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Key biomolecular events — such as conformational changes, folding, and binding — that are challenging to
study using straightforward simulation may be amenable to study using “path sampling” methods. But
there are a few things you should think about before getting started on path sampling. There are fairly
generic features and limitations that govern all the path sampling methods I’'m aware of.

Path sampling refers to a large family of methods that, rather than having the goal of generating an
ensemble of system configurations, attempt to generate an ensemble of dynamical trajectories. Here
we are talking about trajectory ensembles that are precisely defined in statistical mechanics. As we
have noted in another post, there are different kinds of trajectory ensembles — most importantly, the
equilibrium ensemble, non-equilibrium steady states, and the initialized ensemble which will relax to
steady state. Typically, one wants to generate trajectories exhibiting events of interest — e.g., binding,
folding, conformational change.

A trajectory can be considered a list of configurations (possibly with velocities) for all system coordinates
recorded with a fixed time increment. Note that there is indeed a path ensemble even in one
dimension: because displacements/velocities will vary along a trajectory, there are an infinite number of
trajectories connecting any two points. In principle, trajectory ensemble of transition events could be
obtained by collecting transitions of interest from a very long trajectory — for example the red segments
below, possibly with their preceding blue segments, which together make up the first-passage times
(FPTs) for the system to transition from low to high x values.
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Path sampling methods can focus computing resource on a subset of trajectories (e.g., the red transition
events, above) and have been developed using a variety of strategies. We’ll mention three that work
with continuous trajectories rather than disconnected segments. (1) Lawrence Pratt suggested that,
because the probability for a given trajectory to occur could be calculated, one could perform
Metropolis Monte Carlo in path (trajectory) space; this was the “transition path sampling” idea later
taken up by Chandler and co-workers. The basic idea, however, has its roots in path-integral Monte
Carlo. (2) Huber and Kim suggested that an ensemble of trajectories could be orchestrated using
replication and pruning steps in a way that could encourage sampling of rare processes. This “weighted
ensemble” strategy was really a re-discovery of the “splitting and Russian roulette” strategy published
by Los Alamos theorists Herman Kahn & coworkers in the 1950s. (3) “Dynamic importance sampling”
was proposed by Woolf, based on prior work by Ottinger, in which trajectories could be biased toward
rare events of interest, with reweighting performed after the fact to ensure conformance with statistical
principles.

The preceding are three basic approaches that generate ensembles of continuous trajectories. It is fair
to note that many sophisticated variants and improvements on the basic strategies have been
developed, in addition to many approaches using collections of discontinuous segments (see review by
Elber noted below); these are quite valuable but a distraction from the main points of this post.

Generic limitations of path sampling

All the continuous-trajectory approaches share two fundamental limitations. One arises from intrinsic
system-specific transition timescales, and the other is a consequence of intrinsic sampling limitations.

To understand the limitations, let’s assume our goal is to sample 100 statistically independent transition
events. Although every individual trajectory is time-correlated because configurations are generated
sequentially, trajectories can be statistically independent — for example, if you started 100 independent
simulations in an initial state and simply waited for 100 transitions. Of course, that strategy generally is
prohibitive and motivates path sampling in the first place, but truly independent simulations would be a
gold standard for independent transition-event trajectories.



System-specific timescales

Generally speaking, there are two kinds of transition events. As shown in our original long one-
dimensional trajectory and immediately above in magnified view, in a simple “activated process”
characterized by a dominant energy barrier, the duration of a transition t, will be much shorter than the
waiting time (a.k.a. dwell time) in the initial state. The sum of the average dwell and event times is
called the mean first-passage time (MFPT). Although t, may be short and much less than the MFPT, it is
still finite. A more challenging scenario is depicted below in the figure with many intermediate states:
each intermediate can lead to a separate, possibly lengthy dwell — and don’t forget that trajectories can
reverse many times leading to more dwells than there are intermediates. In such a case, the transition-
event duration t, may be similar to the overall MFPT.

