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The sound of a person’s voice is an important factor in human communication. Voice Conversion

(VC) is a technology that modifies a source speaker’s speech utterance to sound as if it has been

spoken by a target speaker. VC offers a number of useful applications. For example, personalizing

a text-to-speech system to speak with a new voice with minimal amount of data, or mimicking the

voice of another individual when dubbing a movie in another language.

In this dissertation, we consider new approaches in the design of VC systems. We propose

techniques for learning speech representations with some characteristics that facilitate building

systems for VC. In a first approach, we propose to learn artificially-enforced similar representations

from both source and target speakers’ speech features. This allows the encoding of source speaker

features to a representation which can then be used to decode the target speech features. We name

this architecture joint autoencoder. We investigate the behaviors of this model through objective

and subjective evaluations.

In a second approach, we propose to learn decoupled speech representations. Specifically, we

focus on decoupling speaker identity and linguistic content. The model is initially trained to

decouple the representations from a multi-speaker parallel corpus. We then apply the trained

model to seen or unseen speakers to compute the speaker identity representation. We can replace

the speaker identity of an input utterances with that of a target speaker’s to achieve VC. We

name this model decomposing autoencoder. We investigate the effectiveness of this model through

objective and subjective evaluations.

A third contribution is proposing to learn deep autoencoder models using two proposed algo-

rithms: a progressive training algorithm, and a deeply supervised algorithm. Traditionally, greedy

layer-wise training was used to training deep autoencoders. As the name suggests, each level is

trained in isolation, starting from the first level towards the deepest level. Alternatively, all levels
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can be trained at once. In our proposed progressive algorithm, to train the autoencoder at a

certain level, we train that level in isolation, and then re-train all the previous layers and current

layer at once. This process is repeated until the desired depth is reached. This algorithm can be

used as a general algorithm to train deep autoencoders instead of greedy layer-wise training or

training all layers at once. In our proposed deeply supervised algorithm, we propose to use an

architecture in which all autoencoder levels have their loss contribute to the total loss, hence all

deep autoencoder levels are trained simultaneously. This is motivated by the idea behind deeply

supervised networks in which each layer has a connection to the output, hence helping the error

to propagate to the lower layers of the network. Through objective evaluations, we show that the

proposed algorithms learn more useful representations compared to a baseline.



Chapter 1

Introduction

1.1 Definition of voice conversion

Voice transformation (VT) refers to the various modifications one may apply to human-produced

speech [261, 184]; specifically, VT aims to modify one or more aspects of the speech signal while

retaining its linguistic information. Voice conversion (VC) is a special type of VT whose goal is to

modify a speech signal uttered by a source speaker to sound as if it was uttered by a target speaker,

while keeping the linguistic content unchanged [37]. In other words, VC modifies speaker-dependent

characteristics of the speech signal, such as spectral and prosodic aspects, in order to modify the

perceived speaker identity while keeping the speaker-independent information (linguistic content)

the same. There is also another class of voice transformation called voice morphing where the

voices of two speakers are blended to form a virtual third speaker [25]. VT approaches can be

applied to solve related problems, such as changing one emotion into another [137], improving the

intelligibility of speech [127], or changing whisper/murmur into speech without modifying speaker

identity and linguistic content. For more information regarding applications, please see Section 1.2.

In this work, we will focus on studies pertaining to VC systems, since the majority of important

milestones of the VT field have been studied in the VC literature.

There are various ways to categorize VC methods. One factor is whether they require parallel or

non-parallel recordings during their training phase. Parallel recordings are defined as utterances

that have the same linguistic content, and only vary in the aspect that needs to be mapped

(speaker identity, in the VC case) [192]. A second factor is whether they are text-dependent or

text-independent [272]. Text-dependent approaches require word or phonetic transcriptions along

with the recordings. These approaches may require parallel sentences recorded from both source

and target speakers. For text-independent approaches, there is no transcription available, therefore

these approaches require finding speech segments with similar content before building a conversion

1
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function [269]. A third factor is based on the language that source and target speakers speak.

Language-independent or cross-language VC assumes that source and target speakers speak in

different languages [267, 313]. Finally, another category of VC systems is one-to-one versus many-

to-one and many-to-many systems. One-to-one systems assume the availability of both source and

target speaker data (either parallel, or non-parallel) and expects source speaker as input during

conversion. Many-to-one systems are able to only use target data, and expect arbitrary speakers

as input during conversion. Similarly, many-to-many systems can handle arbitrary speakers as

input during conversion, and can convert to unseen (during training) speakers as target.

1.2 The applications of voice conversion

VT and VC techniques can be applied to solve a variety of applications. We list some of these

applications in this section:

Transforming speaker identity: The typical application of VT is to transform speaker identity

from one source speaker to a target speaker, which is referred to as VC [35]. For example, a

high-quality VC system could be used by dubbing actors to assume the original actor’s voice

characteristics. VT methods can also be applied for singing voice conversion [319, 332, 44,

141].

Transforming speaking type: VT can be applied to transform the speaking type of a speaker.

The goal is to retain the speaker identity but to transform emotion [101, 102, 290, 159],

speaking style [187, 79], speaker accent [14], or speaker character [228], as well as de-

identification [118, 16] and delexicalization [124]. Prosodic aspects are considered a more

prominent factor in perceiving emotion and accent, thus some studies focus on prosodic

aspects [137, 287, 133, 114, 17, 102, 159, 338, 340].

Personalizing Text-to-Speech (TTS) systems: A major application of VC is to personalize a

TTS systems to new speakers, using limited amounts of training data from the desired speaker

(typically the end-user if the TTS is used as an augmentative and alternative communications

device) [122, 46, 265]. Another option is to create a TTS system with new emotions [137,

317, 115, 318, 152].

Speech-to-Speech translation: The goal of these systems is to translate speech spoken in one

language to another language, while preserving speaker identity [336, 23]. These systems are
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usually a combination of automatic speech recognition (ASR), followed by machine trans-

lation. Then, the translated sentence is synthesized using a TTS system in the destination

language, followed by a cross-language VC system [49, 276, 215, 274].

Biometric voice authentication systems: VC presents a threat to speaker verification sys-

tems [224]. Some studies have reported on the relation between the two systems and the vul-

nerabilities that VC poses for speaker verification, along with some solutions [9, 352, 40, 348].

Speaking- and Hearing-aid devices: VT systems can potentially be used to help people with

speech disorders by synthesizing more intelligible or more typical speech [127, 98, 307, 360, 5,

284, 297, 125]. VT is also applied in speaking-aid devices that use electrolarynx devices [21,

199, 200]. Similar approaches can be used to increase the intelligibility of speech, especially

in noisy environments with application to increasing the performance of future hearing-aid

devices [187, 145, 80]. Other applications are devices that convert murmur to speech [298,

198, 307], or whisper to speech [191, 311].

Telecommunications: VT approaches have been used to reconstruct wide-band speech from

its narrowband version [222]. This can enhance speech quality without modifying existing

communication networks. Spectral conversion approaches have also been successfully used

for speech enhancement [193].

1.3 Problem Definition

Background and Context

Voice conversion and voice transformation share many common techniques. They have numerous

useful applications as listed in the previous sub-section. There has been numerous signal-processing

based, exemplar-based, statistical, and neural approaches proposed to perform voice conversion.

These approaches, however, still do not produce acceptable quality for the general public. More-

over, these approaches perform mapping directly on the acoustic features. More research towards

improving speech quality and speaker similarity are required. An extensive subjective evaluation

was performed during the 2016 Voice Conversion Challenge (VCC), with multiple submitted sys-

tems [342]. It was concluded that “there is still a lot of work to be done in voice conversion, it is

not a solved problem. Achieving both high levels of naturalness and a high degree of similarity to

a target speaker — within one VC system — remains a formidable task” [342].
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Scope and Relevance

This study focuses on proposing various autoencoder architectures for performing voice conversion.

Autoencoders are neural-network architectures that are useful for learning representations from

data. We leverage the properties of a parallel corpus to find similar representations from two or

more voices. We enforce this similar representation learning by imposing constraints in either the

cost function or the architecture of the neural network. These similar representations allow us to

perform useful modifications in the representation to achieve voice transformation.

Problem Statement

The voice conversion quality and similarity is still not acceptable to a wider audience, and the

mapping is typically performed directly between low-level acoustic features which might not be an

appropriate domain for transformation.

Objective

The aim of this research is to propose methodologies to learn a more abstract representation

domain compared to the acoustic feature domain, and perform the voice conversion mapping in

that representation domain. The motivations is that these representations allow higher quality

conversion, and more flexibility in mapping different voices.

Thesis statement

Methodologies that learn meaningful representations from the speech acoustic features in order to

perform the mapping in the representation domain perform better than comparable baselines.

1.4 Motivation of dissertation

In this dissertation, we focus on two main tasks: one-to-one parallel VC, and many-to-many non-

parallel (non-parallel in the sense that the final system does not require parallel training data on

new source and target speakers, but initial parallel training data is still required for building a

general-purpose model) VC. In this dissertation, we aim to find unified (joint) representations for

both source and target voices, and simultaneously, reduce the distance between the learned source

and target representations. The typical one-to-one VT system assumes the model receives source

features as input and target features as output, and imposes some closeness criterion between the

original target and the predicted target. In contrast, we propose to learn the abstract representation
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for each source and target distributions, and simultaneously reduce the distance between the

learned representations. We posit that the closeness criterion tries to force the model to learn a

speaker-independent representation which we can use to generate either source or target features.

We investigate the behavior of the predicted features using the traditional and proposed approaches

and show the benefits of the proposed approach.

For solving the many-to-many non-parallel VC task, signal-processing based approaches have

been proposed which find similar acoustic or phonetic units between the source and target speech

corpora and align them. Then a model learns to map aligned source to target features. In this

dissertation, we propose an approach which decomposes arbitrary speaker speech features to its

underlying factors, namely the linguistic message and speaker identity. This disentanglement allows

numerous applications. For VC, the speaker identity factor can be manipulated (e. g. replaced),

so that the linguistic content stays the same but the speaker identity of the reconstructed speech

features are modified. These linguistic or speaker identity vectors can be potentially also used for

tasks such as speaker identification and speech recognition.

1.5 Contribution of this dissertation

In this dissertation, we focus on two main tasks: one-to-one parallel VT, and many-to-many non-

parallel VC. We focus on representation learning approaches to learn useful speech representations,

to be applied for modifying speaker identity.

For training deep autoencoders, we propose two training approaches: progressive training and

deeply-supervised training. In progressive training, each layer is trained in isolation first, and

then all the layers are jointly trained together. We start from the lowest layer and iterate until

the desired depth is reached. In deeply-supervised training, we propose to use an architecture in

which all autoencoder levels have their loss contribute to the total loss, hence all levels are trained

simultaneously. This is motivated by the idea behind deeply supervised networks in which each

layer has a connection to the output, hence helping the error to propagate to the lower layers of

the network. We show that we gain significant improvements in several speech processing tasks.

In the one-to-one parallel VT task, models typically use the mean squared error between the

predicted and original target features. In contrast, we propose a joint-autoencoder architecture in

which the model builds two separate autoencoders for source and target speakers, and simultane-

ously tries to minimize the representation layer distance between them.

In this dissertation, we propose a model which is able to decompose linguistic and speaker

identity factors from speech features. We propose an autoencoder which learns to decompose the
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factors in the representation layer. To train this decomposing autoencoder, we propose a siamese

architecture, where in addition to reconstruction costs, other costs are imposed on linguistic and

speaker identity representations. We also propose a modification of this approach where we impose

additional constraints on the model architecture.

The following are accepted conference and journal articles:

1. S.H.Mohammadi, A. Kain, Siamese Autoencoders for Speech Style Extraction and Switch-

ing Applied to Voice Identification and Conversion, Interspeech, 2017 [185].

2. S.H. Mohammadi, A. Kain, An overview of voice conversion systems, Speech Commu-

nication, 2017 [184].

3. S.H. Mohammadi, A. Kain, A Voice Conversion Mapping Function based on a Stacked

Joint-Autoencoder, Interspeech, 2016 [183].

4. S.H.Mohammadi, A. Kain, Semi-supervised Training of a Voice Conversion Mapping Func-

tion using Joint-Autoencoder, Interspeech, 2015 [182].

5. M. S. Elyasi Langarani, J. van Santen, S.H. Mohammadi, A. Kain, Data-driven Foot-based

Intonation Generator for Text-to-Speech Synthesis, Interspeech, 2015 [149].

6. S.H. Mohammadi, A. Kain, Voice Conversion Using Deep Neural Networks With Speaker-

Independent Pre-Training, Spoken Language Technology (SLT), 2014 [181].

7. S.H. Mohammadi, A. Kain, Transmutative Voice Conversion, ICASSP, 2013 [180].

8. S.H. Mohammadi, A. Kain, J. van Santen, Making Conversational Vowels More Clear,

Interspeech, 2012 [187].

9. E. Morley, E. Klabbers, J. van Santen, A. Kain, S.H. Mohammadi, Synthetic F0 Can

Effectively Convey Speaker ID in Delexicalized Speech, Interspeech, 2012 [190].

The following are planned submissions covering some of the contributions of the dissertation:

1. S.H.Mohammadi, A. Kain, Training deep autoencoders using a deeply supervised training,

to be submitted to a ML journal or conference.

2. S. H. Mohammadi, A. Kain, Learning Speaker and Linguistic Encodings of Speech using

Decomposing Autoencoders, to be submitted to a ML journal or conference.

3. S. H.Mohammadi, A. Kain, Joint Deep Autoencoders for High-Dimensional Regression and

the Application to Voice Conversion, to be submitted to a ML journal or conference.
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1.6 Dissertation outline

In Chapter 2, we present the literature review of VC systems. We present the methodologies, defini-

tions, evaluation approaches, databases, and explore the challenges. In Chapter 3, we present deep

autoencoders and various algorithms to train them. In Chapter 4, we present Joint Autoencoders

as acoustic models, applied to one-to-one parallel VC. In Chapter 5, we present Decomposing Au-

toencoder which disentangle speaker-related and linguistic-related information and investigate its

effect on phoneme recognition, speaker identification, and many-to-many voice conversion. Finally,

we summarize and discuss the contributions in Chapter 6.1 and present possible future directions

in Chapter 6.2.



Chapter 2

Literature Review

2.1 Introduction

Voice transformation refers to the various modifications one may apply to human-produced speech [261];

specifically, VT aims to modify one or more aspects of the speech signal while retaining its lin-

guistic information. Voice conversion is a special type of VT whose goal is to modify a speech

signal uttered by a source speaker to sound as if it was uttered by a target speaker, while keeping

the linguistic content unchanged [37]. In other words, VC modifies speaker-dependent character-

istics of the speech signal, such as spectral and prosodic aspects, in order to modify the perceived

speaker identity while keeping the speaker-independent information (linguistic content) the same.

There is also another class of voice transformations called voice morphing where the voices of two

speakers are blended to form a virtual third speaker [25]. VT approaches can be applied to solve

related problems, such as changing one emotion into another [137], improving the intelligibility of

speech [127], or changing whisper/murmur into speech without modifying speaker identity and lin-

guistic content. For more information regarding applications, please see Section 1.2. In this work,

we will focus on studies pertaining to VC systems, since the majority of important milestones of

the VT field have been studied in the VC literature.

An overview of a typical VC system is presented in Figure 1 [58]. In the training phase, the

VC system is presented with a set of utterances recorded from the source and target speakers

(the training utterances). The speech analysis and mapping feature computation steps encode the

speech waveform signal into a representation that allows modification of speech properties. Source

and target speakers’ speech segments are aligned (with respect to time) such that segments with

similar phonetic content are associated with each other. The mapping or conversion function is

trained on these aligned mapping features. In the conversion phase, after computing the mapping

8
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features from a new source speaker utterance, the features are converted using the trained conver-

sion function. The speech features are computed from the converted features which are then used

to synthesize the converted utterance waveform.

There are various ways to categorize VC methods. One factor is whether they require parallel or

non-parallel recordings during their training phase. Parallel recordings are defined as utterances

that have the same linguistic content, and only vary in the aspect that needs to be mapped

(speaker identity, in the VC case) [192]. A second factor is whether they are text-dependent or

text-independent [272]. Text-dependent approaches require word or phonetic transcriptions along

with the recordings. These approaches may require parallel sentences recorded from both source

and target speakers. For text-independent approaches, there is no transcription available, therefore

these approaches require finding speech segments with similar content before building a conversion

function [269]. A third factor is based on the language that source and target speakers speak.

Language-independent or cross-language VC assumes that source and target speakers speak in

different languages [267, 313]. Because of the differences in languages, some phonetic classes

may not correspond to each other, resulting in problems during mapping. To solve this issue,

a combination of non-parallel, text-independent approaches can been used. Another important

factor for VC categorization is the amount of the training data that is available. Typically, for

larger training data, conversion functions that memorize better are more effective; however, for

smaller training data, techniques that generalize better are more preferable.

Some investigators have studied the contributions of several speech features such as of pitch,

formant frequencies, spectral envelope and others to speaker individuality [173, 147]. The three

most relevant factors were found to be average spectrum, formants, and the average pitch level.

As a result, the majority of VC systems aim to modify short-time spectral envelopes and the pitch

value. In this study, we present the spectral and prosodic mappings that have been proposed for

VC in Sections 2.5 and 2.6, respectively. We also review prominent approaches for evaluating the

performance of VC systems in Section 2.7.

2.2 Speech Features

As shown in Figure 2.1, in order to perform voice conversion, analysis/synthesis of the speech signal

is necessary. The goal is to extract speech features that allow a good degree of modification with

respect to the acoustic properties of speech. Most techniques work on the frame-level (or frame-by-

frame), defined as short time segments (~20 milliseconds), in which the length of the frame is chosen

so that it satisfies the assumption that the speech signal is stationary (the statistical parameters
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Figure 2.1: Training and conversion phases of a typical VC system [58]

of the signal over time are fixed) in that frame. The frame can be of fixed length throughout

the analysis or it can have a length relative to the pitch period of the signal (pitch-synchronous

analysis).

