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Abstract 

 Neuropsychological test scores provide a valuable tool for evaluating 

cognitive function and identifying cognitive decline.  Unfortunately floor and 

ceiling effects, the methods for determining summary score information, and 

subject dropout (known as longitudinal censoring) are all drawbacks that inhibit 

the value of these tests for evaluating cognitive performance.  By developing 

models which address these drawbacks, better estimates of cognitive 

performance can be obtained from score data.  Earlier diagnosis, and possibly 

treatment, of cognitive decline may be possible with these improved score 

estimates. 

 In this thesis we utilize censored normal (Type 1 Tobit) models for 

longitudinal score data subject to both ceiling and floor effects. Evaluation of 

ceiling-afflicted data is done on the Boston Naming Test (BNT) while evaluation 

of floor-afflicted data is done on the Word List Delayed Recall (WLDR) test. 

Simulations show that failing to account for ceiling effects results in improper 

estimation of change points as well as population decline estimates that are 

significantly different than true values.  Simulation shows that in longer studies 

failing to account for informative dropout results in an overestimation of 

population mean and an underestimation of population variance. 

 Prediction of scores at the fourth follow-up visit as well as the ability of 

models to classify subjects with Mild Cognitive Impairment (MCI) were evaluated 

for both BNT and WLDR using standard normal and Type 1 Tobit models. In the 

BNT, a model with quadratic decline with respect to time resulted in a classifier 
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with an area under the Receiver Operator Characteristic (ROC) curve of 0.73 for 

the Tobit model, and 0.69 for standard normal, suggesting slight improvement in 

classification of cognitive impairment when accounting for the ceiling.  Mean 

squared error of predicted fourth follow-up score values was 7.95 for the Tobit 

models and 8.05 for standard normal models. In the Word List Delayed Recall, a 

more widely utilized test with more data available for evaluation, a model with 

quadratic decline in time resulted in a classifier with an area under the ROC 

curve of 0.68 for Tobit models and 0.63 for standard normal models.  The 

classifier based on the Tobit model had higher sensitivity at all ranges of 

specificity.  Mean squared error of predicted fourth follow-up scores was 4.95 for 

the Tobit model and 5.35 for the standard normal model.  Accounting for ceiling 

effects improves both classification accuracy of cognitively impaired subjects, as 

well as score prediction for all subjects. 
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1. Introduction 

People are now living longer healthier lives thanks to advances in health 

care and major improvements in healthy lifestyles. The increases in life 

expectancy combined with a reduction in mortality due to other causes such as 

cardiovascular diseases and certain cancers have resulted in higher prevalence 

of neurodegenerative diseases; with cognitive decline and physical decline 

becoming a greater concern than ever before.  Although cures for these 

conditions may not be readily available, early detection of cognitive decline can 

allow clinicians to begin treatment and mitigate the symptoms, enabling elders to 

live independently for much longer [1].  Because cognitive decline is progressive, 

it is important to be able to detect pathological declines in cognitive performance 

as early as possible so that treatment may begin before the decline impairs 

functions vital to daily independent living.    

Before people develop dementia that is clearly diagnosable using current 

techniques, they go through a period where they begin to show signs of cognitive 

decline that are not sufficiently significant to interfere with daily life, although 

certain changes in behavior and cognitive ability may be noticed by themselves 

or those close to them.  During this period individuals are said to have Mild 

Cognitive Impairment (MCI) [2].  Although intuitively appealing, the MCI condition 

is not well defined, and the detection of this condition depends on insensitive 

measurements and the subjective judgments and opinions of caregivers, 

clinicians and the clients.  However, there is evidence that early detection of MCI 

allows for intervention sooner [1] and may delay the onset of symptoms of 
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serious dementia.  Currently, an individual’s cognitive functionality is determined 

during a clinical visit, where a clinician interviews the individual and reviews his 

or her scores on a battery of neuropsychological and clinical tests. Even this type 

of assessment is triggered only after a primary care physician recommends such 

visits because of the complaints of the elderly individual or his or her informal 

caregivers. In any case these assessment visits occur at best infrequently.  It 

would be beneficial then to be able to utilize the information from these tests over 

time to evaluate people’s risk for developing dementia, ideally at an earlier point 

in time than they are currently being diagnosed with MCI.  Additionally, these test 

scores may be used in longitudinal drug trials to evaluate the efficacy of drugs 

that are designed to alter the rate of change in specific cognitive functions.  To 

that end, we should strive to develop models that accurately reflect changes in 

test scores over time for both healthy as well as pathological aging. 

 There has been a great deal of research done on estimating the 

rates of decline in neuropsychological and clinical measures, where a typical 

period between visits is six months to a year.  MCI is still not well defined and the 

diagnostic criteria have been inconsistently applied in studies, making it difficult 

to compare the results [2].  There are likely different types of MCI depending on 

the idiopathic nature of the disease and diagnostic criteria being used.  The most 

thoroughly studied form of MCI is amnestic MCI, which is defined by Petersen as: 

having a memory complaint, an objective measure of memory impairment 

relative to age, an otherwise preserved cognitive function, intact functional 

capabilities, and failing to meet the criteria for dementia [3].  Other forms of MCI 
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include multiple-domain slight-impairment MCI and single-domain non-memory 

MCI. Prior researchers have attempted to address some or all of three primary 

challenges with longitudinal data analysis on cognitive decline: identifying from 

baseline examination subjects who will go on to develop cognitive impairment, 

estimating the underlying rate of decline for healthy versus impaired subjects, 

and mitigating the effects of subject dropout on estimation parameters. The 

diagnosis of MCI is often based off the Clinical Dementia Rating scale (CDR), a 

tool used by clinicians to assess the severity of dementia. The CDR score is 

derived from a structured interview, and has a scale ranging from 0: not impaired, 

0.5: very mild dementia to 3: severe dementia. 

A great deal of effort has been made to address the first challenge: 

identifying differences between a population that will go on to develop MCI and 

one that remains healthy in the near-term by utilizing baseline measurements or 

differences between baselines and follow-up.  J. Verghese et al. used analysis of 

covariance on gait measures and determined that subjects who develop MCI 

have lower velocity and shorter stride length when walking than healthy subjects 

[4], while other measures such as cadence did not differentiate the groups. In this 

study, MCI was diagnosed by a neuropsychologist based on scoring 1.5 standard 

deviations below age-appropriate mean in tests of a cognitive domain, but 

without a diagnosis of dementia. R. Camicioli et al. used ANOVA on the “time to 

walk 30 feet” test.  They found that subjects who develop MCI under their 

definition took longer to walk 30 feet than healthy subjects even at the initial visit 

[5], where in this case MCI was defined as a single visit with a CDR of 0.5. 
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Rabbitt et al. estimated practice effects as a difference between baseline and 

follow-up on AH4-1 intelligence test scores and found that there was a significant 

difference between groups stratified by intelligence on the AH4-2 test [6]. These 

studies have shown that are measureable differences in the score distributions 

between the two populations and indicate the promising possibility that test 

scores may be used to determine individuals who are at risk for MCI, but who 

have not yet reached that level of impairment. 

