
A HIERARCHICALGRAPHICSCOMPOSITIONMODEL

Chi-Leung (Andy) Lau
M.S., Montana State University, 1979

M.S., University of Oregon, 1976
B.S., Whitworth College, 1973

A thesis submitted to the faculty
of the Oregon Gradua~e Center
in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science and Engineering

June, 1984

The thesis "A Hierarchical Graphics Composition M:>del"by Chi-Leung

(Andy) Lau has been examined and approved by the following Examination

Committee:

. Richard B.' Kleburtz }Professor and Chairman

Thesis Research Advisor

Robert G. Babb II
Assistant Professor

Steven R: Vpgdahl
Research C9mputer Scientist
Tektronix, Inc.

ii

DEDICATION

This thesis is dedicated to my wife Frances, who experiences deeper

sorrow when I am sorrowful, and feels greater joy when I am joyful. Her

continual care and encouragement are a big reason for where I am today,

in all aspects of my life. Here and now, I am joyful!

ACKNOWLEINEMENT

Special thanks are directed to Dr. Richard Kieburtz for his many

valuable suggestions, and for his support and acceptance of new ideas

throughout the preparation of this thesis.

Another person to whom I am deeply indebted is Linda Appel of

Tektronix. She has shown the fine qualities of a professional libra-

rian. Without her friendly and patient help, this thesis would still be

lingering on.

Hi

TABLE (F CONTENTS

1.0 Introduction. 1

2.0 Concept 1

2.1 Primitives 5

2.2 Objects 8

2.3 Picture 9

2.4 Groups. 9

2.5 Members 10

3.0 Operations 10

3.1 Object operations 11

3.2 Picture operations. 11

4.0 Implementation. 11

4.1 Hardware. 11

4.2 Software 12

4.3 Data Structure 12

4.4 Algorithms 14

4.5 The vertex form. 15

4.6 Main algorithm 16

4.7 Special algorithm 21

5.0 Example 23

6.0 Manual. 24

7.0 Surmnary 24

8.0 References 26

APPENDIXA zr
APPENDIXB 31

iv

1

ABSTRACT

A HierarchicalGraphics Composition Model

Chi-Leung (Andy) Lau
Oregon Graduate Center, 1984

Thesis Research Advisor: Richard B. Kieburtz

1.0 Introduction:

The principal objective of this thesis is to demonstrate that the

concept of hierarchical graphics composition is a workable model for

creating, editing and managing computer-generated two-dtmensional color

pictures. As a result, a powerful tool has been developed which is easy

to use and yet requires mintmal hardware.

There are several things we want to accomplish in this paper: to

introduce the concept of this hierarchial model and compare it with two

other hierarchical models, to present the main algorithm of intersection

of two convex figures whose edges can be circular arcs or straight line

segments, to show an example using this graphics composition package, to

describe the software and hardware environment for this package, and to

include a user's guide for the package.

2.0 Concept:

A point is the fundamental unit in point set geometry, and it is

denoted by an ordered pair (x,y) in the Cartesian coordinate system.

Any collection (set) of points that can be described by certain

mathematical rules is called a primitive set, or simply a prtmitive. We

will introduce the primitives that we will be using shortly. For

2

convenience, we also consider text a primitive.

An object in our model is defined by the intersection of primi-

tives. Objects form the foundation for our hierarchical model, which

goes as follows:

Picture C Groups C Members.

defined by the intersection of certain geometric primitives. Hence, an

object can be referenced by different members (possibly with different

attributes). There are four attributes to each member, they are pivot

point, scale factor, rotation angle and color, thus allowing transforma-

tions on the objects.

The entire structure is depicted in Figure 1.

In \oAJrds, a picture is a collection of groups, and a group is a

collection of members. Furthermore, each member is an object with

assigned attributes, and each object (with the exception of text) is

3

Picture

Group
2

Group
n

_~L _______
/ ./

Bu I I ding
~Iook.

Figure 1.

In his article "Functional Geometry," Henderson [5] describes

another approach for picture description. However, his is different

from ours in several aspects.

a. The very basic notion for Henderson's approach is that of a line

segment, whereas our basic notion is that of an area. Pictures in

4

his model are described in terms of objects formed by line segments.

We describe our pictures in terms of objects obtained by inter-

secting certain areas.

b. Henderson's manipulation of line segments is based on some mathe-

matical transformations, whereas we use set algebra to manipulate

areas.

c. Both approaches are hierarchical, but with different organizations.

Henderson's is well suited for generating repetitive patterns. That

is, a new object can be obtained from an old one by applying

functions such as rotation or reflection. Ours is suited to general

purpose 2-dimensional geometric modeling.

d. Henderson's model is monochromatic, while color plays a very

significant part in ours.

e. Henderson's does not explicitly support text as ours does, although

our text support is severely limited by hardware. Also, Henderson's

is limited to straight edges while we have more freedom with

circular arcs.

Caesar [8] is another approach to picture description. Although it

is also hierarchical in nature, it differs significantly from our model

in many regards:

a. Caesar is motivated by its intended use, layout design of VLSI (Very

Large Scale Integrated) chips.

b. The only geometric object supported in Caesar is the rectangle.

c. Although the user can specify his own color map, the number of

colors supported by Caesar is limited to 5.

