.E-15,1.E-14,1.E-131
READ<S,77> PATH
READ(S,77) FOCUS
READ(S,77) AWAYE
READ(5,77) ALPH8

77 FOR"AT(EIB.4>
DO 99 IHDEX-1,3
PHI=22.17.
AK-2.*PHI/AWAYE
COHSS-. 124.( AK..( 7. /6. )).PATH*.< 11 ./6. )
CN2=CN2I< INDEX>
WRITE<6,41) PATH,FOCUS,ALPHB
WRITE(4.41) PATH,FOCUS,ALPHB

41 FOR"AT( 2X. ·PATH=' 1FS. B, 2X,' FOCUS=' ,F5. 8, 2X,
IIALPHB:a',F6.4)
WRITE(6,4B> CH2,AWAYE
WRITE(4,4B> CN2,AWAYE

48 FOR"AT<2X, 'CH2=',EI4.6,5X,'AWAYE-' ,E14.6>
ARHO=I.B921S*CH2.AK*AK*PATH

C THE NEXT STEP DECIDES THE RANCE TO GET BMS
CHOP=.SI
AI=I./(2.*ALPHS.*2)
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A2-1 .1<__RHO**(1.2»
A=(Al+A2)**(-.5)/1BB.

22 X=Fl(PATH,CN2,AWAYE,ALPHB,FOCUS,I.,A)
IF(ABS(X).LT.CHOP) CO TO 23
A-A*1.1
CO TO 22

23 WRITE(61175) A
WRITE(41175) A

175 FORI1AT(SX,'A=',EI4.6)
C A IS THE RANCE WHERE Fl IS CHOPPED

"=1
29 IF(I1.CT.o) CO TO 25

AR=B.
BR=I.
DR=(BR-AR)*.S
PX"=PI1(It)

SU"I=FX(PATH,CN2,RWAYE,ALPHB,FOCUS,PXM,A,AR)
C+2.*FXCPATH,CN2,AWAYE,ALPHB,FOCUS,PXM,A,DR)
C+FX(PATH,CN2,AWRYE,RLPHBIFOCUS,PXI1,R,BR)
SU"R=SU"1*DR*.5
NR:l

26 HR=2*NR
TDR=DR
DR=DR*.S
R=AR+DR
DO lBI IR=I,NR
SU"I=SU"1+2.*FX(PRTH,CN2,RWAYE,ALPHB,FOCUS,PXM,A,R)
R=R+TDR

lBI CONTINUE
SU"2=SU"1*DR*.5
IF(RBS(SUI'I2-SUI'IA).LE.RBS(.Bl.SUI'I2» GO TO 6'6
IF(NR.GT.2B48) GO TO 6'7
SUI1R=SU"2
GO TO 26

6b6 IF(NR.GT.16> GO TO '67
SUI1A=SU"2
CO TO 26

667 8fHM)-SUf'l2*2./«AJ1<f'I»..2.)
11=11+1
CO TO 29

25 CONTINUE
SU"C=B.
DO 1B3 11=1,6
WRITE<6,28) 11,811(11)
SUI1C-=SU"C+BI1<" )

28 FORI'IRT(4X,I"=',I4,'BI1(I1)=',F1B.7)
183 CONTINUE

WRITE(6194) SUMC
WRITE(4194) SUI1C

94 FORI1AT<IBX,' SUMC=', F 18.7)
C CALCULATIONS FOR COYARIANCE

PI" .B85
DELPa.8B5
P2=.B58
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C

93

32

988

918
911

912
913
9S 7

511

33

522

524

555

P=Pl
CONTINUE
IF(P.GT.P2) GO TO 481
CALCULATIOHS FOR CX1<"C) FOLLOW
51 G"AT= .124*AK**< 7./6. )*PATH**( 11./6. )*CH2
WRITE<4,93) 5IG"AT
WRITE<£,93) SIG"AT
FORt1AT<4X, 'SIGt1AT=' ,EI4.6)
t1C=1
IF<I'IC.GT.6) GO TO 33
RHO=PATH*PI'I(I'IC)/(A*AK)
IF<I'IC.EQ.l) CO TO 988
"Cl="C-l
DIFF=ABS(CX1(t1C1)-I. )
IF(ABS(DIFF).LE..8B1) GO TO 91B
CONTINUE
CX1("C)=FCX(RHO,P,CN2,PATH,ALPHB,FOCUS,AWAYE)

1 *.15919B91
GO TO 911
CX1<I'IC)=I.
CONTINUE
"C2=I'IC-l

IF<I'IC2.GE.1.AND.ABS(BMOIC».LE..Bl) GO TO 912
CX2(t1C)=FF1(RHO,P,CN2,PATH,ALPHB,FOCUS,AWAVE)

1 *.15989B91
GO TO 913
CX2("C)a:B.
CONTINUE
CONTINUE
WRITE<6,SII) I'IC,BI'I<I'IC),CX1(I'IC),CX2(I'IC)
WRITE(4,511) "C,B"("C),CX1(I'IC),C~2(MC)
FO RI'IA T( JX , , ..C=' , I 3, 2 X, , 8 M ( Me) = ' , E 1 B . 4 , 2 X,

1 'CX1<KC)=',EIB.4,JX,'CX2<I'IC)=',EIB.4)
"C=I'IC+l

GO TO 32
CONTINUE
AINT1=8.
AIHT2=8.
DO 522 "=1,6
AIHTl-AINT1+BI'I(")*CX1<1'I)
AINT2=AINT2+BI'I(")*CX2<1'I)
CONTINUE
AIHT1=AIHT1+l.-SUI'IC
AINT2=AIHT2+1.-SUI'IC
WRITE(6,524) P,AIHT1,AINT2
WRITE<4,524) P,AINT1,AINT2
FORt1AT<2X,'P=',F8.5,2X,'AINT1=',E14.6,2X,

1 'AINT2-',EI4.6)
COVAR-AIHT1+AINT2-1.
WRITE<4,555) P,COYAR
WRITE(6,555) P,COYAR
FORI'IAT<3X,'pa',F5.3,5X,'COYAR=',F9.6)
IF(ABS(COYAR).LE..l) GO TO 481
P=P+DELP

183
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GO TO 83B
48 lCONT INUE
99 CONTINUE

STOP
END
FUNCTION FCX(RHO,P,CN2,PATH,ALPH8,FOCUS,AWAYE)

C IHTEGRATION OYER THETA
ATH=8.
8TH=44.1?
NTH=1
THSTH=8.

381 STH=B.
DO 382 ITH=I,HTH
AHTHcNTH
ATH1=ATH+( ITH-1 .)*(BTH-ATH )/AHTH
ATH2-ATH+ITH*(BTH-ATH)/ANTH
STH=STH+FCXT(RHO,P,CN2,PATH,ALPH8,AWAVE,ATH1,ATH2)

382 CONTINUE
IF(ABS(STH-TNSTH).LE.ABS( .B2*STH» GO TO 3B3
TNSTH-STH
HTH=NTH*2
GO TO 381

383 FCX-STH
RETURN
END
FUNCTION FCXT(RHO,P,CH2,PATH,ALPHB,AWAYE,ATH1,ATH2)
CTH1c(ATH1+ATH2)*.5
CTH2=(ATH2-ATHl )*.5
T1=-.2386915*CTH2+CTHl
T2=.238691S*CTH2+CTH1
T3=.'612B94*CTH2+CTH1
T4=-.6612B94*CTH2+CTHl
T5=-.9324695*CTH2+CTH1
T6=.932469S*CTH2+CTHl
WT1=.4679139
WT2=WTl
"T3-.3687616
WT4=WT3
"T5=.1713245
"T6-WT5
UT1cWT1*SXX<RHO,P,CN2,PATH,ALPHB,AWAYE,Tl)
UT2=WT2*SXX(RHO,P,CN2,PATH,ALPHB,AWAVE,T2)
UT3=WT3*SXX(RHO,P,CN2~PATH,ALPHB,AWAYE,T3)
UT4=WT4*SXX(RHO,P,CH2,PATH,ALPHB,AWAYE,T4)
UT5=WT5*SXX(RHO,P,CN2,PATH,ALPHB,AWAYE,T5)
UT6=WT6*SXX(RHO,P,CN2,PATH,ALPHB,AWAVE,T6)
FCXT=CTH2*(UT1+UT2+UT3+UT4+UT5+UT6)
RETURN
END
FUNCTION GAUSSU(RHO,P,CH2,PATH,ALPHB,AWAYE,T)
AU=B.
8U=1 .
NU-1
TNSU-9.
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5Bl ANSU=B.
DO 5B2 IU=I,HU
ANUcNU
AUI-AU+( IU-l. >*<BU-AU)/ANU
AU2=AU+IU*(BU-AU)/ANU
ANSU=ANSU+UC<RHO,P,CN2,PATH,ALPHB,AWAYE,T,AU1,AU2)

5B2 CONTINUE
IF(ABS( ANSU-TNSU) .LE .ABS( .B2*ANSU» GO TO 5B3
TNSU-ANSU .
NU-NU*2
CO TO 5Bl

5B3 CAUSSU=ANSU
RETURH
EHD
FUNCTION UC(RHO,P,CN2,PATH,ALPHB,AWAVE,T,AU1,AU2>
CU1=(AU1+AU2)*.5
CU2=( AU2-AUI )* . 5
UG1=-.238691S*CU2+CUl
UG2=.238691S.CU2+CUl
UG3=-.6612B94*CU2+CUl
UG4a.6612894*CU2+CUl
UG5=-.932469S*CU2+CUI
UG6=.932469S*CU2+CUl
WG1=.4679139
WG2=WGl
WG3=.36B7616
WG4=WG3
WG5=.1713245
WG6=WG5
AG1=WG1*CXX(RHO,P,CH2,PATH,ALPHB,AWAVE,T,UGl )
AG2=WG2*CXX(RHO,P,CH2,PATH,ALPHB,AWAYE,T,UG2)
AG3=WG3*CXX(RHO,P,CH2,PATH,ALPHB,AWAYE,T,UG3>
AG4=WG4*CXX(RHO,P,CN2,PATH,ALPHB,AWAYE,T,UG4)
AG5=WGS*CXX(RHO,P,CN2,PATH,ALPHB,AWAYE,T,UGS)
AG6=WG6*CXX(RHO,P,CN2,PATH,ALPHB,AWAVE,T,UG6)
UG=CU2.(AG1+AG2+AG3+AG4+AG5+AG6)
RETURN
EHD
FUNCTION SXX(RHO,P,CH2,PATH,ALPHB,AWAYE,T)
SXX=EXP<4..CAUSSU<RHO,P,CH2,PATH,ALPHB,AWAYE,T»
RETURH
EHD
FUHCTION FF1<RHO,P,CH2,PATH,ALPHB,FOCUS,A~AYE)
ATH=S.
8TH=6.2856
HTH=1
THSTH-S.

2B 1 STH=B.
DO 2B2 ITH-l,HTH
AHTH:aHTH
ATHI-ATH+( ITH-1 . )*( 8TH-ATH )/AHTH
ATH2-ATH+ITH.(BTH-ATH)/AHTH
STH=STH+FFF(RHO,P,CN2,PATH,ALPHB,AWAYE,ATH1,ATH2)

2E12 COHTIHUE
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IF(ABS(STH-THSTH).LE.ABS( .82*STH» co TO 283
THSTH=STH
HTH=HTH*2
CO TO 281

2B3 FF 1=5TH
RETURH
END
FUNCTION FFF(RHO,P,CN2,PATH,ALPHB,AWAYE,ATH1,ATH2)
XTH1=(ATH1+ATH2)*.5
XTH2=(ATH2-ATH1)*.5
Xl=-.2386915*XTH2+XTHl
X2=.238'~15*XTH2+XTHl
X3=-.6612B94*XTH2+XTHl
X4-.6612894*XTH2+XTHl
XS=-.9324695*XTH2+XTHl
X6a.9J24'~5*XTH2+XTHI
"1-.4679139 .

.,2=W 1
"3=.3687616
"4=1.13
"5=.1713245
"6=1.15
AX1=Wl*FX9<RHO,P,CH2,PATH,ALPHB,AWAYE,X1 )
AX2-W2*FX8(RHO,P,CH2,PATH,ALPHB,AWAVE,X2)
AX3=WJ*FX8(RHO,P,CH2,PATH,ALPHB,AWAYE,X3)
AX4=W4*FX9(RHO,P,CH2,PATH,ALPHB,AWAYE,X4)
AX5=W5*FX8(RHO,P,CH2,PATH,ALPHB,AWAVE,X5)
AX6=W6*FX8(RHO,P,CH2,PATH,ALPHB,AWAVE,X6)
FFF=XTH2*(AX1+AX2+AX3+AX4+AXS+AX6)
RE TU R H

EHD
FUHCTIOH FX9(RHO,P,CH2,PATH,ALPHB,AWAYE,T)
Sl-P*RHO*COS(T)
S2-44./(7.*AWAYE*PATH)
AK=44./(7.*AWAYE)
Rl1=.545625*CH2*PATH*AK*AK
R12=2 .*Rl1*P**( 5./3. )
54=:(-1. B912S*CH2*AK*AK*PATH*RHO.*( 5 ./3. »
FXXX=FXIB(P,RHO,T)+FX11(P,RHO,T)
SS=(1.455*CH2*AK*AK*PATH*FXXX)
TR1=GAUSSU(RHO,P,CH2,PATH,ALPHB,AWAVE,T)
PC=-RHO
TR2=GAUS5U(PC,P,CH2,PATH,ALPHB,AWAYE,T)
S6=:(2.*(TR1+TR2»
COHSI--RI2+54+55+56
COH52=-COH51
IF(COHS2.GT.5) GO TO 31B
CC-EXP(COH51)
53=C05( 51*52)
FX9=53-CC
GO TO 311

318 FX9=B.
311 COHTIHUE

RETURN



EHD
FUHCTIOH FX1B(P,RHO,T)
ALzB.
BL=I.
HL-l
TSFX-B.

