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Abstract

Perceptual Cost Function for Cross-fading-based Concatenation

Qi Miao

Supervising Professor: Jan P. H. van Santen

Concatenative synthesis is currently the most widely-used Text-to-Speech (TTS) frame-

work. However, it suffers from the problem that it can not guarantee to minimize both the

target cost and the concatenation cost at the same time. As a result, the selected units

for concatenation may come from totally different phonemic and prosodic contexts, which

can lead to audible discontinuities in the output speech at the concatenation points. Var-

ious speech modification methods have been studied and applied during concatenation.

In most cases, they can create a locally smooth transition between two units, but the

resulting speech may be far from the target. In a previous study, a linear cross-fading

weight function was used to remove spectral and time domain discontinuities during con-

catenative speech synthesis. We learned that concatenation through a linear weighted

cross-fading function can produce smooth, yet unnaturally shaped formant trajectories;

in addition, we noted that the precise details of how to cross-fade a specific pair of units

may be highly context dependent.

We propose a new algorithm that uses a unit-dependent parameterized cross-fading

weight function to create more natural-looking formant trajectories and, it is hoped,

better-sounding output speech. The proposed algorithm uses a perceptually-based ob-

jective function to capture differences between cross-faded and natural trajectories across

vi



the whole region of the phoneme, and uses the phoneme identity, prosodic contexts, and

acoustic features of the units to predict optimal cross-fading parameters. This thesis re-

ports a study on the feasibility of developing such perceptual cost functions. A special

corpus was designed to produce a variety of shapes of formant frequency trajectories in

different linguistic environments. A perceptual experiment was performed to determine

whether we could predict perceptual quality of output speech from acoustic distance mea-

sures. We generated a range of synthetic/natural stimulus pairs, where the synthetic

stimuli were generated using three types of cross-fading models, applied to different re-

gions in the vowel. The results show that the perceptual cost function can be reliably

predicted from the distance measures. Moreover, the results support our hypotheses that:

a) the quality of the output speech is influenced by the shape of formant trajectories

in the entire region across the vowel; and b) human perceptual scores are correlated to

both the absolute distance and the first derivative of the absolute distance of the formant

trajectories.
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Chapter 1

Introduction

1.1 Speech synthesis overview

Speech is an important verbal communication skill between humans. For centuries, speech

has been extensively studied by researchers and scientists. For more than fifty years,

people have been working on trying to generate artificial speech that sounds exactly like

the natural speech produced by human beings. Researchers and scientists have developed

different types of speech synthesizers to generate speech sounds.

Since the development of computers in the 1970s, researchers have sought to create

a fully automatic speech synthesizer that utilizes computers. A Text-to-Speech (TTS)

system is a computer-based technology which automatically converts the input text into

a speech signal. In order to generate audible speech from a textual representation, a

TTS system first converts text into a linguistic representation, which is then used to

generate an appropriate acoustic waveform. This second step is achieved by using a

speech synthesis model that describes the relationship between linguistic units and acoustic

features. Figure 1.1 shows the basic function blocks for a TTS system.

1.2 Speech synthesis methods

When generating audible speech from a textual representation, a TTS system first converts

text input into a linguistic representation, which is then used to generate appropriate

prosodic features and an acoustic waveform. This second step is achieved by using a

speech synthesis model that describes the relationship between linguistic units and acoustic

1
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Figure 1.1: A basic function structure for a TTS system
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features. These speech synthesis models vary in their complexity. In general, there are

two types of synthesis models: parametric synthesis and concatenative synthesis.

1.2.1 Parametric synthesis

A parametric synthesizer usually consists of two major components: 1) a voice source and

2) a vocal tract model. In this method, multiple parameters are fed into the synthesizer

to generate speech. A parametric synthesizer offers great control and flexibility on the

output speech. On the other hand, this method requires a deep understanding of the

human speech production procedure. A poor approximation of the voice source and vocal

tract will result in robotic, buzzy, and unnatural voices. The very first device to generate

speech sounds was called the VODER [6] which was demonstrated by Homer Dudley in the

late 1930’s. The first intelligible parametric synthesizer used an approach called formant

synthesis, which utilizes relatively simple models of the glottal source and vocal tract.

