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The Markov model, without question, is one of the most powerful and elegant tools available in 

many fields of biological modeling and beyond.  In my world of molecular simulation, Markov 

models have provided analyses more insightful than would be possible with direct simulation 

alone.  And I’m a user, too.  Markov models, in their chemical-kinetics guise, play a prominent 

role in illustrating cellular biophysics in my online book, Physical Lens on the Cell. 

 
Yet it’s fair to say that everything is Markovian and nothing is Markovian - and we need to 

understand this. 

 
If you’re new to the business, a quick word on what “Markovian” means.  A Markov process is a 

stochastic process where the future (i.e., the distribution of future outcomes) depends only on 

the present state of the system.  Good examples would be chemical kinetics models with 

transition probabilities governed by rate constants or simple Monte Carlo simulation (a.k.a. 

Markov-chain Monte Carlo).  To determine the next state of the system, we don’t care about the 

past: only the present state matters. 

 
What about systems following deterministic dynamics, e.g., following classical equations of 

motion, Newton’s laws?  Let’s say that such systems are “effectively Markovian” in that the 

future depends only on the present state of the system.  In such cases, we must include the full 

“phase space” of the system in the present state - i.e., velocities as well as positions of particles. 

 
Back to those contradictory claims ... 

 
Everything is Markovian.  Really all the physics (and chemistry and biology) most of us are 

interested in, in fact, is Markovian or effectively so.  Once the states and velocities/momenta of 

all particles are accounted for, the future (or distribution of future outcomes) is determined.  This 



is not to say that you personally know how to figure out the distribution - only that the distribution 

is determined.  This is true for classical and quantum systems, stochastic and deterministic 

dynamics, you name it.  The only trick is to be sure your definition of the present state includes 

all necessary information. 

 
Nothing is Markovian.  And yet, as you may know, for complex systems it is extremely 

challenging to build Markov models.  For that matter, why are they called “models” anyway if the 

true dynamics are (effectively) Markovian as just claimed above?  The answer is arguably in the 

eye of the beholder, or more precisely, in the subset of a system’s phase space chosen for 

analysis.  If only a subset of system coordinates is examined, or even if a discretized 

representation of the full set of coordinates is used, a systems behavior generally will appear 

non-Markovian.  In such a sub-space, we will not be able to predict the distribution of future 

outcomes knowing only the present, because we are ignoring system details that matter in the 

fundamental (effectively Markovian) dynamics. 

 
Markovian: ሺݔ, ሻݒ 		→  only (apparently non-Markovian) ݔ		

 
The idea that dynamics in sub-spaces appears to be non-Markovian is an old one.  The most 

famous example I know of arises in Langevin dynamics.  Standard Langevin dynamics is a 

Markovian process in the full phase space of all system configurational/positional coordinates 

and velocities: the future depends only on the present.  We can see this in the one-dimensional 

Langevin equation: ܽ ൌ ݂ െ ݒ݉ߛ ൅ t݂hermal, where ߛ is the “frictional frequency” opposing motion 

and t݂hermal is the random force due to thermal collisions; other symbols are standard.  If we 

specify the present/initial position and velocity, we specify the future distribution of outcomes.  

However, if we examine a standard Langevin trajectory in only positional space, the behavior 

will appear non-Markovian: the future will depend not only on the present but also on the past - 

i.e., on inertial effects not represented in instantaneous positional coordinates.  In other words, 

to model the effect of inertia without velocities, one requires some previous history of the system 

to implicitly represent the velocity.   

 



 
 
Sometimes non-Markov effects can appear in subtle ways.  Imagine a simple two dimensional 

system, such as in the sketch, where our primary interest is in transitions in the x coordinate, 

from low to high values of x.  Assume that the true dynamics are Markovian in x and y, so no 

inertia to worry about in this abstract example.  Because we are only interested in transitions in 

x, it is natural to build a Markov model by binning in (subdividing) x and estimating transition rate 

among the bins.  Such a model will become more accurate as the bins become smaller.  But 

interestingly, for this energy landscape, Markovian behavior will never be recovered so long as 

the y coordinate is not also subdivided.  Why?  Because the probability to move left or right 

clearly will depend on whether the system is in the upper or lower energy valley: the upper one 

slopes downward to the right and the lower one slopes to the left.  As this example suggests, to 

guarantee recovery of Markovian behavior, bins must become uniformly small in all coordinates. 

 

 
 

The (apparently) non-Markovian behavior doesn’t emerge only in higher dimensional systems.  

Consider simple diffusion in one dimension, as exemplified in the x vs. t trajectory shown.  



Inspection of the trajectory shows that the transition probability from state 3 to 4 depends on the 

fact that the trajectory was previously in state 2.  Because the trajectory is strictly diffusive and 

Markovian in x space, when it reaches the boundary of states 2 and 3, it is equally likely to 

return to 2 … but less likely to get to 4 due to the finite time required to transit across bin 3. 

 

What does this mean for “real” systems of interest?  The challenge in typical complex systems 

is that one has only a finite amount of trajectory data, and so making small bins - especially 

ones that are small in all dimensions - is effectively impossible.  There will not be enough 

transition counts among the bins to enable accurate estimation of the transition rates.  Finite 

states will be intrinsically non-Markovian. 

 
Bottom line: In a finite discrete model of a complex system, you should expect the behavior to 

be non-Markovian.  It is entirely a separate question - and a topic of current research (see 

references) - whether a Markov approximation to the non-Markovian behavior is sufficiently 

accurate. 
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