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ABSTRACT

STATISTICS OF POLYCHROMATIC SPECKLE PROPAGATION THROUGH THE
TURBULENT ATMOSPHERE
V. S. Rao Gudimetla
Oregon Graduate Center

Supervising Professor: Dr. J. Fred Holmes

Using the extended Huygens Fresnel principle, the effect of
the atmospheric turbulence on the statistical properties of a
polychromatic speckle field, generated by a diffuse target, is
studied in detail. The results, substantiated by experimental
data, indicate that the atmospheric perturbation increases the
variance of the received intensity substantially and is sensitive
to the wavelength, beam size and beam geometry. The results for
the covariance of the received intensity, normalized to the
variance, indicate that, at low turbulence levels, reduction in
vacuum speckle contrast ratio (VSCR) also reduces the normalized
covariance but, with further increase in the turbulence level,
reduction in the vacuum speckle contrast ratio increases the
normalized covariance. Also it is found that for small detector

spacings, the normalized covariance remains approximately constant

XV



even with substantial increase in the turbulence level. By
resolving the time delayed covariance of fhe received intensity
(TDC), into coherent and incoherent terms; it is shown that for
large time delays, the time delayed covariance is determined by the
incoherent fluctuations and for poor vacuum speckle contrast ratio,
the time delayed covariance is not very sensitive to the wind
veiocity. Finally it is shown that due to the atmospheric
perturbation that the probability density function of the received
intensity changes from an M-distribution or a sum of exponential
distributions in vacuum to a K-distribution or a weighted sum of

K-distributions in the presence of the turbulent atmosphere.
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CHAPTER I
INTRODUCTION

Of the two types of flow of liquids and gases, turbulent flow,
characterized by the random spatial and temporal fluctuations of
fluid mechanical parameters such as pressure, temperature and
velocity, is more common in nature as well as in technological
applications than laminar flow. A turbulent flow is characterized
by its rotational, three-dimensional, nonlinear, diffusive and
stochastic nature.l As examples, one can consider the turbulent
atmosphere around us, the spreading of admixtures in the air, flow
of gases in the interstellar nebulae, turbulent flow of water in
pipes, high speed jets from nozzles, etc. Monin and Yag10m2 list
several other examples and consider the theory of turbulent fields
in detail in their monumental treatise.

Since the turbulent environment is so common around us, it 1s
essential to understand the nature of turbulent fields and their
interaction with electromagnetic and acoustic waves. This is
either to find the limitations on designing electromagnetic and
acoustic systems in the turbulent environment or to use the effects
of the turbulent environment oa them to understand the nature of

the turbulent fields. For example, the performance of a line of



sight optical communication link or optical coherent radar is
severely limited by the turbulent nature of the atmosphere.
However, one can use the effects of the turbulent atmosphere to
remotely sense wind velocities and the strength of turbulence.
Other applications exist in connection with magnetohydrodynamics
and turbulent jets.

Great contributions to the theory of turbulence are made by
Reynolds, G. I. Taylor, Keller, Friedmann, Prandtl, Von Karman,
Richardson, Kolmogorov, Obukhov and more recently by Kraichnan and
Malkus. The treatise by Monin and Yaglom? should be consulted
for the vast amount of literature and diversity of problems in the
theory of turbulence. More recently Hill3,4 proposed a new
spectrum for the refractive index fluctuations of the turbulent
atmosphere which seems very useful. This model is used by Elliott,
et al.’ to describe the turbulence simulated in the laboratory.

Before the development of the ruby laser in 1960, two
monographs on the propagation of acoustic and radio waves in random
media were written by Chernov,® and Tatarskii.’ These works
are useful to understand laser beam propagation through the
turbulent atmosphere. After translation of these works into
English by Silverman in 1961, very extensive theoretical and
experimental work was accomplished on the effects of the turbulent
atmosphere on the laser beam propagation. This work was reviewed

by Lee and Harp,® by Lawrence and Strohbehn9 in 1970, by



Fante,l0 and by Prokhorov, et al.ll in 1975. More recently
Fantel? updated his earlier review. In addition there is an
updated monograph by Tatarskii,l3 a textbook by Ishimarul# and
an edited monograph by Strohbehn.1l3 As stated earlier, most of
these works are about the effects of the turbulent medium on a
laser beam (on plane and spherical waves) in a line of sight
geometry in the context of single scattering. However,
Livingston916 considered the effects of multiple scattering in
the turbulent atmosphere while Dashen,l’ more recently developed
path integrals for waves in random media and considered turbulence,
characterized by more than two scales.

The problem of speckle propagation through the turbulent
atmosphere, which is immediately applicable to such problems as
Optical Radar, remote sensing of wind and Coherent Adaptive Optical
Systems (COAT systems), was considered by Holmes et al.l9
Assuming a spatially coherent and monochromatic laser source as the
transmitter and a diffuse target at the other end of the path, Lee,
Holmes and Kerrl® estimated the effects of the turbulent
atmosphere and the cross wind on the propagation of the speckle,
generated by the diffuse target. Later this work was generalized
by Holmes et al.l9 to include the effects of the log-amplitude
fluctuations and the feasibility of remote sensing of wind
determined.20 This work is by far the most complete formulation

presented on the speckle propagation through the turbulent



atﬁosphere as it includes all the necessary formulations for the
useful first and second order statistics. In this thesis, the
monochromatic work cited will be extended by assuming the source to
be polychromatic. Fante?l calculated multiple frequency axial |
coherence functions and Carl Leader?? studied the propagation of
the spatially partial coherent sources but both works concern line
of sight propagation of a laser beam rather than speckle

propagation.
1.1 Outlines of the Thesis

In the next chapter, an introduction to speckle phenomena and
the reduction of speckle contrast due to the presence of a large
number of modes in the laser and due to the lack of coherence of
the laser source, when several frequencies are present, is
discussed. An important contribution, regarding the number of
patterns into which a given polychromatic speckle pattern can be
resolved is developed.

In Chapter III, the four point two-frequency amplitude, phase,
and cross correlation functions and the corresponding structure
functions are derived for a spherical wave. These are
generalizations of the results of YuraZ3 and Ishimaru.2%
Limitations on the validity of these results are discussed at the

end of that chapter.



In Chapter IV, a formulation for the time delayed correlation
function of the received intensity for a polychromatic speckle
field after propagation through the turbulent atmosphere is given.
This formulation will be used to develop -all other statistical
parameters of the received field in the subsequent chapters.

In Chapter V, using the results from the previous chapters,
expressions for the mean and the variance for the received
intensity are given and the results are compared with experimental
data. The effects of the source parameters (beam size, number of
modes, beam geometry, and wave length) and the propagation
parameters (path length and turbulence level) on the atmospheric
perturbation are discussed in detail and a very useful
phenomenological explanation for the behavior of the variance is
given.

In Chapter VI, the covariance of the received intensity is
derived and the results are compared with experimental data. The
relation of the covariance scale size to the Fresnel zone size, the
beam size at the transmitter and the lateral coherence length at
the target plane is discussed for a given value of the vacuum
speckle contrast ratio. Also variation of the covariance
(normalized to the variance) for different turbulence levels for
several values of the vacuum speckle contrast ratio is discussed.
Extensive numerical calculations have been used to obtain the

correct behavior of the covariance scale size for several values of



the vacuum speckle contrast ratio to estimate the relative effects
of the partial coherence of the transmitter.

In Chapter VII, an approximate numerical approach to estimate
the time delayed covariance of the intensity is described. Since
previously no numerical results were presented for the
monochromatic case, this method was applied to the monochromatic
case first and then extended to the problem of the polychromatic
case. Using the time delayed covarianﬁe function to measure the
cross wind along the path and the effects of the detector
integration time are also discussed. In addition the results for
the autocorrelation function of the received intensity and the
spectrum of the received intensity fluctuations are given.

In Chapter VIII, the probability density function of the
received intensity after propagation through the turbulent
atmosphere is considered and the results are compared with the
experimental data. Since the previously proposed exponential
probability density functionl® for the intensity of a speckle
pattern in the turbulent atmosphere is correct under the phase
dominance assumption, only if the log-amplitude effects are not
considered, a new probability densit§ function for the received
intensity fluctuations of the speckle pattern, including
log-amplitude effects, was derived first for the monochromatic case

and the results are extended to the polychromatic case.



In Chapter IX, final conclusions for the theoretical and
experimental work in this thesis are given and the future
directions for the extension of this work are discussed.

The appendices include several programs, written by the author
for the numerical evaluation of the various statistical parameters

developed in this thesis.



CHAPTER II

EFFECT OF THE COHERENCE OF A LASER SOURCE ON THE CONTRAST AND THE

NUMBER OF THE DOMINANT EIGENVALUES IN ITS SPECKLE PATTERN

A speckle pattern is formed when partially coherent light is
scattered off a rough surface or when coherent light propagates
through a turbulent medium. Statistical properties of speckle
patterns are dependent on the coherence properties of the laser
source and the relevant turbulence parameters. If a surface 1is
wvery rough i.e. the standard deviation of the optical path
differences involved on the surface is very much greater than the
wave length of the incident light and the source 1s coherent as in
the case of most lasers, running in a single axial and transverse
mode, the contrast of the speckle pattern is unity and the pattern
has a striking granular appearance. If the surface is not
sufficiently rough or if the incident light is not spatially or
temporally coherent, the pattern gets washed out and the speckle
contrast reduces (note it is difficult to see speckles in white
light). Even though speckle-like phenomena are known elsewhere in
physics, for example the temporal statistics of incoherent
light,25 theory of narrow band electrical noise2® and radio

wave propagarion,ZT interest in speckle phenomena started with



the working of lasers. There was some work on the polychromatic
speckle patterns by Ramachandran.28® Also Goodman2? in an
unpublished but well-known report, developed the statistics of the
speckle patterns and related the contrast of the speckle. pattern to
the roughness of the surface and bandwidth of the incident light.
He showed that in case of very rough surfaces, if the incident
light is spatially and temporally coherent, the statistics of the
field is Complex-Gaussian and so the intensity follows an
exponential distribution. Among other workers, Parry,30,31
Pedersen32533 McKechnie34 and Dainry35 studied the effects of
polychromatic and partially coherent speckle patterns. The state
of art in the theory and applications of the laser speckle pattern
is summarized in an excellent monograph edited by Dainty.36 A
more general theory of electromagnetic scattering off rough
surfaces is discussed in detail by Beckmann and Sphizhichono.37

In this chapter the effects of surface roughness and coherence
properties of the incident light on the contrast and the number and

magnitudes of dominant eigenvalues of the speckle will be studied.
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2.1 Effects of Surface Roughness and Bandwidth of the Incident
Light on the contrast and Number of the Dominant Eigenvalues

of the Speckle Pattern

The determination of the probabiliry density function of the
intensity for a speckle pattern formed when a polychromatic source
of known spectral distribution is incident on a very rough surface
has been considered by various authors.

Using a Karhunen-Loeve expansion, the complex speckle field
A(x,k) at a point x in the polychromatic speckle pattern when
incident light is of unit intensity and wave ﬁumber k can be

expressed as38,39

8

Alx,k) = ) a. ¥.(k) (2.1)
y T
1=]
where the aj's are the random coefficients of the deterministic
functions Y;. The Y¥;'s are chosen to be complete orthonormal
functions with respect to the source spectral distribution S(k) by

requiring that

J ¥.(k) Y.(k) S(k)dk = 6., 2.2)
i ] ij

If the speckle field due to any wavelength in the range where S(k)
is nonzero is normally distributed, then the random coefficients
will also be normally distributed. In addition, they will be

uncorrelated and independent if the expansion functions are chosen
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to satisfy the Fredholm equation40

*
/ s(k) I, (kok') ¥ (k')dk' = A, ¥, (k) (2.3)
where

I, (k') = <Alx,k)> AT (e, k')>

and is the correlation function of the complex random fields. The
kernel of Eq.(2.3) is not symmetric but it can be made symmetric by
choosing a modified set of orthogonal functions, ¢;, such that

the eigenvalue equation then becomes

A ¢ (k) = [ /3(k) Y3(x") r,Gk,k") ¢, (k') dk' (2.4)

It follows that the mean intensity and the variance are given by

=] oo
2 2
= = A
<Iix)> Z li and 01 E ; (2.5)

i=1 i=1

Having solved Eq.(2.4) for the eigenvalues, the probability density

function for the intensity is given by?2?

N C. —I/ki
p: () = Y -}ﬁh e (2.6)
1

i=1

where

N
C. = I A /(A.- X))
1 541 1 1 ]
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One method of solving Eq.(2.4) for the N dominant eigenvalues is to
take N samples at appropriate wave numbers ki and solve the
resulting N linear equations for the corresponding eigenvalues.
Since the system of equations is homogenous, this can be

accomplished by diagonalizing the correlation matrix S,

R(k1,k1) R(kj,k2) . . . R(k,ky) 257
[s] = R(ky,k1) R(ky,kp) . . . R(kz,kN)

R(kl:;,kl) R(ky,k2) . . .R(ky,ky)
where
R(ki,kj) - /stkij "S(kjj FA(ki,kk) (2.8)

However since N is not known a priori, either N must be initially
very large or successively increased, S diagonalized and the
resultant eigenvalues compared to determine if all the dominant
eigenvalues have been determined. Either approach could be very
time consuming and consequently a method of determining N without
first having to solve for the eigenvalues is needed.

Let Jy be equal to the ratio of the sum of the N smallest
eigenvalues out of a total of 2N eigenvalues to the sum of all 2N

eigenvalues. Then since Ay < 1, if Jy << 1, all the dominant
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eigenvalues will have been included. It should be noted that Jy
equals the fractional error in the mean intensity that will result
if only the N largest eigenvalues are considered. Fukunaga®l
considered a similar problem and using his results it can be shown
that

J =

N (R(ky;0kp5) = ROkypokp; 1) = ROkp5 )0k ) +

1

=

1

i

||.I:"-—’]Z

Rlky;_yokygy 1/ Ry 5kp5 ) + Rky; ko) ) (2.9)

1=1

It should be noted that Eq.(2.9) approaches the ratio
described ébove only for N large enough such that Jy is small.
1f Jy is now calculated using Eq.(2.9) for successively
increasing values of N, a point will be reached where Jy is
suitably small and N has been determined. At this point the N
dominant eigenvalues are determined by diagonalizing the matrix in
Eq.(2.7) and then used in Eq.(2.6) to determine the probability
density function of the intensity. The question of what is a
suitably small value of Jy will be addressed in the next
paragraph. The eigenvalues of matrix Eq.(2.7) are determined
numerically using the computer program given in Appendix A.

In order to investigate the question of what is an appropriate
value of Jy to use as a cutoff point in determining N, the method

has been applied to the case of a Gaussian spectral
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distribution given by

S(k) = exp[-(k - k0)2/2W2] (2.10)

Y21 W

where W is the bandwidth and k is the wave vector. The rough
surface is assumed to have a Gaussian spectral correlation function
with 2Wo, equal to Y15, and where Ozz is the optical path

variance on the surface. The results are shown in Figure 2.1 which
shows the probability density functions for several values of N and
Table 2.1 which lists the corresponding eigenvalues and Jy's. It
appears that since all the normalized eigenvalues are less than
unity, from Eq.(2.5) it follows that an error of 5% in the mean
value of intensity corresponds to an error, less than 5%, in the
variance, the actual reduction depending on the magnitudes of the
eigenvalues. This was investigated for the cases where 2Wo, =

Y3, Y15, V63, and Y99 and it is noticed that the optimum choice of
samples for this example is approximately given by

J. = 3/1 + (2Wo )?
N z

In fact by substituting Eq.(2.8) for R(ki,kj) in Eq.(2.9) and
rearranging the terms, it can be shown that the above choice of N
corresponds to about 6% error in the mean value of the intensity.
Also from Table 2.1 it is noticed that choosing N greater than the

number given by Eq.(2.9) in general does not change the
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Figure 2.1 Probability density function of the intensity, on the
basis of the eigenvalues in Table 2.1 for different

values of N.



Table 2.1. Dominant eigenvalues of a polychromatic speckle pattern
with Gaussian spectral density and Gaussian spectral
correlation on the surface corresponding to equally spaced
samples with N = 4, 8, 12 and 18 for ZWGZ = /15 (sampling

range -3W to +3W).

Eigenvalues N=24 N=28 N =12 N = 18
A1 .458272 .510685 -399915 -39910
Ao L444980 .249931 .239950 -239947
A3 .047588 .121985 .143972 .143968
Ay .047590 .061233 .086394 .086380
Asg .027674 .051834 .051824
X .017809 .031208 .031081
Aq .004421 .018553 .018611
Ag .003915 .011746 .011087
Ag .006182 .006520
Ao .004879 .003741
A1l .001399 .002066
Ao .001323 .001085
A3 .000525
A1y .000111
Ais .000047
A1g .000016
M7 .000009
Als .000000
N -337549 .122425 .058665 .026977

Normalized

Variance

from above

eigenvalues -41384978 -34839531 .2558 .25116

Normalized

Variance

from the

Theory .25 .25 &5 <25
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eigenvalues significantly. For comparison, the normalized variance
from the actual theory and as calculated from each set of
eigenvalues are also listed in the table.

An approximate probability density function for the intensity
that has been suggested by Parry,43 Goodman®? and Barakat%0

is an M-distribution given by

M-1 -MI/<I>
P(1) = M1 s (2.11)
KI>" T(M)

where I'(....) is the gamma function. It is derived by assuming
that all the M dominant eigenvalues are equal. When this is not
true, then considerable errors can occur, particularly for values
of intensity around its mean value. This is illustrated in Figure
2.2 which shows the actual distribution and the corresponding
M-distribution (M = 4). Since the eigenvalues tend to be equal as
M becomes larger, the M-distribution is accurate only if M is
large. For the example given, there is substantial difference
between the actual and the approximate distribution for the values
of the intensity around the mean value.

Using a Gaussian model for the rough surface, the normalized

variance of the received intensity is given by32

012/<1>2 = 1//1 + (ZWGZ)Z (2.12)
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where 2W is the bandwidth and 022 is the optical path variance.

So either as the bandwidth increases or as 0, increases, the
normalized variance reduces. This effect has been used to measure
the roughness of the surfaces.33. Additional representations and
characterizations of Gaussian random processes in terms of
independent random variables are discussed by Pierre®* and Ray

and Driver.%4>

2.2 Dependence of Speckle Contrast on the Coherence of the

Incident Light

It has been shown by several workers3® that the contrast of
a speckle pattern reduces as the coherence of the incident laser
light reduces. McKechnie34 actually used this property to reduce
the contrast of speckle patterns. Lasers exhibit poor spatial as
well as temporal coherence properties, when running in several
longitudinal or transverse modes either in a pulsed or in a
continuous mode. Coherence properties of a ruby laser were first
studied by Collins, Nelson, Schalow, Bond, Barret and Kaiser.46
Berkeley and Wolga&7 studied a pulsed ruby laser and noticed that
the fringe visibility, in a Young's interference experiment, is
dependent on the number of modes present in the laser. Chang and
Kilcoyne48 studied the partial coherence of pulsed multimode
radiation from a ruby laser and concluded that the pulsed radiation

is not coherent across the beam cross section and it should be
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treated as a sum of several coherent patches. This reduces the
fringe contrast in a Young's interference experiment as they had
noticed. Also the effect of the path differences involved when
several longitudinal modes are present in the laser beam and its
effects on the visibility of the fringes is well known in
holography and has been worked out by Foreman®? and Cathey.50
Fringe visibility in this case is a periodic function of L/N where
L is the length of the cavity and N is the number of the
longitudinal modes (all modes are assumed to be of equal
amplitude). Collier?! et al. considered use of gas lasers in
interferometry and showed that the fringe visibility is strongly
dependent on the number of modes present in the laser. When many
modes are present, the laser output may not be coherent across its
beam size as the beam size may be substantial compared to L/N. In
this section, a simple analysis, following Sotskii and
Goncharenko,52 is presented to relate the degree of the coherence
of the laser and the number of modes present in the laser emission.
Assuming that the emission of the laser consists of N plane
harmonic waves with different frequencies (w's) and directions of
propagation (wave vectors k's) but with equal amplitude (unity),

the analytical signal V(x,t) of such a field is given by33
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M i(k.x -w.t)
V(x,t) =) e 1 J (2.13)
3%l

The mutual coherence function at two space time points,

T'(x1,t13%x2,t2) following Wolf33 is given by

*
Llxj,t 1) x2,t2) = Kwlx),ty) V (xosto)> (2:14)

where the angle brackets <....> in this case indicate averaging
over time following the ergodic assumption. Using Eqs.(2.13) and

(2.14), the mutual coherence function is given by

i{k. X} — X2 —w, t] - tz}
T1a(x1,t1:x2,t2) =) e 3 J (2:15)
j=1

For a stationary process, writing x] = x2 = x and ty - t] = T the
normalized complex degree of coherence is given by
i{k.x - w.t}

N
yi12(x,T) = T12(x,1)/T12(0,0) = (1/N) § e 3 J (2.16)
j=1

The modulus of the above function is then given by

5 5 N i(wn =W T kn - ks x)
|y126, D% = /W [ e (2.17)
n,s=1



22

The effect of the spatial modes will now be considered. Assuming
the laser radiation spreads in a small angle and T = 0, the spatial

wave vector of the s th mode is approximately given by

s o s
where
ﬂks = losf(Zaon] (2.18)

where .3 is the beam size, n is the refractive index of the
medium and Ao is the wavelength. From this the spatial coherence

of the laser beam is given as

‘le(x)'z = sinz[HNXIAQOn]/(NZ sinz[ﬂxfﬁaon]) (2.19)

Consider now the temporal coherence by assuming x = 0 in

Eq.C217): For the longitudinal modes in a cavity of length L, it
is known
Vi, = W llc/[nL(q - s)] (2.:20)

where q and s refer to mode numbers, n is the refractive index and
c is the velocity of light. Then the temporal coherence of the

emission is given by

’ylz(T)lz = sinz[NHc‘r/ZnL]/(N2 sinz[HcTIZnL]) tZ2.21)

It is clear from the above expressions that the radiation is

completely coherent if and only if the emission consists of a
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single longitudinal and transverse mode and that the coherence
length (time) quickly reduces as the number of modes increases.
The above theory is derived assuming a stationary laser emission.
For non-stationary emission, the mutual coherence function from

Eqs.(2.13) and (2.14), is given by

N
|y12( t)|2 = (1/¥3)[N+2 ¥ cos k=& = v -w t}]  (2.22)
n>s=1

Since the distribution of the frequencies (within the limits
of the width of the emission line) and the propagation directions
of the modes will be completely random for all the modes, the
second term in the numerator of Eq.(2.22) will be zero and the
coherence of the laser emission is given by
1Y12(T)|2 = 1/N (2.23)
Thus for non-stationary emission, the laser radiation will be
partially coherent, the degree of coherence being determined by the
number of the modes.

As the degree of coherence of the incident laser source
reduces, the speckle contrast also reduces for a given roughness of
the surface. 1In applications, such as remote sensing of the
crosswind, pulsed lasers such as CO;, Nd:YAG lasers are being
used. Coherence properties of these lasers are very poor and the
contrast of a speckle pattern, formed when these lasers are

scattered off an extremely diffuse target, is very low. Holmes et
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al.>% report a contrast of .142 for the speckle pattern,

generated when a pulsed Nd:YAG laser is scérrered off a diffuse
target, located at a distance of 500 meters from the
transmitter-receiver plane and attributed it to a large number of
longitudinal and transverse modes. Fossey et al.>> reported a
speckle contrast of .55 when using an Argon laser (without etalon
in the cavity) in the same experiment and they attributed it to the
presence of several longitudinal modes in the laser. In addition
the following experiments were conducted by the author. Two almost
identical laser beams are superimposed and the resultant beam
scattered off white paper. Initially the contrast of the speckle
pattern due to each beam was found to be very high by blocking the
other beam. But when the contrast of the total speckle pattern was
measured with both the laser beams present, it was found to be poor
(the corresponding normalized variance is .45). This result was
independent of the fact whether the bright and dark patches of the
speckles due to each beam overlap or not. This indicates that both
patterns behave as if they are statistically independent. This is
true because there is no interference between two independent
lasers, when the detector integration time 1is too large to resolve
the beats between them. These results are summarized in Table 2.2,
where the mean, the second moment and the normalized variance of
the intensity of each speckle pattern and the total speckle pattern

are given (the slight variation in the normalized
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Table 2.2 DATA ON THE TWO BEAM SPECKLE EXPERIMENT

Average Second Normalized
Intensity Moment Variance Variance
First Beam (I;) 187.39 67395 32280 .92
Second Beam (I3) 182.39 63622 30356 .91
Superimposed
Two Beams
Position #l1 372.59 203744 64291 47
Position #2 349.59 174697 52484 .43
Position #3 397.99 228892 70486 445
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variance is due to the fact that in order to decorrelate the
speckle patterns by an order of speckle size, one of the beams has
to strike the target at a very small angle to the normal and the
resultant speckle pattern falls on the detector at an angle).
Figures 2.3 and 2.4 give the probability density function of the
intensity of the speckle pattern due to each beam separately. It
can be seen that the resultant statistics in each case is
approximately exponential. Figure 2.5 gives the probability
density function of the total speckle pattern when both laser beams
are superimposed for 3 different positions, such that in position
(1), the speckles due to each beam only overlap, in position (2)
the speckles due to each beam only partially overlap and in
position (3), the speckle patterns are completely decorrelated. It
is noticed that there is no significant difference in the nature of
the probability density function or in the normalized variance.
This reduction in speckle contrast is due to the fact that both the
laser beams, however identical they may be, are statistically
independent and thus remain incoherent with respect to each other.
In this case, the complex speckle field is no longer Gaussian and
so the fields due to each beam should be added on intensity basis.
In addition, the contrast of the speckle pattern, generated when an
argon laser beam, at .488 um, without an etalon in the cavity is
scattered off a white paper target, was measured and was found to

be .34. Figure 2.6 gives the probability density function of the
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speckle pattern, generated in this case. In Figure 2.7, the
cumulative experimental probability values are compared with the
theoretical values, using an M-distribution with M = 2.875. It can
be seen that there is an excellent agreement between the theory and
the experiment.

In the above experiments, an ensemble average over a set of
rough surfaces was achieved by rotating the target very slowly.
The reduction in speckle contrast of the superimposed beam cannot
be due to the target rotation since for a single beam very high
contrast was observed. The intensity correlation between the two
speckle patterns is related to the correlation between the
corresponding field correlations. The correlation between the
fields from two different sources is zero. Had there been
correlation between the fields, a single speckle pattern of very
high contrast would have been observed. Over an ensemble of
patterns, the fields due to both beams would be added
incoherently. That both the speckle patterns are fundamentally
independent can be observed from Table 2.2 where the total average
is the sum of averages of both beams and the total variance is the
sum of variances. In addition, additional reduction in speckle
contrast can be due to the fact that individual longitudinal modes

may have a different phase curvature.
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2.3 Speckle Averaging

The speckle theory is closely related to the theory of
coherence. An important work in the theory of coherence is the
quantum mechanical representation of optical fields due to
Glauber®® who also showed that incoherent light of very narrow
bandwidth can be formed by superimposing several identical but
statistically independent lasers. In addition, classical models
were developed by Mandel and Wolf.37 The role of coherence
concepts in the speckle theory was examined recently by
Goodman.38 Goodman also showed that a speckle pattern is only
locally stationary and thus the average of a speckle over an
ensemble of surfaces is not the same as the spatial average over
the pattern. Similarly due to nonergodicity, the average of the
speckle patterns over time is also not an ensemble average. So one
must, while studying the statistical properties of the speckle
averaging over both ensembles (sources and rough surfaces) must be

used.
2.4 Conclusions

In this chapter important aspects of speckle theory were
detailed. 1In particular, a very useful method for determining the
eigenvalues of a polychromatic or partially coherent speckle

pattern was developed. It must be noted that the criterion for N



in Eq.(2.9) is not just a matter of selecting sufficient samples
for solving the Eq.(2.4) but emphasizes the fact that a
polychromatic or partially coherent speckle pattern can be resolved
into a few dominant Gaussian speckle patterns. Also the effects of
laser coherence on the contrast of speckle were discussed. Since
most of the sources for applications such as COAT systems, wind
sensing systems, etc., are pulsed laser sources, which run in
several longitudinal and transverse modes, the speckle contrast
from diffuse targets will be poor. Then the received speckle
pattern can be treated as a sum of several independent Gaussian
speckle patterns. This fact is used in the subsequent chapters to
study the effects of the turbulent atmosphere on a speckle pattern

with a poor vacuum speckle contrast ratio.
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CHAPTER III

FOUR POINT TWO FREQUENCY CORRELATION AND STRUCTURE FUNCTIONS

IN THE TURBULENT ATMOSPHERE

In order to develop the theory of polychromatic speckle
propagation through the turbulent atmosphere, the four point two
frequency amplitude correlation function, the four point two
frequency phase correlation function, the four point two frequency
correlation functiorn for amplitude at one frequency and phase at
another frequency and finally the two frequency amplitude, phase
and wave structure functions are needed. Since the extended
Huygens Fresnel approximation is used in the subsequent theory, all
the above formulations should be developed for a spherical wave.
Since the four point two frequency correlations have not yet been
reported in the literature, these formulations are developed in
this chapter from fundamentals. The results in this chapter are

generalizations of the results of Yura23 and Ishimaru.Z24

3.1 FOUR POINT TWO FREQUENCY CORRELATION FUNCTIONS

Consider a spherical wave propagating through a random medium,

the refractive index of which is given by

n(r) =1+ nj(r) (3.1)
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here nj(r) is the fluctuating part and nj << 1. Choosing the z

axis as the direction of propagation, the electrical field

satisfies the Helmholtz wave equation given by

[v2 + k2{1 + n;(0)}?]u; = 0 (3.2)
Under frozen turbulence conditions, when a vector cross wind

of velocity V is present, the fluctuation part of the refractive

index term nj at time t, in plane z' is related to the random

spectral amplitude dv(K,z') by the relation®3

ik+(p' - Vt)

ni(P', z', t) = [ e dv(K, z') (3.3)

where p' is the transverse vector at z' and K is the spatial wave
vector of the refractive index fluctuatons. The random spectral

amplitude dv(K,z) satisfies the relation®?

<dv(K,z)dv*(K',z')> = Fn(K,z-z') §(K-K')dK'dK (3.4)

where the angle brackets < > indicate the ensemble average and
Fa(K,z) is the two-dimensional spectral density of the refractive
index fluctuations. If the random medium 1is assumed to be
stationary and dispersion is negligible, the spatial correlation of
refractive index fluctuations Bn(;l,;é) is given by using

Eqs.(3.3) and (3.4), as
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B_(¥1,%2) = <a1(x1) di

= f dZK Fn(K,zl—zz) e-iK‘[(pl—Dz) - V(tl-tz)] {3.5)

the coordinate x being (p,z). Let T be a coordinate vector in the
transmitter plane and p be a vector in the receiver plane, both
planes being perpendicular to the direction of propagation, the
z—axis. To derive the correlation functioms, it is enough to
consider only the line of sight geometry.

By using the Rytov method,®0 the solution for Eq.(3.2) is
Ui(T,p) = UOG,E)e”’(r’P) (3.6)
where UO(;,E) is the solution in free space and ¥(r,p) is the
effect of the random medium. Then from the results of

Tatarskii,60

= 13 2 ikR(x,p)
Ui(T,p) = (k“/2m) [ d°x n1(x) U (r,x) E_ETETETH
and
oL GikR(x,T)
Uo(r,x) RGE (1.7)

where R(x,r) is the distance between the vector coordinates x and

r. By using the Hygens Fresnel approximation for V(r,p)62:63 and

using Eq.(3.3) for n1(x), as ¥ = U1/Up
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ikl?l-ﬁllz ik’al';l|2
, o Rl
WER =3z e 0 [dxe P
ik|p1-p1|? -
. hch-zlJ [ iR (P1-VED) 4y(k.21) (3.8)

In the above integral, p; is the transverse vector coordinate in
the plane z]. The integration over p] can be extended to * ®, even
though the approximation is not valid for sufficiently large values
of 'p'. This is because, the integral over the region, where 'pl
is large, is zero due to the rapid oscillations of the integrand in

this region. Then completing the integral over p;, we get

L © .
¥(r,p) = ik [ dz) | dv(Kk,z1) e(lK /2k)z1(1 - z/L)
o -0
cil@/DBL ¢ U - 2D - TR (8)

The complex function ¥(r,p) can be resolved into a real part
x(r,p), which represents the amplitude fluctuations and ¢(r,p),
which represents the phase fluctuations. Then from Eq.(3.9), we

get

X(E,3) = [¥(E,p) + ¥ (F,9)1/2

L -]
=k [dz; [ aw(k,zp) e il(z1/L) P+ (1 - z1/L) ¥ - VE1]K
O -0

sin[K%z1(1 - z1/L)/2k] (3.10)



and

o(E,5) = (1/2i)[¥(E,p) - ¥ (£,5)]

=k de21 fmdv(!( z1) e tl(z1/L)F + (1 - z)/L) £ - Veq] » K
0 -0
cos{R?z (1 = 21/LY/2k] 5T

To find the four point, two frequency correlation functions,
consider two point sources at different frequencies kj and ky, the
positions of which are at coordinate vectors rj and rp, in the
plane z = 0. Consider now two points in the receiver plane, their
positions being given by the transverse coordinates p; and p» in
the receiver plane z = L. The four point two frequency amplitude
correlation function, is the correlation between the amplitude
fluctuations at a point p] in the receiver plane at a time t; due
to a point source at r] in the transmitter plane at a frequency k)
and the amplitude fluctuations at a point pj in the receiver plane
at time ty due to a point source at rp in the transmitter plane at
a frequency k2 and is denoted as Cx(Fl,ﬁl,rl,kl; r2,P2,t2,k2).

*
C (F1,B1,t1,k15 F2,82,t2,k2) = <x(F1,P1,t1,k1) X (F2,P2,t2,k2)>
©

L L
= kikz [ dz1 [ dzp [ F_(X, z1 - 22) ax
o o Q



———F L — & v— 44 —spr 4 - —-— - - 2 i R - L e

# (1 = g5/L) 55 = Veal * x]}

sin[K%z1(1 - z1/L)/2k;] sin[R%z2(1 - z2/L)/2k>] (3.12)

Changing the variables z] and z to £ and n where 2n = z; + z3 and
£=12z] - z2 and noting that Fr(K,E) = 0 for 'EI > Ly where Lg

is the scale length of inhomogeneties (outer scale), we get

Cx(fl,ﬁl,t1,k1= T2:P2,t2:k2)

L L
= 2k1kp [ dn [ dE [ F_(K,E) 42K
Q (] 0 o

Sl s g2/l + {0 - 0+ g/2)/L)E) - ol - K
A - g2Llp2 + {1 - n - &/2)/L} 72 - Vo] - K

sin[K%(n + £/2)(L - n + £/2)/(2Lk})]

sin[R%(n - £/2)(L - n - £/2)/(2Lk2)]

Since in the region of important integration, the terms involving &
may be neglected except in the spectral density F,(K,E). As & =

0 for IEI > Ly the limits of integration can be extended to =.
Since

oo

[ F_(R,&) dE = m¢_(K)
o
where ¢,(K) is the three-dimensional spectral density of

refractive index fluctuations, the four point two frequency

amplitude correlation function is given by
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Cx(EllElSrl’kl: ;Z:EZ’tZskz)

- 2Ky [ an [ 42K 6 (0 e~HI(VDF1B2) + (I-n/L)(F1-F2)-v1] K
0 o] =
sin[RZn(1-n/L)/2k1] sia[kR®n(1-n/L)/2k7] (3.14)

where T = tj-tp, by assuming the fluctuations are stationary. For

isotropic turbulence this reduces to

Cx(?l,ﬁl,rl,kl; T2,P2,t2k2)

Cx(Fl_?Z:El_ﬁz :rl_tZ)kl !kz) - Cx(f3§: T:klskz)

L
4n%k1ky [ dn [ R dK ¢_(K)
(o] (o]

JO(K|§ B4 (] = {-) f-s«:')
sin[Kzn(l-n/L)/Zkll sin[Kzn(l-n/L)IZkzl (3:15)

where p = pj-p2 and ¥ = r]-r2. By substituting the proper spectrum
of refractive index fluctuations in Eq.(3.14) or (3.15), depending
on whether the refractive index fluctuations are isotropic or not,
the amplitude correlation function for the two frequency, four
point case can be evaluated.

