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ABSTRACT

A Monte Carlo Calculation of Virtual Source Size and
Energy Spread for a Liquid Metal Ion Source

Patrick J. Hoepfner, M.S.
Oregon Graduate Center

Supervising Professor: Lynwood W. Swanson

It has been recently observed that the virtual source size and energy spread

increases with current for liquid metal ion sources. It is important to know how the

energy spread and virtual source size depend on all of the experimental parameters.

The Monte Carlo method was employed to simulate the natural emission

process for a liquid metal ion source. Each of the ions was traced from a spherical

emitter to a final reference plane while under the influences of the spherical

accelerating field and the mutual interactions of the other ions. At the final refer-

ence plane the velocities and positions were determined. From these values the final

energy spread and virtual source size were obtained. To find the functional depen-

dence of all of the experimental parameters, the program was rerun varying one

parameter at a time over a specific range of values. The experimental parameters

investigated were: current (I), mass (M), charge (q), emitter radius (a), field at the

emitter surface (F), distance traveled by the ions (Z), emission angle (a), initial

kinetic energy, and initial energy spread of the ions.

In the final analysis, the functional dependence of the energy spread AE and

the virtual source diameter d, on the various parameters was found to be dimen-

sionally consistent. They are:
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The virtual source size and final energy spread were found to have no dependence

on the initial kinetic energy, and the virtual source size was also found to be

independent of the initial energy spread. The final energy spread, however, was

found to be proportional to the initial energy spread.
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Definitions:
a = Emitter Radius
d = Virtual Source Size
E- = Initial Kinetic Energy1

i = Initial KineticEnergySpread
F = Surface Electric Field
I = Current
J = Current Density
M = Atomic Mass

N = Number of Steps
n = Number of Particles

q = Ionic Charge
T = Emission Time
t = Transit Time
At = Step Time

Vr = Applied Potential

Vt = Transverse Potential

Z = Flight Path Length
a = Beam Half Angle
T = Average Time Between Particles



1. Introduction

There are many reasons for studying the virtual source size and energy spread

of a beam of charged particles emitted from a field emitter. Apart from the funda-

mental reasons, these parameters place a lower limit on the focused spot size that

can be expected from any electron/ion optical system. The energy spread deter-

mines the magnitude of the chromatic aberration. This is important since many

electron/ion optical columns are chromatically limited. In the case of very small

aberrations, the focused spot size is ultimately limited by the virtual source size

multiplied by the magnification of the electron/ion column. Some of the applica-

tions that would be helped by better characterized ion beams are, scannmg Ion

microscopy [1], SIMS [2], and microstructure fabrication [3,4].

Measurements of electron energy broadening from a field emitter [5-7] have

shown a significantly larger energy spread than predicted by the Fowler-Nordheim

theory for field electron emitters alone. This would suggest that additional energy

broadening occurs somewhere between the emitter and the image plane of the elec-

tron optical system. Since the particles are the most dense and slowest moving

within a short distance of the field emitter, this would be the most logical region for

additional energy broadening to occur.

In this study, field ion sources will be investigated. In particular, we will be

modeling a high brightness Liquid Metal Ion (LM!) source. This source consists of a

needle shaped anode on which a liquid metal film flows. The resultant field from a

nearby electrode draws the liquid metal up the shank to the high field region of the

needle, the apex. At the apex of the needle, there are two competing forces at
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work. First there is the surface tension force of the liquid metal, and then there is

the force due to the electrical field. The balance of these two forces results in a pro-

trusion on the end of the needle in the shape of a cone [figure 1]. This cone shaped

structure was first observed in 1964 by G.!. Taylor [8] while studying the effects of

electric fields on soap bubbles and has become known as the Taylor cone. He deter-

mined that for a special cone shape, i.e. when the cone half angle was 49.3°, that the

electrostatic and surface tension forces on the cone were in balance. Under the

operating conditions of a LMI source, a protrusion has been shown to form on the

tip of the Taylor cone [5,9]. The dynamic protrusion becomes elongated with

increasing current as shown in figure 2 [9].

The virtual source as seen by the first lens of an electron/ion optical system is

defined by projecting the slopes of the trajectories backwards toward the emitter

and determining the position where the minimum diameter occurs for these projec-

tions. This position is the virtual source position, and the minimum beam diameter

d is the virtual source diameter as shown in figure 3. A spherical emitter with parti-

cles emitted without transverse energy and with no particle-particle interaction

forces will have an infinitely small virtual source diameter whose position will be at

the center of the sphere.

Unaccountable increases in both the energy spread and the size of the virtual

source have been observed. A 3MeV transmission electron microscope was used to

observe an operating LMI source of Gallium [5].The measurements indicate a physi-

cal size of about 15A in diameter, but various experimental measurements of the

virtual source size [11-13] indicate a value between 400 and 1000A. Again, the most
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Figure 1: Schematic of Taylor cone on needle shaped substrait.
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likely place for this anomalous expansion of the virtual source is in the vicinity of

the emitter, where the particle density is the highest.

Investigations of energy broadening of electron beams began a considerable

time ago [14,15], but it wasn't until actual measurements were made by Boersch [16]

in 1954 that these energy spreads were linked to the coulomb interaction of the elec-

trons. Thus it has been referred to as the Boersch effect.

Many studies have been carried out on electron beam energy broadening due to

the Boersch effect since 1954. Analytical models have been proposed by Loeffler [17],

and Zimmermann [18]. Sasaki [19], and EI-Kareh and Smithers [20] carried out the

first Monte Carlo studies of the energy broadening. Now computer calculations of

the space charge and their effects abound [21-32]. Some of these programs have

been designed specifically for electron beam lithography or shaped beam applica-

tions [33-35].

Since Boersch and later workers considered only electrons, the mass depen-

dence of the energy spread has not been established. Recent experimental investiga-

tions using high brightness LMI sources [36-38], show that there is also a mass and

charge dependence on the energy spread. This study will show that for a spherical

field emitter the energy spread and virtual source size are dependent on current,

mass, charge, field strength, emitter radius, emission angle, and total flight distance.

The Monte Carlo program that was used in this study was created by T.R.

Groves [39,40] for the study of electrons. Modifications, such as the need for

increased accuracy and the ability to vary the mass and the charge of the ions,

were required to study the mass and charge characteristics of ions. Other changes
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were necessitated due to the low charge to mass ratio of ions, such as the need for

increased accuracy and the ability to variable the mass and the change for the ions.