..---

5

d. Transformation of an object is limited to reflection and rotation

through an angle that is a multiple of 90 degrees.

e. Text is for labeling purpose only, and its size cannot be changed by

the user.

f. The basic hierarchical unit in Caesar is a cell, which is comprised

of colored, labeled rectangles. Each cell can be stored away

individually. To elevate to a higher level, a new picture (file) is

created and new rectangles can be drawn, or previously designed

cells can be brought in and become part of the drawing. The old

cells have now become subcells, and a new (and bigger) cell is

created. This process can be repeated as many times as the user

wants.

manufacturing of the chip. The ability of being able to go from

graphics to simulation or manufacturing is the very essence of

CAD/CAM.

2.1 Primitives.

The primitives used in this geometric model are called HL, HG, VL,

VG, CL, PL and TX, each of which is described below:

HL(m,b) = {(x,y) : y <= mx + b}, a half-plane with m being the slope and

b the y-intercept of the line dividing the whole Cartesian plane

into two halves. HL(m,b) refers to the lower half-plane.

HG(m,b) = {(x,y) : y >= mx + b}, is the upper half-plane.

g. The most important part of Caesar is that it prov ides a post

processing function that will allow data to be converted into a

textual format (ClF) that will be acceptable for simulation or

VL(c) = {(x,y) : x <= c}, is the half-plane to the left of the vertical

line going through the point (O,c). Vertical lines must be treated

as a special case because they do not have a well-defined slope

that can be expressed as a real number.

VG(c) = {(x,y) : x >= c}, is the right half-plane.

Lower half-plane, HL(-O. 75,1) Upper half-plane, HG(1,3)

--

Left half-plane, VL(3.5) Right half-plane, VG(1.5)

Figure2.a

7

CL(h,k,r) = {(x,y) : (x-h)**2 + (y-k)**2 <= r**2}, is a disc with (h,k)

being the center and r the radius of the circle enclosing the disc.

Disc, CL(0,0,5)

Figure 2.b

PL is a polygon, a closed area defined by a finite number of ordered

vertices such that,

1. The initial vertex is also the final vertex.

2. A line segment connecting any two consecutive vertices will not

intersect with any other such line segment.

3. The vertices are specified in such a way that when a line

segment between one vertex and its succeeding vertex is

traversed, the area will always be "to the left" of the segment.

For examples, let A = (5,0), B = (10,3), C = (8,10) and D = (0,8),

then the set {A BCD} legitimately specifies a polygon, while

{A C B D} and {A D C B} do not, because they violate conditions 2

and 3 respectively. (See figure below).

8

\
\

'\
\
\

Valid polygon Invalid polygon Invalid polygon

Figure 2.c

TX = text, a string of characters.

In the above mnemonics, H stand,s for "Half-plane", G for "Greater

than" , L for "Less than", V for "Vertical", C for "Circle" and P for

"Polygon" . Other primitives, such as the remaining conic sections

besides the circle, are not included in this model because of the time

constraint.

2.2 Objects.

An object is an intersection of primitives, which incidentally, can

be empty. Objects are not displayable; they are rather building blocks

which define geometric shapes or characters to be written.

Since text is non-geometric, the meaning of intersecting text with

another primitive must be defined. To avoid any confusion, a simple

rule is provided here, that is,

9

Text n Geometric Primitive = Text (commutative),

Text 1 n Text2 = Text2 (non-canmutative).

Admittedly, the above rule does seem arbitrary. In fact, text is not

central to this model, its inclusion is simply for completeness sake.

Here are some examples. An object of a diamond shape can be

defined by the intersection of the four half planes, HL(-1,1), HG(1,-1),

HG(-1 ,-1) and HI...(1,1). This object may perhaps be named "Diamond" for

later reference. An object of a wedge shape can be defined by the

intersection of the disc CL(O,0,1), the half plane HG(1,O) and the half

plane HG(-1, 0). This object may be called, say, "Wedge".

2.3 Picture.

A picture is the overall composition of a drawing or the root of

the hierarchy being discussed. It is identified by a name, and has the

responsibility of defining the window of viewing. A window, which is

constrained to be rectangular in shape, is specified by supplying its

lower left corner and its upper right corner. The larger the window

specified, the smaller the picture will appear on the screen.

2.4 Groups.

A group, referenced by its name, is just below picture in the

hierarchy. Only groups are displayable. If there are five groups in the

picture, for example, then any combination of these five groups can be

displayed. The order of display appearance of groups follows the order

in which group names are entered in the display command. Should

overlaps occur, newly painted figures will overwrite those already drawn

10

on the screen.

2.5 Members.

At the bottom of the hierarchy is the member. Each member has its

own name. To construct a member, first take an object (by name) and

then assign attribute values to this object. One or more members can

reference the same object, they are differentiated by the attributes

they assign to this object. The attributes are pivot point, scaling

factor, rotation angle and color.

For example, we can take the object "Diamond" as defined before and

assign to it the following attributes:

pivot point: (10,10)

scale factor: 2

rotation angle: 45

color: 5

We then get a square (due to rotation of 45 degrees), with each side

being 2*sqrt(2) in length (due to scaling factor), and having center at

(10,10). The color will be color 5 of the coloring scheme. Inciden-

tally, the color number starts from ° to more than 15, (see B.2).

Due to the hierarchical nature of the model, access to any group or

member is very fast and, changing any part of the picture is quite easy.

3.0 Operations:

There are essentially two types of operations. CKle type is

concerned with objects, the other with the picture. We outline the key

ideas here. For further detail, refer to Appendix B.