Model parameters can be generated either by rules [6] or from a database [8]. The most

famous commercial formant synthesizer is DECtalk which is still widely used in many TTS

applications. In parametric synthesis, most aspects of speech are controllable, including

the degree of articulation and the characteristics of the speaker. The resulting speech is

highly intelligible, but is often judged to be not very natural. In an effort to increase

naturalness without decreasing flexibility, researchers have increased the complexity of

the speech details in the speech production process in an approach called articulatory

synthesis [13]. Articulatory synthesis attempts to generate the speech production system

directly from the set of parameters for the human articulators. Unfortunately, it has proved

difficult in practice to generate the high-dimensional parameter trajectories necessary to

drive articulatory synthesis models, because the relationships between linguistic units and

parameter trajectories are complicated and cannot be learned easily. Both formant and

articulatory synthesis are examples of parametric synthesis.

1.2.2 Concatenative synthesis

Concatenative synthesis is the most common and successful TTS approach to date. In this

method, the synthesizer generates speech by connecting pre-recorded speech units together
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to form phrases and sentences. There are two types of concatenation methods as shown

in Figure 1.2. One method is to record a N-Phone based inventory which consists of the

minimal set of speech sounds. In this case, a diphone inventory is a popular choice. A

diphone is a speech unit that contains the transition part of two phonemes. For example,

the diphone “A-t” contains the second half of the phoneme “A” and the first half of the

phoneme “t”. The cut point inside each phoneme is considered to be the most stable

part for each phoneme. Therefore, the resulting concatenation has fewer discrepancies. In

these speech corpora, only one example of each N-phone unit is stored. During synthesis,

prosodic features, such as pitch, duration and intensity, must be modified to match the

target speech properties. Because of the extensive speech modification during synthesis,

it is very difficult to achieve high quality output speech.

In another type of concatenation, known as unit-selection, the system performs a search

in a pre-recorded speech database to find the best matched sequence of units for the target

speech by optimizing a two-part cost function:

• Target cost : the difference between the selected units and the target speech

• Concatenation cost : the difference between the adjacent selected units during con-

catenation

The selected units are concatenated together to generate the final speech. In a perfect sce-

nario, the selected units would have no concatenation errors and should sound exactly like

the target natural speech. In reality, it is very hard to achieve because although the out-

put speech is highly intelligible and natural in most cases, there are always concatenation

errors due to the limited size of the speech corpus.

Speech modification is usually required to reduce these discontinuities. To overcome

the problems of limited content and discontinuities, researchers have tried to (1) increase

the size of the speech corpus to cover all possible combinations of the target unit se-

quences [2] or (2) apply additional modeling to modify both the prosody and the speech

spectrum. The first approach is usually time consuming and expensive in most cases.

Most commercial TTS systems record neutral flat speech to reduce the differences be-

tween units as much as possible. When highly expressive speech is desired, the recordings
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Figure 1.2: Current concatenation methods

have more dynamics and a larger search space for unit-selection. The voice quality of the

speaker can also change over time [4] which degrades the consistency and the quality of

the synthesized speech.

More and more people require a personalized TTS system. For example, a person with

a speech or language disorder who uses an Augmentative and Alternative Communication

(AAC) device with a TTS system might prefer using his own voice in order to preserve

his identity. Unfortunately, it is not very practical in these cases to acquire a personalized

TTS since not everyone can record a steady and clean corpus.

Concatenation errors occur both in speech prosody and in the spectral domain. To

eliminate the errors in prosody, global pitch and duration models are commonly built [15,

16]. To reduce spectral discontinuities, researchers have studied smoothing spectral bal-

ance discontinuities at concatenation points, expressed as energies in four bands [9],

smoothing formant discontinuities [10, 1, 7], and applying a fusion-unit approach dur-

ing the concatenation [18]. All of these studies try to achieve the goal of reducing spectral

discontinuities with smooth transitions at unit concatenation points without considering

the natural global shape of the prosody and the spectral features. The resulting speech
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sounds smooth and natural when the target speech has more dynamics and larger ranges

in the feature space. For instance, when the synthesis of emotional and expressive speech

is desired, the naturalness of the synthetic speech is largely influenced by the global shapes

of the pitch contour, duration profile, and spectral features.

1.2.3 Hybrid method

Both parametric and concatenative synthesis have their advantages and disadvantages.

They can both generate very intelligible speech. Typically parametric synthesis requires

smaller storage space and runs more quickly because search operations are not needed.

However, it is still difficult to provide accurate acoustic and linguistic parameters and

synthesis rules for all purposes of synthetic speech. The result is a lack of naturalness.

Concatenative synthesis, on the other hand, has the ability to generate highly natural

speech as long as the corpus has good coverage of all acoustic and linguistic units.

In recent years, the Hidden-Markov-Model (HMM) method [19] has become popular

research area in speech synthesis. In this method, spectral and excitation parameters are

extracted and trained by a HMM model for each phoneme. Then, during synthesis, the

model outputs a series of smoothed pitch, duration, spectral, and excitation parameter

profiles for each phoneme that are used generate the final speech waveforms. This approach

typically generates very smooth and intelligible speech, but the speech sounds can also be

buzzy and unnatural.