The second challenge that has been addressed is estimating the rate of 

decline in test scores or cognition over time.  These estimates are useful both for 

drug studies as well as for attempting to build better models for predicting 

subjects who will develop MCI.  The primary goal is to estimate the rate of 

decline in test scores and relate it to the rate of decline of cognition, as well as be 

able to better predict future scores based on cognitive condition. The sequence 

of test scores y for an individual i at observation j can be modeled as a mixture of 

population and individual effects such that 

 (1) 

where β are the coefficients for the fixed (population) effects, xij are the 

covariates for the fixed effects, ui are the coefficients for the random effects, and 

zij are the covariates for the random effects, and εi is measurement error of the 

test. This is a basic linear mixed model. In longitudinal studies, the index j 

typically represents which clinical observation it is, starting with 0 at baseline and 

incrementing at each follow-up visit. The fixed effects are the non-random 

regression parameters that define how the population changes over time. The 
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random effects are the parameters that determine how the individuals vary within 

that population, possibly with a different set of covariates, although it is common 

to simply use the same covariates for both the fixed and random effects.  The 

covariates in longitudinal studies are observable measures that are likely to affect 

the outcome variable y, such as age, education, time since diagnosis, and 

comorbidity. In equation (1), variances are defined such that var(u) is an 

unknown covariance matrix, and var(ε) = 2 I , a convention which allows non-

zero covariance between random effects but insures independence between 

fixed effects.  A change point   can be found for the population by adding it as a 

model parameter and fitting different curves for t<  and t ≥ , where t is a time 

measured from the clinical observation index j (common choices are age or time 

since baseline).  Often the variable of interest is transformed so that it is linear 

with respect to the covariates. H. Jacqmin-Gada, D. Commenges, and J. 

Dartigues used a mixed model to fit scores on the Benton Visual Retention Test. 

Their fit was linear before an individual changepoint i , and cubic after the 

changepoint [7]. They found that the 95% confidence interval for their prediction 

became wider as dementia progressed, indicating an increase in a performance 

variance across the population.  Higher education was associated with very little 

decline followed by a later change point and then a very rapid decline, although it 

is not clear if this is simply because the more highly educated subjects were 

already performing at the top end of the test even after some amount of cognitive 

decline, resulting in a test design that masked the decline in the highly educated 

subjects. D. Howieson et al. defined MCI as 2 consecutive visits with a CDR of 
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0.5.  They examined four measures: Wechsler Memory Scale, Logical Memory I 

and II Story A, category fluency for animals, and Block Design.  For each 

measure they fit a separate longitudinal mixed model with two linear declines 

separated by a population change point   for MCI subjects, and a single linear 

model for healthy subjects.  All four measures indicated that   occurred prior to 

the date of diagnosis [8].  Logical memory tests showed differences between the 

groups prior to the change point, with healthy groups actually improving on the 

tests as they aged.  This could be due to a practice effect, which is common 

amongst healthy individuals. P. Rabbitt et al. determined that the degree of such 

practice effects in healthy individuals depends on age and baseline score ability 

[6].  They also noted both floor and ceiling effects that resulted in nonlinearities in 

the practice effects.  This was because subjects who performed very poorly were 

the ones who were already much declined, and showed very little practice effect 

due to that, but subjects who performed very well couldn’t really improve 

because they were already near the top and so they didn’t show much 

improvement either. Subjects whose performance was in the middle showed the 

greatest increase in score on follow-up due to practice effects. A. Zehnder et al. 

noted that subjects who went on to develop dementia in the BASEL cohort did 

not show practice effects while those that remained healthy did [9] but that the 

effect did not improve classification over just using baseline score data. 

The third challenge that researchers attempt to address is missing data 

and subject dropout.  Missing measurements and subject dropout are common 

forms of censoring in longitudinal studies.  If the missing data is not Missing 
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Completely at Random (MCAR), then not modeling the missing observations 

leads to biased estimates of the population parameters. MCAR the missing 

observations are independent of both observable variables and unobservable 

parameters. Other forms of missing data are particularly problematic when trying 

to identify a disease population, especially if the probability of dropout is 

dependent on variables, observable or not, relating to the disease.  The 

measurements can be considered Missing at Random (MAR) when the 

distribution of missing data dmi, depends only on observed outcomes yi
obs, or it 

can be Missing Not at Random (MNAR) where the distribution of missing data 

can depend on both observed and unobserved outcomes.  Data that is MAR is 

managed by modeling the dependencies and testing on the observations. 

Several approaches have been taken to model missing data, and if it is 

handled poorly (such as Last Observation Carried Forward, a method where all 

missing observations after dropout are assumed to have the value of the last 

non-missing observation) it can lead to incorrect conclusions [10], [11]. Dropout 

can leave the remaining data with a non-normal distribution, in which case a 

median regression model may provide better estimators [12]. L. Su and J. Hogan 

developed varying-coefficient models (VCMs) that differentiated between 

administrative and other dropout methods [13]. Yuan and Little [14] implemented 

Mixed-Effect Hybrid Models (MEHMs) to jointly model the mechanism for missing 

data and the outcome process. Their model is based on a specific factorization of 

f(Di,yi,bi|xi,θ), the joint distribution of the observed outcomes yi, the random 

effects bi, and the dropout times Di on covariates xi and model parameters θ, 
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where i is a subject index.  In a simulated data study they found that the MEHM 

provided nonbiased estimates of population parameters when the data was MAR 

and MNAR, but normally distributed. Unfortunately, in data with ceiling and floor 

effects, such as the scores of many neuropsychological tests, the normality 

assumption often does not hold true and recorded scores may in fact be subject 

to censoring whereby the test is too easy for a subset of the population, and they 

score at the ceiling. D. Hedeker and R. Gibbons applied pattern-mixture models 

with missing data patterns as a group effect to address longitudinal censoring in 

Inpatient Multidimensional Psychiatric Scale Item 79 (IMPS79) data [15], with 

improvements in parameter estimates over models that did not include missing 

data patterns. 

 A great deal of work has gone in to addressing the issues of identifying 

differences in the test scores between healthy and cognitively impaired subjects, 

as well as examining the rate of decline of those scores as a function of healthy 

or pathological gaining under longitudinal censoring. Unfortunately, these 

methods assume that the scores are a direct representation of the cognitive 

function of interest without imposing any within-test censoring. This is not the 

case for tests that contain a fixed number of items, such that the score has a 

maximum possible value of C (the ceiling) and a minimum possible value of F 

(the floor).  An example of a test with a significant ceiling effect is in Figure 1.  