Speech models can be broadly categorized into source-filter models and signal-based models. In

source-filter models, speech is modeled as a combination of an excitation or source signal (repre-

senting the vocal cords, not to be confused with the source speaker), and a spectral envelope filter

(representing the vocal tract). The model assumes that speech is produced by passing an excitation

signal (related to vocal cord movements and frication noise) through the vocal tract (represented

by a filter), or, in other words, filtering the excitation signal with the vocal tract filter. The exci-

tation signal and filter are assumed to be independent of each other. Two prominent filter models

are commonly used: all-pole and log-spectrum filters. Linear predictive coding (LPC) is an imple-

mentation of all-pole models, and mel-log spectrum approximation (MLSA) is an implementation

of log-spectrum filters [112]. SPTK is a publicly available toolkit that provides linear predictive
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and MLSA analysis/synthesis [110]. When estimating the spectral envelope, the pitch periods

present in the speech signal can show up as harmonics (sharp peaks and valleys) in the spectral

envelope. This phenomenon can be problematic when performing any further modifications to the

spectrum, since the presence of pitch information in the spectrum would fail the assumption of the

independence of source signal and filter. In an attempt to alleviate the interference between sig-

nal periodicity and the spectrum, STRAIGHT proposes a pitch-adaptive time-frequency spectral

smoothing [134], which was later extended to TANDEM-STRAIGHT to provide a unified com-

putation of spectrum, fundamental frequency, and aperiodicity [135]. The advantage of a smooth

spectrum is that it provides a representation that is easier to model and manipulate. CheapTrick

and WORLD propose some improvements over TANDEM-STRAIGHT [188, 189]. The excitation

signal can be modeled in various ways. A simple implementation is the pulse/noise model in which

the voiced speech segments are modeled using a periodic pulse and the unvoiced speech segments

are modeled using noise. More complex excitation signal models such as glottal excitation mod-

els [36, 334, 42, 232, 3], residual signals [123, 273, 370, 47, 225], mixed excitation [218, 216], and

band aperiodicity [95, 32] have been used.

Signal-based analysis/synthesis approaches model the speech signal by not making any re-

strictive assumptions (such as the independence of source signal and filter); hence they usually

have higher quality. The downside is that they are less flexible for modification. A simple anal-

ysis/synthesis technique is pitch-synchronous overlap-add (PSOLA) [196]. PSOLA uses varying

frame sizes related to the fundamental frequency (F0) to create short frames of the signal, keeping

the signal in time-domain. PSOLA allows for prosodic transformations of pitch and duration.

Linear Predictive PSOLA adds the ability to perform simple vocal tract modifications [326]. Har-

monic plus noise models (HNM) assume that the speech signal can be decomposed into harmonics

(sinusoids with frequencies relevant to pitch). HNMs generate high quality speech but they are not

as flexible as source-filter models for modification, mainly because of the difficulty of dealing with

phase [260]. The Ahocoder is a publicly available toolkit that provides high-quality HNM synthe-

sis [60]. Speech signals can also be represented as a sum of non-stationary modulated sinusoids;

this has shown to significantly improve the synthesized speech quality in low-resource settings [2].

2.3 Mapping Features

One might directly use speech analysis output features for training the mapping function. More

commonly, the speech features are further processed to allow better representation of speech. As

shown in Figure 2.1, following the speech analysis step, the mapping features are computed from
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the speech features. The aim is to obtain representations that allow for more effective manipulation

of the acoustic properties of speech.

2.3.1 Local Features

Local features represent speech in short-time segments. The following features are commonly

utilized to represent local spectral features:

Spectral envelope: the logarithm of the magnitude spectrum can be used directly for represent-

ing the spectrum. Because of the high dimensionality of these parameters, more constrained

VC mapping functions are commonly used [326, 267, 180]. The frequency scale can be

warped to Mel- or Bark-scale, which are frequency scales that emphasize perceptually rel-

evant information. Recently, due to the prevalence of neural network techniques and their

ability to handle high-dimensional data, these features are becoming more popular. Spectral

parameters have high inter-correlation.

Cepstrum: a spectral envelope can be represented in the cepstral domain using a finite number

of coefficients computed by the Discrete Cosine Transform of the log-spectrum. Commonly,

mel-cepstrum (MCEP) is used in the literature [111]. Cepstral parameters have low inter-

correlation.

Line spectral frequencies (LSF): manipulating LPC coefficients may cause unstable filters,

which is the reason that usually LSF coefficients are used for modification. LSFs are more

related to frequency (and formant structure), and they also have better quantization and

interpolation properties [221]. These properties make them more appropriate when statistical

methods are used [120]. LSF parameters have high inter-correlation. These parameters are

also known as Line spectral pairs (LSP).

Formants: formant frequencies and bandwidths can be used to represent a simplified version

of the spectrum [178, 375, 240, 75]. They represent spectral features which are of high

importance to speaker identity; however, because of their compact nature, they can result

in low speech quality during more complex acoustic events in cases when the formants are

modified or synthesized.

The local pitch features are typically represented by F0, or alternatively by logarithm of F0 which

is considered to be more perceptually relevant.
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2.3.2 Contextual Features

Most of the mapping functions assume frame-by-frame processing. Human speech is highly dy-

namic over longer segments and the frame-by-frame assumption restricts the modeling power of

the mapping function. Ideally, speech segments with similar static features but different dynamic

features should not be treated the same. Techniques that add contextual information to the fea-

tures are proposed: appending multiple frames, appending delta (and delta-delta) features, and

event-based encodings. Appending multiple frames forms a new super-vector feature [353, 30, 182]

on which the mapping function is trained. This new multi-frame feature would allow the mapping

function to capture the transitions within the short (but longer than a single frame) segments,

since the number of neighboring frames that are appended is chosen in a way that meaningful

transitional information is present within the segment. In another approach, appending delta and

delta-delta features has been proposed [68]; this allows the mapping function to also consider the

dynamic information in the training phase [48]. Moreover, during computing speech features from

the converted features, this dynamic information can be utilized to generate a local feature trajec-

tory that considers both static and dynamic information [303]. Event-based approaches decompose

local feature sequence into event targets and event transitions to effectively model the speech tran-

sition. Temporal decomposition (TD) decomposes local feature sequence into event targets and

event functions [211, 212, 210]. The event functions connect the event targets through time. Simi-

larly, the asynchronous interpolation model (AIM) proposes to encode local feature sequence by a

set of basis vectors and connection weights [126]. The connection weights connect the basis vectors

through time to model feature transition. The main difficulty with the event-based approaches is

to correctly identify event locations in the sequence.

Analogous to spectral parameterization, contextual information can be added to the local pitch

features as well. More meaningful speech units such as syllables can be considered to encode

contextual information. We present pitch parametrization and mapping approaches in more detail

in Section 2.6.

In addition to these techniques that explicitly encode the speech dynamics, some mapping func-

tions implicitly model dynamics from a local feature sequence. Examples of these implicit dynamic

models are hidden Markov models (HMMs) and recurrent neural networks (RNNs). These models

typically encompass a concept of state. The state that the model is currently in is determined by

the previously seen samples in the sequence, hence allowing the model to capture context. We will

mention these approaches at the end of their relevant spectral mapping subsections in Section 2.5.
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2.4 Time-alignment

As shown in Figure 2.1, VC techniques commonly utilize parallel source-target feature vectors for

training the mapping function between source and target features. The most common approach

uses recordings of a set of parallel sentences (sentences including the same linguistic content)

from both source and target speakers. However, the source and target speakers are likely to have

different-length recordings, and have dissimilar phoneme durations within the utterance as well.

Therefore, a time-alignment approach must be used to address the temporal differences. Manual or

automatic phoneme transcriptions can be utilized for time alignment. Most often, a dynamic time

warping (DTW) algorithm is used to compute the best time alignment between each utterance

pair [1, 121], or within each phoneme pair. The final product of this step is a pair of source

and target feature sequences of equal length. The DTW alignment strategy assumes that the

same phonemes of the speakers have similar features (when using a particular distance measure).

This assumption however is not always true and might result in sub-optimal alignments, since

the speech features are typically not speaker-independent. For improving the alignment output,

one can iteratively perform the alignment between the target features and the converted features

(instead of source features), followed by training and conversion, until a convergence condition is

satisfied. There are various methods that perform time alignment in different conditions, depending

on the availability of parallel recordings, the availability of phonetic transcription, the language of

the recordings, and whether the alignment is implicit in training or is performed separately. An

overview of some time-alignment methods is given in Table 2.1.

More complicated approaches are required for non-parallel alignment. One set of alignment meth-

ods use transcribed, non-parallel recordings for training purposes. For alignment, a unit-selection

text-to-speech (TTS) system can be built and used to synthesize the same sentences for both

source and target speakers [49]. The resulting speech is completely aligned, since the duration of

the phonemes can be specified to the TTS system beforehand [345]. These approaches usually re-

quire a relatively large number of training utterances and they are usually more suited for adapting

an already trained parametric TTS system to new speakers/styles. These approaches, however,

are text-dependent. For text-independent, non-parallel alignment, a unit-selection approach that

selects units based on input source features is proposed to select the best-matching source-target

feature pairs [274]. The INCA algorithm [55, 58] iteratively finds the best feature pairs between the

converted source and the target utterances using a nearest neighbors algorithm, and then trains

the conversion on those pairs. This process is iterated until the converted source converges and

stops changing significantly.
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Researchers have studied the impact of frame alignment on VC performance, specifically the

situation where one frame aligns with multiple other frames (hence making the source-target feature

relationship not one-to-one), and approaches to reduce the resulting effects were proposed [195,

92, 74, 82]; notably, some studies suggested to filter out the source-target training pairs that are

unreliable, based on a confidence measure [316, 239].

2.5 Spectral modeling

This section discusses the mappings that are used for VC task to learn the associations between

the spectral mapping features. We assume that the mapping features are aligned using one of

the techniques described in Section 2.4. In addition, we assume that the training source and

target speaker features are sequences of length N represented by Xtrain = [xtrain1 , . . . ,xtrainN ] and

Ytrain = [ytrain1 , . . . ,ytrainN ], respectively, where each element is a D-dimensional vector x> =

(x1, . . . , xD). Each element of the sequence represents the feature computed in a certain frame,

where the features can be any of the mapping features described in Section 2.3. The goal is to

build a feature mapping function F(X) that maps the source feature sequence to be more similar

to the target speaker feature sequence, as shown in Equation 2.1. At conversion time, an unseen

source feature X = [x1, . . . ,xNtest ] of length N test will be passed to the function in order to predict

target features,

F(X) = Ŷ = [ŷ1, . . . , ŷNtest ] (2.1)

Traditionally we assume that the mappings are performed frame-by-frame, meaning that each

frame is mapped independent of other frames,

ŷ = F(x) (2.2)

however, more recent models consider more context to go beyond frame-by-frame mapping, which

are mentioned at the end of their relevant subsections.

In Figure 2.2, we devise a toy example to show the performance of some conversion tech-

niques. We utilize 40 sentences from a male (source) and a female (target) speaker from the Voice

Conversion Challenge corpus (refer to Section 2.7). We extract 24th-order MCEP features and use

principal component analysis (PCA) on both speaker’s data to reduce the dimensionality to two for

easier two-dimensional visualization. The yellow and green dots represent source and target train-

ing features. The input data, represented as magenta, is a grid over the source data distribution

in the top row, and the feature sequence of a word uttered by the source speaker (excluded from
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the training data) in the bottom row. The original target and converted features are represented

as blue and red, respectively.

2.5.1 Codebook mapping

Vector quantization (VQ) can be used to reduce the number of source-target pairs in an optimized

way [1]. This approach creates M code vectors based on hard clustering using vector quantization

on source and target features separately. These code vectors are represented as cxm and cym for

source and target speakers, for m = [1, . . . ,M ], respectively. At conversion time, the closest

centroid vector of the source codebook is found and the corresponding target codebook is selected

FVQ(x) = cym, (2.3)

where m = argη=[1,M ] min d(cxη ,x). The VQ approach is compact and covers the acoustic space

appropriately since a clustering approach is used to determine the codebook. However, this sim-

ple approach still has the disadvantage of generating discontinuous feature sequences. This phe-

nomenon can be solved by using a large M but this requires a large amount of parallel-sentence

utterances. The quantization error can be reduced by using a fuzzy VQ, which uses soft clus-

tering [251, 12, 316]. For an incoming new source mapping feature, a continuous weight wxm is

computed for each codebook based on a weight function. The mapped feature is calculated as a

weighted sum of the centroid vectors

Ffuzzy VQ(x) =

M∑
m=1

wxmcym, (2.4)

where wxm = weight(cxm,x
new). This weight function can be computed using various methods,

including Euclidian distance [251], phonetic information [252], exponential decay [11], vector field

smoothing [84], and statistical approaches [156]. Simple VQ is a special case of fuzzy-VQ in which

only one of the vectors is assigned the weight value of one, and the rest have zero contribution.

Alternatively, to allow the model to capture more variability and reduce quantization error, a

difference vector between the source and target centroids can be stored as codebook (VQ-DIFF)

and added to the incoming mapping feature [172]

FVQ-DIFF(x) = x + (cym − cxm). (2.5)

Similar to fuzzy-VQ, a soft-clustering extension can be applied. For associating the source and
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target codebooks vectors, the joint-density (JD) can be modeled, in which the source and target

vectors are first stacked and then the joint codebook vectors are estimated using the clustering

algorithm. As a result, the computed source-target codebook vectors will be associated together.

In Figures 2.2b and 2c JDVQ and JDVQ-DIFF conversions are applied to the toy example data.

As can be seen in the figure, the JDVQ-DIFF is able to generate samples that were not present

in the target training data, however, JDVQ can not make this extrapolation. JDVQ exhibits high

quantization error. Both JDVQ and JDVQ-DIFF are prone to generating discontinuous feature

sequences.

2.5.2 Mixture of Linear Mappings

Valbret et al. [326] proposed to use linear multivariate regression (LMR) for each code vector.

In this approach, the linear transformation is calculated based on a hard clustering of the source

speaker space

FLMR(x) = Amx + bm, (2.6)

where m = argη=[1,M ] min d(cxη ,x), and Am and bm are regression parameters. This method,

however, suffers from discontinuities in the output when the clusters change between neighboring

frames. To solve this issue, an idea similar to fuzzy-VQ is proposed, but for linear regression. The

previous equation then changes to

Fweighted LMR(x) =

M∑
m=1

wxm(Amx + bm), (2.7)

where wxm = weight(cxm,x). Various approaches have been proposed to estimate the parameters

of the mapping function. Kain and Macon [121] proposed to estimate the joint density of the

source-target mapping feature vectors in an approach called joint-density Gaussian mixture model

(JDGMM). A joint feature vector zt = [x>t ,y
>
t ]> is created, and a Gaussian mixture model (GMM)

is fit to the joint data. The parameters of the weighted linear mapping are estimated as

Am = Σxy
m Σxx−1

m ,bm = µym −Amµ
x
m, w

x
m = P (m|xnew), (2.8)

where Σxy
m , Σxx

m , µxm, µym, and P (m|x) are the mth training cross-covariance matrix, source co-

variance matrix, source mean vector, target mean vector, and conditional probability of cluster m

given input x, respectively. Stylianou et al. [262] proposed a similar formulation as Equation 2.7,

however the GMM mixture components are estimated on source feature vectors only, rather than
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the joint feature vectors. Additionally, instead of computing the cross-covariance matrix and the

target means directly from the joint data, they are computed by solving a matrix equation to

minimize the least squares error via

Am = ΓmΣ
xx−1
m ,bm = vm −Amµ

x
m, w

x
m = P (m|xnew), (2.9)

where Γ and v are the mapping function parameters which are estimated by solving a least squares

optimization problem. In the case of JDGMM, Γ = Σxy
m and v = µym, which are computed from

the joint distribution. JDGMM has the advantage of considering both the source and the target

space during training, giving opportunity for more judicious allocation of individual components.

Furthermore, the parameters of the conversion function can be directly estimated from the joint

GMM and thus a potentially very large matrix inversion problem can be avoided. The derivation

of the mapping function parameters are derived similar to Equation 2.8. GMM approaches are

compared in [174]. In Figure 2.2d and 2.2e, the JDGMM conversion for M = 8 with diagonal co-

variance andM = 4 with full covariance matrices are applied to the toy example data, respectively.

Both approaches result in smoother trajectories compared to JDVQ methods. The full covariance

matrix seems to capture the distribution of the target speaker better.

One major disadvantage of GMMs is the requirement of computing covariance matrices [174].

If we assume a full covariance matrix, the number of parameters is on the order of m multiplied by

the square of the dimension of the features. If we don’t have sufficient data (which is usually the

case in VC), the estimation might result in over-fitting. To overcome this issue, diagonal covariance

matrices are commonly used in the literature. Due to the assumption of independence between

the individual vector components, diagonal matrices might not be appropriate for some mapping

features such as LSFs or the raw spectrum. To propose a middle ground between diagonal and full

covariance matrices, some studies use a mixture of factor analyzers, which assumes that the co-

variance structure of the high-dimensional data can be represented using a small number of latent

variables [324]. There also exists an extension of this approach that utilizes non-parallel a priori

data [350]. Another study proposes to use partial least squares (PLS) regression in the transforma-

tion [94]. PLS is a technique that combines principles from principal component analysis (PCA)

and multivariate regression (MLR), and is most useful in cases where the feature dimensionality

of xtraint and ytraint is high and the features exhibit multicollinearity. The underlying assumption

of PLS is that the observed variable xtraint is generated by a small number of latent variables rt

which explain most of the variation in the target ytraint , in other words xtraint = Qrt + ext and

ytraint = Prt + eyt , where Q and P are speaker specific transformation matrices and ext and eyt are
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residual terms. Solving Q and P, and extending the model to handle multiple weighted regres-

sions, result in the computation of regression parameters Am, bm, and wxm, as detailed in [94]. The

approach is later extended to use kernels and dynamic information, in order to capture non-linear

relationships and time-dependencies [95].

Various other approaches to estimate regression parameters have been proposed. In the Bag

of Gaussian model (BGM) [234], two types of distributions are present. The basic distributions

are GMMs, but the approach also uses some complex distributions to handle the samples that

are far from the center of their distribution. Other approaches based on Radial Basis Functions

(RBFs) [341, 214] and Support vector regression (SVR) [150, 257] have also been proposed; these

use non-linear kernels (such as Gaussian or polynomial) to transform the source mapping features to

a high-dimensional space, followed by one linear mapping in that space. Finally, some approaches

are physically motivated mappings [362, 376] and local linear transformations [231].