Some researchers have also sought ways to combine the benefits of concatenative speech

synthesis and rule-based system. Pearson emphet al. [12] showed that a synthesizer that

combines concatenative and rule-based formant synthesis improved the speech intelligibil-

ity and naturalness. However, the discontinuity issue still remains in such systems.

1.3 Speech Modification through Concatenation

Concatenative synthesis is currently the most widely-used TTS method. The main prob-

lem facing concatenative synthesis is that units that are concatenated are generally recorded

in different phonemic and prosodic contexts, which can lead to audible discontinuities at
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the concatenation points. Various speech modification methods can be applied to the

selected units to generate the prosody of the target speech and reduce the discontinuities.

As described in the previous section, there are two types of discontinuities: 1) disconti-

nuities in prosody (pitch and duration), and 2) discontinuities in the spectrum (spectral

balance, formant frequencies, formant bandwidth, and overall intensity). Over the years,

many methods have been developed to solve the problem. A successful speech modifica-

tion method should be able to locally remove all of the audible discontinuities between

units and produce a highly natural global shape of the prosody and spectrum relative to

the target speech.

Although the existing unit-selection algorithm already takes the concatenation cost

into consideration in the cost function, there are still discontinuities in the synthesized

speech. Generally speaking, there are two types of discontinuities for concatenated units:

1) in the prosody domain where the pitch and duration are unmatched; and 2) in the

spectral domain where the spectral structures are mismatched. All of these discontinuities

will result in audible distortions in the synthesized speech. Many approaches have been

proposed to reduce the discontinuities in prosody by building global pitch and duration

models. In this dissertation, we focus on removing discontinuities in the spectral domain,

i.e., spectral balance, formant frequency, formant bandwidth, and LPC parameters.

1.3.1 Concatenation through local smoothing

This method performs a local smoothing operation during concatenation to remove any

sharp transitions between two units. But the problem is how to decide the appropriate

overlap area between left and right units for each type of concatenation. If the overlap

area is too small or there is no overlap area at all, it can produce very bumpy transitions

at the concatenation point. Figure 1.3 shows an example of applying a simple local

smoothing operation on the second formant trajectory of two units. The blue curve in the

figure represents the left demiphone and he red curve in the figure represents the right

demiphone to be concatenated. The black curve is the locally smoothed curve.
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Figure 1.3: Concatenation with local smoothing

1.3.2 Concatenation through local interpolation

Olive [11] proposed to use straight line interpolation on the sets of LPC parameters in

the transition between two phonemes. This interpolation was set by rules depending on

the phoneme types, duration, and pitch information. The author also suggested that the

straight line interpolation could be applied to other spectral features, such as formant

frequencies. Figure 1.4 shows an example of applying straight line interpolation on the

second formant trajectory of two units. The blue curve in the figure represents the left

demiphone and he red curve in the figure represents the right demiphone to be concate-

nated. The black curve is the interpolated curve. Such a method works fine for units with

small discrepancies but the quality is not satisfying for units with big discontinuities. It

certainly raises the question of over-smoothing in the transition region. Moreover, when

two units are too short, such as short vowels, there might not be enough data points to

be interpolated.
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Figure 1.4: Concatenation with local interpolation

1.3.3 Concatenation with imposing target spectral dynamics

For both concatenation through local smoothing or local interpolation, a main requirement

is that the original spectral mismatch should not be too large to maintain the natural

spectral dynamics in the target speech during smoothing or interpolation. In this scenario,

the selected units in the corpus should be close to each other and to the target speech.

However, any unit-selection algorithm has to trade off between two cost functions: the

concatenative cost and the target cost. As a result, the selected units may have large

target costs with relatively small concatenation costs or have small target costs with large

discontinuities between two units at the joining point. In either situation, a traditional

spectral smoothing or interpolation method is not adequate. Therefore, some researchers

apply spectral dynamics constraints from the target speech during smoothing to provide

global spectral shape control while reducing the local concatenation errors.
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Figure 1.5: An illustration of applying a fusion unit during concatenation

Wouters [18] used a fusion unit (shown in Figure 1.5 1) to impose the natural spectral

transition over the two concatenated units on the linear spectral frequency (LSF) trajec-

tories. In this approach, a fusion unit is selected according to the phonetic and prosodic

features of the target speech. The LSF trajectories are extracted from the joining units

and the fusion units. During concatenation, the spectral dynamic constraints represented

by the first derivative of the target LSF trajectories are linearly interpolated with the first

derivatives from the joining units. This approach combines the spectral information from

the target speech and concatenated units to impose a natural spectral transition during

concatenation, result in in improved speech quality.