2. Monte Carlo Simulation

A Monte Carlo simulation is a numerical method of modeling a system con-

taining random events. This type of simulation uses a statistically significant

number of random events to predict an "average" result. Such simulation models

should be compared with experimental data for verification since the results are

strongly dependent on the nature of the interaction considered.

Given a choice between an analytical and a numerical solution, the analytic

solution will always be preferred because the functional dependence of the experi-

mental parameters is deduced exactly. But in this case, the complexity of the n-

bodies interacting with each other precludes the use of an analytical technique. In

such a situation the Monte Carlo method [19-21] can be usefully employed. In this

Monte Carlo simulation, a random number generator is used to simulate the natural

emission process of a field emitter since the field emission process is stochastic in

nature. A random number generator is used to initialize the initial position, velo-

city, and emission time of each ion. At very short but finite time intervals, each

ion's position and velocity are updated. The updated position and velocity are

determined from the previous position and velocity modified by the coulomb interac-

tions and the local field. After all of the ions have traveled their total Bight dis-

tance (0.1 mm), each is interrogated for its position and velocity. From all the final

positions and velocities, the energy spread and virtual source size are found.
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The functional dependence of the experimental parameters upon the energy

spread and virtual source size can be determined by the repeated running of the

simulation, varying one parameter at a time. Each parameter is varied over the

entire range of interest so that a complete and accurate functional dependence may

be found.

2.1. The Emitter

The emitter is the first place where major concessions had to be made to com-

puter time and space. The shape of the emitter used in this study is not the more

realistic Sphere-on-Orthogonal-Cone (SOC) shape [figure 4], but the simpler sphere

model [figure 5]. The potential V(r) for a spherical emitter of radius a is

(1)

where Z is the spacing between the emitter and counter electrode at potential Yr'

For the SOC emitter the potential V(r,O) is

V(r,O) = V, [ ~ r[ [ ;J -[ r: r] p ,(cosO) - Voo

(2)

where

(3)

and

"Y= Poo

ro

The order n of the Legendre polynomial P o(cosO) is to be take to be 0.5; this

yields a 49° half angle cone in accordance with the Taylor cone geometry. Thus the
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Figure 5: Schematic of spherical emitter with cone of emission defined.
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sac emitter potential drops off in a more complex fashion than the spherical

emitter potential. The reason for the choice of the spherical emitter for this study

will be explained in a later section.

Another difference between the simple sphere model and the more realistic

sac model is the fact that the sac model does not have a constant field strength

over its entire surface. When the emission angle 0 is increased, a point will be

reached where the field strength is insufficient for continued emission. Thus the

emission is limited to a cone known as the "cone of emission". Since the sphere does

not have any natural limiting feature, one must be imposed. The half-angle of emis-

sion Q' is the imposed parameter. The area of emission is then defined by the area

of the surface of the sphere inside a cone whose origin is the center of the sphere

with half-angle Q' [figure 5].

The potential created by the spherical emitter is given by eq(l). The surface

field intensity given by F = Vr/a for Z>a. The surface field intensity can be

changed by adjusting Vr or a. A typical surface field strength for a LMI source

assuming field evaporation as the mechanism for ion formation is 2 V/A.

The next area of interest is the physics of the modeling of the emission process.

2.2. The Emission Process

Firstly, the ions themselves will be treated as point sources of mass and

charge. This will not cause a problem since the ions are effectively just that in con-

trast to an emitter whose size is on the order of lOoA. In the emission process, the

ions are assigned positions and velocities. First, the ions are given a position on the
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emitting surface from which they are to originate. Secondly, they are given an ini-

tial velocity magnitude. Thirdly, they are given an initial direction. And finally,

each ion is assigned a "time" of emission. Remembering that this is a Monte Carlo

simulation, each of the four previous assignments given to each ion must be random

but conforming to certain distribution requirements.

The ions are assigned a point of origination on the emitting surface by a ran-

dom number generator. These "points of origin" are distributed uniformly over the

emitting surface. The particles are assigned Cartesian coordinates as follows

x. = R-cos"'.sinO.J J 'YJ J

yj = RjsinifJjsinOj (4)
z. = R- cosO.J J J

where Rj is the randomly generated magnitude of the particles' velocity and ifJjandOj

are randomly generated polar coordinates. For the case of the particles launched

with finite initial velocity, randomized emission directions are also produced by the

program. The initial velocity is simply added vectorially to the velocity of the par-

ticle that is derived from the field. A finite transverse velocity causes the emission

to move off the surface normal. This is ultimately reflected in a finite virtual source

size, even for the case of no particle-particle interaction. As can be seen in figure 6,

the virtual source size d caused by a transverse component of the initial velocity is

[411

d = a [ ~:r
where Vt = transverse energy and Vr = applied potential. In the next section it

(5)

will be shown that the value of d calculated by equation (5) compare favorably with
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the virtual source diameter calculated by the program. For the case of the ions

launched "cold" (i.e. with zero initial velocity), the direction of emission is simply

normal to the surface at the point of emission and d =0.

In the field emission process the emitted particles posses an energy distribution.

The energy distribution for an LMI source is not known, thus we employ the energy

distribution used by Groves [40], namely

N(E)= -1 e-E/Eo
Eo

where N(E)dE is the probability of observing a particle with kinetic energy between

(6)

E and E +dE, and Eo is the width of the distribution. Since we want to assign a

random energy modified by equation (6) to each particle, there is a further problem.

The random number generator gives us a random number X which is distributed

uniformly between zero and one. Where as we want the random number distributed

over a different range and a different distribution. The following theorem provides a

way of doing this.

Theorem' Given a random number X, uniformly distributed between zero and
one, we wish to generate a number Y, distribution according to the known dis-
tribution N(Y). A functional relationship Y(X) exists, and is given by

Y = f-I (X)

where f-I is the inverse of the function f defined by
Yo

f(Y) =IN(Y) dY
Y

Following Groves [40]Yo is defined by Yo = Y(O), and N(Y) is normalized so that

Y(o)

J N(Y) dY = 1
Y(I)

The variable Y can represent any physical quantity which is distributed according



15

to a known law. The theorem is therefore quite general, and its proof is shown in

Appendix A.

To show the usefulness of the above theorem, we will use it to derive the equa-

tion necessary for creating the distribution for equation (6). Starting with equation

(6),

N(Y) = ...L e-Y/Eo
Eo

Assuming Y(O) = 0, we find

o

f(Y) = ...L Je-Y/EodY = 1 - e-Y/Eo.
Eo Y

By setting X = f(Y) and inverting, we get

Y = f-1 (X)
or

E = -Eo In(1- X) (7)
where E = Y and E is the random energy of the electron determined from the com-

puter generated, uniformly distributed, random number X.