11

3.1 Object operations.

Object operations include creating an object, editing an object,

deleting an object and listing names of the objects.

3.2 Picture operations.

a. At the picture level, one can list names of the groups, adjust

the window of viewing, create and delete a group.

b. At the group level, one can define a memberof the group,

delete a member from the group, or list names of the members

of the group.

c. At the memberlevel, one can modify any of the four attri-

butes. Changing the pivot point will cause a relocation of the

member, changing the scale will make the member bigger or

smaller, changing the rotation angle will make the member tilt

according to the degree entered, and changing the color will

let the member be painted with a different color.

4.0 TImplementation:

We describe the implementation in detail. Some important algo-

rithms along with the data structure are explained here.

4.1 Hardware.

Development of this project was done on a VAX11/780 running UNIX.

Besides a terminal, a Metheus Omega 400 Display Controller and a

Tektronix 690SR Color Monitor were used.

12

4.2 Software.

The main program, awlge (humorously stands for "Andy's Wonderful

Little Graphics Editor"), was written in PASCAL, but the driver for the

display controller was contained in the software package AXIA, written

in FORTRANby the Metheus Corporation. In order to make use of the

subroutines in AXIA, it was necessary to write in C an interface so that

awlge could call a subroutine in the interface, which in turn called the

corresponding subroutine in AXIA. It was done this way because Berkeley

Pascal cannot call Fortran subroutines.

4.3 Data Structure.

There are four major files in awlge, the Object Name File (Onf),

the Object Description File (Odf), the Group Name File (Gnf) and the

Group Display File (Gdf). In essence, each entry of Onf contains an

object name and a pointer into Odf. The entry in Odf that is being

pointed to by this pointer is the first primitive of the object.

Definition of the object ends with a deltmiter after the intersecting

primitives. Similarly, each entry of Gnf contains a group name and a

pointer into Gdf. The corresponding entry in Gdf is the first manber in

this group. Again, the last manber of the group is followed by a

deltmiter. The exact coding of these files in the program is given

in Figure 3 below:

13

const
Length = 25;
Onflen = 50;
Odflen = 200;
Gnflen = 20;
Gdflen = 100;

type
String = packed array [1..Length] of char;
Pair =

record
A, B: real

end;
Objrec =

record
Narneobj: String;
Size: Pair;
Odfptr: integer

end;
Primitive = (LN, RE, RG, RL, HE, HG, HL,

VE, VG, VL, CE, CG, CL, PN,
PE, PG, PL, PI', NM, TX, EO,
OHEAD);

Objdesc =
record

Objcode: Primitive;
case Primitive of

OHEAD:(
Nameobj: String;
Size: Pair

) ;
LN, RE, RG, RL: (

Point1, Point2: Pair
) ;
HE, HG, HL: (

Plane: Pair
) ;
VE, VG, VL: (

Vert: real

) ;
CE, CG, CL: (

Hx, Ky, Radius: real
) ;
PN, PE, PG, PL: (

Npts: integer
) ;
PT: (

Point: Pair
) ;
NM: (

Objnm: String
) ;
TX: (

14

Textt: String
);
EO: (

Cont: integer
)

end;
Grpname =

record
Namegrp: String;
Gdfptr: integer

end;
Display = (DB, NX, GHEAD, WINDOW);
Grpdisp =

record

Grptag: Display;
case Display of

WINDOW: (
Lower, Upper: Pair

);
GHEAD:(

Namegrp: String
) ;
DB: (

Member, Objname: String;
Pivot: Pair;
Seal e: real;
Angle: real;
Color: integer

) ;
NX: (

Nextptr: integer
)

end;
var

O1f:
Odf:
Gnf:
Gdf:

{Object Name File} array [1..Onflen] of Objrec;
{Object Description File} array [1..Odflen] of Objdesc;
{Group Name File} array [1..Gnflen] of Grpname;
{Group Display File} array [1..Gdflen] of Grpdisp;

Figure 3.

4.4 Algorithms.

The concept of convexity of geometric figures plays a very

~portant role in this model. Intuitively, a figure is convex if

whenever we pick two points inside or on the boundary of this figure and

15

draw a line between them, no part of this straight line will be outside

the figure. Primitives HL, HG, VL, VGand CL are all convex (PL will be

handled separately in 4.7). Note that the intersection of two convex

f'igures is also convex. This useful fact keeps other algorithms quite

simple. As an example, the object "Wedge" that we defined before is

convex, because it is the intersection of three convex figures, two

half-planes and a disc.

Convexity is a relatively simple idea. However, to describe a

convex figure whose boundary consists of more than just straight edges,

or to manage intersections of such convex figures with other convex

f'igures, it requires a detailed algorithm, which we wish to present

here. For instance, how do we resolve the intersection of the object

"Wedge" with another disc.?

4.. 5 The vertex form.

We have defined the object "Wedge" to be the intersection of three

primitives. However, such definition is not suitable for the purpose of

displaying it, since most, if not all, display controllers need to know

the "coordinates" of Wedge. Instead, letting p = square root of 1/2, we

(0,0)." In this way, we have "spelled" out the "vertices" and the

"shapes" of Wedge.