..5B AHSF-B.
DO 451 I=I,HL
AL1=AL+(I-I. )*(BL-Al)/Hl
Al2=Al+I*(Bl-Al)/Hl
AHSF-AHSF+FX1BG(P,RHO.T,AL1.AL2)

451 CONTINUE
IF(ABS(ANSF-TSFX).lE.ABS( .B2*ANSF» GO TO 452
TSFX-AHSF
HL-NL*2
GO TO 458

452 FXI8=ANSF
RETURN
END
FUNCTIOH FX1BG(P,RHO,T,All,AL2)
Cl-( ALl +AL2 )/2.
C2=( AL2-AL 1 )/2 .
Xl=-.2386'15*C2+Cl
X2=.23S"15*C2+Cl
X3=-.'612S94*C2+Cl
X4=.6612894*C2+Cl
X5=-.9324695*C2+Cl
X6=.93246'5*C2+Cl
Gl-.467913'
G2=G1
C3=.3687616
G4=GJ
G5=.1713245
G6=G5
XX1=Cl*FX1Bll(P,RHO,T,Xl)
XX2=C2*FX1Bl1(P,RHO.T,X2)+G3*FX1Bl1(P,RHO,T,X3)+

CFXI811(P,RHO,T,X4>*G4+G5*FX1Bl1(P.RHO,T,XS)
C+C'*FX1Bll(P.RHO.T,X6)
FX1BCzC2*(XX1+XX2)
RETURH
END
FUHCTIOH FX1Bll(P,RHO,T.Pl)
TE 1=( P*Pl ).*2.

TE2=(RHO*Cl.-Pl»..2.
TE3c2.*P.RHO.Pl*(I.-Pl)*COS(T)
TE4=ABS(TE1+TE2+TE3)
FX1Bl1-TE4..(5 ./6.)
RETURN
END
FUNCTION FXll(P,RHO,T)
AL-S.
BL-l.
Hl-l
TC-S.
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46B AC=B.
DO 461 I-l,HL
AL1-AL+(I-I. )*(BL-AL)/HL
AL2=AL+!*(BL-AL)/HL
AC-AC+FXI1G(P,RHO,T,AL1,AL2)

461 COHTIHUE
IF(ABS(AG-TC).LE.ABSLB2.AG» CO TO 462
TC=AC
HL-HL*2
GO TO 4'B

462 FXI1=AC
RETURN
END
FUNCTION FX11G(P,RHO,T,AL1,AL2)
Cl=(AL1+AL2)*.5
C2=(AL2-AL1)*.5
C~I=-.2386915*C2+Cl
CX2=.2386915*C2+Cl
CX3=.6612B94*C2+Cl
CX4=-.6'12B94*C2+Cl
CX5=-.9324695*C2+Cl
CX6=.9324695*C2+Cl
"1=.4679139
"2=Wl
"3 36B7616
"4=W3
"5=.1713245
"6="5
ANS="1*FX11Bl(P,RHO,T,CXl )+W2*FX11Bl(P.RHO,T,CX2)

C+W3*FX11Bl(P,RHO,T,CX3)+W4*FX11Bl(P.RHO.T,CX4)
C+W5*FXI1Bl(P,RHO,T.CX5)+W,*FX11Bl(P,RHO.T,CX6)
FXI1G=AHS*C2
RETURN
END
FUNCTION FXllBl(P,RHO,T,X)
TER1=(P*X)**2.
TE2=(RHO.(1.-X»*.2.
TE3=2.*P*RHO*X*(I.-X>*COS(T)
TX-ABS(TER1+TE2-TE3)
FX1181=TX**(5./6. )
RETURN
END
FUNCTION AJB(X)
IF(X.GT.1BBB.> GO TO 888
IFOLEQ.B.) GO TO 898
IF 0(, CT .3 .) CO TO 71
Xl=X/3.
AJI-l.-2.2499997*Xl**2+1.26S628S*Xl**4-.31'3S66.Xl

C**'+.1444479*Xl**8-.IB39444*Xl*.IB+.BBB21*Xl.*12
GO TO 72

71 X2-3./X
FO-.797884S6-.IBBBBB77*X2-.8B5S274*X2**2-.IBBB951*X2

C**3+.B8137237*X2*.4-.BBB728B5*X2**5+.BBB144?6.X2..'
THETA=X-.78539816-.B4166397*X2-.BBBB3954*X2..2+



C.BI262513.X2.*3-.8BB54125.X2*.4-.BBB29333*X2..5+
1 .BBB13558*X2..6
AJI-FO.COS(THETA)/SQRT(X)
CO TO 12

888 AJBaSQRT(. 63" 1977/X )*COS( )(-2.3561945)
CO TO 12

898 AJB=1.
72 CONTIHUE

RETURH
END
FUNCTIOH Fl(PATH,CH2,AWAYE,ALPHB,FOCUS,A,ZF)
Z2=2F*A
2Z=22/ALPHB
Xl=EXP(-2Z*ZZ/2.)
AK=44./(7.*AWAYE)
X3=1.19215.CN2*AK*.2.PATH
Z3=22..( 5./3. )
X2=EXP( -X3.Z3)
X4-AK.(I.-PATH/FOCUS)*Z2*ALPHB/(2.*PATH)
X5=EXP(-X4*X4.2.)
F1-X1.X2.X5
RETURH
END
FUNCTION FX(PATH,CN2,AWAYE,ALPHB,FOCUS,PX~,A,R)
FXXRF1(PATH,CH2,AWAYE,ALPHB,FOCUS,A,R)
FX-FXX.R.AJB(PX"*R>
RETURH
END
FUHCTION FF2(,()
IF('r'.EQ.B.) GO TO 562
IF(ABS(...>.LT..B1) GO TO 56B
FF2-ABS(SIH(...».*2./(V**<11./b.»
GO TO 561

56B FF2= (1./6.)
GO TO 561

562 FF2-..
5b1 CONTINUE

RETURH
END
FUNCTION CXX(RHO,P,CN2,PATH,ALPHB,AWAYE,T,U)
IF(ABS(U>.LE..BB1.0R.ABS(U).GE..999) GO TO 9B2
PHI=22.11.
AK=2..PHI/(AWAYE)
AUU=ABS(U*(1.-U»
A1=AUU*PATH/(2.*AK)
A-SQRT< A1 )
TE1=P*P*U*U+RHO.RHO*(1.-U).(1.-U)
TE3=2.*AUU*P*RHO.COS(T)
TES-ABS( TE1+1E3)
S=SQRT( 1E5)
CALL HS(A,B,CC)
CXX-.132*PHI*PHI.AK*AK*CH2*PATH*CC
GO TO 912

9B2 CXX=B.
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CO TO 912
912 CONTINUE

RETURN
END
SUBROUTINE HS<A.B.C)
DJ"ENSION C2(9).C3( 18)
INTECER Fl
DOUBLE PRECISION C2,G3,Hk,BB.G,C,H
DATA C2/9.64586E-3.-.S13572E-2..298832E-l.
1 -.S482513EB. .285255E2.-1.35296E3,1.37215E5,
1 -1.9892E7.3.9889E91

DATA C3/3.36111.-13.49112.-66.B8151,.385934E3
1 ,.262497E4.-.2B44846E5.-.1791784£6. .1747611£7
1 ,1.8776B47E7.-2.2-3577£81
Z-B*B/(e*A*A)
HHD.S59167.B**(1.66'66'7)
IF <Z.GT.12.S6) CO TO 2BB
H=31

C POWER SERIES EXPANSION OF HtA,B]
HI-H+!
HIC-S. I( 3'*4)
BB-Z.Z.HK
C2-t . +BB
H3-H/2+ 1
DZ=Z*Z
TZ-DZ*DZ
DO 18 .J-1 , N3

1=2*J-l
HKa-HK.(6.*I+1. ).(6.*1+7. )/«6.*(1+2. ).(1+3. ».*2)
IF(J.EQ.l) CO TO 12
HK=Hk*DZ
GO TO 1S

12 HK-Hk*TZ
IB C2=G2+HK

HI< =5 . I' .

BB-Hk*Z
C3-BB
DO 11 J-B.N3
I-2* J
HK--Hk*(6.*I+l. )*(6.*1+7. )/«6..<1+2).( 1+3»..2)
IF(J.EQ.S) CO TO 13
HK -H k *1) Z

GO TOil
13 HK-Hk*I)Z*Z
11 C3=G3+Hk

IBB C-(.258819B4*G2+.96592583.C3)
C-2.97541427S.A..1."""7*C
C--HH+C
RETURN

CASY"PTOTIC EXPANSION OF H[A.B]
2BB ZZ-I/Z

1>1-8.525982.B.*1.6"667
GI-C2(1)*ZZ..2+C2(2).ZZ..4+C2(3).ZZ..6
1+C2(4).ZZ..8+C2(5).ZZ..lB+C2(6).ZZ**12+C2(7)



2.ZZ*.t4+C2(8)*ZZ*.16
G2-1+C3(2)*ZZ.*2+C3<4)*ZZ.*4+C3<6).ZZ..6+C3(8)

1 .ZZ..8+C3(18).ZZ.*1B
G3-C3(1).ZZ+C3(3)*ZZ..3+C3<5)*ZZ..5+C3(7)

t.ZZ**7+C3(9)*ZZ**9
PO=2."66'6'7
H=I.863B853*G1+SIN(Z).ZZ**PO*C2*.14971B5
1-.1497*COS(Z)*ZZ.*PO.G3
C=-H.D1
RETURN
END
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APPENDIX D

This appendix consists of the program, TDCCOV, designed to

calculate the time delayed covariance of the intensity of speckle

patterns. This program was found to be occasionally defective, the

reason being that the number of coefficients required to expand the

function f2 of Chapter VII is varying by a large number.

Occasionally the function f2 is practically zero. The output of

this program is very extensive, i.e., runs into several pages and

this tells whether the program was executed correctly or not.

After several corrections, the final output values were used to

generate the theoretical values for comparison with experimental

data. All the output has been preserved for the future theoretical

guidance on this problem. After several steps in the program, the

final output consists of two terms, AINTI (incoherent term) and

AINT2 (the coherent term), defined in Chapter VII.
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C PROGRA" NA"E IS TDCCOV
C PROGRA" TO EVALUATE THE TIME DELAYED COVARIANCE
C OF THE INTENSITY OF ~ LASER SPECKLE PATTERN
C INPUT DATA IS SELF EXPLANATORY
C PROGRAM OUTPUT IS VERY EXTENSIYE. THIS IS BECAUSE
C IT IS FOUND OCCASSIO~ALLVTHE PROGRAM DID NOT WORK
C OUT WELL DUE TO THE IRREGULAR NATURE OF COFFECIEHTS
C OF EXPANSION IN THE FOURIER-BESSEL &ERIES. SO
C ALL THE IMPORTANT STEPS IN THE PROGRAM OUTPUT
C HAYE BEEN PRINTED TO CHECK IF THE PROGRAM HAD
C BEEN EXECUTED CORRECTLV.THE EXTENSIYE OUTPUT HAS
C BEEN PRESERYED FOR FURTHER STUDY. IF NEEDED.
C FINAL OUTPUT IS GIVEN AS AINT1 AND AINT2.
C "EAHING OF THESE TERMS CAN BE FOUND IN CHAPTER VII.
C POSSIBILITV OF EXTENDING THIS TECHNIQUE TO WIDELY
C SEPERATED FREQUENCIES WAS NOT IHESTIGATED.

DI"ENSION C"(6).CX1<,).P"(1S).AJ1(15)
DATA P" 12.4848,5.52e1,8.6537.11.7915.t4.938~.

