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Abstract 

Objectives 

To develop a medication natural language processing (NLP) system that was derived from MedXN 

and to evaluate its performance in annotating medication name, dose, route, frequency, and 

duration using the 2009 i2b2 Medication Extraction Challenge dataset.  

Methods 

RxNorm was serialized into FHIR Medication, MedicationKnowledge, and Substance resources. 

The new system, MedXN-FHIR, used the FHIR resources to build a drug vocabulary. In addition, 

the FHIR data models were utilized for ontology-based reasoning. Both MedXN and MedXN-FHIR 

were used to annotate a test set of 251 discharge summaries. The system annotations were 

evaluated against i2b2 ground truth annotations for precision, recall, and F1-measure. 

Results 

Both systems exhibited good performance with F1-measures above 0.8 on medication name, 

dose, and frequency fields. For medication name, MedXN-FHIR produced an increase in precision 

of 0.0373 over MedXN. Overall, MedXN-FHIR produced a higher precision but lower recall than 

MedXN for most attributes. MedXN-FHIR performed worst for duration, with a decrease in F1-

measure of 0.204. 

Conclusions 

A drug terminology was transformed into FHIR resources, and the same resources were reused as 

a drug ontology to normalize unstructured medication names and attributes through NLP 

techniques. Further insight into the performance of MedXN-FHIR in assigning RxNorm identifiers 

would be useful. 
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Introduction 

Unstructured clinical notes and the lack of adoption of modern terminology and exchange 

standards, such as RxNorm and Fast Healthcare Interoperability Resources (FHIR), continue to 

pose challenges to healthcare interoperability and the secondary use of electronic health record 

(EHR) data. 

HL7 FHIR 

HL7 FHIR is a healthcare IT interoperability standard that was developed by Health Leven Seven 

International (HL7). Based on modern application programming interface (API) paradigms, FHIR 

was designed with a focus on extensibility and ease of implementation. The HL7 FHIR standard 

prescribes API specifications and data models that capture clinical information in a reusable 

structured format (i.e. “resources”). FHIR is poised to be the de facto standard for healthcare data 

exchange. Major EHR vendors, Epic and Cerner, and technology company Apple, have adopted 

FHIR in their products. In its 2019 Interoperability Standards Advisory (ISA), the Office of the 

National Coordinator for Health Information Technology (ONC) assessed FHIR to be sufficiently 

mature for various interoperability scenarios (1).  

Using FHIR resources as clinical information models 

The use of FHIR resources to standardize clinical information is emerging as a feasible and scalable 

approach. Most notably, Rajkomar et al. and a team from Google normalized and stored 46.9 

billion data points that represented 216,221 hospitalizations from EHR systems in FHIR resources 

(2). These resources were fed into a deep learning model to predict medical events. While the 

method developed by Rajkomar et al. did not require data harmonization, they reported that the 

generalizability of their approach would be limited by the lack of data harmonization between 

hospital sites. Wu et al. developed SemEHR, a clinical text mining system that uses profiled FHIR 
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Composition resources to store clinical data in the form of discharge summaries (3). SemEHR also 

uses a number of ontologies, including Drug Ontology (DrON), to normalize clinical data and to 

provide semantic search capabilities. Interestingly, the SemEHR system also has a mechanism to 

learn from user feedback to improve its performance. 

The integration of FHIR into domain-specific natural language processing (NLP) pipelines has been 

gaining traction in recent years. Hong et al. developed a clinical data normalization pipeline to 

extract medication data from clinical notes into FHIR MedicationStatement resources (4). In their 

work, MedXN was used to extract and normalize medication names. Other medication-related 

attributes such as strength and dose form were normalized using value sets in a FHIR terminology 

service. In the oncology domain, Savova et al. developed DeepPhe, a system that combined an 

NLP pipeline with an oncology-based ontology. DeepPhe was used to extract cancer phenotypes 

and treatments from unstructured records into FHIR-based models (5). The group also used the 

Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES) as their NLP pipeline. 

Transforming terminologies into FHIR resources 

All four groups addressed the challenges of harmonizing unstructured data and achieving 

semantic consistency either through automated NLP systems that relied on medical vocabularies 

(3-5), or by avoiding manual harmonization altogether using direct feature learning (2). Even with 

the advanced machine learning (ML) methods adopted in the latter approach, harmonized data 

is still required for interoperability between different healthcare providers. 