So, in awlge, a convex figure is represented by an array, Vxf

(Vertex file), of records whose record type is given below as,

can say, "The boundary of Wedge is formed by drawing a straight line

from (0,0) to (p,p), drawing an arc of unit radius with center at (0,0)

f'rom (p,p) to (-p,p), and drawing another straight line from (-p,p) to

- -- - --- - - - - .-. - --- - ----.-------.--

16

type Path= record
Vertex: Pair;
Shape: Objdesc;
Status: integer;
end;

where Pair and Objdesc were defined in 4.3, while the field Status will

be explained later in 4.6. The only subtle thing to be pointed out is

that this array is circular, that is the initial vertex is also the

final vertex of the figure. To reflect this fact, the array starts with

subscript ° and ends at n-1 if there are n distinct vertices. We then

call Vxf the vertex form of the figure and call,the representation in

Odf the intersection form. Coming back to Wedge, its Vxf becomes

(ignoring Status for the time being),

Vxf[O] := (0,0) I HG(-1,0)

Vxf[1]:= (p,p) I HG(1,0)

Vxf[2] := (-p,p) I CL(O,O,1)

The interpretation of Vxf has already been given at the beginning of

of this section. This is just a symbolic way of rephrasing it.

4.6 Main algorithm.

The main algorithm is to convert an object from the intersection

form to the vertex form, so that the object will become display-ready

for those controllers that are capable of reading coordinates.

Giraud [4] introduces the php (Presque half-plane) representation

of an object, which is quite similar our Intersection Form, but he

offers no algorithm of conversion to the Vertex Form.

In fact, most algorithms differ from ours because they tend to deal

with problems that are more or less different in nature from ours.

17

Bentley and Ottmann [2] address the problem of detecting whether any two

objects in a planar set intersect. They offer algorithms that count the

number of such intersections and algorithms that report all such

intersections. However, the objects that they deal with have to satisfy

three rather severe conditions: (1) Any vertical line through the o9ject

line. (3) Given two objects it is possible to determine algorithmically

if they intersect, and if so to compute their leftmost intersection

point after some fixed vertical line.

There are a few algorithms on intersecting convex polygons. Shamos

[10] offers an algorithm that divides one polygon into angular sectors,

and locates each vertex of the other polygon either inside or outside of

these sectors. Hoey [11] designed a somewhat simpler algorithm. The

plane is partitioned into parallel "slabs," with every polygon vertex

lying on some slab edge. Within the slabs, the problem reduces to the

intersection of two trapezoids. The resulting regions within the slabs

can then be merged together in a single pass over all slabs to form the

output polygon.

Both Shamos' and Hoey's are fundamentally different from ours.

However, O'Rourke and others [7] present another algorithm of inter-

secting convex polygons that is similar to ours in spirit. The

algorithm they propose maintains two special pointers, distinguishing

one edge on each polygon. These pointers are advanced around the

polygons such that their edges "chase" one another, searching for the

intersects the object exactly once. (2) For any pair of objects

intersecting the same vertical line it is possible to determine

algorittInically (at constant cost) which is above the other at that

18

intersection points. All the intersection points can be found within

two cycles around the polygons.

The major similarity is that both this algorithm and ours use some

kind of "advance rule". The major difference is, of course, that we are

addressing the problem of intersecting a primitive with a convex object,

whose boundary is not limited to straight edges.

For our algorithm, suppose the window of viewing for the picture

has lower left corner at (W1,W2) and upper right corner at (W3,W4), and

also suppose an object, B, is the intersection of primitives P(i), where

i = 1, ..., n, and P(i) is one of {HG, HL, VG, VL, CL}, must now

construct Vxf for B.

and set Numvertex, the number of vertices of Vxf, to be 4. This step

ensures that every object is bounded by the window.

2. DecomposeB and recursively intersect Vxf with each primitive

of B, resulting in the vertex form of B.

Before we go deeper into the algorithm, it may be helpful if we

first illustrate the algorithm with an example. Suppose existing is a

convex figure of four straight sides with vertices at P, Q, Rand S

respectively, and we want to intersect it with a circle (see Figure 4).

1 . Initialize Vxf to be the following, with each record having 1

for the Status value (Status value of 0 means vertex is to be discarded,

1 means to keep, and 2 means status unknown),

Vxf[O] := (W1,W2) I VG(W1) I 1

Vxf[1] := (W3,W2) I HG(O,W2) I 1

Vxf[2] := (W3,W4) I VL(W3) I 1

Vxf[3] := (W1,W4) I HL(O,W4) I 1

19

p

Q

Figure 4.

The steps are as follows:

a. Assign P, Q, Rand S the status value of 1.

b. Since P and Q are outside the circle, re-assign their status value

to be O.

c. Get new points T, U, V and W. Assign the status value of 2 to them.

There are two things to note,

1. Makesure the new points are on (and not outside) the edges of

the existing figure.

2. Since the vertices are ordered, we have to keep the new points

in order as well. In our case, we have T before U, but not the

other way around.

d. Wehave to decide on the paths between vertices. For instance,

there are two paths from T to U, one is an arc and the other is a

straight line. Which one to choose?

20

Consider the vertex fonn (Vxf) at this stage now. We have,

Vxf[O] := P I HL(m1,b1) I 0

Vxf[1] := T

Vxf[2] : = U

?? 2

?? 2

Vxf[3] := Q I HG(m2,b2) I 0

Vxf[4] := V I ?? I 2

Vxf[5] := R I HL(m3,b3) I 1

Vxf[6] := S I HL(m3,b4) I 1

Vxf[7] := W ?? 2

Our task is to solve for the ??'s. Recall that Vxf is a

circular representation, that is, each vertex has a predecessor as

well as a successor. Nowwe go through each vertex of Vxf from

Vxf[O] to Vxf[7]. If a vertex does not have status value 0, then

move on to the next one. Otherwise, if its predecessor has status

value 2, then the predecessor gets the Objdesc value of this vertex

and we change the status value of the predecessor to 1. At the same

time, examine the status value of the successor. If it is 2, then

the successor will get the new intersecting object for its Objdesc

value . In this case, it is the circle. Again, change the status

value of the successor to 1. Moveon to the next vertex.