Once given an initial energy, the particle is given a random emission direction.

Again, following Groves [40]we assume that the distribution is Lambertian, i.e.,

..£!... = cosO'
dO 1r (8)

where dIldO is the current per unit solid angle, and 0' is the angle measured relative

to the local normal to the surface. In terms of 0' the distribution is

~~ = N(0') = 2 sinO'cosO'.

By applying the preceding theorem to generate the randomized angle OJ,for the jth
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particle, from the uniformly distributed random number X, the following equation is

found

OJ= sin-1v'XJ

The local azimuth </>/can be generated as above, where </>/= 211X.

The velocity components in Cartesian coordinates are as follows

,
</>' . 0 ,v . = v. cos . sm .XJ J J J

, .
</>

' . 0 ,v . = v. sm . sm .YJ J J J
V .I = v. cosO.IZJ J J

Now V' must be rotated into the appropriate local coordinate system (figure 7). Two

rotations are necessary. A rotation through OJ(about the z-axis), then another rota-

tion through OJ(about the y-axis) is performed. The velocity is now in the proper

orientation for which a Lambertian distribution about the local normal exists. The

true velocity v is then given by

VX

]
[

cosO 0 -SinO

] [

c~s</>-sin</> O

J [

VX'

]

vY = 0 1 0 sm</> cos</> 0 vy'
v -sinO 0 cosO 0 0 1 v 'Z Z

where the subscript j labeling each particle is omitted for simplicity.

Finally, the most important random initializing variable is the emission time.

The ions must be emitted randomly but they must also be consistent with the

desired total field emission current. The current I due to the emission of n ions is:

I =qn/T (9)

where q is the charge per particle (assuming that all of the particles have the same

charge), and T is the emission time (i.e., the time in which all of the particles must

be emitted). Therefore, for a given q and n, the emission time is determined by 1.
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Since the emission process is assumed to exhibit full shot noise, the emitted particles

are expected to follow a Poisson distribution in time.

In this simulation, the particles are allowed to travel without any outside

influences for a very small but finite amount of time (~t) between interactions.

Using a sufficiently small ~t, the real case of a continuous modification of the parti-

cles trajectories can be more closely approached. This brings us to a problem men-

tioned by Groves [39]. If one were to simply determine which of the ions will be

launched within each time interval ~t and launch them from the surface of the

emitter at the beginning of each time interval, then the emission would be

"bunched." This is shown schematically in figure 8(a). This problem is particularly

acute when the average time between emission events <t> = q/I is small compared

to ~t. That is when I > q/ ~t. What is needed in this situation is a "debunching"

scheme. The debunching is achieved by first, determining within which time inter-

val each emission will occur, then, instead of launching the ions from the emitter

surface, the program simply distributes them randomly in the space corresponding

to the time interval ~t. Thus, the particles are effectively "created" a certain dis-

tance from the emitter and the particles are "debunched as shown schematically in

figure 8(b). But since 10,000 steps were used in our case, this bunching problem only

existed in the extreme of high current and large particle mass. The question arises,

"Can the ions be created a short distance from the emitter and not affect the final

result? After all, the area close to the emitter is the crucial area. It is here that

the particles are moving the slowest, and the current density is the highest." The

answer is yes. The ions can be created a short distance from the emitter with little
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deviation from reality for a number of reasons. First, in the field evaporation pro-

cess, the ions are not created at the surface, rather, they are created a short dis-

tance from the emitter surface due to the quantum mechanical tunneling process.

Secondly, since the ions are moving their slowest in this area, the distance moved

during ~t is also at its smallest. And lastly, even though the current density is at

its highest, the average distance away from the emitter in which these particles are

created is small. Let us calculate this distance for the standard conditions. The

force is:

f = eE = (1.602Xl0-19C)(2.0XlOI(>V/m) = 3.204XI0-9 N

The acceleration of a one amu particle with the above force is:

(10)

a = ~ = 3.204Xl0-9 N = 1.9572XI018 m/sec2 (11)
mass 1.637XI0-27 kg

The velocity of this particle at the end of the time used 10 our case

~t = 3.58XlO-14 sec is:

(12)

Where Vo is the initial velocity of a one amu particle given 0.1 eV of energy. The

total distance traveled by this particle in time ~t is:

(13)

The average distance from the surface that a particle is created is 1-of the2

total distance that the particle travels in time ~t. Therefore the average distance

of creation is 12.5A, or one sixteenth the tip radius. We must also remember that

in this simulation the particles travel unaffected by any forces during the time inter-

vals ~t. It is only in using small enough time intervals that we gain an accurate

approximation of not only the emission of the particles, but the rest of the flight as
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well. But how small must ~t be in order that the simulation be accurate? This

question that will be left to the next section: Determining the Trajectories.

2.3. Determining the Trajectories

Now that the emitter and its field are described and the emISSIon process IS

characterized, let us examine the ion trajectories. The trajectories will be followed

from the origin to a "reference plane" where their positions and velocities are

recorded. Each ion will feel forces from the applied field, from the other ions, and

from the image charges inside the emitter.

We must now determine just how this calculation will be made. A straight for-

ward update of the position and velocity can be found from the previous position,

velocity, and acceleration as shown below

(14)

(15)

(The reason for using Vi+1 rather than vi in the calculation of r'i+1 can be found in

reference 42.)

By a simple calculation we can determine just how many iterations would be

required for an accuracy of 1% of v~t for the first step. The leading error term in

equation (16) is

Error = l.a( ~t)22

For an error of less than or equal to 1% of v~t we have

(16)

(17)

or
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~t < (.02)v = 7.480X10-16sec- a (18)

For a total flight distance of 100 pm, the total flight time is 3.580XlO-lO sec for 1

amu, thus requiring 5X105 iterations. Clearly a more efficient algorithm must be

found. The program in our case was run for as many as 104 steps but it is totally

impractical to try to run the program for 50 times that many steps.

