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The “Hill relation” is a key result for anyone interested in calculating rates from trajectories of 

any kind, whether molecular simulations or otherwise.  I am not aware of any really clear 

explanation, including Hill’s original presentation.  Hopefully this go-around will make sense. 

 

The Hill relation applies to any “first passage” process - which could be diffusion from one 

region to another, chemical isomerization, protein folding, a cell-signaling process, or ....  Quite 

simply, a first-passage process is one in which a system is initialized somehow (it doesn’t matter 

how but the initialization should be well-specified or at least reproducible) and a hypothetical 

observer waits until a target state is reached or occurs (any target state will do).  The observer 

could measure the time required for each occurrence, and the average time for such a process 

is called mean first passage time (MFPT).  The inverse MFPT is one common definition for a 

rate constant, because the MFPT clearly describes the timescale for the process. 

 
The Hill relation tells us that in a steady state (SS) implementation of a first-passage process - 

where trajectories are initiated from some arbitrary state A and terminated upon reaching 

another, separate state B (at which time they are re-initiated at A) - that the inverse of the mean 

first-passage time (1/MFPT) is given exactly by the probability flux into B, i.e., the fraction of 

trajectories entering state B per second.   
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Fraction	of	trajectories	which	started	in	A	that	arrive	to	B	in	steady	state

time	for	that	fraction	to	arrive
 

We assume that trajectories are initiated according to some desired distribution from state A.  

(Different distributions of initial phase-space points will lead to different MFPTs, not surprisingly.  

We’re just going to assume you’re happy with some initial distribution, though it’s worth noting 



that the choice of initial distribution requires a more subtle discussion: see the paper by Bhatt 

and Zuckerman.) 

 
To derive the relation, we will imagine running a very large number of fully independent 

simulations for a very long time.  The schematic shows a set of red trajectories projected onto 



two coordinates.  Importantly, we record the full history of each trajectory - the coordinates at all 

times - and we see a large number of A-to-B transitions. 

 
Because we have all information about 

the trajectories in the steady state, we 

can go back and examine precisely 

where each was at all times in the past.  

This enables us to perform the simple 

transformation of “stretching” out each 

trajectory in such a way that we 

examine it in terms of its temporal 

progress toward state B.  This is like 

waiting at a bus stop with your smart 

phone and seeing the future arrival 

times of all the buses, regardless of the 

bus route. 

 

Hence we develop a picture like that 

shown below, with each red trajectory marching toward its arrival in state B.  We know how long 

each trajectory will take to arrive because we (imagine we) have simulated each long into the 

past and future. 

 
We can calculate the probability flux into 

state B in two ways that must be 

equivalent.  First, because our 

independent trajectories have been 

running for a very long time, we assume 

they have become fully decorrelated.  

Hence we expect that in any interval of 

time, the same fraction of trajectories will 

arrive to state B.  In the figure, we see 

that 3 trajectories will arrive in the next 

two seconds.  Equivalently, ⅓ of the 

trajectories will arrive in 2 seconds, so 

that the probability flux is ⅙  per second. 

 



We also expect that, because the trajectories are fully independent and de-correlated, in any 

time interval ∆t, the fraction of trajectories arriving should be ∆t/MFPT.  After all, the MFPT is 

the average time a trajectory should spend in transit, so our chance to observe it in time ∆t 

should be ∆t/MFPT on average.  (If you want to think about this more concretely, imagine 

restarting a single trajectory from A each time it arrives to B, creating a sequence of first-

passage events.  The average of the first-passage times will be the MFPT, by definition, and so 

the probability to observe an event will ∆t/MFPT.)  In the example shown, we expect a fraction 

(2 sec)/MFPT of the trajectories to arrive in the 2 sec time interval.  When the MFPT is 6 

seconds, then ⅓ of the trajectories should arrive in 2 sec.  Conversely, if we see that ⅓ of the 

trajectories arrive in 2 sec, we know the MFPT = 6 sec. 

 
Thus we have it: Probability Flux = 1/MFPT.  Importantly, this is an exact result, not dependent 

on the type of dynamics or any assumptions about the states or the initial distribution (of starting 

points). 

 

The reason I consider the Hill relation a “remarkable result,” even if it gets to seem obvious 

when you think about it for too long, is that provides a means in principle for calculating a very 

long timescale (the MFPT) from an arbitrarily short observation period (of a steady state 

ensemble).  Although generating a steady-state ensemble in a naive way would require times of 

the same order as the MFPT itself, there are specialized methods that permit the indirect 

inference of steady-state information from short simulations.  These are path-sampling methods 

including the weighted ensemble approach, milestoning, transition interface sampling, forward 

flux sampling, non-equilibrium umbrella sampling and others. 
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