The HL7 FHIR specifications propose the use of FHIR terminology services to address the need for 

standardized terminology. However, the terminologies themselves present another challenge for 

health IT implementers. Terminologies that are complex or based on description logics, such as 

Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT), can be difficult to 
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implement (6). This complexity is exacerbated by the poor generalizability of automated mapping 

tools and the need to manage changes in terminology models and content over time (7, 8). 

In the face of these challenges, besides using FHIR resources as containers for clinical data as the 

earlier groups did, one could simplify a terminology by transforming it into FHIR resources (see 

Figure 1). Proposed by McMurtrie, this approach was demonstrated using the Australian 

Medicines Terminology (AMT) with the Medserve prototype (9). 

 

Figure 1: An approach to simplify drug terminologies (reproduced from McMurtrie (9)) 

 

Using FHIR resources as an ontology 

According to Studer et al., an ontology is defined as “a formal, explicit specification of a shared 

conceptualization” (10). They further explained the four terms used in their definition as follows: 

 “Conceptualization” is an abstract model of ideas or concepts that are grounded in reality. 

  “Formal” refers to an ontology that is defined in a machine-readable specification. 

 “Explicit” denotes that concepts and relations are defined clearly without ambiguity. 

 “Shared” means that the ontology represents consensual knowledge that is accepted by 

those who use the ontology. 
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The performance of an NLP system can be improved by integrating an ontology to serve as a 

knowledge resource and to disambiguate concepts found in the clinical text (11). I hypothesized 

that FHIR resources, such as Medication resources, can be used as a drug ontology that is simple 

to implement and light-weight in semantics. Specifically, with a domain ontology, an NLP system 

can incorporate new inference rules by applying the closed-world assumption (CWA). In CWA, the 

ontology is assumed to be complete. Using medication brands and ingredients as an example, any 

associations between brands and ingredients that are found in the ontology are assumed to be 

true. Conversely, any associations between brands and ingredients that are not found in the 

ontology are assumed to be false. In contrast, in open-world assumption (OWA), an ontology is 

always assumed to be incomplete and therefore any associations that are not found are not yet 

known (i.e. rather than assumed to be false). 

In this paper, I report a new medication NLP system that uses a FHIR-based drug ontology to 

normalize unstructured medication name and attributes in clinical text. To my knowledge, this is 

the first study of its kind where a drug terminology was transformed into FHIR resources, and the 

same resources were reused as a drug ontology to drive an NLP system. 

Research Questions 

1. What is the performance of the MedXN system, which was developed using Mayo Clinic 

data, in annotating clinical text from a different dataset? 

2. Is there a difference in performance when a FHIR-based drug ontology is used in MedXN? 
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Materials and Methods 

MedXN 

The Medication Extraction and Normalization (MedXN) system was developed by Sohn et al. (the 

Mayo Clinic team) using 159 randomly-selected clinical notes (12). MedXN uses the Apache 

Unstructured Information Management Architecture (UIMA) as its underlying NLP platform. 

UIMA provides a component framework, APIs, and tools for building complex NLP systems (13). 

Used in IBM Watson and Apache cTAKES, UIMA is also the most frequently utilized framework 

according to a recent review of clinical information extraction systems (14 – 16). 

The Mayo Clinic team designed a series of procedures in the MedXN system. A decomposition-

composition strategy was used to extract and rearrange phrases containing medication 

information following the RxNorm naming convention. Thereafter, MedXN uses the Aho-Corasick 

algorithm (17) to match the phrases against a medication dictionary, which is derived from 

RxNorm. MedXN uses three main dictionary files; the ingredient file contains 53,042 phrases for 

brand names and ingredients while the two medication files contain 175,805 phrases each, in text 

and in RxNorm concept unique identifiers (RxCUI) formats respectively. When a match is found, 

MedXN assigns the most appropriate RxCUI to the medication annotation. MedXN was reported 

to have excellent performance when annotating Mayo Clinic data, with F1-measures of 0.982 for 

medication name and between 0.714 and 0.990 for medication attributes. 

For this study, I selected the MedXN system because it is open-source. Since its initial publication, 

other medication information extraction systems have reported similar or superior performance 

compared to MedXN (18, 19). However, the source codes for those systems were not published. 

In this study, I used MedXN as a baseline for developing a new system, MedXN-FHIR, and as a 

comparator for evaluating its performance. 
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Clinical Corpus 

I used the 2009 i2b2 Medication Extraction Challenge dataset, which consists of 1,249 de-

identified discharge summaries from Partners Healthcare. Uzuner et al. (the i2b2 team) and the 

challenge participants annotated 261 summaries to form a set of “ground truth” annotations (20). 