Failing to account for the ceilings and floors in these tests can lead to incorrect 

estimates of changepoints and rates of change.  Addressing the issue of ceiling 

and floor effects on longitudinal data is the focus of this thesis. 
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Figure 1 – Example of a neuropsychological test with significant ceiling effects: the 30-
item Boston Naming Test, where a score of 30 is the highest possible, and many 

subjects achieve it. 
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2. Hypotheses and Research Aims 

 Tests with clear ceiling and floor effects are those that are made up of a 

set number of items, resulting in a range of possible integer scores. Due to this 

scoring system, they appear to be binomially distributed, although assuming that 

they can then be modeled as normally distributed due to the normal 

approximation of the binomial distribution is a potential pitfall. There has been a 

limited amount of prior exploration of within-test censoring due to floor and ceiling 

effects. H. Dodge et al. utilized a pattern-mixture model to address missing data 

bias in the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) 

Word List Delayed Recall (WLDR) over a 12-year longitudinal study. In their 

model they accounted for the floor and ceiling effects of the WLDR, but did not 

explore if accounting for them had any effect on their outcomes [16]. More 

recently, L. Wang et al. showed that data that changed at a constant linear rate 

with an imposed ceiling would appear nonlinear if the ceiling was not accounted 

for [17]. In their work, they were concerned with short term test growth over 

repeated measurements with fixed time intervals. They showed that not 

accounting for the ceiling on the test lead to an underestimation of the population 

mean and the fixed rate change parameters of the growth curve model. B. Uttl 

explored the effects of ceilings on test validity and reliability for tests with a 

presumed normal distribution and significant ceiling proportion [18]. He found that 

intertrial correlation was smaller for shorter tests with larger ceiling proportion, 

and that correlations between shorter and longer tests designed to measure the 

same thing were improved if the ceiling effects were accounted for. 
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 In this work, I will address the results of not accounting for floor and ceiling 

effects on longitudinal decline analysis with variable test-retest intervals. When 

not accounting for the floor and ceiling effects, I assume that the outcome 

variable would then instead be assumed normally distributed. Otherwise, I utilize 

a censored normal model [19], where the true distribution of the variable of 

interest if there were no floor or ceiling on the test is 

 (2) 

but the scores are censored at the floor F and the ceiling C such that the scores 

that are actually observed are 

 

 
(3) 

This is known as a Type I Tobit model. When fitting the changes of the 

underlying model in (2) over time subject to the ceiling and floor effects present in 

(3), I will use the term “Tobit Decline Model”.  There are three hypotheses being 

tested in this work: 

 

Hypothesis 1: In ceiling-censored normally distributed data, parameters of single 

timepoint regressions are miss-estimated when the ceiling is not accounted for. 

Hypothesis 2: In ceiling-censored normally distributed data with a longitudinally 

declining population, the rate of population decline is underestimated when the 

ceiling is not accounted for.  

Hypothesis 3: When fitting a longitudinal decline model to two populations where 

the observed measurement is censored at the floor and ceiling, not accounting 
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for the censoring at floor and ceiling leads to greater errors in score prediction 

and a reduction in classification accuracy between the two populations. 

  

 The first aim of this thesis is to show through simulation that the Tobit 

Decline Model can be utilized to more accurately estimate single-timepoint 

parameters, rate of decline, and decline changepoint than a standard linear 

regression model. 

 The second aim of this thesis is to show that the Tobit Decline Model 

estimates the observed scores in empirical test data better than a standard linear 

mixed model, as well as improves classification accuracy of Mild Cognitive 

Impairment (MCI).  Two tests will be examined.  The first test is the 30-item 

Boston Naming Test (BNT30) which has a significant ceiling proportion at 

baseline. The second test is the WLDR test, which has subjects who perform at 

both the floor and ceiling. 



13 

 

3. Fitting and Model Selection Methods 

As the primary concern of this thesis is the effect of not accounting for 

ceiling and floor effects in a model and not the methods used to fit that model, I 

will not explore the different methods for fitting longitudinal Tobit Decline Models.  

Since in future work it is likely I will utilize distributions that do not have closed 

form analytical solutions, the model fitting in this paper will be done with Markov 

Chain Monte Carlo (MCMC) methods.  Model parameters are estimated using 

Bayesian inference Under Gibbs Sampling with the WinBUGS software [20].  In 

Gibbs sampling, it is necessary to provide prior distributions for all of the model 

parameters, although those priors need not be conjugate or informative.  An 

initial estimate of the model parameters θ(0) is chosen, and nk samples are 

generated by sampling θ(k) from 

 
(4) 

for the nl parameters. The model parameters θ in the Tobit Decline Model as well 

as standard normal mixed models are the fixed and random effect coefficients β  

and u from equation (1).  After a burn-in period where parameter estimates are 

still converging towards the true values, the samples of θ converge to a stable 

estimate and for large k the samples approximate the joint distribution p(θ|y). By 

Bayes’ theorem: 

 (5) 

where p(θ) is the prior probability on the model parameters and p(y|θ) is the 

likelihood. In this work I use non-informative conjugate priors for the model 

parameters. 
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 In this thesis, I will be comparing the performance of censored normal 

models with standard normal models.  For the standard normal mixed model 

described in (1), the likelihood is 

 
(6) 

For the Tobit Decline Model resulting from (2) and (3), the likelihood is 

 

 

(7) 

where Φ() is the standard normal cumulative distribution function and φ() is the 

standard normal probability distribution function and uij is distributed multivariate 

normal MVN(0,Σ). 

 When determining which model is a better fit, it is important to consider 

not only the likelihood but the number of effective parameters in the model, as 

increasing the number of parameters will tend to improve likelihood even if it may 

just be an artifact of over fitting.  In order to determine which of the two models 

better fit the data, deviance information criterion (DIC) is used.  In DIC, the 

deviance of a model is 

 (8) 

and the effective number of parameters is 

 (9) 

Where E[] is the expected value.  The DIC is 
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 (10) 

The larger the DIC, the worse the model fit is. The model with the lowest DIC is 

the one that is considered the correct model for the given data, although small 

differences in DIC are not conclusive due to the value being directly calculated 

from the samples of the Monte Carlo simulation such that a small shift in one 

sample results in a small shift in DIC. 
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4. Effect of Censoring on Parameter Estimation 

 Not accounting for ceilings in normally distributed data can lead to a 

variety of potential problems when attempting to fit a model to the data.  In this 

chapter I will address three ways in which parameters are incorrectly estimated 

when fitting a model assuming normally distributed data and not accounting for 

the ceiling: miss-estimation of parameters in single timepoint analysis, 

underestimation of the rate of decline in longitudinal data, and improper 

estimation of changepoints in longitudinal decline data.  Simulated data was 

generated in MATLAB and parameter estimation was performed in WinBUGS.  