C 18.B711.21.2116,24.3525.27.4'35,38.6346,33.7758.
C 36.9171.48.8584.43.1998.46.34121

DATA AJI 1.51915,-.34286. .27145.-.23246.-.28635.
C -.167738773. .17327.-.16178,-.15218..144166.-.1373,
C .1313245,-.12687..1239,-.117211
READ(S,7B) PATH
READ( 5,78) FOCUS

7B FOR"AT(EI8.4)
READ(S.71) ALPHB

71 FOR"AT(F6.4)
READ( S.71) AWAYE
AWAYE=AWAYE*(1.E-86)
READ(S,7B) CN2
REA[)CS,71) P
READ(S.72) YEL

72 FOR"ATCFS.2)
WRITE(4,68) PATH,FOCUS,ALPHB

6B FOR"AH 'PATH='. E14. '.3X,' FOCUS=' ,EI4. 6,3X,
1 'ALPH8='.F8.S)
WRITE(4,61) AWAYE.CN2

61 FORMAT( 'AWAYE=' ,EI8.6.3)(,'CN2=',E18.6)
C HN1.HN2,NN3 ARE GIYEN SUCH THAT TD IN THE NEXT
C FEW STEPS IS THE DESIRED POSITYE OR NEGATIYE
C TI"E DELAV

READ(S.I") NH1,NH2.NN3
199 FOR"AT(3I3)

DO lB8 ITD~NH1,NH2,HN3
AIT!>=ITD

TD=( A ITD-Sl. )/1 88BB.
WRITE(4,4') YEL.T!>

46 FORMAT('YELa',FIB.4.5X,'TD='.F1B.6)
PHI=22.17.
AK-2.*PHI/AWAYE
ERRIO.82
CCR~.545'25.AK.AK.CN2.PATH
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RO=CCR**< -.')
TXcALPHI/RO
AB=ALPHB

IlB I=B
X= 1 .

38 IF(TX.LT.l.) GO TO 25
TFX=. 5*)(*X/( TX-TX )+2. *( X-.( 1.6'6667»
CO TO 51

2~ TFX=.S*X*X+2.*«X*TX>**<1.6"'6]»
51 AFX=-TFX+'.

IF(ABS(AFX).LE.l.E-a2) GO TO 35
IF(AFX.GT.I.) GO TO 4S
1=1+1
X=X-.S**I
CO TO 31

45 IF(I.GT.B) GO TO 41
X=X+l.
GO TO J a

41 1=1+1
X=X+.5**I
CO TO JB

35 AX =X
IF(TX.LT.1.) GO TO 43
AAX=AX*RO
GO TO 4 B

43 AAX=AX*ALPHB
4a CONTINUE

A=AAX
WRITE(6,888) A

888 FORI1AH'A=',E14.')
DO sal I1C=I,'
P p,1("C)
CALL ,TRAP( 1. ,AX,ERR,RO,TX,PY, 1,CS)
C"("C)=CB*2.I<AJ1("C)*AJ1("C»
WRITE(6,899) CM("C)

899 FORI1AT(EI4.6)
581 CONTINUE

AINTI-B.
DO 51' "C=I,'
RHO=P"("C>*PATH/(AAX*AK)
IF(ABS(CI1("C».LE..BB1) GO TO 811
CX1(I1C)-FCX(RHO,P,CH2.PATH,AWAYE,YEL,TD>*.159B91
GO TO 812

811 CX1("C)-8.
812 CONTINUE

WRITE(4,81S) CI1("C),CX1("C)
815 FO RI1A T< 2X . ' C"< 11C) =' , E14. , ,4 X, , ex 1( 1'1C) =' . E14. , )

AINT1-AINT1+C"("C)*CX1(I1C)
58' CONTINUE

WRITE(4,818) TD,AINTI
818 FORI1AT<2X, 'TII1EDEALY=' ,EI4.6,2)(, 'AINT1=' ,E14.6)

ATH=B.
BTH=22.17.
DTH=(BTH-ATH)* . 5
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SU"1=2..SXX(P,PATH,CN2.ALPH8,FOCUS.AWAYE.YEL,TD,DTH)
1+SXX(P,PATH,CN2.ALPH8.FOCUS,AWAYE.YEL,TD.~TH)+
2SXX<P,PATH,CN2,ALPHS,FOCUS,AWAYE,YEL,TD,BTH)
SU"A=SU"I*DTH*.5
H= 1

26 Na2*N
TDTH=DTH
DTH=DTH..5
THsATH+DTH
DO 22 I-l.N
SU"lmSU"I+2..SXX(P,PATH.CH2,ALPHB,FOCUS,AWAYE,YEL.
1 TD,TH)
TH=TH+TDTH

22 CONTINUE
SU"2=SU"I*DTH*.5
IFCABS(SUPl2-SUI'tA).LE.ABS(.Bl*SUPlA» GO TO 667
SU"A:aSU"2
IFCN.GE.J6.AND.ABS<SUPl2).LE..881) GO TO 667
IF<H.CE.32) CO TO 6'7
CO TO 26

667 FI=SUPl2
AIHT2-FI*7./22.
WRITE<4,65) TD,AIHT2

65 FORI'tAT<2X,'TIPIEDEALV=',E14.6.4X,'AIHT2=' ,EI4.6)
TDC=AINT1+AINT2-1.
WRITE(4,") TD,TDC

99 FO RI'tAT<' *..' ,2 X, , T I PIED EL A '1'=' . E 14 .6, 4X , · T DC =' . E 14. 6 )

18B CONTIHUE
STOP
EHD
FUNCTIOH SXX<P,PATH,CH2.ALPHB.FS,AWAVE,VEL,TD,ATH)
DI"ENSION PPI(lS),AJ1<15),BM(IS).DCX(15)
DATA PI't12.4848,5.5281.8.6537,11.7915.14.93139.
1 18.8711.21.2116,24.3525,27.4935,38.6346,33.7758.
C 36.9171.48.8584.43.1998,46.3412/
DATA AJI 1.=st'15.-.342S6. .27145.-.23246.-.2B635,

1 -.167738773. .17327.-.1617.-.15218. .144166,-.1373,
1 .1313245,-.12687. .1239.- .11721/

PHI-22.17.
AK=2..PHI/AYAYE
ARHO-l.8'215.CN2*AK*AK*PATH

C THE NEXT STEP DECIDES THE RANGE TO GET BPiS
CHOP-.Bt
Al=1./(2.*AlPHB**2)
A2-1./(ARHO*.<1.2»
A=(Al+A2)**C-.5)/IB8B.
DELA=.8B2
IF(ABSCTI».GE. .BB35) DELA=.BBB2

22 X=Fl(PATH,CH2.AWAYE,ALPHB.FS,ATH,YEL,TD,A)
IF<ABS(X).lE.CHOP) GO TO 23
A=A+DELA
GO TO 22

23 YRITE(4,175) A
175 FORPlAT<SX,'Am',EI4.6)
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C A IS THE RANGE WHERE Fl IS CHOPPED
"=1
SU"FF-EXP(-2.95.CN2*AK*AK*PATH*«ABS(YEL*TD»**

1 1.666"7»
SU"XX-8.

29 IF(".GT.l.)GO TO 25
IF(".EQ.l) GO TO 6'9
"X-"-1
IF(ABS(SU"FF-SU"XX).LE..81) GO TO "8
IF«".GE.2).AND.(ABS(BI'I(I'IX».LE.1.E-BS» GO TO "8
GO TO '69

"8 81'1(1'I)-B.
"="+1
GO TO 29

'69 CONTI NUE
ARcB.
8R=I.
DR=(8R-AR).. 5
PXI'I=PI'I(")
PG"=AJ 1(1)
SU"1-2..FX(PATH.CN2,AWAYE,ALPHB.FS.PXI'I.PGI'I,ATH,

1 YEL.TO,A,OR)
SUI'IA=SUl'll*OR*.S
NR=1

2' NR=2*NR
TOR=OR
OR=OR*.5
R=AR+DR
DO 181 IR=I.NR
SUI'I1=SU"1+2.*FX(PATH,CH2,AWAYE.ALPHB.FS,PXI'I,PGM

C .ATH.YEl,TO.A,R)
R=R+TDR

IBl CONTINUE
SUI12-SUI11*DR*.5
IF(AIS(SUI'I2-SU"A).LE.ABS<.Bl*SUf1A» GO TO "7
SUI'IA=SUI'I2

GO TO 2'
"7 81'1(1'I)-SUI'I2*2.

IF(A8S( 8"<"». GE. 1. ) BI'IOI>=B.
SU"XX-SUI'IXX+BM<I'I>
"="+ 1
GO TO 29

25 CONTINUE
SU"C=B.
DO lB5 "C=I,14
RHO-P"("C)*PATH/(A*AK)
DC)«"C)-B.
IF( AIS< 11'1( "C». GT. 8.) DC)«"C )=FXB( RHO, P, CN2, PATH,

1 AWAYE.YEL.TD)
SUI'IC-SU"C+DC)«"C)*B"(I'IC)
IF(I"(I'IC>.EQ.B.) GO TO IB9

lB9 COHTINUE
ISS CONTINUE

SU"G-SU"ff-SU"XX
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WRITE(46833> SU"FF6SU"XX,SU"C
833 FOR"AT(IX6'SU"FF=6.EI4.6,2X,'SU"XX='.EI4.6,2X,

168U"GIII66EI4.6>
SXX=SU"C+SUI1G
WRITE(4,188) SXX

188 FOR"AT(2X6'SXX=',EI4.6)
RETURN
END
FUNCTION FXIB(RHO,ATH,YEL,TD)
AL=B.
BL=I.
DL=(BL-AL)*.5
FI1=GX(RHO,AL,ATH,YEL,TD)+GX(RHO,BL,ATH,YEL,TD)
AALcAL+DL
FI2=GX(RHO,AAL6ATH,YEL,TD)
FIJ-B.
FIP=DL*(FI1+4.*FI2)/3.
N=l

21 N=N*2
FIJ-FI2+FIJ
FI2=B.
TDL=DL
DL-OL*.5
XL=AL+DL
DO 22 I=I,N
FI2=FI2+CX(RHO,XL,ATH,YEL,TD>
XL-XL+TDL

22 CONTINUE
FI=DL*(FI1+4.*FI2+2.*FI3)/3.
IFCABS(FI-FIP)-C.B2*ABS(FI») 42,42,43

43 FIP=FI
GO TO 21

42 FXIB=FI
RETURN
END
FUNCTION GX(RHO,Pl,ATH,YEL,TO)
TE2=RHO*RHO*( 1 . -P 1 )*( 1 .-P 1)

TE5=2..YEL*RHO*TO*(I.-Pl>*COS(ATH)
TE6=YEL*TD*YEL*TD
TE7=ABS(TE2-TE5+TE6)
GX=TE7**( .8333333)
RETURN
END
FUNCTION AJB(X)
IF(X.GT.IBBB.) GO TO 888
IF(X. EQ .B. ) GO TO 8'8
IF(X.CT.3.> GO TO 71
Xl=X/3.
AJI-l.-2.24""7*Xl**2+1.26562B8*X1**4-.JI63866*Xl*.

C6+.1444479*Xl**8-.BBJ9444*Xl**11+.BBB21*X1.*12
CO TO 72

71 X2-3./X
FO-.79788456-.BBBIBB77*X2-.IB55274*X2*.2-.BBBB951*X2

C**3+.18137237tX2**4-.BBB7Z8B5*XZ*.5+.aaa14176*X2*.6
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THETA=X-.78539816-.B4166397*X2-.BBBB3954*X2**2+
C.BB262573*X2.*3-.BB854125*X2*.4-.BBB29333*X2**5+
1 .BBBI3S58*X2**6
AJB-FO*COS(THETA)/SQRT(X)
GO TO 72

888 AJ8=SQRT(.63661977/X)*COS(X-2.356194S)
GO TO 72

898 AJB=I.
72 CONTINUE

END
FUNCTION Ft<PATH,CN2,AWAYE,ALPHB,FFS,ATH,YEL,TD,Z2)
ZZc:Z2/ALPHB
X1-EXP(-ZZ.ZZ/2.)
AK-44./(7..AWAYE)
X3=2.91*CN2*AK**2*PATH
221=-22.
X21-FX11(Z21,ATH,YEl,TD)
X2=EXP(-X3.X21 )
X4-AK*(I.-PATH/FFS)*Z2*AlPHB/(2.*PATH)
XS-EXP(-X4.X4*2.)
F1-Xl*X2*)(S
RETURN
END
FUNCTION F~(PX,CH2,AW,AB,FS,PX",PCM,ATH,Y,TD,A,P.>
ZZ=R*A/AB
X1-EXP(-ZZ*22*.5)
AK-44.1( 7. -Alii >
X4-AK*(I.-PX/FS).R*A*AB/(2.*PX)
XS-EXP(-X4*X4*2.)
X3=2.91*CN2*AK*AK*PX
Z21=R.A
X21=FX1B(Z21,ATH,Y,TD)
X2-EXP( -X3*X21 )
FX-Xl.X2*XS*R*AJB(PX"*R)/(PG"*PG">
RE TU R N