Now, remove from Vxf all the vertices that have status value O.

Removealso every vertex whose coordinates are the same as those

of its predecessor's.

Back to the example, going through the above steps, Vxf is then

updated to be,

21

R

v

.u

Figure 5.

The details of the algorithm are included in Appendix A.

4.7 Special algorithm.

The main algorithm is concerned with intersection of a convex

object with a primitive which is either a half-plane or a disc.

However, we still have to handle the case of intersecting a convex

object with the primitive PL, polygon, and PL is not even convex.

However, a polygon can be decomposed as a union of convex objects. Once

this is done, then we can apply the main algorithm separately to each

smaller convex object by virtue of the distributive law of intersection

Vxf[O] := T I circle I 1

Vxf[1] := U I HG(m2,b2) I 1

Vxf[2] := V I circle I 1

Vxf[3] := R I HL(m3,b3)

Vxf[4] := S I HL(m3,b4)I 1

Vxf[S] := W I HL(m1,b1) I 1

The result is shown below in Figure 5.

22

over union in set theory. So, what we present here is then an algorithm

for decomposing a polygon (satisfying the conditions as listed in 2.1)

into smaller triangles. Hence, a convex object intersecting with a

polygon will be turned into intersecting with a union of triangles.

The algorithm of triangulating a simple polygon as provided by

Garey and others [3] is an often-cited one. It involves three rather

complex steps--regularization, decomposition into monotone polygons and

triangularization. The algorithm we want to present here, on the other

hand, is a direct, simple to understand and easy to perform algorithm.

We now present our version of the algorithm of triangularization.

Intuitively, we examine the first three vertices of the polygon and see

whether the triangle that they form lies outside the polygon or contains

any of the remaining vertices. If so, rotate the vertices so that the

first one becomes last, and the second one becomes first; otherwise,

save away this triangle and repeat the process after the second vertex

has been removed from the polygon.

Formally, let V = {v(1), v(2), ..., v(n)} be a set of "legitimate"

vertices of a polygon. Let V' be obtained by removing v(2) from V and

renumbering the elements so that V' = {v(1), v(2), ..., v(n-1)}. Also

let V" be formed by a circular rotation of V by one element so that

V" = {v(2), v(3), ..., v(n), v(1)}. For convenience, denote v(1), v(2)

and v(3) by A, B, C respectively. Then we have,

while n > 3 do

if LABC> pi then V : = V"

else if LABC = pi then

23

begin

V := V'

n := n-1

end

else

begin

if any v(i), i = 4 to n, is inside ABC then V := V"

else

begin

store triangle ABC

V := V'

n := n-1

end

end

store last triangle ABC.

5.0 Example:

The following picture, "King" , was taken as a 35rrmslide and

reproduced later as a print. The left iris was created by intersecting

three half-planes. However, the crown is the intersectionof a

non-convex polygon with a circle. That is why the two outer peaks are

not exactly pointed like spires.

two verticle half-planes with a circle, and then rotated slightly. The

right iris is just a duplicate of it. The nose is again the intersec-

tion or two half-planes and a circle. The mouth is the intersection of

.,

24

Figure 6.

6.0 Manual:

For convenience of reference, we include the manual separately in

Appendix B.

7.0 Summary:

As stated before, this thesis was set out to demonstrate that the

concept of a hierarchical graphics composition model is a workable model

for creating, editing and managing two-dllnensional color pictures, and

in this regard, the mission was accomplished. It has been shown that

this is quite a powerful model which is also very flexible. The concept

itself is not difficult to grasp, and its llnplementation is quite

25

friendly and easy to use. However, this has yet to be confirmed by

other users. Although quite limitedly, we have seen that text is also

used as part of a picture. Still, the most significant contribution of

this thesis is the algorithm of converting from the Intersection Form to

the Vertex Form, which facilitates the implementation quite substan-

tially.

or course, there is ground for improvement over what we have done

so far. One of the improvements can be to use more set algebra in

defining and manipulating the different entities. For instance, an

object can be defined as a union of intersections of primitives instead

of just an intersection of primitives. For another example, the package

will gain more power if more operations are allowed at the group level,

such as taking the union of previously defined groups, relocating or

duplicating a group.

Finally, in reviewing this thesis, Dr. Vegdahl pointed out that the

four primitives HG, HL, VG and VL can be represented in one unified

manner, that is, the defining straight line can be specified by two

points A and B, then the half-plane is obtained by using an infinite

radius centering at A and passing through B to do a 180-degree counter-

clockwise sweep. This representation does seem more elegant because it

frees one from having to deal with slopes. A possible disadvantage is

that it may be a little confusing for the novice since entering B first

and then A will result in a different half-plane.

26

8.0 References:

[1] AXIA Gra hics Software Packa e User's Manual, Metheus Corp. ,
Hillsboro, Oregon, 19 2.

[2] Bentley, J. L. & T. A. at tman, "Algori thns for Reporting and
Counting Geanetric Intersections," IEEE Trans. on Computing, vol.
C-28, no. 9, September 1979, pp. 643 - 647.