  

4.1 Single Timepoint Parameter Estimation Subject to Ceilings 

4.1.1 Methods 

 In order to explore the effect of ceilings on single timepoint parameter 

estimation, I simulated a sample population and varied the proportion of the 

observables that were cut off by the ceiling.  A population of N=300 was 

generated such that 

 (11) 

where β0 = 52, β1 = -1, β2 = 2, x1~N(20,25), x2~N(10,4), and ε~N(0,1).  This 

resulted in y being distributed N~(52,42) prior to the application of the ceiling.  

The ceiling was varied so that the proportion of data at the ceiling ranged from 

6.7% to 33% over 5 separate trials. 

 The models fit in WinBUGS were a simple linear regression of the same 

form in (11), as well as a censored normal (Type 1 Tobit) regression model 
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where the ceiling level was known in the censored regression model.  The prior 

distributions of the parameters were β0, β1, β2~N(0,1E-6) and 1/σ2~Γ(1,1).  100 

repetitions were run at each trial.  1000 samples were used for burn-in during the 

Gibbs sampling, and then the next 1000 samples were taken as the parameter 

estimates. 

4.1.2 Results 

Over all trials the censored normal model had a lower deviance 

information criterion (DIC) than the linear regression model.  Average DIC values 

as well as the means and standard deviations of the parameter estimations 

under each model can be found in Table 1.  Figure 2 shows the estimates of 

each parameter for each model as a function of proportion of data at the ceiling. 

 

Figure 2 – Parameter estimates and their 95% confidence intervals for both the 
censored normal model and the standard normal model as a function of ceiling 

proportion. 
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The censored regression model estimates the parameters very close to their true 

values even with as much as 33% ceiling proportion (Table 1), with all 95% 

confidence intervals for the estimates containing the true values.  The standard 

normal regression model is very sensitive to ceiling effects and the true values β1 

of β2 and fall outside the 95% confidence intervals of the estimates.  The 95% 

confidence interval of the estimate of β0 contains the true value out to 33%, but 

the trend indicates that it will fall outside at any higher ceiling proportion. 

 

 True Normal Censored Normal 

Ceiling 
Proportion 

(%) 
NA 6.7 13.3 20.0 26.7 33.3 6.7 13.3 20.0 26.7 33.3 

DIC NA 990 1100 1169 1225 1254 806 757 705 654 599 

β0 52 
51.8 
(.42) 

51.6 
(.59) 

51.3 
(.63) 

51.0 
(.72) 

50.6 
(.69) 

52.0 
(.35) 

52.0 
(.39) 

52.0 
(.37) 

52.0 
(.43) 

52.0 
(.45) 

β1 -1 
-.93 
(.02) 

-.86 
(.03) 

-.80 
(.03) 

-.73 
(.03) 

-.67 
(.03) 

-1.0 
(.01) 

-1.0 
(.01) 

-1.0 
(.02) 

-1.0 
(.02) 

-1.0 
(.02) 

β2 2 
1.9 

(.05) 
1.7 

(.06) 
1.6 

(.06) 
1.4 

(.07) 
1.3 

(.07) 
2.0 

(.03) 
2.0 

(.03) 
2.0 

(.04) 
2.0 

(.04) 
2.0 

(.04) 

σ 1 
1.3 

(.11) 
1.5 

(.12) 
1.7 

(.12) 
1.9 

(.12) 
1.9 

(.11) 
1.0 

(.05) 
1.0 

(.05) 
1.0 

(.04) 
1.0 

(.05) 
1.0 

(.05) 

μy 52 
51.8 
(.08) 

51.6 
(.1) 

51.3 
(.12) 

50.9 
(.16) 

50.6 
(.18) 

52.0 
(.06) 

52.0 
(.06) 

52.0 
(.06) 

52.0 
(.08) 

52.0 
(.08) 

Var(y) 42 
37.4 
(1.2) 

32.9 
(1.5) 

29.4 
(1.5) 

25.3 
(1.5) 

22.0 
(1.6) 

42.1 
(.9) 

41.9 
(1.0) 

42.1 
(1.2) 

41.9 
(1.1) 

42.0 
(1.3) 

Table 1 – Comparison of true population parameters with estimates from normal and 
censored normal models.  Numbers in () are the standard deviations of the estimates. 

 

The model fits generate an estimate for the pre-censoring distribution of 

the observable y as well.  The estimates of the mean and variance of y for all 

trials are found in Table 1.  
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Figure 3 – Estimates of the mean and variance of the observable y as well as their true 
values as a function of ceiling proportion. 

 

Figure 3 shows the estimates of the mean and variance as a function of ceiling 

proportion.  The censored normal model closely represents the true distribution 

while the standard normal model underestimates both the mean and variance at 

all ceiling proportions tested.  The 95% confidence intervals for both estimates of 

the standard normal model do not contain the true values. 

 

4.2 Rate of Longitudinal Decline Subject to Ceilings 

4.2.1 Methods 

Next, to explore the effect of ceilings on estimation of the rate of decline, I 

simulated a normally distributed sample population with a fixed proportion (15%) 

of the observables that were cut off by the ceiling at baseline and declined the 

population at a constant rate across all individuals for a period of four years 
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which covered five total samples for each simulated subject.  A population of 

N=300 was generated such that 

 (12) 

where β0 = 52, β1 = -3, β2 = 2, x1i0~N(0,16), x2~N(10,4), and ε~N(0,1).  This 

resulted in y being distributed N~(72,151) at baseline, prior to the application of 

the ceiling.  Four additional time samples were generated for each individual i 

such that x1ij = x1i0+0.8j. 

The models fit in WinBUGS were the same form of linear regression from 

the section 4.1.  The prior distributions of the parameters were once again β0, β1, 

β2~N(0,1E-6) and 1/σ2~Γ(1,1).  100 repetitions were run, with 1000 samples used 

for burn-in and the next 1000 samples were taken as the parameter estimates. 

4.2.2 Results 

  The censored normal model (DIC = 3862) fit the data better than the 

standard normal model (DIC = 6719).  Parameter estimates for each of the 

models are shown in Table 2.  Once again, all of the true parameters of the 

distribution were within the 95% confidence intervals of the estimates of the 

censored normal model.  For the standard normal 

 True Normal Censored Normal 

β0 52 
52.9 
(0.6) 

52.0 
(0.1) 

β1 -3 
-2.7 
(.06) 

-3.0 
(.01) 

β2 2 
1.8 

(.07) 
2.0 

(.01) 

σ 1 
2.3 
(.3) 

1.0 
(.02) 

Table 2 – Comparison of true population parameters with estimates from normal and 
censored normal models.  Numbers in () are the standard deviations of the estimates. 
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model, the only parameter that contained the true value within the 95% 

confidence interval was β0. 

 Figure 4 shows the estimates of the mean of the population as a function 

of time.  The censored normal model captures the mean within its 95% 

confidence interval over the entire time period.   

 

Figure 4 – Estimate of mean score as a function of time. 
 

The mean is outside the 95% confidence interval predicted by the standard 

normal model, but as time increases the estimate trends closer to the true value.  