With this understanding, let’s get back to our goal of simulating 100 independent transitions. The
minimum cost for doing this with fully continuous trajectories is 100 t,. If t, ~ 10 ns, then at least 1 psis
needed for our trajectory ensemble. And there is no guarantee that t, will be short (compared to
timescales that can easily be simulated). So start worrying now ... and things only get worse.

Intrinsic limitations of sampling

Path sampling is desirable when system timescales (MFPTs for processes of interest) are too long to
simulate. In other words, by definition of the problem, we cannot afford 100*MFPT. Algorithms such as
the ones sketched above have the potential to limit computational effort to the transition events



themselves. But generating independent transition-event trajectories is not a trivial matter! Although
starting separate “brute force” (i.e., standard) trajectories is simple to do, if one wants computational
effort to be focused on transition events, there are additional costs.

Let’s look in turn at each of the three path-sampling strategies described above.

In transition path sampling, Metropolis Monte Carlo in path space requires perturbing the preceding
trajectory in a sample to create a trial trajectory (that is correlated and, in fact, typically partially
coincident with the prior trajectory) which then is accepted or rejected according to a suitable
Metropolis criterion. The sequence of trajectories is significantly correlated, and indeed rejections
amount to having the same trajectory twice in the ensemble which is generated. In other words, there
is a kind of “correlation number” ncr (akin to a Monte Carlo correlation “time”) measuring the average
number of trajectories which must be sampled before a new statistically independent trajectory is
sampled. There is no reason why nerr should be small and indeed, just as in a rough energy landscape,
one can imagine that the effective landscape for paths is highly corrugated and requires significant
sampling “time.” The bottom line is that our 100 independent trajectories will cost a total of
100*ncorr*ty, simulation time: one hopes that this will be less than the “brute force” cost of 100*MFPT!
This sounds bad, but other approaches share similar limitations.

Consider the weighted ensemble strategy. Trajectories in the ensemble are run independently but
occasionally pruned or replicated — and both operations intrinsically reduce information content and
hence increase correlations. When a trajectory is pruned, the prior computing effort which generated it
now gets wasted (at least partially). When a trajectory is replicated, say midway through the simulation,
then the “daughter” or replica trajectories actually were the very same trajectory for half of their
existence — and clearly correlated. So once again, there are significant correlations and we can again
describe it with an effective correlation number ne. Whether these correlations are stronger or
weaker in the two methods is not our concern here (and indeed would depend on the system and
specifics of the implementation of the path-sampling algorithm).

The dynamic importance sampling strategy is strictly based on independent trajectories and so does not
suffer from correlations ... but it has its own challenges. Specifically, trajectories are biased and do not
evolve according the correct physical dynamics. Although a probabilistic description of stochastic
trajectories enables one to calculate a weight for each of the biased trajectories and thus correct for the
bias, these weights degrade the statistical quality of the resulting trajectory ensemble. Specifically, the
non-uniformity of weights guarantees that only a fraction of the trajectories (say, 1/n, with n,, > 1) will
contribute significantly to calculations of any observable, such as a rate. The size of n, will depend on
system and implementation specifics, but it’s clear the approach qualitatively suffers from sampling
limitations analogous to the two other strategies we just discussed.

Bottom line: The cost per continuous transition trajectory is n*t,, where n >> 1 is an integer quantifying
the efficiency of the path sampling method. Of course, experts in each method strive to reduce n but
there are no guarantees for any challenging system.
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Meeting the challenge of multiple intermediates

The issue of multiple intermediates (meta-stable on- or off-pathway states) is worth some additional
discussion in the context of path sampling. Recall that in such a case, t, ~ MFPT itself may seem
prohibitive — at least, if we insist on having fully continuous trajectories.

The good news is that all three strategies described above can side-step the problem of intermediate
states (as can a number of other approaches based on trajectory segments). One example is the non-
Markovian post-analysis suggested by Suarez et al., but this post will not go into the details.
Qualitatively, it turns out that the limiting timescale for path sampling is not t, but a quantity we can call
t;, which represents the sum of all the event durations for transitions among the intermediates —
excluding the intermediate dwell times. This doesn’t solve the problem of trajectory correlations or
weights, but at least offers some hope for obtaining useful results.

The papers noted below are only a very small subset of the path sampling literature.
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