Now using Eqs.(3.11) and (3.4) and following the same
arguments used to derive the amplitude correlation function, it can
be shown that the four point two frequency phase correlation

function for the isotropic case is given by
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C¢(f1,§1,t 1:K1; ?Zsﬁz’tZ:kz)

[ <]

L
= 4n%k1ky [ dn [ K ¢ (K)dK J_(K g<51—52) #  = %J (F1-%5) - vi|)
(8] [a]

cos[K? n(1-n/L)/2k1] cos[K? n(1 - n/L)/2ky] (3.16)

Similarly the cross correlation function for the amplitude at
a frequency k] at a point p] in the receiver plane at a time t; due
to a point source at rj] in the transmitter plane and the phase at a
frequency kp at a point py in the receiver plane at time to due to
a point source at rz in the transmitter plane is derived using
Eqs.(3.10), (3.11) and (3.4). Following the same arguments as
earlier and considering the case of isotropic turbulence the cross
correlation function is given as

Cx¢(f1,ﬁl,t1,k1= 2,P2,t2,k2)

oo

L
= 41%1ky [ dn [ K ¢ (K) dK cos[K? n(1-n/L)/2k;]
o (o]

JO(K|(n/L) p1-p2 + (1-n/L)(r1-r2) - vT|) sin[Kzn(l-n/L)IZkl] (3.17)

Using these correlation functions the two frequency structure

functions can be evaluated.
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3.2 FOUR POINT TWO FREQUENCY STRUCTURE FUNCTIONS

The four point two frequency amplitude structure function is
defined as

Dx(;liﬁlitllkl: EZ:;Z,tZskZ)

<[X(;1351:t13k1) = X(;ZsEZstZskZ)}2>

Cy(o,k1) + Cy(o,k2) - 2Cy(r1-T2,p1-p2,t1-t2,k1,k2)
Using Eq.(3.15), we get

2 2 & Ze 7
D, = 47k [dn [ x 4k ¢ (k) sin“[k“n(1-n/L)/2k1]
(o] (o]

oo

L
+ 41252 [ dn [ R dR 64(K) sinZ{K2n(1-n/L)/2ky]
(8] (o]

L oo
—Sﬂzklkzof an_[ K dk ¢_(X) sin[K2n(1-n/L)/2k;]

sin[K2n(1-1/L)/2k,] JO(K (n/L)(p1-p2) + (1-n/L)(ri-ry) - v1|)(3.18)

Similarly, the four point two frequency phase structure function is

defined as

D¢(?1,51,t1,k1; r2,p2,t2,k2)

& % = 2
= L{Eolr1;p1st1ske) = $(va;,p2:t 2:k2)] >
and using Eq.(3.16), this is derived as

L -]
D¢ = awzklz [ dn [ dk ¢n(K) cosz[Kzn(l-n/L)/2k1]
o o

L [+ -]
+ 47%5% [ dn [ & ¢_(K) cos 2[K3n(1-n/L)/2k ]
0 (s
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L 0
8wk 1k, [ dn [ dK ¢_(K) cos[KZn(1-n/L)/2k;]
0 (s}

cos[Kzn(l—n/L)IZkz] JO(K (n/L)(p1-p2) + (1-n/L)(ri-r2)-vt|) (3.19)

Finally the two frequency wave structure function is defined as
Dy = Dy + Dy

and using Eqs.(3.18) and (3.19), this is given as

=]

L
47%k,% [ dn [ K dK ¢_(K)
(o] 0

[+ <]

I;
47%k,% [ dn [ dKk K $_(K)
o (o)

+

L o
8m%k1ky [ dn [ dK K 6 (X) cos[R?n(1-n/L)(1/k1-1/kp)]
[o] [o]

|

Jo(x\(pl—pz)(n/L) + (1-n/L)(r1-t2) - vt|) (3.20)

All the above correlation and the structure functions are
required in order to assess the effects of the turbulent atmosphere

on the polychromatic speckle propagation.
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3.3 CHOICE OF THE SPECTRUM OF FLUCTUATIONS

In order to numerically evaluate the above functions for any
given data, the three—dimensional spatial spectrum for the
refractive index fluctuations iﬁ the turbulent atmosphere is
needed. The most famous and often used spectrum for optical
propagation through the turbulent atmosphere is the Kolmogorov

spectrum, given by63
¢ (®) = .033 ¢ 2k (3.21)
n n

The above spectrum has been modified by Tatarskii®3 as

P i3
2 -11/3 o B /Km

¢n(K) = .033 Cn K (3.22)

where kp = 5.92/%, to take into consideration the dissipation

of energy due to viscosity effects for eddy sizes less than the
inner scale of turbulence. For eddy sizes greater than the outer
scale of turbulence, the energy in the eddies must be less than
that predicted by the Kolmogorov spectrum. This effect is taken

into consideration by the Von-Karman spectrum given by63

2, 2
2,.2 2.~11/6 KRy
¢n(K) = ,033 C, (R + 1/L0 ) e £ 3.23)

where k, = 2m/L,. The spectra (3.22) and 3.23) are good models

only in the inertial sub-range, 2m/L, < K £ 27/%,. 1In this
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they behave like the Kolmogorov spectrum. Outside this range as
there is little theoretical basis and scant observational support
for these spectra, any predicted effects due to scale sizes outside
the inner and outer scales of the turbulence may not be valid.

More recently, Hill13,4 proposed a new spectrum which takes into
consideration the effects of the inner scale. The
three-dimensional Hill spectrum is given by

2

6 (R) = (c_%/4m)(1/K*)(1 + Rep) T (3.24)

Elliott et al.d used this spectrum to describe the temperature
fluctuations of turbulence, in a heated tank and studied the
effects on the laser beam propagation. They also compared the
relative merits of the various spectra for describing the
temperature fluctuations of a turbulent medium.

A serious defect of the Hill spectrum is that there is no
outer scale term in the final expression for the spectrum. Since
phase covariance is strongly dependent on the outer scale size, it
is not possible to calculate the phase covariance even for
monochromatic wave propagation using the Hill spectrum. Similar
difficulties exist while calculating the phase covariance or the
structure functions for the two frequency case, if we use the Hill
spectrum. The Hill spectrum should be modified to include the
outer scale effects, in analogy with the Von Karman spectrum, for

use in phase calculations,



3.4 CONCLUSIONS

In this chapter all the necessary four point two frequency
correlation functions and the structure functions, are developed
starting from fundamentals and including the effects of the time
delay. Substituting kj = k2, in all the expressions (where k is a
wave number), corresponding results of the monochromatic case are
obtained. The Hill spectrum is radically different from the rest
as it predicts larger values for the variance and the covariance of
log-amplitude fluctuations for some values of the ratio of Fresnel
zone size to the inner scale of turbulence. For most of the
experimental data used in this thesis, the results predicted by the
Hill spectrum are approximately the same as the Kolmogorov
spectrum. Since the Kolmogorov spectrum is well tested and widely
used, all the computer programs in this thesis (except for the
phase calculations) were written using this spectrum. For phase
calculations, the Von Karman spectrum is used. Additional remarks
regarding the Hill spectrum follow at the end of Chapters V and VI.

The two frequency correlation and structure functions have not
been derived, even for simple cases for saturation conditions of
turbulence (i.e. Rytov variance > .3). However, following
Clifford® who derived a form of log-amplitude covariance
function in saturation regime by convolving the unsaturated form of

log-amplitude covariance function at each point along the path with
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the short term modulation transfer function, it may be possible to
derive the saturated turbulence forms by knowing the two frequency
short term modulation transfer function. However it will be shown
in Chapter V that for speckle propagation through turbulence, a two
frequency turbulence theory in saturation regime is rarely needed.
Also there is not enough experimental data to substantiate any
theory proposed. For speckle propagation through turbulence, the
unsaturated forms of log-amplitude covariance and wave structure

functions are sufficient to develop a good theory.
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CHAPTER 1V
THE INTENSITY CORRELATION FUNCTION FOR A POLYCHROMATIC SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

In the design of atmospheric optical systems, using speckle
patterns, such as compensation for atmospheric distortion, remote
sensing of cross wind, etc. the nature of the speckle pattern
produced by a diffuse target at the receiver plane is very
important. A very important statistical parameter in this
connection is the correlation function of the received intensity at
two space time points in the receiver plane. As will be shown
later, by knowing this correlation function and the mean intensity
at the receiver, all the necessary statistical parameters of the
intensity can be determined. The correlation function of the

received intensity for two space time points is defined as

BI(Elstl; P2,t2) = <L(p1,t1)I(p2,t2)>

where I(E;’ri) is the intensity at a point"ﬁi at time t. in the
receiver plane. This generalized correlation function is evaluated
by determining the intensity at two space time points and taking an
ensemble average over both space and time as well as over an

ensemble of rough surfaces and atmospheres.
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4.1 ANALYSIS

The path geometry for the problem under consideration is shown
in Fig. 4.1. The transmitter and the receiver are located at one
end of the path and the laser beam from the transmitter illuminates
a diffuse target at the other end of the path after propagation
through the turbulent atmosphere. The speckle pattern, formed
after the laser beam scattered from the diffuse target, propagates
back to the receiver through the turbulent atmosphere. It is
assumed that the back scattering is negligible and the outgoing and
the incoming radiation experience independent turbulence regions.
Also it is assumed that the transmitter consists of a number of
dis;rete frequencies given by k;, i =1,2,....,N and that the
receiver bandwidth is very much smaller than any difference
frequency present in the transmitter (Aw << w; - mj) but large
enough to recover all the amplitude fluctuations in the turbulent
atmosphere. Let p, p and r denote the transverse coordinates in
the receiver, target and the transmitter planes respectively which
are perpendicular to the line of sight path if the receiver and the
transmitter are sufficiently close. It is known that the intensity
fluctuations in the turbulent atmosphere at different frequencies
are perfectly correlated for small bandwidths of the
transmitter.85,66 In order that the intensity fluctuations at
two different frequencies be decorrelated, very large bandwidth of

light or widely separated frequencies are needed.



Turbulence Speckle Field

Diffuse Target

Transmitter

Receiver

Figure 4.1.

Experimental and theoretical configuration of the path geometry for
target generated speckle pattern.

16
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A widely used method of generating speckle field is to
illuminate a very diffuse target with the TEMgg laser beam at
several frequencies as shown in Fig. 4.1. The field distribution
at the transmitter is given as
N
)

j=1

U (r) U (r,k.)
0 0 ]

N
= ) U, exp{—r2/2a r ik.rZIZF} (4.1)
=1 °J 9 J

where Uo(r,kj) corresponds to the field distribution at the
frequency kj and a. and F are the characteristic beam radius and
focal length (assumed to be the same at all frequencies without any
loss of generality) respectively. The field at the target plane
before scattering from the target can be written, using the
extended Huygens Fresnel theory,23’62 as

N

L wo.ks)
j=1 .

U'(p)

N
P

" {(kjuoj>f(iva)]exp{ikj(L + p2/21) }

x [ exp{-(r?/20 ?) -irz(kj/ZL)(l - L/F)

ikj(?°5')/L + ‘i'l(p,r,kj)}d? (4.2)

where the random function ¥;(...) represents the effect of the

turbulent atmosphere on the propagation of a spherical wave from a
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point located at a point r in the transmitter plane to a point p in
the target plane, k is the wave number and L is the path length.
Similarly the field at the receiver can be written in terms of

the fields U(p,kj) at the target after scattering as

ik.(L + p?/2L)
u(p) = [kj/ian]e

j

I ==

1

i(k./2L)(p%-2p+p) + ¥2(p,0,k )

x [ JEIKp,kj) e (4.3)

The fields before and after scattering from the target are related
by the properties of the target. The complex random function is
given as

¥Y=x+ 1i¢ (4.4)
where x represents the log-amplitude perturbation of a spherical
wave due to the atmospheric turbulence and ¢, the phase
perturbation. Using the above three equations, the expressions for
the two point space-time correlation of the received intensity can
be developed. When N discrete frequencies are present as in

Eq.(4.1), the correlation of the received intensity is given as
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Bl(plyerT)

<U(E},o)u*(31,o)U(pz,T)U*(pz,T)>

N N
) [(kiz k.2)/(2m)*] [[]] do1 dp2 dps dpy
i=1 j=1 J

g Forsan - R e
<U(91,0,ki)U (Oz,o,ki)U(Da,T,kj)U (pq,T,kj)>

. 2 S . . o e oo
exp{(ik,/2L)[p) —p2%-2p1°(P1-p2)] + [1kj/2L][paz—pu2—292°(ps-pq)l}
H(p1,P25P1,P2,P3,P45 T5 K;oke) (4.5)

where, using the generalized spherical wave mutual coherence

function,67 the function H(....) is given by

H(Pl,P2;01,92,P3;94;T;ki,kj)

]

*
<exp[?(pl,01,0,ki) + ¥ (pl,pz,o,ki)

+

*
LP(Pz,Da,‘f,kj) + ¥ (Pz,pq,T,kj)]>

exp[_l/z{Dty(D:QZ'plsoﬁki ski) - DT(PZ‘P1,03'91=Tski ’k_])
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+ Dy(PZ-pl:ph-pl:Tski’kj) * Dy(pZ_Plsp3-DZsTskiski)
= DT(PZ_Plspk‘pst:ki,kj) + Dy(os ph—p:isoskj :k-j)}

+ 2CX(p2‘P1303‘pl:Tskiskj)

+

ZCX(PZ"'PI:Dh'DZ,T,ki,kj)] (‘!‘.6)

The two frequency structure function Dy and the two frequency
log—amplitude covariance function Cy are given using the results
of the previous chapter for the Kolmogorov spectrum as,
1 = -]
Dy = 132 7°L [ du cn2 G |l e
0 o]
- [ 2 2 2
k1% + k2° - 2k1k2 cos{(u®t(1-t)L/2)(1/k1-1/k2)}
JO{U|fP2—P1 + (l—t)oz—pl-{"(tz-tl)“] (4.7)
and

1

c, =132 72 k1koL [ dt an(t) I @ o #0®
0 o

sin[uzt(l-r)L/2k1] sin[uzt(l—t)L/Zkz] Jo{u‘t(EZJEl) + (1-t)(pp-p1)

—i?(rz-tl)|} (4.8)

The dummy variable t represents the distance from the source to the

field point normalized by the total path L. The function H(....)
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is the two frequency fourth order mutual coherence function. Since
the target is perfectly diffuse, it can be assumed that at the
target the fields due to any particular frequency are gaussian
(spatially incoherent). If the coherence length of the source is
larger than the surface correlation length, the fields before and

after scattering can be related as

- i . o .
(U(pl,o,ki)U (pz,o,ki)U(pg,r,kj)U (pq,'r,kj)>

(471/%%) 2 <1(P1,0)><1(P3,1)> 8(P1-p2) 6(P3-ps)

(41/x2)2 <U(By ,,0)U (Pis, T)><U(B2, TV (B2,0)>

+

§(o1-py) 8(p3-p2) if k, = kj

]

(47/%. k.)% <1(P1,0,k. )><1(P3, T,k.)>
ij i j

§(p1-p2) 8(p3-py) if k, # ks

Substituting this result in Eq.(4.5) and completing the dp; and
dp3 integrations, the correlation of the received intensity is
given by

BI(p,T) = Cll(p,‘f) - CIZ(p,T) (4.10)
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Czl(p,T)

N N
= (1/7%") 1 Y JJ doo dpw <1(p2,0,k; )>
i=1 j=1

4CX(P1'P2,02'94, T3ki ’kj)

<I(54,T,kj)> d (4.01)

and

Clz(p,T)

N
= (1/“2Lq] Y [ deodpy <U(5L,o,ki)ﬁ*(34,T,ki)>
5=

Pk * 1 ‘BeD
<UCp2, T,k;)U (p2,0,k,)> SRIENEE HZ(Pl:PZ;QZ:QH;Tiki,kj) (4.12)

In order to evaluate Eqs.(4.11) and (4.12), the quantity

- -
(U(pq,o,ki)U (pq,T,ki)>, which is related to the incoherent speckle
field at the target, must be calculated. Using Eqs.(4.1) and

(4.2);
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— *
<U(py,0)U (py,T)>

= (kizlszzjuoiz [ dt) drs exp[-(r12+r22)/2a02 + i(k,/2L)(1-L/F)

(r1%-r,?) ~i(k, /L)y (T1-T2) | <exp[¥(Py,T1,0) + ¥ (34,52, 1) [>(4.13)

where the two frequency mutual coherence function is given by

S Fo— =
(exp[?(pg,rl,o) + ¥ (py,r2,T) :[>

= exp[- (1/2)Dy(0,T2-71,T)] (4.14)

In Eq.(4.13), changing the variables r] and rz to R and r where
2R =11 + r2 and r = r] - r2

we get

ik | —
<u(py,0)U (py,T)>

~ B 8L % B o 2 2. s = =
= (1/2mk. “ U_.“(a_“/2L°) [ dt exp[-t [4o i(k, /L) Dyt

- (1/2)Dy(0,-7, 1) - (k2L (a 2/6)(1 - L/F)?c?] (4.15)

where the following relations are used.
2m

| de e P3P - on Jo(apr)

0
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® 2 2 2
Y S J_(bR) dR = Eifoaty ™ 418
o
The mean intensity at the target, is needed to complete Eq.(4.11)

and can be evaluated by putting T = 0 in Eq.(4.15) and it is given

by
<L(puy,k;)>

= (kiz/Lz] Uoiz(GOZIZ} | rdr JO(EITE pyr) exp{—r2/4a02 - (r/pai)S/3
- (k;212) (@ ?78) (1 - /P %7 (4.16)

kzL)—als

where P = (.545625 an is the lateral coherence length.

Substituting Eq.(4.16) in Eq.(4.11) gives,

Cll(p,T)

N N
(1/7%L") 121 521 [ dpy doy k.2 ka U o Uojz (a ?/41%)

[ ridr; Jo(ki/L our1) | rodry Jo(kj?E p2r2)

5/3 _ (eafp )53

x exp[*rlzlﬁaoz - rzzlfmo2 - (rllpoi) 0]

((ki2002/4L2)(l—L/F)2r12—(kj2a02)/4L2](1-L/F)2 53]

X exp {4Cx(p, Dz'pu,f,ki,kj)} (4‘1?)
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By changing the coordinates p2 and py to R and p where p = po—py

and 2R = py + py and using the expansion®8

L= -]

3, (k/L rlli & 3/21) ¥ sm(*»:l)‘“ J_(&JL r1 R) J_(K/L ry p/2) cos(m¢)
m=o (4.18)

CIl is given by

N
i L 2.8 2 2
¢ (P = [ao /4n?L®) ] izl jzl LR A 3

[dp [ dR [ ¢y dry [ drp ) {Eml(-l)mljml(ki7L 0/2 rl)Jml(ki7LRr1)

m]=o

oo

co§EIT¢R-¢p)}{ ) sm2(+1)m2 sz(ki7L o/ 2V 2) sz(kj7L R rp)

m2=0

5/ _)5/3
]

cosmzf¢R—9p)} exp[—r12/2302 - r22/40b2 - (rlfpoi) 3 - (rz/po
- (kg %a fanH -/ ® - ((kj2 a?)/41%)(1-1/F)r5?]

x exp {4 CX (p,D,T,ki,kj)} (4.19)
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Completing the integral over dfR gives us,

N

N
- L, 8 2 2
o e ® = (o'17) 1 jzl Uoi Yoy Ki X

(==

x f dp f RdR f r] dr) f rp drap [ z e (-1)™!

m1=0 ml
Jml[kih‘ o/Z r1) Jml(qf R ry) Jml[-k—_';'-ﬁ: o/7 r3) Jml(gﬁt R r2)]

exp{-r12/4a°2 -rzz/haoz - (rlfpoi]5/3 -kizle 002/& (l-L/F)rl2

2 2z 2 2 2
- {kj a )/4L% (1-L/F)* 2%} exp{écx(p,D,T,ki,kj)} (4.20)

Changing the variables rj; and r2 to r3 and ry where

(ki/L)r1=r3 and (kj/L)r2=rq

Eq.(4.20) can be rewritten as

N N
T T 2. 2=
CIl(p,T) = (ao /2mLt) izi jzl Uos Uoj [ do [ RdR [ r3dr3

[+ -]

x [ ry dey [ ] e =1)"® 3 (072 r3) J_(Rr3) J (P72 1)

m=0
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3 (Rey) ] exp{-ra® 12/k.2 4o % -ry1%/0a ? ka - (T3L/kp ) 5/3
- (TR R, poj)sfa —r3%(a Y/4)(1-1/P) 2 —ry%(a 2/4) (1-1/P)?)

exp{&Cx(p,p,T,ki,kj)} (4.21)
The integral over R can be accomplished by using the relation
[ RdR Jm(r3R) Jm(qu) = 26(r3-ry)/(r3+ry) (4.22)

Substituting Eq.(4.22) into Eq.(4.21) and completing the integral

over drs,

N N

_ Y Y 2 2 [ —
Cll(P’T) = [0‘0 /2mL7) izl jzl Uss Uoj [ do [ radrs

o0

x [ 1 D" e Jm2(37? r3) | exp{—(r32 LZ)/(Aabz)(llkiz - l/ka)

m=0

- R ~(FIL/R; ) /3 e g2a 22 (1-1/7)%)

= exp{ﬁcx(p,psf,kikj)} (4.23)

Using the summation
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D% e J Xx) = J (2%)
m m [e]

l ~

m=0

and dropping the index 3, the final result for CI1 as a double

integral is given by

N N
_ 4 i 2 2 —
¢, (P, = (ao /2mLY) izl jzi Upi ™ Uy [ dp [ rdr

3 (pr) exp{-[rszxauoz] (1/ki2 + 1/kj2) = (?f7kipoi)5/3

-/ P poj)5/3 - rz(acf/z)u—z.mz} exp{4C,(p,p, T,k ,kj)} (4.24)

Similarly, using the Eqs.(4.12) and (4.13) and following the same

arguments, Cy, is given by

N
_ 2y 2024 Mg Bl P o= e
Cp, Py = izi(ki /471U YL [ drp [ dp

x exp[—r22/2302 - Dw(o,—;é,—T) - r22 kiz(GOZIZLZ)(l-L/F)Z]

x exp[ikih. pe(p+r2)] Ha(p,p,T) (4.25)

By changing r2 to r3 where ki?L rp = r3, CI2 can also be

written as
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CIz(p’Z)
& b, 4 2 — —
= ):Uoi (a /4w )] dr3 [ dp
x exp[-r3’L?/ (2k%a ?) - Dy(o,-Lrs/k, - D - (r3¥/2a? (1 - 1/P)?]

x exp[i kih" Ppep+i -p-'rg] Hy(p,p, T) (4.26)

where

HZ(B,;; 1) = exp ["D,{,(O,_O-,O) = DLP(;!OST)

+ (1/2)%(5’,-3,?) + (1/2) py(p,p,T) + ZCX(E,-'E,T)

+ 2 cX(E,‘p‘,-r)] (4.27)

The term Cy, term is not derived in detail as it is a
straight forward generalization of the corresponding term for the
monochromatic case, worked out by Holmes et al.l®

By adding Eqs.(4.25) and (4.26), the two point space time
correlation function of the intensity of a polychromatic speckle

pattern is given.
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4.2 CONCLUSIONS

The numerical evaluation of Cy, was not accomplished
previously when T is not zero for the monochromatic case. So the
two point space time correlation function of the sﬁeckle was not
numerically evaluated even for the monochromatic case to compare
with experimental data. In Chapter VII, an approximate method to
evaluate the above expression numerically is described. 1In the
next two chapters, expressions for the variance and the covariance
of the received intensity are developed using the above expression
and the mean intensity to be calculated later.

In summary, in this chapter, a very genefal second order
statistical parameter, the correlation function of the received
intensity when the transmitter consists of N discrete frequencies
is evaluated. This will be used in the subsequent formulations to

develop all the necessary statistical parameters.
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CHAPTER V

THE MEAN AND THE VARIANCE OF THE RECEIVED INTENSITY

In the previous chapter, a‘general formulation is developed
for the two point space time correlation function of the received
intensity. From this correlation function and the mean value, the
variance of the received intensity can be obtained. A more
meaningful parameter is the variance of the received intensity,
normalized to the square of the mean of the received intensity.
However the mean intensity cannot be evaluated from the two point
space time correlation function. In this chapter, we develop the
expressions for the mean and the variance and compare the results
with experimental data. The variance of the received intensity can
be used to obtain the turbulence level an of the atmosphere and
this can be used to compensate for the turbulence in the remote

sensing of wind.
5.1 MEAN INTENSITY

When the polychromatic speckle field has N discrete
frequencies, as described in the earlier chapter, the mean
intensity at a point p in the receiver plane is given for the

folded path geometry of Fig. 4.1 as

KI(p)> = <U(p) U (p)> (5.1)
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N N .
I(p)> = ) ) k. k;/4m°L% e
j=1 i=1

i(k, -k, )(L + p2/2L)

*x — =y
x [] <U(P1,kj)U (p2,k;)> dpy dp2

x exp[i kj/ZL (p1? - 2pepy -i k; /2L (027 - 2p+p2) ]

*
x <exp[?2(p,pl,kj) + ¥ (p,pz,ki)]> (5.2)

Under the assumption that the fields due to different frequencies
are uncorrelated, the fields at the target before and after

scattering are related as
=
<u(p1,k.) U (p2,k.)> = 8(p1-p2) 4m/k, 2 <1(p,k.)> if k.= k.,
J 1 1 i i 3
= o if k. # kj (5.3)

Substituting Eq.(5.3) in Eq.(5.2),

I m =

<1(p)> = 1/mL? / dp <1(p,k)> (5.4)

j=1
Substituting for <I(p,kj)> from Eq.(4.16),

N 2m
<a(p)> = ) 1/mL% [ pedp k.2 U .2 o ?/2L% [ rdr [ d8
=] J o] o e

j o



N
<1(p)> = ¥ (1/7L%) [ p dp k.
g .

x Jo[(kjfL)pr]exp[—r2/4a02

Using the integral

[ e 3 (er) dp = &(r)/x

o
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2m
2 2 2
UOj (%3 /2L°) [ rdr £ dﬁp

2

- (e/0,0% 3= HLD) (@ 2/4) (1-1/F)20?)]
il ] o

€5.5)

the mean intensity is given by

<I(p)> =
hi

Il —=

2 2 42
. Uoj (ao fL7)
where <Ij> is the average
field at the frequency kj

above expression that the

N
= ) <I.> (5.6)

intensity at the receiver due to the
in the transmitter. It is clear from the

average intensity is independent of the

turbulence level and is sum of average intensities due to each

transmitted frequency kj.

5.2 THE VARIANCE OF THE RECEIVED INTENSITY

The variance of the received intensity is, by definition,

given by

012 = <1% - <2

(5.1

where <I® is the second moment of the intensity and it is a
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special case of the correlation function when the two space time
points are the same. Therefore, <12> can be calculated by putting
p=0and T =0 in the equations for By(p,T) in the previous

chapter. Thus

<1% =c¢. (0,0) + c. (0,0) (5.8)
I; ]

where
N s o8 ;) 2 -

c;, = [or.o J27LY) izl jzl Ui” Ugs [ do [ rdr 3 (1)

x exp |- r2(L2/&002)(l/k12 + 1/1<j2) - (rL/"‘“‘“kipoj)S/3 - (rL/_—_)kjpoj 5/3
- (rzaoz/z)(l-L/F)z] x exp[4 CX(D,ki,kj)] (5.9)

and

N
c. = E (Uoi'* ao“lzﬂL“) [ & [ edp 3 (pr)

x exp[-22Y2k. D) a 2 - 2efEp Y ? - (02 a Y2) Q-1/m?]

i o oi o
x eprACX(p,ki)] (5.10)
Since p=0, integration over dep can be completed in Eq.(5.9) and

CI1 is given by
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N N
CI = [aoquq) Z X Uoi2 Uo'2 f pd o f rdr Jo(pr)
; i=1 j=1 .

x exp[-r*(L%/40 2 (1/k 2 + llka) - (r.L/_-_kipoi)S[a - (rL/Kp D) 5/3

- (rzaozfz)(l-L/F)z] x exp{acx(p,ki,kj)] (5.11)

Since T =10 dep and dﬂrz integrations can be completed in

Eq.(5.10) and C_ 1is given by

I2

N
C. = E (u

T
P ! /L) [ rdr [ edo Jo(pr)

ol
x exp[—rzLZ/(Zkiz aoz) = 2(rL/kpoi)5/3 - rz(qozlz)(l-L/F)z]

x exp[&Cx(D,ki)] (5.12)

Since the expectation value of the intensity at each frequency is

given as

B B 9. B
<1i> = Uoi (ab L) (5.13)

if the final expression for the variance of the received intensity

can be written as
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N N
°12 = 7 ¥ <1.><1.> [ edo [ rdr J (pr)
B & i77°7] )
1=]1 3=1

x £10r,k; k) exp[acx(p,ki,kj)}

N
+ ) <1.>% [ rdr [ edp J_(pr)
i=] ! °

£2(r,k,) exp[acxcp,ki)} - {IapP? (5.14)

where

fl(r,ki,kj)

_ 2.2 2 2 2 —5/3 —5/3
= exp[-(r°L [ o ){l/kj + 1/k, } = Genfke 0 = (rL/kgp )
-r%(a %/2)(1-1/F)?] (5.15)
and

fo(r,k)

= exp[-r?(L%/20 )? - z(rL/"”“‘kpoiﬁ” - (e2a 2/2)(1-1/P?]  (5.16)

The normalized variance of the received intensity can be

obtained now by dividing Eq.(5.14) on both sides by the square of

the expectation value of the total received intensity.
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5.3 NUMERICAL ANALYSIS
The term Cr, can be evaluated by expanding the function f;
in a Fourier-Bessel series’0 as

f1(r,ki,kj) = E bm(ki,kj) Jo[pmr/Al(ki,kj)) (5.17)

where the coefficients by's are given by

Al(ki,kj)
_ 2 2
bm(ki,kj) = [2/{a, (ki,kj)Jl (pm)}] [ fl(r,ki,kj)
(o]
Jo[pmr/Al(ki,kj)]rdr (5.18)
J(p)=0 (5.19)
Q m

and A] is chosen such that f1(r) is negligible for some value of

r=A], which is dependent on both ki and kj. Then C g is given as

I
Gy = g b ok ) exp[écx[pm/Al(ki,kj), ki,kj)J (5.20)

Similarly C

T can be evaluated by expanding the function f7 in a

£2(r,k;) = E c_(k) Jo[Pmr/Az(ki)) (5.21)

where
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Ag(ki)
c (k) = i £2(r,k,) Jo(pmr/AZ(ki)err (5.22)
J(p)=0 {5.23)
(s ] m

and Az is chosen such that f; is negligible for some value of

r = A2. Then Cy, is given as

c = E c_(k.) exp[&Cx(pm/Az(ki),ki)] (5.24)

It is convenient to let <Ii> = Gi<1>

so that E Gi=l' The normalized variance of the received intensity

is then given as

0. 2= g %<2
IN I

N N
. izl jzl GG, {g bl sk ) explac, (p /a10k; k) ke k] ]

+
2

1 Giz {E c, (i, dexp[4c (p /A2(K,), )]} - 1 (5.25)

i
For several problems of practical interest, all the frequencies are
sufficiently near enough that we can replace all the frequencies
under consideration by the center frequency. This approximation is

valid at least for pulsed sources which give a poor vacuum speckle

contrast when scattered off a rough target.
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By defining an atmospheric perturbation term AP(ki’kj) as

AP(k.,k.) = <I.I.>/<I.XI.>
i’ ¥ 17773
- E bm(ki,kj)exp[4cx(9m/A1(ki,kj), ki,kj)] ' (5.26)

the normalized variance of the received intensity o Z can be
N

written as

B 2 _
o, %= g G, “ AP(k. k) + ] ] 6, AP(k; k) = 1. (5.27)

Iy i

Eq.(5.27) can be used to predict the effect of the atmospheric
turbulence on the polychromatic speckle if the intensities of each
line or mode in the laser is known. If the bandwidth of the source

is small, a more convenient form, for Eq.(5.27) can be written in

terms of the vacuum speckle contrast ratio (VSCR), as

cINz = {E baexpac (p /A%, k)]} [1 + (vser)?] - 1. (5.28)

where k is the center frequency.

The VSCR is the square root of the normalized variance as
measured in vacuum. This measurement can be made in the laboratory
or over a short propagation path at almost zero turbulence level.
Eq.(5.28) is particularly useful in that knowledge of the
distribution of the modes making up the laser source need not

be known. In order to determine when Eq.(5.28) can be used, the
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parameter

AP(ki,kj)/AP[(ki +k)/2, G kj)fz)]

has been calculated for various ratios of kj to kj. The

results are shown in Table 5.1. As can be seen, a large wavelength
difference is required before the complete form of the atmospheric
perturbation is required. Consequently Eq.(5.28) can be used for

most applications.
5.4 EXPERIMENTAL RESULTS

Experimental measurements of the normalized variance of a
polychromatic speckle field were made at 1.06 um by Holmes et
al.?*% Their results are compared with the theory developed here
in Fig. 5.1. A pulsed Nd:YAG laser running in several axial and
transverse modes at 10 pulses per second and focused onto a target
at 500 meters range was used as a polychromatic source. The data
shown in Fig. 5.1 represent a total of 12,200 pulses. A measured
VSCR of .135 was used to generate the theoretical values from
Eq.(5.28) for comparison. Good agreement was obtained between the
theory and experiment within about 5% error in the atmospheric
perturbation (this error may be due to spatial modes). The theory

developed in this chapter explains this result satisfactorily.
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TABLE 5.1. COMPARISON OF THE TWO-FREQUENCY ATMOSPHERIC PERTURBATIONS.

FOCUSED TRANSMITTER, L = 500 METERS, a = 1.35 cm.

AE (K. k.
k. - k, ( i J)
1 ] k. + k, k, + k,
k . ap |2 i i |
- 2 2
02=ll 02=02
X X
e ! 1.000 1.000
ol .99964 1.000
.3 .9968 .9976
A .99484 .9986
D .990725 .9984
.6 .9872 .99253
k., + k.
2 i i

0 “ is specified at k_ =
X o

Ao = 0.488 um
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Figure 5.1.
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Contrast ratio of the received intensity for a
polychromatic speckle field generated by a
multimode Nd:YAG laser versus the log-amplitude

standard deviation.
data.