END
FUNCTION CAUSSU(RHO,P,CN2,PATH,AWAYE,YEl,TO>
AU-S.
BU=1 .
DU=( BU-AU)*. 5
FJU1-CXX<RHO,P,CN2,PATH,AWAYE,AU,YEL,TO)+

lCXX(RHO,P,CN2,PATH,AWAYE,BU,YEl,TD)
ADU-AU+DU
FJU2-CXX(RHO,P,CN2,PATH,AWAYE,AOU,YEL,TO)
FIU3=B.
FIPU-DU*(FIU1+4.*FIU2)/3.
NU-l

31 NU=2.NU
FIU3-FIU2+FIU3
FIU2-B.
TDU-DU
DUIIDU*.5
U-AU+DU
DO 32 l.t~NU
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FIU2-FIU2+CXX(RHO,P,CN2,PATH,AWAYE,U,YEL,TD)
U=U+TDU

32 CONTINUE
FIU=DU*(FIU1+4.*FIU2+2.*FIU3)/3.
IF(ABS(FIU-FIPU)-(.B2*A8S(FIU») 43,43,33

33 FIPU-FIU
IF(NU.GE.16.AND.ABS(FIU).LE..BB1) CO TO 43
GO TO 31

43 GAU5SU=FIU
RETURN
END
FUHCTIOH CXX<RHO,P,CH2,PATH,AWAVE,U,VEL,TD)
IF(A8S(U).LE..BB1.0R.ABS(U).CE. .999) CO TO 9B2
PHI"'22.17.
AK=2.*PHI/(AWAYE)
Al=U*(I.-U)*PATH/(2.*AK)
A=SQRT( Al )
TE I=P*P*U*U+YEL*YEL*TD*TD+RHO*RHO*< 1. -U )*< 1. -U)
TE2=2.*U*P*YEL*TD
TE3=2.*U*(I.-U)*P*RHO
TE4=2.*YEL*TD*(I.-U)*RHO
TE'=TEI-TE2+TE3-TE4
B=SQRT< TE5)
CALL HS(A,B,CC)
CXX=.132*PHI*PHI*AK*AK*CH2*PATH*CC
GO TO 912

922 CXX=B.
GO TO 912

912 COHTIHUE
RETURH
END
FUNCTIOH FXS(RHO.P,CH2,PATH,AWAYE,YEL,TD)
AK-44./(7.*AWAYE)
Slap*RHO
S2=AK/PATH
Rl1-.54562S*CH2*PATH*AK*AK
S4=1.S912S*CH2*AK*AK*PATH*RHO**(1.666666?)
FXXX=X"IB(P.RHO.YEL,TD)
SS-1.45S*CH2*AK*AK*PATH*FXXX
PC=-RHO
TR1=CAUSSU(RHO,P,CH2,PATH,AWAYE,YEL,TD)
TR2=GAUSSU(PC,P.CN2,PATH,AWAYE.YEL,TD)
S6-EXP(2.*(TR1+TR2)-S4+S5)
S3=AJ B(S1*52)
FX S= S 3* S6

IF(ABS(FXS).CE.IB.) FXS-S.
WRITE(6,9S) FXS

9S FOR"AT(2X,'FXS=',EI4.6)
RETURN
END
FUHCTIOH X"lB(P,RHO,YEL,TD)
A=B.
a-1.
DXa( B-A)* . 5



Fll.~"(P,RHO,A,YEL,TD)+~"(P,RHO,8,YEL,TD)
FI2=~"(P,RHO,DX,YEL,TD)
FI3-B.
FIP.D~-(FI1+4.-FI2)/3.
H=1

61 N=2*N
FI3-FI2+FI3
FI2-B.
TDX=I)X
DX=DX-.S
X=A+J)X
DO 62 1=1,N
FI2=FI2+X~(P,RHO,X,YEL,TD)
X=X+TDX

62 CONTINUE
FI=DX-(FI1+4.-FI2+2.-FI3)/3.
IF(ABS(FI-FIP)-(.B2*ABS(FI») 64,64,63

63 FIP=FI
IF(ABS(FI).LE. .B81.AND.N.CE.32) GO TO 64
GO TO 61

64 XI'I18=FI
RETURN
END
FUNCTION X"(P,RHO,X,YEL,TD)
TE1.P-P.X-X+YEL-YEL*TD*TD+( 1.-X)*(1.-X)*RHO*RHO
TE2=2.-X.P-YEL*TD
TE3-2.-X*P-RHO.(I.-X)
TE4=2.-YEL-TD*RHO*(1.-X)
TES=A8S(TE1-TE2+TE3-TE4)
TE9-TE5-.( .8333333)
TEI8-ABS(TE1-TE2-TE3+TE4)
TE11-TE18*-( .833333)
TES-2.-«A8S(P*X-YEL-TD»**(1.666667»
X"'"'TE9+TE l1-TE8
RETURN
END
FUNCTION FCX(RHO,P,CH2,PATH,AWAYE,YEL,TJ»

C INTEGRATION OYER THETA
A=B.
8=44.17.
DX=(B-A)/2.
FI1=RXX(RHO,P,CN2,PATH,AWAYE,A,YEL,TD)+RXX(RHO,

lP,CN2,PATH,AWAYE,B,YEL,TD)
AAX"A+J)X
FI2=RXX(RHO,P,CN2,PATH,AWAYE,AAX,YEL,TD)
FI3-8.
FIP=I)X*(FI1+4.-FI2)/3.
N=1

21 N-N*2
FI3=FI2+FI3
FJ2=B.
TDX=DX
OX=.S*OX
~.A"'D)(
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DO 22 I-1,H
FI2=FI2+RXX(RHO,P,CH2,PATH,AWAVE,X,YEL,TD)
X=X+TDX

22 CONTINUE
FI=DX*(FI1+4..FI2+2.*FI3)/3.
IF(ABS(FI-FIP)-(.B2*ABS(FI») 42,42,43

43 FIPcFI
CO TO 21

42 FCX=FI
WRITE(6,99) H,FI

99 FOR"AT<I6,2X,'FI=',E14.6)
RETURN
END
FUNCTIOH UCAUSS(RHO,P,CN2,PATH,AWAYE,T,YEL,TD)
AU=B.
BU=1.
DU=( BU-AU )..5
FIU1=ZXX<RHO,P,CN2,PATH,AWAVE,T,AU,YEL,TD)+

1 ZXX(RH06P,CN2,PATH,AWAYE,T,BU,VEL,TD)
ADU-AU+DU
FIU2=ZX)«RHO,P,CH2,PATH,AWAYE,T,AOU,YEL,TD)
FIU3=B.
FIPU=DU*<FIU1+4.*FIU2)/3.
NU=l

31 NU=NU*2
FIU3=FIU2+FIU3
FIU2=B.
TDU=DU
DU=DU*.5
U=AU+DU
DO 32 I=1,HU
FIU2=FIU2+ZXX(RHO,P,CH2,PATH,AWAYE,T,U,YEL,TD)
U=U+TDU

32 CONTIHUE
FIU=DU*<FIU1+4.*FIU2+2.*FIU3)/3.
IF(ABS(FIU-FIPU)-( .B2*ABS(FIU») 43,43,33

33 FIPU=FIU
IF(NU.CE.16.AND.ABS(FIU).LE..BB1) CO TO 43
CO TO 31

43 UCAUSS=FIU
RETURN
END
FUNCTION ZXX<RHO,P,CN2,PATH,AWAYE,T,U,VEL,TD)
IF<ABS(U).LE..BB1.0R.ABS<U).GE..999) GO TO 9B2
PHI=22.17.
AK=2.*PHI/AWAYE
A1=U*(1.-U)*PATH/(2.*AK)
A-SQRT< ABS( A 1»
TE1=P*P*U*U+YEL*YEL*TD*TD+RHO*RHO*( 1.-U).(1.-U)
TE2=2.*U*P*YEL*TD
TEJ=2.*U*(1.-U)*P*RHO.COS(T)
TE4=2.*YEl*TD*Cl.-U)*RHO*COS(T)
TE5=1£I-T£2+TE3-T£4
BaSQRH ABS( TE5»
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CALL HS(A.B.CC>
ZXX=.132*PHI*PHI*CN2*AK*AK.PATH*CC
CO TO 912

9E12 ZXX=B.
912 CONTINUE

RETURN
EHD
FUNCTION RXX(RHO.P.CH2.PATH.AWAVE.T.YEL.TD>
RXX=EXP(4.*UGAUSS(RHO.P.CH2.PATH.AWAVE.T.VEL.TD»
RETURH
EHD
FUNCTION BIX(X)
IF(X.GT.3.> GO TO 1
Y'I'=X/3.
Y=YY*YV
BI X=X*( .59+'(.( -.56249985+'1'*( . 21893573+;'*( - -B3954289+

C+'(*( .BB443319+Y*(-.9E1B31761+Y*( .BBB811B9»»»)
GO TO 2

1 Y=3./X
FF1=.79189456+Y*< .BBB8B156+Y.( .B1659667+'1'*(.BBB171B5

C+Y*( - .BB24951+Y*( .BB113653+'1'*(-. BBB2BB33»»»
THETA=X-2. 35619449+'(.( .12499612+'1'*< . BBBB565B+Y*<

C-. BB631979+'(*( . BBB74348+Y*( .BBB79824+'1'*(
1 -.BB8291666»»»

BIX=FF1*COS(THETA)/SQRT(X)
2 RETURN

END
SUBROUTINE TRAP(A.AX.ERR,RO.TX,FL.L,FI)
DX=.5
FI1=GRAH(A.AX.RO.TX,L.FL)/2.
FI2=G~AN(DX.AX.RO,TX,L.FL)
FIP=DX*(FI 1+FI2)
101= 1
J:zB

1 N= 2* 101
TDX=DX
DX=.5*DX
X=DX
DO 2 1=1.101
FI2=FI2+CRAH(X.AX.RO.TX.L,FL)

2 X=X+TDX
FI=DX*(FI1+FI2)
FI3=ABS(FI-FIP)
FI4=ERR*ABS(FI>
IF(FI3.LE.FI4) GO TO 4
IF(J.GE.9) GO TO 5
FIP=FI
JeJ+l
GO TO 1

5 WRITE(6.1>
1 FORMAT<2X. 'LItUT< TRAP) REACHED' >
4 RETURN

END
FUNCTION GRAN(X,AX,RO,TX,L.FL)
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AO=RO*TX
TlaFL.X
IF(L.EO.1) T2=AJB(Tl)
IF(L.EO.2) T2=BIX(Tl)
IF(TX.LT.1.) GO TO 1
T3=.5*«AX*X).*2)/(TX*TX)
T4=2.*«AX*X)**(5./3. »
T5=EXP( -T3-T4)
GO TO 6

1 T6=.5*«AX*X>**2)+2.*«AX*TX*X>.*(S./3.»
TS=EXP( -T6)

6 GRAH=X.T2*TS
IF(L.EO.l) GO TO 7
IF(TX.LT.1.) GO TO 8
GRAH=GRAH*( (AX*X*RO )..( 2. /3. »
GO TO '7

B GRAH=GRAI-I*( (AX*X*AO >**( 2. /3. »
., RETURN

END
SUBROUTINE HS(A.B.C>
DI"ENSION C2(9).C3( IB)
INTEGER Fl
DOUBLE PRECISION G2,G3,HK,BB.G,C.H
DATA C2/9.64SB6E-3,-.SI3572E-2,.2~eB32E-l,

1 -.54B2S13EB, .2B5255E2.-1.35296E3, 1.37215E5,
1 -1.9892E7,3.9B89E~/
DATA C3/3.36111,-13.4~112,-66.B8151, .38S934E3

1 ..262497E4,-. 2B44B46E5,-.1791784E6, .1747611E7
1 .1.8776B47E7,-2.2-3577E8/
Z=B.B/(B*A*A)
HH=.S59167*B..( 1.6666667)
IF (Z.GT.12.56) GO TO 2BB
N=31

C PO~ER SERIES EXPANSION OF HCA,B]
Hl"H+l
HK=S./(36*4)
BB=Z.Z*HK
C2=1.+8B
H3=N/2+1
DZ=Z.Z
TZ=DZ*DZ
DO 1 B J = 1 , H3

I=2*J-l
HK=-HK*(6.*I+1. ).(6.*1+7. )/«6..(1+2. ).<1+3. »..2)
IF(J.EQ.l) GO TO 12
HK=HK*DZ
CO TO 1 B

12 HK=HK*TZ
18 C2=G2+HK

HK=5./6.
BB=HK.Z
G3=BB
DO 11 J =B, N3
I=2*J
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HK=-HK*(£.*I+l. )*(£.*1+7. )/«6.*(1+2)*( 1+3»**2)
IF(J.EQ.EI) co TO 13
HK=HK*DZ
GO TO 11

13 HK=HK*DZ*Z
11 C3=C3+HK

lE1B G=(.25SS1~B4*G2+.~65~2SB3*G3)
C=2.~7541427S*A**1.6666667*C
C=-HH+C
RETURN

CASYMPTOTIC EXPANSION OF H[A,S]
2E1B 2Z=I/2

Dl=B.52S~S2*8*.1.666667
Gl=C2(1)*ZZ*.2+C2(2)*ZZ**4+C2(3>*ZZ**6

I+C2(4)*ZZ.*S+C2(S)*ZZ**IB+C2(6)*Z2**12+C2(7)
2*ZZ**14+C2(S)*ZZ**16
G2=I+C3(2)*ZZ*.2+C3(4)*ZZ**4+C3(6)*Z2.*6+C3(S)

1 *ZZ**S+C3(1B)*ZZ**IB
C3=C3(1)*ZZ+C3(J)*ZZ**3+C3(S)*ZZ**S+C3(7)

I*ZZ**7+C3(9)*ZZ**~
PO=2.666E.6667
H=I.S63B853*Cl+SIH(Z)*ZZ**PO*G2*.14971B5
1-.14~7*COS(2)*2Z**PO*C3
C=-H*Dl
RETURN
END
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APPENDIX E

This appendix consists of 2 programs. The first one is called

CXX2FF. This is to generate the two frequency log-amplitude

covariance function. The input is in ordert the path lengtht the

first wave lengtht the second wave length and the turbulence

level. The program actually evaluates the log-amplitude covariance

at the integral multiples of the half Fresnel zone sizes,

corresponding to the first wave length. This covariance scale size

is called RHO in the program. By specifying RHO, if necessary,

log-amplitude covariance at any arbitrary value of RHOt can be

estimated.