1.3.4 Concatenation with a linear weighted cross-fading function

In previous work [3], we applied a linear weighted cross-fading function to different speech

features during concatenation. This method eliminates “points” of concatenation in favor

1This figure is taken from paper [17].
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Figure 1.6: Concatenation with a linear weighted cross-fading function

of “regions” of concatenation by cross-fading (i.e. fading out one signal while fading in

another) in various domains between the end and the beginning of two speech segments

adjoining a concatenation. In this study, we first performed a linear weighted cross-fading

operation on the spectral balance trajectories, the first three formant frequency trajecto-

ries, and the time-domain waveforms. Figure 1.6 shows an example of applying a linear

weighted cross-fading function to the second formant frequency trajectory of two con-

catenated units. A perceptual test showed that all cross-fading operations significantly

improved the perceived quality. However, using all three methods together is not signifi-

cantly different from using time-domain waveform alone. We speculate that the shape of

the cross-faded trajectories is not natural in some cases. For example, when two trajecto-

ries are sharply divergent as in Figure 1.7, the shape of the cross-faded trajectory is not

natural. Moreover, these problems raise the question of how to optimize the cross-fading

function based on the characteristics of concatenated units and target unit.
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1.4 The Methodology

The ultimate goal for a successful TTS system is to be able to generate perfect synthetic

speech for any communication purpose for any individual. This goal requires a synthesizer

that combines the strength of parametric and concatenative synthesis methods to achieve

highly flexible, expressive, and natural speech. The main goal of our approach is to

decrease the unnatural spectral discontinuities between two concatenated speech units,

produce more naturally shaped feature trajectories for the target unit, and thereby increase

the perceived quality of the speech by applying these trajectories during synthesis. Our

motivation is to take advantage of all of the available information during synthesis, such

as acoustic and linguistic features of the selected units and the target units, to provide

both local concatenation error reduction and global spectral shape control. To that end,

for any type of concatenation, our method can generate high quality speech as close to

the target speech as possible.

We propose a new algorithm that uses a unit-dependent trainable parameterized cross-

fading weight function to generate more natural-looking formant trajectories and, it is

hoped, better-sounding output speech. The proposed algorithm:

• uses a perceptually-based objective function to capture differences between cross-

faded and natural trajectories across the whole region of the phoneme, and

• uses phoneme identity, prosodic contexts, and acoustic features of the units to predict

optimal cross-fading parameters to generate more natural formant trajectories.

This dissertation addresses the first part of the algorithm. Our hypotheses are:

• The quality of the output speech is influenced by the shape of formant trajectories

in the entire region across the vowel.

• Human perceptual scores are correlated to both absolute distance and the first

derivative of the absolute distance of the formant trajectories.

We designed a special corpus with a set of consonant-vowel-consonant (CVC) words

that covers several dynamic ranges in speech prosody, such as duration and prominence.
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The corpus also covers the most extreme areas of the vowel triangle. We chose three

consonants (/k, b, l/) that have large coarticulation effects on the second formant. A

perceptual experiment was performed and results were analyzed to confirm our hypothesis.

In Chapter 2, we explain our hypothesis and methodology to train a perceptually-based

cross-fading function. Chapter 3 presents the speech corpus design and the experiment

setup. Analysis of the experiment and results are discussed in Chapter 4. Chapter 5

summarizes the topic and discusses future work.



Chapter 2

Hypotheses and Methodology

In a previous study [3], a linear cross-fading weight function was used to remove spectral

and time domain discontinuities during concatenative speech synthesis. In this method,

smoothing was performed by cross-fading across a “region” of concatenation, instead of

the traditional “points” of concatenation. In this chapter, we will first briefly introduce

the experiment in which we applied a linear weighted cross-fading function to three speech

feature domains. Then we focus on solving the problem in the first part of the algorithm.

Here we briefly review the previous work of applying a simple linear-weighted cross-

fading function during concatenation for three aspects of speech: spectral balance (SBXF),

formant frequencies (FFXF) and time domain speech waves (TDXF).