Dots indicate the experimental
Solid line is the theoretical curve.
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5.5 DISCUSSION

As remarked earlier, the theory developed here correctly
explains the variance data, collected by Holmes>% et al. 1In
addition the theory predicts substantial increase in the variance
even for incoherent sources as will be shown later.

Evaluations of the theoretical formulation, given by Eq.(5.28)
are shown in Fig. 5.2 for several values of the VSCR. It is
interesting to note that at high values of integrated turbulence,
the normalized variance returns to its vacuum value. This return
of the normalized variance is caused not by the saturation of the
turbulent atmosphere but by a transition from the dominance of
atmospheric perturbation by log—amplitude effects to dominance by
phase effects. From Eq.(5.28), it is obvious that the normalized
variance depends on the log—amplitude covariance. It is obvious
that it also depends on the transverse coherence lengths p,i and
Poj through parameters A] and Aj.

In order to obtain the Eqs.(5.20) and (5.24), the functions f;
and f; were expanded in a Fourier-Bessel series. These expansions
required that they become negligible for some values r = A;, Ay and
beyond. From examining the Eq.(5.25), it is clear that there are
three scale sizes, 0, the speckle size at the receiver (same as

the beam size at low turbulence levels for a focused beam geometry)
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Normalized variance of the received intensity versus
log—amplitude variance for several values of vacuum
speckle contrast ratio.
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and the transverse coherence lengths p,; and Poj- At low
turbulence levels a, dominates f£] and £, and A; and Ay are
constants. Under these conditions, the normalized variance tends
to increase exponentially with the turbulence level since Cy is
proportional to sz. However as the turbulence level an
increases, P,; and Poj decrease and at some point they will

start to affect A} and Ay significantly. Now with further increase
in the turbulence level, the parameters A; and Ay rapidly decrease
in value. This will cause Cy to be sampled further and further
out on the tail of the covariance curve. In the limit, as Cy
approaches zero, the atmospheric perturbation is unity and the
normalized variance returns to the vacuum value. Consequently, the
behavior illustrated in Fig. 5.2 does not require saturation to
occur. However if saturation does occur before the normalized
variance returns to a point near its vacuum value, the process
proceeds more rapidly because of the saturation effects in Cy and
the shape of the bump in Fig. 5.2 is affected. Consequently, if
the functions f) and f2 are dominated by p,; and Poj before the
onset of saturation, then a form of Cy that includes the
saturation effects does not need to be used (this saves a
substantial amount of computation time). Otherwise the saturation
form of Cy should be used in Eq.(5.28). When the functions f)

and f; are not dominated by p,; and Poj» the assumption that
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amplitude fluctuations are normally distributed and the use of the
generalized spherical wave mutual coherence function is strictly
valid. In order to substantiate the arguments further and to
estimate the effects of the other propagation parameters, the term
AP is calculated for different conditions of turbulence. Figure
5.3 shows the effect of the transmitter size on the atmospheric
perturbation term. As the beam size reduces, the term AP also
reduces. Mathematically as « + 0, f; and £ > 0.
Phenomenologically, this means that at the target the beam has
become large and smooths the effect of the amplitude fluctuations.
Such smoothing can also be achieved by defocusing or collimating
the transmitted beam so that the beam on the target becomes large.
This result is shown in Fig. 5.4 which shows that defocusing
reduces the atmospheric perturbation.

In the analysis above, the coordinate r is actually of
dimensions 1/length. This is because the spatial coordinate at the
transmitter was normalized by k/L. In the actual analysis, the
log-amplitude covariance is dependent on the relative size of r
with respect to the Fresnel zone size YL/K. Therefore the important
parameter is r = (Py/A) YL/K. In the region, where the beam
sizeay is either completely or partially dominant, the AP term is
also affected by the wavelength via the Fresnel zone size. This
effect is very substantial as can be seen in Figs. 5.5 and 5.6,

where the AP term was calculated for two different path lengths at
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various wavelengths. As the wavelength decreases, the Fresnel zone
size increases and correspondingly Cy is reduced, thereby
reducing the atmospheric perturbation. Further in the case when
widely separated frequencies are present, the scale size A] is
dominated by the larger wavelength which tries to smooth the
amplitude fluctuations. Thus most of the AP term comes from the
fluctuations at the short wavelengths. The above theory does not
take into account the effect of the inner scale size of the
turbulent atmosphere. When the speckle size is of order of the
inner scale size, the effects may be very substantial. It is
expected following the works of Hill and Clifford,’3:7% that the
normalized variance may increase substantially depending on the

ratio of the Fresnel zone size to the inner scale.
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CHAPTER VI

COVARIANCE OF THE RECEIVED INTENSITY OF A POLYCHROMATIC SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

The covariance of the received intensity of a speckle pattern
produced by a diffuse target in the presence of the turbulent
atmosphere is an important consideration in the design of adaptive
optics and remote sensing systems. For example, by choosing a
proper spacing between the detectors, the covariance function can
be made less sensitive to the wind velocity fluctuations along the
path. In the monochromatic case, the measurements by Pincus et
al.75 and the theoretical work of Holmes et al.’* show that the
covariance scale size is dominated by the beam size at low
turbulence levels and by the lateral coherence length (p,) at the
target at very high turbulence levels. Thus the speckle size at
the receiver is of the order of the beam size (for the focused
geometry) at low turbulence levels and is of the order of the
lateral coherence length at very high turbulence levels. In
addition, knowledge of the proper choice of detector spacing is
required so that wind sensing is feasible either by the time
delayed covariance method or the slope method.Also knowledge of the
covariance scale sizes is required to obtain the joint probability

density function of the fields at the target.
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6.1 Analysis

The spatial covariance of the received intensity of a speckle
pattern is a measure of the correlation between the intensity

fluctuations at two points in space and is by definition, given by
c,(P1,P2) = <I(P1)1(P2)> - 0% (6.1)
The intensity correlation term can be obtained from the general

correlation function, developed in the fourth chapter by assuming a

zero time difference. Then

c,(P) = B (P, T=0) - <D’
=C_ (P) +C,_(P) - <D>? (6.2)
I I2
where P = P; - P2. The terms C11 and C12 are given as
CIl(P)

N N <I.><I1.>
= ) —2__J [ pdp [ rdr [ dep Jo(pr)

j=1 i=1 27
£(r,k. k. 4 C (P,p,k.,k. 6.3
ik £y i J) exp | CX( P,k J)} ( )
and
N <Ii>2 2m
Gy, (R) = izl =— | rdr [ odp g de

k.
5
fz(r,ki) exp|i =g P cos(BP - ep)]

H2(P,p, T=0) (6.4)
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where the functions f; and f2 are given by Eqs.(5.15) and (5.17).

The mutual coherence function H(....) is given by

= exp[-2(52)%/% - o(2)%/% + 1 b (7, 5,7 = 0)
oi ol
1 P B - P - D. 5 -
* 5 Dw(P,p,T = 0) + 2C_(P,p,T = 0) + 2CX(P, , T =0) (6.5)

Using the same Fourier-Bessel series as earlier, the covariance of
the received intensity is reduced to a simple one fold integral

given by

i=1 j=1 m
uc (7 i )
exp|4C_ |P,p = ————— , k., k.
X Al(ki,kj) i’ 7
N Giz 2m
+ I 5= [ a8 {1 e (k) x
1=1 o m
: ki Pm Pm
exp[l TW COS(ep'sp)] Hz[P,O = W y = 0]} = (6.6)

When all the frequencies are sufficiently near, the calculations

can be done at the midpoint of the band and this is given as



90

c, (P)
In
NN GG, o P
= _2 'E 77 / e, {1 C_ exP[éCx(P,p e k) }
i=l j=1 0
2
N Gi 2m ki pm
i .2 X / dep {2 G exp i . cos(Bp—Bp)
i=] o
P
xHz(P,p = 5=, T=0}-1" (6.7)
Let
B P
AINTL = = i do_ {v c_ exp[4CX(P,p = x) ]} (6.8)
and
AINT2 = L Izwde Jc [35-35 (6 -6)]
2m & p m exp L A cos P P
P‘l.'ﬂ
x Ho(P,p = 1 T = 0)} (6.9)

Then the covariance, normalized to the square of the mean intensity

is given as

c. (p) =
N :

Il =

N N
Y GiGj (AINT1) + ) Giz (AINT2) - 1 (6.10)
j= i=1

X 1

As discussed earlier, for most problems of practical interest, the
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frequencies are sufficiently near that the knowledge of the mode
distribution of the laser is not necessary and Eq.(6.10) can be

written in terms of the vacuum speckle contrast ratio as

c, (P) = AINTI + (VSCR)? « (AINT2) - 1 (6.11)
N

In several problems of practical interest, a more useful parameter

is the covariance, normalized to the variance and this is given by

CI(P)

g 2

I

(6.12)

clép)=

In this case, the results of Eq.(6.10) or (6.11) are divided by the
variance given by Eq.(5.25) or (5.28) to obtain the normalized
variance.

Calculation of the covariance curve from Eq.(6.11) in general
requires a formulation for the four point two frequency
log=amplitude covariance function and the corresponding wave
structure function, which are valid for all turbulence levels. For
the path lengths and the parameters of the turbulence under
consideration here, it may be noted that using the unsaturated form
beyond the range of its validity still gives good results. The
reason for this 1is the same as discussed in the chapter on the
variance of the intensity. When all frequencies are sufficiently
near, a saturated form’2 of the log—amplitude covariance function

at the midpoint of the band can be used if it is required.



92

6.2 NUMERICAL CALCULATIONS AND COMPARISON WITH THE EXPERIMENTAL

DATA

Figure 6.1 represents the comparison of the theory with the
experimental data collected by Holmes %4 et al., using a Nd:YAG
laser, running in several axial and transverse modes for a detector
spacing of 4.5 millimeters for several turbulence levels. Using a
vacuum speckle contrast ratio of .135, as earlier, the theoretical
values for the variance and the covariance at each turbulence level
were calculated and from these values a theoretical curve for the
normalized covariance (normalized to the variance) was generated in
Figure 6.1 for comparison with experimental data. Good agreement
between the theoretical and experimental values was obtained
within 5% error, thereby satisfactorily explaining the data. Since
a VSCR of .135 corresponds to a normalized variance of .015, it
corresponds to an almost incoherent source. The normalized
covariance in Figure 6.1 is almost constant for a very substantial
increase in the turbulence level. There is slight discrepancy
between the theory and experiment for values of oy > 4. It can
be shown using the present results that the normalized covariance
remains constant for substantial increase in the turbulence level.
In Figures 6.2, 6.3 and 6.4, the experimental data collected by
Fossey and Holmes’> over a 910 meter path is compared with the
theory for different turbulence levels. Figure 6.5 represents

the comparison of theory with experiment over a 500 meter path.
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a focused beam geometry.
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All the above data sets correspond to the focused beam geometry.
Figure 6.6 compares the theory with experimental data for a
defocused beam geometry. From these six figures, it is concluded
that at low turbulence levels, for focused beam geometry, there is
good agreement between the theory and the experiment. At high
turbulence levels, the agreement 1is not very good even for the
focused case. Also the defocused geometry did not give good

results for large detector spacings.
6.3 Discussion

The theory has correctly predicted the covariance behavior.
In order to obtain a deeper understanding of the covariance
behavior, the normalized covariance was calculated for a 500 meter
path length, with the beam focused on the target. The beam size
was assumed to be 3.81 centimeters and a wave length of 1.06 um was
used. The normalized covariance of the received intensity versus
the detector spacing is plotted for several values of VSCR in
Figures 6.7=6.12. It is noticed that at low turbulence levels as
the VSCR decreases, the normalized covariance also reduces for a
given value of detector spacing. With an increase in the
turbulence level, for some value of an, the VSCR does not affect
the normalized covariance. This is seen for the example, in Figure

6.9 where ze = .0877; all VSCR values give approximately the

same normalized covariance over a very large range of detector
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spacings. With a further increase in the turbulence level,
reducing the VSCR does in fact increase the normalized covariance
for all values of detector spacings. This is seen in Figures
6.10-6.12. Figures 6.13 and 6.14 describe the variation of the
normalized covariance with respect to the turbulence level,
characterized by the Rytov variance, for different values of
detector spacing. 1In these two curves, it is noted that as the
VSCR reduces, the sensitivity of the normalized covariance to the
variations in the turbulence levels also decreases. This is indeed
the nature of the experimental data, observed in Figure 6.1. 1In
order to understand the behavior of the covariance, the total
contribution to the normalized covariance of the intensity of a
polychromatic speckle pattern can be resolved into a coherent
contribution (AINT2) and an incoherent contribution (AINTL -1.)
From the expression for the covariance of the polychromatic speckle
field, it can be seen that the coherent term is weighted by the
normalized variance (square of VSCR). At low turbulence levels,
the coherent term contributes more and thus, as the weighting
factor VSCR decreases, the net coherent contribution also reduces.
But the variance is still determined by the incoherent term. The
net result is that the normalized covariance is strongly dependent
on the coherent term. In this regime, the covariance scale size is
also dominated by the beam size. With further increase in the

turbulence level, the contribution of the incoherent term is more
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Figure 6.11. Normalized covariance of the received intensity of
a Nd:YAG laser versus detector spacing for three
different values of vacuum speckle contrast ratio
for a turbulence level just at saturation.
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substantial than the coherent term and thus reducing the VSCR does
not affect the covariance as much. With further increase in the
turbulence level, the contribution due to the incoherent term is
substantial and the fluctuations are correlated over larger
detector spacings for a partially coherent speckle pattern than for
a coherent speckle pattern. Thus as the VSCR reduces, the
normalized covariance increases. Extensive numerical calculations
support this argument very strongly. From this the insensitivity
of the normalized covariance for the variations in the turbulence
level at low values of VSCR can be explained. It now remains to
remark on the size of the speckle at the receiver both as a
function of both the turbulence level and of the VSCR. For a given
value of VSCR, the speckle size is dominated by the beam size o
at low turbulence levels and by p,, the lateral coherence length,
at very high turbulence levels. For intermediate levels of
turbulence, it is dependent on both oy and p,. For a given
turbulence level, as the VSCR reduces, the covariance is more
dominated by the amplitude fluctuations and the speckle size is
determined by the Fresnel zone size as well as the lateral
coherence lengths. Thus in the turbulence regimes (cx2 = .1 to

.3) where the amplitude fluctuations are most important, the
normalized covariance scale size essentially increases with the
reduction in VSCR. For widely separated frequencies, the

covariance scale size is dominated by the larger wave length as the
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coefficients by are dominated by it and the lateral coherence

length at this wave length plays a more dominant role.



111

CHAPTER VII
TEMPORAL STATISTICAL PARAMETERS

The important temporal statistical ?arameters are the time
delayed covariance, the autocorrelation of the received intensity
and the temporal frequency spectrum of the fluctuations of the
received intensity. These parameters are necessary to estimate the
cross wind velocity and in the design of the remote sensing
systems.

In Chapter IV, a formulation was developed for the general
correlation of the received intensity. Using this, the time
delayed covariance can be estimated. Unfortunately, it is not
possible within a reasonable computation time to evaluate exactly a
part of the 2 point-space-time correlation function of the
intensity (Cr,) which involves a fourfold integral. In this
chapter, an approximate numerical method to evaluate the time
delayed covariance of the received intensity and the
autocorrelation of the intensity is presented. Since the time
delayed covariance was not numerically evaluated even for the
monochromatic case previously and much experimental data was
available for this case, the theoretical results are compared with

this case to check the validity of formulation. The theory was
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then extended to the polychromatic case. It must be noted that the
numerical evaluation in this chapter is only approximate and one
should be careful in using this method elsewhere, 1In addition
expressions are given for the autocorrelation, which can also be
evaluated by using similar numerical techniques, and for the power

spectrum of the intensity fluctuations.

7.1 Analysis

The time delayed covariance of the received intensity, by

definition, is given by

Cc (Pa,t2; P1,t1)

CI(P2,t2)I(Py ,£1)> - K1>2

c. (P,1) + C. (P,1) - <>? (7.1)
I I

where I(Pj,t;) is the intensity in the receiver plane at a

space time point (Pj,t;). The time delayed covariance (TDC) of
the received intensity can be normalized either to the square of
the mean or to the variance of the received intensity. 1In
Eq.(7.1), the terms Cy, and Cr, are given by Eqs.(4.24) and

(4.26). The term Cy, is given by

_ 1 5
¢, 77 g JEGiGj [ do [ rdr 3 (or) £1(r,k; k)

x exp[4 CX(P,D,T,ki,kj)] (7:2)
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2.2
rL 1 1 L \5/3 7
£1(r) = exp|- (L v 5 ) - )0 - (E)ee
4o k. k. i oi j o]
o 1 ]
2
ra Ly2
— (1 -3)°]
and
. TP %) N s
1o __): 2r 1 Y2
—2 —— =) 6.(5=)" [ r2dry [d8__ [ edp [ d®
p? 4= 1 L k2 P
ik.
x £2(r2,0 ) exp [= B0 (P + T2) | K25, D) (7.3)
where , rzzk 3
£2(r2,0, ) = exp[- 22— - D (P,-r5,-1) - o 21 - 2%] (7.8
2 2a 2L
o
and
Ho(P,p, 1) = exp[—Dlp(o,D,o) - DIP(F’D’T”
X exp [le— DlP(_ﬁ’E’T) -~ -%— DIP(_P-’—B"T)
+ 2cx(§',“o“,'r) + zcx@,-ﬁ,r)] (7.5)

and erz is the angle between the vectors rp and V and Bp is the
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angle between the vectors p and V.

Cr, in Eq.(7.2) can be evaluated by expanding f;(r) in a

1

Fourier-Bessel series as was done earlier and this is given as

CIl(P,T) 1 1§ lf jn (5

—_— = G.G. de B 0.2

<2 M g gm tdg P m ot
Pm

* EXP[4CX(P,9 ) ¢ T,ki,kj)}} (7.6)
i’7j3

where the bp,'s are coefficients in the Fourier-Bessel series in
(5.17). Even though this method was successful in evaluating CIZ
in Eq.(6.4) for the covariance case, it cannot be successfully used
again as the angle erz is present in the exponential term of

£2(r) and thus the integration over df., is not possible. Thus

the estimation of Cr, involves a fourfold integral and the
integrand, again involves the double integrals due to log-amplitude
covariance function and the wave structure functions. Evaluation
of these integrals would require a very large amount of computation
time. However to estimate Cp, approximately, in the integrand

the mutual coherence function Hy in the integrand can be rewritten

by using the relations

D,=D + D d
po Tx T Ce 20

D (p) = Z[Cx(o) = cx(p)] s By
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H = exp[—Dw(o,Buo) - D¢(F,0,T) + 4 UXZ

+ {% D, (F.5,0) + ¢, (75,0 - ¢ (7,5, - C (o)

1 . —_ -
+ 3D (F,5,D + ¢ (7,5,D) - ¢ (a)}] (7.8)

The term in brackets {} is dependent on 8, and can be written as

1
o 2
gn? ki2 L an f X_8/3 dx f du cos? [5~EL%;21£]
) 0 i

I (lPu + p(l-u) - vT'x) + JO(IPu - p(l-u) - lex)]

7 kLi2)

*[1 -

In Eq.(7.9), one can consider that 'Pu—le is one vector and p(l-u)
is another vector and then use Graf's addition theorems®® for the

Bessel functions. We then get

Jo[|Pu + p(1-u) - vr‘x} + Jo('Pu - p(1-u) - vT[x)

=2 Jo[leu = vr|) Jo(xp(l-u)]

oo

+ 2 z sz[|Pu - vT|x] J

xp(1-u) | cos Zmep (7.10)
m=1

2m[

where 9p is the angle between the vectors p and P. Using this

result, Eq.(7.9) is written as
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2
gn? K, c 2 L f x_8/3 dx f du cos ﬁili&l:ﬂl&]
i n k.
o 0 i
x [1 - Jo[xiPu—vT'] Jo(xp'l—u“
- I sz[x1Pu—vT|] sz(xpll-ul] cos 2m Bp] (7.11)
m=1

In the integral (7.11), it can be shown that as x changes from 0 to

2
2m/ VAL, cos [Z-Eﬁii—gl] decreases to a negligible value and x-8/3

decreases from a very high value to a negligible value. This is
true for all values of u. We therefore conclude that the maximum

. . ; 2m
contribution comes from the values of x ranging from 0 to — .

ViL
For a path length of 500 meters and a wave length of .488 pm, the
range of importance is 0 to 160. Numerical calculations confirm
this. Under this condition, if p and VT are limited to a few
millimeters, the argument of the Bessel function is of the order of
.5 or less. For these values of the argument, Jy(z) is less than
3% of J,(z). So, neglecting the higher order Bessel functions

(m > 1) in Eq.(7.11) does not lead to significant errors and

Eq.(7.11) is rewritten as

=8r? 2 c P [ x %% ax [ v cos [T
o]

1
0 1

x {1 - Jo(x|Pu—vT|) Jo(xpll—u‘)] (7.12)
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Using this equation, H is approximately independent of 6, and

Eq.(7.8) can be written as

T 2
Ha = exp[— DIIJ(O’O’O) - D (P,o0,T) + 4Ux

v

. 1
+ 872 kiz c2L [ £8/3 ax

2
n i : du cos [_______x L;}({l U)]
x {1 - Jo(x|Pu-vT|) Jo(xp|1-u|)}]. (7.13)

Substituting this in Eq.(7.3) and using Neumann expansions for sine

and cosine functions, we get



Clz(p,T)
<Ix*
NoG2 k2
. izl s (-f) [ r2dara [ a8 [ ede [ o fa(ra, °,,)
i et T n k k
x [Joﬂf— pP] JO(IT-prz) + 2 E (-1) JZnEf pp] Jo[i.p

n=1

k.
1

cos 2 nep + ZJo[_" pP] E (-H" 32 L—— Drzj cos 2n(Bp—8r2)

n'L

i e k k.

+4 ) ) Janfi oP) cos(2 n Bp)JZm(

n=1 m=1 L

p° 2m+l ‘L

cos §EIT(§;:€r2)] x H_(?,p,1)

completing the integral over df,, we get

PN B Y SN
e e = e ra dl‘.‘z do pdp fz(rZs
Gt e e "2
k. k, ® N k. k.
x [Jo [i—- pP} Jo(i_ prz] + E (-1 Jn (~]-:— OP) Jn(f—

n=1

cos(nb )} H (P,p,T)
rp a

r2)

ki ki
—= pP) cos(Z2n+l B8 )J (== pr2

-
r2

pr2)

== pry) cos Eargg:ﬁ:;)

)
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(7.14)

(7.15%)
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where
f2(r2, 62)
2 2 2 2
" 1) y oty R o
= exp[ > = ; g (1 ~-%]2 - Dw(0,~r2,—T)] (7.16)
2a 2L

)
The first term in the integral can be evaluated by expanding the
function f2(r2,6,2) into a Fourier-Bessel series for several
values of 6.2 over 0 to 2T and numerically integrating using

these values. This yields

am
1 k
== C{ [rEu b (8. ) {Jo(Z pP) X Ha(P,o,T)HdBrz (1:27)

with p = (p_L)/(Ak).

The second term in the integral has 8.7 both in f, as well
as in the function cos(nerz). If the variation of £, is very
slow compared with the variation of cos “erz or if f; does not
change much over the region of integration O to 2m, the second, the
third, etc. integral can be neglected as the cos(nerz) term
dominates. For higher values of n this is true. For moderate
values of n (for example n = 2,3,4, etc.), the integrals may
contribute to the total term substantially. In fact it is found
that at moderate values of Rytov variance (ze W 15), the
coefficients are strongly dependent on Brz. Finally the time
delayed covariance of the received intensity can be calculated

using Eq.(7.1). The above equations are normalized to the square
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of the mean received intensity. Normalization to the variance can
be similarly obtained. In the numerical analysis, the f; was
expanded in the Fourier-Bessel series for several values of 6,

2

and at each Brz, the remaining integrals were evaluated.

7.2 The Autocorrelation and Frequency Spectrum of Intensity

Fluctuations

The autocorrelation of the received intensity can be obtained
by putting P = 0 in the expression for the time delayed covariance
of the intensity. The normalized autocorrelation can similarly be
obtained. The corresponding frequency spectrum of the fluctuations
is given by taking the Fourier transform of the autocorrelation of

the received intensity and this is given as

o
f e—in

S(W) = [CIl(o,T) + ch(o,r) -1] dt (7.18)

-0

7.3 Theoretical Results and Comparison with the Experimental Data

Using Eqs.(7.6) and (7.15), numerical results are obtained and
compared with the experimental data in Figures 7.1, 7.2, and 7.3
for several values of the turbulence level (an) for a path
length of 500 meters and different conditions of the beam geometry
(focused or collimated) and for different values of VSCR. The
results are compared with the available data for the monochromatic

case,” Comparison of the theory with experimental data for a
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Figure 7.1. Time delayed covariance of the received intensity versus
the time delay at a detector spacing of 4.5 mm for an
argon laser at several values of vacuum speckle contrast
ratio. The smooth curve for VSCR = 1 refers to the
experimental data.
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Figure 7.2. The time delayed covariance of the received intensity
versus time delay for an argon laser at three values
of VSCR at a detector spacing of 4.5 mm (collimated
beam). The smooth curve for VSCR = 1 refers to the
experimental data.
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Figure 7.3. The time delayed covariance of the received intensity
versus time delay for an argon laser at three values
of VSCR at a detector spacing of 4.5 mm (collimated
beam). The smooth curve for VSCR = 1 refers to the
experimental data.
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focused path of 500 meters shows that the approximate evaluation is
reasonably good for small time delays. Figures 7.2 and 7.3 compare
the theory with the experimental data for a collimated beam. As
expected earlier time delayed covariance is substantially less than
that of a focused beam. When the effective time delay VT is
positive, there is substantial difference between the theory and
the experiment for large time delays. When effective delay VT is
negative good agreement is obtained between the theory and
experiment consistently over all sets of the data. Consequently it
is concluded that the approximate numerical evaluation is not
accurate at large time delays. This lack of agreement may also be
due to the fact that the time delay is comparable with the detector
integration time. The shapes of both theoretical and experimental
curves are consistent with the phenomenological theory and peaks
are on the opposite sides of zero time delay for the opposite
directions of the wind. It was observed experimentally that the
sensitivity of the time delayed covariance of intensity to the wind
fluctuations along the path is very substantial. Figure 7.4
compares the theoretical autocorrelation function of the intensity
with the corresponding experimental data. The agreement is not
good at all. No attempts have been made to get the frequency
spectrum of the fluctuations due to the same reason and the
additional complexity of one more integration from zero to

infinity.
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7.4 Discussion

As in the case
of intensity can be
ﬁart. The coherent
VSCR. For very low

a dominant term and
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of the covariance, the time delayed covariance
resolved into an incoherent part and a coherent
part will be weighted by the square of the

values of VSCR, the coherent term is no longer

the variation of the time delayed covariance of

intensity depends on the incoherent term. Thus the ability to

sense the cross wind will be very poor even for small detector

spacings. For moderate values of VSCR, the shapes of VSCR, the

shapes of the TDC versus time delay curves resembles that of the

monochromatic case and for very large time delays the time delayed

covariance of intensity asymptotically approaches the incoherent

term. Phenomenologically, the received intensity pattern is

dependent on the target and is controlled by the turbulence level
as well as the wind speed. However the statistical features of
this pattern such as TDC are strongly dependent on the turbulence
level and the angle between the transmitter coordinate V and the
wind direction and the correlarion is maximum if both of them are
in the same direction and least if they are in the opposite
direction. The speckle size at the receiver is the same as the
covariance scale size (being dominated by the beam size at the low
turbulence level and by the lateral coherence length at very high

turbulence levels). Initially, for very small

VT', both the space
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time points are in the same speckle and thus correlation is
maximum, or order of the covariance. However when ‘VT' becomes
very large, both the same points are not in the same speckle and
thus the correlation is decided by the correlation between the
amplitude fluctuations (incoherent fluctuations). That is why, in
all sets of data, the time delayed covariance of intensity curve
approaches the incoherent term asymptotically even for the case
when the VSCR is unity. The time delayed covariance of intensity
becomes zero when the effective space-time distance between the two
points under consideration exceeds the correlation distance of the
amplitude fluctuations. It is further noted that for very low
values of VSCR, the incoherent term dominates and the wind effects

are not substantial.
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CHAPTER VIII

PROBABILITY DENSITY FUNCTION OF THE INTENSITY FOR A LASER SPECKLE

PATTERN IN THE TURBULENT ATMOSPHERE

In this chapter, the theory of wave propagation through the
turbulent atmosphere and speckle theory will be used to derive the
probability density function for the intensity of a polychromatic
speckle pattern after propagation through the turbulent
atmosphere. Since the previously proposed probability density
function of the intensity of a monochromatic speckle pattern is
correct only if the phase but not the amplitude effects are
considered and since the amplitude effects are very strong, in this
chapter, the probability density function is developed first for
the monochromatic case and the results are then generalized to
include the polychromatic case. The analysis that follows assumes
that both the log-amplitude and phase fluctuations are Gaussian
distributed and that the intensity fluctuations of a spherical
wave, after propagation through the turbulent atmoshere, can be
described by a log-normal or Rice-Nakagami distribution. This will
be used to derive the probability density function of the intensity
of the speckle field after propagation through the turbulent
atmosphere. The results so derived will then be extended to the

case of the polychromatic or partially coherent speckle patterns
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and finally the analytical results will be compared with
experimental data, available for both monochromatic and

polychromatic speckle patterns.
8.1 Analysis

Goodman29 has shown that the probability density function of
the intensity for a fully developed (i.e. Gaussian) speckle pattern

is given by

=1/X

P(I) =5 e (8.1)

> =

where A is the average intensity and A% is the variance of the
intensity. If however such a speckle pattern is propagating
through the turbulent atmosphere, then it is known’® that the
nature of the probability density function is changed from its
vacuum value by the turbulent atmosphere. When there is no
turbulence, the speckle pattern is stationary and does not evolve.
However, when turbulence is present, it has been observed that the
brightness of each speckle seems to be modulated by the
turbulence. At low turbulence levels, the transverse coherence
length in the receiver plane due to turbulence is much larger than
the vacuum speckle size. This gives rise to large turbulence
induced speckles that encompass groups of smaller target induced

speckles. If the same target induced speckle field is observed for
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an ensemble of atmospheres, the target speckle field will remain
the same since the target and the atmosphere are independent; but
the atmospheric speckle will change from sample to sample in the
ensemble and .will modulate in a random manner the brightness of the
target induced speckles. Consequently, the model proposed is that
the conditional statistics (given the mean value) of the target
induced speckles have the same statistics as the vacuum speckle
field but now the mean value is a parameter, whose statistics are
determined by the turbulence. The joint density function for the
intensity and the mean value, which is now a parameter, can be
formed from the conditional density function for the target speckle
intensity by multiplying it by the marginal density function of the
mean. This result can then be integrated over the mean value to
find the marginal density function for the received intensity and

can be expressed as
P L1y = gPI(I/?\ = x) P, (x)dx (8.2)

where Py(I/A = x) is the vacuum speckle density function for the
intensity and P)(x) is the density function for the turbulence
induced fluctuations of the parameter A. Problems of this type
where one or more of the parameters of the distribution take on
different values for different samples in the ensemble are called

problems of compound distribution.8l
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For a coherent spherical wave propagating through the
atmosphere, it is well known that the probability density function
(PDF) of the received intensity can be approximated at turbulence
levels below saturation by Rice-Nakagami or log-normal
distribution.”7,78,79 However, saturation of scintillations
never comes strongly into play in the problem of speckle
propagation through turbulence because the received intensity
becomes dominated by the turbulence induced phase fluctuations,
which are log-normal and never saturate at a Rytov variance below
that at which saturation of the log-amplitude fluctuations occurs.
A more detailed explanation of this effect is contained in Chapter
V. Consequently it is proposed that the distribution of the
intensity of a spherical wave in the turbulent atmosphere be used
for the distribution of the mean intensity parameter in Eq.(8.1)
and it should be valid for all turbulence levels. This leads to a
K-distribution for the PDF of the intensity for a monochromatic
speckle pattern after propagation through the turbulent atmosphere
with the parameters of the distribution dependent on the
propagation variables. The above described model is based on the
phenomenological observations of the effects of the turbulence on
the speckle and therefore may not be rigorously correct. However
it leads to very useful results that agree with experimental data
for both monochromatic and polychromatic cases in a regime where

maximum deviation from the model is expected,.



1:32

The PDF for a Rice-Nakagami distribution is given by

- o+ x Yxa
ey st e —r L(24) (8.3)
X B
where
<> = a+ B
and
c?= 82 + 2af
X

Nakagami27 has shown that the Rice-Nakagami distribution can be

approximated by an equivalent M-distribution given by

- Mx
M-1 <x>
P (x) = M X" e = (8.4)
* T(M) <x>

If the parameters of the distribution are related as

x> = o+ B
M=o 8)2
82 + 2af

The higher order moments of the M-distribution are given by

_ <x>"T(n + W)
M" T(M)

n

S (B.:5)

It is desirable to use the M-distribution as an approximation

to the Rice-Nakagami distribution because its use results in a form
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of solution that can be readily reduced to numbers and also it is
much easier to relate the parameters of the distribution to the
propagation variables. In order to assess how well the
M-distribution approximates the PDF of the intensity in Eq.(8.2),

the mean square error given by

B2= [ [P (1/, _ ) Py - PL(1/, _ ) P(x)]? ax
o

where Ppy(x) is the PDF for a spherical wave propagating through
the turbulence and Py(x) is the M-distribution should be
evaluated. This has been done using a Rice-Nakagami distribution
for Pry(x) and Eq.(1) for Py(I/) = x). It was found that the

RMS error decreases as M increases and that for M greater than 5,
the error is less than 37%.

For the M-distribution of Eq.(4), the corresponding PDF for

= (2 i
y n(<x>) can be written as

Then for y small and M becoming very large, the above equation

approaches

p—

-My

Py(y) -

=[5

Y
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which shows that y = 2“(2%3) is normally distributed with

normalized variance equal to 1/M. Thus the log-normal distribution
can also be approximated by an M-distribution.

Utilizing Eq.(8.2) with Eq.(é.l) for PI(I/A - x) and Eq.(8.4)
for Px(x), the PDF for a fully developed speckle pattern after
propagation through the turbulent atmosphere is given by

I Mx
L - c—
X

M
P (1) = S S / X7 2 e <x>dx (8.6)

L <OT TM) o

Completing the integral in Eq.(8.6),30 it becomes,

MI)

_ M
P (1) = 2(?}-5] T Kk, _ (2, = (8.7)

where Ky-; is a modified Bessel function of order M-1. Eq.(8.7)

is the K-distribution proposed by Jakeman and Pusey82 elsewhere

to model the non-Gaussian fluctuations in optical scattering on the
basis of analogy with random walk. Parry and Pusey83 used the

same distributon to describe the fluctuations of laser beam in
moderately strong turbulence regimes. The moments of the

K-distribution are given by

r n
1™ = -(-‘I‘.z%%) I(1 + n) (i;?-) (8.8)
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Using Eq.(8.8)

<I> = <x> A

and the normalized variance is given by

(8.9)

It should be noted that 012 in Eq.(8.9) is due to the combined
effects of the speckle and the turbulence and can be obtained in
terms of the strength of turbulence, path length, wavelength and
beam size from Chapter V.