The i2b2 team split these into 10 and 251 summaries for training and testing respectively. For this 

study, I used all 261 annotated summaries in the same proportions for training and testing. 

To facilitate comparison with MedXN annotations, I wrote a parser to convert the line-token 

offsets used in the i2b2 annotations into character offsets. For example, the annotation “aspirin 

16:0 16:0” (starting and ending at line 16 token 1), was converted to “aspirin::471::491” (between 

characters 471 to 491). In the process, I found and corrected nine i2b2 annotations that contain 

minor errors. These errors include invalid offsets that exceeded the number of tokens in a line, 

and ending offsets that were smaller in value than the starting offsets. 

Drug Vocabulary 

I used RxNorm, a terminology standard for all drugs available in the United States (21), as the drug 

vocabulary for this study. A medication concept in RxNorm consists of discrete information of its 

ingredient, strength, dose form, and brand. RxNorm also contains synonyms, concept metadata, 

and mappings to other code systems, such as SNOMED-CT and World Health Organization (WHO) 

Anatomical Therapeutic Chemical Classification System (ATC) codes. The National Library of 

Medicine (NLM) distributes RxNorm as one of the source vocabularies of the Unified Medical 

Language System (UMLS). RxNorm is bundled in UMLS Rich Release Format (RRF) files. Examples 

of RxNorm concepts and relationships are shown in Figure 2. 
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Figure 2: RxNorm model illustrating the concepts and relationships for “Zyrtec” 
(reproduced from Nelson et al. (21)) 

 

Development Methodology 

To meet the study objectives, I needed to build new features into MedXN, such as FHIR client 

functions, ontology-based rules, and intensional filters. However, the source code for MedXN had 

not been updated for the past five years (22). From October to mid-December 2018, I explored 

and modernized the code base to familiarize myself with the underlying data models (type 

system) and logic flows. The latter include the algorithm for string matching and decision rules for 

normalizing annotations and handling special cases. Subsequently, I identified two main 

development tasks: 
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1. Serializing RxNorm into a drug ontology that consists of FHIR resources 

2. Writing new annotators to query FHIR resources 

Using the i2b2 training set, both tasks were performed in parallel from mid-December 2018 to 

end February 2019 (“the development period”). 

Serializing RxNorm 

RxNorm is available through a FHIR terminology service published by the NLM Value Set Authority 

Center (VSAC) (23). However, at the time of writing, the VSAC terminology service did not provide 

any discrete information besides RxCUI and medication name. Therefore, a new procedure is 

needed to serialize RxNorm concepts, relationships, and attributes information into FHIR 

resources. I developed a script, RxNormToFHIR, to parse and transform RxNorm in UMLS RRF 

format into FHIR resources. The data mapping and the resultant FHIR resources are shown in 

Table 1 and Figure 3 respectively. When FHIR R4 was released mid-way through the project (24), 

I updated the script to use the new MedicationKnowledge resources to store synonyms for 

medication names. RxNormToFHIR performs the following procedures: 

 Look up each active medication concept against its relationships and attributes. 

 Transform each ingredient into a FHIR Substance resource and each concept into a pair 

of FHIR Medication and MedicationKnowledge resources. 

 Represent relationships between RxNorm concepts either as references to other FHIR 

resources (e.g. “has_ingredient”), or as existing or extension FHIR elements (e.g. 

“has_tradename”). 

 Load the resources as bundles into a target FHIR server for remote tests or into JSON files 

for local tests. 
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RxNorm Term Type FHIR Elements 

BN (brand name) 

e.g. Zyrtec 

Medication.brand (extension) 

DF (dose form) 

e.g. Oral Tablet 

Medication.form 

MedicationKnowledge.doseForm 

IN/PIN (ingredient/precise ingredient) 

e.g. Cetirizine, Cetirizine Hydrochloride 

Substance.code 

Substance.synonym (extension) 

Medication.ingredient 

MedicationKnowledge.ingredient 

SBD/SCD (branded/clinical drug) 

e.g. cetirizine hydrochloride 5 MG Oral Tablet [Zyrtec] 

Medication.code 

MedicationKnowledge.synonym 

SBDC/SCDC (branded/clinical drug component) 

e.g. cetirizine hydrochloride 5 MG 

Medication.code 

MedicationKnowledge.synonym 

MedicationKnowledge.associatedMedication 

SBDF/SCDF (branded/clinical dose form) 

e.g. Cetirizine Oral Tablet [Zyrtec] 