The second program is called SXX2FF. This evaluates the phase

covariance as above except the Fresnel zone size is estimated at

the center wave length. The first program uses the Kolmogorov

spectrum and the latter, modified Tatarskii spectrum with an outer

scale of I meter and an inner scale of 1 millimeter.
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C NAME OF THE PROGRAM IS CXX2FF
C PROGRA" EYALUATES THE TWO FREQUENCY
C LOG-A"PLITUDE COVARIANCE C(R,K1,K2)

READ(5,41) PATH
41 FORMAT<F6.1)

READ(S,42> AWAVEl
42 FORMAT(F6.4)

AWAVEl =AWAYEl *( 1 . E-86)
READ(S,42) AWAYE2
AWAVE2=AWAVE2*( 1 . E-B6)
PHI=22.17.
AK1=2.*PHI/AWAVEl
AK2=2.*PHI/AWAYE2
READ(S,43) CN2

43 FORMAT(EIB.4)
FSS=SQRT(AWAYE1*PATH)
DO IBB J=L4
AJ=J*.5
RHO=AJ*FSS
ANS=FYY(AK2,RHO,CN2,AK1,PATH)
WRITE(4,56) PATH,CN2,AK1,AK2,RHO,ANS

56 FORMAT(6<EIB.4,2X»
lBB CONTINUE

ANS1=FYY(AK2,RHO,CN2,AK1,PATH)
STOP
EHD
FUNCTION AJB(X)
IF(X.GT.3.) GO TO 71
XI-X/3.
AJB=1.-2.24~~~97*Xl**2+1 .26562B8*Xl**4-.316386~*

lXl.*~+.B444479*Xl**8-.BB39444*Xl**lB+.BBB21*Xl**12
GO TO 72 .

71 >:2=3./>:
FO=.79788456-.BBBBBB77*X2-.BB55274*X2**2-.BBBB951*X

1**3+.BB137237*X2.*4-.BBB729BS*X2*.5+.BBB14476*X2.*6
THETA=X-.7S53~S16-.B4166397*X2- BBeB3954*X2~*2+
1.BB2b2573*X2.*3-.BBB54125*-X2.*4-.~002~331*X2**5+
1. BeB13SS8*>r:2+*6
AJa~FD.(OS~THETA)!SQ;T(X)
CO TO 72

72 COHTINUE
RETURH
EIiD
SUBROUTINE GAUSSU(AK2,RHO,CH2,AK1,PT,Al,A2,Y,AN)
Cl=( Al+A2)*.5
C2=( A2-A 1 ).. S
Ul=-.2386~15*C2+Cl
U2=.238691S$C2+Cl
UJ=-.6612~94*C2+Cl
U4=.6612e~4*C2+Cl
US=-.93246~5*C2+Cl
U6=.'3246~5*C2+Cl
1.11=.4679139



207

"2="'1
"3=.36B7616
W4=W3
1t'5=.1713245
"'="'5
UA1=~I*FM(AK2,RHO,CN2,AK1,PT,Ul,Y)
UA2=W2*FM(AK2,RHO,CN2,AK1,PT,U2,Y)

.UA3=Y3*FM(AK2,RHO,CN2,AK1,PT,U3,Y)
UA4=W4*FM(AK2,RHO,CN2,AK1,PT,U4,Y)
UA5=WS*FM(AK2,RHO,CN2,AK1,PT,U5,Y)
UA6=W6*FM(AK2,RHO,CN2,AK1,PT,U6,Y)
AN=C2.(UA1+UA2+UA3+UA4+UA5+UA6)
RETURN
END
SU8ROUTINE YGAUSS(AK2,RHO,CN2,AK1,PT,AY1,AY2,AN)
I>1=( AY It-AY2 >..5

1>2=(AY2-AY1)..5
Yl=-.2386915*D2+Dl
Y2=.2386~15*D2+Dl
Y3=-.6612B94~D2+Dl
Y4=.6612B~4.D2+Dl
Y5=-.~324695*D2+Dl
Y6=.93246~5*D2+Dl
11I1=.4679139
1I12=Wl
"3=.3687616
W4=1d3
1d5=.1713245
1116=1.15

YA1=Wl*UGAUSS(AK2,PT,RHO,CH2,AKl,Yl)
YA2=W2*UGAUSS(AK2.PT.RHO.CH2,~Kl,Y2)
YA?=W3*~G~US~(Ar2.PT.RHO.CN2.AK1,Y3)
~'A4=\n*UG(~US~;< A!~:2. PT. F:HO. CN2, AK 1, '1'4)
YA5=W5.UGAUSS(AK2.~r.RHO,CH2,A~1,Y5)
YA6=W6*UGAUSS(AK2,PT,RHO,CH2,AK1,Y6)
AN=D2*(YA1+YA2+YA3+YA4+YA5+YA6)
RETURH
EN[\
FUNCTION FM(AK2,RHO,CH2,AK1,PATH,U,Y)
IF(Y.LE.B.> GO TO 251
IF(ABS(U).LE. .8Bl.0R.ABS(U).GE. .99) GO TO 251
AXXX=U*< 1 .-U)
IF(AXXX.GE.8.) GO TO <3<31

WRITE(6,232) AXXX
232 FORMAT(FI4.8)

991 COHTIHUE
FPU1=(U*< I.-U»**«5. )l6.)
PHI=22.17.
FI'112X=SQRT< (4. .PHI *Y*U )/( 1 .-U»

WAVEL=44./(7.*AK1)
FMI2Y=SQRT(WAVEL*PATH)
FM12=FM12X*RHO/FM12Y
BB=AKI/AK2
Ft'l13=SIN( 'I').$ IH( B8*V )/( eB*( Y**( 11 ./b. )))
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CONS=. 36558246*CN2*< AK1**< 7./6. )>*<PATH**< 11./6. »
F"=CONS*F"11*AJB<F"12)*F"13
GO TO 252

251 F"=B.
252 CONTINUE

RETURN
END
FUNCTION UGAUSS(AK2,PATH.RHO,CN2.AK1.Y)
AU=B.
au= 1 .
NU=2
TNSlI=B.

5al RNSU=B.
DO 5B2 IU=~.HU
ANU=NU
A1=AU+(IU-l. >*(8U-AU)/ANU
A2=AU+(IU)*(BU-AU)/ANU
CALL GAUSSU(AK2,RHO.CH2,AK1,PATH,A1,A2,Y,ANSU2)
AHSU=AHSU+AHSU2

532 (:OHTII~UE
IF(ABS(AHSU-THSU).LE.ABS< .B2*ANSU» GO TO 583
THSU=AHSU
NU=HU*2
CO TO 581

5B3 UCAUSS=ANSU
RETURN
EHD
FUNCTION FYV(AK2,RHO.CN2.AK1,PATH)
SIGMAT=.124*AK1**<7./6. >*(PATH**(11./6. »*CN2
TNSX=B.
AHSX=B.
AY=B.
IF(SIG"'ATLE.l.) GO TO 721
B '1'=1 .1 ( 2 . *5 I G MAT)

GO TO 722
721 BY=l.
722 DEL TA=B'!'
723 NY=2

TNSY=B.
5133 ANSY=B.

DO 5B' IY=l,HY
ANY=HY
AY1=AY+( 1'1'-1.>*( BY-A'!'>/ANV

AY2=AY+IY*(BY-AY)/AHY
CALL VGAUSS(AK2,RHO,CN2,AK1.PATH,AY1,AY2,ANSV2)
ANSY=AH5Y+AHSY2

589 CONTINUE
IF(ABS(ANSY-THSV).LE.ABS(.B2*AHSV» GO TO 51B
THSY-AHSV
NY=NY*2
WRI TE< 6, 461) AHSY

461 FORMAT<5X,E14.6)
IF<NY.GE.4.AND.ABS(ANSY).LE. .BB1> GO TO 51B
CO TO 568
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SlB ANSX=ANSX+ANSY
IFCABS(AHSX-TNSX).LE.ABS( .B2*AHSX» GO TO 132
AY=AV+[)ELTA
BY=BY+DELTA
TNSX=ANSX
IFCABSCANSX).LE. .BB1) GO TO 732
GO TO 723

732 FVY=ANSX
RETURN
EHI)
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C PROGRAM NA"E IS SXX2FF
DI"EHSIOH AW(])

C PROGRAM EYALUATES THE TWO FREQUEHCY
C PHASE COVARIAHCE FUHCTIOH S(R,Kl,K2)
C USIHG "ODIFIED TATARSKI SPECTRUM FOR THE
C REFRACTlYE IHDEX FLUCTUAT IOHS.INHER SCALE IS
C 1 "ILLI"ETER AND OUTER SCALE IS A "ETER.

DAHl AW /2.128,1. 596,1.B64, .632,.488,.26',.1331
PHI=22./7.
PATH=5BB.
AWAYE1=.532E-Bb
CN2=5.BBBSE-14
WRITE(4,31) PATH,CN2

31 FORI'IAT<JX,'PATH=',Fb.1.4X,'CN2=' ,E18.4)
DO 18B 1=1.8
WRITE(4,55 )

55 FORMAT(2X,'*****************************')
AWAVE2=AW( 1>*1 .E-B6
AK1=2.*PHI/AWAVEl
AK2=2.*PHI/AWAYE2
FSl=SQRT(AWAYEl*PATH)
FS2=SQRT(AWAYE2*PATH)
WRITE(4,32)AWAVEl,AWAVE2

32 FORI'IAT<2X,'AWAVEl=',E18.4,3X,'AWAr,.'E2=',ElB.4)
WRITE(4,33) FS1,FS2

33 FOR MAT< 3X , ' F S 1 = ' , F 1 a . 4 ,4 X , , F S 2 =' , F 1 8 . 4 )

WRITE(4,-4S)
45 FORMAT(2X,'STUDY OF PHASE COYARIAHCE FOR TWO

1 FREQUENCY CASE')
RHO=.B81

44 IF(RHO.GT.(5."'FS1» CO TO laB
ANS=FYY(AK2,RHO,CH2,AKl,PATH)
AHS2=FYY(AKl,RHO,CH2,AKl,PATH)
ANS3=FYY(AK2,RHO,CH2,AK2,PATH)
Rl=AHS/AHS2
R2=AHS/AHSJ
R3=RHO/FSl
R4=RHO/FS2
WRITE(4,34) RHO,AHS2,ANS,R3,Rl

34 FOR"AT( 2X, ,RHO=', f7. 3, X, 'AHS2=', El 8.4, X, ,AHS=',
1 EIB.4,X,'R3=',F7.3,X,'Rl=',F7.3)
WRITE(4,3S) RHO,AHS3,ANS,R4,R2

3S FOR"AT<3X, 'RHO=',F7.3.3X, 'ANS3=',EIB.4,3X, 'AHS=',
1 EIB.4,3X,'R4=',F7.J,JX, 'R2=' ,F7.3)
WRITE(4,36)

36 FORMAT< '&&&'&'&&&')
RHO=RHO+.S*FSl
GO TO 44

IBB CONTIHUE
STOP
EHD
FUNCTION AJB( X)
1F ( X . GT .3. ) GO TO 71



211

Xl=X/3.
AJB=l .-2.24"'97*Xl**2+1. 26562B8*Xl**4-. 3163S'6*Xl**

16+.B444479*Xl**8-.B839444*Xl**lB+.8B821*Xl**12
GO TO 72

71 X2=3. IX
FO=.79788456-.BBBBBB77*X2-.BB55274*X2*.2-.8B8B951*X2

1**3+.B8137237*X2**4-.88872885*X2**5+.88814476.X2**'
THETA=X-.78539816-.B4166397*X2-.B88B39S4*X2**2+

1.88~62573*X2**3-.88B54125*X2.*4-.8B829333*X2**5+
1 .88BI3558*X2**6
AJB=FO*COS(THETA)/SQRT(X)
CO TO 72

72 CONTINUE
RETURN
END
SUBROUTINE VCAUSS(AK2,RHO,CN2,AK1,PATH,AY1,AV2,AHS)
DV=( AY2-AV 1)*.5
FYl=UX(AK2,RHO,CN2,AK1,PATH,AY1)+UX(AK2,RHO,CH2,