The cumulative PDF of the intensity will also be needed for

comparison with the experimental data. It is given by

I
F (D) = [P (D) dI
o
! S——
_ _ M 2 2 L

From previous work,l9 it is known that for the case under
consideration the normalized variance of the intensity starts at
unity with no turbulence and as the turbulence increases, it rises
above unity and reaches a peak value near 1.25 around a Rytov
variance of .1 to .15. As the level of turbulence increases
further, the normalized variance decreases and asymptotically

approaches unity again at very high turbulence levels. From
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Eq.(8.9), it can be seen that the corresponding value of M starts
off at infinity and decreases to about 8 and then increases to
infinity again as the turbulence increases. Clifford and Hil184
have shown that as M approaches infinity, the K-distribution
asymptotically reduces to an exponential distribution.
Consequently the result, given by Eq.(8.7) for the PDF,
asymptotically approaches the correct distributions, known at very

high and very low turbulence levels.

8.2 Extension to Polychromatic and Partially Developed Speckle

Patterns

The intensity of a polychromatic speckle in vacuum follows an
M-distribution.40 This is determined by resolving the total
speckle pattern into a set of (fully developed) Gaussian speckle
patterns, each having an exponential PDF for its intensity. If all
the N patterns are of equal average intensity, then the PDF of the
intensity for the total polychromatic speckle pattern is given by
an M-distribution with M = Mj] = N. 1If all the component speckle
patterns are of equal average intensity, then the PDF of the total

intensity is given by29
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. (8.11)

where the mean intensity is given by

e
il

Il ~—2
]

i=1

and where the average intensity of each component speckle pattern
is given by A; = @i} and where the average intensity of each
component speckle pattern is given bM-distribution. Using an
M-distribution with M = My for the turbulence effects and combining

this with Eq.(8.4), the overall PDF of the intensity for the

polychromatic speckle patterns is given by

=
"

M; Moy M;-l o Mp-Mi=l MJI Mo
PI(I) M2 My I f " o X x> dx

<OM2P(M2)T(1) o

)

PI(I)
_ (M1M) 2 2
T(Ml)r(Hl) M; + Mp
<x> 2
MiMoI
* By oy (27 ==%= ) (8.12)
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The moments of the intensity of the above distribution will also be
needed later for comparison with experimental measurements. They

are given by

s = $OT(n + M) T(n + M))
n

M;" Mp" T(Mp) T(Mp)

(8.13)

from which <I> = <x> = A
2 o B L L
KI5 = <D* (1 + sz (1 = Ml)
<13> = <I>3 [l + —2-—] (1 + }_-.] [1 + 2’...) (1 + _1._)

Gl = 5% fale] a2 Jlins )

and the normalized variance of the received intensity is given by

2 _ 1 1y
oy = (Legg) Legg)-1 (8.14)

If the PDF for the polychromatic speckle intensity is a sum of

exponentials as in Eq.(8.11), then Eq.(8.12) will be modified to
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2 2
P (1) = 2 X2 L
L M .2 _y
R al
N-MY2 _3
2 2
N ai T
X 'E N Kl_Mz[Z‘/—m—s 1] (8.15)
i=1 - (a, - a.) i
i
j=1
i*i

where the corresponding moments of the intensity are given by

a® = Eﬁi‘-iﬁ% <1“>mCulml (8.16)
I'(Mp) My
and where
N A N-14+n
n _ i
I v = T+ 1) 'El 5 (8.17)
1 It O = )
o A
j*i

Goodman®2 has shown that a partially developed speckle
pattern can be resolved into a sum of Gaussian speckle patterns and
therefore the PDF of the intensity follows either an M-distribution
or a sum of exponential distributions as in the case of the
polychromatic speckle patterns. Consequently the above work also
applies to the case of the propagation of partially developed

speckle patterns throughout the turbulent atmosphere. As was the
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case for a monochromatic speckle, when the strength of turbulence
approaches zero or infinity, the PDF approaches the vacuum result

for the target induced speckle.

8.3 Relation Between The Distribution Parameters and the

Propagation Variables

The required parameters for the distribution are the average
intensity and M or M; and Mp. The average intensity is independent
of the turbulence level, and so can be calculated using the speckle
theory. The parameters M and My however are determined by the
atmospheric fluctuations and thus are dependent on the strength of
the turbulence, path length, beam size, focal length and the wave
length. 1In accordance with the theory developed herein, M and M;
can be derived using Eq.(8.9) and Eq.(8.14) or Eq.(8.16)
respectively. Consequently, if the relationship between the
normalized variance of the received intensity and the propagation
variables is known, M or My can be determined and the PDF defined.

A very useful path geometry was considered in previous
chapters, in which the laser receiver and the transmitter are
located at one end of the path and a target is located at the other
end of the path. For this problem in Chapter V, expressions for
the variance have been developed. By using the expressions for the
variance from Chapter V and the expression for the variance from

(8.14), the M} and My can be related to the propagation variables.
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8.4 Experimental Data and Comparison with Theory

The theory proposed here is compared with the experimental
data collected by Fossey and Holmes.”? The previously proposed
PDF18 did not agree with the experimental data as it did not take
into account the amplitude effects. As will be shown here,
K-distributions are very good approximations for the intensity
fluctuations of both monochromgtic and polychromatic speckle
patterns.

Experiments were conducted at a height of 2 meters above flat
agricultural land. The transmitter consists of an argon ion laser,
operating at .488 um Coherent Radiation Lab Model 52) with an
intracavity etalon to yield an output in single longitudinal mode
for the monochromatic experiments. The etalon was removed for the
polychromatic experiments to allow the laser run in several
longitudinal modes. In order to separate the received signal from
the background illumination, the outgoing beam was moduated at 100
kHz. Scotchlite (3M sprint marking paper) was used as the target
material because it provides a directional return with a gain of
1000 to 1 over a perfect Lambertian surface but still imparts
random phase to an incident monochromatic laser beam to form a
speckle contrast of unity in the absence of turbulence.
Measurements were made with a focused beam at two turbulence levels

and with path lengths of 300, 500 and 900 meters. The
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polychromatic source was used in the 500 meter path measurements
and the monochromatic source for other path lengths.

In each case the received normalized variance of the intensity
was close to the peak of the curve of the variance of intensity
versus the Rytov variance, at which point the maximum deviation of
the PDF from the vacuum speckle result should occur and provide the
best test of the theory. 1In order to compare the experimental data
with theory in each case, the mean and the variance of the received
intensity were used to calculate the proper parameter values of the
distribution (since the line strength of the distribution of the
laser source is not known, it is assumed that all the lines are of
equal strength). Then using the formulations, derived for the PDF
and the moments, the third and the fourth moments of the intensity
and the cumulative PDF were calculated and compared with
experimental data. The results are summarized in tables 8.1 and
8.2 and Figures 8.1 through 8.4. Except for one set of the data at
300 meter path length, which has shown significant deviation for
the fourth moment of the intensity, the results are very good. All
the cumulative density plots show good agreement between the theory

and the experiment.

8.5 Discussion

In this chapter, a very important result, which will be useful

in several applications of speckle propagation through turbulence



TABLE 8.1. COMPARISON OF CALCULATED AND MEASURED MOMENTS OF THE INTENSITY FOR A

MONOCHROMATIC SPECKLE PATTERN IN THE TURBULENT ATMOSPHERE

Experimental Normalized gt <I™s <fPs
e S — s Theory Experiment . Theory
k >Experiment
L= 9.10 meters 3 4.773 % 103 4.564 x 103 .9566
F = 910 meters 1.2504
4 2,171 x 10° 2,168 x 103 .9983
a = 1.35 cms .
A = .488 ums 3 4.086 x 103 3.910 x 103 .9569
.17
4 1.675 x 103 1.692 x 10° 1.010
L = 300 meters 3 2.291 x 1o% 2.085 x 10% .9101
1.37
F = 300 meters
4 1.896 x 106 1.741 x 106 .9183
a = 2.52 cms
o
A = ,488 ums 3 4.761 x 10 4.339 x 104 .9114
1.2049

4 4.517 x 106 3.521 x 106 .78

X

eVl



TABLE 8.2 COMPARISON OF CALCULATED AND MEASURED MOMENTS OF THE INTENSITY FOR A POLYCHROMATIC

SPECKLE PATTERN IN THE TURBULENT ATMOSPHERE

Experimental Conditions

Higher Moments of the Intensity

L = 500 meters ; <I3> . <1 %5 )
¥ % 500 nabdfs Experimental Values Experiment Experiment
a, = 1.35 cms Normalized <13> <IY>
A = .488 ums Variance M Theory Theory
Data in Vacuum . 328667 M; = 3.043 . 9949 . 9814

Set 1 .638057 Mp = 4,295 1.081 1.282
Data in the
Turbulent Set 2 .487012 M, = 8.390 1.036 1.162
Atmosphere

Set 3 .453380 M, = 10.650 1.026 1.093

Al
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Figure €.1. Comparison of theoretical and experimental probability
functions for a monochromatic speckle pattern.
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density functions for a polychromatic speckle pattern.
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has been developed. An alternate approach is to assume that the
phase and the amplitude fluctuations are independent and due to
phase randomization, the intensity follows an exponential
distribution and due to log=-amplitude fluctuations, the intensity
follows an M-distribution. Then since phase and amplitude effects
are multiplicative, the overall intensity can be treated as a
product of two random variables, suitably normalized. This also
then leads to a K-distribution as this formulation is equivalent to

what was developed earlier in this chapter.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

In this chapter, the results obtained in the previous chapters
and their limitations and directions for future work will be
summarized. Using the Huygens Fresnel approximation the manner in
which the turbulent atmosphere effects a polychromatic speckle
field, generated by a diffuse target was studied in detail. The
effects of the atmospheric perturbation on the various statistical
parameters of a polychromatic speckle parameters such as the
variance, covariance, time delayed covariance, autocorrelation and
the probability density function of the received intensity, was
studied in detail,

The results, substantiated by the experimental data suggest
that the variance can be significantly increased by the atmospheric
perturbation. The dependence of the atmospheric perturbation on
the beam size, focusing geometry and wavelengths, was also
studied.

It was found that the covariance, normalized to the variance,
remains pratically unchanged for a substantial increase in the
turbulence level for small separations. Also for low values of the
turbulence level, it is found that reducing the vacuum speckle

contrast ratio in fact reduces the normalized covariance while for
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higher levels of turbulence, it increases the normalized
covariance. In fact there is a turbulence level at which the
vacuum speckle contrast ratio does not effect the normalized
covariance. Also the relative roles of the various scale sizes
were studied.

By resolving the total contribution to the time delayed
covariance, into a coherent and an incoherent contribution, an
approximate method for calculating the time delayed covariance to
compare with the experimental data was developed. It is found that
at low values of VSCR, the time delayed covariance is not affected
substantially by the wind velocity. Also it is noticed for very
large time delays, the incoherent fluctuations determine the time
delayed covariance.

Finally it was shown that the atmospheric perturbation changes
the exponential statistics in vacuum to a K-distribution, whose
order is dependent on the normalized variance, in case of the
monochromatic speckle pattern. For the polychromatic case, the PDF
of the intensity in the turbulent atmosphere, follows a
K-distribution of higher order or a weighted sum of
K-distributions, as shown in the last chapter. The theory is
accurate in that it reduces asymptotically to the monochromatic
case, worked out by Holmes et al.19 for a vacuum speckle contrast
ratio of unity and to the results of Clifford et al.83 for the

incoherent case when the vacuum speckle contrast ratio tends to be



a2

zero.

Additional results can be obtained by assuming other possible
three-dimensional spectra for other applications. Results in this
thesis are approximately valid for the propagation of partially
coherent speckle pattern. Since in most applications pulsed
sources are used and their coherence properties are very poor, the
effect of the turbulent atmosphere can be best described by using
the methods in this thesis. In addition related speckle problems,
such as the number of the dominant eigenvalues of a polychromatic
speckle pattern, the effect of the laser coherence on the contrast
of the speckle pattern and the problem of averaging in the theory
of the speckle pattern were discussed in detail. It is further
shown that for several problems of practical interest, the source
can be completely characterized by the vacuum speckle contrast
ratio,

There are some important extensions to this work. For
example, the Hill spectrum could be used to obtain the effects of
the inner scale on the variance and the covariance. Also two
frequency saturated forms for the log-amplitude covariance and
other correlation functions can be developed from fundamentals
since they have not yet been evaluated. The results developed in
this work on PDFs can be used to understand the nature of the
fluctuatoins of the laser beam in the turbulent atmosphere,.

Another promising area is multifrequency adaptive optics. Also,
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the effects of the turbulent medium, characterized by more than two
scales of turbulence is not known. The applicability of the

results in this thesis for other problems such as

magnetohydrodynamics, should be investigated.
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APPENDIX A

This appendix consists of a program called EIGENS which
estimates the eigenvalues of a symmetrical matrix. This program
was used for the results of Chapter II.

The input matrix A(i,j) was defined in the program since this
program was written to solve Eq.(2.7). Otherwise, it can be
defined by input data. Matrix dimensions are 12 by 12. This can
also be changed by changing the dimension statement. The output is

given by the output matrix A(i,j) itself.
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22
184
183

45

78
32
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PROGRAM MNAME IS EIGENS

DIMENSION AC12.,12>,BC12.12)>,R{12,12)
DIMENSION H(12,12>,G6(12.,12)

PROGRAM TO CALCULATE THE EIGENYALUES OF THE
MATRIX IN CHAPTER I1.

CALL CONTRL(2.’EUCLID’.8.8)

CALL CONTRL(¢(2,’GGGGGG’.9.8)

N=12

AN=N

X=SQRT(48.)>/2.

DEL=2. /AN

WRITE(S8,19)

FORMAT(’SPECKLE INPUT HMATRIX’)
P3=4./49.

DO 1Bf I=1.12

DO 1B2 J=1.12

ACT L JD)SEXRPC-(I-Jd)xx2xXxX*P3/2 )
CONTINUE

CONTINUE

DO 481 I=1.,12

WRITEC(S8,21) C(ACTI,JDI,d=1.,12)
FORMATC(B8(2X.F1B.862>
CONTINUE

ANORM=B.

DO 1B3 I=1.,12

DO 1B4 Jd=1.12

IFCI.EQ. 4> GO TO 22
ANORM=ANORM+AC T, Jd*x%x2

CONTINUE

CONTINUE

CONTINUE

FTH=_.1E-B7

ATH=SGRT(ANORM)I/AN

DO eB! I=1.,12

I1=1+1

DO eB2 J=11.,12
P=ABS(A(I.,J))-ATH
IFCABSCACI,JUXI)-ATH) eB2.,6B82.32
DO 185 L=1.,12

DO 1Be M=1,12

IF(L.E@.M> GO TO 23

R(L.,M)>=8.

GO TO 18e

R(L.M>=1.

GO TO 18¢

CONTINUE

CONTINUE

AL==-R(I1.,J)

AMU=B.S«(AR(I, I)=-ACJ,J D)
IFCAL.EQ.B.)> GO TO eB2
F=SIGNC(1.,AMU>
OMEGA=F*AL/(ABS(SQRT(AL=AL+AMU*ANU D))
X=OMEGR/RBS(SQRT(Z.#((1 . +SQART(C1.-ONEGA**2)>2)>)>))



188
187
ed2
681

21

20

18

S5B82
581

33

7
29

34
283
281

Y=ABS(SART( 1. . -X*X)>)

R(CI, I>=Y
RC(J, I DO=Y
R(1.,Jo=X
R(J,I>=-%

CALL MHLTLG.,A.R.,12,12.,12)

CALL MTRMNCH.R.,12)

CALL MMLTC(B.,H.G,12.,12.,12)

0O 187 L1=1.,12
DO 1B8 L2=1,12

A(LL.,L2)=B(L1.,L2)D

CONTINUE
CONTINUE
CONTINUE
CONTINUE

TH=CATH-FTH )>*1888.

IFCTHY 98.98.9
CONTINUE
ATH=ATH/ AN

GO TO 45
CONTINUE
WRITE(S8.,18)

FORMATC(’EIGENYALUES THE MATRIX OUTPUT’)

PHI=22./7.
DO 581 I=1,12
DO S@gz Jd=1.,12

1

RCILJO=DEL=ACTI ., J /2.

CONTINUE
CONTINUE
WRITE(9.,33> N
FORMATC(IZ2)D

PO 281 I=1.12
DO 283 J=1.,12

IFCARCI.,J >-.BBRAB1)> 28B3.77.77
WRITE(8.29) I.J,A(1.4)
FORMAT(2X,14.,2%X,14,2X,.F18.6>
BRITE(9.,34) A1,

FORMAT(F8.86)
CONTINUE
CONTINUE

CALL CONTRLC(4,
CALL CONTRL(4,
CALL EXIT

END

»

*
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APPENDIX B

This appendix consists of three programs. The first program
is called VARIII. Thié evaluates the atmospheric perturbation term
of Chapter V, for the Kolmogorov spectrum of refractive index
fluctuations. The input data is the the path length, wave length,
focal length, beam size called alph0O, the value at which function
f; of Chapter V should be chopped and also number of data points
and the corresponding Rytov variance values (for a maximum of 14
points). For more data points, the program can be suitably
modified. Further details are given at the beginning of the
program. This program uses the saturated form of log-amplitude
variance for Rytov variance .3 and the unsaturated form for > .3.
It is found however that using unsaturated form in the saturated
region did not change the atmospheric perturbation values much and
in fact saved a lot of time. Some approximations of log—amplitude
covariance functions are due to Dr. R. A. Elliott of OGC. The
second program, called RAO2FF, is used to calculate Table 5.1 in
this thesis. This program calculates the correlation of intensity
fluctuations at two different frequencies. Input data is path
length, wave length, beam size, focal length and turbulence level.
The program evaluates the intensity correlation for about 607%

bandwidth in the center frequency kg. The third program is called
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RAOGXX. This program is written to calculate the atmospheric
perturbation using the Hill spectrum especially for the turbulence
simulation facility developed and tested by R. A. Elliott, et al.
The program was written to evaluate the atmospheric perturbation

for the possible values of an reached in the tank.
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NAME OF PROGRAM 1S VAR111

PROGRAM TO CALCULATE THE ATMOSPHERIC PERTUREBATION

FOR ALL LEVYELS OF TURBULENCE

PROGRAM USES THE UNSATURATED FORM OF LOG-AMPLITUDE

COVARIANCE FUNCTION FOR LOW TURBULENCE YALUES AND

SATURATED FORM OF LOG-AMPLITUDE COVARIANCE FUNCTION

DUE TO YURA AND CLIFFORD AT HIGH TURBULENCE LEVELS.

SOME APPROXIMATE NUMERICAL SERIES FOR THE

LOG-AMPLITUDE COVYARIANCE FUNCTIONS ARE DEVELOPED

BY DR.R.A.ELLIOTT OF 0.G.C. AND THESE FORNS

RRE USED IN THE SUBROUTINE H AND FUNCTION

SUBPROGRAM F3CY).

OUTPUT CONSISTS OF THE PROPARGATION DATA AND EARCH

ARGUMENT AND THE CORRESPONDING MAGNITUDE OF THE

LOG-AMPLITUDE COYARIANCE.ALSO EACH

BM AND FINAL YALUE OF THE ATMOSPHERIC PERTURBATION

(GIYEN AS SIGMA) ARE PRINTED.

IF THE FREQUENCIES ARE WIDELY SEPERATED

THE PROGRAM SHOULD BE MODIFIED USING THE PROGRAMS

RAOZFF AND CX2FF

DIMENSION PM{(135),AJ1¢(15)>,CXC(6)>,CN2IC14>

DIMENSION BMC1B),SIGHMAXC(14)

DATA PM /2 .4B48,5.5281.,8.6537.11.7915.14.9389,
C18.B711,21.2116.,24.3525,27.4935,38.6346.,33.77538,
136.9171,48.8584,43.1998.46.3412/

DATR RJ1 /.51915,-.34286, .27145,-.23246.,-.2B635.,
1-.18773,.17327,-.16178.,-.15218., .144166.-.1373,
1.131325.,-.1268B7,.1239%9,-.11721/

IN THE ABOYE DATA PM’S ARE ZEROS OF ZEROTH ORDER

BESSEL FUNCTION. AJ1'S ARE THE VALUES OF FIRST ORDER

BESSEL FUNCTIOMN AT YALUES OF PH.

PROGRAM GENERATES ATMOSPHERIC PERTURBATION YERSUS

RYTOY YARIANCE FOR A MAXIMUM OF 14 DATA POINTS.

IF YOU NEED MORE DATR POINTS, PROGRRM CAN BE

MODIFIED ACCORDINGLY.

INPUT DATAR FIRST LINE IS PATH LENGTH. FOCUS. BEAM

SIZE AND WAYELENGTH

: READ(S.,7B2)> PATH.FOCUS.ALPHB, AWAVYE
782 FORMAT(2X.F?7.2,2X,F7.2.2X,F6.4,2X,E11.4)

CHOP IS THE NEGLIGIBLE YALUE ASSIGNED TO THE

FUNCTION F1 IN THE THEGORY

READ(S5.,7B3) CHOP

783 FORMAT(F?7.5)

READ(S.7B4) HNDATA

784 FORMATC(IZ2)

NDATA IS THE NUMBER OF POINTS SPECIFYING THE RYTOV

VARIANCE WHERE THE YARIANCE IS CALCULATED

SIGMAX IS THE RYTOY VYARIANCE

DO 866 I=1,NDATA

READ(S.,687) SIGMAXCI)

€87 FORMAT(FS.2)
866 CONTINUE
PO 781 ICN2=1,NDATA



GO0

781

48

41

22

23
175

29

181

666

160

CONSTI=PATHx*(11./6.)

CONST2=444 /(7 . *RWAVYE) )*=*(?7 /¢ .)

CN2ICICNZ ) )=SIGHAX(ICHNZ )/ CCONSTI*CONST2*.124)

CONTINUE

DO 9 INDEX=1,MNDATA.,1

CN2=CN2ICINDEX >

WRITE(4.,48> PATH, FOCUS., ARLPHB

WRITEC(e.48> PATH.FOCUE, ALPHB

FORMAT(2X,'PATH=',F5.8B.,2X,’'FOCUS=",3%x,.F5.B,2%,’ALPHB

WRITE(4.,41) CN2.,RURVYE

WRITE{6.41) CN2.RURYE

FORMATC(4X, 'CNz=",4X,E1B.4,2X.,’ aAVE=",2%x,E1B.4)

PHI=22./7.

AK=2 . *PHI/(RUWARVE)

RRHO=1.B9%215*%CN2*«AK*AK*PATH

THE NEXT STEP DECIDES THE RANGE TO GET BHMS

Al=1 . /(2 *ALPHB**2)

RZ=1./CARHO*=*(1 . 2))

A=(R1+R2)**(~- S5)/1BB.

X=F1<(PATH.CNZ2.AWAYE, ALPHB,FOCUS. R

IFCABSCX).LT.CHOF GO T0 22

A=R*1 1

GO TO 22

WRITEZ4,175) A

FORMART(2E, 'R=’,2X,E14.86)

CALCULATION OF BMS FOLLOWS

GENERALLY & COFFECIENTS ARE EMOUGH,IF MORE REQUIRED

CHANGE 6 IN STHTEMENT 29 TO THE REQUIRED HNUMEER

M=1

IF(M.GT.6> GO TO 25

TRAPEZOIDAL INTEGRATION TO GET BHMS

AR=DB .

Bk=A

DR=(BR-ARD>* .5

PEM=PM(M)

SUMI=FX(PATH.CN2, AWAVE ,ALPHB. FOCUS,PXM. R, AR+2 =*
1FX(FATH,.CN2, AUAYE.ALPHB,. FOCUS,.PXM, R, DRI+FR(FRATH,CN2,
2AVAYE . ,ALFHB,. FOCUS.FPXM.A.BRD

SUMA=SUM1 *DR=* .5

NR=1

NE=2 *NR

TDR=DR

DR=DR=*.5

R=AR +DR

D0 181 IR=1,NR

SUM1=3UM1+2. *FX(PATH,CNZ, AWAYE ALPHB.FOCUS,PXM, A, R)

R=R+TDR

CONTINUE

SUMZ2=SUMI*DR*.5

IFCARS(SUM2-SUMAY . LE .ABSC .B1xSUM2))> GO TO e¢o

SUMA=SUMZ

GO TO 26

IF(NR.GT.186) GO TO 667

SUMAR=SUMZ
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GO TO 286

BM(H Y=SUMZ2%2 . /({A*KJI( M) )%%x2)

M=M+1

GO TO 29

CONTINUE

SUMC=8.

DO 1B3 H=1.e

WRITE{4,28) M,BH(H)

URITE(6.28) HM,BH{(M)

SUMC=SUMC+BM(HM>

FORMATC(4X, 'H=",14,5%X,'BM{M>=",F18B.7)

CONTINUE

MRITEC(E,94) SuUmMcC

WRITE(4,94) SUMC

FORMATCIBX, ' SUMC=",F1IB.7)

CALCULATIONS FOR CX<{M: FOLLOW

SIMPLE EXPRESSIONM 18 USED FOR SIGHMAT LESS THAM

OFR E2. .3 AND CLIFFORD EXPRESIION FOR GT OR EQ. .3
MC=1

IF{(MC.GT.6) GO TO 33

RHO=PATH=xPM{(HLC >/ CA*AK?

SIGMAT= . 124=AK**{?_ /6. )*PATH**{11. /6. )>*%xCH2
WRITEL4.,93) SIGMAT

WRITEC(6.93) SIGHMAT

FORMAT(4X, ‘SIGMAT=",E14.86)

SIGHAT 1S THE SAME AS SIGHAX

IF{SIGMART .LE. .32 GO TO 928
CX(HMC)I=FYY{RHOU.SIGHAT, ARYE,PATH)

CX(MC)> 1S THE LOG-AMPLITUDE COVYARIANCE FUMCTION
FYY 1S THE LOG-AMPLITUDE COVYRRINCE IN STROHNG
TURBULENCE REGIME , DEVWELOPED BY YURAR AND CLIFFORD.
THIS 1S5 A DOUBLE INTEGRAL. ONE OF THE INTEGRALS IS
RPPROXIMATED BY AN ASYMPTOTIC SERIES EBY
DR.R.A.ELLICTT OF 0OGC.

FOR DETAILS SEE REFERENCES 54 AND 72 OF THIS THESIS
GO TO 921

CONTINUE

CX(MC)I=FGX{(RHO.CHNZ2, AWAYE. . PATH)

FGX 1S THE LOG-AMPLITUDE COVARIANCE FUNCTIOW IN
LOW TURBULENCE LEYEL AND IS AGAIN AR DOUBRLE INTEGRAL.
ONE OF THE INTEGRALS WAS AFPROXIMATED BY A& SERIES

BY DR.R.A.ELLIOT . THIS I3 SUBROUTINE H BELOUW.

WRITE{4,511> HMC,CX{(MC),RHO
WRITE(6.,511)> MC,CXC(HC),RHD
FORMAT( 4%, 'MC=" ,14,5X,*CR(HCO>=",E14 . 6.,2X., RHQ=",E14.
IF(CX<(MC>.LE. .BB1)> GO TO 528
MC=MC+1

GO TO 32

MCi=MC+1

DO S21 IM=NC1l.¢

CX(IMO=8.

CONTIKNUE

CONTINUE

COFFSHM=@.
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DO 522 M=1.6
COFFSM=COFFSM+BMCMI*EXP(4 . «CX(M))
522 CONTINUE
SIGMA=COFFSM+1 . -SUMC
c SIGMA IS THE ATMOSPHERIC PERTURBATION
WRITEC4,524)> SIGMAT,SIGCMA
WRITE(6.,524) SIGMAT. SIGHMA
524 FORMAT(4X, *SIGMAT=’,E18.6.5X, 'SIGMA="',E14 6>
THE NORMALIZED VARIANCE OF THE RECEIVED INTENSITY
FOR A MONOCHROMRTIC SPECKLE IS GIVEN BY
VAR=2.%SIGCMA-1 .
FOR A POLYCHROMATIC SPECKLE ., THE YARIANCE
OF INTENSITY IS GIVEN A4S
VAR=C 1. +YSCR*YSCRI*SIGMA-1.
99 CONTINUE
STOP
END
FUNCTION RAJB(X)
g AJB IS THE BESSEL FUNCTION OF ZEROTH ORDER AND FIRST
IFCX.GT.3.) GO TO 71
X1=K/3.
AJB=1.-2.2499997+X1*%2+1  26562B8*K1%%x4- 3163R66*K]1 %%
16+ . B444479+%1*%8- BB39444%X1x%10+ BAB21%X1%%12
GO TO 72
71 %2=3 . /%
FO=.79788456-. BEBEBA77*X2 - BBS55274*X2*%2- BBEBHESS51*xX2
1*%3+ BR137237%X2#%4- BBB7?28BS*X2*%5+ BOD14476%X2%%6
THETA=X-.78539816-.84166397«X2- BRBB3354%K2»%2+
1 .BB262573%X2%%3- . BBBS54125%X2+*4- BABZIRII#X2* %5+
1 . BOB13558%X2%%&
AJB=FO*COS(THETAY/SQRT(X)
£ TO 72
72 CONT INUE
RETURN
END
FUNCTION F3C(Y)
Q= . 7Y
IF(Q.GT.4.712389) GO TO 61
Q1=Q%%C1./3.) -
GR=3.%( . 37278-01/4_ +Q1**7/448 . -Q1*%%13/29952
1401%%19/( 2801 664EB3)-Q1%%25/( 36864 .EB4 )
FF4=7 B2%Y**(5_ /6.)%G0
GO TO 62
61 Q2=0%%(-1./6.)
GR1= . 6%Q**x(-5 /3 )
CQ2=.79788456%C0S(Q+ 78533816 >%(Q2*%( 13 )-
113.194444%02%%( 31 >+428.38966*Q2%*(43_))
GQ3=.79788456*xSINCR+.78539816)%( 3. 1666667%Q2*%(25)
1-68.171296%Q2*%(37. )+3B12.7926%02%*(49))
Ce=GQ1-G@2-6Q3
FF4=9 45*Q*%x<S5 . /6. )>%GQ
GO TO 62
62 F3=FF4
RETURN

OO0O000O0
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END

FUNCTION FF2{Y)

VEXY LY A1) GO TO &5
FF2=SIN(Y)==2/(Yx=( 11 /6.))>

GO TO e8

YP=Y%=%(1l /6.)
FF2=YP-.3333333*2YPxx13+ B4444444xYP*%x25
GO T0O o8

CONTINUE -

RETURN

END

FUNCTION FI1(PATH,.CN2.,AWAVE.ALPHB.FOCUS.22)
22=22/ALPHB

X1=EXP(-22Z%22/2.)
RKk=44 /(7. =*=AWAVE)

X3=1 B921S5S*CN2*PATH*AK*%2
23=Z22*x(5 /3. )

R2=EXP(-¥3%x23)

RK4=RK=*( 1 -PATH/FOCUS)*Z2+«ALPHB/( 2. *PATH)
XS=EXP( -X4%xKX4%x2 )

Fi=K1%X2xX5

RETURN

END

SUBROUTINE GAUSSU(RHO.SIG,AWAYE.PATH.AL1,AZ2.,Y,ANSL1)
Ci=C(Rl1+AZ)>*.S

Cz=(A2-A1)>%_ 5

Ul=-.2386915%C2+C1
Uz=.2386915=C2+Ct
U3=-.6612894=C2+C1

Ud=_ 6612B94%xC2+C1
US=-.9324695xC2+C1
Ue=.93246952C2+C1

Wi=.4679139

Wa=i1

W3=.30B7616

Wd=W3

WS=.1713245

We=W5
URl=W1=FM(RHO,SIG,AWAVE.PATH. UL, Y
UA2=W2*xFH{RHO.SIG,AUMAYE.PATH,. U2.Y>
UA3=U3*xFM{RHO,SIG,RUWAYE.PATH. U3, Y
UR4=W4=xFM(RHO,SIG,AUAVYE, PATH, U4.,Y>
URS=W5*xFM{(RHO.SIG,AWARYE,PATH. U5, Y
Upe=WexFM{RHO,SIG,RUAVE, PATH. U, ¥>
ANSU1=C2*(URI+UAR2+UA3I+UR4+URS+UAB)
RETURN

END

SUBROUTINE YGAUSS(RHO.,SIG.AWAYE.PATH,AY1,AY2,ANSYY)
Di=CAY1+AY2)%.5

D2=(AY2-AY1)=* 5

Yi=-.2386915*D2+D1
Y2=.2386915=*D2+D1

Y3=- 66128B94*D2+D1

Y4= 6612B94=D2+D1
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¥S=-_.93246954D2+D1
Y6=.9324635*D2+D1
Wi=.4679139
v2=ul
¥3=.36B7616
Va=u3
US=.1713245
¥6=US
YA1=U1*UCAUSS(PATH,RHO,SIG, AWAVE, Y1)
YA2=W2%UGAUSSCPATH, RHO,SIG, ANAVE,Y2)
YA3=U3*xUCAUSSCPATH, RHO,SIG, ABAVE,Y3)
YA4=W4*xUGAUSSCPATH, RHO,SIG, AWAYE,Y4)
YAS=W5*UGAUSS(PATH, RHO,SIG, AWAYE,YS5)
YA6=W6xUGAUSSC(PATH, RHO,SIG, AWAYE,Y6)
ANSYY=D2+(YA1+YA2+TA3+YA4+YARS+YAG)
RETURN
END
FUNCTION FMCRHO,SIGMAT,AWAYE, PATH, U, Y
IF(Y.LE.B.> GO TO 251
IF(ABS(U>.LE..BB1.0R.ABS(UY.GE..99> GO TO 251
AXXR=U*(1.-U)
IF(AXXX.GE.B.) GO TO 991
WRITE(6.,232) AXXX

232 FORMATC(F14.8)

991 CONTINUE
FM14=EXP(-SIGMAT*FICY)*(U*{ 1. ~U>)>*%(5./6.))
FM11=CU®C] . =U))>*%((5.)/6.)

PHI=22./7.

FM12X=SQRT(C4. *PHI*Y*U)/ (1. -U))>
FM12Y=SORT(AWAYE®PATH)
FM12=FM12X*RHO/FM12Y

FM13=FF2(Y)
FM=FM11*FM13*FM14*AJACFN12)%2 95%SIGMAT
€O TO 252

251 FM=8.

252 CONTINUE
RETURN
END
FUNCTION UGAUSS(PATH,RHO.SIGHAT,AWAYE,Y)
au=g8.

BU=1.
NU=2
TNSU=8.
5SB! ANSU=@.
DO SB2 IU=1,KNU
ANU=NU
A1=AU+CIU-1. )%¢BU=-AU)I/ANU
A2=AU+C IUD*(BU-AUI/ANU
CALL GAUSSU(RHO,SIGMAT,AWAYE,PATH,A1,A2,Y,ANSU2)
ANSU=ANSU+ANSU2

sa2 CONTINUE
IF(ABSCANSU-TNSU) .LE.ABS( .B2*ANSUD>)> GO TO 583
TNSU=ANSU
HU=NU=%2
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GO TO SB1

UGAUSS=ANSU

RETURN

END

FUNCTION FX(PATH.CN2.AWAYE., ALPHB.FOCUS,PXM.A.R)
FRX=F1{(PATH.CHNZ . AWAYE.ALPHB.FOCUS.R)>
FE=FXX*R*xAJB(PXM*R/A)

RETURH

END

FUNCTION FYY(RHO,SIGMAT.AWAYE.PATH)>

THS¥=8.

ANSK=8.

AT=8.