Medication.code 

MedicationKnowledge.synonym 

MedicationKnowledge.associatedMedication 

Table 1: Mapping from RxNorm term types to FHIR elements 

 

Figure 3: RxNorm concept for “Zyrtec” represented as FHIR Medication and Substance resources, with 
extensions in italics (JSON notation can be found at Appendices A-C) 
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For the FHIR server, I used the open source HAPI FHIR, which supports FHIR R4 specifications and 

model structures (25). I configured the FHIR server as a Docker container, which enabled the 

server to be updated and redeployed rapidly throughout the development period. 

Based on the metadata of the RxCUIs found in the MedXN dictionary files, I inferred that the Mayo 

Clinic team used the January 2012 release of RxNorm. Using RxNormToFHIR, the same RxNorm 

release was transformed and loaded into the HAPI FHIR server. 

Writing new annotators 

In UIMA, annotators are software components that implement analysis logic to produce and 

record annotations (metadata) from document content (13). Since implementing new ontology-

base rules would require major modifications to the original annotators, I wrote new annotators 

for MedXN-FHIR. I also updated component libraries and used a different library for the Aho-

Corasick algorithm. The latter task is important because: 

1. MedXN annotators depend on pre-built dictionary files. It is not feasible to reuse these 

files to support structured RxNorm information or to store FHIR resources. 

2. Tokenization and matching behavior of the original Aho-Corasick library could not be 

customized easily, e.g. to ignore overlaps. An example of an overlapping token is 

“Provera” in “Depo-Provera”. 

Besides an integrated HAPI FHIR client, MedXN-FHIR uses a series of five new FHIR-based 

annotators. The overall architecture of MedXN-FHIR and a step-wise illustration of its procedures 

are illustrated in Figure 4 and Figure 5 respectively. The details of each annotation procedure and 

the differences from MedXN are as follows: 
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Figure 4: MedXN-FHIR architecture and data flow diagram 
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Step 1: Pre-processing 

MedXN-FHIR uses the same basic NLP pre-processors as MedXN. These pre-processors perform 

sentence detection, tokenization, chunking, and section tagging. 

Step 2: Named-entity recognition (NER) 

MedXN-FHIR recognizes drug ingredients and brand names using the same Aho-Corasick string 

search algorithm. The main differences are: 

a. While MedXN reads pre-built dictionary files, MedXN-FHIR queries a FHIR server for 

Substance and Medication resources to build ingredient and brand vocabularies. The 

dictionary files in MedXN contain 302 manually curated synonyms, which are not added 

to MedXN-FHIR. 

b. MedXN-FHIR enriches its brand and dose form vocabularies with commonly used 

synonyms (e.g. “Eye Drop” for “Ophthalmic Drop”), abbreviations (e.g. “Tab” for 

“Tablet”), and plural terms (e.g. “Suppositories” for “Suppository”. MedXN-FHIR 

generates these synonyms using regular expression rules. 

c. While MedXN performs one pass of exact string matching, MedXN-FHIR carries out a 

second pass using approximate string matching. An edit distance of 1 was used for 

handling minor misspellings, e.g. “loratidine” instead of “loratadine”, while avoiding other 

similar sounding drug names, e.g. “roxatidine”. The Damerau-Levenshtein metric is used 

because it considers a transposition, which is a common typographical error, as a single 

edit (26). 

For other medication attributes, MedXN-FHIR uses the same annotator as MedXN, albeit with 

some modification. Instead of regular expressions, MedXN-FHIR uses RxNorm dose forms that are 

collated from FHIR Medication resources to build a dose form vocabulary. 
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Figure 5: Example of annotation procedures in MedXN-FHIR using “Synthroid”  



14 
 

Step 3: Merging annotations 

MedXN-FHIR is optimized for annotating medication names. MedXN-FHIR refines annotations by 

merging adjacent brand and ingredient annotations. MedXN-FHIR uses Medication resources as 

a drug ontology to validate brand-ingredient merges. To accomplish this, MedXN-FHIR applies 

CWA using the following rule: for a given brand, the ingredient annotations to be merged must 

correspond to the ingredients found in Medication resources. For example, “Zyrtec … Cetirizine” 

will be merged but not “Zyrtec … Ibuprofen” because there are zero instances of the latter 

combination in the ontology. 