As mentioned previously, we aim to reduce concatenation errors by constructing smooth

feature trajectories in the formant frequency and spectral balance domains, and then by

modifying the natural speech signal accordingly. The construction of the feature trajec-

tory was implemented by cross-fading the acoustic features of each speech frame across

the entire phoneme that is involved in the concatenation operation. (We ignored atypical

concatenations at phoneme boundaries.) Specifically, we considered the demiphone that

followed the previous chunk and the demiphone that preceded the following chunk, giving

us a double set of features over the entire phoneme region. Features were stretched or

compressed by linear interpolation to match durations. The desired smooth feature tra-

jectories s(t) were calculated by applying the equation s(t) = α(t) · r(t) + (1− α(t)) · l(t),

where l(t) and r(t) are feature vectors at time t = 1 . . . N of the last demiphone of the

left chunk and the first demiphone of the right chunk, respectively, N denotes the total

number of data points in the cross-fade region, and α is the cross-fade function given by

15
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α(t) = t/(N + 1).

Figure 1.6 illustrates the concept of cross-fading using a linear weighted function on

the second formant trajectories of two units. Without cross-fading, the final trajectory

would be the concatenation of the solid left half-curve with the solid right half-curve,

resulting in a large discontinuity. With cross-fading, the following demiphone of the left

chunk and the previous demiphone of the right chunk are combined, resulting in a smooth

final trajectory as indicated by the continuous curve. Cross-fading was implemented both

in the formant domain on the first three formant frequencies and in the spectral balance

domain. Comparing to concatenation through local smoothing (Figure 1.3) and concate-

nation through local interpolation (Figure 1.4), Figure 1.6 demonstrates the advantage of

cross-fading over the traditional smoothing operation at the concatenation point. With a

local smoothing or a local interpolation operation, the connected trajectory may have an

unnatural transition and a strange trajectory shape when the original distance between

two concatenated units is large.

From the experimental results we found that formant frequencies cross-fading (FFXF)

alone was not as successful as time domain cross-fading (TDXF). We speculated that 1) the

corpus used in the experiment was recorded in a constant phonemic and prosodic context,

thus the original formant distance in the corpus was small, 2) the change of formant

locations alone could introduce other artifacts during the signal modification procedure

(SinLPC).

More importantly, we noticed that in some cases, the linear cross-fading weight function

generated unnaturally shaped formant frequency trajectories. In addition, TDXF was

not able to recover from the impact of spectral changes introduced by different prosodic

contexts and acoustic features. These problems raise the question of how to optimize the

cross-fade weight function based on the characteristics of concatenated units and target

units.

Figure 1.7 shows one example of applying a linear weighted cross-fading function to

two concatenated unit trajectories and their target unit trajectory. The blue and red lines

represent the formant trajectories of the two units to be concatenated. These trajectories

not only have large distances in the frequency domain, but also have sharply divergent
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shapes. The black curve is the cross-faded trajectory. However, even though the cross-

faded trajectory is perfectly smooth, the overall shape is quite unnatural. The cross-faded

trajectory would result in an unnatural sounding speech output. A better cross-fading

operation is needed.

We propose a new algorithm that uses a unit-dependent trainable parameterized cross-

fading weight function to generate more natural-looking formant trajectories and, ideally,

better-sounding output speech. The proposed algorithm:

• uses a perceptually-based objective function to capture differences between cross-

faded and natural trajectories across the whole region of the phoneme, and

• uses phoneme identity, prosodic contexts, and acoustic features of the units to predict

optimal cross-fading parameters to generate more natural formant trajectories.

Previous studies [14, 5] used perceptual data to predict the relationship between con-

catenation cost and audible distortions. These studies focused on discontinuities at the

concatenation points. Our hypotheses are, similarly:

• the quality of output speech is influenced by the shape of formant trajectories in the

entire region across the vowel.

• human perceptual scores are correlated to both absolute distance and the first deriva-

tive of absolute distance between synthetic (cross-faded) and natural (target) formant

trajectories.

The specific goal of this study is to train a perceptual cost function for cross-fading

based concatenation for formant frequencies. The cost function is determined by dis-

tance measures between the cross-faded trajectory and the target trajectory. As shown

in Figure 2.1, we divided the formant trajectory for the vowel part into three regions:

the first third (A), the second third (B) and the final third (C). The distances in regions

A and C reflect the co-articulation influence caused by the surrounding phoneme. The

distance in region B reflects the more steady-state part of the vowel formant trajectory

(although, generally, this part is also co-articulated). We also define three regions in the

first derivative of the formant trajectories.
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Chapter 3

Data Collection and Experiment Set up

3.1 Speech Corpus

We recorded a corpus consisting of Consonant-Vowel-Consonant (CVC) words occurring

in different prosodic contexts. The corpus was recorded by a female American English

speaker. We selected six vowels (see Table 3.1)1 which cover the most extreme areas of the

vowel triangle and three consonants (/k, b, l/) which have large coarticulation effects on

the second formant. The pre-vocalic and post-vocalic consonant in one CVC word could

be the same.