IF(SICMAT.LE.1.)>» GO 70O 721

BY=1./¢2. «SIGMAT)

GD T0 722

BY=1.

DELTA=BY

NY=2

TNSY=8.

ANSY=8B.

DO 589 I¥Y=1,NY

ANY=NY

AY1=AY+(IY-1 . )»x(BY-AY)/ANY
AY2=AaY+IY=(BY-aAY)/ANY

CALL YGAUSS(RHO.SIGMAT.AWAVE.PATH.AY!.AY2,ANSY2)
ANSY=ANSY+ANSY2

CONTINUE

IFCABSCANSY-THSY).LE .ABS{ .B2*ANSY)>)> GO TO 518
THSY=ANSY

HY=NY=*2

WRITE<6.,4061) ANSY

FORMAT(SX,.E14.6)

IF(NY .GE. 4 _AND. . ABS(ANSY>.LE..BR1> GO TO 518
GO TO S5B8

AHSX=ANSK+ANSY

IFCABSCANSX-TNSX) . LE.ABSC( . B2*ANSX)>) GO TO0 732
AY=AY+DELTA

BY=BY+DELTA

TNSX=ANSX :

IFC(ABSCANSX)Y.LE. .BB1)?> G0 TO 732

GO 7O 723

FYY=ANSX

RETURN

END

SUBROUTINE GAX{(RHO,CN2.,AWAYE,PATH,ALl,A2,ANSU1)
Ci=CAil+AR2)% .5

C2=(AR2-A1 )= 5

Ul=-.2386915=C2+C1

U2=.23869%915«C2+Cl

U3=- 6612894=C2+C1

Ud4=.6612B%4xC2+C1

US=-.9324695=C2+C1

Ue=.9324695%C2+C1
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Wi=.4679139
¥2=¥1
¥3=.36B7616
W4=U3
W5=.1713245
We=W5
UALl=W1*FMXX(RHO.,CN2.,AWAYE . PATH. . U1)
UA2=W2+*FMXX(RHO,CN2., AWAYE.PATH.U2)
UA3=W3*FMXX(RHO,.CHN2, ARUAYE.PATH.U3>
UA4=W4*xFMXX(RHO,CN2, AWARYE,PATH.U4)>
UAS=WSxFMXX(RHO.,.CN2, RWAYE . PATH., US>
URée=WexFMXX(RHO.CN2, ARWAYE ,PARTH.U®&>
ANSU1=C2*(URL+UAR2+UR3+UR4+URS+URE)
RETURN
END
FUNCTION FGX(RHO,CH2,AWAVE.PATH)>
RU=8.
BU=1.
NU=2
TNSU=8.
ANSU=8.
PO 582 IU=1.,HU
ANU=NU
Al=AU+(IU-1.)=x(BU-AUI/ANU
AZ2=AU+(IU >*(BU-AU)/ANU
CALL GAX(RHD.CNZ2,AWAYE.PATH.,AR1.,A2.,ANSU2)
ANSU=ANSU+ANSU2
CONTINUE
IF(ABSCANSU-TNSU) .LE . ABSC . B2*xANSU) D GO T0 583
TNSU=ANSU
NU=NU=*2
GO TO SB1
FGX=ANSU
RETURN
END
FUNCTION FMXX(RHO.CNZ2,ARBAYE.FATH.U>
PHI=22./7.
AK=2 . *PHI/ZABAYE
Al=SARTC(U»( 1. -UDX*PATH /(2. %AK )
A2=ABS(RHO=(1. -U>>
CALL HS(A1.,R2.CCO
FMXR=_ 132sPHI*PHI*»AK=AK*PATH*CNZ=*CC
RETURN
END
SUBROUTINE HS(AR.,B.C)
DIMENSION C2(2),C3<18)>
INTEGER F1
DOUBLE PRECISION G2.G3.,HK.BB,G.,C.H
DATA C2/9.645B6E-3,-.513572E-2,.298832E-1.,
-.54B2513EB, .2B856255E2
o—1.35296E3,1 .37215E5.-1.9892E7.,3.9B89E9/
DATA C3/3.36111.,-13.49112,-66.88151,.385934E3,
.2626497E4, - . 2B44B46ES,
-.1791784E6, .1747611E7,1.8776B4E7,-2.2B3577E8/
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Z=B=B/(8+xa=*R)
HH=.559167*B2%x( 1. .6666667)
IF ¢2.67.12.56> GO TO 288
N=31

C POWER SERIES EXPANSION OF H[A.B1

12
18

13
11
188

Ni=N+1

HK=5./(36=%4)

BB=Z2#+22HK

G2=]1 . +BB

H3=H/2+1

DZ2=2%2

TZ=D2*D2

DO 1B J=1,N3

I=2%J-1

HK=-HK=%¢(6 . *1+1  J%(6 *]+7 )/¢C6 *(1+2. I*CI+3.)0)%*2)
IF{J .EQ.1) GO TO {2

HK=HK=»D2Z

GO TO 18

HK=HK=TZ

G2=G2+HK

HK=5 . /6.

BB=HK=*2

G3=BB

DO 11 J=B,N3

I=2%)

HEK=-HK=%{(6 . =1 +1 2% %]+7 . )3/CC6 . *%(1+2>%x(JT+3))%x%2)
IF(J .EQ.B> GO TO 13

HK=HK=D2

GO TO {1

HK=HK=D2x%x2

G3=G3+HK
G=¢(.25881984*G2+.96592583*G3)
C=2.975414275*A%x%x] 6666667%C
C=-HH+C

RETURN

C ASYMPTOTIC EXPANSION OF HLA.B1

284

22=1/2

Di=p 52%5982*Bx=%1 666667
GI=C2C¢1I%22%%24C2(2)>222%%4+C2( 3 )%22»%xp+C2(4)%2Z2%%3

1 +C2(S5)x22%%x1B+C2(6)*22*%12+C2¢( 7>%22%%14+4C2¢(8)*22Z*»x
1 16
G2=1+C3(2)22Z**2+C23(4)»22*%x4+C3C6)%ZZ2**6+C3(8)*x2Z*%8
1 +C3¢18)*22Z=18
G3=C3C¢1)%22+C3(3)>*22%%3+C3(5)>*x22»x5+C3(7)%22Z%%7+

1 C3(9)*x22==»9

P0=2 . 66660667

H=1 . B63B85S3*C1+SIN(Z)*2Z«=P0=G2*.1497185-.1497%

1 COS(Z)*ZZ*=P0=*G3

C=-H=D1

RETURN

END
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NAME OF THE PROGRAM IS RAOQ2FF

NOTATION OF THE PROGRAM ¥YAR111 APLLIES HERE

CALCULATION OF <I<(K1)> I{K2)>> VERUS RATIO

OF WAVELENGTHS(KI/K2) AT A GIVYEN POINT

IN THE RECEIVYER PLANE AT VARIOUS VALUES

OF INTEGRATED TURBULENCE. THIS IS USEFUL

IN STUDYING THE DEPENDENCE OF TWO FREQUENCY

ATMOSPHERIC PERTURBATION ON THE FREQUENCY

DIFFERENCE (SEE CHAPTER ¥ .TABLE ON THE

COMPARISION OF TW0O FREQUENCY AND SINGLE

FREQUENCY ATMOSPHERIC PERTURBATION).

THE TW0 FREQUENCY LOG-AMPLITUDE COVYARIANCE

C(R,K1.,K2) IS STUDIED IN ANOTHER PROGRAHM.

THIS PROGRAM IS VALID ONLY AT LOW

TURBULENCE LEYELS (RYTOY VYARIANCE<.3>.

DIMENSION PM(15),AJ1(15),CX(6)

DIMENSION BM<1B)> -

DATA PM /2 .4B48.,5.52B1.8.6537,11.7915,14.93B9,
C18.B711.,21 .2116.24.3525,27.4935,30.634¢6,33.7758.,
136.9171.,48 . B584,43.1998.,46.3412/

DATA Adl /.51915,-.342B6., . 27145, ~-,2324¢6,-.2B635.,
1-.18773,.17327.,-.1617B,~-.15218, .1441¢66.,-.1373,
1.131325,~-.12687,.1239,-.11721/

READ{(S.,782) PATH.,.FOCUS.,ALPHB., AWAVYE

7B2 FORMAT(2X,F7.2.2%.,F7.2.,2X.,Fe6.4,2X.,E11.4)
READ(S,7B3) CHOP

7B3 FORMAT(F?7.5)>
READ(S.7B7) CHN2

787 FORMATC(E1B.4)

AKB=44 /(7 .=AMAVYE)

DO 99 1JJd=1,6

BETA=1JJ=_ 1

AK1=AKB+AKB*BETA=* .5

AK2=AKB-AKB*BETA*.5

WRITE(4,48) PATH, FOCUS, ALPHB

WRITE(6.,4B) PATH. FOCUS., ALPHE

48 FORMAT(2X.,'PATH=’,F5.B.2X.,’FOCUS=",3X.,F5.8
i :2“:'ﬂLPHE=’:F6.4>
WRITE(4,41) CN2,AWAYE.BETA
WRITE(é6.41) CH2.AWAVYE.BETAHA
41 FORMAT(4X,'CN2="’,4X,E18.4.2X,’AUAYE=",2X,
1 EIB.4,’BETA=’,F6.3)
PHI=22./7.
ARHO=1 . B9215*«CHN2*/RK1*AK1=PATH
THE MNEXT STEP DECIDES THE RANGE TO GET BHMS

Al=1 _ /(2. «*ALPHB=*%*2)

A2=1./CARHO=*=»(1 .2))

A=(A1+A2)%=x(-_5)/1B8B.

22 X=F1(AK2.PATH,.CN2,AK1, ALPHB.FOCUS,AR)

IFCABS(X)>.LT.CHOP) GO TO 23

A=A=1 .1

GO 7O 22

23 WMRITE<(4,175)> A
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175 FORMAT(2K,’A=’,2K.E14.6)

c

29

26

11

656

667

25

28
183

94
c

32

93

CALCULATION OF BMS FOLLOWMS

H=1

IF{M.GT.6> GO TO 25
AR=8.

BR=A

DR=(BR-AR)>=*.35
PXM=PM(M>

SUMiI=FX(AK2,PATH,CN2,AK1.,ALPHB,.FOCUS,PXM. A, AR+
1 2.=«FX(AK2,PATH.CN2.,AK1,ALPHB,FOCUS.PXM,A,DR >+
2 FXCAK2,PATH.CN2,AK1 ,ALPHB, FOCUS.PXH, A, BR)

SUMA=SUMi{=DR=.5

HR=1

HR=2=%NR

TDR=DR

DR=DR=*.5

R=AR+DR

DO 1Bl IR=1,NR

SUMI=SUM1+2. »FX(AK2,PATH,CN2, AK!, ,ALPHA,

1 FOCUS,PXM.,A,R)

R=R+TDR

CONTINUE

SUM2=SUM1*DR=_5

IFCABS(SUM2-SUMA) . LE .ABS( .B1=SUN2>)> GO TO e66

SUMAa=SUNM2

GO TO 26

IF{HNR.GT.16)> GO TO 667

SUMA=SUM2

GO TO 2¢

BM{M)I=SUM2%2 /((A*AJI(H))I*=%2)

M=M+1

GO 7O 29

CONTINUE

SUMC=8.

DO 1B3 H=1.6

WRITE(4.,28) HM.BM(M)

WRITE{6.28) M,BM(H>

SUMC=SUMC+BM(M)>

FORMAT(4X,'M=’,14,5X,’BM(M)=",F1B.7)

CONTINUE

BRITE(6.,94) SUMC

WRITE(4.,94)> SUMC

FORMAT(1BX,’SUMC=",F1B.7>
CALCULATIONS FOR CX(M)> FOLLOW

MC=1

IF(MC.GT.86) GO T0O 33

RHO=PATH=PM(MC)/C(A*AK2)

SIGMAT=.124=AKB=*=(7 . ./6.)«PATH=*=*(11 . /6.)*CN2

WRITEC6.,93) SIGMAT

FORMATC(4X, *SIGMAT="',E14.6)

CX(MC)I=FYY(AK2,RHO.,CN2,AK1,PATH>

WRITE(4,511)> HMC,CX(MC).RHO

WRITEC6.311) MC,CX(MC)>,RHO

FORMATC(4X,’'NC=’,14,5X,’CX(HC>=",E14.¢0.,
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1 2X.,’RHO="’,E14 .6

IFCCX{(MC>.LE..BB1)> GO TO 528

MC=MC+1

GO TO 32

MC1=MC+1

DD S21 IM=MCl.¢

CR¢CIMI=8.

CONTINUE

CONTINUE

COFFSH=8.

DO 522 M=1.,6

COFFSH=COFFSM+BM(M)I>*EXP(4 *CX(M))

CONTINUE

SICHMA=COFFSH+1 . ~-SUMC

WRITE(4,524) SIGMAT.SIGMA

WRITE(6.,524) SIGMAT.,SIGMHA

FORMAT(4X, ‘SIGHAT=’.E18.6,5%,'SIGMA=",E14.6)
WRITE(4,555)

FORMATC 272727777 )

CONTINUE

CONTINUE

STOP

END

FUNCTION AJBC(X)

IFCX.GT.3.) GO TO 71

®1=¥X/3.

AJB=1.-2.24999972X1%%2+]1 26562B8*X1*%x4- 3J163866%X1*xx%
16+ B4444793=X1%%8- BHE39444*+X1*%x1B8+ BHB21*X1%x%x12
GO TO 72

X2=3./%
FO=.79788456-. BEBEBBTY7*X2- BBS55274%xX2%%2~- BBBBE951*X2
1#%x3+ PAB137237%X2%%4~- PBRB728H@S*%2*x5+ BBB14476%X2%%p
THETA=X-.78539816-.84166397%X2- HBBBA3954%X2%%2+
1 . BB262573=%2*=%x3- HBBBS54125#X2+%x4- BBE29333%K2%=5+
1 .BBB13558*%X2%xx%¢

AJB=FO*COSC(THETA)/SQRT(X)

GO TO 72

CONTINUE

RETURN

END

FUNCTION F1(AK2.PATH,CN2,R8K1,ALPHB,FOCUS.22)>
22=22/ALPHB

Bi=AK2/AaK1

B2=AK1/AK2

RI=EXP(-22#%22% 25=(§ +B1%B1))

3= 545625«CN2*PATH*(AKZ2*»2 )& (] +B2**( 3333233))
23=22%%(3./3.)

XK2=EXP(-X3%23)

X4=aK2*(1 . -PATH/FOCUS))*22*ALPHB/(2 . *PATH)
XS=EXP(-X42X4%2 )

Fil=X1%X2%X5

RETURN

END

SUBROUTINE GAUSSUCAK2,RHO.CN2.AK1,PATH. ALl . A2,Y,RANS)
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Ci=(Al+A2)%.5

C2=(R2-R1 )% .5

Ul=-_ 2386915=C2+C1

U2=.2386915+C2+C1

U3=-.6612894=C2+C1

Ud=.6¢12894xC2+C1

US=-.9324695xC2+C1

Ue=.,9324695=xC2+C1

Wi= 4679139

Wa2=u1

83=.36B7¢1e

W4=U3

W5=.1713245

We=W5
UALl=Wi1*FM{RK2,RHO.CN2,RK1,PATH,UL.Y)
UR2=U2xFM{AK2,.RHDO.,CHN2.,ARK1,PATH.U2.,Y">
UR3=U3*xFM(AK2,RHO,CN2.ARK1.PARTH.U3.Y)>
URd4=W4*xFM{AK2, RHDO,.CN2,.RK1,PATH.,U4,Y)
URS=U5=*FM{AK2, RHO.CN2.,AK1 ,PATH.US.Y>
URe=We*FH{AK2, RHO.CN2,RK1.PATH.UB. Y
ANS=C2*x(UA1l+UA2+UR3I+UAR4+UAS+UARB)
RETURN

END

SUBROUTINE YGAUSS(AKZ2.RHO.CN2.AK1.PATH.AY1.AY2.,ANS)
Di=CAY1+AY2)*. .5

D2=(AY2-AY1)*. 5

Yi1=-.23869152D2+D1

¥2=.2386915%D2+D1

Y3=-.6612894=D2+D1

Y4=.6612094%xD2+D1

YS=-.93246952D2+D1

Ye=.9324695%D2+D1

Wi=.4679139

W2=UW1

¥3=.36B7616

Wd=U3

US5=.1713245

We=UWS
YAl=W1=UGAUSS(AK2.PATH.RHO.,CN2,AK1.Y1)
YA2=W2*xUGAUSS(AK2.PATH,.RHO,CN2,AK1.Y2)
YA3=W3*xUGAUSS(AK2.,PATH.RHO.CN2,R/RK1,Y3)
YA4=W4*UGARUSS(AK2.PATH.RHO.CN2.,AK1.,Y4)
YAS=W5*UGAUSS(AK2.,PATH.RHO.,CN2,RK1.,¥Y3)
YAEe=Woe*xUGAUSS(AK2,PATH,.RHO.CN2,AK1. Y8
ANS=D2*{YAI1+YA2+YA3+YA4+YAS+YRG
RETURHN

END

FUNCTION FMCAK2.,RHO.CN2,R8K1.PATH.U.Y)>
IF(Y.LE.B.) GO TO0 251
IFCABS(U>.LE..BB1 _OR.ABS(U).GE..929)> GO TO 251
AXXX=U*s{(1 . -U)

IF(CAXXX.GE.B.) GO TO 9291

WRITE(6.,232) AXXX

FORMAT(F14 . 8>
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991 CONTINUE
FMif=C(U=(1l -U>)*s((5.)2/6.)
PHI=22./7.
FH12X=SQRT(C(4 »PHI=Y=2U)/¢(1.-U>)
WAYEL=44 /(7 .*=AK1)
FM1i2Y=SQRT(WAVEL=PATH)
FM12=FM12X=*RHO/FM12Y
BB=AK1/AK2
FMi3=SIN(Y)=SIN(BB*Y )/ (BB*(Y*s=x(11./6.2))
COMS=.36558246xCN2*( AK1xx(7 . /6 .))x(PATH*s(11 /6 .))
FR=CONS*FMii»AJB(FM12)xFM13
GO TO 252
251 FHM=8.
252 CONTINUE
RETURN
END
FUNCTION UGAUSS(AK2.,PATH.,RHO.,CHN2.,AK1.,Y)
AU=8.
BU=1.
NU=2
THSU=8.
581 AWSU=8.
DD SB2 IU=1,NU
ANU=NU
Afl=AU+CIU-1.)=(BU-AU)Y/ANU
A2=AU+C IU)Y=(BU-AU/ANU
CALL GCAUSSUCAK2,RHO.CN2,AK1.PATH,ALl.,A2,Y,ANSU2)
ANSU=ANSU+ANSU2
S8z CONTINUE
IF(ABS{ANSU-TNSU) .LE .ABSC . B2*ANSU>> GO TO 5B3
THSU=ANSU
NU=NU=2
GO TO 581
583 UGAUSS=ANSU
RETURN
END
FUNCTION FXCAK2,PATH.CN2,AK1,ALPHB.FOCUS,PXM,R,R>
FXX=F1(AK2.PATH,CN2., RK1,ALPHB.FOCUS,R)
FX=FXX=*R*AJB(PXM=*R/A)
RETURN
END
FUNCTION FYYC(AK2,RHO,CN2,AK1,PATH)>
SIGHAT=.124=aK12%(?7 /6. .)%(PATH=*(11./6.>)*%CN2
TNSK=08.
ANSX=0.
AY=8.
IF(SIGMAT.LE.1.) GO TO 721
By=1./¢(2.«SIGMAT>

GO T0 722
vet BY=1.
722 DELTA=BY

IFCAKL.GT . AK2) BY=BY=*AK2/AKI
IFCAK1.GT.ARK2)> DELTA=DELTA*AK2/AK1
723 NY=2
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TNSY=8.

ANSY=0.

DO SB9 1I¥Y=1,NY

ANY=NY

AY1=AY+(IY-1.)=(BY-AY)/ANY
AY2=AY+1Y*(BY-AY)/ANY

CALL YGAUSS(AK2.,RHO.,CHN2.RK1.PATH.AY1,AY2,ANSY2)
ANSY=ANSY+ANSY2

CONTINUE

IF(ABS(ANSY-THSY).LE.ABSC .B2*ANSY)>)> GO TO 518
TNSY=ANSY

NY=NY=%2

WRITEC(6.,461) ANSY

FORMAT(SX.E14.86)

IF(NY.GE.4 AND.ABSCANSY) LE. .BR1)> GO TO 518
GO TO 3@8

ANSKX=ANSX+ANSY
IFCARSCANSX-TNSX) . LE . ABSC .B2*ANSX)>) GO TO 732
AY=AY+DELTA

BY=RBY+DELTA

TNSX=8NSK

IF¢(ARBSC(ANSX) . LE. . BEB1) GO TO 732

GO TO 723

FYY=ANSX

RETURN

END
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NAME OF PROGRAM IS RAODOGKX

PROGRAM TO CALCULATE THE ATMOSPHERIC

PERTURBATION USING HILL SPECTRUM FOR THE

SIMULATION TANK VALID ONLY AT LOW

LOW TURBULENCE REGIMES .NEED TO BE CHANGED

FOR STROKG TURBULENCE REGIMES.

DIMENSION PHC15),AJ1(15),CX¥C(6),CN2I(6)>

DIMENSION BM(18B) ,

DATA PM /2 .4B48.5.52B1.8.6537.11.7915.,14 9389,
C18.B711.,21.2116.24.3525,27.4935,38.6346,33.7758.,
136 .9171.,4B.8584,43.1998.46.3412/

DATA AJI /.51915,-.342B6., .27145,-.2324¢.,-.2B¢35,
1-.18773, .17327.,-.1e¢178.,-.15218, .144166.-.1373.,
1.131325,-.1268B7.,.1239,-.11721/

DATA CN2!/1 .E-11.,5.E-11.1 E-1B,2 E-1B,5.E-18,
i {1 . E-B9/

READ{(5.444)> PATH

444 FORMAT(F4.2)
READ(5, 445 FOCUS
445 FORMAT(F4 . 2>

REARD(5.,446) ALPHB

44¢ FORMAT(FS.3>

READ(S., 447 ) ARWAYE

447 FORMAT(F&.3)>

AVAYE=AWAYE=*<{1 E-Bs&)

READCS.78B3) CHOP

7B3 FORMAT(F?.5)

REFRACTIVYE INDEX IS 1.361:1T SHOULD BE

CHANGED FOR OTHER SIMULATING MEDIUMS

DO 99 INDEX=1.,6.,1

CN2=CHN2I(INDEX)

WRITE(4,48) PATH., FOCUS., ALPHB

WRITE(6.4B) PATH, FOCUS., ALPHA

4B FORMAT(2X,’PATH=’,F7.2,2X,’FOCUS="’,3¥,F7.2.2¥%,
1 ALPHB='.,F6.4)
WRITE(4,41) CHN2,AWAVE
WRITE(6.,41) CN2.,AWAVYE

41 FORMAT(4¥, 'CN2=',4%X,E1B.4.,2X.’AWAYE=",2X,E18 .4)

PHI=22./7.

AK=2 =PHIx*1. 361/C(AWAYE)

ARHO=1 . B9%9215=CN2*AK*AK*PATH

THE HKEXT STEP DECIDES THE RANGE TO GET BHMS

Al=1 /(2. .=aLPHB=s2)

A2=] . /CARHO=={ 1 2>

A={A1+AR2)*s(~-_5)/18B8.

22 X=F1(PATH.,CN2.,AWAVE, ALPHB,FOCUS. Aa>

IF(ABS(X)>.LT.CHOP) GO TO 23

A=Aax] .1

GO TO 22

23 WRITE(4.,175)> R

175 FORMAT(2X,’A=’,2%.E14.6)
CALCULATION OF BNMS FOLLOWMS
M=1
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29 IF{H.GT.6) GO TO 25
AR=R.
BR=4
DR=(BR-AR)=*_.5
PEXM=PM{H>
SUMI=FX{(PATH.CN2,AWAYE ALPHB,.FOCUS:.PXHM.A,AR)
1+2 *FXE(PATH.N2. AWAYE . ALPHB.FOCUS.PXM, A, DR)
2+FX(PATH,CNZ2,AUAYE. . ALPHB.FOCUS,PXM, A, BR)
SUNA=SUN1*DR*.5
NR=1
26 NR=2%HNR
TDOR=DR
DR=DR=*.5
R=AR+DR
DO 181 IR=1,NR
SUNI=SUMN{+2 . »FX(PATH,CN2, AUAYE ;ALPHB,.FOCUS.P¥M,A,R)
R=R+TDR
181 CONTINUE
SUM2=SUMIi*DR=%_5
IF(ABSC(SUNM2-SUMA)Y.LE .ABSC .B1*3SUM2)>)> GO TO 666
SUMA=SUN2
GO T0O 26
) IF(HR .GT.16> GO TO &67
SUMA=SUNZ
GO T0 26
67 BMI(MI=SUMZ*2 /{({A*xaJ1{(M)r*x2)
M=M+1
GO TO 29
CONTINUE
SUMC=8.
PO 1B3 M=1.,8é
WRITEZ4,28) M,BM(H)
WRITE<®.,28) M,BM( M)
SUMC=SUMC+BM(M)
29 FORMATC(4X,’M=’,14,5%, " BM<{(M>)=’,Fi1B.7)
183 CONTIHNUE
WRITE<C®6.,94) SUNC
WRITEC4,94) SUMC
34 FORMATCIBX.,’SUMC=",F1B.7>

o
on

LOG-AMPLITUDE COYARIANCE FUNCTION OF A SPHERICAL WAY
AT LOW TURBULEMCE LEVELS IS USED IN THE HNUMERICAL
EVYALUATION. THIS SHOULD BE MODIFIED FOUR STRONG
TURBULENCE CONDITIONS.
CALCULATIONS FOR CX(M) FOLLOW
RYTOY=FYY(HB.,CN2, AMAYE.PATH)
URITE<{4.,188) RYTOV
WRITEC(6.,188) RYTOVY

1288 FORMATC(Z2X,’'RYTOV=",E14 .6
MC=1

32 IF(MC.GT.6)> GO TO 33
RHO=PATH*PM(NC)/(A*¥ARK)
CRX(MCO>=FYY(RHO.CN2,AUAYE,PARTH)
WRITEC4,511)> MC,CX(MC>.,RHO
WRITEC(®6,511)> MC,CX(MC)>,RHO
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S5i{1 FORHMAT(4X, ’MC=’,14,5X%.’CX(MC)>=",E14.6.2%X,’RHO=",E14.
IF(CX(MC) LE..BBi)> GO TO 528
MC=HC+1{
GO TO 32
528 MC1=MC+1
DO 521 IM=MCli., e
CX{IMI)=8.
521 CONTINUE
33 CONTINUE
COFFSHM=E.
DD 522 M=1.,6
COFFSM=COFFSM+BM(MY*EXP(4 *CK(HM))
522 CONTINUE
SIGCMA=COFFSM+1 .-SUNC
WRITE{4.,524)> SIGHA
BRITE(6.524) SIGHA
524 FORBAT(4X,’'SIGHMA=’',E14 .6
99 CONTINUE
STOP
END
FUNCTION AJBC(X)
IF(XK.GT.3.) GO T0 71
Xi=KX/3.
AJB=1 -2 2499997xX1%%2+] 26562B8%xK1*%x4~_ 3J163860%X 1 *x%
16+ . B444479%xX 18- BA39444«xK{ixx1F+ BBB21xX1*%%x12
GO TO 72
71 X2=3 /X%
FO=.79788456-. . BBBHBB77*X2~- BBSS274+X2*»2- BBBHS51*X2
1%x%3+ BBI137237+X2%»4- PBPR72EBS*xX2%xS+ BRB1447C%X2%%p
THETA=X-.7853981¢é6- . B4166337%X2- BBBERIISAd=X2%%x2+
1 . BBE262573%X2%%x3- BBES4125%X2**4- BBE29333*xX2%%5+
1 .BBB135582X2%*¢
AJB=FO*«COS{THETA)>/SQRT(¥ )
GO TO 72
72 CONTINUE
RETURN
END
. FUNCTION FI1(PATH,.CHN2.AWAYE,ALPHB,FOCUS.,2Z22)
22=22/ALPHBE
X1=EXP(-22%22/2.)
AK=44 *x{ 361/¢(7 =AMAYE)
K3=1 . B921i5+*CN2*PATH*AK**2
23=22%*%(5./3.)
X2=EXP(-XK3223)
¥4=AK=*{(1 -PATH/FOCUS)*Z2*ALPHB/(2.%PATH)
RKS=EXP(~-Kd42X4x2 )
Fil=Xi#=X2xX5
RETURN
END
SUBROUTINE GAUSSU(RHO.CNZ2.AWAVYE.PATH.A1.,A2.,Y.,ANSU1)
Ci=C(Al+A2)% 5
C2=(R2-A1 >s 5
Ul=-_.2386915xC2+C1
U2=.2386915*xC2+C1



U3=-.6612894=C2+C1
Ud4=_6612894xC2+C1
US=-.9324695%C2+C1
Ue=.9324695xC2+C1

Wi=.4679139

B2=U1

H3=.36B761¢6

W4=U3 .

¥5=.1713245

We=W5
UR1=W1=FM{RHO,CN2,AUAYE, PATH. UL, Y
URZ2=W2*FM{RHO, CN2,ARUAYE.PATH. U2.Y>
UR3I=U3*FM(RHO,CN2.AUAVYE.PATH. U3, ¥
UAS=U5xFM(RHO,CN2.AUAYE.PATH. US, Y
URe=W6*FM{RHO,CN2,.AUAYE,.PATH, Ve, Y)
ANSUL=C2*CURI+UA2+UA3+UA4+UAS+UARE)
RETURN '
END

SUBROUTINE YGAUSS(RHO,CNZ,AWAYE.PATH.,AY1,AY2,ANS)

DI=CAY1+AY2)>=_ 5

D2=C(AY2-AY1)%. 5

Yi=-.23869152D2+D1

¥2=.2386%215%xD2+D1

¥3=-.6612894=D2+D1

Y4= . 6012824%xD2+D1

¥59=-.9324695=D2+D1

Yé=,L9324695*D2+D1

¥1=.4679139

Wa2=u1

¥3=. 36B7c16

W4=U3

¥5=.1713245

Be=US

YAl=Wi{*UGARUSS(PATH, RHO.CN2.,AWAYE. Y1)
¥YA2=W2+*UGAUSS(PATH,RHO,CN2.,AWAYE.Y2)
YA3=W3xUGAUSS(PATH,RHO.CN2.,AWVAYE,Y3)
YA4=W4xUGRUSS(PATH, RHO,CN2, ANAYE.Y4)
YA5S=W3*UGAUSS(PATH,RHO.CN2., AWAYE,Y5)
YAe=Wo6*xUGAUSS(PATH,RHO,CN2.,AUAVYE. Y& )
ANS=D2*(YA1+YR2+YA3+YAR4+YAS+YASL)
RETURN

END :

FUNCTION FMC(RHO.CN2,AWAYE.PATH.U.,Y)
IFCY.LE.B.) GO TO 251
IFCABS(U>.LE. . BBt .OR.ABSCU)> . GE..9%) GO TO 251
AXXK=Ux(1 . -U)

AK=d44 =1 361/(7.%AWAYE)

AL1=.BBEBSS
TERMI=((2.=AK)/(PATH*U=*( 1 .~U)))*%(  5)
Fi6=1.1187287+CAK#**{1 S)>>*(PATH=*(1 . .5))%CN2
Fii=C(1. +SART(Y I)®TERMI*ALL /(Y% %({.5))
Fl2=EXP(-Y#AL1*TERNMI1)
F13=(Ux(1 . -Ud)xx( . 5)

177
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Fl4=SIN(Y)>=x2,
TERM2=RHO*SQRTC(Y)*TERNI=*U
F15=AJB(TERN2)
F17=FYC(CN2.,AWAYE.PATH.U.Y)
F18=EXP(-F17)
FM=F11*F12*F13%F14*F15*%F1exF18
GO TO 252

251 FH=B.

252 CONTINUE
RETURN
END
FUNCTION UGARUSSC(PATH,RHD.CNZ2,AWAYE., Y
AU=8.
BU=1.
NU=2
TNSU=8.

DBl ANSU=H.
DO SB2 IU=1,NU
ANU=RNU
Al=RAU+(TIU-1.)*(BU-AUD>/ANU
A2=AU+C IUI>*(BU-AU)X/ANU
CALL GAUSSU(RHO.CHZ,AWAYE.PATH.Al,A2.Y,ANSU2)
ANSU=ANSU+ANSU2

SB2 CONTINUE
IFCRBS(RNSU-TNSU> .LE.ABSC( .B2+*ANSU)>)> GO TO SB2
TNSU=ANSU
NU=NU=2
GO 70 581

S5B3 UGAUSS=ANSU
RETURN
END
FUNCTION FX(PATH,.CN2,AWAYE,ALPHB.FOCUS,PXM,A,R>
FXX=F1(PATH.CN2,AWAYE.ALPHB,.FOCUS.R)
FX=FXX*R*AJB(PXM*R/A)
RETURN
END
FUNCTION FYYC(RHO.,CN2,ARWAYE.PATH)
TNSX=8.
ANSK=8.
AY=8.

721 BY=1.

722 DELTA=BY

723 HNY=2
TNSY=H.

SBE8 ANSY=H.
DO 5SB9 IY¥Y=1,NY
ANY=NY
AYl=AY+C(1Y-1 >)*(BY-AY)/ANY
AY2=AY+IY*(BY-AY)/ANY
CALL YGAUSS(RHO.CN2.,AWAYE.PATH.AY1.,AY2,ANSY2)
ANSY=ANSY+ANSY2

SB% CONTINUE
IFCABSCANSY-THSY)>. LE.ABSC .B2*ANSY)>) GO TO S18B
THSY=ANSY
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NY=NY=2
BRITE(6,461)> ANSY

461 FORMAT(SX.Ei14.6)
IF(NY.GE.4 AND .ABSCANSY)>.LE..BB1)> GO TO 518
GO TO 588

SIB  ANSX=ANSKX+ANSY
IFCABSCANSX-TNSX).LE . ABS¢ .B2+#ANSX)>) GO YO 732
AY=AY+DELTA
BY=BY+DELTA
THSX=ANSX
IFCABS(ANSX).LE. . BB1)> GO TO 732
GO TO 723

732 FYY=ANSKX
RETURN
END
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APPENDIX C

This appendix consists of the computer program called COVAR
written to evaluate the covariance, normaliéed to the square of the
average intensity. In order to make the data useful for a wide
range of VSCR values, the coherent and incoherent parts are printed
separately for each spacing and propagation data. The input is
path length, wave length, beam size and focal length. The
turbulence data corresponds to 9 data points where the Rytov
variance is specified under SIGI(9). The spacings are .005 meters
to .030 meters with an increment of .005 meters. These data points
are called Pl (initial spacing), P2 (final spacing) and DELP
(increment in spacing). By changing these values, the program can
be used for arbitrary spacings. The coherent part in the output is

called AINT2 and the incoherent part is called AINTI.
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DIMENSION PM{15),AJ1¢(15),CX1¢(6),CR2¢6)

PROGRAM NAME IS COVAR

PROGRAM YO CALCULATE THE SPATIAL COVYARIANCE AT

LOV TURBULENCE LEVELS.IT ALSO GIVES GOOD

RESULTS FOR THE STRONG TURBULENCE CONDITIONS

FOR REASONS EXPALINED IN THE TEXT.