One effect of over-fitting, mentioned earlier, is the presence of discontinuity in the generated

features. For example, if the number of parameters is high, the converted feature sequence might

be discontinuous. For solving this phenomenon, post-filtering of the posterior probabilities [33] or

the generated features themselves [303, 94] has been proposed. Another known effect of GMM-

based mappings is generating speech with a muffled quality. This is due to averaging features that

are not fully interpolable, which results in wide formant bandwidths in the converted spectra. For

example, LSF vectors can use different vector components to track the same formant, and thus

averaging across such vectors produces vectors that do not represent realistic speech. This problem

is also known as over-smoothing, since the converted spectral envelopes are typically smoothened

to a degree where important spectral details become lost. The problem can be seen in Figure 2.2c

where the predicted samples fall well within the probability distribution of the target features and

fail to move to the edges of the distribution, thus failing to capture the variability of the target

features. To solve this issue, some studies have proposed to post-process the converted features.

A selection of post-processing techniques is given in Table 2.2.

Another framework for solving the VC problem is to view it as a noisy channel model [245]. In

this framework, the output is computed from the conditional maximum-likelihood Fnoisy-channel(x) =

argmaxyP (y|x), where the conditional probability is defined using Bayes’ rule P (y|x) = P (x|y)P (y).

The conditional probability P (x|y) represents the channel properties and is trained on the parallel

source-target data, whereas P (y) represents the target properties and is trained on the non-parallel

target speaker data. Finally, the problem reduces to decoding of the target features given the ob-

served features, the channel properties, and the target properties. In another framework, the idea

of separating style from content is explored using bilinear models [229, 230]. For the VC task, style
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is the speaker identity and content is the linguistic content of the sentence. In this method, two

linear mappings are performed, one for style and one for content. During conversion, the speaker

identity information of the input utterance is replaced with the target speaker identity information

computed during training.

In order to better model dynamics of speech, various approaches such as HMMs have been

proposed [138, 48, 365, 372]. These approaches consider some context when decoding the HMM

states but the final conversion is usually performed frame-by-frame. Another approach is to append

dynamic features (delta and delta-delta, i. e. velocity and acceleration, respectively [68]) to the

static features [48], as described in Section 2.3. A very prominent approach called maximum

likelihood parameter generation (MLPG) [310] has been used for generating feature trajectory

using dynamic features [303]. MLPG can be used as a post-processing step of a JDGMM mapping.

It generates a sequence with maximum likelihood criterion given the static features, the dynamic

features, and the variance of the features. This approach is usually coupled with GV to increase the

variance of the generated feature sequence. Ideally, MLPG needs to consider the entire trajectory of

an utterance to generate the target feature sequence. This property is not desirable for real-time

applications. Low-delay parameter generation algorithms without GV [197] and with GV [306]

have also been proposed. Recently, considering the modulation spectrum of the converted feature

trajectory (as a feature correlated with over-smoothing) has been proposed, which resulted in

significant quality improvements [279]. Incorporating parameter generation into the training phase

itself has also been studied [369, 54]. Some data-driven post-filters are also proposed [131].

2.5.3 Neural network mapping

Another group of VC mapping approaches use artificial neural networks (ANNs). ANNs consist of

multiple layers, each performing a (usually non-linear) mapping of the type y = f(Wx+b) where

f(·) is called the activation function that can be implemented as a sigmoid, tangent hyperbolic,

rectified linear units, or linear function. A shallow (two-layered) ANN mapping can be defined as

FANN (x) = f2(W2f1(W1x + b1) + b2)), (2.10)

whereWi, bi, and fi represent the weight, bias and activation function for the ith layer, respectively.

ANNs with more than two layers are typically called deep neural networks (DNNs) in the literature.

The input and output size are usually fixed depending on the application. (For VC, the input and

output size are the source and target mapping feature dimensions.) However, the size of the middle

layer and activation function are chosen depending on the experiment and data distributions. The
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first layer activation function is almost always non-linear and the activation function of the last

layer is linear or non-linear, depending on the design. If the last layer is linear, the ANN approach

can be viewed as an LMR approach, with the difference that the linear regression is applied on

a data space that is mapped non-linearly from the mapping feature space, and not directly on

the mapping features (similar to RBF and SVR). The weights and biases can be estimated by

minimizing an objective function, such as mean squared error, perceptual error [327], or sequence

error [357].

ANNs are a very powerful tool, but the training and network design is where most care needs

to be exercised since the training can easily get stuck in local minima. In general, both GMMs

and ANNs are universal approximators [296, 100]. The non-linearity in GMMs stems from forming

the posterior-probability-weighted sum of class-based linear transformations. The non-linearity

in ANNs is due to non-linear activation functions. Laskar et al. [151] compare ANN and GMM

approaches in the VC framework in more detail. In Figure 2.2f, the ANN conversion for a hidden

layer of size 16 is applied to the toy example data. The ANN trajectory is performing similar to

JDGMM with full covariance matrix, which is expected since both are universal approximators.

The very first attempt for using ANNs utilized formant frequencies as mapping features [209],

i. e. the source speaker’s formant frequencies were transformed towards target speaker’s formant

frequencies using a ANN followed by a formant synthesizer. Later, Makki et al. [169] successfully

mapped a compact representation of speech features using ANNs. A more typical approach used

a three-layered ANN to map mel-cepstral features directly [43]. Various other ANN architectures

have been used for VC [236, 88]: Feedforward architectures [43, 15, 162, 181, 213, 246], restricted

Boltzmann machines (RBMs) and their variations [29, 351, 204, 158], joint architectures [29, 182,

183], and recurrent architectures [201, 263, 237]. More generative models such as Generative

adversarial network (GAN) models [129, 130, 131, 34] and variational autoencoders [22, 103, 105,

106, 104, 186, 99, 247] are also investigated for VC. Recently, CycleGANs have been proposed for

non-parallel voice conversion [129, 66, 38]. These approaches assume an A and B domain (in VC,

A can be defined as source and B as target). The model is comprised of two networks: A2B and

B2A in which x̂ = B2A(A2B(x)) and ŷ = A2B(B2A(y)). Some constraints are applied in order

to force the networks to learn the intended mappings.

Traditionally, DNN weights are initialized randomly; however, it has been shown in the liter-

ature that deep architectures do not converge well due to a vanishing gradient and the likelihood

of being stuck in a local minimum solution [72]. A regularization technique is typically used to

solve this issue. One solution is pre-training the network. DNN training converges faster and to

a better-performing solution if their initial parameter values are set via pre-training instead of
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random initialization [53]. This especially important for the VC task since the amount of training

data is typically smaller compared to other tasks such as ASR or TTS. Stacked RBMs are used to

build speaker-dependent representations of cepstral features for source and target speakers before

DNN training [202, 207, 205]. Similarly, layer-wise generative pre-training using RBMs for VC has

been proposed [30, 31]. Mohammadi and Kain [181] proposed a speaker-independent pre-training

of the DNN using multiple speakers other than source and target speakers using de-noising stacked

autoencoders. This approach is later extended to use speakers that sound similar to source and

target speakers to pre-train the DNN using joint-autoencoders [182]. In a related study, using

multiple speakers as source for training the DNN was proposed [163]. Alternatively, other regu-

larization techniques such as dropout [259] and using rectified linear units [73] have shown to be

successful.

For capturing more context, Xie et al. [357] proposed a sequence error minimization instead

of a frame error minimization to train a neural network. The architecture of RNNs allows the

network to learn patterns over time. They implicitly model temporal behavior by considering

the previous hidden layer state in addition to the current frame [203, 201, 263, 176, 160, 346].

Sequence-to-sequence (seq2seq) models have been proposed in which the source feature sequence

is encoded into a small embedding and then decoded into the target feature sequence [177, 130].

Convolutional seq2seq models have also been proposed; they have shown the ability to perform

conversion on not only the voice characteristics but also the pitch contour and duration of the

input speech [128]. Attention seq2seq models have also been used for VC with the property of

converting acoustic features and duration simultaneously [285].

2.5.4 Dictionary mapping

One of the simplest mapping functions is a look-up table that has source features as entry keys

and target features as entry values. For an incoming feature, the function will look up to find the

most similar key based on a distance criterion, e. g. an objective distortion measure d(·) similar to

one described in Section 2.7.1. In other words, it will look for the nearest neighbor of the incoming

source feature and select its corresponding entry value

Flookup(x) = ytraint , (2.11)

where t = argτ=[1,T ] min d(xtrainτ ,x). A major concern is that the similarity of the source feature

does not necessarily guarantee similarity in neighboring target features. This phenomenon will
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cause discontinuities between the generated target parameter sequence. One approach to over-

come the discontinuity of the target feature sequence is to assign a weight to all target feature

vectors (computed based on the new source feature vector), which will generate a smoother feature

sequence. This category of approaches is called exemplar-based VC in the literature [356, 6, 355,

4, 373] and the mapping function is given by

Fexemplar(x) =

T∑
t=1

wxt y
train
t , (2.12)

with wxt = ω(xtraint ,x), where ω(·) can potentially be any distortion measure. A generic objective

distortion measure might result in over-smoothing, since many frames may be assigned non-zero

weights and will thus be averaged (unless the mapping features are completely interpolable). Com-

monly, non-negative matrix factorization (NMF) techniques have been used to compute sparse

weights. The goal of NMF is to compute an activation matrix H which represents how well we can

reconstruct x by a non-negative weighted addition of all xtraint vectors, such that X = XtrainH.

The activation matrix H is calculated iteratively [356]. NMF computes a non-negative weight for

each entry in the table, which results in the mapping function

FNMF(X) = YtrainH. (2.13)

This relatively sparse weighting over all vectors results in smooth generated feature sequences

while reducing over-smoothing. This approach however has the disadvantage of computational

complexity, which might not be suitable for some applications. To address this issue, computing

the activation matrix in a more compact dimension has been proposed [356]. The NMF methods

are also inherently well-suited for noisy environments [280, 281, 170]. Several other extensions of

NMF approaches have been proposed, such as mapping the activation matrix [8], many-to-many

VC [7], including contextual information [354, 356, 20], and local linear embeddings [347].

Another approach to combat discontinuities in the generated features is to take the similarity

of the target feature sequence into consideration by using a unit-selection (US) paradigm. US

approaches make use of a target cost (similar to a table look-up distortion measure) and a con-

catenation cost (to ensure the neighboring target features are most similar to each other). Since

the units are frames, this method is also referred to as frame-selection (FS). The goal is to find the

best sequence of indices of training target vectors S = [s1, . . . , sN ] which minimizes the following
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cost function [248, 322, 157]:

FFS (X) = argS=[s1,...,sNtest ] min∑Ntest

n=1 α · target(xsn ,xnewn )+

(1− α) · concatenation(ysn ,ysn−1
)

(2.14)

where α is used for adjusting the tradeoff between fitting accuracy and the spectral continuity

criterion. Since there is an exponential number of permutation of index sequences, a dynamic

programming approach such as Viterbi is used to find the optimal target sequence. This can be

used for aligning frames before any other type of training, or directly used as a mapping function.

The US/FS approach can be adjusted to create text-independent, non-parallel VC systems [274,

275]. In this variation, a vector x̃cmpn is compared to a target training vector in the dictionary to

compute the target cost

FUS (X) = argS=[s1,...,sNtest ] min =∑Ntest

n=1 α · target(ysn , x̃cmpn )+

(1− α) · concatenation(ysn ,ysn−1)

(2.15)

where x̃cmpn is either the input source vector (in the absence of any parallel data) [274] or a naive

conversion to target (in the presence of real or artificial parallel data) [45]. As mentioned in

Section 2.4, these techniques can be used for parallelizing the training data as well.

Combinations and variants of US/FS approaches combined with other mapping approaches

have been proposed, such as: dictionary mapping [67], codebook mapping [138, 64], frequency

warping [254, 321], GMM mapping [48], segmental GMM [81], k-histogram [323], exemplar-based

VC [354], and grid-based approximation [20]. These approaches have some limitations, specifically

they can generate discontinuous features. Helander et al. [90] studied the coverage of speech

features when using FS as a mapping for VC, and concluded that a small number of training

utterances (which is typical in VC tasks) is not adequate for representing the speaker space.

Sparse representation of phonetic features for voice conversion with and without parallel data is

also investigated [39].

2.5.5 Frequency warping mappings

The estimation of linear regression parameters described in Section 2.5.2 is typically unconstrained;

this can lead to over-fitting. There exist a class of constrained mapping methods which are physi-

cally motivated [376]. One common motivation is that two different speakers have different formant



CHAPTER 2. LITERATURE REVIEW 25

frequencies and bandwidths, and different energies in each frequency band. Thus, for conversion,

a constrained mapping only allows manipulation of formant location/bandwidths and energy in

certain frequency bands. This reduces over-fitting, while allowing the use of high-dimensional

mapping features, which is beneficial since vocoders that utilize high-dimensional speech features

(e. g. harmonic vocoders) usually have higher speech quality compared to more compact vocoders

(e. g. LSF vocoders). The motivation behind the frequency warping (FW) methods is that a map-

ping of a source speaker spectrum to a target speaker spectrum can be performed by warping the

frequency axis, to adjust the location and bandwidth of the formants, and applying amplitude

scaling, to adjust the energy in each frequency bands [56, 59, 78]; this approach is more physically

interpretable than an unconstrained mapping. Although these approaches can be implemented as

constrained linear transformations (for certain features, such as cepstral features), we dedicate a

separate chapter to them due to their slightly different motivation.

In a first attempt, Valbret et al. [325] proposed to warp the frequency axis based on pre-

computed warping functions between source and target, using log-spectral features. The source

speaker spectral tilt is subtracted before warping and the target speaker spectral tilt is added after

warping. Some studies directly model and manipulate formant frequencies and bandwidths [178,

312, 253, 76] so that they match the target formants, as shown in Figure 2.3. Maeda et al. [168]

proposed to cluster the acoustic space into different classes (similar to VQ) and perform a non-

linear frequency warping on the STRAIGHT spectrum for each class. Later, Sündermann et al.

[267] studied various vocal tract length normalization (VTLN) approaches that were used in ASR

to perform VC, including piecewise linear, power, quadratic, and bilinear VTLN functions. Erro

et al. [61] extended this VTLN approach to multiple classes and proposed an iterative algorithm

to estimate the VTLN parameters. Přibilová and Přibil [233] experimented with various linear

and non-linear warping functions, with application to TTS adaptation. Erro and Moreno [56]

proposed weighted frequency warping (WFW) to perform a piecewise linear frequency warping in

each mixture components of a GMM, weighted by the posterior probability. It is worth noting

that they used a pitch-asynchronous harmonic model (a high-quality vocoder) and performed

phase manipulation to achieve high quality speech. Toda et al. [299] proposed to convert the

source spectrum using a GMM and then warp the source spectrum to be similar to the converted

spectrum with the aim of keeping the spectral details intact.

Other than the formant frequency locations, the average energy of the spectral bands is also

an important factor in speaker individuality. Previously, this has been partly taken care of by

subtracting source spectral tilt before frequency warping and adding the target spectral tilt. In an

extension of WFW work, it was shown that in addition to frequency warping, an energy correction
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filter is required to increase the flexibility of the mapping function [59]. Tamura et al. [283] proposed

a simpler amplitude scaling by adding a shift value to the converted vector. In another extensive

study, amplitude scaling in addition to frequency warping was proposed to add more degrees of

freedom to the mapping [77, 78].

Some frequency warping functions can be reformulated as a weighted linear mapping ap-

proach [227]. The linear mappings are usually constrained, so that the mapping is less prone

to over-fitting. However, the constraints will limit the ability to mimic very different voices. Erro

et al. [62] studied this idea using bilinear warping function (similar to the VTLN approach) and

constrained amplitude scaling, and extended it [63].

Numerous extensions of the FW approach have been proposed, such as in combination with

GMMs [57, 376, 180, 293], dictionary-based methods [254, 321, 292], maximizing spectral corre-

lation [291], equalizing formant frequencies as pre-processing step [179], and combination with

exemplar-based approach [294].

2.5.6 Adaptation techniques

In this section, we describe the techniques that are used when only limited or non-parallel training

data are available. These approaches typically utilize the mappings or models learned from some

pre-defined set of speakers to aid the training of the conversion mapping. Most of these approaches

use a mixture of linear mappings, however, the ideas could be generalized to other approaches such

as neural networks.

Adaptation techniques perform mean adaptation on the means of GMM mixture components

that are trained on the source speaker [33] to move the GMM means towards the target speaker’s

probability distribution. Mouchtaris et al. [194] proposed an adaptation technique for non-parallel

VC, in which a JDGMM is trained on a pre-defined set of source and target speakers that have

parallel recordings. For building the mapping function using non-parallel recordings, the means

and covariances of the GMMs are adapted to the new source and target speakers. In a neural

network-based approach, a semi-supervised learning approach is proposed in which first speakers

that sound similar to the source and target speakers are used for training the network, and then

the pre-trained neural network is further trained using the source and target speaker data [182].

In another study, an adaptive RBM approach was proposed in which it is assumed that features

are produced from a model where phonological information and speaker-related information are

defined explicitly. During conversion, the phonetic and speaker information are separated and the

speaker information is replaced with that of the target’s [206].
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Another scheme for voice conversion is to utilize the conversions built on multiple pre-stored

speakers (different from the target speaker) to create the mapping function. A first attempt called

speaker interpolation generates the target features using a weighted linear addition (interpolation)

of multiple conversions towards multiple other pre-defined target speakers, by minimizing the

difference between the target features and the converted features [116, 117]. The interpolation

coefficients are estimated using only one word from the target speaker.