This is due to more of the data dropping below the ceiling threshold. 
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4.3 Changepoint Estimation Subject to Ceilings 

4.3.1 Methods 

To explore the effect of ceilings on estimation of a changepoint, I 

simulated two sample populations with the same ceiling, but the population 

parameters at baseline were different to generate different ceiling proportions of 

the observables as most changepoint analyses are looking at two populations 

under the same testing conditions and trying to determine when a changepoint 

occurs in each.   Two populations of N=300 were generated such that 

 
(13) 

where β0 = 56 for population 1 and 59 for population 2, β1 = -1, β2 = 3, τ = 4.5 

and ε~N(0,20).  The ceiling was set at 60, which resulted in ceiling proportions of 

20% and 40%.  Later time samples were generated at tj = 2j for j=1…6. 

The models fit in WinBUGS were piecewise linear separated by a random 

population changepoint.  The prior distributions of the parameters were τ, β0, β1, 

β2~N(0,1E-6) and 1/σ2~Γ(1,1).  100 repetitions were run, with 1000 samples used 

for burn-in and the next 1000 samples were taken as the parameter estimates. 

4.3.2 Results 

Under both initial means, the censored normal model had a lower DIC 

than the normal linear regression. Average DIC values as well as the means and 

standard deviations of the parameter estimations under each model can be found 

in Table 3. 
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True 

(Pop. 1) 
Normal 
(Pop. 1) 

Censored 
Normal 
(Pop. 1) 

True 
(Pop. 2) 

Normal 
(Pop. 2) 

Censored 
Normal 
(Pop. 2) 

DIC NA 11341 10950 NA 11256 10375 

β0 56 
55.6 
(1.2) 

56.4 
(1.1) 

59 
57.1 
(1.4) 

58.9 
(1.1) 

β1 -1 
-1.1 
(.03) 

-1.2 
(.03) 

-1 
-.82 
(.04) 

-1.1 
(.05) 

β2 -3 
-3.0 
(.02) 

-3.0 
(.01) 

-3 
-3.1 
(.06) 

-3.1 
(.06) 

σ 4.5 
5.6 

(.75) 
6.0 

(.68) 
4.5 

5.5 
(.83) 

6.3 
(.70) 

τ 4.5 
4.9 

(.24) 
4.7 

(.18) 
4.5 

4.7 
(0.20) 

4.5 
(0.16) 

Table 3 – Comparison of true population parameters with estimates from normal and 
censored normal models.  Numbers in () are the standard deviations of the estimates. 

 

 As is apparent in Table 3, neither model was able to accurately estimate 

the standard deviation of the error term.  However, the censored normal model’s 

estimate of the changepoint for both trials contained the true value within the 

95% confidence interval.  The normal model underestimated the population 

mean in the second (40% of observables censored) trial. 
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5. Application to Test with Significant Ceiling Proportion: Boston Naming 

Test 

 Since it is clear from simulations that both baseline population and 

longitudinal decline parameters are poorly estimated by normal linear regression 

models, it is valuable to compare the performance of censored normal Tobit 

Decline models with standard normal linear mixed models on empirical data with 

significant ceiling effects.  The test that I will be using that has a significant ceiling 

effect is the 30-item version of the Boston Naming Test (BNT30).  The BNT30 is 

a confrontation naming test where subjects are presented with line drawings and 

must identify what they represent.  The score is the sum of correct answers.  

There is a significant ceiling effect on this test due to high probability of correctly 

identifying the items on the test. 

 The data for this section is pooled from four long term longitudinal studies 

conducted by the Layton Aging and Alzheimer ’s Center at Oregon Health & 

Science University.  The studies are the Oregon Brain Aging Study (OBAS), the 

Klamath Exceptional Aging Project (KEAP), the African American Dementia and 

Aging Project (AADAPt), and the Intelligent Systems for Assessment of Aging 

Changes study (ISAAC).  OBAS began in 1989, with an initial recruitment of very 

healthy adults aged 55 or older.  A second arm was added in 2004, with subjects 

aged 85 or older who were of more average health than the initial arm.  Subjects 

are seen annually and administered a battery of neuropsychological tests and 

given a full clinical evaluation.  AADAPt follows African American individuals 

aged 65 or older and administers a battery of neuropsychological tests every 6 
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months.  KEAP began in 1999 as an effort to add a rural population to those 

already being studied at the Layton Aging and Alzheimer’s Center.  ISAAC is a 5-

year study that has enrolled 164 subjects ages 70 and up in the Portland, OR 

metro area.  Subjects received a computer and free internet upon enrollment in 

the study and undergo continuous in-home monitoring with motion sensors and 

computer games.  Additionally, they receive a battery of neuropsychological tests 

annually as well as a full clinical diagnosis.  A large, diverse population can be 

examined by pooling the data across these studies. 

 

Figure 5 – Comparison of BNT60 and BNT15 scores for the same subjects at baseline. 

 

 It was a preliminary analysis of the 15 and 60-item BNTs that indicated a 

promise for Tobit Decline Models to improve estimation.  The BNT60 shows less 

of a ceiling effect than the 15 or 30-item versions, and despite reports that the 
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psychometric properties are the same on the shorter versions of the test [21], 

Figure 5 shows a significantly different distribution for the 15 and 60 item 

versions.  The Pearson’s correlation coefficient of just the scores at baseline is 

r=0.68. However, when both sets of baseline scores were fit to a censored normal 

distribution, the Pearson’s correlation coefficient between the latent scores was 

r=0.98 and the shapes of the distributions were more similar (Figure 6).  This 

seemed to indicate that censoring in the shorter BNT15 was cutting off 

performance at a level below what was measured by the longer BNT60. 

 

Figure 6 – Comparison of baseline distribution of the latent score y* when fit to a 
censored normal distribution. 

 

For this work, I am only considering subjects who were not cognitively 

impaired during enrollment in the study and who have at least three follow-up 

visits in which a BNT30 score was recorded. Three follow-ups is a short time 

period, but it was necessary to maintain the statistical power in the analysis. 
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Furthermore, for the prediction of mild cognitive impairment (MCI) it is unlikely 

that a subject will have many visits where they take a full neuropsychological 

battery before they develop cognitive impairment, given how low the frequency 

the administration of those test batteries is.  MCI will be defined as two 

consecutive visits with a CDR of 0.5 or greater.  Across all of the studies, N=225 

subjects meet the criteria, NMCI=25 of which have developed MCI.  Figure 7 

shows a histogram of baseline BNT30 scores from the subjects who meet these 

requirements; the ceiling effect is quite evident. 