P1 1S THE INTIAL DETECTOR SPACING, P2 IS THE FINAL

DETECTOR SPACING AND DELP IS THE INCREMENT.

P1.P2 AND DELP SHOULD BE CHANGED FOR THE

DESIRED VALUES OF THE SPACING, UNDER CONSIDERATION.

OUTPUT CONSISTS OF ALL THE PROPAGATION DATA.

DETECTOR SPACING YALUES AND THE COHERENT TERM(AINT2)

AND THE INCOHERENT TERM(AINT1)>. FOR DETAILED

MEANING OF THESE TERMS., SEE THE CHAPTER ON THE

COYARIANCE (CHAPTER VI).

PROGRAM CAN BE CHANGED , IF THE FREQUNCIES ARE

WIDELY SEPERATED BY USING THE PROGRAMS RAO2FF

AND CXX2FF. “

SIGI IS THE RYTOV VARIANCE

THIS PROGRAM GENERATES DATAR FOR SEYERAL VALUES

OF DETECTOR SPACINGS , FOR 9 VALUES OF THE

RYTOY VARIANCE ,SPECIFIED IN THE DATA.

THE INPUT CAN BE SUITABLY MODIFIED.DEPENDING

ON THE PROBLEM ,UNDER CONSIDERATION.

DIMENSION CH2IC3>,BHMC1B)

DATA PM /2 .4B48,5.5281.8.6537.,11.7915,14.9389,
C18.8711,21.2116,24.3525.27.4935.38.6346,33.7758
C,36.9171.4B.B584,43.1998.,46 .3412/

DATA AJ1 ~/.51915,-.3428B6.,.27145,-.23246,-.2B635,
C -.1e77387273,.17327.,-.16178.,-.15218..1441¢6¢,
€C -.1373,.1313245,-.12687,.1239,~-.11721/

DATA CN2I /1 .E-15.,1 .E-14,1 E-13/

READC(S,77> PATH

READ(S3.,77)> FOCUS

READ(S.77)> AVWAVE

READ(S.?77) ALPHE

FORMATCELIR.4)

DO 99 INDEX=1,3

PHI=22./7.

AK=2 . #«PHI/AWAVYE

CONSS=.124*(AK**( 7 /6. ))*PATH**(11./6.)

CH2=CN2ICINDEX)

WRITEC6.,41> PATH,FOCUS,ALPHH

WRITEC(4,41) PATH.FOCUS.ALPHBE

FORMAT(2X.,'PATH=’,F5.8,2%,’FOCUS=",F5.8, 2%,

1 "ALPHB=’.Fe6.4)

WRITEC(6.48B> CN2.,AWAVE

WRITEC(4,48) CN2.,AWAVE

FORMAT(2X,'CN2=",E14.6.,5X.,'AWVAVE=",E14.6)

ARHO=1 B9215sCN2+AK*AK*PATH

THE NEXT STEP DECIDES THE RANGE TO GET BMS

CHOP= .81

Al=1./C¢2 *ALPHB*22)
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A2=1 . /CARHO==(1{ . 2))
A=(Al+A2)ex( - S)>/1B8.
22 X=F1(PATH.CN2.AWAVYE., ALPHB.FOCUS.1.,A)
IFCABSCX).LT.CHOP) G0 TO0 232
A=Ax] 1
GO T0 22
23 MWRITE(6.,175) A
WRITE(4.175> A
1?75 FORMAT(SX.’A=’,E14.6)
A IS THE RANGE WHERE F1 IS CHOPPED

M=1
29 IF(M.GT.86> GO TO 25
AR=8.
BR=1.
DR=(BR-AR>* .5
PXH=PH(M>

SUMI=FX(PATH,CN2, AWAVE,ALPHE, FOCUS.PXM.A,AR)
C+2.%FXCPATH,CN2,AWAYE, ALPHB,FOCUS,PXM, A, DR)
C+FX(PATH, CN2,AVWAYE, ALPHB, FOCUS,FXM, A, BR)

SUMA=SUM! *DR*.5

NR=1

2¢ NR=2*NR

TOR=DR

DR=DR*.5

R=AR+DR

DO 181 IR=1,NR

SUMI=SUM1+2.%FX(PATH,CN2, AYAYE , ALFPHA. FOCUS,PXM, A, R)

R=R+TDR

1B1 CONTINUE

SUM2=SUM1 *DR*.5

IF(ABSCSUM2-SUMA).LE.ABSC .B1*SUN2))> GO TO 666

IF(NR.GT.2848) GO TO 667

SUMA=SUMN2

GO TO 2¢

666 IF(NR.GT.16) GO TO 667

SUMA=SUM2

GO TO 28

667 BM(M)=SUM2%2 . /C(CAJIC(M)I)I*%2. )
M=M+1
GO TO 29

25 CONTINUE

SUMC=B.

DO 1B3 M=1,86

WRITEC6,28> M,BM(M)

SUMC=SUMC +BM(HM)

28 FORMATC4X, M=’ ,14,’BM(M)=",F1B.7)
1B3 CONTINUE

WRITEC&.,94)> SUNMC

WRITEC4,94) SUMC

94 FORMATC 18X, ’ SUMC="’,F1R.?)

CALCULATIONS FOR COYARIANCE

Pl=.BB5

DELP=_.BBS

P2=.858
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93

32

%@8

218
%11

912
913
o987

511

33

522

524

555

133

P=Pi

CONTINUE

IFCP.GT.P2) GO TO 481

CALCULATIONS FOR CX1(MC)> FOLLOW
SICHAT=.1242aK%xs(7./6. PATH*=*(11./6. Y%CN2
WRITE(4,93) SIGHAT

BRITE{6.93) SIGHAT
FORMAT( 4%, 'SIGMAT=’,E14.86)

MC=1

IFCHC.GT.6) GO TO 33
RHO=PATH«PM(MHC)/CA*AK) .

IF(HC.E@.1) GO TO 988

MCi=HC-1

DIFF=ABS(CXI¢(MCLI>-1. >
IFCABS{DIFF>.LE..HB1) GO TO 918

CONTINUE
CRXI(HCI=FCXC(RHO,P,CN2,PATH,.ALPHB.FOCUS, AWAVYE)
1 =,15989891

GO TO 911

CXI(HMCOH=1 .

CONTINUE

MC2=HC-1

IF(MC2.GE.1.AND .ABSC(BMI(HMC)>) . LE. B1> GO TO 912
CX2(MC)I)=FFI1C(RHO,P,CN2.PATH,. ALPHB,FOCUS, AWAVE)
1 =.15989891

GO T0 913

CX2¢(MC)>=8.

CONTINUE

CONTINUE

WRITEC(S.,511) MC,.BM(MC)>,CX1(HMC>»,CX2(MC)
WRITEC4,511) MC,.BM(MC),CXi{(MC)>,CX2(MC)
FORMATC(3X,’'HC=’,13.,2X.,'BM(MC)>»=",E1B.4.2¥X%,
1 ‘CXI<(HMC)Y>=',EI1R.4,3%X,’CK2<{(NCH)>=',E1B.4)
MC=MC+1

GO TO 32

CONTINUE

AINTi=8.

AINT2=8.

DO 522 M=1.6¢ _
AINTI=AINT1I+BM(M)*CXI{ M
AINT2=AINT2+BM(M)I)*CX2{( M)

CONTINUE

AINTI=AINTL1+1.-SUNMC

AINT2=RIKT2+1.-SUMNMC

WRITE(6.524) P.AINT1,RINT2

BRITE(4.,524) P,AINTI,AINT2
FORMAT(2X,*P=’ ,F8.5,2%.,’AINT1=",E14.6.,2X,
i1 ‘AINT2=’,Ei4.6)

COVAR=AINTI+AINTZ~-1.

WRITE(4,555) P.COYAR

WRITE(6.555) P,COVAR
FORMAT(3X,’P=’,F5.3,5%X,’COVAR=",F9%9.86)
IF(ABSC(COVAR)Y.LE. . 1> GO TO 481

P=P+DELP
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GO TO 838

CONTINUE

CONTINUE

STOP

ERD

FUNCTION FCX(RHO,P,CN2.PATH,ALPHE, FOCUS, RKAVYE)
INTEGRATION OYER THETA

ATH=8B.

BTH=44_./7.

NTH=1

TNSTH=B.

STH=8.

DO 382 ITH=1.HTH

ANTH=NTH

ATHLI=ATH+¢{ ITH-1.)>*(BTH-ATH)/ANTH
ATHZ=ATH+ITH*(BTH-ATH)>/ANTH
STH=STH+FCXT(RHO,P,CN2.PATH,ALPHE, AWAVE.,ATH1,ATH2)
CONTINUE
IFCABS(STH-TNSTH).LE.ABS( . B2«STH))> GO TO 3H3
THSTH=STH

HTH=NTH=*2

GO0 TO0 38!

FCX=STH

RETURN

END

FUNCTION FCXT(RHO.,P,CN2,PATH, ALPHB, AWAVE.ATH1 ,ATHZ2)
CTHi=(ATH1+ATHZ2 )% .5

CTH2=(ATH2-ATH!1 >*.5

Ti=-.2386915*«CTH2+CTHI1
T2=.2386915«CTH2+CTHI
T3=.6612B24%xCTH2+CTHI

T4=- 6612894 *xCTH2+CTHI
TS=-.9324695*CTH2+CTH1
Té=.9324695xCTH2+CTH1!

BT1=.4679139

WT2=WT1

UT3=.3687e16

BT4=UWT3

WTS5=.1713245

UT6=UWTS

UT1=WT1*SXX(RHO.P,CN2,PATH, ALPHB,ARWAYE. T1)
UT2=UT2*SXX(RHO,P,CN2.PATH, ALPHE, ,AWAYE. T2)
UT3=WT3*SXX(RHO,P,CN2,PATH, ALPHB,AWARVE., T3)
UT4=UT4*SXXCRHO,P,CN2,PATH, ALPHB,AVAVE., T4)
UTS5=WTS5*SXX(RHO,P,CN2,PATH, ALPHB,AWAYE, TS5)
UT6=WT6*SXX(RHO,P,CN2.PATH, ALPHB.,AWAVE. T6)
FCXT=CTH2*(UT1+UT2+UT3+UT4+UTS+UTED

RETURN

END

FUNCTION GAUSSUCRHO.P,CN2,PATH,ALPHB, AWAVYE.T)
AU=8B.

BU=1.

NU=1

TNSU=8.
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SBE1 ANSU=8.
DO SB2 IU=1,NU
ANU=NU
AULI=AU+(IU-1.>%(BU-RU)X/ANU
AU2=ARU+TU*(BU-AUY/ANU
ANSU=ANSU+UG{RHO,P.CN2.,PATH,ALPHE. AVAYE. T.aU1.AaU2)
SB2 CONTINUE
IFCABSCANSU-TNSU)Y .LE .ABS( .B2*ANSUY>)> GO TO 5B3
TNSU=ANSU ’
NU=NU®2
GO TO 581
583 GAUSSU=ANSU
RETURN
END
FUNCTION UGCRHO,P.CN2.PATH, ALPHE,AWAVYE. T, ,AUL,AU2)
CU1=CAUL1+AU2)I% .5
CU2=CAU2-AU1 )% .5
UG1=-.2386915*xCU2+CU1
UG2=.2386915=%CU2+CU1
UG3=-.6612B94%CU2+CU1
UG4=.6612894=CU2+CU1
UGS5=-.9324695%xCU2+CU1
UG6=.9324695*CU2+CU1
WG1=.4679139
WG2=WG!
WG3=.36HB7616
WG4=UG3
WG5=.1713245
WG6=WGS
AGI=WG!I*CXXCRHO,P,.CN2,PATH, ALPHB.ARAYE, T,UG1)
AG2=WG2*CXX(RHO,P.CN2,PATH., ALPHB,ANAYE, T,UG2)
AG3I=UGC3I*CXXC(RHO,P.CN2,PATH, ALPHB,AWAYE. T,UG3)
AG4=WG4+*CXXC(RHO,P.CN2.PATH,.ALPHB,AWAYE. T, UG4">
AGS=WGS5*CXXC(RKO,P,CN2.PATH, ALPHB.,AWAYE, T,UGS5)
AGE=WGH6*CXXCRHO,P.CN2,PATH,ALPHB,AWAVYE., T, UGé
UG=CU2*(AG1+AG2+AG3+AG4+AGS+AGS)
RETURN
END
FUNCTION SXX{RHO.,P.,.CN2.PATH.ALPHB,AWAVYE. T
SXX=EXP(4 . «GAUSSUCRHO,P,CN2.PATH,ALPHB, AWAVYE. T))
RETURN
END
FUNCTION FF1<RHO,P,CN2,.PATH,ALPHB, FOCUS, AWARYE)
ATH=8.
BTH=6.285¢
NTH=1
TNSTH=B.
281 STH=8.
DO 2B2 ITH=1,NTH
ANTH=NTH
ATHI=ATH+(ITH-1 . )>*(BTH-ATH)>/ANTH
ATH2=ATH+ITH*(BTH-ATH)/ANTH
STH=STH+FFFC(RHO,P.CN2.PATH, ALPHB,AWAVE. ATHL1.ARTH2)
2Be CONTINUE
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IFCABS(STH-TNSTH) .LE .ABSC .B2«xS5TH)>) GO TO 283
TNSTH=STH

NTH=NTH=*2

GO TO 281

FF1=8TH

RETURN

END

FUNCTION FFF(RHO,P,CN2,PATH.ALPHB, AUAVE,ATH1,ATHZ>
XTHi=(ATH1+ATHZ2 )% .5

BTH2=(ATH2-ATH1 >* .5
Hi=-,2386915*XTH2+¥XTHI
$2=_2386915%«xXTH2+XTHI
3=-.6612894%XTH2+XTHI

X4=_ 60612B94xXTH2+XTHI1
5==_.9324695*XTH2+XTHI
X6=.9324695%XTH2+XTHI

Wi=.4679139 '

¥z2=u41

¥3=.3¢8B7616

W4=W3

W5=.1713245

We=W5S

AX1=Wi*FXB(RHD ,P,CN2.PATH , ALPHHA, AWAVYE. . X1)
AX2=W2*FXB8(RHO.,P.CN2,PATH . ALPHE., AWAVE . X2)
AX3=W3I*FXS8(RHO,P,.CN2,PATH,.ALPHB. AWAYE , X3 >
AX4=W4=xFXB8(RHO,P,CN2.,PATH .ALPHB., AUAYE . X4)
AXS=W5%xFX8(RHO.,P.CN2,PATH , ALFPHB., AWAVE ., XS5S)
AXE6=Wo6*FX8(RHO.,P.CN2,PATH,.ALPHHB. AWAYE ., X6
FFF=XTH2*{ AX1+AX2+AX3I+AX4+AXS+RKE)

RETURN

END

FUNCTIOHN FX8(RHO,P,CHN2.PATH.ALPHB., AUAYE. T)
S1=P+*RHO*=CO0S(T>

§2=44 . /(7 .*AWAYE=PATH)>

AK=44 /(7. %AWAVE)
R11=.545625*CN2*PATH=RAK*ARK

R12=2 =R11*P%*%(5./3.)

§4=(-1 . HB9125*CN2*AK*AK*PATH*RHO**(5./3. )
FXXX=FX1BC(P.RHO.T)+FX11(P,RHO.T)

§5=(1 455xCN2*AK*AK*PATH*FX XX )
TR1=GAUSSUC(RHO.,P,CH2,PATH,.ALPHB, AWAVYE., T
PC=-RHO
TR2=GAUSSUCPC.,P.CN2,PATH, ALPHB , AWAYE. T)
S6=(2 *x{TR1+TRZ))

CONS1=-R12+54+S5+S¢

CONS2=-CONS1

IF(CONS2.GT7T.5> GO TO 318

CC=EXP({CONS1)

§3=C0S(S1%52)

FX8=S3xCC

GO TO 311

FX8=8.

CONTINUE

RETURN
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END

FUNCTION FX1B(P,RHO.T)
AL=8.

BL=1.

NL=1

TSFX=8.

ANSF=8.

DO 451 I=1,NL
AL1=AL+(I-1.dx(BL-AL)/NL
AL2=AL+I*=(BL-AL /KL
ANSF=ANSF+FX1BG(P,RHO.T,ALL1.,AL2)>
CONTINUE

IF(ABS(ANSF-TSFX).LE .ABS( .B2*ANSF)>)> GO TO 452

TSFX=ANSF

NL=NL %2

GO TO 45B
FX1B=ANSF

RETURN

END

FUNCTION FXIBGCP.RHO.T.ALL,AL2)
Ci=CAaLi+nlL2>/2.
C2=CAL2-aLt1)/2.
Xi==-_,2386915xC2+(1
X2=.2386€915*C2+C\
A3=-.0612894=C2+C1
X4= . 6612894xC2+C\
#S=-,9324695%xC2+C1
Ke=.9324695xC2+C1
Gi=_4679139

G2=G1

G3=.36B7¢10

G4=G3

G5=.1713245

Ge=G5
XE1=G1*=FX1B11(P,RHD.T.,¥1)>

RX2=G2«FX 181 1(P,RHO.T,X2)+G3*xFX1B11(P,RHO,T,X3>+

CFX1811(P.RHDO.T7.,X4)xG4+G5=«FX1B11C(P,.RHO.,T,X5)>
C+Gex*FXI1BI11(P.RHO.T. X8> _
FX1BG=C2s( XX 1+XX2)
RETURN
END
FUNCTION FX1B11C¢P,RHO,.T.P1>
TE{=z(P*P] Yex2
TE2=(RHO*{1.~-P1))ex2
TE3=2 . =»P=RHO#P1=(1.-P1)*C0S(T>
TE4=ABS{(TEL1+TE2+TE3)
FX1B11=TE4==(5 /6.
RETURN
END
FUNCTION FX11C(P,RHODO.T)
AL=8.
BL=1 .
NL=1
TG=8.

187
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468 AG=B.
DO 461 I=1,NL
AL1=AL+(I-1.)=(BL-AL)/NL
AL2=AL+Is(BL-AL )/NL
AG=AG+FXI1G(P,.RHO,T,ALL.,.AL2)
461 CONTINUE
IF(ABS{AG-TG).LE.ABS( .B2*AG>Y GO TO 462
TG=AG
HL=NL=»2
GO TO 468
462 FX11=AG
RETURHN
END
FUNCTION FX11i1G(P,.RHO.T.,AL1,AL2)
Ci=CAL1+AL2)>%. .5
C2=(AL2-AL1)>= 5
CX1==-.2386915%C2+C1
Cx2=.2386915=C2+C1
CX3=.66128B94xC2+C1
CX4=- 6612B94xC2+C1
CX5=-.9324695xC2+C1
CX6=.9324695xC2+C1
Wi=.4679139
We=W1
W3=.36B7616
W4=U3
W5=.1713245
We=WS
ANS=WI=FX11BI(P,RHO,T.CX1)+W2*FX11BI1C(P,RHO.,T,CX2>
C+U3*FX11B1(P,.RHO. T.CKX3 ) >+W4*xFX11BI1(P,RHD.T,CX4)
C+US5*FX11BI(P,RHO,T,CX5)+We6*xFX11B1(P,RHO.T.CXe6)
FX11G=ANS=*C2
RETURN
END .
FUNCTION FX11Bi(P,RHO.T.,X)
TERI=(P#X )ex2
TE2=C(RHO*<{ 1. ~-X))%%2
TE3=2 =P*RHO*X*(1 . =X )*COS(T)
TX=ABS(TERI+TE2-TE3)
FX11B1=TX%*%(5. /6. )
RETURN
END
FUNCTION AJB(X)
IF(X.GT.188B.> GO TO 888
IF(X.EQ.B.)> GO TO 898
IFCR.GT.3.) GO TO 71
X1=X/3.
AJB=1 . -2.2499997=xX1*x%2+1 2656288*X1*%4- 3F163866%*K1
Cexg+ B4444792X12x8- HBBEIV444=X1=x18+ BHB21=X1%xx12
GO TO 72
71 X2=3 . /X
FO=.79788456~- . BBRBBB77=X2~- BRS5274%xX2=s2- HBBE951%X2
Cex3+ BEI137237sX2»%4- BBB728BS*X2%x5+ BBB14476xX2%%0
THETA=X-.7853981¢6~- B4166397+X2~- BBBBE3I954xX2%x%2+
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C.BB262573=X2#%%3~- HBBES4125*X2=xx4- BBBE29333%xX2**5+
i1 .BBB13558*X2=*=¢ :
AJB=FO0*COS{(THETA)/SART(¥)
GO TO 72
888 AJB=SARTC . 63661977/ X)xCO0S(X-2.3561945)
GO TO 72
898 AJB=1.
72 CONTINUE
RETURN
END
FUNCTION FI1(PATH.CN2.AWAVYE.,. ALPHB.FOCUS.,AR.ZF)
22=2F %R
22=22/ALPHE
X1=EXP(-22%22/2.)
AK=44 /(7 .+AWAVYE">
X3=1 B9215*CN2*=RK**2=*PATH
23=22%xx(5 . /3. )
R2=ERP(-X3%Z23)>
X4mwAK=( 1 . -PATH/FOCUS)*22*AaLPHB/(2.*PRTH
AS=EXP(-Xd4sX4%2 )
Fi=X12X2%%5
RETURHN
END
FUNCTION FX(CPATH,.CNZ2.AWAYE. ALPHB.FOCUS.PXHM.,A,R)
FXX=F1(PATH.CN2,AWAYE.ALPHB.FOCUS.A.R)
FX=FXX*R2QJB(PXH®R)
RETURN
END
FUNCTION FF2¢(Y¥Y >
IF(Y.EQ@.B.)> GO TO S5e2
IFCABSCY>.LT. . B81) GO TO SeB
FF2=ABS{(SINC(Y>)%%x2 /(Y%x%{11 . /6.3
GO TO Se1
Se 8 FF2=Y=*%x(1 ./6.)>
GO 7O Sé1
562 FF2=8.
Se1 CONTINUE
RETURN
END
FUNCTION CXX(RHO.P,CN2,PATH.ALPHB, AVWAVYE. T, U>
IF(ABS(U>.LE..BB! .OR .ABS(U>.GE..999%9) GO TO 982
PHI=22./7.
AK=2 .sPHI/(RAWAVYE)
AUU=ABS(U=(1 .-U))
Al=AUU*PATH/(2.%AK)
A=SART(AL)
TE1=P*P=UxU+RHO*RHO=*(1 . ~-U)=(1 . -U)
TE3=2.=AUU*P*RHO=COS(T)
TES=ABS(TEI1+TE3)
B=SQ@RT(TES)
CalLL HS(A.B.CC)
CXX=.132*PHI*PHI=AK*AK*CN2*PATHxCC
GO TO 912
982 CXX=8.
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GO TO 912
912 CONTINUE
RETURN
END
SUBROUTINE HS<(A.B.C»
DIMENSION C2¢(9)>.C3¢18>
INTEGER F1
DDUBLE PRECISION G2.,G3.HK.,BB.G.,C.H
DATA C2/9.645B6E-3,~-.513572E-2, .298832E-1.,
i -.54B2513E8., .285255E2,~-1.35296E3,1.37215E5.,
1 -1.9892E7.,3.9889E9/
DATA C3/3.36111.,-13 .49112,-66.088151,.385934E3
i s . 262497E4,~- . 2B44B46ES5.-.1791784E06, .1747611E7
1 ,1.8776B47E?7.,-2.2-357?7E8/
2=B*B/(8*AxA)
HH=.559167«B*x( | 6666667 )
IF (2.G6T7.12.56)> GO TO 288
N=31
C POWER SERIES EXPANSION OF HLA.,B1
Hi=N+1
HK=5 K /(36%4)
BE=Z#2=HK
G2=1  +BB
N3=N/2+1
DZ2=2%2
TZ=D2%D2
DO 1B J=1,KN3
I=2%J -1
HK=-HK#*{6 .*]1+1 . )x{(e *]+7 2/¢((6.%{(1+2. )% 1+3. >)%%x2)
IF¢CJ . ER.1)Y GO TO 12
HK=HK=*D2Z
GO TO 18
12 HK=HK=*TZ
18 G2=G2+HK
HK=5. /6.
BB=HK=2
G3=BB
DO 1t J=8,N3
I=2=)
HKs=HK*(6 . 2I+1 J)%(6. %142 2/¢C(6 *(I1+2)%(I+3)>%%x2)
IF¢J .EQ@.B) GO TO 13
HK=HK=DZ
GO TO 11
13 HK=HK=#»D2x2
11 G63=G3+HK
igg G=¢ . 258819H4+G2+.96592583=G3)
C=2 975414275+*A%x+]1 6666667*G
C==HH+C
RETURN
CASYMPTOTIC EXPANSION OF HILIA.B1
288 22=1/2
Di=B.525982*Bx=*| 666667
Ci=C2(1)e22%22+C2¢(2)8229%4+C2(3)%22%%¢§
1+C2C 4 )% 22228 +C2¢(5 ) Z22%n{B+C2( 0 )" Z2Zxx124+C2(7)
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2#Z22+%14+C2(8)%22Zx%16
G2=21+C3(2)822%#2+C3{4)82Z%%4+C3(6)%22%%6+C3(B)
1 =22+=8+C3(1B>*22%%x1H
G3=C3(12222+C3(3)822**3+C3(5)*22%=5+C3(7)
1#2Z227+C3(9)222%%9

P0=2 . 666666067
H=1.B63B853*xG1+SIN(Z2)*22==P0+(C2% 1497185
1-.1497xC05¢2)+2Z+*P0=G3

C=-H=*D1

RETURN

END
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APPENDIX D

This appendix consists of the program, TDCCOV, designed to
calculate the time delayed covariance of the intensity of speckle
patterns. This program was found to be occasionally defective, the
reason being that the number of coefficients required to expand the
function f of Chapter VII is varying by a large number.
Occasionally the function fo is practically zero. The output of
this program is very extensive, 1.e., runs into several pages and
this tells whether the program was executed correctly or not.

After several corrections, the final output values were used to
generate the theoretical values for comparison with experimental
data. All the output has been preserved for the future theoretical
guidance on this problem. After several steps in the program, the
final output consists of two terms, AINTl (incoherent term) and

AINT2 (the coherent term), defined in Chapter VII.



OO0O0O0O0000O00000O00O0O0

ao0On

78

71

72

ol

61

199

46

123

PROGRAM HAME 1S TDCCOVY

PROGRAM TO EYALUATE THE TIME DELAYED COYARIANCE

OF THE INTENSITY OF A LASER SPECKLE PATTERN

INPUT DATA IS SELF EXPLANARTORY

PROGRAM OUTPUTY IS VYERY EXTENSIVE. THIS IS BECAUSE
IT IS FOUND OCCASSIONALLY THE PROGRAM DID NOT WORK
OUT WELL DUE TO THE IRREGULAR NATURE OF COFFECIENTS
CF EXPANSION IN THE FOURIER-BESSEL SERIES. SO

ALL THE IMPORTANT STEPS IN THE PROGRAM OUTPUT

HAYE BEEN PRINTED TO CHECK IF THE PROGRAM HAD

BEEN EXECUTED CORRECTLY.THE EXTENSIVYE OUTPUT HAS
BEEN PRESERYED FOR FURTHER STUDY, IF MNEEDED.

FINAL OUTPUT IS GIVEN AS AINTI AND AINT2.

MEANING OF THESE TERMS CAN BE FOUND IN CHAPTER VII.
POSSIBILITY OF EXTENDING THIS TECHNIQUE TO WIDELY
SEPERATED FREQUENCIES WAS NOT INESTIGATED.
DIMNENSION CMC(6)>,.CXI1C8),PH(15),AJ1C15)

DATA PM /2 .4BH48,5.5281.,8.6537,11.7915.,14.9382.,

C 18.B711.,21.2116,24.3525,27 .4935,38.6346,33.7758.
C 36.9171.48.8584.43.1998.46.3412/

DATA AJ1 /.51915.-.342B6, .27145.,-.23246.,-.2B635,
-.167738773,.17327.,-.16178,-.15218, .144166,-.1373,
.1313245.,-.12687,.1239,-.11721/

READC(S,?7B)> PATH

READC(S,78)> FOCUS

FORMATC(EL1B.4)

READC(S.,71> ALPHBE

FORMAT(Fe6.4)

READC(S, 71> AMAVYE

AWAYE=AWAYE=(1 E-HBé>

READC(S.78)> CHN2

READ(S. 71> P

READC(S,72) VEL

FORMATC(FS. 2>

BRITE(4.6B) PATH,FOCUS,ALPHE

FORMATC’PATH=",E14.6,3X,’FOCUS=",E14.6,3X%,
'ALPHB=',F8.5)

WRITEC4,61) AUAYE.CN2

FORMATC 'AUAYE=",E18 . .6,3X, 'CN2=",E18.6)

HN1.NN2,NN3 ARE GIYEN SUCH THAT TD IN THE NEXT

FEW STEPS IS THE DESIRED POSITYE OR NEGATIVE

TIME PELAY

READ(S5.,199)> NN1,NN2.NN3

FORMAT(3I3)

DO 1BB ITD=NN1,NN2,NN3

AITD=ITD

TO=CAITD-S1.)/1BBRAE .

WRITEC(4.,46)> VEL.TD

FORMAT(’VEL=’.F1B.4.,5%,'TD=",F1B.6)

PHI=22./7.

AK=2 . *PHI/ANAVYE

ERR=.H2

CCR=.545625*ARK*AK*CN2*PATH
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RO=CCR*=x(~- .86

TX=ALPHEB/RO

RB=ALPHE

I=8

x=1.

IFCTX .LT. 1. GO TO 25

TFX= SaXsX/(TX*TK)+2 *(K**x(1 666667 )
GO TO St _

TFX= . 5sXeX+2 #((X*TX)**(] . 666667 ))
AFX=-TFX+6 .

IFCABSCAFXY>.LE. 1 E-B2) GO TO 35
IFCAFX.GT.B.) GO TO 45

I=1+1

R=X-.5%%]

GO TO 3d

IFCTI.GT.B) GO TO0 41

X=X+1.

GO T0 38

I=1+1

X=X+ 5=x=%]

GO TO0 38

AX =¥

IFCTX . LT.1.) GO TO 43
ARAX=AX*R0

GO TO 48

AAX=AX*xALPHA

CONTINUE

A=paaX

WRITE(6.888)> A

FORMATC('A=’,E14 .6

DO S@1 MC=1.,¢6

PY=PH{MC)>

CALL TRAPC1..,AX,ERR,RO.TX,PY.1.CB>
CH{MC)=CB=2 . /CAJI(HCI*AJI(HC))
WRITE(6.,899) CH(MC)
FORMATC(EL4 .6

CONTINUE

AINT1=B.

D0 SBe MC=1.,86
RHO=PM(MC)*PATH/C(ARX*AK)
IFCABSC(CMC(MC)>)> . LE..BB1)> GO TO 811
CXICMCI=FCXCRHO,P,.CN2.PATH., AWAYE,.YEL. TD >* . 159891
GO TO 812

CX1(MCO>=8.

CONTINUE

WRITEC(4.,813) CHM{(MC)>,CX1(HMC)
FORMATC2X, *CH(HMC)>=",E14.6.,4%,’CRI(MC>=",E14. 06"
AINTI=AIHTI+CH(HMCI)SsCXI(MC)
CONTINUE

WRITE(4.818) TD,AINT!I

FORMATC(2X, *TIMEDEALY=",E14.6.2X.’AlINT1="’,E14 .6
ATH=B.

BTH=22./7.

DTH=(BTH-ATH)* .5
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SUM1=2. «SXX¢(P,PATH,CN2,ALPHB,FOCUS, AWAYE,YEL,TD,DTHD
1+SXX(P,PATH,CN2,ALPHB, FOCUS,AWAYE, YEL.TD.ATH >+
2SXX(P,PATH.CN2.ALPHB,FOCUS, AVAYE,YEL.TD.BTH>

SUMA=SUM1«DTH=.5

N=1

N=2%N

TDTH=DTH

DTH=DTH= .5

TH=ATH+DTH

PO 22 I=1.,N

SUMI=SUM1+2. =SXX(P,PATH,.CN2,ALPHB, FOCUS, AWAYE ., VYEL.,
1 TD,.TH>

TH=TH+TDTH

CONTINUE

SUM2=SUM1*DTH=».5

IFCABS(SUM2-SUMAY .LE . ABS( .B1*SUNR)Y)> GO TO 667

SUMA=SUNZ2

IFCH.GE.16 AND .ABS(SUM2) LE..BHB1) GO TO ee7?
IF{N.GE.32) GO TO 6867

GO TO0 26

FI=SUN2

AINT2=FI*7./722.
WRITEC(4,65> TD,.AINTZ
FORMAT(2X,'TIHEDEALY=",E14.6.4X, 'AINT2=",E14.86)
TOC=AINT1+AINT2-1.
WRITE(4.,99%) TD.TDC
FORMATC =%’ , 2%, ' TIMEDELAY=".,E14 . 6,4X,’TDC=",E14.86)
CONTINUE
STOP
END
FUNCTION SXXC(P,PATH,CN2,ALPHB.,FS,AWAVE,VEL,TD,ATH)
DIMENSION PM<15),A41¢15),BMC15),DCXC15>
DATA PM /2.4B48,5.5281.,8.6537,11.7915.,14.9389,
1 18.8711.21.2116,24.3525,27.4935,38.6346,33.7758.
C 36.9171.,48.8584,43.1998,46.3412/
DATA AJI /.51915,-.34286, .27145,~-.23246,-.28635,
1 -.167738773,.17327,-.1617,-.15218, .144166,-.1373,
1 .1313245,-.1268B7.,.1239,-.11721/
PRI=22./7.
AK=2 . »PHI/ABAVYE
ARHO=1 . B921S5*CN2«AK*AK*PATH
THE HNEXT STEP DECIDES THE RANGE TO GET BHMS
CHOP= .81
Al=1./¢2. «ALPHB*»%2)
A2=1./CARHO==(1 .2))
A={Al+A2)*»=(-_.5)/1BBB.