a. MedXN-FHIR uses simple pattern recognition to determine the merge direction, i.e. 

whether to merge ahead (“Tylenol … Acetaminophen”) or to merge backwards 

(“Acetaminophen … Tylenol”). MedXN achieves the same, but relies on string matching 

for parentheses and brackets. 

b. A “lookup window” is the distance to look ahead relative to an annotation. To further 

optimize for medication names, MedXN-FHIR uses a shorter lookup window, which 

terminates after the mention of a frequency, dose form, or strength. MedXN uses a 

lookup window of 2 lines of text, which is the same as in the 2009 i2b2 Medication 

Extraction Challenge. 

c. MedXN-FHIR merges each ingredient with adjacent strength annotations. MedXN-FHIR 

can handle pairs of ingredients and strengths for multi-ingredient drugs. This is shown in 

greater detail in Appendix D. 

d. Lastly, all other attributes, such as route, frequency, and duration are linked to the 

medication name annotation to form an entry. 
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Step 4: Drug concept normalization 

MedXN-FHIR normalizes medication name annotations through a series of intensionally-defined 

filters and rules. It attempts to assign two RxCUIs, one based on “stated” facts (normDrugRxCui) 

and another based on inference (normDrugRxCui2). Note that the normalization procedure also 

relies on the assumption that the FHIR resources represent a complete drug ontology (i.e. follows 

CWA). 

Starting with brand and ingredient information extracted in step 2, MedXN-FHIR finds a subset of 

FHIR Medication and MedicationKnowledge resources. The subset is filtered using intensional 

rules, i.e. necessary and sufficient conditions defined using attributes in the data model. These 

rules are used to align the presence or absence of strength, route, and dose form between 

annotations and FHIR resources. For example, if the annotation does not contain dose form, all 

FHIR resources in the subset that contain dose form will be excluded. The use of intensional rules 

could preserve the stability of the normalization process while extensional rules, which are 

defined using lists of codes, would require continuous review and maintenance (27). 

The remaining FHIR resources are then matched based on the populated elements, such as 

strength value and unit of measure. Only a unique match is assigned as normDrugRxCui. If there 

are no unique matches, MedXN-FHIR attempts to find a less specific RxCUI to increase the rate of 

RxCUI assignment. From the remaining resources, MedXN-FHIR collects a set of associated 

concepts. These associated concepts are “parent” concepts that are shared by multiple “child” 

concepts. For example, “Cetirizine Oral Tablet [Zyrtec]” is a parent concept that is shared by 

“cetirizine hydrochloride 5 MG Oral Tablet [Zyrtec]” and “cetirizine hydrochloride 10 MG Oral 

Tablet [Zyrtec]”. 
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Lastly, MedXN attempts to assign normDrugRxCui2 using inference of adjacent contexts. For 

example, if dose form information is absent, MedXN-FHIR uses route information to infer an 

appropriate dose form according to RxNorm naming convention. To illustrate, “Lasix 40mg po” 

would be inferred as “Furosemide 40 MG Oral Tablet [Lasix]” because there is only one instance 

of an “oral” dose form among all drugs with the brand “Lasix” and the strength “40 mg” in the 

ontology. 

Another example demonstrating the differences in drug normalization between MedXN and 

MedXN-FHIR can be found in Appendix E. 
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Evaluation Design 

The performance of MedXN and the new system, MedXN-FHIR, in annotating medication name 

and attributes were compared using a test set that consists of 251 annotated discharge 

summaries. In their 2010 article, the i2b2 team measured the performance of twenty competing 

systems using 3 criteria: phrase vs. token, horizontal vs. vertical, and system-level vs. patient-level 

(28). These criteria are described as follows: 

 A phrase (or exact) match refers to the complete value of a field (e.g. “sodium chloride”), 

while a token (or inexact) match refers to individual words that are delimited by 

whitespace (e.g. “sodium” and “chloride”). 

 Vertical metric refers to performance on individual fields (medication name and 

attributes) while horizontal metric refers to performance on a medication entry 

containing all fields spanning two lines of text. 

 System-level performance is the average performance over all annotations, while patient-

level (or record-level) performance is first measured for individual summaries before 

being averaged. 

For the first criterion, I opted to use only phrase matching because it provides a better measure 

of normalized medication names. For the second criterion, vertical metric was used because the 

lookup windows between MedXN and MedXN-FHIR are not equivalent. For the third criterion, 

both system- and patient-level performance were measured because the former can be affected 

by summaries that contain disproportionately more medications (29). 