The eigenvoice VC (EVC) approach represents the joint probability density similar to the

conventional GMM, except that the target means are defined as [302, 217]

µym = Gmw + gm (2.16)

where gm is the bias vector and the matrix Gm = [g1
m, . . . ,g

J
m] consists of basis vectors gjm for the

mth mixture. The total number of basis vectors is J and the target speaker identity is controlled

with the J-dimensional weight vector w = [w1, . . . , wJ ]>. For a given target speaker, a weight is

computed and assigned to each eigenvoice; the weight represents the eigenvoice’s contribution to

generating features [302, 217]. In the traditional eigenvoice approach, weights are estimated during

training and are fixed during conversion. For lowering the computational cost, a multistep approach

has been proposed [171]. For further improving the robustness of this approach to the amount

of adaptation data, a maximum-a-posteriori adaptation approach has also been proposed [286].

The eigenvoice approach has also been extended to many-to-one VC, where the target speaker

is always the same but the source speaker can be an arbitrary speaker with minimal adaptation

data [304]. Finally, one-to-many eigenvoice VC based on a tensor representation of the space of all

speakers has been proposed [244]. Many-to-many conversion has also been proposed in which the

goal is to perform a conversion using an arbitrary source speaker to an arbitrary target speaker

with minimal parallel [219] and non-parallel data [220].

2.5.7 Other mappings

Various other mapping approaches have been proposed. The K-histogram approach is a non-

parametric approach which defines the mapping via the cumulative distribution function (CDF)

of the source followed by an inverse CDF of the target [323]

FK-Histogram(x) = CDF−1y (CDFx(x)) (2.17)

A Gaussian processes (GP) approach has also beens proposed [226, 359]. GPs are kernel-based,
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non-parametric approaches that can be viewed as distribution over functions, which relieves the

need to specify the parametric form beforehand. For example, it is possible to define how to

describe the mean and covariance functions [226]. Another non-parametric approach based on

topological maps has been proposed which estimates the joint distribution of the spectral space of

source and target speakers [242, 320]. The topological map is a type of a neural network where

each node is topologically located on a 2D map in a grid-like fashion. In the training step, the

value of these nodes are learned. For each node in the source speaker map, a corresponding node

in the target speaker map is computed. This correspondence is used to map an incoming source

vector to a target vector. This approach has some similarities to the VQ method.

2.6 Prosodic modeling

Most of the VC literature focuses on mapping spectral features, despite the fact that prosodic

aspects (pitch, duration, spectral balance, energy) are also important for speaker identity [96,

190]. For modeling duration, a global speaking rate adjustment is not sufficient since it has

been observed that phoneme durations differ somewhat arbitrarily between source and target

speakers [13]. Modeling duration using decision trees [232] and duration-embedded HMMs has

been studied [345].

The most common method to transform pitch is to globally match the average and standard

deviation of the pitch contour. Pitch can be converted by mapping the log-scaled F0 using a linear

transformation

F̂ y0 =
σy

σx
(F x0 − µx) + µy (2.18)

where µ and σ represent mean and standard deviation of the log-scaled F0 [27]. Several studies have

looked into modeling F0 and spectral features jointly [52, 83, 358]; this has shown improvements

for both spectral and F0 conversions. Conversely, predicting pitch values from the target speaker

spectrum using a GMM has also been studied [51].

When we use simple linear mapping techniques, such as globally changing the speaking rate or

adjusting the pitch mean and variance, the supra-segmental information is not modified effectively.

Prosody modeling is a complex problem that depends on linguistic and semantic information. As

an example, the emphasis that speakers put on certain speech units (such as words) does not

necessarily have a similar pattern for other speakers depending on the context and high level

information. In VC tasks, this high level information is typically not available. ASR can be

used to automatically compute textual information, but the error that it is likely to introduce
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may become a detrimental factor for prosodic mapping performance. Pitch modeling for VC

has been studied on different acoustic/linguistic levels: frame-level, syllable-level, and utterance-

level. Moreover, various pitch representations have been used, such as F0 contour, the discrete

cosine transform (DCT) of the F0 contour, the Wavelet transformation of the F0 contour, and

other compact parameterizations of the F0 contour [166]. In order to model the dynamics of the

pitch contour in frame-level representations, mapping F0 using multi-space probability distribution

(MSD) HMMs [366] and LSTM networks [32] have been proposed. Syllable-level representations

model the pitch movements at the syllable level, which is a more meaningful representation for

modeling pitch events. The most prominent pitch conversion approaches for VC are presented in

Table 2.3. Some studies investigate some of these approaches in more detail [349, 255, 256] .

2.7 Performance evaluation

When evaluating the performance of VC systems several aspects can be evaluated:

Speaker similarity: Answers the question of “How similar is the converted speech to the target?”.

This is also known as conversion accuracy or speaker individuality.

Speech quality: This describes the quality of the generated speech with respect to naturalness

and audible artifacts.

Speech intelligibility: Assesses the intelligibility of the generated speech. This is a lesser-studied

aspect in the VC literature

In experimental voice conversion evaluations, a distinction is often made between intra-gender

conversion (female-to-female or male-to-male) and inter-gender conversion (female-to-male or male-

to-female).

A standard corpus for VC evaluation does not exist. Several databases have been used for VC

including TIMIT [69], VOICES [120], CMU-Arctic [144], MOCHA [344], and the MSRA mandarin

corpus [370]. Recently, the VC Challenge (VCC) 2016 prepared a standard dataset for a VC

task, which has the potential to become the standard for VC studies [308]. More recently, the VC

Challenge (VCC) 2018 prepared standard parallel and non-parallel datasets for VC tasks [165]. The

VCtools available in the Festvox toolkit [10] can be used for implementing baseline VC techniques

such as GMM and MLPG/GV processing. Another useful toolbox is SPROCKET which uses

GMM and diff approach [140].

It has been shown that the performance of the system depends on the selection of source

speaker. Turk and Arslan [315] has studied the problem of automatic source speaker (“donor”)
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selection from a set of available speakers that will result in the best quality output for a specific

target speaker’s voice. This problem is also studied by proposing a selection measure [84, 85].

In the following subsections, we study the objective and subjective measures used for evaluating

VC performance.

2.7.1 Objective evaluation

For evaluating VC performance objectively, a parallel-sentence corpus is required. First, the con-

version and the associated target utterances have to be time-aligned. The difference between the

converted speech and target can then be calculated using various general spectral difference mea-

sures. An example is the log-spectral distortion (in dB), which can be computed on unwarped, or

warped (using the mel or Bark scale) spectra [262]. The most prominent measure used in the VC

literature is the mel-cepstrum distance (mel-CD), also measured in dB

mel-CD(y, ŷ) = (10/ ln 10)
√

2(y − ŷ)>(y − ŷ) (2.19)

where y and ŷ are target and converted MCEP feature vectors, respectively.

The mel-CD is suitable for evaluating preliminary experiments, defining training criterions,

and validation purposes, but not for evaluating the final system regarding quality due to the low

correlation with human perception [268]. Other objective speech quality assessment techniques

exist [243]. These measures aim to have higher correlation with human judgment. Recently, an

automatic voice conversion evaluation strategy was proposed, wherein both speech quality and

speaker similarity were automatically computed [107]. The speaker similarity score was computed

using a speaker verification method. These scores were shown to have higher correlation with sub-

jective scores. However, optimizing mapping functions based on these criterions is more difficult,

due to their the complex mathematical formulation.

2.7.2 Subjective Evaluation

Unfortunately, objective evaluations do not necessarily correspond to human judgments. Thus, in

most studies, subjective evaluations are performed; during such evaluations human listeners asses

the performance of the VC system. The listeners should ideally perform their task in ideal listen-

ing environments; however, statistical requirements often necessitate a large number of listeners.

Therefore, listeners are often hired that perform the task through a crowd-sourcing website such

as Amazon Mechanical Turk (AMT).
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The mean opinion score (MOS) test is an evaluation using 5-scale grading. Both the speech

quality and similarity to the target voice can be evaluated. The grades are as follows: 5=excellent,

4=good, 3=fair, 2=poor, 1=bad. The project TC-STAR proposes a standard perceptual MOS

test as a measure of both quality and similarity [276].

The comparative MOS (CMOS) can also be used to directly compare the speech quality of

two VC techniques. The listener is asked to choose the better sounding utterance. The measure

is computed as the percentage where each techniques is selected over the other. The grading can

also be 5-scale as follows: 5=definitely better, 4=better, 3=same, 2=worse, 1=definitely worse.

This would give a good indication of any improvements. However, the absolute quality score is not

calculated, making it difficult to judge the closeness to ideal quality (natural speech).

The ABX test is often used in comparing similarity between converted and target utterances.

In this test, the listeners hears a pair of utterances A and B, followed by hearing a given utterance

X, and have to decide is whether X is closer to A or B. The A and B utterances are uttered

by source and target speakers but the ordering that the listener hears them is randomized. The

measure is computed as the percentage of correct assignment of X to the target speaker. The main

problem with interpreting ABX scores is that the subjects do not have the option to answer that

the sentence X is not similar to either A or B [167]. For example, given A=”mosquito”, B=”zebra”,

X=”horse”, subjects may be forced to equate B with X; however, B is still very dissimilar from X.

The ABX test can compare two VC techniques directly by setting X, A, and B to the target

utterance, first VC, and second VC. This measure is computed for each VC technique as the

percentage of the utterances for which that technique has been chosen as closer to the target

utterance. The MOS and ABX scores of various VC techniques have been published [167].

Another technique for testing similarity is to do use the CMOS for same-different testing [120].

In this test, listeners hear two stimuli A and B with different content, and were then asked to

indicate wether they thought that A and B were spoken by the same, or by two different speakers,

using a five-point scale comprised of +2 (definitely same), +1 (probably same), 0 (unsure), −1

(probably different), and −2 (definitely different). One stimulus is the converted sample and the

other is a reference speaker. Half of all stimuli pairs are created with the reference speaker identical

to the target speaker of the conversion (the “same” condition); the other half were created with

the reference speaker being of the same gender, but not identical to the target speaker of the

conversion (the “different” condition). There has to be careful consideration in picking the proper

speaker for the different condition.

Finally, the Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) test has been

proposed to evaluate the speech quality of multiple stimuli. In this test, the subject is presented
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with a reference stimulus and multiple choices of test audio (stimuli), which they can listen to as

many times as they want. The subjects are asked to score the stimuli according to a 5-scale score.

This test is especially useful if one wants to test multiple system outputs in regards to speech

quality.

As with all subjective testing, there is a lot of variability in the responses and it is highly

recommended to perform proper significant testing on any subjective scores to show the reliability

of improvements over baseline approaches. For crowd-sourcing experiments, it is best to incorpo-

rate certain sanity checks to exclude listeners that are performing below a minimum performance

threshold or inconsistently. A possible implementation of these recommendations is to include

obviously good/bad stimuli in the experiment, and to duplicate a small percentage of trials.

An extensive subjective evaluation was performed during the 2016 VCC, with multiple submit-

ted systems [342]. It was concluded that “there is still a lot of work to be done in voice conversion,

it is not a solved problem. Achieving both high levels of naturalness and a high degree of sim-

ilarity to a target speaker — within one VC system — remains a formidable task” [342]. The

average quality MOS score was about 3.2 for top submissions. The similarity average score was

around 70% correctly identified as target for top submissions. Due to the high number of entries,

techniques to compare and visualize the high number of stimuli, such as multidimensional scaling,

were utilized [342, 343].
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Chapter 3

Deep Autoencoders

3.1 Introduction

Artificial neural network (ANN) architectures used for regression tasks typically utilize a feed-

forward architecture to learn and map input features to output features. Specifically, let input

feature matrix XM×Dx
= [x1, . . . ,xM ]>, where x = [x1, . . . , xDx

]>, represent M examples of

Dx-dimensional input feature vectors, and output feature matrix YM×Dy
= [y1, . . . ,yM ]>, where

y = [y1, . . . , yDy
]>, represent the associated (example-by-example) output feature vectors. A K-

layer, fully-connected deep neural network (DNN) mapping of input x is a succession of (non-)linear

transformations

ŷ = FDNN(x) = (fK ◦ fK−1 ◦ · · · ◦ f1)(x) (3.1)

where ◦ represents function composition, fk = sk(Wkx+bk) represents one layer, andWk, bk, and

sk represent the weight matrix, bias vector, and activation function for the kth layer, respectively.

The model parameters Θ = {Wk,bk}k=[1,...,K] are learned by minimizing a loss function L(y, ŷ)

during training.

An autoencoder is a type of artificial neural network typically used for unsupervised learning of

efficient encodings (a.k.a. representations) [18]. These encodings can be used for dimensionality

reduction or for simplifying the feature distribution. A basic AE encodes an input x using a hidden

representation, h = f(x) = senc(Wx+b), and then reconstructs the input by decoding the hidden

representation via g(h) = sdec(Vh + c), and thus

x̂ = FAE(x) = (g ◦ f)(x) (3.2)

where W, b, senc represent the encoding weight matrix, bias vector, and activation function,

respectively; analogously, V, c, and sdec are the decoding weight matrix, bias vector, and activation

38
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function. An autoencoder architecture is depicted in Figure 3.1. The decoding weight V can

optionally be set to the transpose of the encoding weight W>. Model parameters are initialized

with random values. Minimizing the reconstruction loss, L(x, x̂), forces the network to learn useful

representation patterns during training. To assist in learning, the input to the network is corrupted

with noise during training [18]. In this study, we use the mean-squared error (MSE) loss

L(x, x̂) = (x− x̂)2. (3.3)

Figure 3.1: Autoencoder architecture

3.2 Formulation

An AE can be constructed to contain two more more levels of hidden representations; this type of

architecture is called a deep autoencoder (DAE), and its depth is defined by the number of levels

K:

x̂ = FDAE(x) = (g1 ◦ g2 ◦ · · · ◦ gK ◦ fK ◦ fK−1 ◦ · · · ◦ f1)(x) (3.4)

The parameters of the model are represented by Θ = {Wk,bk, ck}k=[1,...,K]. DAEs have been

shown to learn more meaningful encodings, as with most deep neural network architectures [153].

We study the training of the architecture in various ways: greedy (GRD), simultaneous (SML),

progressive (PRG), and deeply supervised (DPS). The implementations for greedy training, simul-

taneous training, and the proposed progressive training are shown in Algorithm 3.1.
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...

Figure 3.2: Deep autoencoder greedy training.

3.2.1 Greedy training

Training a deep architecture is also challenging, due to the vanishing gradient problem, being prone

to local minima, and other issues [72]. As a result, a training method using stacked autoencoders

(SAE) has been proposed, in which the first level AE is trained, the input is encoded, and then

the next-level AE is trained on the encoded input [335]. This process is iterated until the desired

depth is reached. We refer to this training method as “greedy” and is depicted in Figure 3.2. The

kth level hidden encodings are represented using hk.

3.2.2 Simultaneous training

Recently, Zhou et al. [374] proposed that training all levels simultaneously can achieve a better

representation, given enough iterations and proper regularization. In their proposed architecture,

the network is trained similarly to a one-level AE by minimizing the reconstruction criterion, with

the difference that the encoder and decoder parts are deep rather than a single level. We refer

to this training method as “simultaneous” and is depicted in Figure 3.3. The network parameters

can be initialized with random values, or from a DAE previously trained with the greedy method.

Similar to the one-level AE, SML uses a single reconstruction loss L(x, x̂) between the original

input and the reconstructed input.
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Algorithm 3.1 Deep autoencoder training algorithm.
1: procedure Train-DAE
2: Input: u, Θ′, type . types: GRD,SML,PRG
3: Output: Θ
4: Θ← Θ′ . Initialize parameters
5: u0 ← u
6: if type = SML then . train SML
7: Θ1...K ← Minimize-Loss(Θ1...K ,u0)
8: else . train GRD/PRG
9: k ← 1

10: while k ≤ K do
11: Θk ← Minimize-Loss(Θk,uk−1)
12: if type = PRG and k > 1 then
13: Θ1...k ← Minimize-Loss(Θ1...k,u0)

14: if k < K − 1 then
15: uk ← Encode(Θ1...k,u0)

16: k ← k + 1

17: return Θ

3.2.3 Progressive training

In this study, we propose creating a DAE as follows: We first construct a shallow AE. Then, we

add the next level greedily. Next, we train the entire network using simultaneous training. This

process of adding one level and then training all levels simultaneously is iterated until the desired

depth is reached. We refer to this training method as “progressive”.

3.2.4 Deeply supervised training

In another approach, we propose to use an architecture in which all autoencoder levels have their

loss contribute to the total loss, hence all DAE levels are trained jointly. This is motivated by the

idea behind deeply supervised networks [154] in which each layer has a connection to the output,

hence helping the error to propagate to the lower layers of the network. The architecture is shown

in Figure 3.4. The loss is given by

Loss = L(x, x̂1) + L(x, x̂2) + · · ·+ L(x, x̂K). (3.5)
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...

......

...

Figure 3.3: Deep autoencoder simultaneous training.

3.3 Experiment: Reconstruction

In a first experiment, we set out to compare and contrast the performance of the different training

approaches, using the TIMIT speech corpus which contains read speech for acoustic-phonetic stud-

ies requiring comprehensive phonetic coverage. We used the recommended training and testing

data split. For each utterance, 40th-order mel-cepstra (MCEP) features (excluding the energy coef-

ficient, thus the dimensionality D=39) were extracted every 5 ms, using the Ahocoder toolkit [60].

We chose to model 11 frames (the current frame plus 10 preceding frames), for a total of 11×39=429

features per frame. All AEs were regularized using a denoising approach, which has been shown to

result in more robust and general feature representations [335]. Denoising operates by corrupting

the inputs with random noise (in our case Gaussian noise) while reconstructing clean input targets.

For the first-level AE, s1enc was a sigmoidal transfer function, and s1dec was linear, and the number

of hidden nodes is 50. For all higher level activation functions sk, k > 1, we used sigmoids for

both encoding and decoding. We used the mean-squared error (MSE) as the loss function. For

each level, we extended the architecture by adding an AE with 50 hidden nodes. The goal was

to keep the encoding dimension constant (50 in this experiment) across the configurations under

examination.

For evaluating the first-order moments of the reconstructed features, we report the reconstruc-

tion error in form of the average mel-cepstral distortion (mel-CD in dB) between the original and
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Figure 3.4: Deep autoencoder deeply supervised training

reconstructed MCEP vectors for the current frame:

E1(x, x̂) = 10
log 10

√
2
∑D
d=1(xd − x̂d)2 (3.6)

For evaluating the second-order moments of the reconstructed features, we based the measure-

ment on the average ratios of the standard deviation of each reconstructed feature component over

the standard deviation of the associated original feature component:

E2(x, x̂) = (1− 1

D

D∑
d=1

σŷd
σyd

)2 (3.7)

Note that in this measure, the standard deviation of the original features are always in the

denominator. Also, in this study, the standard deviation of the original features is always larger

than the standard deviation of the reconstructed features.