Vowels Example

/i:/ beet
/u/ boot
/@/ bat
/ei/ bay
/aU/ about
/aI/ bye

Table 3.1: Vowels in the corpus

Each CVC word was put in two carrier sentences.

Please say the word /k i: k/ again.

Please DONT say the word /k i: k/ again.

In the first sentence, the CVC word is stressed and in the second sentence, the CVC

word is unstressed. Both sentences were read at two different speaking rates: relatively

1Listed in Worldbet, an ASCII version of IPA.
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slow and relatively fast. Therefore, each CVC occurs in four different prosodic contexts:

1) stressed and fast; 2) unstressed and fast; 3) stressed and slow; 4) unstressed and slow.

Our intention is to generate different shapes of vowel formant trajectories caused by the

linguistic context.

The corpus was recorded with an American female voice. There are a total of 3×6×3×4

= 216 CVC words in the corpus. Each CVC word was extracted from the original record-

ings. The formant frequencies for each CVC word were first calculated every 10ms using

Wavesurfer plug-ins, then visually inspected and hand corrected by an expert. Only the

first three formant frequencies were corrected and used in the perceptual experiment.

3.2 Perceptual Experiment

3.2.1 Stimulus Selection

We performed a search procedure to select the unit pairs which were used to synthesize the

CVC words in the experiment. As we described in Chapter 2, for each formant trajectory,

we define three regions: the beginning part (Region A), the middle part (Region B), and

the ending part (Region C), as shown in Figure 2.1. Each region covers about one third

of the trajectory. First we transform all of the formant frequencies to the Bark scale.

Then we calculate the distances between two candidate units in the three regions by

determining the Euclidean distance of the absolute distance of the formant frequencies

(DFF ) and of first derivative distance (DDF )) for the formant trajectories.The formant

frequency distance (DFF ) was calculated as follows:

DFF (unit1, unit2) =

√√√√ n∑
k=1

(FFk,unit1 − FFk,unit2)
2. (3.1)

where unit1 indicates the left unit and unit2 indicates the right one, FFk,unit1 means

the kth absolute formant frequency (in Bark) in the region of the left unit, FFk,unit2 means

the kth absolute formant frequency (in Bark) in the region of the right unit.

The distance of the formant trajectories (DDF )) was calculated as follows:
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DDF (unit1, unit2) =

√√√√ n∑
k=1

(DFk,unit1 −DFk,unit2)
2. (3.2)

where DFk,unit1 means the kth first derivative formant frequency (in Bark) in the

region of the left unit, DFk,unit2 means the kth first derivative formant frequency (in

Bark) in the region of the right unit.

For each target unit, we calculated the maximum absolute distance and maximum first

derivative distances in each region between two candidate units across all the concatena-

tions available in the corpus. Then we normalized the distances in each distance measure

to the range of (0, 1].

Distance Measure Description

1 Absolute distance in region A
2 First derivative distance in region A
3 Absolute distance in region B
4 First derivative distance in region B
5 Absolute distance in region C
6 First derivative distance in region C

Table 3.2: Definition of distance measures for each formant trajectory.

Since the second formant trajectory usually has the strongest dynamics for vowel, we

applied the following criteria on the normalized distances in the search on F2 to ensure

good coverage of the different constellations of the 6 distance measures. Unit pairs were

selected to have:

• small distances in all distance measures, or

• large distances in all distance measures, or

• a relatively large distance in each of six distance measures

For each vowel, two target units are selected. For one target unit, eight concatenation

unit pairs are selected across the corpus. Every concatenation pair has one of the eight

distance types. For every selected pair, we applied three types of concatenations: a)

concatenation at the middle point of the trajectory with a linear weighted cross-fading
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Distance Type Description

1 small distances in all distance measures
2 large distances in all distance measures
3 large distance in distance measure 1
4 large distance in distance measure 2
5 large distance in distance measure 3
6 large distance in distance measure 4
7 large distance in distance measure 5
8 large distance in distance measure 6

Table 3.3: Definition of distance types for selected units

function, as used in our previous study [3]; b) concatenation at the middle point of the

trajectory with a sigmoid weighted cross-fading function; c) concatenation through a range

selection function where we always put the cross-fading area in the region containing the

largest discontinuity between two concatenated units. Figure 3.1 shows the three cross-

fading weighted functiosn we used during the concatenation. The red line shows the

weighted function that applies to the left unit, and the blue line represents the weighted

function that applies to the right unit. In the third concatenation type, we have six

different cross-fading weighted functions. Each of these functions applies to one of the six

regions we defined before. In combination, the total number of stimuli is 6 (vowels) × 2

(samples per vowel) × 8 (distance types) × 3 (three cross-fading weighted functions) =

288.