DELA=.882

IFCABSC(TD)>.GE. .BB33) DELA=.BBR2
X=F1(PATH,CN2, AWAYE.ALPHB.FS,ATH,YEL.TD.,R)
IFCABS(X).LE.CHOP) G0 TO 23

A=A+DELA

GO TO 22

WRITEC4.,17353> A
FORMAT(SX,’A=’',Ei14.06>
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A IS THE RANGE WHERE F1 IS CHOPPED
M=1
SUNFF=EXP(-2.93*#CN2*AK*AK*PATH*( (ABS(YEL*TD) )*=*
1 1.666667))
SUNXX=8.
29 IFC(M.GT.14) GO TO 25
IF(M.EQ.1)> GO TO 6¢9
MX=M-1
IF(ABSC(SUMFF-SUNMXX)_ LE. . HB1) GO TO 668
IFCCM.GE.2).AND .(ABS(BM(MX)>)> LE. 1 . E-B5>> GO TO ee8
GO TO e69
€68 BM(M)>=08.
M=M+1
GO TO 29
669 CONTINUE
AR=H.
BR=1.
DR=(BR-AR>= .5
PXM=PM(M>
PGM=AJI(NM
SUMI=2 *#FX(PATH.CN2, AWAYE . ALPHB.FS.PXM.PGM.ATH,
1 YEL.TD.A.,DR)
SUMA=SUM1%DR=*.5
NR=1
26 NR=2=NR
TDR=DR
DR=DR=*.5
R=AR+DR
DO 181 IR=1,NR
SUM1=SUN1+2 »FX(PATH.CH2, RUAVE.ALPHEB.FS.,PXM.PGH
C aﬁTH:VEL:Tb.ﬁ;R)
R=R+TDR
1B1 CONTINUE
SUM2=SUM1*DR=*.35
IF(ABS(SUM2-SUMA) .LE .ABSC . B1xSUMA>> GO TO €67
SUMA=SUM2
GO TO 26
667 BM(M)I)=SUM2=2.
IFCABS(BM(M>) GE.1.) BH(M)=8.
SUMXX=SUMXX+BM(H)
M=M+1
GO TO 29
25 CONTINUE
SUNMC=8.
DO 185 MC=1,14
RHO=PM(MC )sPATH/CA*ARK)
DCX{(MC)>=8.
IFCABS(BH(HMC)>).GT.B.) DCX(MC)=FX8(RHO.P.,CN2.,PATH,
1 AWAVYE.VEL.TD)
SUMC=SUNMC+DCX(MC)=BM{(MC)>
IF(BM(MC)>.EQR.B.> GO TO 189
189 CONTINUE
1BS5 CONTINUE
SUMG=SUNFF-SUNXX
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WRITE{(4,833) SUMFF,SUMXX, SUMG
FORMAT(IX, ’SUNFF=",E14 6.,2%,’SUMXX="'",E14 .6.,2X.,
1 "SUMG=’,E14 .86)

SXX=SUMC+SUMG

WRITE(4,188) SXX
FORMAT(2X.,'SXX=’,E14.6)

RETURN

END

FUNCTION FX1B(RHO,ATH.VYEL.TD)
AL=B.

BL=1.

DL=(BL-AL>*.5
FI{=GX(RHO,AL,.ATH,YEL.TD)>+GX(RHO.BL,ATH.VYEL.TD)
AAL=AL+DL
FI2=GX(RHO,AAL.,ATH,VEL.,TD)
F13=8.

FIP=DL*{FI1+4 =FI2)/3.

N=1

N=N=*2

FI3=FI2+FI3

Fl12=8.

TOL=DL

DL=DL=*.5

X¥L=AL+DL

DO 22 I=1.N
FI2=FI2+GX{(RHO.XL,ATH.VYEL.TD>
¥L=XL+TDL

CONTINUE
FlI=DL=(FIi+4 =2FI2+2 =FI3)>/3.
IFCABS(FI-FIP>-¢( . B2*ABS(FI>)) 42,42,43
FIP=FI1

GO 70 21

FX1B=F1l

RETURN

END

FUNCTION GX(RHO.,P1,ATH.YEL.TD>
TE2=RHO*RHO={(1 . -P1)x(1 -P1)>
TES=2 .sYEL#RHO*>TD=*»( 1 .-P1)*COS{ATH)>
TE6=YEL=TD=YEL=TD
TE?7=ABS{(TE2-TES+TEé ?»
GX=TE7==( . 8333333)

RETURN

END

FUNCTION AJB(X)
IF(X.GT.1888.) GO 70 888
IF(X.EQ.B.) GO TO 898
IF(X.GT.3.) GO T0 71
R1=X/3.

AJB=1.-2.2499997sX1%%2+1 26562B8»K1*%4- 3163866%X1»*
Cé+ .B444479sX1*%8~ BH39444sx1+21B8+ BAB2I*X1%xx12

G0 TO 72

%X2=3 . /%
FO=.79788456-.BBBBBB77+X2- . BBS5274%X2+%2- @EBBESS1*X2
Ceeld+ BA137237sX2%84- HBB728BI*K2**x5+ HBEO14476%X2%%¢
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THETA=X-.78539816-.84166397%%X2- BBEBHA3954%X2%x%x2+
C.B8B262573%KX2»x3 - BBEBS4125%X2%%4- HERZ29333+«X2%xx5+
1 .BBB13538sX2%x=¢

AJB=FO0=COSCTHETA)/SAQRT(X)

GO TO0 72

888 AJB=SQART(.63661977/X)*C0S(X-2.3561945)

GO TO 72

898 AJH=1.
72 CONTINUE

END

FUNCTION FL1{PATH.CHN2,AWAVE.ALPHB,.FFS,ATH.VYEL.TD.2Z22)

22=22/ALPHE

Ri=EXP(~-22222/2.)

AK=44 /(7. =AWAVE)

H3=2 .91 «CN2*AK*=2%PATH

Z221==-22 _

X21=FX1B(Z221,ATH,YEL.TD>

X2=EXP(-¥3=xX21)

X4=AK*( | —-PATH/FFS)>*2Z22«ALPHB/(2.%PARTH)

XS3=EXP(-K4xX4%2 )

Fi=X12X22X5

RETURN

END

FUNCTION FX(PX.,CN2.AW.AB,.FS,.PXM.PGM,ATH.Y.TD A, R?

ZZ=R#*A/A8

R1i=EXP(-22#%22%.5)

AK=44 /(7 _%A¥)>

X4=AK=( 1. -PX/FS)*R*A*AB/(2.%PX)

XS=EXP(~X42X4%x2 )

X3=2 .91 =CN2*AK*AK*P X

Z21=R*A

X21=FX1B(Z21,ATH, Y., TD)

R2=EXP(-%X3=X21)

FX=X1#X2*X5*R*xAJB(PXM*R)/(PGH*PGCHM)

RETURN

END

FUNCTION GAUSSU(RHD,P.CN2,PATH,AVAYE,YEL.TD?

AU=8 .

BU=1.

DU=(BU~-AU>=_ 5

FIUI=CXX(RHO.P.CN2,PATH, AWAVE ., AU, VEL.TD >+
ICXX(RHO,P.,CN2.PATH,. AWAYE.BU,YEL.TD>

ADU=AU+DU

Fl1U2=CXX(RHO.P.CN2,PATH.AWAYE.,aDU.,YEL.TD)

FI1u3=8.

FIPU=DU=(FIUil+4 »FJU2)/3.

NU=1

31 NU=2*NU

FIU3=FIU2+FIU3

FIUzZ=B.

TDU=DU

DU=DU=.5

U=AaU+DU

DO 32 I=1,NU
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FIU2=FIU2+CXX(RHO.P,CN2,PATH, AWAYE,U,YEL,TD)
U=U+TDU

CONTINUE

FIU=DU=(FIU1+4 sFIU2+2 «FIU3)>/3.
IFCABSCFIU-FIPUD-C . B2%ABSC(FIU)>) 43.,43,33
FIPU=FIU

IF(NU.GE.16.AND ABSC(FIU).LE. . BB1> GO 7O 43
GO T0 31

GAUSSU=FIU

RETURN

END

FUNCTION CXX(RHO,P,CN2,PATH,AMAVE., U,YEL.,TD)
IF(ABSC(U>.LE. .BB1 _.OR.ABSC(U)>.GE. . 999> GO TO 982
PHI=22./7.

ARK=2 . =PHI/(RVWAVE>

Al=UxC1 . -U)*PATH/(2.%A8K>

A=SARTC(AL)
TEL1=P#P*U*U+YEL*YEL*TD*TD+RHO®RHO*( 1 -U)*(1.-U>
TE2=2 . #UxP*VYEL*TD

TE3=2 . #U*(1.-U)>*P=RHO

TE4=2 »=¥YEL»TDx( 1. -U)>*RHO
TES=TEL1-TE2+TE3-TE4

B=SGRT(TES>

CALL HSC(A,B.CCO
CKXX=.132*PHI*PHI*AK*AK*CN2*PATH=*CC

GO TO 912

CXX=8.

GO TO0 912

CONTINUE

RETURN

END

FUNCTION FX8(RHO,P,CN2,PARTH,AMAYE, YEL.,TD)
AK=44 /(7 . =AWAVYE)

S1=P=RHO

S2=AK/PATH

Ri1=.545625«CN2%«PATH*AK=*AK

S4=1 BI125*CN2+*AK»AK*PATH=RHO*=*( 1 6666€067)
FXXX=XM1B(P.,RHO,.VEL.TD)

SS=1 . 455¢«CN2*AK*AK*PATH*F XXX

PC=-RHO
TR1=GAUSSUCRHO,P,CN2,PARTH,RHAVYE.YEL,TD>
TR2=GAUSSU(PC.P,CN2,PATH, AWAYE,YEL . TD)
S6=EXP(2.%«(TR1+TR2)>-54+S85)

S3=AJB(S1%xS52)

FX8=53*S6

IF(ABS(FXB8).GE.1B.> FX8=B.

WRITE(6.98) FX8

FORMAT(2X,'FX8=",E14 .¢6)

RETURN

END

FUNCTION XMiBC(P,RHO,VYEL.TD>

A=B.

B=1.

DX=(B-A)x .5
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Fli=XM(P,RHO,A,.VYEL.TD)>+XM(P,RHOQ,B.,YEL.,TD)?
FI2=XM(P,RHO,.DX,YEL.TDD
F13=8.
FIP=DX=(FI1+4 =FI2)>/3.
N=1
N=2=%N
FI3=FI2+F1I3
FI12=8.
TDX=DX
DX=DX*.5
X=A+DX
DO 62 I=1.,N
FI2=FI2+XM(P.,RHO,X,YEL.TD)
X=X+TD¥
CONTINUE
FI=DX=*(Fl1+4 =FI2+2 %«F13)/3.
IFCABSCFI-FIP)-¢ .B2*ABS(FI>)) ©4.64.,¢3
FIP=F1
IFCABSC(FI).LE. .HB1 . AND .N.GE.322) GO T0 ¢4
GO TO 61
XMi1B=F1
RETURN
END
FUNCTION XM(P,RHO,X,YEL.TD>
TE1=P#P*X*X+VEL*YEL*TD*TD+( 1. -X>%(1 _ -X>*RHO*RHO
TE2=2 . #X=xP=VYEL=TD
TE3=2 . =X»P=RHO=(1 . -%X)
TE4=2 . «VEL*TD*RHO=*( ]|  -¥X>
TES=ABS{TE1-TE2+TE3-TE4)
TE9=TES#*=*( ,8333333)
TEiB=ABS(TEI1-TE2-TE3+TE4 >
TE11=TE1B*=%( . 833333)
TE8=2 . #(( ABS{(P*X-YEL%=TD))%*%(]1 .666667))
XM=TE9+TE11-TES
RETURN
END
FUNCTION FCX(RHO.,P,CHN2.PATH.AWAYE.VYEL.TD)>
INTEGRATION OYER THETA
A=8.
B=44 /7.
DX=(B-R)’2.
FIi=RXX(RHO,P,CN2,.PATH.AUAVE.A.YEL.,TD >+RXX(RHO,
1P,CN2.PATH,AWAVYE. B, YEL.TD?>
ARX=A+DX
F12=RXX(RHO,P.CN2.PATH.,.ARUAYE. AAX ,YEL.TD)
FI13=8.
FIP=DX*(Fli+4 =FI2)/3.
H=1
N=N=*2
FI3=FI2+F13
F12=8.
TDX=DX
DX=. 5%DX
¥=A+DX
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DD 22 1I=1.N

FI2=FIZ+RXX(RHO,P,CN2,PATH, ABAYE.X,VEL.TD>
X=X+TD¥X

CONTINUE

FI=DX*(FIil+4 »FI2+2 =F133/3.

IF(ABS(FI-FIP)Y-¢ HZ*ABS(FI)>)> 42,42.,43
FIP=F1

GO T0 21

FCX=F1

WRITE(6.,99) N.FI

FORMAT(I6.,2%X,'Fl=',E14 .6

RETURN

END

FUNCTION UGAUSS(RHO.P,CN2.PATH.AWAYE.T,VEL.TD)
AU=B.

BU=1.

DU=(BU-AU>* .3
FIUI=ZXXC(RHO.P,CN2,PATH, AWAYE. T, AU, YEL,TD)+
1 ZXX(RHO.P.CN2.PATH.AWAYE.T.BU.YEL.TD>
ADU=AU+DU
FIU2=ZXXC(RHO.P.CN2,PATH, AYAVYE. T.ADU.VYEL ., TD)
FIu3=8.

FIPU=DUXCFIlUL1+4 =FIU2>/3.

Nu=1

NU=NU=2

FIU3=FIUZ2+FIU3

FlUuz=8.

TDU=DU

pu=pU=*.5

U=aU+DU

DO 32 I=1.,NU
FIU2=FIUZ2+ZXX(RHO.P,CN2,PATH,. AWAVYE, T,U,VEL.TD>
U=sUu+TDU

CONTINUE

FIU=DU*(FIU1+4 =FIU2+2 xFIU3>/3.
IF(ABS(FIU-FIPU)=¢ . B2*ABSC(FIU>Y> 43.,43,33
FIPU=FIU

IFCNU.GE.16.AND .ABSC(FIU)>.LE..BB1) GO TO 43
GO TO 31

UGaUSS=FIU

RETURN

END

FUNCTION ZXXCRHO,P.,CN2.PATH,AWAYE.T,U.YEL.,TD)D
IFCABSCUDY.LE..BB! .OR.ABSC(U>.GE. . 999> GO TO 2Bz
PHI=22./7.

AK=2 .*PHI/AVAVYE

Al=U=x(1 -U)X=PATH/C(2.%ARK)

A=SART(ABS{(ALl >
TEt=P»PeUxU+VEL*VEL*TD*TD+RHO*RHO*( 1 -Ud*x(1. -U>
TE2=2 .=«UxP=VYEL*TD

TE3=2 .sUx¢ 1. -U)*PsRHO*COS(T)

TE4=2 «YEL*TD*(1.-U)>*RHO*COS(T)
TES=TE1~-TE2+TE3-TE4

B=SERT(RBS(TE3 )
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CALL HSC(A.B.CC>
ZXX=.132%PHI*PHI*CN2+AK*AK*PATH*CC

GO TO 912

2%%X=8.

CONT INUE

RETURN

END

FUNCTION RXX(RHO,P,CHN2.PATH,.AWAVE.T.VYEL.TD)
RXX=EXPC(4 . *UGAUSS(RHO.P,CN2.PATH.AWAVE,. T,YEL.TD)>
RETURN

END

FUNCTION BIRCX)

IF(X.GT.3.>» GO TO0 1

YY=X/3.

Y=Yy *YY

BIX=X#( .5B+Y%(-.56249985+Y*( 21B93573+Y*(- B3954283+
C+Y%x({ BA443319+Y*( - BHEB31761+Y*( BBBEBI11B2)3>))>>))
GO TO 2

¥=3./%
FFi1=.79788456+Y*( . BBBBB156+Y+( . B1659667+Y*( BAB17 185
Covw(- . BA24951+Y*¢ BE113653+Y+( - BBA2BEI3Z))))>))
THETA=X-2.35619449+Y%( .12499%612+Y*( BEBAS6SB+Yx*(
C-.BB637879+Y*( BEB74348+Y+( BEE?9I824+Yx(

1 -.BBB291666))5)))

BIX=FF1#COSC(THETARX/SEART(X)

RETURN

END

SUBROUTINE TRAP(A,AX.,ERR,RO.TX.FL.L.FI)D

DX=.5

FI1=GRANCA,AX, RO, TX,L,FL)>/2.
FI2=GRAN(DX,AX, RO, TX,L,FL)

FIP=DX={(F11+F12)

N=1

J=@

N=2%N

TDX=DX

DX=.5%DX

®X=D¥

DO 2 I=1,HN

F12=FI2+GRANC(X,AX,RO.TX.,L,.FL)D

X=K+TDX

FI=DXs(FIt1+FI2)
FI3=ABS(FI-FIP)
FI4=ERR*ABS(FI>
IFCFI3.LE.FI4> GO TO 4
IF¢J.GE.9> GO TO S
FIP=F1l

J=J+1

GO TO 1

WRITE(E.7)

FORMATC(2X, "LIMITCTRAP> REARCHED'>
RETURN

END

FUNCTION GRANCX,AX,RO,TX.L.,FL>
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AD=RO*TX
Ti=FL=xX
IFCL .E@.1)> T2=RJB{(T1)
IFCL . ER.2) T2=BIX(T1)
IFCTX.LT.1.> GO TO 1
T3=.5*((AX*X)*%%x2)/(TX®2TX)
T4=2 . s((AX*xX)x%*(5 . /3 .))
TS=EXP(-T3-T4)
GO TO 6
1 Te=.5%x((aAX*X)%x%2)+2 *x((AX*TR*xX)**(5./3. )
TS=EXP(~-T6)
6 GRAN=X%T2%TS5
IFCL.E@.1> GO TO 7
IF(TX.LT.1.> GO TO 8
GRAN=CGRAN*{(( AX*xX*RO)*%x7 2 /3 >
GO TO 7
8 GRAN=CGRAN*((AX*X=A0 )*%x{(2 /3 .))
7 RETURN
END
SUBROUTINE HS(AR.B.C>
DIMENSION C2(%).C3(18)>
INTEGER F 1
DOUBLE PRECISION G2,G3.HK.BB.G.C.,H
DaTa C2/9.64586E-3.,-.513572E-2, .2988B32E-1,
1 -.54B2513EB., .285255E2.,-1.3529¢6E3.1.37215E5,
1 -1.9892E7.,3.9B89ES/
DATA C3/3.36111.,-13.49112.,-66.88151,.385934E3
i s .262497E4,- . 2B44B46E5,-.1791784E6., .1747011E7
1 ,1.87768B47E7.-2.2-35?7E8/
Z=B*B/( B8xA%xA)
HH=.559167*B*%x( | 6666667 )
IF ¢(2.67.12.56> GO TO 28B8
N=31
C POWER SERIES EXPANSION OF HLCw.EB1
Ni=N+1
HK=5./¢(3ex4)
BB=Z % 2% HK
G2=1.+EB
N3=N/2+1
DZ2=2x%x2
TZ=DZ2=%*D2
DO 18 J=1,N3
I=2%J-1
HK=-HK=*(e . ®xI+1 . )x(6 . *]+7 >d/¢C(e *(1+2 I)*(I+3. )>)k*x2)
IFCJ.EQR.1> GO TO 12
HK=HK=D2Z
GO TO 18
12 HK=HK=T2Z
18 G2=G2+HK
HK=5./6.
BE=HK=*2Z
G3=EB
DO 11 J=B.,N3
I=2%J
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HK=-HEK=*(6 . ®I+1 )*(6 _214+7 3/¢C(6 *{(I+2)*(I+3))%=%2)
IF¢J .EQR.B) GO TO 13

HK=HK=D2Z

GO TO 11

HK=HK=D2=2

G3=G3+HK

G=¢( .258819R4*G2+.965922583*G3>
C=2.975414275*a%%x]1 06666667*0

C=-HH+C

RETURN
PTOTIC EXPANSION OF HILA.EB]

22=1/2

Di=B.525982%B*x*1 666667
G1=C2¢1)%22#%%2+C2¢(2>%22+*4+C2( 32 %72 *%*%
14C2C 4 )%2Z2%%8+C2(5)*Z22%x1B+C2( & )*x22x%x12+C2C( 7>
2%27%% 14+C2¢(8)%xZ77%x%x]6
G2=1+4+C3(2)>*ZZ%*2+C3C 4 )*22%%4+C 316 )%22%%6+L3( 8
1 #2Z2%*8+C3(1B>*x22%%x1H
G3=C3C1I*Z22+C3C3I)n22%%xJ+C3(F)%xZ22%xx35+C3(7)
122722 %x7+C3C(9)%xZ2Z%%x9

PO0=2 .66666667

H=1 . B863B853*G1+SIN(Z2»*2Z2%xP0xG2%.1497185
1-.1497xC0S(2)*22**FP0%xG3

=-H=D1

RETURN

END
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APPENDIX E

This appendix consists of 2 programs. The first one is called
CXX2FF. This is to generate the two frequencyllog-amplitude
covariance function. The input is in order, the path length, the
first wave length, the second wave length and the turbulence
level. The program actually evaluates the log-amplitude covariance
at the integral multiples of the half Fresnel zone sizes,
corresponding to the first wave length. This covariance scale size
is called RHO in the program. By specifying RHO, if necessary,
log-amplitude covariance at any arbitrary value of RHO, can be
estimated.

The second program is called SXX2FF. This evaluates the phase
covariance as above except the Fresnel zone size is estimated at
the center wave length. The first program uses the Kolmogorov
spectrum and the latter, modified Tatarskii spectrum with an outer

scale of 1 meter and an inner scale of 1 millimeter.
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NAME OF THE PROGRANM 1S CRXER2FF

PROGRAM EVALUATES THE THO FREQUENCY
LOG-AMPLITUDE COVYARIANCE C(R.,K1.K2)

READ{(S,412> PATH

FORMAT(F® .13

READ{(S5.,42) AWAVE!L

FORMAT(F& .4)

AWAYELI=AUAYE1*{1 E-B&)

READ(5.,42) AWAVE2

AUAVYEZ2=AMAYEZ2*(1 E-HBe>

PHI=22./7.

AK1=2. *PHI/ZAWAVEL

AKZ=2.*xFHI/AWRYEZ

READ{S5.,43)> CN2

FORMAT(EL1B. 4>

FSS=SERTCAWAYELI*PATH)

DO 1BB J=1.4

Ad=J*.5

RHO=RJ=*FSS

ANS=FYY(AK2.RHO,CN2,AK1,PATH?

WRITE(4,586> PATH,CN2,AK1,AK2.RHO.,ANS
FORMATC(EeC(ELIB.4,2%)>>

CONTINUE

ANSI=FYY{(AK2Z,RHO,CN2,RK1.PATH)

STOP

END

FUNCTIDN ARJBCX)

IF(X.GT.3.>» GO TO 71

X1=X/3.

AJB=1.-2 2499997 +xX1%%2+1 265¢2B2*%1+*x4- 2163BCeH
1X1%%6+ . B444479xX1+*%x8- BB39444+X1%x*x108+ BBB2I1+X1*x12
GO TO 72

X2=3./X

FO= . 79788456- . BEEBBBA7 7*¥%X2- BB55274*xK2%%2- BBBA9S1 *X
{ee3+ BE137237%%2%%x4- BEB728B5*X2%x*5+ BER14476*X2%*%¢
THETA=X-  78529816-.84166397xX2~- BB2B23T4xX2+%2+
1 . BR262572xXzx%3- BABS4i5#%2&*d- PER2IIITAX 24T+
1 BARI33S2%xR2+%0

AIB=FO*IGSCTHRETRDZSORTOK D

GO TO 72

CONTINUE

RETURN

END

SURROUTINE GAUSSUCAKZ2.RHO.CN2 . AK1.PT.A1,A2.Y,8H)
Ci=C(AR1+A2 )% .3

c2={Aa2-A1)>* 5

Ul=~-.2386915xC2+C1

U2=.2386915xC2+C1

U3=-.6¢12B834xC2+C1

U4=.6612B8%4xC2+C1

Us=-.9324695«C2+C1

Ue=.9324695xC2+C 1

Wi=.4679139
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H2=U1
B3=.368761¢
Wa=uW3
W5=.1713245
HBée=US

UAl=W1*FM(AK2,RHO,CN2.AK1,.PT,UL1.YD
UA2=UW2*FM{AKZ2.RHO.CN2,AK1,PT,U2,%>

"UAZ=U3*FM(AK2,RHO.,CN2,.AKI1,PT.,U3.Y>

UAd=W4*+xFM{AKZ,RHO. CN2,AK1,PT,U4.,7)
UAS=WS*FM(AKZ. . RHO,CN2,AK1.PT,US.Y)
Uat=U6+FM(AK2,RHO,CN2,AKL.,PT,US.YD
AN=C2*(LAL1+URA2+UA3+UR4+UAS+URG)

RETURN
END
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SUBROUTINE YGAUSS(AK2.RHO,CN2.AKI1.PT.AY1,RY2 RN

Di=C(AY1+AY2)*.5
D2=C(AY2-AY1)* .5
¥1i=-.2326915%D2+D1
¥Y2=.2386915%D02+D1
¥3=-.6612E%4+D2+D1
Y4= . 6612B94%D2+D1
¥Y5=-.9324695%D2+D1
Y6=.9324695xD2+D 1
Wi=.467913%

Wa2=U1

B3=. 3687016

¥W4=U3

W5=.1713245

We=WS
YAl=WilxUGAUSSCAKZ.,
Yae=Ww2+xUcalccsdpK2,
YAZ=uWIxLCRUSC AK 2,
YRas=WdeUGAUSS. av 2.
YRS=WS*UGRUSS AK 2.

PT,RHOQ,CHNZ,
FT.RHO.CHZ,
FT,RHO,.CHZ,
FT. . RHO.ONZ,
FT,.RHEIZ,CNZ.,

AK1., Y12
AK1,Y2)
KK1,73)
HK1.,Y4>
HK1,Y5)

YAe=WEe*UGAUSSC(AK2,PT,RHU,CN2, ARK1,Y®8)
AN=D2*(YA1+YAR2+YARI+YR4+YAS+YAB)

RETURN
ERND

FUNCTION FM(AK2,RHO.CN2.,RKL1.FATH.U.Y)

IFCY.LE.B.> GO 70O

251

IFCARBS(U)>.LE. .BB1.0R.ABSC(UY. GE. .99)

AXXX=U%(1 . -U)
IF(ARXEX.GE.B. >
WRITE(S6.,232) AXKX
FORMATC(F14. 8)
CONTINUE
FRHIL=CUxC 1. -U))dwx(
PHI=22./7.

GO TO 991

(5.)'6.0

FM12X=SQRT(<(4 *PHIxYxU>/C1 . -U>>

WAYEL=44 . /¢(7 . %xAaK1)>
FMI2Y=SRRTCUWAVEL %P
FM12=FM12X*RHO/FHM1
BB=RKI1/AK2

ATH?
2Y

GO TO 231

FHI3=SINCY)*SINCBE*Y)/(EB*{(Y+x(1] /6.)))
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CONS=.365582406*CN2*(AKI**(7 /6. )>*x(PATH=**x(11 _/6.))
FM=CONS*FMI11*xAJBC(FM12)>*xFN13

GO TO 252

FM=8.

CONTINUE

RETURN

END

FUNCTION UGRUSS(AKZ2.PATH.RHO.,CNZ2,AKI1.YD

AuU=8.

BuU=1.

NU=2

TNSU=8.

RNSU=RB.

DO SB2 Iu=1,HNU

ANU=NU

R1I=AU+C(IU-1 »x(BU-RARU)X/RNU
A2=AaU+{IUIX*(BU-AU)/RNU

CALL GAUSSUCAK2,RHO,CN2.,ARK1,PATH,RL1.,A2.Y,RNSUZ
ANSU=ANSU+ANZU2

COHTIKNUE

IFCABSCANSU-TNSU)Y.LE. ABSC . B2*ANSUD) GO TO 5B3
TNSU=ARNSU

MU=HNU%x2

GO TO 581

UGARUSS=RNSU

RETURN

END

FUNCTION FYY(CARK2.RHO,CNZ2.,AKI,PRTH)
SIGMAT=.124%RK1**%{7 /6. 2*CPATH*=*(11./6.)>*CHN2
TNSX=8.

RNZX=8B.

RY=08 .

IF(SIGMAT LE.1.)> GO TO 721

BY=1./¢2 . *SIGMRART

GO TO 722

BY=1.

DELTA=BY

NY=2

TNSY=B.

ANSY=8.

DO 589 IY=1,NY

ANY=NY

AYLI=AY+(IY-1.  )x(BY-AY)/ANY
AY2=AY+IY=(BY-AY )/ANY

CALL YGARUSS(AKZ2.RHO.CN2.,AKL1.,PATH,AY1,ARY2,ANSYZ)
ANSY=ANSY+ANSY2

CONTINUE

IFCABS(ANSY-TNSY ). LE.RESC . B2+%AaNSY)>)> GO TO 3518
TNSY=ANSY

NY=NY%2

WRITE(&6.461)> ANSY

FORMAT(SX.,E14 . 6>

IFCNY.GE . 4. AND ABSCANSY)Y . LE. . BB1)D GO 70 518

GO TO 588
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ANSX=ANSX+ANSY
IFCABSCANSKX-THSX ). LE.RBSC . B2*AaNSK ))
AY=AY+DELTA

BY=BY+DELTA

TNSX=ANEX

IFCABSC(ANSX).LE. BB1) GO TO 732
GO TO0 723

FYY=ANSK

RETURN

END

GO TO 732

209
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PROGRAM HAME IS SXX2FF

DIMENSION AW(7 >

PROGRAM EYRLUATES THE TWO FREQUENCY

PHASE COYARIANCE FUNCTION S{R.K!1.,K2)

USING MODIFIED TATARSKI SPECTRUM FOR THE

REFRACTIYE INDEX FLUCTUATIONS.INNER SCALE IS

{ MILLIMETER AND OUTER SCALE IS A METER.

DATA AW 72 .128.1.5%9¢6.1 . Be4, 632, .488. .266. .133/

PHI=22./7. J

PATH=5B8B.

AWAYEL1= ,532E-B6

CN2=5 .BBBBE-14

WRITE<C4,31> PATH,CHN2

FORMAT(3IX,'PATH=’",Fe6.1.,4X,°CN2=",E1B.4)

DO 188 I=1.8

WRITE(4,55)

FORMAT(2X, “ k& x ke kkkhxkkk ok kxkkk Rk khkkkkx' )

AUAVEZ2=AaW{I)*1 E-Bs&

AK1=2 . *PHI/AWAVE!

AK2=2 .*PHI/AWAVYEZ2

FS1=SQRT(AVAYEI*PATH)

FS2=SART(AWAYEZ*PATH>

WRITE(4.,323AWAYELl.AWAVE2

FORMAT(2X.,'AVAVEL1=",E1B.4.3X, ' AdAVE2=",E18 .4)

WRITE{4,33) FS1,FS2

FORMAT(3%,’'FS1=’,F1B8.4.,4%X,’FS2=",F1B.4)>

WRITE(4,45)

FORMAT(2X, 'STUDY OF PHASE COYARIANCE FOR TWO

FREQUENCY CASE’>

RHO=.B81

IF{(RHO.GT .<S.*%FS1i 2> GO TO 188

ANS=FYY(AK2,RHDO,CN2,AKI1.,PATH>

ANSZ2=FYY(AK!1.RHO.CN2,ARK1.,PATH>

ANS3I=FYY(AK2.RHO,CN2,RK2.,PARTH)

Ri=ANS/ANS2

R2=ANS/ANS3

R3=RHO/FS1

R4=RHO/FS2

WMRITE(4,34) RHO,AN52.ANS ,R3.R1

FGRMAT(2X,'RHO=',F7.3.X,’ANS2=",E1B .4,%, 'ANS=",
EiB.4.,X,'R3=',F7.3,%,’R1=’,F7.3)

WRITE{4.325) RHO,ANS3,ANS.,R4.R2

FORMAT(3X.,'RHO="',F7.3.,3%,'ANS3=" ,E1B.4,3%X,’ANS=",
Ei1B.4,3%,°R4="',F7.3.,3%,"'R2="',F7.3)

WRITE<{4.,36)

FORMATC’&&t&&&&’ )

RHO=RHO+.5*F51

GO T0O 44

CONTINUE

STOP

END

FUNCTION ARJBC(XD

IFCX.GT.3.) GO TO 71
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X1=X/3.
AJB=1 . -2.2499997%xX1x%x2+1 2656288 %xK1*x4~- 3T163866*%1*x
16+ B444479xX1xx8- BB3I9444xK {10+ BHEE21*xX1=x]2
GO T0 72
71 X2=3./%
FO=.79788456-. BRBEBBET?7*X2- BBS55274*xX2*x2~- BBEBEBO951%xX2
1**x3+ BB137237+xX2*x%4- BHARBY28BS*X2%**x5+ BBHE14476%xX2%%06
THETA=X-.78539816-.0841663%7%X2- . BBEBE3I954*X2x%x2+
1.BBZ62573%X2**x3- BBBS4125%KX2**x4- BEBZO3II*xX2**x5+
i1 .BBB13558*X2%x*¢
AJB=FO=COS(THETAX/SQRT(X )
GO TOo 72
g CONTINUE
RETURN
END
SUBROUTINE YGAUSS{(AK2.RHOD.CN2,RK1,PATH,.AY1,AY2,ANS)
DY=CAY2-AY1)>*x_5
FYi=zUXC{AK2.RHO.CN2.AK!L .PATH,AY1>+UX(ARKZ,RHO,CN2,
1 AK1.PATH.AY2)
ADY=AY1+DY
FY2=UXCAK2,RHO,CN2:ARK1,PATH.ADY?>
F¥Y3=8.
FYP=DY*(FY!+4 =FY2)/3.
NY=1
34 NY=NY=2
FY3=FY2+FY3
Fya2=8.
TDY=DY
DY=DY=*.5
Y=AY1+DY
bo 32 I=1.NY
FY2=FY2+UX(AK2,RHO,CN2,ARK1,PATH. Y>
Y=Y+TDY
32 CONTIHNUE
FYr=DY=(FY1+4 =xFY2+2 *FY3I)>/3.
IFCABSCFY-FYP)>-ABSC _B2xFY)>)> 43.,43,33
33 FYP=FY
IFCNY .GE.16.AND .ABSC{FY)>.LE. .BB1)> GO TO 43
43 ANS=FY
RETURHN
END
FUNCTION UX(ARK2.RHD.CNZ2.ARKI1,PATH.Y>
AU=8B.
BuU=1.
DU=(BU-AU>* . S
FU1=FM(AKZ2.,RHO,CN2,AK1 ,PATH.Y, AUX+FMC(AK2.RHDO,CN2,
1 AKI1,PATH.Y.,BU)
FU2=FM(AK2,RHO.CN2.,AK1,PATH.Y.DU)

ADU=AU+DU

FU2=FM(AK2,RHO.,CN2,RK1 ,PATH.Y,ADU>
FU3=8.

FUP=DU=(FU1+4 xFU2>/3.

NU=1

51 NU=NU=2
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FU3I=FU2+FU3

Fuz=8.

TDU=DU

DU=DU=*.35

U=aU+DU

DO 52 J=1.,NU
FU2=FU2+FMC(AK2,RHO,CN2.RK1.PATH. Y, U)
U=u+TDU

CONTINUE

FU=DU=(FU1+4 =FU2+2 . *FU3)/3.
IFCABSCFU-FUP)Y.LE.ABSC .B2%FU>)> GO TO 623
FUP=FU

IF(NU . GE.16.AND ABS¢(FU)Y.LE. .BB1)> GO TO &3
GO TO 51

U¥=FU

RETURN

END

FUNCTION FM(AK2,RHO.CN2.,ARKI1 ,PATH.Y.U>
1IF(CABSC(U)Y.LE..BBA1 .OR.ABS(U> . GE. .9299)> GO TO 2351
AX=ABS(Ux(1 . -U>)

IF(AX .GE.B.> GO TO 9291

WRITE(6.,232) AXXX

FORMAT(F14 .8>

CONTINUE

ALB=1.

ALM=5.92/C¢ .BB1)

PHI=22./7.

FMil=RX

FM12=¢2 . *AQAK1=xY )/ C AX*PATH)+( 1. /ALB )= *2
FM13=FMiZ2=x»x{(-11./6.)
FMIS=SORTC((2.*xAK1*UxY>/( (1. -U)>*PATH)»*RHO
FM16=AJB(FMI5)*xCOSCYI*COSC(Y*AKI1/RK2)
CONS=.132%«PHI*PHI*CN2*AK1*AK1*RK2
FMIS=EXP( -2 »%aK1*Y/( AX*PATH*ALM*ALHMI)
FM=CONS*FMI3xFMiéexFM1I8/FM11

GO TO 2352

FM=8.