Two frequently used methods of numerical integration are the Runge Kutta

method or Hamming's predictor-corrector method [43,44]. Of these two methods,

Hamming's predictor-corrector method is the most efficient, but it does have some

drawbacks. The predictor-corrector methods requires the knowledge of four equally

spaced positions and their corresponding velocities. By using four positions, a fifth

position can be predicted. By using the predicted position and the differential equa-

tions, the new position is corrected. The need for four previous positions means that

this method is not "self-starting". Another method must be used to provide the first

four positions before this method can be started. The need for equally spaced posi-

tions means that it is difficult to change from a place where a high density of posi-

tions is needed to a place where a lower density of positions is sufficient. The Runge

Kutta method is slower, but has the advantage of being both self-starting and each

new position calculated does not need to be spaced the same as its predecessors. So,

when more accurate (or less accurate) calculations are needed, it is easy to make

smaller (or larger) steps. In many cases both of these methods are used in conjunc-

tion. The Runge Kutta method is used to start the calculations and to adjust the

accuracy. If accuracy were more important in a certain region, the step size could

be adjusted and only the first four positions in the new region could be determined
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by the Runge Kutta method and the more efficient predictor-corrector method

would be used for the remaining calculations.

To judge the accuracy of Hamming's numerical method, Groves [39], usmg

electrons, assumed no mutual interactions and compared the results to the analytic

solution. He found that for 800 steps, the answers were considerably different for an

emitter to anode distance of O.lmm. This is because each error that is incurred, is

used in the calculation of the next value, that is, the errors are additive. In the

above case, an electron was followed to a distance of 2.6 /l-m(10 tip radii) where the

difference between the analytical solution and the numerical solution was found to

be 219 eV! Since this was an unacceptably large error, Groves used a combination

of the analytic and numeric solution. In the absence of interactions among the par-

ticles, the particle trajectories are easily described by the Rutherford central force

scattering.

The equations of motion for a concentric sphere system in polar coordinated

are as follows:

.. k 2r-- L
r2 - 3 = 0r

d
(

2.
dt r 0) = 0

(19)

(20)

where

k = -eaVo
m (21)

where k>O since Vo<O, and

2.
L = roOo

where (mL) is the initial angular momentum.

(22)



24

The first integrals of the velocity components are easily obtained, they are:

(23)

where the zero subscript refers to the initial value, and

. L0=-
r2

The second integral for r(O) is familiar, and can be found in many books.

(24)

The above description is only in two-dimensions, and as such, creates certain

problems when placing it in three-dimensional space. One problem is that when

using the above equations in spherical coordinates, there are discontinuities in the

angular coordinates across certain boundaries. To circumvent this problem, Groves

carried out the calculations in cartesian coordinates.

The above equations in cartesian coordinates written in terms of the coordi-

nates of xi are as follows:

v. =
1 (25)

and

(26)

where (i,j,k) refer to all cyclic permutations of the components (x,y,z), and mLi are

the conserved components of angular momentum given by

(27)

In order to reduce the error in the predictor corrector method, both the

numeric and analytic solutions of the equations of motion were solved simultane-
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ously without interaction. The numerical solution and the analytical solution were

compared after each step, and the correction term ov was saved for later use. This

means that for a given set of values ofT'o and Yo at the beginning of any time inter-

val ~t, the computer numerically computes the values of T' and y for the end of the

time interval. Using the computed value ofr'; we can then find what the value ofY

should be, by using the analytic formula.

Next the simulation was rerun using the particle interactions. It is here that

the saved values of the velocity error ov due to the numerical integration tech-

niques were used. We note that ov =Yn - Va, where Yn is the numerically calcu-

lated velocity and Ya is the analytically calculated velocity. The numerically calcu-

lated velocity which includes particle interaction Vin was modified by the velocity

error ov to obtain a more correct value for Vin. That is, ~n'= Vin- ov. This

effectively corrects the discretization error whose contribution is from the spherical

accelerating field without affecting the contributions due to particle interactions.

The effectiveness of this approach can be seen by comparing Table I with

Table II. One can see how bad the numerical approach is alone. Table II, in the

absence of the particle interaction effects, has a discretization error after 20 steps

reduced to eight thousandths of an electron volt where Table I has an error of O.leV

for the same distance. One tenth of an electron volt is a large error considering

that it has traveled only 0.5% of the total number of steps that it must travel. The

same test was run for the virtual source size calculation. By removing the Lamber-

tian distribution of initial velocities, mutual interaction effects, and using only cold

ions, the virtual source size was 3XlO-22 A using a value of ~t = 8.94XlO-14 sec,
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Table I: A comparison of the numeric and analytic values of the kinetic energy is
shown. All standard input parameters (see Table III) apply. Equation 14 and 15 are
used to calculate the first 20 of 4000 steps. Mutual interactions are excluded.

A Simple Trajectory Computation
no mutual interactions no feedbackcorrection

step r kinetic energy kinetic energy
(meters) eV (numerical) eV (analytical)

1 0.802E-7 0.302062E+3 0.301938E+3
2 0.950E-7 0.317325E+3 0.317217E+3
3 0.120E-6 0.334539E+3 0.334426E+3
4 0.132E-6 0.340421E+3 0.340321E+3
5 0.154E-6 0.348918E+3 0.348818E+3

6 0.176E-6 0.355447E+3 0.355347E+3
7 0.200E-6 0.360805E+3 0.360705E+3
8 0.223E-6 0.364949E+3 0.364849E+3
9 0.247E-6 0.368322E+3 0.368222E+3

10 0.271E-6 0.371105E+3 0.371005E+3
11 0.295E-6 0.373453E+3 0.373353E+3
12 0.318E-6 0.375455E+3 0.375355E+3
13 0.342E-6 0.377183E+3 0.377083E+3
14 0.366E-6 0.378688E+3 0.378588E+3
15 0.390E-6 0.380011E+3 0.379911E+3
16 0.414E-6 0.381183E+3 0.381083E+3
17 0.438E-6 0.382227E+3 0.382127E+3
18 0.462E-6 0.383164E+3 0.383064E+3
19 0.487E-6 0.384009E+3 0.383909E+3
20 0.511E-6 0.384775E+3 0.384674E+3
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Table II: This table shows the accuracy of the numerical technique with the feed-
back correction. In this the case, the standard input parameters (see Table III) are
used. The first 20 of 4000 steps are shown. Again, mutual interaction terms are ex-
cluded.