[3] Garey, M. R., et al., "Triangulation of a Simple Polygon," Informa-
tion Processing Letters, vol. 7, no. 4, 1978, pp. 175 - 179.

[4] Giraud C., "Presque half-planes: towards a general representation
scheme," Computer-Aided Design, vol. 16, no. 1, January 1984, pp.
11 - 24.

[5]

[6] Kernighan, B. W. & D. M. Ritchie, The C Pro~ramming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[1] O'Rourke, J., et a1., "A New Linear Algorithm
Convex Polygons," Computer Graphics and Image
19, no. 4, August 1982, pp. 384-391.

for Intersecting
Processing, vol.

[8] Ousterhout J., "Editing VLSI Circuits with" Caesar," Computer
Science Division, Electrical Engineering and Computer Sciences,
UCBerkeley, Calif., 1983.

[9] Preparata, F. P. & K. J. Supowit, "Testing a Simple Polygon for
t-t>notonicity," Inform. Process. Lett., vol. 12, no. 4, 1981, pp.
161 - 164.

[10] Shamos, M. I., Computational Geometry, Ph. D. Dissertation, Yale
University, 1978.

[11] Shamos, M. 1. & D. Hoey, "Geometric Intersection Problems," Proc.
of 7th Annual Symp. on Foundatisms of Computer Science, Houston,
Texas, 1976, pp. 208 - 215.

[12] UNIX Programmer's Manual, 7th ed., "Bell Telephone Laboratories,
Inc., New Jersey, 1979.

27

Appendix A

A.O Purpose:

The algorithm of converting Intersection Form into Vertex Form is

detailed here. It is presented in the style of PASCALto make the

reading of the code a little easier if one desires to do so.

A.1 The algorithm:

procedure PEELOBJ;

{This procedure translates object from the intersection form (as in

Odf) to the vertex form (Vxf) by decomposing the object.}

procedure CUTALOT(Tempobj:Objdesc);

{This procedure prepares to take the intersection of a primitive

Pei) and Vxf.}

function MARKVERTEX: integer;

{This function is to check each vertex of Vxf against P(i).

If the coordinates of a vertex is not inside P(i), then this

vertex will be marked with Status value of O. MARKVERTEXreturns

the total number of marked vertices.}

function INSIDESHAPE(X,Y:real): boolean;

function NEWSHAPE(Code:Primitive; R1,R2,R3: real): integer;

{This function performs the intersection of P(i) with Vxf.

When finished, NEWSHAPEwill return the number of vertices of the

{This function is to determine if a point (X,Y) is inside the

convex figure represented by Vxf or not. (X,Y) is inside the

figure if it satisfies all the inequalities in Vxf.}

28

new Vxf.}

procedure ADDVERTEXj

{This procedure calculates all the intersection points of

P(i) with all the edges of VXf, and then decides which of them

are valid points, i.e., points that are on the edge of Vxf.}

Algorithm:

Let us establish some notation and agreement before we

proceed further. If Vxf[j-1] and Vxf[j] are two consecutive

vertices, then we define Edge(j) to be the part of the boundary

that goes' from Vxf[j-1] to Vxf[j]. In this case, it is either

an arc or a segment. Recall that vertices are ordered. Also,

we will not distinguish circles from discs nor straight line

from half~planes in this discussion. It should be clear from

the context which ones we are referring to.

For each j, j = 1, ..., Numvertex, P(i) intersects with

Edge(j) at at most 2 points if either P(i) or Edge(j) is

circular, and at most 1 point if both are straight. If there

is no intersection points, go on with Edge(j+1). Otherwise,

for each intersection point check if it is between the end

points of Edge(j). If not, discard this intersection point.

If all intersection points are discarded, go on with Edge(j+1).

If two intersection points still remain, sort them by

comparing angles, or distances, depending on whether Edge(j) is

circular or straight, between the intersection points and the

first end point of Edge(j). Insert these intersection points

into Vxf and assign each the Status value of 2. Thesenew

29

points will become vertices after they receive their respective

Objdesc assignments, which can be determined only when all

edges have been processed.

function UPDATEVXF:integer;

{This function makes the Objdesc assignments to points

having Status value of 2, and deletes all points of Status

value D.}

Algorithm:

If k is an integer and k is divided by Numvertex, denote

its remainder by k', i.e. k' = k mod Numvertex. Consider

Vxf(j'), 1 <= j <= Numvertex. If the Status value is not 0,

then go on to Vxf«j+1)'). Otherwise, if the Status value of

Vxf(j-1) is 2, then assign the Objdesc value of Vxf(j') to

Vxf(j-1), and set the Status value of Vxf(j-1) to 1. Also, if

Status values are D. After that, for j = 1 to Numvertex- 1,

remove the j-th point from Vxf if its coordinates equal those

of the (j-1)-th point. Deduct 1 from Numvertex for each point

removed .

begin (*NEWSHAPE*)

ADDVERTEX;

NEWSHAPE:=UPDATEVXF;

end;

begin (*CurALOT*)

the Status value of Vxf«j+1)') is 2, then assign the Dbjdesc

value of P(i) to Vxf«j+1)') and set its Status value to 1.