1 AK1,PATH,AV2>
ADV=AYI +DV
FY2=UX(AK2,RHO,CN2,AK1,PATH,ADY)
FY3=B.
FVP=DY*(FV1+4.*FV2)/3.
NY=1

31 NY=NV*2
F'r'3=FY2+FY3
FY2=B.
TDY=DY
DY=DY*.5
Y=AV1+DY
DO 32 I=I,NY
FY2=FY2+UX(AK2,RHO,CN2,AK1,PATH,y)
Y=V+TDY

32 CONTINUE
FV=DY*(FY1+4.*FY2+2.*FY3)/3.
IF(ABS(FY-FYP)-ABS( .B2*FY» 43,43,33

33 FYP=FY
IF(NY.CE.16.AND.ABS(FY).LE..881) CO TO 43

43 ANS=FY
RETURN
END
FUNCTION UX(AK2,RHO,CN2,AK1,PATH,Y)
AU=B.
BU=I.
DU=(BU-AU)*.5
FU1=Fft(AK2,RHO,CN2,AK1,PATH,Y,AU)+F"(AK2,RHO,CN2,

1 AK1,PATH,Y.BU)
FU2=Fft(AK2,RHO,CN2,AKl,PATH,Y,DU)
ADU=AU+DU
FU2=Fft(AK2,RHO,CN2,AKl,PATH,V.ADU)
FU3=B.
FUP=DU*(FUl+4.*FU2>/3.
NU=1

51 NU=NU*2
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FU3=FU2+FU3
FU2=B.
TOU=DU
DU=DU*.5
U=AU+DU
DO 52 J=l,HU
FU2=FU2+Ff1(AK2.RHO.CN2,AK1,PATH.Y,U)
U"U+TDU

52 CONTINUE
FU=OU*(FU1+4.*FU2+2.*FU3)/3.
IF(ABS(FU-FUP).LE.ABS(.B2*FU» GO TO 63
FUP=FU
IF(NU.GE.16.AND.ABS(FU>'LE..BB1) GO TO 63
CO TO 51

63 UX=FU
RETURN
END
FUNCTION Ff1(AK2.RHO,CN2.AK1,PATH,Y,U)
IF(ABS(U).LE..BB1.0R.ABS(U).GE..'~) GO TO 251
AX=ABS( U*( 1. -U»
IF(AX.GE.B.)GO TO "1
WRITE(6,232) AXXX

232 FORMAT(F14.8)
991 CONTINUE

AL B= 1 .

ALf1=5.92/( .BB1)
PHI=22./7.
Fl'll1=AX
FI'I12=(2.*AK1*V)/(AX*PATH)+(1./ALB)**2
FI'I13=Ff112**(-II./6. )
FI'I15=SQRT«2.*AK1*U*Y)/« 1.-U)*PATH»*RHO
FI'I16=AJB(FI'I15>*COS(Y>*COS(Y*AKI/AK2>
CONS=.132*PHI*PHI*CN2*AK1*AK1*AK2
FI'I18=EXP(-2.*AK1*Y/(AX*PATH*ALI'I*ALI'I»
FI'I=CONS*FI'I13*FM16*FI'I18/FMI1
GO TO 252

251 FI'I=B.
252 CONTINUE

RETURN
END
FUNCTION FYV(AK2,RHO,CN2,AK1,PATH)
TNSX-B.
ANSX=B.
PHI=22./7.
AV=B.

721 BY=2 .
722 OELTA=BV

AV1=AY
AY2"'BV

723 CONTINUE
CALL VGAUSS(AK2.RHO,CN2.AK1,PATH,AY1,AY2,ANSV2)
WRITE(6,145) ANSV2

145 FORI'IAT(5X,EIB.4)
51B AHSXcANSX+ANSY2
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IF(ABS(ANSX-TNSX).LE.ABS( .B2*ANSX» GO TO 732
AV1=AY1+DELTA
AV2=AV2+DElTA
TNSX=ANSX
IF(ABS(ANSX).LE..BB1) GO TO 732
GO TO 723

732 FVY=ANSX
WRITE(6.144) FYY

144 FORI'IAT<lSX.EIB.4)
RETURN
END
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APPENDIX F

This appendix consists of seven short programs. The first one

1S called JJJ. This evaluates the mean square error in replacing

the Rice-Nakagami distribution by an equivalent M distribution as

discussed in Chapter VIII. The input is M and the mean is assumed

to be unity. The program can be modified to get the mean square

error for an exponentially weighted distribution as suggested in

that program.

The second program is called APPRX. For a given value of M,

assuming mean value to be unity, this program estimates the

parameters of an equivalent Rice-Nakagami distribution and prints

the absolute values of both distributions and their difference for

several values of intensity.

The third program, APX, uses the same set of input as earlier,

and it estimates moments of intensity of both the distributions and

their ratio until the 7th moment of intensity is reached.

The fourth program, KMOMENT, is designed to check whether the

intensity of a monochromatic speckle pattern is following a

K-distribution. The first few lines of the program explain it.

The fifth program, MOMOMENT, is used to check whether the

intensity of a polychromatic speckle pattern is following an

M-distribution.
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The sixth program, PMOMENT, is designed to compare the

validity of theoretical and experimental moments of a polychromatic

speckle pattern in turbulence. This program is self-explanatory.

The seventh program is called KDENII. This is a double

precision program, designed to calculate the cumulative probability

density function of the speckle intensity in the turbulent

atmosphere.

All the programs in this appendix refer to Chapter VIII. All

of them are self-explanatory and no detailed explanations are

necessary.
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C PROCRAM NA"f IS JJJ
C TRAPEZOIDAL ltHEGRAl ION TO GET RICE-HAKAGAMI
C AND M-DISTRIBUTIOH
C IN lHIS PROCRAM MEAN VALUE OF M DISTRIBUTION
C IS UNITY. CIYEN M, IT EVALUATES THEEQUIVALENT
C ALPHA AND BETA OF RICE-HAKAGAMI DISTRIBUTION.
C THEN IT TAKES THE DIFFERENCE BETWEEN THE TWO
C DISTRIBUTIONS FOR EACH VALUE OF INTENSITY
C AND SQUARES THE ERROR.THIS ERROR IS INTEGRATED
C FOR ALL VALUES OF INTENSITY FROM ZERO TO
C INFINITY SO THAT THE FINAL RESULT IS THE MEAN
C SQUARE ERROR .IN THIS PROGRAM THE DISTRIBUTIONS

C ARE NOT WEIGHTED. THEY CAN BE WEIGHTED BY ANY
C SUITABLE WEIGHTING FUNCTION FOR EXAMPLE,
C AN EXPONENTIAL DISTTRIBUTION FUNCTION. MO~IFICATION
C OF THE PROGRAM IS RATHER EASY TO INCLUDE
C THE WEIGHTING FUNCTIONS.

READ( 5, 44) 1'1
44 FORMAT(I2)

AM=M
READ(5,44) II

C II IS THE VALUE OF THE INTENSITY SUCH THAT THE
C DIFFERENCE BETWEEH THE PDFS IS NEGLIGIE;LE. THIS
C CAN BE PRE-ESTIMATED.

8=1. -SQRT( 1.-1 ./AM)
A=1.-B
DO 121 JJ=L lE1B
Jl=Jt-l
AJ l=J 1

AI=A.Jl/1E1.
AR=B.
8R = I I

DR=( BR-A~:)"'. 5

SUM1 = F X( AI , A, B , AR ) + 2 . '"FX( AI , A, B, DF:) +F >;( AI , FL E:, BIn
SUMA=SUM1*DR"'.5
HR=l

2~ NR=2'HIR
TDR=DR
DR=DR*.5
R=AR+DR
DO IBI IF!=LHR
SUM1=SUM1+2.*FX(AI,A,B,R)
R=R+TDR

101 CONTINUE
SLlM2=SUMl*DR*.5
IF(ABS(SUM2-SUMA).LE.ABS( .Bl*SLlM2» GO 10 666
SUMA=~lIM2
GO TO 26

6(.6 IFOIR.GT.18E1B) GO TO 667
SUMA=SUt12
GO TO 26

bE:.7 ANS=SUM2
WRITE(4,45) ALAHS
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45 FORMAT(2E14.6)
121 CONTINUE

STOP
END
FUNCTION DIFFl(M,AI)

C PROGRAM TO CHECK THE VALIDITY OF REPLACING RICE
C HAKAGAMI BY M DISTRIBUTION

AM=M
8 E T A'= 1 . - S g R 1< 1 . - 1 . / AM)

ALPHA=l.-BETA
Pl=(ALPHA+AI)/BETA
P2=EXP(-Pl)/BETA
P3=2.*SQRT(AI*ALPHA)/BETA
P4=AUHP3)
WEIT=EXP( -AI)
RH}~=P2*P4
RH:':W=RNX*WE IT
Cl=A!'I*"'AM
G2=CAMMA(M)
C3=AI**(AI'I-1. )
C4=EXP(-AI1*AI)
AHM=(Gl.C3*G4)/G2
AHMW=ANM*lIJE IT

DIFFl=ANM-RNX
RETURN
EHD
FUNCTIO~ GAMMA(M)
H=M-l
SUM = 1.

DO 181 l=l,N
A=I
SUM=SUM*A

101 CONTINUE
CAM~1A= SLIM

RETURN
EHD
FUNCTION AIB(~)

T=X/3.75
IF(X.GT.3.75) GO TO 66
IF(X.EQ.B.) GO TO 67
A I 9 = 1 . + 3 . 5 1562 2 ~ * T * T + 3 . B 8 '3~ 4~' 4 >Ie ( T. '" 4 j + 1 . 2 B Eo? 4 9;2 *'< 1 ..:+

16)+.2659732*(T**8)+.B36B7a*(T**lB)+.BB45813~(T**12>
GO TO 68

66 A=l./T
B=.39894228+.BI328592*A+.BB225319*(A**2)-.BB1575i5*

1<A**3)+.BB~1628*(A**4)-.92B577B6*(A**5)+.B2~35537
2*(A**6)-.BI64?633*(A*.7)+.BB392377*<A**8)
C=EXP(X)
D=SQRT<X)
AIB=(8*C)/D
GO TO 68

67 AIEI=1.
68 CONTINUE

RETLIRH
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END
FUNCTION FX(AI,A,B,X)
IFOLEQ.B.) GO TO 55
CONS=EXP(-A/B)/B
CC=AI/X...X/B
IF«(:C.GT.15.) COT05S
C3=EXP(-CC)
C4=2..SQRT(X*A)/B
C5=A I B( C4 )-1 .

FX=C3*C5*CONS/X
GO TO 56

55 FX=B.
56 CONTINUE

RETURN
END
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C PROGRAM NA"E IS RPPRX
C PROGRAM TO CHECK THE YALIDITV OF REPLACIHG
C RICE-HAKAGRMI DISTRIBUTION BY H-DISTRIBUTION
C ASSUMES THE "EAH VALUE OF THE "-DISTRIBUTION
C IS UHITV. GIYEN THE YALUE OF 1'1,IT EVALURTES
C THE EQUIVALENT ALPHA AHD BETA OF RICE-NAKAGAMI
C DISTRIBUTIOH BY MATCHING THE FIRST TWO MOMENTS
C OF INTEHSITV.THE PROGRAM EYALUATES BOTH THE
C DISTRIBUTIONS, THEIR WEIGHTED VALUES AHD THE
C DIFFERENCE FOR SEYERAL VALUES OF INTENSITY.

READ(5.21> 1'1
21 FORMAT(I2>

AI'I=M
BETA=1 .-SQRT< 1 .-1 ./AM)
ALPHA=I.-BETA
AI=.Bl

33 CONTINUE
IF(AI.GT.4.> GO TO 44
P1=(ALPHA+AI)/BETA
P2=EXP(-Pl>/BETA
P3=2.*SQRT(AI*ALPHA)/BETA
P4=AIB(P3)
WEIT=EXP(-AI>
RHX=P2*P4
RHXW=RHX...WEIT
Gl=AI'I**AM
G2=CAI'II'IA<I'I>

C3=AI*.(AI'f-l. >
G4=EXP(-AI'I*AI)
AHM=(Cl*C3*C4)/C2
AHMW=AHM*WEIT
DIFF=AHI'IW-RHX....