CONTINUE

RETURN

END

FUNCTION FYY(AK2.RHO.,CN2,RARK1,PATH>
THNSX=8.

ANSKX=8.

PHI=22./7.

AY=08 .

BYy=2.

DELTA=BY

AYl=AY

AY2=BY

CONTINUE

CALL YGAUSS(AK2.RHO,CN2,AK! ,PATH,AY1,AY2,ANSY2)
WRITE(6.,145) ANSY 2
FORMAT(SK,.Ei18B.4)

ANSK=ANSK+ANSY2
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IFCABSCANSX-TNSX).LE . ABSC .B2=ANSX)Y) GO TO 732
AY1=AY1+DELTA
AY2=AY2+DELTA
THNSX=ANSK
IFCABS(ANSX).LE..BB1)> GO TO 732
GO T0O 723
732 FYY=ANSX
WRITE(6.,144> FYY
144 FORMAT(15X,E18.4)
RETURN
END



214

APPENDIX F

This appendix consists of seven short programs. The first one
is called JJJ. This evaluates the mean square error in replacing
the Rice-Nakagami distribution by an equivalent M distribution as
discussed in Chapter VIII. The input is M and the mean is assumed
to be unity. The program can be modified to get the mean square
error for an exponentially weighted distribution as suggested in
that program.

The second program is called APPRX. For a given value of M,
assuming mean value to be unity, this program estimates the
parameters of an equivalent Rice-Nakagami distribution and prints
the absolute values of both distributions and their difference for
several values of intensity.

The third program, APX, uses the same set of input as earlier,
and it estimates moments of intensity of both the distributions and
their ratio until the 7th moment of intensity is reached.

The fourth program, KHOMENT, is designed to check whether the
intensity of a monochromatic speckle pattern is following a
K-distribution. The first few lines of the program explain it.

The fifth program, MOMOMENT, is used to check whether the
intensity of a polychromatic speckle pattern is following an

M-distribution.
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The sixth program, PMOMENT, is designed to compare the
validity of theoretical and experimental moments of a polychromatic
speckle pattern in turbulence. This program is self-explanatory.

The seventh program is called KDEN1l. This is a double
precision program, designed to calculate the cumulative probability
density function of the speckle intensity in the turbulent
atmosphere.

All the programs in this appendix refer to Chapter VIII. All
of them are self-explanatory and no detailed explanations are

necessary.
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PROGRAM NAME IS JJdJ
TRAPEZOIDAL 1HTEGRATION TO GET RICE-NAKAGAMI
AND M-DISTR1IBUTION
IN 1HIS FROGRaAM MEARN YRLUE OF M DISTRIBUTION
IS UNITY. GIVYEH M, IT EVALURTES THEEQUIVRLENT
ALPHA AND BETAR OF RICE-NRKARGANMI DISTRIBUTION
THEW 1T TAKES THE DIFFERENCE BETWEEN THE TUWO
DISTRIBUTIONS FOR EaCH VALUE OF INTEKNSITY
AND SQUARRES THE ERKOR.THIS ERROR IS5 INTEGRRTED
FOR ALL YALUES OF INTEHSITY FROM ZERCQ TQ
INFINITY S0 THAT THE FINRL RESULT IS THE HMERH
SQUARE ERROR .IN TH1S PROGRAM THE DISTRIBUTIOHNS

C ARE NOT WEIGHTED. THEY CAN BE WEIGHTED BY RNY
SUITRBLE WEIGHTING FUNCTIOW FOR EXAMFLE.
AN EXPONEHTIAL DISTTRIBUTIOH FUHCTION. MODIFICKRTION
OF THE PROGRAM IS RATHER ER3Y T0 INCLUDE
THE WEIGHTING FUKRCTIONS.
REARDC(5.,44> N

44 FURMRTCIZ
AM=N
READ(S3,44) 11

oOOoOOO0O0O0O0O0O00O00 00

o000

03 I1 15 THE VYALUE OF THE INTENSITY SUCH THRT THE
C DIFFERENCE BETWEEM THE PDFS IS5 NEGLIGIELE. THIS
% CAN BEE PRE-ESYTIMARTED.

B=1.-SQRT{1. =-1. /8M)

R=1.-B

DO 121 Jd=1,188

Ji=J1-1

AJ1=4d1

AI=pd1/18.

AR =B.

Br=11

DE=(BR-ARFK »*> .5
SUMI=FX(RI,A,B, AR )I+Z *FU(RI, R, B.DRI+FX(CARTI,R.E,BR
SUMp=3UMI *DK=*» .3
NR=1

JE NRE=2 % NK
TDR=DR
DE=DR=*>.5
R=AR+DR
Do 1Bt IR=1,HNR
SUMiI=SUMI+2 *FX(RI.A,B,RK)
R=R+TDEK

1B61 CONTINUE
SUMZ2=3UHMI *DRx*_G
IFCAEBSCSUM2-SUMA)Y . LE ABSC . BIxSUMN2)) GO TO éed
SUMa=SUNZ
GO T0 26

6i6 IF(NR .GT.1BBB)> GO TO0 6¢&7
SUMpR=SUNZ
GO TO 26

€67 ANS=SUM2
URITEC(4.45)> Al,ANS
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45 FORMATC(ZE14 &
121 CONTIMUE
STOF
END
FUNCTION DIFFI(M,ARID
PROGRAM TO CHECK THE ¥YRLIDITY OF REPLACING RICE
HeKAGAMI BY M DISTRIBUTION
RM=M
BETA=1 . -S@QRT(1 .-1./RND
RLFHA=1.-BETR
F1=(ALPHAR+8I>/BETH
P2=EXP(-P1)/BETH
P3=2 . *SERT(AI*ALPHRI/BETA
FP4=RIBI{P3)
WEIT=EXFC(-RI)D
RHNiX=P2%xP4
RENEW=KNXK*WEIT
Gi=AaH*xx%xan
G2=GAMMAL M
G3=alx*x{aM-1. >
G4=EXFP(-AHxAl >
ANM=C(G1*G3*xG4 >/G2
ANMU=ANM*UWEIT
DIFFi=ANM-RNE
RETURN
END
FUHCTIOH GARMMARC(HM)
N=n-1
sum=1.
DO 1B! I=1.N
Aa=1I
SUM=SUM*A
i1 CONTINUE
GaMMA=SUM
RETURN
END
FUNCTION RIBCR)D
T=X/3.75
IF(XK . GT.2.75> GO TO €8
IF(X  EG.B.D GO T0 e7
Al1B=1.+3 . 515622%«T*T+3 . BE33424+< Twxd 41 2ZBE7432%0T+4
162+ . 2659732*(T*»8)+ B36BV73*(Tx*x1B>+ BB4IJI I THsiz?
GO T0 e8
606 A=1./T
B=.39894228+ . B1328592%A+ BB2ZS319*x(R+*2 )~ BEBEILT
1CA**3 )+ BB316ZR*(A*x*4)- B2BS77B6*x(A**5)+ B2e3T53
2*CA*x*6)- B1led7633%x(A**7 0+ BBEIY2I77+(H4*8)
C=EZP(X)
D=SQRTC(X>
AlB=(B*C>/D
GO TO é8
67 AlB=1.
6t CONTINUE
RETURM



535
Se

END

FUNCTION FXCARI,R,B., XD
IF(X.EQ.B.> GO TO 35
CONS=EXP(=-R/B)/B
CC=RI/X+X/B
IF¢CCC.GT.15.> GO TO S5
C3=EXP(-CC>

C4=2 »SERTC(X*R)1/E
CS=RIBC(C4>-1.
FR=C3*#C5*CONS/X

GO TGO Se

FX=8.

CONTINUE

RETURN

END
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PROGRAM MAME IS APPEX
PROGCRAM TO CHECK THE VYALIDITY OF REPLACING
RICE-NAKBRGAMI DISTRIBUTION BY M-DISTRIBUTION
ASSUMES THE MEAN VALUE OF THE M-DISTRIBUTION
1S UNITY. GIYEN THE V¥ALUE OF M, IT EVARLURTES
THE EQUIVYALENT ALPHA AND BETR OF RICE-NRKRGAMI
DISTRIBUTION BY HMATCHING THE FIRSET TWO MOMENTS
OF INTENSITY.THE PROGRAM EVALUARTES BOTH THE
DISTRIBUTIONS, THEIR WEIGHTED VYALUES AND THE
DIFFERENCE FOR SEYERAL YRLUES OF INTENSITY.
READ(S,21)> M

FORMARTCIZ2?

AM=N

BETA=1.-SQRT(1.-1./7RAMD

ALPHR=1. -BETH

Rl=. 81

CONTINUE

IFCAI.GT .4.)> GO TO 44

Pi=¢(ALPHAR+RI»/BETA

P2=EXP(-P1!)>/BETR

P3=2 . .*SQRTCARI*ALPHA)X/BETRA

FP4=RIB(FP3)

WEIT=EXP{-RI)

RNX=P2=*P4

RNXW=RNX*WEIT

Gl=RM**AN

G2=GAMMARCH>

G3=Alx*x(AM-1.>

G4=ERP(-RM*xAl >

ANM={G1*xC3*xG4 /G2

ANMU=ANM*WEIT

DIFF=RANMU-RNXUW

PERC=DIFF*«1BB . /CRNXUW)>

DIFF1I=RHNX-ANN

FPERC1=DIFF1=*1BB./KNX

WRITE(4.55> A, RNX,ANM,DIFF!.,PERCI.RNKUW,ANMY,
DIFF,PERC

FORMATC9C(F?.3,2%2)

Al=AI+.1

GO TO 32

CONTINUE

STOP

END

FUNCTION GAMMACHM)

N=M-1

SUM=1.

DO 18t I=1.,N

AR=1

SUM=SUNM=R

COHTINUE

GAMMAR=SUNM

RETURN

END
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FUNCTION AlIB(X)

T=X/3.75
IFCX.GT.2.75> GO TO s¢
IF(X.EQ.B.)> GO TO &7

AlB=1 +3 . 5156229 T*T+3 B8929424x( Tx%x4)+1 . 2067492%( T*x
162+.2659732*x(T*»2)+ B26B78*x(Tx*xiB>+ BHE4S5S813x( T%x*x12)

GO TO &8

66 A=1./T7 ;

B=.39894228+ .B132859%2+«R+ BB225319%(R**2 )~ BB157565*(
[A**x3 >+ BB%1628%x(Ax*4)- BA2AST77Bo*x(A%x%5 )+ B2eI3537
2%(R*%xg)- B1647e33*(R*%x7)+ BBI%2377*x(A**xE)

C=EXP{X)

D=SGRT(X?>

AIB=(BxC /D

GO TO e8

ev RIB=1.

68 CONTINUE
RETURN
END
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PROGRAM TO COMPARE MOMENTS
PROGRAM HNAME 1S APX
PROGRAM COMPARES THE HIGHER ORDER MOMENTS
OQF RICE-NBKAGHI DISTRIBUTION AND M-DIST.
ASSUMES THE MERN VALUE OF M-DISTRIBUTION
IS UNHITY. THEN GIVEM M, IT ESTIMATES THE
EQUIYALENT SET OF ALPHA AND BETA OF RICE-
NAKAGAMI DISTRIBUTION AND EVYALUARTES HIGHER
ORDER MOMENTS OF BOTH THE DISTRIBUTIQNS AND
THE RATIO OF MOMENTES.

DIMEMSION C{7>,D{(7>

WRITE(4.,586)

FORMAT(Z2X,’COMPARISION OF MOMENTS OF M-DIST WITH
1 RICE-NRKAGAMI DIST’ >
Do 281 =5, 28
WRITE<L4.,21)> M
FORMAT( 12X, M=",12)
aM="n
B=1.-S@RTC(1.-1./aM)
A=1.-B
XM=1. /4aM
C<ir=1.
CC2)=CC1)*(1 +XM)
CC3)=CC2X*%(1 . +2 %¥M)
CC4)>=CC(3>*%(1 . +3 . *¥H)
C{S)=C(4)*(]1 . +4 . %xXM)>
CCe>=C(Sr>*C(1 +5 %¥XM)
CC72=CLE6Y)*(] +6&. %XM)
DC1y=1.
D(2)=2. *B+¥B+4  *AxB+AR*A
D(35=6.%B**3+18 *A*EB*%2+9 *Bxhax*x2+R/*%x7
D(4)>=24 *B%2%x4+96 *A*Bx*x2+72 *(A*BIk*2+]16 *Bxp**xT+
1 A%xx4
D{(5)>=128 . *B* %5 +6BB*A*B*%4+6 BB A **2«E*%32+2B8  *Q#=+3
1*B*%x2+25 *Ax%x4 *«xB+A%x*5
Del=728 . *B**¢6+4328 . *R*Bx*x5+54B8 . *A*x*2*xBx%4
D62=24BB . *A**3#Bx»3
De3=458 . *AR**4*B*%x2+36 *BxA%x*xT+H*x¢E
D<(é6)>=Dei+De2+De3
D71=5848 . *B+*#7+352808 . *A*B#+6+52928  »*»A*x2 %P *%5
D72=22428 . *A**x3IxB*x4
D73=7358. *A2 %4 %B*x*3+882 . *QA*%xSxBx%2+49 *kQkxcxE+Axx7
DC7)>=D72+D71+D73
DO 1B1 I=1.,7
R=D(I)X/CCI>
WRITEC(4,45)> 1,C¢1)>.D{1)>, R
FORMAT(14,2%X,3E14.6)
COCNTINUE
CONTINUE
STOF
END
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PROGRAM NAME IS KMOMENT

AIM OF THIS PROGRAM IS TO CHECK IF THE SPECKLE
STATISTICS FOLLOWS AR K-DISTRIBUTIQON ;YALID OHNLY
FOR MONOCHROMATIC SPECKLE

PROGRAM TAKES NOISE DATA AND SIGHARAL+NOISE DATA
EYALUATES THE VY&RIANCE AND THE CORRESPONDING

M OF K DISTRIBUTION AND CALCULATES THE
THEORETICAL K-MOMENTS AND COMPRRES THEM

WITH EXPERIMENTAL ¥YARLUES AND THEIR ABSOLUTE
YALUES AND RATIOS

FIRST SET IS NOISE HMOMENTS

SECOND SET 1S5 SIGHNAL+NOISE MOMENTS

READ(S., 11> AINI

FORMATC(EL14.8)

READ(S., 11> AIN2

READ(S., 11> AIN3

READC(S5.,11)> AIN4

READ(S., 11> SNI

READ(S5.,11)> SNz

READ(S., 11> SN3

READ(S., 11> SHN4

WRITE(4.,18)

FORMATC(’CALCULATION OF MOMENTS OF SPECKLE INTENSITY

BRITEC4.,19) AINI.ARIM2.AIN3,AIN4

FORMART(2X, *HOISE MOMENTS'.4E14 .86

WRITEC(4.,28) SN1,SN2,SN3,SN4

FORMAT(2X, *'SIGNAL+NOISE MOMENTS’.4E14 .06
S1=SHN1-AINI

WRITE(4.,12)> S

FORMAT(2X, "AYERAGE INTENSITY=’,El14.6>
S2=5N2-2.*S1*AIN1-AIN2

WRITE(4,13) 82

FORMAT(2X, ' SECOND MOMENT OF INTENSITY=',El4 &)
S3=SN3-3.%52*AIN1-3 *S1*RIN2-ARIN3

WRITE(4,14> S3

FORMART(2X,*THIRD MOMENT OF INTENSITY='.E14.¢)
S4=SN4-4 =*S3*AIN1-6.%52*AIN2-4 *G1*AINI-RIN4
WRITEC(4.,15) S4

FORMAT(2X,“4TH MOMENT OF INTENSITY=’'.E14.86)
YAR=(S2-S1*S1)>/(S1%81)

WRITEC(4.,16) VYAR

FORMAT(2X., 'NORM. YARIANCE OF INTENSITY=’,Eld4. 6>
AM=2 . /C(¥YAR-1 .

AXX=1_ /AH

AMI=S1

AMN2=2 =(1 +AXX)=*S{=xS1

AM3=6 .%(1 . +2 *AXX)I*( 1. +AXX)I*51*%x%x3

AM4=24 . #(1 +AXX)I*(1  +2 *AXKX)*( ] +3 *AXX)*S1*x%x4
Ri=S1/aM]

R2=82/AM2

R3=83/AM3

R4=S4/AM4

URITE<(4.3B)>
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FORMAT(8X, 'THEQO .MOMENTS’ ,SX, EXPT.MOMENTS’ ,5X,’RATIO
BRITE(4.,31)> AM2.52.R2

FORMAT(2X ., ’N=2’',E1B . 4,5X,E18.4,5X,E18.4)
BRITE(4.,325AM3,53.R3
FORMAT(2X.,*N=3’° ,E1B .4.5X.,E18.4,5%,.,E1B.4>

BRITE(4.,33) AM4,54,R4
FORMAT(2X.,’'N=4"’ ,E1B . 4,.5X,E1B.4,5X,E18.4)

STOP

END
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PROGRAM NAME IS KMOMENT
AIM OF THIS PROGRAM 1S TO CHECK IF THE SPECKLE
STATISTICS FOLLOWS A K-DISTRIBUTION iVALID
ONLY FOR MONOCHROMATIC SPECKLE
PROGRAM TAKES NOISE DATA AND SIGNAL+NOISE DATA
EVYALUATES THE VYARIANCE AND THE CORRESPONDING
M OF K DISTRIBUTION AND CALCULATES THE
THEORETICAL K-MOMENTS AND COMPARES THEM
WITH EXPERIMENTAL VALUES AND THEIR ABSOLUTE
YALUES AND RATIOS
FIRST SET IS NOISE MOMENTS
SECOND SET IS SIGNAL+NOISE MOMENTS
READ(S5., 11> AIN1L
FORMATC(E14.8)
READ(S.,11)> AINZ
READC(S, 11> AINZ
READ(S5.,11)> AlIKN4
READ(S,11) SNHI
READ(S,11)> SN2
READ(S5,11)> SH3
READ(S, 11> SN4
WRITE{(4.,18)
FORMATC "CALS OF MOMENTS OF SPECKLE INTENSITY’)
WRITE(4,19)> AINI,AIN2,ARIN3,AIN4
FORMAT(2X., "NOISE MOMENTS’.4E14 .6)
WRITE(4,2B> SN1,SN2,SH3.S5N4
FORMAT(2X, 'SIGNAL+NOISE MOMENTS’,4E14.6)
S1=SN1-AINI
WRITE(4.,12) S1
FORMATC2X, 'AYERAGE INTENSITY=',E14.86)
§2=5N2-2.*S51*AIN1-AIN2
WRITE(4.,13) S2
FORMATC 2%, *SECOND MOMENT OF INTENSITY=',E14.86)
$3=SN3-3.%S2+*AIN1-3 %S1*AIN2-AIN3
WRITE(4,14)> S3
FORMATC(2X, 'THIRD MOMENT OF INTENSITY=',E14.6)
S4=5N4-4 =S3*AIN1-6.%52*AIN2-4 *S1*AIN3I-AING
WRITE(4.,15) S4
FORMATC( 2%, 4TH MOMENT OF INTENSITY=',E14.6)
VAR=(S52-S1%81>/(81%51)
WRITE(4.,16) ¥YAR
FORMATC( 2%, NORM. VYARIANCE OF INTENSITY=',E14.6)
AM=2./¢(YAR-1.)
AXX=1./AH
AML=51
AM2=2 . «(1. +AXX)*Si=*S1
AM3=6.%(1 . +2 =AXX)*( 1 +AXX)I*S1%x3
AMA=24 . %C1 +ARXI®(L . +2 *AXXI*=( 1 +3 . *AXXOI*S1*x4
Ri=Si/AN1
R2=S2/AM2
R3=S3/AM3
R4=54/AN4
WRITE(4,38)
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FORMAT( 8K, THEO .MOMENTS’ , 5K, EXPT.MOMENTS’,5¥%,
‘RATIO’ D

WRITE{4,31) AM2.,S2.R2

FORMAT(2X, 'N=2’' ,E18.4,5X,E1B.4,5X,E18.4)

WRITE(4,32)AM3.,53.,R3

FORMAT(2X, 'N=3"’,E1B.4,0X,E1B.4,5X,E18.4">

WRITE(4,33) AH4,54.R4

FORMATC(2X, 'N=4’ ,E1B.4,5X,E1B.4,5X.E18 .4)

STOP

END



OO0OO0O0O0O0O0OO0O0OD0DO0O0O0

11

18

19

28

12

13

14

15

ile

38

226

PROGRAM NAME IS MMOMENT

FIRST SET 1S NOISE MOMENTS

SECOND SET 1S SIGNAL+NOISE MOMENTS

PROGRAM CHECKS IF THE MULTIFREQUENCY OR PARTIALLY
COHERENT SPECKLE PATTERN IN THE TURBULENT ATMOSPHER
FOLLOWS A M-DISTRIBUTIOB OR NOT.INPUT DARTA 1S THE
MOMENTS OF INTENRSITY OF MNOISE AND SIGNAL+NOISE.
BY USING THE AYERAGE AND SECOND MOMENT OF INTENSITY
IT CALCULATES THE PARAMETERS OF M-DISTRIBUTION
AND THESE VALUES ARE USED TO GET THE HIGHER
ORDER MOMENTS AND THE THEORETICAL VALUES ARE
COMPARED WITH THE EXPERIMENTAL DARTA.

READ(S, 11> AINI

FORMATC(EL4 .8)

READ(S., 11> AlIN2

READ(S., 11> AIN3

READ(S., 11> AIN4

READ(S, 11> SNI

READC(S, 11) SN2
READ(S, 11> SN3
READ(S,11)> SN4
WRITE(4.,18)
FORMAT(*CALS OF MOMENTS OF SPECKLE INTENSITY’)
URITE(4.,19) AINL1,AIN2,AIN3,AIN4
FORMAT( 2K, 'NOISE MOMENTS’ ,4E14 .86)
WRITEC4.,28B) SN1,SN2,S5N3.,SN4
FORMAT( 2%, 'SIGNAL+NOISE MOMENTS’,4E14.6)
§1=5N1-AINI1
WRITE(4,12) S1
FORMAT(2X, 'AYERAGE INTENSITY=',E14.6>
$2=SN2-2 . *S1*alINi-AINZ
WRITEC4.,13) 82
FORMAT(2X, SECOND MOMENT OF INTENSITY=’,E14 8>
S3=5N3-3 . *52*AIN1-3.%S1*%AIN2-AIN3
WRITE(4,14) S3
FORMATC2X, THIRD MOMENT OF INTENSITY='.E14 .86
S4=5N4-4 *S3*AIN1-6.%32*AIN2-4 *S1*AIN3-AIN4
WRITEC(4,15) S4
FORMATC(2X.,’4TH MOMENT OF INTENSITY=',E14.86)
YVAR=(S2-S1%S1)/(S51*S1)
WRITE(4,16)3 VAR
FORMATC( 2%, *NORM. VYARIANCE OF INTENSITY=',E14.6)
AM=1./YAR

AM1=S1
AM2=(1.+YAR>*S1x%5]

AM3=C1 .42 . *YAR)D*( | . +YARI*S1%x3

AMd=C( 1. +YARDI*(1 . +2 *YVARI*(1.+3 *YARI*S1*xx%x4
R1=S1/AM!

R2=82/AN2

R3=S3/AM3

R4=S4/AaM4

WRITE(4.,28)

FORMAT(8X, 'THEO .MOMENTS’ ,5X, EXPT. MOMENTS’ ,SX,
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WRITE<(4.31) AM2.,S52,R2
FORMAT(2X,*'N=2"’,E1B . 4,5X,EIB.4,.5X,E18.4)
WRITE(4.,32) AM3,S3,R3

FORMAT(2X, N=3"’,E18.4,5%X,.E1B.4.5X,E18.4)
WRITE(4.33)> AM4.,S4.R4

FORMATC(2X,'N=4" ,E1B.4.5X.E18.4,5X,E18.4)
STOP

END

227
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PROGRAM NRME IS PMOMENT

FIRST SET 1S MNOISE MOMENTS

SECOND SET IS SIGNAL+NOISE MOMENTS

PROGRAM CHECKS IF THE MULTIFREQUENCY OR PARTIALLY
COHERENT SPECKLE PATTERN IN THE TURBULENT ATMOSPHER
FOLLOWS A K-DISTRIBUTION OR NOT.INPUT DATA IS THE
MOMENTS OF INTENSITY OF NOISE AND SIGNAL+NOISE
IN YACUUM.THE YALUES OF EXPERIMENTAL MOMENTS
OF INTENSITY (SIGNAL+NOISE AND NOISE>

IN THE TURBUELHNT ATMOSPHERE ARE GIYEN AS INPUT
IN THE SECOND STAGE OF THE PROGRAN.

READ(S,11)> AINL

FORMATC(EL14 .8)

READ(S.,11)> AIN2

READ(S., 11> AIN3

READ(S., 11> AIN4

READ(S, 11> SNIi

READ(S, 11> SK2

READ{(S5,11)> SKN3
READC(S., 11> SN4
WRITE(4.,18)
FORMAT(’CALS OF MOMENTS OF SPECKLE INTENSITY’)
WRITEC4.,19) AIN1,AIN2,AIN3.AIN4
FORMAT(2X, NOISE MOMENTS'’.4El14 .6)
WRITE(4,28)> SN1,SN2,SNH3,SN4
FORMAT(2X, 'SIGNAL+NOISE MOMENTS’.4E14.6>
Si=SNi-AINI

WRITEC(4,12) S1

FORMATC(2X., ‘AYERAGE INTENSITY=',E14.86>
S2=SN2-2.%S1*aIN1-AIN2
WRITE<(4.,13) S2

FORMAT( 2%, 'SECOND MOMENT. OF INTENSITY=’,E14.0)
S3=SN3-3.%S2*RINI-3.*S1*AIN2-8IN3
WRITE{(4,14) S3
FORMAT(2X,'THIRD MOMENT OF INTENSITY=',E14.6)
S4=SN4-4 . *S3*AIN1-6.%52xAIN2~-4 *S1*AIN3I-AIN4
WRITE{(4.,15)> S4

FORMAT(2X. ' 4TH MOMENT OF INTENSITY='.El14.6)
YAR1I=(S2-S1%81>/(S1%81)

WRITEC(4,16) VYARI1
FORMAT(2X, *NORM . VARIIANCE OF INTENSITY=’,E14.6)
AMi=1 /VARI
A1=81
A2=(1 . +YAR1)>»S1 %81
A3=(1.4+2.*«YARI >*( 1. +YAR1 >)»S1%xx%x3
Ad4=C(1 +YAR1)*(1 . +2 . *«¥YAR1>*(1 +3 %YVAR1II*S1**x4
Ri1=S1/A1
R2=8S2/R2
R3=S3/A3

R4=S4/a4

WRITE(4,3B)

FORMAT(BX, THEO .MOMENTS’ ,5X%X,’EXPT.MOMENTS’.,5X,
*RATIO’D



OO0 0

31
32

33

78
68
49

S8

S2

53

54

S5

Se

6l

229

WRITE(4.,31) R2,82,R2
FORMAT(2X,’N=2’' ,E1B . 4,5X.E1B.4.5%X,E18.4)
WRITE(4,32) A32,83,R3

FORMAT(2X, 'N=3’,E1B.4,5X.E1B.4,.5%,E1B.4)
BRITE(4,33) A4.54.R4

FORMAT(2KX, 'N=4’ ,E1B.4.5X.E18.4,5X,E1B.4)
FIRST SET IS NOISE MOMENTS IN TURBULENCE FOR
THE POLYCHROMATIC SPECKLE PATTERN

SECOND SET IS THE SIGNAL+NOISE MOMENTS FOR
THE POLYCHROMATIC SPECKLE PARTTERN IN THE
TURBULENT ATMOSPHERE '
READ(S.11)> BINI

READCS., 11> BINZ2

READCS. 11> BIN3

READCS5,11)> BIN4

READCS5,11)> BSH1

READCS5.11)> BSN2

READC S, 11> BSH3

READC S, 11> BSN4

WRITE<4,78)

FORMAT(4X,'CALS FOR SPECKLE IN TURBULENCE’)
BRITE(4.,68)

FORMAT(’CALS FOR MOENTS OF SPECKLE IN TURBULENCE’)
WRITE<4,49) BIN1,BIN2,BIN3.BIN4

FORMAT(2X, 'NOISE MOMENTS’ ,4E14.86)
BWRITEC(4.,5B)> BSN1,BSN2,BSN3.BSN4

FORMART(2X, 'SIGNAL+NOISE MOMENTS’.4E14.6)
Bi=BSN!l-BINI

WRITE<{4.,52) B1

FORMATC( 2K, "AYERAGE INTENSITY='.,E14.6>
B2=BSN2-2 .*B{*BIN1-BIN2

WRITE(4.,53) Bz

FORMAT(2X., "SECOND MOMENT OF INTENSITY='.E14.6)
B3=BSN3-3.%B2«BIN1-3.%xB1*BINZ2-BIN3
WRITE{4,54) B3

FORMAT(2X, 'THIRD MOMENT OF INTENSITY='.E14.6)
B4=BSN4-4 . =B3xBIN{-6 %B2%BIN2-4. *B1*BINI-BIN4
MRITEC4.,55) B4

FORMAT(2X, 'FOURTH MOMENT OF INTENSITY=’,E14.6)
YVARZ2=(B2-B1*B1 »/(B1%*B1)

WRITE<C4,56) VAR2

1

FORMAT(2X, "NORM.YARIANCE OF INTENSITY=',E14.6)

AXX=C( 1 +YAR2)/(1.+VAR1>-1.

AM2=1 . /AKX

Ci=B1

C2=(1.+YAR1)*(1 +AXX)*B1%B|

C3=(1.42 *VARII*( 1 +VYAR1DI*(1 . +2 #AXKX)*( 1 +AKKI*B]*xx*3

C4=(1.+3 =AaXK)*(1 .43 »=VAR1)>*B1%C3

G2=B2/C2

G3=B3/C3

G4=B4/C4

WRITEC(4,68)

FORMART(SX, 'THEOQ. MOMENTS=’,5X,‘EXPT. MOMENTS’.,5X,
‘RATIO’ )



61

62

64

BRITE(4.,61)> C2,B2,G2

FORMAT(2X, N=2’' ,E1B.4,5X,E18.4,5%X,E18 .4)
WRITE(4,62) C3,B3.,63

FORMAT(2X,'N=3',E18 .4,5X,E18.4,5X.,E18.4)
WRITE(4.,64) C4.,B4.,G4
FORMAT(2X.,’'N=4’ ,E1B . 4,5X,E1B.4,5X,E1B.4)
STOP

END
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PROGRAM CALCULATES THE CUMULATIVYE PDF OF
A K-DISTRIBUTION GIYEN M1 AND M2.
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION X(8),W(8)> .

DATA %/ .15315B66160BB. 2872644839088, 4346274867DB8,
1.5845185666D8B08. .7251264B%7D0BB., . 8451894573088,
2.935B435875088., .98746B5B850 BB/

DATA W/ .18B53B11D-HB4, .27835860-83,.23353415D-82,
1 . B1BBB446144H8B8., B2642853811088., .B4588365322088.,
z.B515342236DHBE.  B3BE%2e424DBE/
READC(S,41)> AM1,AN2
FORMAT(2KX.,D22.14,2%,D22.14)
PHI=3.1415226535827°9
COFF1=4 *x*x(AM1-AM2+1 >*xDSART(PHI)D
COFF2=CAMI*AM2 )*x*x(AMN1)

COFF2=GAMMACAML )*GAMMACAM2))*GCAMMACANZ2-AML+ . 3D
COFF4=COFF1*COFF2/COFF3
C2=2.*AaM1-1.

C3=2 . *»DSQRTCAMI=*AM2>
C4=AM2-AM1-.5

CS=2 .x»C3

G=.10DH8

DELG=.1DBB

CONTINUE

IFCG.GT.1.)> DELG=.5DHE
IFCG.GT.3.> O0OELG=1.DBAH
IFCG.GT.18.>» GO TO 38
COFF=(G*%*(3 B4225%33))%xCOFF4
WRITE(S.44) COFF
FORMATC(D22.14)

SumMi=8.

po 31 I1=1.8

X1=XC1D

Wi=W<CID
S1=SXX(C2,C3.,C4.C5.G.,¥%¥1>
SUMI=SUMI{ +COFF*S1=ul

CONTINUE

WRITEC4,32) G.,SuUN!t

FORMAT(2¥, 'G=",F6.3.,2%.*SUNi=",D022.14)
G=G+DELG

GO TC 29

CONTINUE

STOF

END

FUNCTION SXX(C2.C3.C4.C3.,G.,¥%>
IMPLICIT DOUBLE PRECISION (A-H.,0-2°>
S2=X**(C2-5.)
S3=DEXP(-C3I*DSARTC(G)I>*X)
S4=FT(C4.C5,G. X))

SXX=82*%53*54

RETURN

END

FUNCTION FTC(C4.,CS.,G., %X
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IMPLICIT DOUBLE PRECISION (A-H.,0-2>

DIMENSION T<(12>,W2¢(12)

DPAaTA T ~/.1157221173538B8, .61175748451588.
11.51261826277¢BB.2.833375177774488.,4.599227639418848,
26.844525453115808,9.62131684245700, 13. 8868549933 8608.
317 .1168551874¢28B8.,22.15189837939%788.,

428 .487967258984HBB.,37 B992121H4446788/

DPATA W2/2.64731371955D-81.3.77759275873D-81.

12.44B88281132D0-81.,9.84492222117D-8B2.,
1 2.B1R823811546D-B2.2 .663973254187D-83.,
22.8B3231592663D0-8B4,8.36585585682D-B¢6 .,
31.66849%9337654D-HB7.,1.342391836852D-873.,
43 .B616B1635848BD-12.,8.14887746743D-16/

SUM2=4d.

DO 33 I=1.,12

TI=TCI)>

¥3=W2(1)

SUM2=SUM2+W3xFTT(C4,C5.G.X,T1>

CONTINUE

FT=SUNM2

RETURN

END

FUNCTION FTT(C4,CS,G.¥.T>

IMPLICIT DOUBLE PRECISION C(A-H,0-2)

H2=T*xC4

H3=T+C5*DSART(G)I*X

H4=H3+«%C4

FTT=H2%xH4

RETURN

END

FUNCTION GAMMACZ)

IMPLICIT DOUBLE PRECISION (AR-H.,0-2)

DIMENSION TC12).,¥2C(12)>

DATA T /.115722117358BB, .61175748451588.
11.51261826%77¢BB,2.833751777744B8.,4.599%9227632941888.
26.844525453115808,9.62131684245780H8. 13 _BBeB549333B688,
317.11685518746288.,22.15189837%3%788.,

428 . 482796725H984BH, 37 .B99121B44467B8/

DATA W2/2 . €47313719550-8B1,3.°77?59275873Dp-81.,
12.4483281132D-B1,9.84492222117D-82.,
12.81823811546D-82.,2 . 66397354187D-B3,
22.83231592663D-B4.,8. 365855856820 ~-8¢ .,
31.66849387654D-B7.,1  3423918B3B52D0-872.,
43 B61eB163584D-12.8.148B7746743D-16/

SuUNZ2=8.

DO 33 1I=1.,12

T1=T<¢C1I)

S1=T1%x(2~-1.)

W3=W2¢1)

SUMZ=SUM2+U3*S1

CONTINUE

GAMMA=SUM2

RETURN

END
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