 

Figure 7 – Histogram of the baseline BNT30 scores for the subjects meeting the criteria 
for analysis. 
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5.1 Decline Trajectories with Significant Ceiling 

5.1.2 Methods 

Estimating the differences in rates of decline between healthy and 

pathological aging can provide a means for identifying cognitively impaired 

subjects as well as validate the effects of treatments.  Here I will compare two 

models of decline, one where both healthy and cognitively impaired subjects 

decline linearly with respect to time, but at different rates, and another where the 

decline of cognitively impaired subjects is quadratic with respect to time.  The 

mixed model employed is: 

 (14) 

where MCI is a group indicator that is 1 for MCI subjects and 0 for healthy 

subjects, x1i the age at baseline, x2ij is the time elapsed at visit j since baseline, 

and x3ij is either the time elapsed or the square of the time elapsed, depending 

on the model. In this model the ceiling C=30 and the floor F=0.  Initially education 

was included as a possible covariate as well but the coefficient was 0 so it was 

dropped from the model.  The subject-specific coefficients ui are assumed to be 

distributed mean 0 with covariance matrix Σ, and ε is assumed to be distributed 

N~(0,σ2). 

Fitting the models in WinBUGS, the prior distributions of the parameters 

were β0, β1, β2, β3~N(0,1E-6) and 1/σ2~Γ(1,1). The prior distribution of Σ is 

~Wishart(I,4). For each model 1000 samples used for burn-in and the next 1000 

samples were taken as the parameter estimates. 
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5.1.2 Results 

The results of the fits for the quadratic and the linear models are listed in 

Table 4.  If the 95% confidence interval for the parameter estimate includes 0, 

the parameter is negligible and dropped from the model. The results in Table 4 

indicate that there is post-baseline time related decline for healthy subjects as a 

group.  This could be due to the short time window of the analysis (average time 

from baseline to last follow-up 3.9 years).  The random-effects of the model 

indicate an increased variance associated with age in all subjects.  All decline 

models showed a time dependent decline for the MCI group. When adjusting for 

the parameters that drop out, model reduces to 

 (15) 

The implications of this model are that for subjects who are not at risk for 

developing MCI the test is simple enough that they do not show any age-related 

decline, but subjects who are at risk for MCI have an annual decline that is 

estimated to be slightly faster under the Tobit Decline Model on average.  

 Linear (Tobit) Linear (Normal) Quadratic (Tobit) Quadratic (Normal) 

DIC 3628 3732 3632 3735 

β0 31.5(1.9) 33.0(2.5) 28.2(1.9) 33.0(2.3) 

β1 -.06(.02) -.08(.03) 0 -.10(.03) 

β2 0 0 0 0 

β3 -1.1(.22) -1.0(.21) -.33(.09) -.31(.09) 

σ 1.7(.06) 1.6(.05) 1.7(.06) 1.6(.05) 

Σ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 
.55 

(.11) 
0 0 0 

.44 
(.09) 

0 0 0 
.25 

(.09) 
0 0 0 

.26 
(.09) 

0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 4 – Parameters estimates of the linear and quadratic mixed models on the 225 
subjects with BNT30 data. Values in the () are the standard deviations of the estimates. 
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5.2 Score Prediction and Identification of Mild Cognitive Impairment 

5.2.1 Methods 

 The two primary purposes for developing cognitive decline models in 

aging populations are to identify subjects who will develop cognitive impairment, 

and to improve score prediction for model validation in treatment efficacy studies.  

With that in mind, both classification and score prediction can be analyzed 

together.  I begin by classifying subjects using a Naïve Bayes classifier and 

computing the log of the likelihood ratio 

 
(16) 

where p(MCI) and p(h) are the prior probabilities of MCI and healthy populations, 

respectively. Then, p(yij|θMCI) is the likelihood (equation 6) of the model when 

MCI=1, and p(yij|θh) is the likelihood of the model when MCI=0.  The classifier is 

trained on a training set so that the probability distributions p(MCI|yi) and p(h|yi) 

can be estimated. Subjects in the evaluation set are then classified using the 

ratio of these estimated distributions.  They are assigned to the MCI group if the 

log-likelihood ratio is greater than a threshold, and are considered healthy 

otherwise.  The priors are estimated from the proportions of MCI and healthy 

subjects in the training set, and the classification threshold is varied to generate a 

Receiver Operating Characteristic (ROC) curve.  The ROC curve provides a 

visual representation of the sensitivity of the classifier as a function of reduction 

in specificity. The area under an ROC curve is a measure of the quality of a 

classifier. A perfect classifier always correctly assigns groups and has an area 
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under the ROC curve of 1. A completely random guess would result in a linear 

ROC curve with slope 1 and an area under the curve of 0.5.  For this analysis, 

the training set consisted of the subjects who only completed four score 

evaluations (Ntr=278, NtrMCI=13).  The evaluation set consisted of subjects who 

had completed at least five score evaluations, although it was only evaluated on 

their fifth (Nev=47, NevMCI=12). 

To evaluate score prediction, the evaluation set’s subject scores are then 

predicted for their fifth evaluation which occurs at time ti5 after baseline and the 

predicted score is compared to their actual score. The predicted score value 

depends on the parameters of the model, which is in turn dependent on the 

classification.  The score predictions are evaluated by determining the mean 

squared error of the score fifth evaluation score predictions under the prior 

probability distribution resulting in 80% sensitivity to MCI. 

5.2.2 Results 

ROC curves for the classification under the linear and quadratic models 

from section 5.1 are shown in Figures 8 and 9, respectively.  The areas under the 

ROC curve (specified AUC) as well as the specificity of the model when the 

priors are chosen for 80% sensitivity to prediction of MCI as a positive are 

reported in Table 5. Mean squared error of the score fifth evaluation score 

predictions under the prior probability distribution resulting in 80% sensitivity to 

MCI are reported in Table 5. 
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Figure 8 – ROC curve of the linear-in-time decline models for the Tobit Decline Model and the 
normal decline model.  The black line is a totally random classifier. 

 
Figure 9 – ROC curve of the quadratic-in-time decline models for the Tobit Decline Model and the 

normal decline model.  The black line is a totally random classifier. 
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 Linear (Tobit) Linear (Normal) Quadratic (Tobit) Quadratic (Normal) 

AUC .70 .68 .73 .69 

Spec80 .458 .438 .457 .457 

MSE80(y5) 9.81 8.52 7.95 8.05 

Table 5 – Classification and score prediction results on the BNT30.  AUC is area under 
the ROC curve, Spec80 is the specificity when sensitivity is .80, and MSE80 is the mean 

squared error of score prediction when for the classification model with a sensitivity of 
.80. 

 

The results in Table 5 indicate that the best model with respect to area 

under the ROC curve was the Tobit Decline Model where the MCI group declined 

as a quadratic function of time since baseline.  This model also resulted in the 

smallest mean squared error of the estimates of the score at the fifth time point. 
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6. Application to Test with Floor and Ceiling Effects: Delayed Word 

Recall 

In addition to data with extreme ceiling effects, it is also valuable to 

compare the performance of censored normal models with standard normal 

models on empirical data both floor and ceiling effects.  The floors also lead to 

biased estimates of the model parameters, but tests that exhibit both floor and 

ceiling effects also have the advantage of covering a wider range of 

measurement than tests with just significant ceiling effects.  The test that I will be 

using that has both floor and ceiling effects is the CERAD 10-Word List Delayed 

Recall (WLDR).  The WLDR is a free recall test where subjects are presented 

with a list of 10 words that they then have 3 immediate recall trials with, then are 

distracted by a story task and are then asked to once again recall the list.  The 

score is the sum of unique words from the list that are correctly recalled. 