Improved TrajectoryComputation
feedback correction but no mutual forces

step r kinetic energy kinetic energy
(meters) eV (numerical) eV (analytic)

1 0.802E-7 0.301934E+3 0.301934E+3

2 0.950E-7 0.317211E+3 0.317211E+3
3 0.120E-6 0.334420E+3 0.334420E+3
4 0.132E-6 0.340314E+3 0.340314E+3
5 0.154E-6 0.348811E+3 0.348811E+3
6 0.176E-6 0.355341E+3 0.355341E+3
7 0.200E-6 0.360700E+3 0.360700E+3
8 0.223E-6 0.364844E+3 0.364844E+3
9 0.247E-6 0.368218E+3 0.369218E+3

10 0.271E-6 0.371002E+3 0.371001E+3
11 0.295E-6 0.373350E+3 0.373349E+3
12 0.318E-6 0.375353E+3 0.375352E+3
13 0.342E-6 0.377082E+3 0.377080E+3
14 0.366E-6 0.388588E+3 0.378585E+3
15 0.390E-6 0.379912E+3 0.379908E+3
16 0.414E-6 0.381084E+3 0.381080E+3
17 0.438E-6 0.382130E+3 0.382125E+3
18 0.462E-6 0.383067E+3 0.382125E+3
19 0.487E-6 0.383913E+3 0.383906E+3
20 0.511E-6 0.384680E+3 0.384672E+3
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a = 200A, F = 2 V/A, m = 1 amu, n = 120 particles. This shows that the value of

At is sufficiently small for this case. It would be one order of magnitude smaller

had we not used the combined numerical and analytical techniques.

Another way to show that the virtual source size is a reasonable value is to

compare it to the analytical results of equation (5). For the standard input param-

eters (initial transverse potential Vt = 0.1 eV, i.e., assuming 100% of the initial

kinetic energy is transverse, M = 1 amu, I = 1 J.tm applied potential Vr = 400V, and

emitter radius a = 200A) we find from equation (5) that d = 3.16A. Therefore, the

value of the numerically calculated virtual source diameter (d) should be less than

3.16A. This is because not all of the initial kinetic energy is in a transverse direc-

tion. The program was run for the standard input conditions without the particle-

particle interaction term and At = 8.94XI0-14 see, n = 120 particles, and

N = 10,000 steps. The value of the virtual source diameter was found to be 2.2A.

Therefore, the virtual source size from the numerical calculation is reasonable.

There is an additional benefit by using time rather than distance as the

parameter of movement. This is because, when time is used as the stepping parame-

ter, the distance traveled by anyone ion in the time At is dependent on Vj and aj

(and is therefore dependent on distance from the emitter, since aj decreases with

distance). When a particle is in the vicinity of the emitter, it is important that Arj

be as small as possible, since it is here that the field and hence aj is changing most

rapidly with distance.

Recalling that the Hamming predictor-corrector method requires four initial

positions to start, it is necessary to find a way of determining the first four positions
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of the emitted ions. Rather than use the Runge Kutta method, we follow Groves by

using the initial position of each particle and calculating a "previous" position by

stepping backwards in time. This process was repeated two more times. Although

some of these previous positions may find themselves in the unreal situation of exist-

ing a distance inside the emitter, no problems are caused because the program does

not check for boundary condition violations and treats these positions like any

other. The acceleration was set to zero during the back-stepping since acceleration

at those points caused backward projections that curl.

Hamming's predictor-corrector method is applicable to first order differential

equations of the general form: y'=f(x,y,y'). Equations of motion must be decom-

posed into a set of coupled first order differential equations as follows:

di"; _
.::.:.L= vjdt (28)

and

dVj = 1L (29)dt m

where ~ is the net force on the jth particle. In the program by Groves the force 1

was separated into three major components:

1. The spherical accelerating field;

2. The coulomb force on every ion due to every other emitted ion in the sample;

3. And the coulomb force on every ion due to the image charges of every emitted ion

(including the ion of interest).
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The total force ~is given by

introduced. Notice that the image force is always attractive. The image charge of

the ktb ion is Akq, and its position is Akrk. As rk becomes greater, the image charge

moves toward the center of the sphere, diminishing in magnitude as it goes. Two

contributions have been omitted in equation (30), these are the magnetic forces

between the moving ions, and the radiation damping due to the accelerating ions.

Both of these were neglected.

Since ~ contains terms which depend only on the ion coordinates, the first

order equations of motion are of the form required by Hamming's method. We have

6 n coupled equations for n particles and these must be solved simultaneously, which

is no problem for a fast computer.

When running this program, there are several non-experimental parameters

which need to be adjusted. These are parameters which arise from the fact that

this simulation is numerical in nature and computers have inherent resource limita-

tions. The parameter which is introduced because of the numerical nature of the

simulation is ~t, or the step time. The step time is decreased by increasing the

number of steps N . The number of steps must be increased until a point is

reached where additional increases cause no significant change in the resultant

energy spread or virtual source size as illustrated in figure 9. In figure 9 we see that

4000 steps was a sufficient number. So why was 10,000 steps used? Early in the
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project while a different method of calculating the virtual source size was used, 9000

steps were required to reach a constant result, owing to the fact that the previous

method of calculating virtual source size was not as appropriate as the one used

here (and described in a later section). When the new method was first used, the

number of steps required for a constant result was not reinvestigated immediately.

It was later determined that the number of steps was an over-kill, but for reasons of

consistency, the 10,000 steps were used for the remainder of the calculations. By

running the program for such a large number of steps, we can be assured that the

number of steps does not influence the final results.

The other non-experimental parameter which required adjustment was the

number of emitted ions, n. If computer time and memory were no object, the

minimum number of particles launched would be enough to entirely fill the electrode

space. That means by the time the first particle reaches the reference plane, the

last particle would be just emitted (i.e., the emission time T is greater than or equal

to the total flight time t). What this condition means in terms of the current is:

Where F = field strength

[ ]

1/2

I <2.2X10-15 ~a ~

in VfA; a = tip radius in A; M

(31)

= mass III amu; q =

charge in units of 1.6X10-19coul.; n = number of ions; and Z = the total flight dis-

tance. A quick calculation using the standard values for the parameters as found in

Table III, shows that there are not nearly enough particles to fill the diode space for

a spacing of Z = O.lmm. In fact, we happen to be short a quite a few particles,

about two orders of magnitude! And the possibility of "end effects" is real. Thus, in

the diode, we have a "packet" of particles as shown schematically in figure 10. One
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way to show empirically that these "end effects" are not significant, is to show that

by increasing the number of particles the final result does not change. This was

found to be the case as seen in figure 11, for the energy spread and virtual source

size for the standard input parameters. But what about the worst case of Ip,A of

current and 100 amu particles? In figure 12 the virtual source size for M = 100 amu

shows an overall increase with n. But by plotting the virtual source size vs. mass at

n = 120 (figure 13) one observes that the result at M = 100 amu (figure 12) is only

slightly above the regression line. This is the only instance where we found the

number of particles to be insufficient. It would have taken a significantly longer

CPU time for each run if 160 particles were used instead of the 120 (computation

time increases as n2).