PERC=DIFF*IBB./(RNXW)
DIFF1=RNX-ANM
PERC1=DIFF1*lBB./RNX
WRITE(4,55) AI. RNX,ANM,DIFFl,PERC1,RHXW,ANMW,
DIFF,PERC

55 FORMAT(~(F7.3.2X»
AI=AI+.1
CO TO 33

44 CONTIHUE
STOP
END
FUNCTION GAMMA(I'I)
N=I1-1
S UI1 = 1 .

DO lB1 I=LN
A=I
SUM=SUI'I*A

101 COtUINUE
GAMI'IA=SUI1

RETURH
EHD
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FUNCTION AIBOn
T=X/3.75
IF(X.GT.3.7S) GO TO 66
IF(X.EQ.B.) GO TO 67
AI B= 1 . + 3. 5156229* T... T +3 . B8 99 424 *< T* * 4 ) + 1 . 2B 67492 *< T **

16)+.2659732*(T**8)+.B36B78*<T**1B)+.8B45813*(T**12)
GO TO 69

66 A=I./T
B=.39S94228+.B1328592*A+.BB225319*<A**2)-.8B157565*(

lA**3)+.B891628*<A**4)-.B2B577Bb*<A**5)+.B2635537
2*(A**6)-.B1647633*<A**7)+.BB392377*(A**S)

C=EXP(X)
D=SQRT< X>
AIB=(B*C)/D
GO TO 69

67 AI8=1.
68 CONTINUE

RETURN
END
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C PROGRAM TO COMPARE MOMENTS
C PROGRAM NAME IS APX
C PROGRAM COMPARES THE HIGHER ORDER MOMENTS
C OF RICE-NAKAGMI DISTRIBUTION AND M-DI5T.
C ASSUMES THE MEAN VALUE OF M-DISTRIBUTION
C IS UNITY. THEN GIYEN M, IT ESTIMATES THE
C EQUIYALENT SET OF ALPHA AND BETA OF RICE-
C NAKAGAMI DISTRIBUTION AND EVALUATES HIGHER
CORDER /'IOMENTSOF BOTH THE DISTRIBUTIONS AND
C THE RATIO OF MOMENTS.

DIMENSION C(7)/D(7)
WRITE<4,S6)

56 FORMAT(2X,/COMPARISION OF MOMENTS OF M-DIST WITH
1 RICE-NAKAGAMI DlST' )
DO 381 11=5/28
WRITE(4/21) M

21 FORMAT<12X,/M=',I2)
AM=M
B= 1. -SQRT< 1. -1 .lAM)

A=1.-B
XM=l./AM
C(I)=1.
C( 2 )=C< 1 )*( 1 . +XIO
C(3)=C<2)*<1.+2.*XM)
C( 4 )=C( 3H< 1.+3. *XM)
C<S)=C(04>*<I.+4.*XM)
C(6)=C(S>*<1.+S.*XM)
C(7)=C(6)*<1.+6.*XM)
0(1)=1.
D<2>=2.*B*B+4.*A*B+A*A
D(3)=6.*B**3+18.*A*B**2+9.*B*A**2+A**3
D(4)=24.*8.*4+96.*A*B**3+72.*<A*8)**2+16.*B*A**3+

1 A 4
0(S>=120.*B**5+6BO*A*B**4+6BB.*A**2*B**3+2BB.*A**3

1.B.*2+25.*A**4*B+A**5
D61=72B.*8..6+432B.*A*8**5+54Sa.*A**2*B**4
D62=24BB.*A**3*B**3
D63=4SB.*A**4*8**2+36.*B*A**5+A**6
O( 6 )=DE.l+D62+D63

D71=5B4B.*B**7+3528B.*A*B**6+5292B.*A**2*B**5
D72=2942B.*A"'*3*B**4
D73=735B.*A.*4...B**3+882.*A**5*B**2+49.*A**6*B+A**7
D(7)=D72+D71+D73
DO 101 1=1,7
R=D( I )/C< I )

WRITE<4,4S) I,C(1)/D(I),R
45 FORMAHI4/2X/3E14.6)
lEU CONTINUE
3B1 CONTINUE

STOP
END
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PROGRAM NA"E IS KMOMEHT
AIM OF THIS PROGRAM IS TO CHECK IF THE SPECKLE
STATISTICS FOLLOWS A K-DISTRIBUTIOH ;VALID OHLY
FOR MOHOCHRO"ATIC SPECKLE
PROGRAM TAkES NOISE DATA AHD SIGHAL+HOISE DATA
EVALUATES THE V~RIAHCE AHD THE CORRESPOHDING
" OF K DISTRIBUTION AND CALCULATES THE
THEORETICAL K-MOI'IENTSAND CO"PARES THEM
WITH EXPERIMENTAL VALUES AHD THEIR ABSOLUTE
VALUES AND RATIOS
FIRST SET IS NOISE "OMENTS
SECOND SET IS SIGNAL+HOISE MOMENTS

READ(5,11) AIHI
FORMAT< E14. 8)
READ( 5,11) AIH2
READ( 5,11) AIN3
READ( 5, 11) A IN4
READ( 5, 11) 5H1
READ(5,11) 5H2
READ( 5,11) SN3
READ(5,11) SH4
WRITE<4,1S>
FORMAT('CALCULATION OF MOMENTS OF SPECKLE INTENSITY
WRITE(4,19> AIN1,AIN2,AIN3,AIH4
FORMAT<2X, 'NOISE MOMENTS',4EI4.Ei)
WRITE(4,2B) SN1,SH2,SN3,SN4
FORMAT<2X, 'SIGNAL+NOISE !'IOMENTS',4EI4.6)
51=5NI-AINI
WRITE(4,12) 51
FORMAT<2X, 'AVERAGE INTENSITY=' ,EI4.6)
S2=SN2-2.*Sl*AIHI-AIN2
WRITE<4,13) 52
FORMAT<2X,'SECOND MOMENT OF II'HEHSIT'r'=',EI4.€.)
S3=SH3-3.*S2*AINl-3.*SI*AIN2-AIN3
WRITE<4,14) 53
FORMAT(2X,'THIRD MOMENT OF INTEHSITY=',E14.6)
S4=SH4-4.*S3*AIHl-6.*S2*AIN2-4.*Sl*AIH3-AIN4
WRITE(4,15) S4
FORMAT(2X,'4TH MOMENT OF IHTENSIT'r'='.E14.6)
VAR=(S2-S1*SI>/(Sl*SI)
WRITE(4,16) VAR
FORMAT<2X,'HORI'I. VARIANCE OF INTEHSITY=',EI4.6)
AI'I=2.I( YAR-l . )
AXX= 1 ./A"
AM1=Sl
A1'I2=2.*< 1. +AXX )*SI*SI
AM3=6.*<I.+2.*AXX)*( 1.+AXX>*Sl**3
AM4=24. *( 1.+AXX )*( 1. +2 .*AXX >.( 1. +3. *AXX >*51**4
Rl=SI/AI'I1
R2=S2/AM2
R3=S3/A"3
R4=S4/A"4
WRITE(4,3B)

18

19

12

14

15

16
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3B FORMATC8X.'THEO.MOMEHTS',5X.'.EXPT.MOMENTS',5X,'RATIO
WRITE(4,31) AM2.S2,R2

31 FORMATC2X,'N=2',EIB.4.5X.EIB.4,SX,EIB.4)
WRITEC4,32)AM3.S3,R3

32 FORMAT(2X.'N-3',EIB.4,5X.EIB.4,5X.EIB.4>
WRITE(4,33) AM4,S4,R4

33 FORMAT(2X.'N=4',EIB.4,SX.EIB.4,SX,EIB.4)
STOP
END
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C PROGRAM NAME IS K"O"EHT
C AIM OF THIS PROGRAM IS TO CHECK IF THE SPECKLE
C STATISTICS FOLLOWS A K-DISTRIBUTIOH ;YALID
C OHLY FOR MOHOCHRO"ATIC SPECKLE
C PROGRAM TAKES NOISE DATA AND SIGNAL+HOISE DATA
C EYALUATES THE YARIAHCE AHD THE CORRESPONDING
C " OF K DISTRIBUTIOH AHD CALCULATES THE
C THEORETICAL K-"OI1EHTS AHD CO"PARES THEM
C WITH EXPERII1ENTAL VALUES AHD THEIR ABSOLUTE
C VALUES AHD RATIOS
C FIRST SET IS NOISE 110l1ENTS
C SECOHD SET IS SIGNAL+HOISE "O"ENTS

READ(5111) AIIU
11 FOR"AT(EI4.8)

READ(5111) AIN2
REA[)(5111) AIN3
REA[)(5111) AIH4
REA[)(5111) SH1
READ(5111) 5N2
REA[)(51 11) SN3
READ( 51 11) SN4
WRITE(4.18)

18 FOR"AT< ICAL5 OF I'IO"ENTS OF SPECKLE INTEHSITY')
WRITE(4,19) AIN1,AIN2,AIH3,AIH4

19 FORI1AT<2X,'HOI5E 110"ENTS' ,4E14 .f))

WRITE(4,2B) 5H1.SN2,SN3,SN4
29 FORI1AT<2X,'SIGHAL+NOISE "O"ENTS' ,4EI4.6)

SI-5HI-AIHI
WRITE(4.12) 51

12 FORI'!AT<2X,'AYERAGE IHTENSITY=',EI4.6)
S2=5H2-2.*51*AIHI-AIH2
WRITE(4,13) 52

13 FORI1AT<2XI'5ECOND "OI1EHT OF IHTEHSITY=',EI4.6)
S3=5N3-3.*52*AIHI-3.*51*AIH2-AIH3
WRITE(4.14) 53

14 FORMAT(2X,'THIRD I'IOMENT OF IHTEHSITY=',EI4.6)
54=5N4-4.*S3*AIHI-6.*52*AIN2-4.*S1*AIN3-AIH4
WRITE(4.15) 54

15 FORI'!AT<2X,14TH 110l1ENT OF INTEHSITY=',E14.6)
YAR=(S2-S1*51)/(51*SI)
WRITE(4,16) YAR

16 FORI'IAT<2X,'HORI1. YARIANCE OF IHTEHSITY=J,E14.6)
At1=2./(YAR-1. )
AXX= 1 .I AI'!
At11=Sl
At12=2.*(1.+AXX)*51*SI
At13=6.*(1.+2.*AXX).( 1.+AXX).51**3
AM4=24. *( 1 . +AXX ).( 1. +2. *AXX h( 1. +3. *AXX ).51**4
Rl-S1/At11
R2=52/AM2
R3=S3/A"3
R4-54/A"4
WRITE(4,3B)
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38 FORMATCeX,'THEO."O"EHTS',5X,'EXPT.MO"EHTS',5X,
1 'RATIO')
WRITE(4,31) A"2,S2.R2

31 FOR"AT(2X,'H=2',EIB.4,5X,EIB.4,5X,EIB.4)
WRITEC4,32)A"J,S3,R3

32 FOR"AT(2X,'H-3',EIB.4,5X,EIB.4,5X,EIB.4)
WRITEC4,33) A"4,S4,R~

33 FOR"ATC2X,'N-4',EIB.4,5X,EIB.4,5X,E1B.4)
STOP
END
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C PROGRA" NA"E IS "MOMEHT
C FIRST SET IS HOISE MOMEHTS
C SECOHD SET IS SIGNAl+HOISE MOMEHTS
C PROGRA" CHECKS IF THE MULTIFREQUENCV OR PARTIALLV
C COHERENT SPECKLE PATTERH IH THE TURBULEHT ATMOSPHER
C FOLLOWS A "-DISTRIBUTIOBOR HOT.INPUT DATA IS THE
C "OI'lEHTSOF IHTEHSITY OF NOISE AND SIGNAL+HOISE.
C BY USIHG THE AVERAGE AND SECOHD MOMEHT OF INTENSITV
C IT CALCULATES THE PARAMETERS OF M-DISTRIBUTION
C AHD THESE VALUES ARE USED TO GET THE HIGHER
CORDER MOMEHTS AND THE THEORETICAL VALUES ARE
C COMPARED WITH THE EXPERIMENTAL DATA.