Table 3.1 shows the results. The reconstruction error for GRD constantly increased as depth was

increased. The reason for this increase is that each added level introduces a local reconstruction

error, causing an increase in the total reconstruction error. It is important to note that the

ultimate goal is to learn useful features, which may not necessarily correlate with reconstruction

error. Furthermore, initializing the network using an already GRD-trained architecture and then
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Level(s)
Method GRD SML GRD→SML PRG DPS

1 3.81 (0.38)
2 4.33 (0.45)4.12 (0.45) 3.81 (0.42) 4.22 (0.45)
3 4.50 (0.48)4.59 (0.48) 3.88 (0.47) 3.80 (0.42)4.31 (0.46)
4 4.61 (0.50)4.74 (0.49) 3.98 (0.48) 3.75 (0.43)4.36 (0.48)

Table 3.1: Errors of four training methods applied to variable-depth AE training methods. Shown
are the first moment error E1, defined as the mel-cepstral distortion, and the second-order moment√
E2, the standard deviation ratio error, in parenthesis.

continuing training with SML (represented as GRD→SML) shows better convergence of E1 and

E2 measures. The PRG algorithm performed consistently better in both E1 and E2 error measures

over all other training algorithms. Note that for depth 2 both GRD→SML and PRG are identical.

Furthermore, we observe that GRD→SML and PRG perform better than DPS in terms of both E1

and E2. This might be due to the fact that in the DPS algorithm, the loss of the lower level DAEs

might be competing with the loss of the highest level DAE resulting in a higher error measure.

The DPS approach can be further refined so that each level is assigned a dedicated multiplicative

regularizing hyper-parameter, αk, associated with that level’s reconstruction loss, as a function

of the current training epoch. This allows more flexibility in training the model. For example,

this makes it possible to first focus on lower levels by first assigning higher values to the lowest

level loss, and gradually move the focus towards higher levels’ loss functions. The loss would be

as follows, where i represents the iteration number:

Loss = α1(i)L(x, x̂1) + α2(i)L(x, x̂2) + · · ·+ αK(i)L(x, x̂K). (3.8)

The original proposed DPS approach can be thought of as a special case of this more general

proposition, with αk(i) = 1 for all i and k.

3.4 Experiment: Phoneme classification

To evaluate the quality of the learned features, we designed a phoneme recognition experiment. We

used the TIMIT corpus and its suggested training/testing split to train and evaluate the model.

We exclude all SA sentences which have the same content for all speakers. We selected 10% of the

training speakers for validation purposes. We compressed the 61 unique phonemes present in the

TIMIT corpus transcriptions to 39 using a Kaldi script1. For the experiment, we also computed the

frame-to-frame transition probabilities between phonemes from the training data and performed

a Viterbi search on the posterior probabilities of the phoneme classifier during testing. We used

1https://github.com/kaldi-asr/kaldi/blob/master/egs/timit/s5/conf/phones.60-48-39.map
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Feature # of classifier DNN
layers

GRD SML PRG DPS

DAE 3-level
1 64.23% 63.89% 64.46% 64.48%
2 68.14% 67.88% 68.75% 68.79%
3 69.11% 69.02% 69.56% 69.61%

DAE 4-level
1 64.34% 64.09% 64.93% 65.02%
2 68.57% 67.97% 68.75% 68.88%
3 69.30% 69.16% 69.81% 69.95%

MCEPs
1 60.73%
2 67.82%
3 68.97%

Table 3.2: Phoneme classification accuracy of feed-forward DNNs on various features: MCEPs,
DAE-SML, DAE-GRD, DAE-PRG, and DAE-DPS.

a phoneme bigram to model the transition probabilities. The goal is to reduce the jumps that

might happen due to selecting the phoneme with maximum probability by using the transition

probabilities.

Similar to the previous subsection, we use MCEP features. We use the representation of the

models trained using different layers and algorithms. For building the classification model, we

used feed-forward DNNs with ReLU activation functions and dropout of 0.5 at each layer. We

trained the model using the cross entropy loss function and the Adam optimization algorithm

with a learning rate of 0.001 as suggested by the Keras documentation2. We trained the model

for 100 iterations and selected the model with the lowest validation error. We report the frame-

wise phoneme classification accuracy [136]. The results are shown in Table 3.2. The results show

a consistent improvement when representations with deeper DAEs are used, regardless of the

classifier. Furthermore, there is a consistent improvement in performance of the same classifier

when PRG is used over GRD and SML. Similarly, there is a consistent improvement in performance

of the same classifier when DPS is used over GRD and SML Finally, the DAE representation

features perform better than MCEPs. We compare the best-performing DNN operating on DAE-

PRG and also DAE-DPS versus MCEPs using Chi-square test with Yates’s correction. The test

shows a significant difference between the distribution of the phoneme classification scores with

the two-tailed p value less than 0.005 for both comparisons. Furthermore, we conduct a similar

experiment between best-performing PRG and DPS but do not find significant difference between

the scores.

2https://keras.io/optimizers/#adam



Chapter 4

Joint Autoencoder

4.1 Introduction

In this chapter, we propose an architecture for regression that involves two autoencoders (AEs),

one representing the input and another representing the output distribution. Each AE is tasked

with learning an efficient encoding for each data distribution, using a reconstruction loss function;

however, in addition, the two encodings are also encouraged to be similar by imposing an additional

loss function. We refer to the resulting architecture as a joint autoencoder (JAE). The final

regression function is constructed by encoding the input features using the input autoencoder

and then decoding these values using the output decoder. In addition, we extend the idea of

encouraging joint representations to stacked and deep joint autoencoders. The motivation for

using deeper architectures is that it enables finding joint representations between input and output

at deeper representation levels, which are likely to represent more abstract phenomena. Another

important advantage of the proposed architecture is that it provides us with the ability to initialize

the mapper using unsupervised input and output data. Similar architectures have been studied in

multi-view deep learning techniques which have focused on extracting useful representations from

multiple data streams, which enable learning representations that are more linearly separable, thus

helping classification tasks [339]. We focus on the generative aspects of the joint architecture and

study the properties of the predicted data.

We also propose a novel level-progressive training approach for training deep autoencoders. In

this training scheme, rather than training all levels simultaneously, or by stacking autoencoders in

a greedy fashion, we propose an algorithm in which the deep autoencoder of depth K is trained

by starting from a shallow architecture and progressing the levels one-by-one, while performing

simultaneous weight updating for all previous layers. This process is iterated until the desired depth

K is reached. We experimentally show that this approach results in better first- and second-order

46
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moments of reconstructed features.

4.2 Formulation

4.2.1 Joint Autoencoder

The joint autoencoder (JAE) consists of two AEs, one learning the input feature representations

and the other learning the output feature representations. These two AEs are architecturally

separate, i. e. they do not have any node connections with each other. The encoding and decoding

functions for the input and output autoencoders can be represented as

hx = fx(x) = senc(Wxx + bx)

x̂ = gx(hx) = sdec(Wx
>hx + cx)

hy = fy(y) = senc(Wyy + by)

ŷ = gy(hy) = sdec(Wy
>hy + cy)

(4.1)

where W, b, c are the weights, hidden layer bias, and visible layer bias, respectively. The encoding

and decoding activation functions are represented by senc and sdec. The parameters of the model

are represented by Θ = {Wx,bx, cx,Wy,by, cy}. The hidden layer encodings represented by hx

and hy are the input and output hidden layer values, respectively. If this architecture is trained

to minimize the reconstruction cost for input and output separately, hx and hy are likely to be

uncorrelated. The core idea of the JAE is to maximize the similarity of the encoding values

between hx and hy , in addition to the goal of reconstruction. Therefore, we modify the standard

training loss function to include the loss between the hidden layer encodings, i. e.

L (x, x̂,y, ŷ,hx,hy;α) =

(1− α) · (Lr(x, x̂) + Lr(y, ŷ)) +

α · Ld(hx,hy)

(4.2)

where Lr is the reconstruction loss function and Ld is the distortion loss function between the

hidden values of the two otherwise separate AEs, with α denoting the jointness of the input and

output autoencoders; this jointness factor controls the tradeoff between reconstruction performance

and the degree of encoding similarity. The JAE architecture is depicted in Fig. 4.1. The input

and output autoencoders in the JAE architecture can be initialized randomly, or from previously

trained autoencoders on unsupervised data. Using the trained JAE architecture, we can directly

construct a mapping function for transforming input features to output features. First, the hidden
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Figure 4.1: Joint autoencoder architecture. The autoencoder maps x and y to hx and hy, and
then reconstructs x̂ and ŷ. Reconstruction error is measured by Lr(x, x̂) and Lr(y, ŷ) and the
distortion error is measured by Ld(hx,hy).

encodings are computed using the input encoder. These encodings are then decoded using the

target decoder to obtain the output. The mapping function is essentially a feed-forward network

where the parameters are trained using the JAE architecture:

ŷ = FJAE(x) = gy (fx(x)) (4.3)

4.2.2 Joint Deep Autoencoder

JAEs can be composed of AEs with deep architectures. We refer to these architectures as joint

deep autoencoders (JDAE) since they include multiple levels. Each level can be assigned different

α values, which represents the tradeoff between reconstruction performance and encoding similar-

ity. Previously we found that if lower levels are assigned lower α values, we achieve better VC

performance [183]. In this study, we focus on studying the architectures with joining performed at

the top-most level only. The JDAE computes

hkx = fkx (hk−1x ) = skenc(W
k
xh

k−1
x + bkx),

hky = fky (hk−1y ) = skenc(W
k
yh

k−1
y + bky),

ĥk−1x = gkx(ĥkx) = skdec(W
k
x
>ĥkx + ckx),

ĥk−1y = gky (ĥky) = skdec(W
k
y
>ĥky + cky)

(4.4)
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... ...

Figure 4.2: Joint deep autoencoder greedy training. After training a first-level joint autoencoder
(see Figure 4.1), its learned encoding function is used on input and output features. The resulting
representation is used to train a second-level joint autoencoder to learn a second-level encoding
function. From there, the procedure can be repeated.

with k = 1, . . . ,K, h0
x = x, h0

y = y, x̂ = ĥ0
x, and ŷ = ĥ0

y. The parameters of the model are

Θ = {Wk
x,b

k
x, c

k
x,W

k
y ,b

k
y , c

k
y}k=[1,··· ,K], where superscript k represents the kth-level of an AE

with K levels. The JDAE encoding and decoding functions for input x (and analogously output

y) are defined as hx = fx(x) = (fKx ◦ fK−1x ◦ · · · ◦ f1x)(x) and x̂ = gx(hx) = (g1x ◦ g2x ◦ · · · ◦ gKx ) (hx),

respectively. Similar to Equation 4.3, the input hidden encoding from the incoming input is

calculated using source JDAE encoder, and these encoding values are decoded using the output

JDAE decoder, i. e.

ŷ = FJDAE(x) = (g1y ◦ g2y ◦ · · · ◦ gKy ◦ fKx ◦ fK−1x ◦ · · · ◦ f1x)(x) (4.5)

The architecture can be trained in various ways similar to Section 3.2: greedy, simultaneous, and

progressive.



CHAPTER 4. JOINT AUTOENCODER 50

4.2.2.1 Greedy training

The JDAE architecture with greedy training is depicted in Figure 4.2. Each autoencoder level

is trained individually with the relevant loss function, starting from training the lowest-level and

encoding the parameters, and iterating the training/encoding process until all levels are trained,

using the loss function

L
(
hk−1x , ĥk−1x ,hk−1y , ĥk−1y ,hkx,h

k
y ;αk

)
=

(1− αk) ·
(
Lr(h

k−1
x , ĥk−1x ) + Lr(h

k−1
y , ĥk−1y )

)
+

αk · Ld(h
k
x,h

k
y)

(4.6)

where αk is zero for all k < K, and a non-zero value (see Section 4.3.2.1) for k = K.

When unsupervised data is available, a greedy level-wise approach can be used to build the

stacked autoencoder level-by-level. First, the input and output AEs in each level can be initialized

by their relevant unsupervised data, and then the JAE is trained on the supervised data. For the

next level, in addition to encoding the input and output values, the input and output unsupervised

corpus is also encoded using current level AEs. The next level is trained similarly, and the process

is iterated until the desired depth is reached. The implementation of the greedy level-wise JDAE

training (GRD) is shown in Algorithm 4.1. The argument u represents unsupervised data used in

the initialization step.

4.2.2.2 Simultaneous training

A greedy training stacks multiple AEs to build a deep representation of feature space. A new

level of the DAE is trained independently from its previous levels. This training scheme is also

referred to as greedy level-wise training. In Section 3.3, we showed that training all the levels

simultaneously results in better feature representation [374]. We posit that the same improvement

is possible for our proposed joint models; specifically, we extend the greedy JDAE training so that

the parameters of all the levels are trained simultaneously in each iteration.A local optimum of Θ

is found by minimizing the following loss function

L (x, x̂,y, ŷ,hx,hy;α) =

(1− α) . (Lr(x, x̂) + Lr(y, ŷ)) +

α . Ld(hx,hy)

(4.7)

It is worthwhile to note that all the parameters of all levels are optimized simultaneously, rather

than in a greedy level-wise fashion. The implementation of simultaneous JDAE training (SML) is
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Figure 4.3: JDAE simultaneous training. All the level parameters are optimized simultaneously,
rather than level-wise.

shown in Algorithm 4.1. The simultaneous JDAE architecture is depicted in Figure 4.3.

4.2.2.3 Progressive training

Similar to Section 3.2, in which we proposed a progressive training scheme for learning the DAE

weights, we also propose a progressive training scheme for JDAE architecture. In this architecture,

the first level representation is learned. Then the second level JAE, followed by a simultaneous

learning of all the parameters up to the second level. Similarly, the third level JAE is leaned,

followed by a simultaneous learning of all the parameters up to the third level. This process is

iterated until the desired depth is reached. The implementation of progressive JDAE training

(PRG) is shown in Algorithm 4.1.
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4.2.2.4 Deeply supervised training

We also use a deeply supervised method similar to the method proposed in Section 3.2.4 to train the

JDAE. We define the loss function for each of the source and target DAEs by the deep supervised

training approach. Hence, all DAE levels have reconstruction loss present in the total loss function.

All the parameters are then learned simultaneously. We hypothesize that similar to training a single

DAE, the joint DAE also benefits from the densely supervised training approach since the errors

are propagated more easily to the lower levels.

4.3 Experiment: Voice Conversion

We applied the proposed architectures to the Voice Conversion (VC) problem, which is particularly

well-suited as it involves a regression with high-dimensional input and output data. Specifically,

a VC system is a speech generation system which converts speech produced by a source speaker

to sound similar to that of a target speaker’s. Most commonly, a speech utterance is analyzed

frame-by-frame, then extracted source speaker features are mapped to more closely resemble likely

target speaker features, and finally a new output speech waveform is synthesized. Due to the

high dimensionality of the features, the mapping is typically achieved using a non-linear regression

function, which must be trained on time-aligned source and target features from existing parallel

or artificially parallelized [e. g. 58] speech utterances. The speech features used for speech anal-

ysis/synthesis and mapping typically do not have good interpolation properties [184] which poses

challenges for approaches that perform addition operations on the features. Human speech also

exhibits inconsistency over several renditions of the same sentence [120] which results in one-to-

many relationships in the parallel training data [92], further complicating the mapping function

learning process. During training, a feed-forward architecture learns to directly predict the target

speech features from the source speech features. This training criterion typically results in aver-

aged features (higher E2), since the algorithm is attempting to minimize a loss function which is

not typically highly correlated with perceptual quality. These challenging issues are all factors in

over-averaging of converted features which leads to decreased naturalness of the generated speech.

We hypothesize that the JDAE architecture will lead to higher variance in the output features

(lower E2), and thus increased perceived speech quality. In this section, we detail various train-

ing configurations and investigate the effects of several hyper-parameters on objective evaluation

results. Finally, we report on the outcome of a subjective listening test.
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4.3.1 Training

We used the VC challenge 2016 corpus [308] as speech data, consisting of 162 parallel sentences.

We split the sentences into training (100), validation (31), and objective testing (31) sentences

for the objective experiments. We utilize the 54 subjective testing set as proposed in the corpus

for subjective experiments. As speech features, we used 40th-order MCEPs (excluding the energy

coefficient, dimensionality D=39), extracted using the Ahocoder toolkit [60] with a 5 ms frame

shift. We chose to model 11 frames (the current frame plus 10 preceding frames), for a total of

11×39=429 features per frame. For simplicity, we only consider four conversions: SM1→TF1,

SF2→TM1, SF1→TF2, and SM2→TM2 (two inter- and two intra-gender conversions). For the

first-level AE, senc is a sigmoidal transfer function, and sdec is linear. For all higher levels, we used

sigmoids for both senc and sdec. We let Lr and Ld equal the mean-squared error. Additionally, we

used a Gaussian corruption function to corrupt the inputs to the network during training.

We initialized the network parameters using the following schemes:

Random Weights are initialized to small random values.

Speaker independent Alternatively, we first trained the networks using general-purpose, multi-

speaker unsupervised data; in this case we used all of the training set speakers of the TIMIT

corpus [69].

Speaker dependent The joint architectures also allow speaker dependent initialization. The

source and target (D)AEs can be initialized using two separate unsupervised data corpora,

each selected to be relatively similar to the source and target data distributions [182]; in this

case we separated TIMIT into male and female sets and use them to initialize the source and

target (D)AEs based on their gender.