Table III: The standard values of the input parameters.

StandardValues

I = 1 p,A
M = 1 amu

q = 1.602XIO-19C
a =200A

F = 2 V/A
Z = 100 p,m
a = 0.3 rad
n = 120 particles
N = 10,000steps
.6Ej = 0.0 eV
Ej =0.1 eV

Another way to show that the lack of sufficient particles to fill the electrode

space is not cause for alarm is by looking at a graph of particle energy in the refer-

ence plane vs. emission order. If these end effects were significant, the particles in
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Figure 11: Energy Spread and Virtual Source Size vs. Number of Particles (using the
standard input parameters, see Table III).
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Figure 13: Energy Spread and Virtual Source Size vs. Mass (all parameters other
than mass are the standard input parameters, see Table III).
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the front and rear of the pack would experience asymmetric forces from the other

particles. If this was the case, we would expect the first particles emitted to have

the most energy and the last particles emitted to have the least energy. This is

because the leading particle would be accelerated faster since all the other particles

are behind it, and the trailing particle would not be accelerated as rapidly since all

of the other particles are in front of it. If these end effects are substantial, then this

effect should be seen. But we can see that this is in fact not the case from the figure

14 plot of the kinetic energy vs. emission order. If there were end effects, the energy

verses emission order graph should have a negative slope to it (first particles with

the most energy and last particles with least energy). We see in figure 14 that no

such slope exists, so we conclude that the end effects are not substantial and that n

= 120 is sufficient, even though we do not fill the entire electrode space.

Using a Cyber 170/760 (belonging to Tektronix at their Beaverton, Oregon

site) with double precision (30 decimal places), 120 particles, 4,000 steps, and a flight

distance of O.lmm requires about 20 minutes of CPU time for each run.

3. Analysis of the Data

The two parameters of interest in this study were, the virtual source size and

the energy spread. Let us first look at virtual source size, with respect to each of

the experimental parameters.

3.1. Virtual Source Size

The virtual source size has already been described as that source seen by the

first lens in an electron/ion optical system. We can see from figure 15 how the final



403

402

398

397

396

.

.

39

o 20 40 60 eo 100 120

EMISSION ORDER

.
. . .... .. . ... .. .. ., ...".~... .. . ...' .. ".. ... e.I8\.""..".. .. . \ ... . . r.. .. .... .

Figure 14: Final Energy vs. EmissionOrder using standard input parameters (see
Table III).

.
.

.

.

401

>-
(!)

a:: 400W
Z
L&J

399



VIRTUAL
SOURCE
DIAMETER .

d

Figure 15: Diagram of how the virtual source size is obtained from trajectories. ,/::I.
o



41

direction of the trajectories is projected back from the reference plane to the virtual

source plane. The virtual source is defined here as a circular ring containing 50% of

the current. This is accomplished by finding the radius of the 60th particle (for the

case of 120 total particles). The virtual source plane is now stepped along the z-axis

and a new virtual source radius is found. If the new virtual source radius is smaller

than the old radius, then the plane is again stepped in the same direction. If, on the

other hand, the new virtual source radius is larger than the old radius, then we

know we are traveling in the wrong direction and must reverse our direction. This

is because we are trying to find the smallest possible radius of these backward pro-

jections. When it is decided that the direction of the steps must be reverse, the size

of the steps are decreased by one order of magnitude. This process is continued

with smaller and smaller steps until it is decided that the virtual source plane and

virtual source size is determined to sufficient accuracy. This is how the virtual

source size and position are determined.

In figure 16 we see that the virtual source size varies as the square root of the

current. This is reasonable since as the current increases, interparticle distances

decrease which cause the coulomb forces to be greater. The virtual source size

increases as the 1/4 power of mass as seen in figure 13. A larger mass would mean

a longer interaction time and therefore a greater radial broadening. An unexpected

result shown in figure 17 is the lack of a charge dependence on the virtual source

size. Figure 18 shows that there is an inverse square root dependence on the emitter

radius, presumably because as the emitter radius increases, the area of emission

increases and as a result, the interparticle distances increase causing the coulomb
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Figure 18: Energy Spread and Virtual Source Size vs. Emitter Radius (all parame-
ters other than radius are standard, see Table III).
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forces to be decreased. The virtual source size varies inversely with the electric field

as seen in figure 19. This may be because a higher electric field increases the parti-

cle acceleration and thereby reduces the interaction time. Figure 20 shows that the

virtual source size varies with the 1/4 power of the path length. AB the flight path

increases, the virtual source size is expected to increase because the particles have a

longer period of time to interact. From figure 21 we see that the virtual source size

is inversely proportional to the the beam half angle. This can be explained on the

basis of the increases in interparticle distances with beam half angle. Figures 22 and

23 show no significant virtual source size dependence on either the initial kinetic

energy or the initial kinetic energy spread. Next we will look at how the energy

spread varies with these same experimental parameters.

3.2. Energy Spread

The energy spread was measured by taking the standard deviation of the

values of the final particle energies after discarding the bottom and top 10% values.

This was another place where the original program was modified. Groves used

a combination of curve fitting and some kind of non-standard full width at half

maximum calculation to determine the energy spread. For reasons of ease of

description as well as ease of calculation, the standard deviation from 10% to 90%

of the final particle energies was used in this study. AB before, there is no basis for

using the 10 to 90% range in this calculation over the 20 to 80% range or the 25 to

75% range. Therefore, not the actual values of the energy spread, but rather the

trends that these numbers give us are of primary interest.
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Figure 23: Energy Spread and Virtual Source Size vs. Initial Energy Spread (all
parameters other than initial energy spread are standard, see Table III).
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Looking at figure 16 again, we see that energy spread is proportional to the

current. As current increases, interparticle distances decrease and energy transfer

from one particle to another is facilitated. Energy spread increases with the square

root of the mass as seen in figure 13. Again, as the mass increases, the interaction

time increases and so does the spread of the energies. The energy spread increases

as the square root of the ionic charge also. Another unexpected result is the

increase in energy spread with charge. In figure 17, the energy spread is found to

vary not inversely as is seen experimentally (figure 24 [45]), but proportionately with

the square root of the charge. This difference may be due to the fact that we are

using particles of charge 1 then 2 then 3 etc. exclusively, whereas in the experimen-

tal data, particles are a mixture of different charges.