In order to eliminate effects from other features, such as pitch, duration, and energy, we

re-synthesized the CVC words using a hybrid formant synthesizer with pitch, duration,

and energy profiles imported from the target CVC word. The spectrum over 4KHz is

copied from the target unit. Therefore, both utterances have highly similar acoustic

features except for the first three formant trajectories. One CVC word was synthesized

with the trajectories extracted from the natural target CVC word and the other one was

synthesized with the trajectories generated by cross-fading models. The final test stimuli

contained pairs of identical CVC words with a 200 ms-separating pause.
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Figure 3.1: Three types of cross-fading weighted functions.

3.2.2 Experiment Set up

The experiment was set up as a Comparative Mean Opinion Score (CMOS) test. Eight

expert subjects were asked to listen to pairs of CVC words and rate the quality of the

CVC word “A” as compared to CVC word “B” on a five-point scale. A and B are the same

CVC word synthesized by the same hybrid formant synthesizer. Quality was defined to

include both naturalness and intelligibility of the word. The subject had to choose a score

from: (-2) A sounds much better, (-1) A sounds better, (0) About the same, (1) B sounds

better, (2) B sounds much better. The range of the scores is [-2, 2]. Only the voiced part

of the CVC was synthesized. The unvoiced part was kept the same as the target CVC

word. For the voiced part, the spectrum over 4KHz remained the same as the target CVC

word. One word was synthesized using the formant trajectories from the natural speech

and the other from cross-faded trajectories. The order of A and B was randomized. The

experiment was performed in the CSLU Perception Lab with professional audio devices.

During the experiment, subjects could repeat the stimuli as many times as they wanted
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to make a selection. Subjects were allowed to take short breaks during the test if needed.

The total time for one test was about 40 minutes.



Chapter 4

Results

Figure 4.1 shows the mean CMOS score for each vowel. The value of the score reflects how

well the natural formant frequency trajectories compare with the cross-faded trajectories.

On average, vowels /u/ and /aU/ have relatively lower scores.

To analyze the results, we define eight distance types for our experiment stimuli.

Figure 4.2 shows the mean CMOS scores for each distance type, as defined in Table 3.3.

On average, larger distances in any distance measure are expected to produce worse quality

in the output speech, which is borne out by these results. The Figure shows that a larger

distance in region A (the first third of the vowel formant trajectories) has the strongest

impact.

To train the perceptual cost function for each experimental stimulus, we first trans-

formed the scores from all subjects into normalized scores. Then we combined normalized

score for all the stimuli into a data metric and applied principal component analysis

(PCA) [9] to the scores. This analysis eliminates the effects of different individuals using

larger rating ranges and also assigns larger weights to subjects more in agreement with

other subjects. When transformed the normalized score into a weighted final score with

the results from PCA. A multiple linear regression model between the PCA-based scores

and distances in six different measures was trained for each vowel. The distance was cal-

culated as the Euclidean distance between the cross-faded and natural trajectories in the

frequency domain or in the delta-frequency domain, as appropriate. There are 288/6=48

data points per vowel and 19 parameters (six for F1, six for F2, six for F3, and one for

the intercept) in the model. The degrees of freedom in the model are thus 48-19=29.
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Table 4.1 shows the goodness of the model fit (R2 value), the variance of the PCA-

based score, and the Root Mean Square Deviation (RMSD) between the observed ratings

and the ratings predicted by the model. All models achieved good R2 values. Vowels

such as /i:, u, and @/ have larger correlations overall than diphthongs. However, the

diphthongs have smaller variances and RMSD. We conclude that these distances indeed

form a reliable predictor of perceptual speech quality, and thus can be used as a cost

function for optimization of cross-fading.

Vowel R2 Variance RMSD

/i:/ .76 2.04 .70
/u/ .62 1.06 .63
/@/ .78 2.28 .70
/eI/ .43 1.11 .79
/aU/ .47 .66 .59
/aI/ .64 .85 .55

Table 4.1: Multiple linear regression with both linear and delta distances. Number of
samples per vowel: 48, Degrees of freedom: 29, “*” significant with alpha = .05
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Figure 4.2: Mean CMOS score for each distance type.

To further understand how much the delta distances contribute to the perceived qual-

ity, we fit the linear model with linear distance and delta distance separately. Table 4.2

and Table 4.3 show that both linear and delta distances contribute to the perceived quality.