The next step is to remove all the points in Vxf whose

30

FirstcallMARKVERTEXto determine the number of vertices of Vxf

that lie outside P(i). If all vertices lie inside P(i), then Vxf is

a subset of P(i). The result of intersecting them is just Vxf

itself, and hence we go on with P(i+1). If all vertices lie outside

P(i), then cons~der two cases:

1. P(i) is straight, then it is an empty intersection.

2. P(i) is circular. Let P(i) = CL(h,k,r). If (h,k) is outside

Vxf, then it is an empty intersection. Otherwise, P(i) is a subset

of Vxf, and we can redefine Vxf to be

Vxf[O] := (h-r/2,k) I CL(h,k,r) I 1

Vxf[1] := (h+r/2,k) I CL(h,k,r) I 1

Numvertex := 2

and go on with P(i+1).

If, however, MARKVERTEXshows that some but not all vertices lie

outside P(i), then call NEWSHAPEto get the new Vxf. If NEWSHAPE

does not return an empty Vxf, go on with P(i+1).

begin (*PEELOBJ*)

Recall that object B has primitives P(1), ..., pen). For i = 1 to

n, call subroutine CUTALOTwith P(i) being an input.

31

APPENDIXB

B.O Purpose:

The main purpose of this appendix is to provide the necessary

information so that after reading it, one will be able to run the

program himsel f.

B.1 Operations:

The hardware requirement is a keyboard terminal, a Metheus Omega

400 display controller and a Tektronix 690SR color monitor. The host is

a VAX 11/780 running UNIX. The ready-to-run program is called "awlge",

and it is stored in directory ~andyl/graphics together with the other

auxilliary files, which are:

awlge.p
awlge.c
awlge.h
oldaxia
177
F77.

However, due to some technical difficulty, only the controller with

device address 4 can be used. If one wants to use a different device

address, he will have to change the line "setloc(4)" in procedure

PICTUREINIT of the source file awlge.p to "setloc(n)", where n is the

new device address, and it has to be a constant. The following is a

shell script for the necessary work to compile, link and run.

II! /bin/ csh -f

pc -w -c awlge.p
pc -0 awlge awlge.o awlgec.o -loldaxia -1177 -lF77

awlge

We will explain how the program works by providing a recorded

session of running the program. Note that all cormnandscan be abbre-

32

viated to be as little as the first two letters, although they are all

spelled out here. For instance, the command list can be abbreviated by

Ii. In the fOllowing dialogue, underscored letters are supplied by the

user, and everything between $ and the end of a line is regarded as a

comment for explanation purpose.

In 2.2 we mentioned the objects "Diamond" and "Wedge", and in 5.3

we showed the picture "King". This is how they are done:

% awlge $start the program on UNIX

* AWLGE* $program header

>object Diamond $define object called "Diamond"

o:hl -1 1 $

intersection of
4 half-planes

o :hg 1 -1

o:hg -1 -1

o:hl 1 1 $

o:eo $end "Diamond" definition

>object Wedge

o:cl 0 0 1

$define another object called "Wedge"

$a disc with center at (0,0) and radius

o:hg 1 0

o:hg -1 0

o:eo $end "Wedge" definition

>object many $define "many"

o:.El.2

:0 0

$polygon with 5 ordered vertices

$

5 vertical points

:1 0

: 2 1

:.13.

:0 1.5 J
$

o:cl 0 0 2.5

o:eo $end "many" definition

>object text $define "text"

0: tx "Picture Shapes" $text string

o:eo

>list $list the object names

Objects:-

Diamond

Wedge

many

text

>object many $recall "many" for edit

10 pI 5

delete: 16 $delete item /116 (a disc) from "many"

delete: 0 $end delete

o:cl 0 0 1.5 $a new disc

o:eo

>delete many $delete "many" from object list

33

11 pt 0.00 0.00

12 pt 1.00 0.00

13 pt 2.00 1.00

14 pt 1.00 3.00

15 pt 0.00 1.50

16 cl 0.00 0.00 2.50

>list

Objects:-

Diamond

Wedge

>new shapes

p:window 0 0 100 100

p:group different

g :manber square

m:object Diamond

m:pivot 50 50

m:scale 2.5

m:angle 45

m:color 5

m:em

g :member header

m:object text

m:pivot 20 60

m:scale 1.75

m:color 4

m:em

g :member pie

m:object Wedge

m:pivot 50 20

m:scale 3

m:color 12

m:em

34

$create new picture called "shapes"

$window coordinates (lower-left,upper-right)

$a group of "shapes", called "different"

$a member of "different", called "square"

$"square" has "Diamond" as shape

$offset to (50,50)

$scaled 2.5 times

$rotated by 45 degrees applied to "Diamond"

$assign color 5

$end "square" definition

$2nd member of "different", called "header"

$end "header" definition

$3rd member of "different", called "pie"

g:eg

p:group same

g:member bigdiamond

m:object Diamond

m:piv 10 10

m:scale 4

m:color 6

m:em

g :member small

m:object Diamond

m:pivot 10 10

m:scale 2

m:color 9

m:em

g:list

Members:-

bigdiamond

small

g:~

p:list

Groups:-

different

same

p:plot same different;

p:ep

$end "different" definition

$another group of "shapes", called "same"

$list member names of "same"

$list group names of "shapes"

$display two groups, ";" is crucial

$end "shapes" definition (saved to files)

35

36

$ Next we show how picture "King" was created, and how it can be edited.