The next experimental parameter of interest is the emitter radius. The energy

spread varies inversely with the square root of the emitter radius [figure 18]. As the

emitter radius increases, the interparticle distances decrease as does the energy

spread. In figure 19 we see the energy spread varies inversely with the square root

of the electric field. As the electric field increases, the interaction time decreases

because the particles are traveling faster. The path length Z, on the other hand,

has no effect on the energy spread as shown in figure 20 whereas the virtual source

size increases with Z as discussed earlier. This is due to the fact that radial

broadening is still occurring as the particles feel a general force away from the axis.

Energy spread on the other hand is caused by forces along the z-axis, and their

relaxation is complete within a short distance after they are emitted. Figure 21 is as

we would expect, that is increasing beam angle increases the interparticle separa-
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Figure 24: Experimental evidence for the IMl/2 dependence on the energy spread.
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tion and decreases the energy transfer of one particle to another. In figure 22 we

observe that there is no energy spread dependence on the initial kinetic energy.

Finally, in figure 23 we note that the final energy spread is proportional to the ini-

tial energy spread. Curiously, the final energy spread is less than the initial energy

spread at high values of .t£j.

The empirical results can be summarized as follows:

Where ~c = energy spread (eV due to the coulomb interaction); I = current

(JLA);M = mass (amu); q = ionic charge (1 = -1.602Xl0-19coul); a = beam half

angle (rad); F = electric field (VfA); a = emitter radius (A); and Z = path length

(JLm).

4. Justification of the Model

The main reason to believe that this model is complete is that the predicted

functional dependence is dimensionally consistent. The energy spread and virtual

source diameter given in equations (32) and (33) were found to have dimensions of

energy and length respectively. This shows that, among other things, no experimen-

tal parameters were left out. Another positive result is that IMI/2 dependence that

we obtained for the energy spread is also observed experimentally as shown in figure

24 for five different LMI sources.

[r= .9771- Mq eV (32)
C a Fa

and

d = 53.5 [ IM'/'Z'/'t'1.
(33)Fa a
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For the case of F = 3 V/A, M = 70mu, a = 50A, Z = 104Jlm, a = 0.3 rad,

1= 5.6JlA or I' = 20JlA/sr (where I' = angular intensity), the predicted values for

virtual source size and energy spread from equation (32) and (33) are: d = 357A and

~ = 12.5 eV. These results compare favorably with experimental results. For

example Komuro, et al,[12] obtained experimentally a value of d = 400 - 450A for

low currents of a Ga LMI source; the value of ~ at I I = 20JlA/sr is 5 to 10 eV [38].

Next we will consider the justification of the use of the spherical rather than

the more realistic sac emitter. In figure 2 the expected shape of the Taylor cone

and the protrusion under operating conditions is given. If one used a spherical

emitter to model the Taylor cone (lower circle in dotted lines), one could see that

there would be rather substantial errors incurred. But looking at the protrusion in

the same figure, we can see that modeling the end of the protrusion with a sphere

(upper circle in dotted lines), is quite reasonable.

A study by J.W. Ward [31], where not only a sac potential was used, but also

the entire electrode space was filled with electrons (the two major differences

between a real LMI source and this model) by limiting the total path length to 104

A. In the latter study, only the virtual source size was determined, nevertheless the

results compare very favorably with the results of this study. One can predict a 1/4

dependence on path length from his results also. This close agreement suggests that

the use of a spherical emitter with an unfilled electrode space is valid.

Can we justify the use of error vectors transferred from a run withollt the

mutual interaction of the particles to a run 1ri1Jl.the mutual interaction of the par-

ticles? This can be justified because only the predictions are modified. In the
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Hamming predictor-corrector method, the closer the predictions are to the correct

value, the fewer the iterations needed to converge on a predicted result, the less

computer time is required. This is important because the bulk of the computation

required is in the correction portion of Hamming's method.

And lastly, the number of particles and the number of steps used in the calcu-

lations were justified by having them increased to a point was reached where addi-

tional decreases in the step sizes and increases in the number of particles did not

cause any significant change in the final results.

5. OtherInteresting Results

An interesting result can be seen in figures 25 and 26. Figure 26 shows the ini-

tial, final and calculated distributions of the particles in time. It is clear that the

initial distribution and the calculated Poisson distribution are virtually identical. It

is also seen from this figure that the final distribution is not exactly the same as the

initial distribution, showing that the distribution has been altered through the

coulomb interactions after the particles were emitted. In figure 25, no such

differentiation can be seen between the initial and final distributions. This is prob-

ably due to the lower current and less interactions between the particles. The cal-

culated Poisson distribution in figure 25 is calculated for approximately 1.2 particles

per time step, where in figure 26 it is done for .24 particles per time step. The initial

distributions in both figures 25 and 26 are the same.

Another interesting and unexpected result of this study is depicted in figure 27,

where it is seen that there are no particle trajectories that have both zero slope and
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Figure 25: Time distribution of particles in the initial and final planes with all
parameters at standard values (see Table III) compared with a Poisson distribution.
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Figure 26: Time distribution of particles in the initial and final planes at lOJlA with
all other parameters at standard values (see Table III) compared with a Poisson dis-
tribution.

100 .
I I: 10f'A
M = Iamu

L[
F c 2 VI!

LaJ a c 20010
z
LaJ
0:::

70
0
0

o 60
LL.
0
>- 50
-
..J-
CD 40
4
CD
0 30L \--';1 FINAL DISTRIBUTION
0:::

..
CL I \ "- INITIAL DISTRIBUTION

20L \ -CALCULATED POISSON DISTRIBUTIO



I&J

~
. .

~ \: .,~ 0.16 I.- ,...
(/) \1

\: ...
~,~ .'t.

~~ ."-

~ .---...--------..

0.40

0.36

0.32

0.28-
en
c
10 0.24.-
."
10
~-

0.20

0.12

0.08

0.04

0.00
o

I=Ip.A
M = lomu
F = 2 VIA
o = 200 A
a = 0.3 rod

58

28

Figure 27: Trajectory Slope vs. Radial Displacement in the virtual source plane with
all parameters at standard values (see Table III).
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zero radial displacement in the virtual source plane. In order to have some particle

trajectories near the axis we must have either (I), particle trajectories whose back-

ward projections lie along the axis, or (2), particle trajectories which end up on the

axis at the final reference plane but project backwards with a negative slope to be

off the axis in the virtual source plane. We do not have any particles of the first

variety projecting along the axis because we have no particles which have both zero

slope and zero displacement (points at the origin). And we do not have any parti-

cles of the second variety because we have no particles with a negative slope.