We investigate the value of various measures for a 2-level JDAE and speaker independent initial-

ization over training iterations; specifically, we show the values of Ld, Lr for source and target

speakers, E1, and E2 in Figure 4.4. As training progresses, we observe that E2 goes down for the

JDAE whereas it goes up for the DNN. We use DNNs as baseline since it is the state-of-the-art

approach that uses a closeness criterion on the output. There exists more advance models with

sequence modelling capabilities, however we intended to keep the architectures simple to assess

our proposition with fewer dependent variables (such as hyper-parameters).
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4.3.2 Objective Evaluation

4.3.2.1 Finding the optimum jointness factor

To experiment with the effect of the jointness factor α on mapping accuracy, we varied the α value

from 0 to 1 in 0.1 increments. We also added points 0.01 and 0.99 as extreme border cases. We

used 100 training sentences to train a JDAE architecture with two levels and speaker independent

initialization. As the baseline, we report DNN performance. We report average E1 of all four

conversion pairs for DNN and the JDAE mapper trained with the PRG scheme. As shown in

Figure 4.5-a, the optimum value was between 0.6 and 0.7. For α > 0.8, the JDAE mapper quickly

became unstable regarding mapping accuracy since the reconstruction errors for source and target

DAEs started performing poorly. For α = 1.0, the network was only trying to minimize the

encoding similarity, resulting in very high reconstruction and thus also mapping errors (which are

outside of the plot with values of > 30 dB).

It is possible to select the jointness factor based on both E1 and E2, allowing control over the

first- and second-order behavior of the mapper. First, we normalized the mel-CD plot, E1(y, ŷ), to

contain values between zero and one, by subtracting 4.0 dB and dividing the result by 10.47−4.00,

obtaining E′1. The value 4.00 was based on the estimated rendition error that speakers naturally

have between different utterance renditions of the same sentence [120], and we estimated 10.47 as

the pre-existing mel-CD error between source and target speakers. We then found the best alpha

by solving

α = argminα

[
(1− β) · E′1(y,FJDAE(x;α)) +

β · E2(y,FJDAE(x;α))

] (4.8)

where the value of β acts as a control knob for selecting a system that controls the tradeoff between

first-order and second-order accuracy. For lower β values, we favor systems with lower mel-CD;

conversely, for higher β values, we favor systems that generate features with higher standard

deviation. For β values of 0.0, 0.25, 0.50, and 0.75, the corresponding α values are 0.70, 0.50, 0.2,

and 0.1, respectively. For the following experiments, we used a jointness factor of α = 0.2, which

corresponds to β = 0.5, favoring first- and second-order accuracy equally.

4.3.2.2 Investigating different architectures and training configurations

We report the conversion accuracy of a male to female conversion (SM1→TF1) in Table 4.1. We

experimented with using 20 or 100 training sentences to see the training size effect. As a reference,
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the mel-CD between the source and target testing samples SM1 and TF1 (i. e. the pre-existing

error without mapping) is 10.47 dB. We investigate two fundamental regression approaches and

their variations: the feed-forward (DNN, SNN) and joint AE (JAE, JDAE-GRD, JDAE-SML,

JDAE-PRG) architectures. We experimented with three different depths (K = 1, 2, 3) and various

training configurations. The results of the experiments are presented in Table 4.1. For K = 1,

the JAE performed worse than the SNN regarding E1 in all initialization scenarios; however, it

performed significantly better regarding E2. For K = 2 and K = 3, comparing the different

JDAE architectures, we found PRG>GRD>SML regarding E1, and PRG resulted in either a

similar or better E2, compared to SML and GRD. The initialization of the DNN with the speaker

independent model trained using PRG or GRD did not differ significantly, but both outperformed

random initialization as expected. The improvement is even more noticeable for the smaller training

set, since proper initialization is more likely to help when there are fewer training data available.

Compared to speaker independent initialization, speaker dependent initialization improved per-

formance for all joint architectures in all training configurations with respect to both E1 and E2.

This suggests that selecting data distributions that are closer to individual speaker data distri-

butions is beneficial during initialization. More precise data selection, compared to a mere male-

female splitting, may be even more beneficial. Finally, we also investigated the effect of training

size in more detail. In Figure 4.7, we show E1 of the test set corresponding to changes in training

size. For a higher number of training sentences, both E1 and E2 improve for the JDAE, whereas

only E1 improves for the DNN.

4.3.2.3 Investigating first- and second-order properties

We also studied the second-order properties of the generated features in a component-wise manner.

We used the JDAE-PRG architecture with K = 2 levels and speaker independent initialization.

Figure 4.8 shows E1 (representing the first order properties) and E2 (representing the second

order properties). We observed that the E2 values are always lower for the JDAE, which are more

important for reducing the muffling of generated speech [301]. There still remains a gap to achieve

a perfect E2 (no muffling). Figure 4.9 shows the spectrogram of conversions of K = 2 level DNN

and JDAE-PRG with speaker-independent initialization. We observed that the DNN-generated

spectrogram is more blurry, the result of over-averaging. The JDAE-generated spectrogram shows

sharper peaks and increased spectral detail. Furthermore, we investigated the DNN performance

errors by adjusting the standard deviation of generated features in a post-processing way. We

adjusted the standard deviation of generated features toward the standard deviation of training

features, by subtracting the mean value of features and then normalizing it to one, and finally
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Level 2 Level 3

JDAE-PRG 7.38(0.41) 7.26(0.54)

JDAE-DPS 7.37(0.41) 7.22(0.50)

DNN 6.73(0.81) 7.34(0.79)

Table 4.2: Objective measures comparing JDAE-PRG-α = 0.2, and JDAE-DPS starting from
random initialization. The scores represent E1, mel-CD, with

√
E2 in parenthesis.

multiplying it with the standard deviation of training features. For each feature element the

following is performed

x̂adjusted−std = ((1− τ)× std(x̂) + τ × std(xtrain))× (x̂−mean(x̂))/std(x̂)

in which τ controls the amount of adjustment. In Figure 4.10, we show both E1 and E2 for DNN

with adjusted standard deviation and contrast it to DJAE. We use JDAE-PRG with K = 2 and

DNN of the same architecture for this experiment.

4.3.2.4 Investigating performance of DPS versus PRG

We investigated the performance of DPS versus PRG approaches. We compared K = 2 and K = 3

level architectures with random initialization. The results are shown in Table 4.2. We did not find

a statistically significant difference (by performing a t-test) between PRG and DPS.

4.3.2.5 Investigating the effect of jointness factor in progressive training

We investigated the effect of various jointness factors in progressive training. During progressive

training, we grow the network from shallow layers to deeper layers. In JDAE, we have the option

to either impose a jointness factor in building the shallower layers, or not impose any jointness

factor in the shallow network training and only impose the jointness factor only in the deepest

layers.

We used the JDAE-PRG architecture with K = 3 levels and random initialization and trained on

100 training sentences. We used a varying jointness factor from α = 0.2 to α = 0.4. We consider

three different jointness factor assignments: JDAE-PRG-repr, JDAE-PRG-all, and JDAE-PRG-

linear:

JDAE-PRG-repr we only applied the α to the deepest representation layer and other levels

have no jointness.
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α = 0.1 α = 0.2 α = 0.3 α = 0.4

JDAE-PRG-repr 7.44(0.61) 7.26(0.54) 7.15(0.51) 7.03(0.49)

JDAE-PRG-all 7.46(0.58) 7.29(0.50) 7.17(0.48) 7.06(0.46)

JDAE-PRG-linear 7.43(0.57) 7.26(0.50) 7.15(0.49) 7.01(0.47)

Table 4.3: Objective measures comparing applying jointness factor to all levels equally, all levels
incrementally, or only deepest level in JDAE-PRG. The scores represent E1, mel-CD, with

√
E2

in parenthesis

JDAE-PRG-all we applied α to all levels throughout progressive training.

JDAE-PRG-linear we applied jointness factor to all levels throughout progressive train-

ing, however we increase the jointness factor from 0 for first level to the target α for the

representation level. This shows the effect when we increase the jointness from no jointness

to the desired jointness, which seems a reasonable hypothesis since the lower layers are learn-

ing their own data distribution and might perform better if less jointness is imposed. For

deeper levels, we can impose more jointness since they are learning more abstract information

and would be joint more appropriately.

We show the E1 and E2 scores in Table 4.3. We observe that JDAE-PRG-linear results in a better

E1 and E2 tradeoff behavior in most cases. This shows that, growing the jointness from low values

for lower levels towards higher values for deeper levels is more effective than only applying jointness

on the deepest level or using a constant jointness for all levels.

4.3.2.6 Investigating effects of similarity measures

In this experiment, we aim to compare several similarity loss functions that is applied to the hidden

representation. We compared: Squared Error (SE), Absolute Error (AE), Kullback-Leibler (KL)

divergence, and cosine proximity (CP).

We used the JDAE-PRG architecture with K = 3 levels and random initialization and train on

100 training sentences. We used a jointness factor of α = 0.2. We show the E1 and E2 scores

in Table 4.4. The scores show better performance regarding E1 for SE and best performance for

E2 for AE. We speculate that the reason SE performs better in E2 is possibly due to learning

representations which are more sparse.
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Loss Error

SE 7.26(0.54)

AE 7.75(0.43)

KL 7.28(0.50)

CP 7.89(0.48)

Table 4.4: Objective measures comparing various similarity measures applied to hidden layer. The
scores represent E1, mel-CD, with

√
E2 in parenthesis

4.3.3 Subjective Evaluation

To subjectively evaluate voice conversion performance, we performed two perceptual tests. The

first test measured speech quality, designed to answer the question “how natural does the converted

speech sound?”, and the second test measured speaker similarity, designed to answer the question

“how accurately does the converted speech mimic the target speaker?”. The listening experiments

were carried out using Amazon Mechanical Turk, with participants who had approval ratings of

at least 95% and were located in North America. Both perceptual tests used three trivial-to-judge

trials, added to the experiment to exclude unreliable listeners from statistical analysis. No listeners

were flagged as unreliable in our experiments.

4.3.3.1 Speech Quality Test

To evaluate the speech quality of the converted utterances, we conducted a Comparative Mean

Opinion Score (CMOS) test. In this test, listeners heard two stimuli A and B with the same content,

generated using the same source speaker, but in two different processing conditions, and were

then asked to indicate wether they thought B was better or worse than A, using a five-point scale

comprised of +2 (much better), +1 (somewhat better), 0 (same), −1 (somewhat worse), −2 (much

worse). We utilized three processing conditions: DNN, JDAE, and VOCOD, where the VOCOD

condition is a MCEP-vocoder re-synthesis, serving as a reference of maximum achievable quality

(Re-synthesis quality is considered nearly transparent compared to the original audio). Hence, we

ran three comparison pairs: VOCOD→DNN, VOCOD→JDAE, DJAE→DNN. We randomized the

order of stimulus presentation, both the order of A and B, as well as the order of the comparison

pairs. The experiment was administered to 40 listeners with each listener judging 111 (108+3)

sentence pairs. The results are shown in Figure 4.11. The VOCOD→DNN, VOCOD→JDAE, and

JDAE→DNN mean score values (with 95% confidence intervals) are −1.666±0.134, −1.508±0.151,

and −0.741±0.155, respectively. We performed planned one-sample t-tests with a mean of zero and
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achieved p < 0.0001 for all comparison pairs, showing statistically significant differences between

all processing conditions. Notably, JDAE is performing significantly better in regards to speech

quality compared to DNN generated audio. Also, the VOCOD→JDAE drop is smaller than that of

VOCOD→DNN, showing that the listeners perceived JDAE conversions to be closer to the purely

vocoded condition.

4.3.3.2 Speaker Similarity Test

To evaluate the speaker similarity of the converted utterances, we conducted a same-different

speaker similarity test [119]. In this test, listeners heard two stimuli A and B with different

content, and were then asked to indicate wether they thought that A and B were spoken by the

same, or by two different speakers, using a five-point scale comprised of +2 (definitely same), +1

(probably same), 0 (unsure), −1 (probably different), and −2 (definitely different). One of the

stimuli in each pair was created by one of the two conversion methods, and the other stimulus

was a purely MCEP-vocoded condition, used as the reference speaker. Half of all pairs were

created with the reference speaker identical to the target speaker of the conversion (expecting

listeners to reply “same”, ideally); the other half were created with the reference speaker being

the source speaker (expecting listeners to reply “different”). The experiment was administered

to 40 listeners, with each listener judging 75 (72+3) sentence pairs. The results are shown in

Figure 4.12. The DNN-same, DNN-diff, JDAE-same, and JDAE-diff mean score values (with 95%

confidence intervals) are 0.0387±0.23, −1.323±0.17, 0.604±0.21, and −1.427±0.17, respectively.

We performed planned one-sample t-tests with a mean of zero and found statistically significant

differences for DNN-diff, JDAE-same, and JDAE-diff compared to chance (all with p < 0.001).

Furthermore, we performed a two-sample t-test between DNN-same and JDAE-same and found

the difference to be statistically significant (p < 0.01). These results show that listeners perceived

JDAE conversions to better mimic the target speaker than when using the DNN. We also performed

a two-sample t-test between DNN-diff and JDAE-diff, but did not find a statistically significant

difference. Finally, we negated the DNN-diff and JDAE-diff scores and compared them to the

DNN-same and JDAE-same scores, respectively. This type of comparison discovers which task

is more difficult: de-identifying the source speaker, or mimicking the target speaker. Both t-test

results for DNN and JDAE show statistically significant differences (p < 0.0001) between negated

“diff” vs. ”same” scores, confirming the intuition that is is easier to de-identify than to mimic.
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Algorithm 4.1 Joint deep autoencoder training algorithm.
1: procedure Train-JDAE
2: Input: ux, uy, x , y, α , Θ′, type
3: Output: Θ
4: Θ← Θ′

5: h0
x ← x; h0

y ← y
6: u0

x ← ux; u0
y ← uy

7: if type = SML then . simultaneous training
8: if ux 6= ∅ then
9: Θ1...K

x ← Minimize-Loss-AE(Θ1...K ,ux)
10: Θ1...K

y ← Minimize-Loss-AE(Θ1...K ,uy)

11: Θ1...K ← Minimize-Eq12(Θ1...K ,x,y, αK)
12: else . greedy/progressive training
13: k ← 1
14: while k ≤ K do
15: if ux 6= ∅ then
16: Θk

x ← Minimize-Loss-AE(Θk
x,u

k−1
x )

17: Θk
y ← Minimize-Loss-AE(Θk

y ,u
k−1
y )

18: Θk ← Minimize-Eq5(Θk
x,Θ

k
y ,

hk−1x ,hk−1y , αk)
19: if type = PRG and k > 1 then
20: Θ1...k ← Minimize-Eq12(Θ1...k,x,y, αk)

21: if k < K − 1 then
22: hkx,h

k
y ← Encode(Θk,x,y)

23: if ux 6= ∅ then
24: ukx,u

k
y ← Encode(Θk,x,y)

25: k ← k + 1

26: return Θ
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Figure 4.4: Various measures over 1000 training iterations of a JDAE with α = 0.2, for the M2F
case, using 100 sentences.
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Figure 4.5: Varying the value of the joint-ness factor from 0 to 0.9 by 0.1 increments, points
0.01 and 0.99 are also included. First row represents the encoding distortion between the joint
autoencoders. Second row shows the reconstruction error for source and target speakers. Third and
fourth row show the mapping function E1 (with raw value shown on the left y-axis and normalized
value on the right y-axis) and E2 performance, respectively. We used 100 training sentences and
trained JDAE using PRG algorithm.
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Chapter 5

Decomposing Autoencoders

5.1 Introduction

Some categories of data can be modeled as a composition of style and content information that

are independent of each other. Style and content decomposition has been the focus of numerous

studies [289, 50, 337, 106, 311]. Speech can be thought to be (at a minimum) composed of speaker

identity and linguistic content information. The availability of methods that decompose input

speech into its underlying information embeddings can facilitate several use-cases. In certain

applications, we are only interested in one of the information embeddings. For example, for text-

independent speaker recognition [241], we are interested in the speaker identity embedding and

do not require the knowledge of the linguistic content, whereas in speech recognition [235], we are

interested in the linguistic content embedding which ideally should not be entangled with speaker-

related information. The availability of methods that can recompose the decomposed embeddings

to reconstruct the input data can facilitate several other use-cases. For example, VC [184] can be

formulated as modifying the style of an speech utterance, in this case the speaker characteristics,

while keeping the content --- the linguistic message --- unchanged; thus an utterance produced by

a source speaker will be perceived as if it had been spoken by the target speaker. The goal of

this study is to investigate neural network architectures that are able to achieve style and content

decomposition and recomposition.

As described in detail in Chapter 3, an autoencoder is a type of artificial neural network typi-

cally used for unsupervised learning of efficient encodings, or representations [18]. Representations

are learned by requiring the network to reconstruct the data in the presence of non-linear func-

tions and noise corruption in the architecture; in this manner the network learns to extract useful

patterns from the data in order to be able to encode and reconstruct them [335]. When modeling

speech data, the representation typically contains a combination of several factors such as linguistic

70
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Constraint

Figure 5.1: An exampleSiamese architecture

content, speaker identity, dialect, and emotional state. In this study, we aim to create an archi-

tecture that decouples speaker identity (defined as style hereon) and linguistic content (defined as

content hereon) representations. We assume the availability of a database with different speakers

uttering the same sentences, i. e. a database that has identical content information for different

pre-determined styles. We model the hidden representation vector as the concatenation of a style

vector and a content vector. This key concept leads to an architecture we term decomposing

autoencoder (DcAE).

Siamese architectures have typically been defined as two tied-weight networks with two differ-

ent inputs that are constrained to reconstruct their respective inputs. Furthermore, a constraint

between the shared segment of a hidden layer in the two sub-networks is added to the loss func-

tion [24]. An example of a siamese architecture is depicted in Figure 5.1. As can be seen in the

figure, both networks (which have tied weights) are reconstructing two separate samples from data.