To show the importance of the first derivative distances (delta distances) in the perceptual

cost function, we calculated an F score based on the correlation coefficients in Table 4.1

and Table 4.3. F is calculated by the following equation:

F =
29× (R2

all −R2
linear)

9× (1−R2
all)

(4.1)

We find that overall the perceptual quality is predictable from the distance measure we

choose. The perceptual quality is predicted better for vowels than diphthongs, as shown

in Table 4.4. The delta distances certainly help but only the vowel /@/ shows a significant

improvement.



28

Vowel R2 Variance RMSD

/i:/ .64* 2.04 .84
/u/ .33 1.06 .83
/@/ .64* 2.28 .90
/eI/ .25 1.11 .90
/aU/ .28 .66 .68
/aI/ .31 .85 .76

Table 4.2: Multiple linear regression with delta distances only. Number of samples per
vowel: 48, Degrees of freedom: 29, “*” significant with alpha = .05

Vowel R2 Variance RMSD

/i:/ .66* 2.04 1.34
/u/ .49* 1.06 .73
/@/ .38* 2.28 1.17
/eI/ .16 1.11 .95
/aU/ .36* .66 .64
/aI/ .40* .85 .71

Table 4.3: Multiple linear regression with linear distances only. Number of samples per
vowel: 48, degrees of freedom: 38, “*” significant with alpha = .05

Vowel R2(linear) R2(all) F

/i:/ .66 .76 1.34
/u/ .49 .62 1.10
/@/ .38 .78 5.86*
/eI/ .16 .43 1.53
/aU/ .36 .47 0.67
/aI/ .40 .64 2.15

Table 4.4: The contribution of delta distances to the perceived quality. “*” significant
with alpha = .05



Chapter 5

Discussion and Future Work

We noted earlier that a linear weighted cross-fading can produce smooth yet unnaturally

shaped formant trajectories; in addition, we noted that the precise details of how to

cross-fade a specific pair of units may be highly context-dependent. We thus proposed to

use trainable parameterized cross-fading, in which these details are provided by context-

sensitive parameters. For this reason, a perceptually-validated cost function is necessary.

This paper reports a study on the feasibility of developing such a perceptual cost

function. Toward this end, a special corpus was designed to produce a variety of shapes

of formant frequency trajectories in different linguistic environments. A perceptual ex-

periment was performed to determine if we could predict perceptual quality of output

speech from acoustic distance measures. We generated a range of synthetic/natural stim-

ulus pairs, where the synthetic stimuli were generated using three types of cross-fading

models, applied to different regions in the vowel. We made sure that the synthetic stimuli

covered a wide range of acoustic constellations, as measured by distances in the frequency

and delta-frequency domains between the units in the first, second, and third thirds of the

vowel region. We then applied these same six distance measures to compare synthetic (i.e.,

cross-faded) and natural (i.e., target) trajectories. A multiple linear regression model was

trained for each vowel based on the perceptual score and these distance measures. The

results show that the perceptual cost function can be reliably predicted from the distance

measures. Moreover, the results support our hypotheses that: a) the quality of the output

speech is influenced by the shape of formant trajectories in the entire region across the

vowel; and b) human perceptual scores are correlated to both absolute distance and the

first derivative of absolute distance of formant trajectories.
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Concatenative speech synthesis is still the most widely-used TTS system in current

speech technology research. We believe it will have many potential applications in the

future. The biggest obstacle to generating natural sounding synthetic speech remains to

minimize the overall unit selection cost without sacrificing either concatenation cost or

target cost. A lot of work has been done to reduce prosodic and speech spectral dis-

continuities during concatenation. The study presented in this dissertation is just the

beginning of a series of studies on developing an unit-dependent trainable parameterized

cross-fading weight function to generate more natural-looking speech spectral feature tra-

jectories and thus better-sounding output speech. The next steps for this study are to:

1) define parameterized families of cross-fading functions, i.e., use different types of cross-

fading function for different concatenation units; 2) train the mapping between unit pair

features and the parameters in the cross-fading function by minimizing a distance measure

that compares the natural trajectories with the cross-faded trajectories; and 3) apply the

trained cross-fading function during concatenation with proper speech signal processing

methods.

Future work includes getting data from more speakers, including more phoneme classes,

particularly consonants, in the study and training the cost function on other spectral dis-

tance measures as suggested in earlier work about perceptual prediction models based on

the spectral distances [14, 5]. With an optimal distance measure for certain spectral fea-

ture, we can train perceptual cost functions for more phonetic classes and train the optimal

cross-fading functions for each phoneme classes using these perceptual cost functions.
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