The results for current density vs. radial displacement are depicted in figure 28

1Dthe virtual source plane and angular intensity vs. trajectory angle in the final

plane is plotted in figure 29 at a mass of 1 amu for three separate currents and the

same thing is plotted in figure 30 for a constant current of IJ.lA for two separate

masses. In both cases, all other parameters are at their standard values (see Table

III). Figure 28 shows that the current density distribution in the virtual source

plane is not Gaussian as is commonly assumed. Figure 29 show the dip in angular

intensity on axis in qualitative agreement with experimental results [46]. However,

the increase in beam angular divergence with current and mass is not seen. This

supports earlier conclusions that the reason for this divergence is primarily due to

an increase in emitting area [47,48].

6. Conclusions

We have found that the energy spread varies directly with the current, and the

square root of the mass and charge. It also varies indirectly with the emission angle

and the square root of both the field and the emitter radius. The virtual source size



60

Figure 28: Current Density vs. Radial Displacement in the virtual source plane with
all parameters at standard values (see Table III).
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Figure 29: Angular Intensity vs. Beam Angle in the reference plane at 1, 5 and lOJlA
with all other parameters at standard values (see Table III).
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Figure 30: Angular Intensity vs. Beam Angle in the reference plane at 1 and lOOamu
with all other parameters at standard values (see Table III).
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was found to vary directly with the square root of the current and with mass and

total Bight distance to the one fourth power. It was also found to vary indirectly

with the field, the emission angle, and the square root of the emitter radius.

We have found the trends of all of the important experimental parameters and

have shown by means of the functional dependence that no other parameters are

necessary, therefore we have a complete set of all of the experimental parameters.

If the experimental value of the virtual source size and energy spread are known for

one specific example of the parameters, a simple adjustment in the empirical results

can, I believe, predict the virtual source size and energy spread due to the coulomb

interactions.



64

Appendix A

Using a Random Number Generator to Compute

a Random Variable of Known Distribution.

It is sometimes important in numerical simulations to be able to generate a

random variable which follows a certain prescribed distribution. A common exam-

pIe of a distribution is the Gaussian or "bell shaped" distribution which is distri-

buted about some mean value. While the wanted distribution may be Gaussian or

any other arbitrary distribution, the distribution given by the random number gen-

erator is usually a uniform distribution between zero and one. In a uniform distri-

bution, there is an equal likelyhood that the number generated will fall anywhere

within the interval between zero and one and no possibility that it will fall outside

of that interval. One would like to be able to mold that uniform distribution into

any wanted distribution.

A statement of the problem is as follows:

Given a random number X, uniformly distributed between zero and one, we
wish to generate a number Y, distributed according to the known distribution
N(Y).

The solution is derived from the supposition that Y is derived from X by a

one-to-one mapping. The distribution of X can be called M(X), and can be given by

[

1 O<X<1
MX - --( ) - 0 otherwise

Assuming Y(X) exists, we can integrate M and N over similar intervals, and the
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area should be the same. That is,

o Y(o)

JM(X) dX = J N(Y) dY
X Y(X)

Since we know N(Y), the integral can be found (at least in principle). N(Y) must be

normalized so that

o

IN(Y) dY = 1
1

Let us define a function f(Y) by

Y(O)

f(Y) = JN(Y) dY
Y

Assuming that f(Y) is known, and where Yo = Y(O). We must assume a value for

Yo, and this amounts to arbitrarily specifying Y(X) at one point (X = 0). Since

o
JM dX = Xx

we have the result

Y = f-1 (X)

where f-1 is the inverse function of f. This completes the proof of the theorem given

in the text.
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Figures

[1] Schematic of Taylor cone on needle shaped substrate.

[2] Schematic of Taylor cone with protrusion.

[3] Diagram of the virtual source formation.

[4] Sphere-on-Orthogonal-Cone and it's potential.

[5] Schematic of spherical emitter with cone of emission defined.

[6] Schematic of an emission from a sphere and the virtual source formation due

to the non-zero transverse velocity.

[7] Diagram showing the initial emission position and direction.

[8] Schematic of spatial bunching of emission (a) and removal of bunching (b).

[9] Energy Spread and Virtual Source Size vs. Number of Steps.

[10] Packet of particles traveling between electrodes.

[n] Energy Spread and Virtual Source Size vs. Number of Particles (standard

input parameters, see Table III).

[12] Energy Spread and Virtual Source Size vs. Number of Particles (worst case).

[13] Energy Spread and Virtual Source Size vs. Mass (all parameters other than

mass are standard input parameters, see Table III).

[14] Final Energy vs. Emission Order using standard input parameters (see Table

III).
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[15] Diagram of how the virtual source size is obtained from trajectories.

[16] Energy Spread and Virtual Source Size vs. Current (all parameters other than

current are standard, see Table III).

[17] Energy Spread and Virtual Source Size vs. Ionic Charge (all parameters other

than charge are standard, see Table III).

[18] Energy Spread and Virtual Source Size vs. Emitter Radius (all parameters

other than emitter radius are standard, see Table III).

[19] Energy Spread and Virtual Source Size vs. Electric Field (all parameters other

than electric field are standard, see Table III).

[20] Energy Spread and Virtual Source Size vs. Path Length (all parameters other

than path length are standard, see Table III).

[21] Energy Spread and Virtual Source Size vs. Beam Half Angle (all parameters

other than angle are standard, see Table III).

[22] Energy Spread and Virtual Source Size vs. Initial Kinetic Energy (all parame-

ters other than initial energy are standard, see Table III).

[23] Energy Spread and Virtual Source Size vs. Initial Energy Spread (all parame-

ters other than initial energy spread are standard, see Table III).

[24] Experimental evidence for the IMl/2 dependence on the energy spread.

[25] Time distribution of particles in the initial and final planes with all parameters

at standard values (see Table III) compared with a Poisson distribution.

[26] Same as above but a current of 10JlA was used.

[27] Trajectory Slope vs. Radial Displacement in the virtual source plane with all

parameters at standard values (see Table III).
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[28] Current Density vs. Radial Displacement in the virtual source plane with all

parameters at standard values (see Table III).

[29] Angular Intensity vs. Beam Angle in the reference plane at 1, 5 and lOJlA with

all other parameters at standard values (see Table III).

[30] Angular Intensity vs. Beam Angle in the reference plane at 1 and 100 amu with

all other parameters at standard values (see Table III).