A constraint is also applied in a part of the middle layer in order to impose some constraint (which

is use-case dependent); without this additional constraint the inputs could be simply presented as

two distinct training samples, as is the case with common network architectures. We propose to

learn the DcAE representations by using a multi-siamese DcAE architecture during training. In

contrast to traditional Siamese techniques [24], we use multiple copies of the network rather than

two copies. Furthermore, we impose constraints on all parts of the representation layer rather

than only imposing constraints on a specific part of the representation layer. For each style, we

construct a DcAE network, and then impose constraints between the style-specific sub-networks’
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style and content representations. We propose two training approaches to train the network. In a

first approach, we use a similarity constraint which is imposed on the content of the same frame of

different speakers, while also simultaneously using a similarity constraint which is imposed on the

styles of all frames by each of the speakers. This reflects the hypothesis that all content represen-

tations should be similar to each other, and that speaker representations should be similar over all

frames of an individual speaker. In a second approach, we impose the constraints by modifying the

training such that the content representations of each frame are mean-pooled over all speakers be-

fore decoding, and the style representations of each speaker are mean-pooled over all frames before

decoding. The mean-pooling of content over speakers is performed by adding all the corresponding

content representations and dividing the outcome by the number of speakers. This mean-pooled

representation is then broadcasted to the decoding part of each speaker’s autoencoder. Mean-

pooling across style is performed similarly, but over frames of each speaker, and then broadcasted

to the decoding part of that speaker’s autoencoder. Mean-pooling content representations of a

particular frame index prevents the content representation from learning any speaker-specific in-

formation; conversely, mean-pooling the style over all frames of a speaker removes the variability

of the style representation.

To validate the model, we perform several visualizations, a phoneme classification experiment

in Section 5.3, and a speaker recognition experiment in Section 5.4. Finally, we present the many-

to-many VC application and experiments in Section 5.5.

5.2 Formulation

5.2.1 Preliminaries

We will use the following notation: LetXk
M×D = [xk1 , . . . ,x

k
M ]>, where themth content observation

xkm = [x1, . . . , xD]> represents the kth data stream out of K parallel (i. e. content-aligned) data

streams of M observations of D-dimensional training feature vectors.

• m ∈M : Represents the observation index

• k ∈ K : Represents the style index

• d ∈ D : Represents the content feature index

For any given m, {xkm} are vectors with distinct style k (out of a total of K styles) and identical

content. We omit the m subscript for ease of notation, unless explicitly specified. In this study,

speech style represents speaker identity, and content represents the linguistic message.
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(a) Basic Autoencoder (b) Decomposing Autoencoder

Figure 5.2: Basic Autoencoder versus proposed Decomposing Autoencoder

5.2.2 Decomposing autoencoder

A basic autoencoder (AE) is composed of an encoder f(·) and a decoder g(·). The network encodes

the input to the hidden representation hm = f(xm), and then reconstructs the input by decoding

the hidden representation, x̂m = g(hm). Minimizing the reconstruction loss, Lr(xm, x̂m), forces

the network to learn useful representation patterns during training, as shown in Figure 5.2a. To

force the network to learn more generalized representations, the input is corrupted by adding noise;

the resulting training method is called denoising autoencoders [335]. We extend the basic AE to

force the network to learn reconstruction, but, in addition, learn the decomposition of style and

content. The latter goal is achieved by splitting the hidden representation vector hm into two sub-

vectors sm and cm, which represent style and content, respectively; i. e. hm = [sm, cm], as shown

in Figure 5.2b. For training the DcAE, we propose to use a Siamese architecture with certain

constraints as described in the next two subsections. We describe constraining by a specific loss

function and mean-pooling in Sections 5.2.3 and 5.2.4, respectively.

5.2.3 Decomposing Autoencoder constrained by loss function

For training the DcAE, we propose a novel Siamese autoencoder (SiAE) architecture, in which

K AEs (one for each available style in the training data) have shared parameters, but operate on

inputs that are parallel in content, but distinct in style. Specifically, the SiAE is composed of

multiple copies of the encoder, mapping the kth data stream to style and content representations

[skm, c
k
m] = f(xkm), and multiple copies of the decoder, reconstructing the data from style and

content representations x̂km = g([skm, c
k
m]). This training approach, shown in Figure 5.3, learns

to reconstruct the training data using a reconstruction loss function. However, importantly, the
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Figure 5.3: Siamese Autoencoders with loss imposed on style and content along their relevant
factors

SiAE also allows constraints on both style and content by means of additional loss functions that

are applied to the hidden representations sm and cm, resulting in the total loss function (for a

single observation) Lr +Lc +Ls, where Lr =
∑K
k=1 L(xkm, x̂

k
m), Lc, and Ls are the reconstruction,

content, and style loss functions, respectively. Note that the SiAE architecture is used during

training only, resulting in a nearly-standard AE architecture during testing: the DcAE.

We consider learning content by constraining the content representation using a similarity

measure.

Lc =

M∑
m=1

K∑
k=1

K∑
l=k+1

L(ckm, c
l
m) (5.1)

since all data streams have the same content.

We consider learning distinct styles by using a similarity measure over data samples. We posit

that the average distance between all styles of a speaker’s data samples should be minimized while

learning the speaker’s style space.

Ls =

K∑
k=1

M∑
i=1

M∑
j=i+1

L(ski , s
k
j ) (5.2)

We call this architecture SiAEloss, shown in Figure 5.3.
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5.2.4 Decomposing Autoencoder constrained by mean-pooling

In this section, we describe constraining the Siamese autoencoders to learn to distinguish style

and content by mean-pooling hidden style and contents across their relevant factors. We propose

to modify the style representation by mean-pooling the computed styles of all samples in a batch

before decoding. The reason is that we want to compute unique style values for each style that are

invariant to the content. Thus, we modify the decoder of the autoencoder to use the mean-pooled

over content observations style:

s̄k =
1

M

M∑
m=1

skm (5.3)

For training, we consider a large batchM gradient approach since the more samples we have during

parameter update for style, the more stable and less variable the styles will be. We also propose

to modify the content representation by mean-pooling all K content representations of different

styles:

c̄m =
1

K

K∑
k=1

ckm (5.4)

We reconstruct the input by feeding the mean-pooled style and content to the decoder:

x̂km = g([s̄k, c̄m]) (5.5)

Note that we do not impose any explicit constraints in the loss function on either style or content,

since the mean-pooling itself acts as a form of constraint. We merely use the reconstruction loss

Lr. We call this architecture SiAEpool, shown in Figure 5.4.

5.2.5 Related work

5.2.5.1 Siamese Networks

Similar to our proposed architecture, Siamese deep networks have been proposed previously by

Chen et al. [28]; in their work the architecture consisted of two Siamese feed-forward networks in

which only the speaker-specific part of a middle layer was constrained. The goal of that study was to

compute a speaker representation from non-parallel data, and not content representation. However,

in our study we propose using multiple Siamese representation learning networks, and constrain

content encodings by using a parallel training speech corpus which contains multiple speakers

speaking the same text material, thus providing training data with both content and style factors.
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...
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...

Figure 5.4: Siamese Autoencoders with mean-pooled style and content along their relevant factors

Other studies used tri-Siamese autoencoders for phone and speaker embedding learning [367, 368];

however, these approaches were supervised using phoneme and speaker labels. In contrast, we

propose to learn both speaker and linguistic content without labels, using the parallel structure of

the corpus (which is a form of supervision). We also propose to extend the Siamese architecture

to multiple copies of the autoencoders, one per style, rather than merely two or three copies.

5.2.5.2 Multi-view Learning

The proposed work has some similarities to multi-view learning [339], in which a shared represen-

tation is learned from multiple data streams. Their approach hypothesized that all of their data

have the same or highly correlated latent representation which generates the different views of the

data. In our study, we have a similar assumption, in that we assume these different data stream

observations are generated from the same content latent representation. That is the reason for

choosing to mean-pool the content representations in one of the training approaches. One differ-

ence of this technique as compared to our proposition is that our work assumes shared parameters

for all data views and also explicitly models the uniqueness of the different views (style) compared

to multi-view approaches which have separate parameters for each data stream. The multi-view

learning goal is typically to achieve good quality latent representations from multiple data modal-

ities, whereas here we focus on how to decouple different factors of the data and modifying and

recomposing the factors to achieve feature modification (voice conversion in this study).
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5.2.5.3 Factorized Hierarchical Variational Autoencoders

A recently proposed approach learns disentangled and interpretable representations using varia-

tional autoencoders [106]. The authors propose to explicitly formulate the sequential information

within a factorized hierarchical graphical model. The proposed model imposes sequence-dependent

priors and sequence-independent priors to different sets of latent variables. This approach is able

to decompose speech factors from a multi-speaker speech corpus without requiring parallel (same

linguistic content) sentences from the speakers. In contrast, our approach requires parallel sen-

tences from the speakers. In addition, they impose speaker dissimilarity constraints on the speaker

style representation and the convergence is very sensitive to the contribution of this constraint to

the loss function. Furthermore, the variational autoencoder approach has limitations in learning

to neutralize any recording environment differences in a training speaker’s recordings since it is un-

supervised. However, our proposed approach can neutralize any variations in a training speaker’s

recording environment since it is imposing speaker embedding similarity constraints explicitly and

can potentially result in more accurate speaker embeddings.

5.2.5.4 Discriminative Autoencoders

A recently proposed approach learns phonetic and speaker representations using discriminative au-

toencoders [106, 361]. The goal of the study is to improve the performance of phoneme classification

in ASR. The authors propose to impose a supervised phonetic loss on the phonetic representation

(as is done in typical DNN-based ASR acoustic models), and additionally, impose a reconstruction

loss (as in typical autoencoder models), and a supervised and an unsupervised speaker loss on a

newly introduced speaker representation. They show that when the speaker discrimination losses

are added to the loss function, the model performs better in terms of phone error rate. They do

not study the properties of the learned representations or the reconstructed features.

5.2.6 Training

During training, we sample K speakers from the total available speakers. We also sample a batch

of M samples from the training samples. Note that sampling of both speakers and the data batch

are both due to computational constraints. For example, we would have a computational graph

that grows quadratic in terms of K. The time and space complexity is linear in terms of M for

SiAEpool, and quadratic for SiAEloss in terms of M .

For training the models, we used the VCTK corpus which includes speech data uttered by

109 native speakers of English with various accents [330]. Each speaker read approximately 24
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parallel sentences, selected from the Rainbow Passage and an elicitation paragraph. Due to the

unavailability of all of the parallel sentences for all of the speakers, we excluded file 001 and 015

from consideration, resulting in 82 speakers with 22 parallel sentences. The audio materials were

downsampled to 16 kHz with 16-bit precision for further processing to match further experiments.

We used 39th order Mel-Cepstrum (MCEP) features extracted by the World vocoder [189]. We

used 5 ms frame shifts. We used a 0.005 learning rate and a value of 0.9 for momentum. All

input features were mean and standard deviation normalized using the computed values from the

training data. The representation layer used a sigmoidal activation function. The output decoding

layer used a linear activation function. All other hidden layers used ReLU activation functions.

We trained for 1000 iterations and selected the network with the smallest validation error.

5.3 Experiment: Phoneme Recognition

To evaluate the quality of the learned embeddings, we designed a phoneme recognition experiment.

We compared the performance of using raw MCEP features versus using the embeddings computed

using DcAE. We used the TIMIT corpus and its suggested training/testing split to train and

evaluate the model. We excluded all SA sentences which have the same content for all speakers.

We compressed the 61 unique phonemes present in TIMIT corpus transcriptions to 39 using a Kaldi

script1. For this experiment, we also computed the transition probabilities between phonemes from

training data and performed a Viterbi search on the posterior probabilities of the phoneme classifier

during testing to smooth them. We used a phoneme bigram to model the transition probabilities.

The goal is to reduce jumps that might happen due to selecting the phoneme with maximum

probability without respecting the transition probabilities. We considered the following systems:

• MCEP: A feed-forward DNN of size [40,500,500,39] with ReLU activation functions trained

using a cross-entropy loss function on frame-wise labeled data. The inputs are MCEP fea-

tures. The labels are one-hot vectors representing vowel identity. The design is similar to

Section 3.4.

• LOSS-C/POOL-C: A feed-forward DNN of size [|C|,500,500,39] where |C| is the content

embedding size. The DcAE was trained using both the DcAE-LOSS and the DcAE-POOL

approach. This system evaluated how much content information is retained in the content

embedding.

1https://github.com/kaldi-asr/kaldi/blob/master/egs/timit/s5/conf/phones.60-48-39.map
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Features Accuracy

MCEP 68.97%

LOSS-C 64.03%

POOL-C 66.52%

LOSS-S 27.30%

POOL-S 23.94%

Chance 6.03%

Table 5.1: Percentages of correctly classified frames in the phoneme recognition experiment

• LOSS-S/POOL-S: A feed-forward DNN of size [|S|,500,500,39] where |S| is the style em-

bedding size. The DcAE was trained using both the DcAE-LOSS and the DcAE-POOL

approach. This system evaluated how much content information remained in the style em-

bedding.

• Chance: A randomly-assigned label according to the training label priors.

We used |C| = 32 and |S| = 32. The results are shown in Table 5.1. The results show that

the content embedding computed using the POOL approach preserves phonetic information bet-

ter than the LOSS approach. This is also reaffirmed by comparing POOL-S and LOSS-S, since

POOL-S is preserving less phonetic information. However, POOL-C and LOSS-C are not retain-

ing all phonetic-related information, since raw MCEPs are still outperforming them. One cause

of this phenomenon might be misalignments in the time-alignment step of the parallel corpus.

The differences in pronunciation or mispronunciations might result in the DcAE being forced to

learn similar content embeddings for phonetically different acoustic segments. This might cause

the network to not perform optimally in regards to content embedding and/or rely on the speaker

embedding to learn the differences in contents of different data streams. Interestingly, it appears

that there is still some phonetic information present in style encodings since classification accuracy

is significantly higher than chance.

For validating the architecture further, we visually inspect the content embeddings of the

DcAE. We use the 22 sentences of the four test speakers from the VCTK corpus that have parallel

utterances. We perform a principal component analysis (PCA) over all of the speaker content

encodings, depicted in Figure 5.5. As shown in the figure, the distribution of these encodings for

different speakers are similar; moreover the three emphasized time-synchronous data points fall

in the same regions for different speakers, further validating this visually. To objectively assess

the closeness of the content features by different speakers, we computed the PCA of the features,
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mean and variance normalized them, and finally computed the root mean square error (RMSE) of

the features over all speakers in a pair-wise manner. We computed this measure for DcAE-LOSS

content encodings, DcAE-POOL content embeddings, and MCEP features to be 0.243, 0.237, and

1.578, respectively. The order or magnitude difference demonstrates that the content encoding

values of the speakers are closer to each other compared to MCEP features, showing that the

similarity constraint is successfully imposing the content encodings to learn similar encodings.

5.4 Experiment: Speaker Recognition

We set up a speaker recognition experiment to investigate the quality of the learned speaker

embedding. We selected a closed-set speaker recognition task in which we only queried within-set

speakers. We used test speakers from the TIMIT database [69] to perform this experiment. For

each speaker, we used one sentence for enrollment and one sentence for testing (randomly chosen

from non-SA sentences). We report the Equal Error Rate (EER). We considered the following

systems:

I-Vector This system is an I-vector approach for learning the I-vector for each speaker as the

baseline. I-vectors are a low dimensional subspace of the mean supervectors of a Gaussian

mixture model (GMM). The GMM is the universal background model (UBM). An I-vector

system s = m + Tw recreates speaker supervector s using a speaker-independent vector m

and a set of low-dimensional total variability factors w to represent each utterance. Each

variability factor w controls an eigendimension of the total variability matrix T , and these

w are known as the I-vectors. The m and T values are computed from training data, and a

new w is obtained during testing for an input utterance [41]. We used the Cosine distance

criterion to find the closest speaker.

LOSS-S/POOL-S This system is the DcAE trained using the DcAEloss/DcAEpool approach.

We used the Cosine distance criterion to compare the speaker embeddings of the the input

speaker against the enrolled speakers in order to find the closest match.

LOSS-C/POOL-C Similar to the above condition, except the goal is to evaluate the amount of

speaker information that remains in the content embedding.

We also investigated Linear Discriminant Analysis (LDA) to reduce the dimensionality of the I-

vector and DcAE embeddings. The results, shown in Table 5.2, show that, with LDA applied,

POOL-S had similar performance to the I-vector approach. Furthermore, the POOL approach
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(a) DcAE-LOSS computed content embeddings

(b) DcAE-POOL computed content embeddings

Figure 5.5: 2D PCA plots of computed content encodings of the test frames of 4 testing speakers
using DcAE-LOSS (top) and DcAE-POOL (bottom). Three time-synchronous data points are
emphasized.
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Features Dimension Raw LDA (12 dim)

I-vector 50 90.08% 93.74%

100 90.58% 93.9%

POOL-S 16 91.81% 93.65%

32 91.73% 93.82%

LOSS-S 16 91.24% 92.81%

32 91.37% 92.75%

POOL-C 16 18.8% 23.34%

32 18.48% 24.29%

LOSS-C 16 23.20% 26.21%

32 22.55% 26.70%

Table 5.2: Percentages of correctly classified utterances in the speaker recognition experiment

once again performed better than the LOSS approach when style embedding is used. When the

content embedding is used, LOSS performed better, suggesting that the LOSS approach is not

separating style and content as well as the POOL approach. These results verify the effectiveness

of DcAE in separating style and content. The POOL approach is providing a method that provides

an embedding with information with identical performance as I-vectors, with the benefit of allowing

modification and feature reconstruction to achieve VC (the next experiment). We also visually

studied the computed style embeddings of the DcAE. In Figure 5.6 we show the 2D PCA plot of

computed styles from the utterances of the 4 testing speakers using DcAE-LOSS (left) and DcAE-

POOL (right) techniques. It is evident that the embeddings of each speakers are forming their

own cluster. Furthermore, the same gender speakers are closer to each other and further apart

from the other gender. Finally, the within-class distances in the speaker clusters formed using the

DcAE-POOL model seem to be more concentrated as compared to the DcAE-LOSS approach, a

desired feature. However, there is still variability present in the computed styles which shows there

is room for improvement in the model and training.

5.5 Experiment: Many-to-Many Voice Conversion

We performed a VC experiment which aimed to modify the voice of a given utterance to sound like

a target speaker. We used four conversion conditions: M2M, M2F, F2M, and F2F. We considered

the following methods:
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(a) DcAE-POOL computed style embeddings

(b) DcAE-LOSS computed style embeddings

Figure 5.6: 2D PCA plot of computed styles from the utterances of the 4 testing speakers using
DcAE-LOSS (left) and DcAE-POOL (right) techniques. The bold dots are computed from 10
utterances and the transparent dots are computed from 1 utterance. SF: Red, SM: Green, TF:
Blue, TM: Black.
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DNN As our baseline, we used a feed-forward DNN of size [39, 500, 500, 39] with ReLU activation

functions trained using a mean-squared error loss function on frame-wise aligned data.