READ(5,11> AIHI
11 FORMAT(EI4.e)

REi:lD( 5, 11) A IN2

READ(S,11) AIH3
RE AD ( 5, 11) A I H 4

READ(5,11> SN1
READ(5, 11 > SH2
REAIH5,11) SH3
REA!)( 5, 11) SN4

WRITE(4,18)
IS FORMAT< 'CALS OF MOMENTS OF SPECKLE INTENSIT'r'l)

WRITE(4,19) AIH1,AIN2,AIN3,AIN4
19 FORMAT<2X,'NOISE MOMENTS',4EI4.6)

WRITE(4,2B) SN1,SN2,SH3,SN4
28 FORMAT< 2X, 'SIGHAL+NOISE MOMENTS' ,4EI4.6)

SI=SNI-AINI
WRITE(4,12) S1

12 FORMAT<2X, 'AYERAGE INTENSITY=' ,E14 .6)
S2=SN2-2.*S1*AIN1-AIH2
WRITE(4,13) S2

13 FORMAT(2X,'SECOND MOMENT OF INTENSITV=',EI4.6)
S3=SN3-3.*S2*AIN1-3.*S1*AIN2-AIN3
WRITE(4,14) S3

14 FORMAT(2X,'THIRD MOMENT OF INTENSITV=',E14.6)
S4=SN4-4.*S3*AIN1-6.*S2*AIN2-4.*S1*AIN3-AIN4
WRITE(4.1S) S4

15 FORMAT(2X,'4TH "OMEHT OF INTENSITV=',E14.6)
YAR=(S2-S1*SI)/(S~*S1>
WRITE(4.16) YAR

16 FORI'IAT<2X,'HORM. VARIANCE OF IHTEHSITV=',E14.6)
A"=l./YAR
A"I=SI
A"2=(1.+VAR>*Sl*SI
A"3=( 1.+2.*VAR>*( 1.+VAR>*S1**3
A"4=( 1. +YAR >*( 1 .+2. *YAR )*( 1. +3. *YAR >*81 **4
Rl=SI/Al'l1
R2DS2/A"2
R3=S3/A"3
R4=S4/A"4
WRITE(4,3B)

38 FORMAT(eX,'THEO.MOMENTS',5X,'EXPT.MOMENTS',5X,



1 'RATIO')
WRITE<4,31) AM2,S2.R2

31 FORMAT<2X,'N=2',E1B.4,SX,E1B.4,SX,E1B.4)
WRITE<4,32) AM3,S3,R3

32 FORMAT(2X,'N=3'.E1B.4.SX,E1B.4,SX.E1B.4)
WRITE(4,33) AM4,S4.R4

33 FORMAT(2X,'N=4',E1B.4,SX.E1B.4,5X,E1B.4)
STOP
END
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C PROGRA" NAME IS PMOMENT
C FIRST SET IS NOISE "OMENTS
C SECOND SET IS SIGNAL+NOISE rlOMENTS
C PROGRA" CHECKS IF THE rlULTIFREQUENCY OR PARTIALLY
C COHERENT SPECKLE PATTERN IN THE TURBULENT ATMOSPHER
C FOllOWS A K-DISTRIBUTION OR NOT. INPUT DATA IS THE
C rlOI'IENTSOF INTENSITY OF HOISE AND SIGNAL+NOISE
C IN VACUUI'I.THE VALUES OF EXPERIMENTAL rlOMENTS
C OF INTENSITY (SIGNAL+NOISE AND HOISE)
C IN THE TURBUELHT ATMOSPHERE ARE GIVEN AS INPUT
C IN THE SECOND STAGE OF THE PROGRAM.

READ(5.11) AIN1
11 FORI'IAT(EI4.e)

READ(5,11) AIN2
READ(5,11) AIN3
READ( 5,11) AIN4
READ(5,11) SNI
READ(5,11) SM2
READ(5,11) SM3
READ(5.11) SN4
URITE(4,18)

18 FORI'IAT<'CALS OF I'IOMENTSOF SPECKLE INTENSITY')
URITE(4,19) AIN1,AIN2,AIN3,AIN4

1~ FORMAT(2)(,'NOISE MOI'IENTS',4E14.6)
URITE(4,2B) SN1,SN2,SN3,SN4

2B FORMAT<2X,'SIGHAL+NOISE rlOMEHTS',4EI4.6)
Sl=SNl-AINl
URITE(4.12) SI

12 FORI'IAT(2X,'AYERAGE INTEHSITY=',EI4.6)
S2=SN2-2.*Sl*AINI-AIH2
URITE(4.13) S2

13 FORMAT<2X,'SECOHD MOMENT. OF INTENSITV=',E14.6)
S3=SN3-3.*S2*AINl-3.*SI*AIH2-AIN3
URITE(4.14) S3

14 FORMAT(2X,'THIRO MOI'IENTOF IHTENSITY=',E14.6)
S4=SN4-4.*SJ*AIMl-6.*S2*AIN2-4.*SI*AIN3-AIN4
URITE(4.15) S4

15 FORMAT(2X,'4TH "OMENT OF INTENSITY=',E14.6)
VAR1-(S2-S1*Sl )/(SI*51)
URITE(4,16) YARl

16 FOR"AT(2)(,'NORM. VAR1IAHCE OF IHTENSITV=',E14.6)
Arll-1./YAR1
A1=Sl
A2=(1.+YARlhSl*Sl
A3=( 1.+2. *YARI ).( 1.+YARI )*SI**3
A4=( 1.+YAR1)*( 1.+2.*YARl )*(1.+3.*VARI >*SI*.4
Rl=SI/Al
R2-S2/A2
R3aS3/AJ
R4=S4/A4
URITE(4,3B)

3B FORMAT(eX,'THEO.rlOMENTS',5X,'EXPT.rlOMENTS',S)(,
1 'RATIO')
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WRITE<4,31) A2,S2,R2
31 FORI'IAT(2X,'H=2',EIB.4,5X,EIB.4,5X,EIB.4)

WRITE(4,32) A3,S3,R3
32 FORI'IAT(2X,'H=3',EIB.4,5X,EIB.4,5X,EIB.4)

WRITE(4,33) A4,S4,R4
33 FORI'IAT(2X,'H=4',EIB.4,5X,EIB.4,5X,EIB.4)

C FIRST SET IS NOISE "OI'lEHTSIH TURBULEHCE FOR
C THE POLYCHROMATIC SPECKLE PATTERH
C SECOND SET IS THE SICHAL+HOISE MOMEHTS FOR
C THE POLYCHROMATIC SPECKLE PATTERH IN THE
C TURBULEHT ATMOSPHERE

READ(5,11) BIHI
READ( 5,11) BIH2
READ(5, 11) BIH3
READ( 5,11) BIH4
REA[><5, 11) 8 SH 1
READ(5, 11) 85N2
READ(5, 11) B5H3
REAI>( 5, 11) 8SN4
WRITE(4,7B)

7B FORMAT<4X, 'CALS FOR SPECKLE IN TURBULENCE')
WRITE(4,68)

68 FORMAT( 'CALS FOR MOENTS OF SPECKLE IN TURBULENCE')
WRITE(4,49) BIH1,BIN2,BIN3,BIH4

49 FORMAT<2X,'HOISE MOMENTS' ,4E14.6)
WRITE(4,SB) BSNl,BSN2,BSN3,BSN4

5B FORMAT< 2X, 'SIGNAL+HOISE !'IOMENTS' ,4E14.6)
Bl=BSNl-BINI
WRITE(4,52) B1

52 FORI'IAT<2X,'AYERAGEINTEHSITY=',E14.6)
B2=BSH2-2.*Bl*BINl-BIN2
WRITE(4,53) B2

53 FORMAT<2X,'SECOHD I'IOI'lENT OF IHTEHSIT"'=',EI4.6)
B3=8SH3-3.*82*BIHl-3.*Bl*BIN2-BIN3
WRITE<4,54) B3

54 FORMAT<2X,'THIRD "OMENT OF INTEHSITV=',E14.6)
B4=8SH4-4.*B3*BIHl-6.*B2*BIH2-4.*Bl*SIN3-BIN4
WRITE(4,55) 84

55 FORI'IAT(2X,'FOURTH MOMEHT OF IHTEHSITV=',E14.6)
YAR2=( 82-8 1*81 )/( Bl*Bl )

'WRITE(4,56) YAR2
56 FORI'IAT(2X,'NORM.YARIANCEOF INTENSIn'=',E14.6)

AXX=( 1. +YAR2 )/( 1. +YARI )-1 .
AM2=1./AXX
Cl=81
C2=( 1.+YAR1).( 1.+AXX)*Bl*Bl
C3=( 1.+2.*YAU )*( 1.+YARl ).( 1.+2.*AXX)*( 1.+AXX)*Bl**3
C4=( 1.+3.*AXX)*(1.+3.*YARl)*SI*C3
C2=82/C2
C3=83/C3
C4=B4/C4
WRITE(4,6B>

6B FORI'IAT<SX,'THEO. MOMENTS=',SX,'EXPT. MOMENTS',5X,
1 ' RAT 10' )



WRITE(4,61) C2,B2,G2
61 FOR"AT(2X,'H-2',EIB.4,5X,EIB.4,5X,EIB.4)

WRITE(4,62) C3,B3,G3
62 FOR"AT(2X,'H=3',EIB.4,5X,E1B.4,SX,E1B.4)

WRITE(4,64) C4,B4,G4
64 FOR"AT(2X,'H=4',EIB.4,5X,EIB.4,5X,EIB.4)

STOP
END

230
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C PROGRAM CALCULATES THE CUMULATIYE PDF OF
C A K-DISTRIBUTION GIYEN "1 AND "2.

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
DIMENSION X(8).W(8>
DATA X/.15315B661'DSB. .2872644B391>8B..4346274B671>0B.
1 . 58451856661>BB.. 7251264B'37I>B£1,. 84518<34879t>BB,
2. 9358435B75DBB. .98746B5B85I>BB/
DATA III/.IB53BI1D-B4. .2783586D-B3. .23353415D-B2.

1.BIBaB446144BBB..B264853BIIDBB,.B45885£532DBB,
2. 8515342238DB11, .B3BD926424DBBI
READ(5.41) Al'll.AI12

41 FOFHIAT<2X,D22.14.2X.D22.14)
PHI=3.1415~265358~7~
COFF1=4.**(AI'II-AI12+1 .)*DSQRT(PHI)
COFF2=(AM1*AM2)**(Al'll>
CO F F 3 =G A M M ~H AMI )* GA M MA ( A 1'12) * G A /'1MA ( A 1'12- A /'11 + . S )

COFF4=COFF1*COFF2/COFF3
C2=2.*A"I-1.
C3=2.*DSQRT(AM1*AM2)
C4=AP'l2-Al'll-.S
C5=2.*C3
G=.lDBB
DELG=.lDBB

29 CONTINUE
IF(G.GT.1.) DELG=.5I>BB
IF(G.GT.3.) DELG=1.1>88
IF<G.GT.IB.) GO TO 38
COFF=(G**(3.B4225933»*COFF4
WRITE(S.44> COFF

44 FORI'IAT(D22.14)
SUl'll=B.

DO 31 1=1,8
Xl=X(I)
11I1=1&1(1)

Sl=SXX(C2.C3.C4.C5.G.Xl)
SUM1=SU"1+COFF*Sl*Wl

31 CONTINUE
WRITE(4.32) C,SUl'll

32 FORI'IAT(2:<.'G=' .F6.3.2)(.'SUl'll=',1>22.14)
G=G+DELG
GO TO 29

313 CONTINUE
STOP
END
FUNCTION SXX(C2.CJ.C4,CS,G.X>
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
S2=X**(C2-5. )
S3=I>EXP(-C3*DSQRTCC)*X)
S4=FT(C4.C5.G.X)
SXX=S2*S3*S4
RETURN
END
FUNCTION FT(C4,C5.C.X)
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION T(12),W2(12)
DATA T I.JI57221J735888, .61175748451588,

11.51261826~776B8,2.S33751777744BB,4.59922763941SB8,
26.8445254531158B,9.62131~842457BB, 13.8B6B549~338688,
317.116855187462BB,22.151B9B379397BB,
428.48796725B984BB,37.B99121B44467B91
DATA W2/2.'4731371955D-81,3.777S~275873D-Bl,

12.44882B1132D-Bl,~.B4492222117D-B2,
1 2.81B23811S46D-B2,2.663~73541870-93,
22.B32315~2663D-94,8.365B55856820-96,
31.668493a76S4D-B7,1.342391B3852D-9~,
43.B61691635848D-12,8.14887746743D-161
SUM2=8.
DO 33 1=1,12
11=T(I)
W3=1d2( I )

SUM2=SUM2+W3*FTT<C4,C5,C,X,Tl )
33 CONTINUE

FT=SUM2
RETURN
END
FUNCTION FTT(C4,C5,C,X,T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
H2=T**C4
H3=T+C5*DSQRT(C)*X
H4=H3**C4
FTT=H2*H4
RETURN
END
FUNCTION CAMMA(Z)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION T(12),fal2(12)
DATA T/.11572211735888, .61175748451588,

11.512'IB26~776B8,2.83375177774488,4.5~~2276394189B,
26.84452545311588,9.621316842457B8,13.BB6B5499338688,
317.116855187462B8,22.151898379397BB,
.428.48g7967258~84BB,37.B~9121B44467B81
DATA W2/2.64731371~55D-81,3.77759275873D-Bl,

12.44B82BI132D-Bl,9.B4492222117D-B2,
12.BIB23811546D-B2,2.663973541870-93,
22.B3231592663D-B4,8.365B5585682D-B6,
31."849387654D-B7,1 .34239193B52D-B~,
43.B616BI635B4D-12,8.14897746743D-16/
SUM2=B.
DO 33 1= 1 , 12
Tl=T( I)
SI=Tl**<Z-I. )
W3=W2( I )

SUM2=SUM2+WJ*SI
. 33 CONT INUE

GAI'tI'tA=SUt12

RETURN
END
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