For this work, I am again only considering subjects who were not 

cognitively impaired during enrollment in the study and who have at least three 

follow-up visits in which a WLDR score was recorded.  Mild cognitive impairment 

(MCI) is defined as two consecutive visits with a CDR of 0.5 or greater, 

consistent with how it was defined for the 30-item Boston Naming Test (BNT30) 

data.  For the WLDR data, 565 subjects meet the inclusion criteria, 144 of which 

have developed MCI.  Figure 10 shows the distributions of WLDR scores at 

baseline and again at the fourth visit.  A distinct shift towards the floor is evident. 
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6.1 Decline Trajectories with Ceiling and Floor 

6.1.1 Methods 

The mixed model employed for this analysis is the same form (equation 

14) as for the BNT30.  Models employing linear or quadratic decline with respect 

to time for the MCI population are again being compared. For the WLDR test, the 

ceiling C=10 and the floor F=0. The subject-specific coefficients ui are assumed 

to be distributed mean 0 with covariance matrix Σ, and ε is assumed to be 

distributed N~(0,σ2). Fitting the models in WinBUGS, the prior distributions of the 

parameters were β0, β1, β2, β3~N(0,1E-6) and 1/σ2~Γ(1,1). The prior distribution of 

Σ is ~Wishart(I,4). For each model 1000 samples used for burn-in and the next 

1000 samples were taken as the parameter estimates.  

 

Figure 10 – Histograms demonstrating the distribution of WLDR score at baseline and at 
the third follow-up, showing a shift of subjects towards the floor of the test. 
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6.1.2 Results 

The results of the fits for the quadratic and the linear decline models are 

listed in Table 6.  If the 95% confidence interval for the parameter estimate 

includes 0, the parameter is negligible and dropped from the model.  Unlike with 

the BNT30, the WLDR has post-baseline time dependent decline for healthy 

subjects as well as subjects who develop MCI.  This is likely because the WLDR 

is a more difficult test and the distribution of scores is across the entire range of 

possibilities. 

 Linear (Tobit) Linear (Normal) Quadratic (Tobit) Quadratic (Normal) 

DIC 7436 8167 7434 8174 

β0 11.0(1.0) 11.2(.6) 10.0(1.0) 11.2(.6) 

β1 -.057(.012) -.058(.008) -.045(.013) -.058(.008) 

β2 -.093(.029) -.098(.029) -.099(.028) -.10(.03) 

β3 -.30(.06) -.27(.06) -.095(.024) -.083(.022) 

σ 1.3(.03) 1.3(.02) 1.3(.03) 1.3(.02) 

Σ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 
.09 

(.02) 
0 0 0 

.08 
(.02) 

0 0 0 
.09 

(.02) 
0 0 0 

.08 
(.02) 

0 

0 0 0 0 0 0 0 
.13 

(.04) 
0 0 0 

.04 
(.008) 

0 0 0 
.03 

(.006) 

Table 6 – Parameters estimates of the linear and quadratic mixed models on the 565 
subjects with WLDR data. Values in the () are standard deviations of the estimates. 

 

When accounting for the parameters that are dropped due to insignificance, the 

model becomes:  

 (17) 

As was the case with the BNT30 scores, the Tobit Decline Model has a lower 

DIC and thus a higher likelihood than the associated standard normal model, as 

well as a slightly higher average time dependent decline for the MCI group. 
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6.2 Score Prediction and Identification of Mild Cognitive Impairment 

6.2.1 Methods 

In the same way as was done with BNT30 data, classification and 

prediction are evaluated together for the WLDR data.  Classification is done 

using the log-likelihood ratio (equation 16) of the group classification conditioned 

on the regressed score. Regressions are done against the scores of a training 

set to determine the probability distributions for MCI and healthy subjects given 

score estimates exactly as was done with the BNT30 data in section 5.2. The 

priors are taken as the proportions of MCI and healthy subjects from the training 

set, and the classification threshold is varied so a Receiver Operator 

Characteristic (ROC) curve can be constructed.  For this analysis, the training set 

again consisted of the subjects who only completed four score evaluations 

(Ntr=332, NtrMCI=49).  The evaluation set consisted of subjects who had 

completed at least five score evaluations, although it was only evaluated on their 

fifth (Nev=233, NevMCI=95).  

To evaluate score prediction, the evaluation set’s subject scores are 

predicted for their fifth evaluation which occurs at time ti5 after baseline and the 

predicted score is compared to their actual score. The predicted score value 

depends on the parameters of the model, which is in turn dependent on the 

classification.  The score predictions are evaluated by determining the mean 

squared error of the score fifth evaluation score predictions under the prior 

probability distribution resulting in 80% sensitivity to MCI. 
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6.2.2 Results 

ROC curves for the classification under the linear and quadratic models 

from section 6.1 are shown in Figures 11 and 12, respectively.  The areas under 

the ROC curve (reported as AUC) as well as the specificity of the model when 

the priors are chosen for 80% sensitivity to prediction of MCI as a positive are 

reported in Table 7. 

 

Figure 11 – ROC curve of the linear-in-time decline models for the Tobit Decline Model and the 
normal decline model.  The black line is a totally random classifier. 

 

 Linear (Tobit) Linear (Normal) Quadratic (Tobit) Quadratic (Normal) 

AUC .645 .657 .684 .629 

Spec80 .370 .078 .457 .203 

MSE80(y5) 4.87 5.33 4.95 5.35 

Table 7 – Classification and score prediction results on the BNT30.  AUC is area under 
the ROC curve, Spec80 is the specificity when sensitivity is .8, and MSE80 is the mean 

squared error of score prediction when for the classification model with a sensitivity of .8. 
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Figure 12 – ROC curve of the quadratic-in-time decline models for the Tobit Decline Model and 
the normal decline model.  The black line is a totally random classifier. 

 

The results in Table 7 indicate that the best model with respect to area 

under the ROC curve was the Tobit Decline Model where the MCI group declined 

as a quadratic function of time since baseline (also quite apparent in Figure 12).  

However, the Tobit Decline Model with a linear time-dependent decline resulted 

in a slightly smaller mean squared error for the prediction of the fifth score 

evaluation.  Both the linear and quadratic Tobit Decline Models resulted in lower 

mean squared errors than the normal decline models. 
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7. Dropout under Relative Performance Constraint 

7.1 Methods 

 While early estimation of cognitive decline is confounded by ceiling effects 

in data, scores several years after baseline might be overestimated if low 

performers are dropping out and the remaining higher scorers are assumed to be 

distributed in the same manner as the entire population.  To explore the 

possibility of overestimating scores when not accounting for informative dropout, 

we simulated a population of 200 subjects that had scores initially distributed 

y~N(40,16) at age 60.  Scores were declined linearly at an average rate of 0.5, 

with errors at each time point distributed εt~N(0,4).  At age 72, the bottom 7.5% 

of the remaining population was dropped at each followup. 