>old King $recall old picture "King" for edit

Window coordinates: -25.00 -25.00 25.00 25.00

p:list

Groups:-

happy

p:~

>list

Objects :-

isoc2

retcircle

circle

isoc1

poly

text

>object isoc2

1 hl 0.00 0.00

2 hg -0.50 -1.00

3 hg 0.50 -1.00

delete: 0

o:eo

>object retcircle

5 cl 0.00 0.00 1.00

6 vg -0.50

7 vl 0.50

delete: 0

o:eo

>object text

25 tx KING

26 vI 0.00

27 vg 1.00

delete: 26

delete: Zl

delete: 0

o:eo

>save $save edited picture (very important)

>old King

Window coordinates: -25.00 -25.00 25.00 25.00

p:plot happy;

p :!:.E

37

o:eo-

>object poly

15 pI 7

16 pt 1.25 0.00

17 pt 8.75 0.00

18 pt 10.00 10.00

19 pt 7.50 3.33

20 pt 5.00 10.00

21 pt 2.50 3.33

22 pt 0.00 10.00

23 cl 5.00 5.00 6.00

delete: 0

38

>exit $exit from the program, back to UNIX monitor

B.2 Summaries:

We now provide a summary of commands and a summary of color

references. Each command can be identified by its first two letters.

1. Commands:

a. At the n>n level,

object object-name

:define an object with name object-name, which is kept in

the object list.

list

:list all names in the object list.

delete object-name

:delete object-name from the object list.

new picture-name

:specify a new picture with picture-name to be created.

old picture-name

:retrieve an existing picture with picture-name for edit

or display.

save

:save picture into disc files under filenames picture-

name.obj, picture-name.grp.

exit

:get out of awlge and get back to the UNIXmonitor.

b. At the "p:" level,

window X1 Y1 X2 Y2

39

:specify the viewing window for the picture. (X1,Y1) and

(X2,Y2) are the coordinates for the lower-left and

upper-right corners of the window respectively.

group group-name

:define a group with group-name, which will be kept in the

group list.

list

:list all names in the group list.

delete group-name

:delete group-name from the group list.

plot group-name1 group-name2 ... group-nameN;

:display these groups on the display monitor. Don't forget

the semicolon.

ep

:exit the "p:" level to return to the ">,,level. Picture

will automatically be saved.

c. At the "g:" level,

member member-name

:define a member with member-name.

list

:list all members on the member list for a particular

group.

delete member-name

:delete member-name from the member list of a particular

group.

eg

40

:exit the "g:" level to return to the "p:" level.

d. At the "m:" level,

object object-name

:use object-name from the object list for the shape of the

member. Same object-name can be used by any member of any

group.

pivot X Y

:X and Yare the offsets by which the object, called upon

by the member, will be translated.

scale factor

:enlarge (or shrink) the object by this factor.

angle degree

:rotate the object in the counterclockwise direction

through this angle.

color number

:assign to the object a color corresponding to the color
number.

em

:exit the "m:" level to return to the "g:" level.

2. Colors:

With the system default color map, the correspondence between the

color numbers and the colors themselves are as follows:

41

B.4 Cautions:

This project involves many different components, including three

programming languages and several pieces of hardware. As a result, some

peculiarities do exist; here are the known ones:

1. At the "p:" level, when one issues the ep command,the picture will

be saved automatically. However, if this is done too many times

without going back to the UNIX monitor, a UNIX system error will

occur, due to too many files open. So, it is a good idea to save

the picture each time when any object or the picture is changed.

2. At the "p:" level, sometimes there will be no response to the plot

command. When that happens, try going into the "g:" level and corne

back out. If that does not help, reset the Metheus controller.

3. If someone exits Caesar abnormally, it will leave the hardware

setting in a state that is not proper for our program. To correct

it, use the following commands:

color number color

0, 1 black (background)

2, 3 red

4, 5 I green

6, 7 I yellow

8, 9 blue

10, 11 pink

12, 13 light bl ue

14, 15 I v.hite

and more.

42

stty >/dev/ttyhe 9600 even odd -raw -nl -eeho -lease tabs -tandem ebreak
stty >/dev/ttyhe erase under kill under intr under

43

BIOGRAPHICALNOTE

The author was born in Hong Kong on February 15, 1950. He came to

the United States in 1969, and is now a ~rmanent resident.

He received his Bachelor of Science degree with cum laude in

Mathematics from Whitworth College, Spokane, Washington in 1973. In

1974, he received his Master of Science degree in Mathematics from

University of Oregon, where he continued his post-master's study in

mathematics until 1976. He then attended Montana State University and

received his Master of Science degree in Industrial and Management

Engineering with a minor in Statistics.

Upon graduation from Montana State University, the author joined

Tektronix, Inc. in July 1979 as a software engineer to design and

llnplement some statistical and other software packages.

In June 1984, while still being employed by Tektronix, the author

completed the requirements for the degree Master of Science at the

Oregon Graduate Center.

The author has published the following articles:

"A Simple Series for the Incomplete GammaIntegral," Applied Statistics,
JRSS, Series C, vol. 29, no. 1, 1980.

This article will be republished in a book of collected algorithms,
edited by I. D. Hill et ale

"The Periodic Generating Sequence," The Fibonacci Quarterly, vol. 15,
no. 2, April 1977.

Since 1973, the author has been married to the former Frances Wong,

who is a professional librarian by training and is working for Blackwell

North America as a sales manager.

	198406.lau.chi-leung to p. 23.pdf
	198406.lau.chi-leung to p. 24.pdf
	198406.lau.chi-leung to p.43.pdf