LOSS/POOL As our proposed system, we used the DcAE, trained using the SiAE approach. We

used theDcAE to compute the style of the target speaker from the training data. We then

used the DcAE to decouple content and style embeddings of a given utterance, and, while

keeping the content embedding the same, replaced the style with that of the target’s. Note

that the DNN approach works only for a given source-target pair, but the DcAE method

works for any arbitrary input and enrolled target speaker.

For performing VC, we compute the average speaker embedding s̄ from the training utterance(s)

of source and target speakers. For a given input utterance, we compute cinp and sinp of the input

utterance. There are two approaches one can take to perform voice conversion: We can either

replace s values of the source speaker with the average s̄t from the target speaker as scnv = s̄t, or we

can compute a difference vector between source and target averages s̄dif = s̄t− s̄s. This difference

vector is added to sinp from the input utterance as scnv = sinp+s̄dif , leaving observational variances

in sinp intact. The speech features are obtained by decoding with the DcAE decoder using scnv and

cinp. By performing some informal experiments, we found that the first, or replacement approach

resulted in more muffled generated speech than the second, or difference vector approach. Due to

this reason, for the VC experiment in Section 5.5 we used the difference vector approach.

Furthermore, we consider the following four speaker enrollment conditions:

• ss-ts: source is seen (in-training), target is seen (in-training)

• ss-tu: source is seen, target is unseen

• su-ts: source is unseen, target is seen

• su-tu: source is unseen, target is unseen

In the unseen source or target conditions, we exclude the two source or target speakers, one per

gender, from the training data, as we intended for the network to see the same number of speakers.

For example, in the su-tu case, we exclude four speakers from the training data. To compensate

for the excluded speakers, we added two source or target substitute speakers to the training data.

From our 82 speakers, we selected four test speakers, and four substitute speakers. We used the

rest of the 74 speakers as training data. We selected the first 10 parallel utterances from the

speakers for learning the voice mappings and embeddings.
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Model MelCD

AE 4.54

LOSS 4.97

POOL 5.10

Table 5.3: Feature reconstruction of various models, we report the results using melCD (dB)

5.5.1 Objective experiments

We first investigated the ability of the model to reconstruct the features. We compared DcAE-LOSS

and DcAE-POOL feature reconstruction with an unconstrained AE; the resulting melCD [303]

is shown in Table 5.3. We used the su-tu speaker enrollment condition and averaged over all

conversion conditions. We compared the models to a regular AE with similar architecture to those

in Section 5.3 and the representation size of |C| + |S|. We observed that the unconstrained AE

achieved lower reconstruction error which is due to it being trained in an unconstrained way. The

LOSS approach achieved a lower feature reconstruction error which might be due to the LOSS

constraints being less restrictive compared to that of the POOL approach. This reason is also

consistent with the lower performance of LOSS compared to POOL in the phoneme recognition

and speaker recognition tasks. Furthermore, we performed objective experiments for the VC

task to observe the effect of mapping. We report the melCD in Table 5.4. The results show

that in the ss-ts case, both LOSS and POOL approaches performed better than the baseline

DNN. However, when one of the speakers is unseen, either DcAE approaches perform worse than

the DNN approach. It is important to note that DNN can not handle unseen speakers at all,

and the input has to always be the source speaker. Increasing the number of parallel training

data might help learning more speaker-independent representations and improve the VC scores.

Finally, POOL consistently outperformed LOSS which is consistent with phoneme recognition and

speaker recognition performance results, again validating that POOL is able to compute better

quality embeddings compared to LOSS. We performed planned t-test and notably find statistically

significant differences in the following comparisons: LOSS-ss-ts vs. DNN, POOL-ss-ts vs. DNN,

LOSS-ss-ts vs. POOL-ss-ts, LOSS-ss-ts vs. LOSS-su-tu, and POOL-ss-ts vs. POOL-su-tu.
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Model ss-ts ss-tu su-ts su-tu

LOSS 8.58 8.78 8.82 9.07

POOL 8.37 8.60 8.67 8.95

DNN 8.72

Table 5.4: Voice conversion objective measure, we report the results using melCD (dB)

5.5.2 Subjective experiments

We performed subjective experiments to see the effect of mapping using the DcAE. We consid-

ered the following conditions: DNN, LOSS (all four seen/unseen conditions), POOL (all four

seen/unseen conditions). Each condition has four gender conversion conditions. We used 10 ut-

terances to compute the target speaker embeddings. We used 36 test utterances from the source

speaker, and thus generated (4 + 16 + 16) × 36 = 1296 stimuli. We computed the source speaker

embedding from each individual input utterance. We added three high quality, non-modified audio

samples to the listening test to find and exclude any unreliable speakers. We performed a speech

quality experiment to assess the naturalness of the VC systems for the above-mentioned system

architectures. We used 36 listeners for each experiment; each listener was presented 36+3=39

stimuli. We played a stimuli for the listeners and asked them to rate the quality from 1 (very bad)

to 5 (very good), the Mean Opinion Score (MOS). We used four conversion pairs: SM1→TF1,

SF2→TM1, SF1→TF2, and SM2→TM2. The quality results are shown in Figure 5.7. The four

speaker enrollment conditions are shown in the subfigures. We performed planned t-tests to assess

the statistical significance of the differences. The results show that both LOSS and POOL aver-

age scores significantly outperform the DNN in all four enrollment conditions. We found POOL

scores to be consistently, but only marginally, better than LOSS. We also performed a speaker

similarity experiment by playing two stimuli for a listener, one target and the other converted.

The listeners are asked to score from 1 (the utterances are definitely from different speakers) to

5 (the utterances are definitely from the same speaker). We used the 1296 stimuli from the pre-

vious experiment. We also included the same number of converted utterances but with different

same-gender target speakers. Hence, we created 1296 × 2=2592 stimuli pairs. Additionally, we

added three same-speaker non-modified audio samples to the listening test to find and exclude

any unreliable speakers. We used 36 listeners, each judging 36x2+3=75 stimuli pairs. We report

the scores of stimuli with converted and original target speakers. The speaker similarity results

are shown in Figure 5.8. The four speaker enrollment conditions are shown in the subfigures. We

performed planned t-tests to assess the statistical significance of the differences. The results show
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Figure 5.7: Speech quality MOS scores
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that when a target is seen, POOL significantly outperformed the DNN. We also found marginal

but consistent improved performance of LOSS over DNN, and POOL over LOSS. In the ss-tu case,

performance is not significantly different. In the su-tu case, the DNN is performing marginally but

consistently better than LOSS and POOL. We hypothesize that by adding more training speakers,

we could improve the speaker embedding quality and close the gap between enrollment conditions.

Furthermore, we see that POOL and LOSS approaches both have consistent quality improvements,

which provides a tradeoff for choosing the method based on the use-case. Finally, it is important

to note that the DcAE can perform with even a single utterance of either source or target speakers,

whereas the DNN is not able to perform reasonably given less than ten utterances. The reason is

that the DNN has to be trained using data that has full phonetic coverage, whereas the DcAE can

only use data with partial phonetic coverage to learn the speaker embedding and then perform

embedding modification to achieve conversion.
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Figure 5.8: Speaker similarity MOS scores



Chapter 6

Summary and Future directions

6.1 Discussion of Contributions

• Deep autoencoder training: We proposed two training approaches: progressive training and

deeply-supervised training. In progressive training, each new layer is trained in isolation

first, and then all the layers are jointly trained together. We start from the lowest layer

and iterate until the desired depth is reached. In deeply-supervised training, we proposed

to use an architecture in which all autoencoder levels have their loss contribute to the total

loss, hence all levels are trained simultaneously. This is motivated by an idea from deeply

supervised networks in which each layer has a connection to the output, hence helping the

error to propagate to the lower layers of the network. We show that we gain significant

improvements in phoneme recognition and voice conversion.

• Joint-representation learning: In the one-to-one parallel VT task, we proposed a joint-

autoencoder architecture in which the model builds two separate autoencoders for source

and target speakers, and simultaneously tries to minimize the representation layer distance

between them. Using objective experiments, we showed that the generated features have

closer variance to original target speaker features. This results in a perception of less muffling

in the converted speech.

• Decomposing representations: We proposed a model which is able to decompose linguis-

tic and speaker identity factors from low-level acoustic features. Specifically, we proposed an

autoencoder which learns to decompose the factors in the representation layer. To train this

decomposing autoencoder, we utilize a siamese architecture, where in addition to reconstruc-

tion costs, specific other costs are imposed on linguistic and speaker identity representations.

We also proposed a modification of this approach where we imposed the constraints directly

90
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as part of the model architecture and only consider reconstruction loss.

6.2 Future Work

6.2.1 Future work of thesis contributions

In investigating the contributions of this dissertation, we studied models that use fully-connected

feed-forward layers. A possible future direction is to use sequence modeling such as recurrent or

convolutional models to capture context in speech feature sequence. Some future works for the

contributions of the dissertation are listed below:

• Deep autoencoder training: We proposed two training approaches for deep autoencoders:

progressive training and deeply-supervised training. For the deeply-supervised approach,

we can explore the possibility of assigning different weights to different level cost function.

Furthermore, the weights assigned to different levels’ loss functions can be adjusted based

on the iteration number during the training. For example, lower levels can be assigned

higher weight initially, and gradually as training progresses, that level’s loss function weight

is decreased. Similarly, higher levels can he assigned lower loss function weights initially, and

gradually, as the training progresses, the weight is increased. One can see the similarities with

the progressive training approach if weights are set to 0 or 1; in other words, the progressive

approach is equivalent to the deeply-supervised training with binary loss function weights.

• Joint-representation learning: We proposed a joint-autoencoder architecture in which the

model builds two separate autoencoders for source and target speakers, and simultaneously

tries to minimize the representation layer distance between them. A possible next step is

to use multiple speakers rather than just one source and one target speaker. This allows us

to learn a joint representation for several speakers, allowing multi-way VC. Furthermore, if

enough speakers are enrolled, we can learn a speaker-independent representation.

• Decomposing representations: We proposed a model which is able to decompose lin-

guistic and speaker identity factors from low-level acoustic features. Different noise or en-

vironmental conditions could also be considered as an extra representation in addition to

the speaker and linguistic representations.When considering only linguistic and speaker rep-

resentations, an identical speaker who is speaking in different noise conditions might have

very different speaker representation and may be considered as different speakers. Adding a

representation for the noise or channel might allow the model to factor this out. The data
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could be artificially created by adding various noise types and intensities to the corpus.

6.2.2 Continuing Challenges of VC systems

Many unsolved problems exist in the area of VC. Some of them have been identified in previous

studies [35, 147, 268, 261, 167]. As concluded in the VC Challenge 2016, there is still a significant

performance gap between the current state-of-the-art performance levels and end-user expecta-

tions [308]. There are a lot of similarities between components of VC and statistical TTS systems,

since both aim to generate speech features and synthesizing waveforms [161]. Consequently, some

of the challenges and issues are shared in both systems.

Analysis/Synthesis issues: One major VC component that limits the quality of the generated

speech is the analysis/synthesis aspect. STRAIGHT is a high-quality vocoder, but compared

to natural speech, there is a still a quality gap [135]. Recently, new high-quality vocoders were

proposed, such as Ahocoder [60] and VOCAINE [2], both of which have shown improvements

in statistical TTS. Recently, several first attempts for direct waveform modeling using neural

networks for statistical parametric TTS were proposed [309, 142, 65, 328, 89, 282]. These

efforts may be a first step towards a new scheme for speech modeling/modification; however,

the situation in VC is different since we have access to a valid source speaker utterance,

which potentially allows copying certain aspects of speech without modifications. Some

initial approaches of applying Wavenet to VC have been investigated [143].

Feature Interpolation issues: To represent spectral envelopes, various features are used, such

as spectral magnitude, all-pole representations (LSFs, LPCs), and cepstral features. One

major issue with these features is that interpolating two spectral representations may not

result in spectral representations that are generated by the human vocal tract. For example,

when using cepstra, if we interpolate two different vowel regions, the outcome would sound

as if the two original sounds are occurring at the same time, and not as a single sound that

lies perceptually between the two initial vowels. This limitation is one of the reasons for

over-smoothing when multiple frames are averaged together. A spectral representation that

represents meaningful features are formants locations and bandwidth. The two major prob-

lems of this representation is that formant extraction is still an unsolved problem, especially

in noisy environments, and the inability of formants alone to represent finer spectral details.

One-to-many issues: The one-to-many problem in VC happens when two very similar speech

segments of the source speaker have corresponding speech segments in the target speaker
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that are not similar to each other. As a result, the mapping function usually averages the

generated features in order to be similar to both target speech segments. Some studies have

attempted to solve this problem [195, 92, 82].

Over-smoothing issues: In most VC approaches, the feature mapping is a result of averaging

many parameters which results in over-smoothed features. This phenomenon is a symptom of

the feature interpolation issue and one-to-many issue in combination. This effect reduces both

speech quality and speaker similarity. Many approaches, such as global variance, have been

proposed to increase the variability of the spectrum. Approaches like dictionary mapping

and unit-selection don’t suffer as much since they retain raw parameters and the feature

manipulation is minimal; however, they typically require a larger training corpus and might

suffer from discontinuous features, resulting in audible discontinuities in the generated speech

waveform.

Prosodic mapping issues: For converting prosodic aspects of speech, various methods have

been proposed. However, most of them simply adjust basic global statistics, such as av-

erage and standard deviation. The conversion is usually performed in the frame-level do-

main. As mentioned in the previous sections, these naive modifications can not effectively

convert supra-segmental features. There are some challenges to modeling prosody for para-

metric VC. The main challenge is the absence of certain high-level features during conversion,

which significantly affect human prosody. These features might be linguistic features (such

as information about phonemes and syllables), or more abstract features (such as sarcasm

and emotion). For TTS systems, textual information is available during conversion, which

facilitates predicting prosodic features from more prosodically relevant representations such

as syllable-level or word-level information. Especially foot-level information modeling might

be helpful for conversion [148]. These types of data, extracted from the input text, are

not available to a stand-alone VC system, but could be extracted using ASR systems with

some degree of error. The main challenge is to transform pitch contours by considering more

context than one frame at a time, i. e. segmentally.

6.2.3 Future Directions for VC systems

In the previous section, we presented several challenges that current VC technology faces. In this

section, we list some future research directions.

Non-Parallel VC: Most studies in the literature use parallel corpora. However, to make VC

systems easier to use, building transformation systems from non-parallel corpora is essential.
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The reason is that average users are hesitant to record numerous speech prompts with specific

contents, which might be laborious for some. Several attempts to create non-parallel VC

systems have been reported, including but not restricted to: INCA iterative alignment [58],

RBMs [206], and CycleGANs [129, 66].

Text-dependent VC: VC systems that utilize phonetic information are another research area.

One example is to use phoneme identity before clustering the acoustic space [146, 331]. Using

phonetic information to identify classes using a CART model instead of spectral information

has also been proposed [48]. These systems could use the output of ASR to help the effec-

tiveness of VC. These systems would likely use a combination of techniques from ASR, VC

and parametric TTS [265, 264, 266].

Database size: An important research direction is capturing the voice using very limited record-

ings. Some studies propose methods for dealing with limited amounts of data [85, 324,

175, 91, 229, 283, 245, 359, 70]. Utilizing additional unsupervised data has been proposed;

for example, techniques that separate phonetic content and speaker identity are an elegant

approach [229, 245, 206, 185, 186, 106, 38, 139].

Modeling dynamics: Typically, most VC systems focus on performing transformations frame-

by-frame. One approach to this consists of adding dynamic information to the mapping

features. Event-based approaches seem to be a good representation since they decompose

a sequence into events and transitions, and these can be individually modeled. However,

detection of event locations is a challenging task and requires more research. Additionally,

some models such as HMMs, RNNs, and Seq2Seq implicitly model the speech dynamics

from a sequence of local features. Typically, these models have higher number of parameters

compared to frame-by-frame models. These sequence mapping approaches appear to be a

major future direction.

Prosody Modeling: Developing more complex prosody models that can capture speakers’ into-

nation and segmental duration in an effective way is an important research direction. Most

of the literature performs simple linear transformations of the pitch contour (typically in log

domain) [349] and the speaking rate. Developing more sophisticated prosody models would

enable the capture of complex prosodic patterns and thus enable more effective transforma-

tions. Seq2seq models have shown promise in their ability to simultaneously model acoustic,

pitch and duration parameters [128, 285].

Many-to-one and many-to-many conversion: In practice, most VC systems can only convert
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speech from the source speaker that they have been trained on. A more practical approach is

to have a system that converts speech from anybody to the target speaker. Several attempts

to accomplish this have been studied [304, 266, 86, 186, 34, 250, 87]. We propose an approach

which enables us to decompose different factors of the speech data and allows modification

of and reconstruction from these factors. This is a unique property of our approach, seen

only in one other recent work [106].Our proposed approach allows us to potentially consider

other factors such as recording environments as well.

Articulatory features: Most of the current literature studies the VC problem from a perceptual

standpoint. However, it may be worthwhile to approach the problem from a speech produc-

tion point of view. Several attempts to model and synthesize articulatory properties of the

human vocal tract have been proposed [300, 305]. These approaches have some limitations,

such as being speaker-dependent, or requiring hard-to-collect data such as Magnetic Reso-

nance Imaging 3D images, electromagnetic articulography, and X-rays. Overcoming these

limitations would open up an important set of tools for articulatory conversion and synthesis.

Perceptual optimization: The optimizations that are performed in statistical methods during

learning source-target feature mapping function typically optimize criterions that are not

highly correlated with human perception. An attempt at performing perceptual error opti-

mization for DNN-based TTS has been proposed [327]; similar approaches could be adopted

to VC.

Real-world situations: Most of the corpora used in the literature are recorded in clean condi-

tions. In real-world situations, speech is often encountered in noisy environments. Attempts

to perform VC on these noisy data would result in even more distorted synthesized speech.

Creating corpora for these situations and developing noise-robust systems are an essential

step to allowing VC systems to become mainstream.
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