 To fit the data, the assumptions were that subject relative performance 

within the population remained constant, and that the distribution of scores was 

Gaussian (these are the conditions under which the data was generated).  At 

baseline, we determine the relative performance of each subject by estimating µ 

and σ of the baseline distribution and then calculating 

 
(18) 

Then, at each time point after baseline, estimate µ and σ from the subjects who 

have not dropped out, using the relative performance at the previous time point 

to generate an estimate of the population parameters from each subject.  Then 

the estimate of µ and σ for that time point is the average of the estimates across 



41 

 

remaining subjects.  Estimates of missing subject data can then be generated 

using 

 (19) 

 

7.2 Results 

Results of the population estimates compared to true values for a variety of fits 

are given in Figure 13. 

 
Figure 13 – True population parameters versus estimates obtained directly from data, using last 

observation carried forward, a linear regression across means, and a monotonic regression. 

 

As is apparent in Figure 13; estimating population parameters directly 

from the remaining subject data results in an overestimation of the mean score, 
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as well as an underestimation of the variance.  Using last observation carried 

forward (LOCF) improves population estimates, but provides poor estimates of 

missing individual data and still overestimates the mean.  Linear and isotonic fits 

to the mean using the above estimate methods of relative performance constraint 

for recovering missing data recovered population estimates well (max error 1.22 

on population mean, mean square error of 0.32).  An important note on these 

results is that the relative performance constraint may not hold true.  Subjects 

who begin to develop dementia should be expected to drop relative to the 

population that they were classified with when they were healthy, in which case 

this method could be adopted to check for outliers as a possible method of 

detecting cognitive impairment in future work. 
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8. Discussion and Future Directions 

 Simulation results demonstrate that when observable data is normally 

distributed with a mean dependent linearly on covariates and a fixed standard 

deviation, but censored such that all values above a ceiling C are observed as 

being C, fitting a normal linear regression model without accounting for the 

ceiling results in miss-estimation of the model parameters (Section 4.1). This 

results in an underestimation of the mean and variance of the observable score 

data (y). Fitting the data with a censored normal model recovers the true 

distribution parameters with high confidence. 

 Furthermore, simulation results demonstrate that when observable 

outcomes in a declining population are normally distributed with a significant 

portion censored at ceiling C such that they are observed as C, the rate of 

decline estimated by a normal linear decline model is lower than the actual rate 

of decline.  This results in a lower estimate of the mean of the observables than a 

model that accounts for the censoring (Section 4.2). As time progresses from the 

initial observation point the estimate of the observable population by a normal 

decline model that does not incorporate censoring improves.  This is because the 

effect of the censoring becomes less significant as the data declines, as a 

progressively smaller proportion of the observables are cut off by the ceiling. 

 Simulation results indicate that in noisy data under piecewise linear 

decline with a changepoint τ, when the observable data is censored such that 

values above a ceiling C are observed as C, the estimated location of that 

changepoint under a normal changepoint model is poorly identified.  Applying a 
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censored normal model resulted in a more accurate estimation of the 

changepoint (Section 4.3), although both estimation methods performed poorly. 

 When decline models are applied to empirical data with significant ceiling 

effects at baseline such as the 30-item Boston Naming Test (BNT30) data, the 

likelihood of the data under the Tobit Decline Models exceeds that of a normal 

decline model (Section 5.1).  Furthermore, when evaluating the classification 

accuracy of normal versus Tobit Decline Models, the area under the ROC curve 

for the Tobit Decline Models was lower than the normal decline models (Section 

5.2).  The mean squared error of future score estimates is lowest when adopting 

a model where the decline in BNT30 score is dependent on the square of time 

since baseline for mild cognitive impairment (MCI) subjects.  For decline models 

applied to empirical data with both ceiling and floor effects at baseline such as 

the Word List Delayed Recall (WLDR) data, the likelihood of the data under the 

Tobit Decline Models exceeds that of a normal decline model (Section 6.1).  

When evaluating the classification accuracy of normal versus Tobit Decline 

Models, the area under the ROC curve for the Tobit Decline Model in WLDR 

scores was lower than the normal linear mixed model when the time-dependant 

change for MCI subjects is quadratic (Section 6.2). Tobit Decline Models with 

MCI subjects undergoing a quadratic time-dependent decline had a lower mean 

squared error in predicted score values than normal linear mixed models. 

 While early estimation of decline can be underestimated in high-

performing subjects due to the within-test ceiling and floor effects, dropout 

patterns that are a result of poor performance can lead to an overestimation of 
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population performance if not accounted for.  Under a model where subject 

relative performance within a population remains consistent, simulation results 

(Section 7) indicate that modeling longitudinal decline as a constant relative 

performance under changing population parameters recovers individual scores 

with less error than standard fitting methods, as well as that not accounting for 

dropout overestimates performance at higher ages.  In future work, it will be 

important to account for dropout if longer longitudinal studies are used.  If the 

assumption of consistent relative performance to the rest of the population over 

time does not hold, additional constraints will need to be included in the models. 

It may also be possible to utilize the change in relative performance to suggest a 

transition from healthy to MCI. 

While the results of the work presented here indicate that Tobit Decline 

Models applied to longitudinal data with ceiling and floor effects provide slightly 

improved classification of MCI and prediction of future score estimates, applying 

such models to neuropsychological tests with a fixed number of items such as 

the BNT30 or the WLDR is not entirely accurate.  While it is possible that the 

distributions of scores for longer versions of each test could be normal, the very 

act of extending the length of the test would change the distribution parameters 

such that they would not be the same as they are when fixed at length C (the 

same C that is the ceiling in the Tobit Decline Models). A sounder model would 

be to model test performance as a sum of Bernoulli distributions where the 

probability of a correct score on item k of a test is modeled as 
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(20) 

where s is a measure of subject cognitive ability for measured by the test, which 

follows an assumed distribution with good face validity (such as lognormal for 

memory capacity in free recall ability for the WLDR test).  The parameters θp are 

fit under the constraints of the model to reflect the difficulty of the items, the 

minimum chance of correct answer, and the rate at which chance changes based 

on subject ability s. 

 The overall score on a test can then be modeled as an average over the 

item-level model, where the estimates of the item-level parameters can be 

calculated from experiments where performance on each item presented are 

recorded.  The probability across items can be average and a model for total 

score can be estimated as a binomial distribution with n items and probability p 

given by the average over the item-level model with the understanding that the 

overall score variance will be underestimated item-level models.  Furthermore, 

total-score models cannot identify items that are more discriminatory than others. 
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