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The trajectory ensemble is everything you’ve always wanted, and more.  Really, it is.  Trajectory 
ensembles unlock fundamental ideas in statistical mechanics, including connections between 
equilibrium and non-equilibrium phenomena.  Simple sketches of these objects immediately 
yield important equations without a lot of math.  Give me the trajectory-ensemble pictures over 
fancy formalism any day.  It’s harder to make a mistake with a picture than a complicated 
equation. 
 
A trajectory, speaking roughly, is a time-ordered sequence of system configurations.  Those 
configurations could be coordinates of atoms in a single molecule, the coordinates of many 
molecules, or whatever objects you like.  We assume the sequence was generated by some 
real physical process, so typically we’re considering finite-temperature dynamics (which are 
intrinsically stochastic due to “unknowable” collisions with the thermal bath).  The ‘time-ordered 
sequence’ of configurations really reflects continuous dynamics, so that the time-spacing 
between configurations is vanishingly small, but that won’t be important for this discussion. 
 
A trajectory ensemble is a collection of such trajectories distributed according to some condition, 
which might be equilibrium or not. 
 
The equilibrium trajectory ensemble is the best place to start.  We’ll “make” this ensemble - in 
an old-fashioned thought-experiment way - by observing a large number of systems over a very 
long time.  (You may imagine actual systems or computer simulations - it doesn’t matter.)  
Regardless of how we started the systems, after enough time they will become fully 
decorrelated from one another, and we will have an equilibrium ensemble on our hands. 
 



 
 
In the figure, each arrow schematically represents one trajectory.  Importantly, this is NOT a 
picture of atoms or particles interacting, but a schematic view of many fully independent 
systems projected onto a single copy of the configuration space.  The arrow tip represents the 
present configuration and the (curved) arrow shaft shows some recent history of the trajectory. 
 
What can we learn from the equilibrium trajectory ensemble?  In fact, anything we want to know 
about our system, but let’s start with equilibrium quantities of interest, a.k.a. equilibrium 
“observables”.  Most prominently, if we take a fixed-time snapshot of the ensemble, such as all 
the configurations at the arrow tips, we have an equilibrium ensemble of configurations.  That is, 
these configurations (x) will be distributed according to the Boltzmann factor, e^[-U(x)/kT] of the 
potential energy U if the systems live at temperature T.  The equilibrium distribution of 
configurations is obtained from trajectories because dynamics are the ultimate source of 
equilibrium behavior: nature directly “encodes” only dynamics - we humans infer 
thermodynamics (e.g., equilibrium). Put another way, no molecule “knows” how it should 
participate in an ensemble or distribution; a molecule can only blindly behave according to the 
forces it feels.  
 
With the equilibrium distribution of configurations in hand, we can calculate any equilibrium 
quantity we like.  We can calculate the average of any observable … just by averaging the 
observable over the ensemble.  We can obtain the potential of mean force along an arbitrary 
coordinate by histogramming our ensemble along that coordinate and taking a log.  The free 
energy difference between any two configurational states (e.g., A and B in the figure below) can 
be obtained by taking the log of the ratio of counts of arrow tips in each state. 
 



 
 
So what’s different and special about the ensemble of trajectories, compared to the “mere” 
ensemble of configurations?  Trajectories also tell us about dynamical processes - their rates 
and mechanisms. 
 
From a trajectory ensemble, we can infer a “mechanism” for a process … but we cannot from a 
configurational ensemble.  Assume we’re interested in transitions from state A to B in the figure.  
Perhaps A is the closed state of an enzyme and B is the open state.  The mechanism may then 
be defined as the weighted set of pathways taken from A to B - e.g., the fraction of trajectories 
taking the lower vs the upper pathway in the figure.  Physically these might correspond to 
different orderings of events, such as which sub-domain of the enzyme opens first.  (The 
enzyme adenylate kinase provides a good illustration of the potential for path heterogeneity.) 
 
When we think about mechanism in the trajectory-ensemble picture, we see that some 
conventional conceptions of mechanism are inadequate for complex systems.  For example, the 
notion of a single transition state or even a ‘transition state ensemble’ (e.g., of configurations as 
likely to reach A before B as the reverse) do not describe the sequence possible intermediates 
through which a complex system may pass, let alone the possible multiplicity of pathways.  Our 
picture, in the literal sense, makes all this clear. 
 
Can kinetic information - rate constants - be obtained from an equilibrium ensemble of 
trajectories?  Yes, because trajectories are intrinsically dynamical.  The trick is to examine a 
suitable subset of trajectories. 
 
In a previous post, we saw that the rate (expressed as the inverse of the mean first-passage 
time, MFPT) could be obtained from a steady-state ensemble of trajectories.  This is because, 
according to the Hill relation, the fraction of trajectories arriving to B from A per unit time in a 
steady state is exactly the inverse MFPT. 
 



 
 
To obtain a steady-state ensemble of trajectories transitioning from A to B - which in turn will 
yield the MFPT - we can use a labeling idea developed by vanden Eijnden and others (as re-
formulated in Bhatt & Zuckerman, 2011) to select out a subset of the equilibrium trajectory 
ensemble that corresponds precisely to an A-to-B steady state.  Quite simply, we label (or color 
red, in the figure) all trajectories which were more recently in A in than B.  This labeling exactly 
dissects the equilibrium ensemble into the A-to-B and B-to-A steady-states.  (Because our 
trajectory ensemble is in equilibrium, the same number of red trajectories will turn blue - on 
entering B - as will turn red per unit time, on average.) 
 
From that red-colored A-to-B steady state, we can get the MFPT (inverse rate) using the Hill 
relation. 
 
In summary … we can see the power of trajectory thinking.  Concepts are clarified, equations 
justified, and calculational approaches engendered. 
 
From the equilibrium trajectory ensemble, it’s straightforward to obtain equilibrium observables, 
and kinetic quantities can be estimated from suitable subsets of the full ensemble. 
 
Before we finish, it’s worth discussing when a single trajectory might provide the same 
information as the equilibrium trajectory ensemble.  This would hold only for a truly long 
trajectory - one in which all important transitions have been seen multiple times.  (One could 
obtain the equilibrium ensemble from a set of points on the trajectory, for example.)  Anything 
shorter might be called an ‘equilibrium trajectory’, but that name only reflects a lack of external 
driving forces, not the utility for calculating valid observables. 
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