All fields that are found in MedXN, MedXN-FHIR, and ground truth annotations (i.e. medication 

name, dose, route, frequency, and duration) were included for analysis. Both systems generated 

separate annotations for dose (e.g. “2 tablets”) and strength (e.g. “40 mg”) whereas the i2b2 
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annotators considered them to be the same. To avoid omitting data, I combined dose and 

strength annotations for each medication entry prior to analysis. I excluded additional fields that 

are only found in the ground truth annotations, such as medication reason, temporal marker, and 

certainty. Since the i2b2 ground truth annotations did not contain RxCUIs, the performance of 

both systems on RxCUI assignment were not compared. 

For this study, annotations are classified as correct (true positive) if the offsets are fully bounded 

by the offsets of the corresponding ground truth annotation. Correct annotations are further 

filtered to remove overlapping annotations to avoid overestimating the number of true positives. 

All other annotations are classified as incorrect (false positive). Three performance measures, i.e. 

precision, recall, and F1-measure, were calculated and averaged for individual summaries 

(patient-level) and across all summaries (system-level). If the system fails to annotate any field in 

the entire summary, as compared to ground truth annotations, a score of zero was imputed. 

For patient-level results, each summary constituted a sample and two annotations, one from each 

system, formed a pair of observations. Using this matching, I performed a paired sample T-test 

with p = 0.05 using R version 3.5.2 (30). No statistical tests were performed for system-level 

results. 

The performance measures are calculated using the following equations: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑃 =
#𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

#𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙, 𝑅 =
#𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

#𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛼)𝑅𝑃

𝛼𝑅 + 𝑃
, 𝑤ℎ𝑒𝑟𝑒 𝛼 = 1 
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Results 

The new MedXN-FHIR system was developed over 2.5 months. MedXN-FHIR was released as 

open-source (https://github.com/leonghui/MedXN-FHIR/) under the same Apache 2.0 license as 

MedXN. An example of a text annotation using MedXN is shown in Figure 6.  

 

Figure 6: MedXN-FHIR annotation output for “Azulfidine” 

A transformation script, RxNormToFHIR, was developed over the same period. RxNormToFHIR 

was also released as open-source (https://github.com/leonghui/RxNormToFHIR) under the more 

permissive MIT license. Using the January 2012 release, MedXN-FHIR dynamically generated a 

drug vocabulary that consists of: 

 14,521 ingredient keywords (from 5,010 IN and 1,569 PIN concepts) 

 49,409 brand keywords (from 15,537 BN concepts) 

 307 dose form keywords (from 100 DF concepts) 

 91,024 pairs of Medication and MedicationKnowledge resources (from the same number 

of SCD, SBD, SCDC, SBDC, SCDF, and SBDF concepts) 

https://github.com/leonghui/MedXN-FHIR/
https://github.com/leonghui/RxNormToFHIR
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All 251 discharge summaries in the test set were processed using MedXN and MedXN-FHIR to 

obtain medication name, dose, route, frequency, and duration annotations. An overview of the 

annotation results are tabulated in Table 2. 

Source Ground Truth MedXN MedXN-FHIR 

Field Total Average Total Average Total Average 

Medication Name 8490 33.8 7079 28.2 6988 27.8 

Dose 4381 17.5 3667 14.6 3364 13.4 

Route 3303 13.2 2585 10.3 2417 9.6 

Frequency 3958 15.8 3595 14.3 3324 13.2 

Duration 508 2.0 144 0.6 48 0.2 

Table 2: Distribution of fields in the i2b2 ground truth, MedXN, and MedXN-FHIR annotations 
(overlapping annotations removed, number of discharge summaries = 251) 

 

MedXN and MedXN-FHIR annotations were evaluated against i2b2 ground truth annotations 

using three performance measures; precision, recall, and F1-measure. The results are shown in 

Table 3.  
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Field Level MedXN MedXN-FHIR 

P R F P R F 

Medication 

Name 

System 0.8005 0.8359 0.8178 0.8482 0.8231 0.8354 

Patient 0.8078 0.8294 0.8116 0.8451 0.8166 0.8231 

Dose System 0.9291 0.8370 0.8806 0.9570 0.7679 0.8521 

Patient 0.9115 0.8367 0.8649 0.9325 0.7747 0.8371 

Route System 0.9638 0.7826 0.8638 0.9821 0.7318 0.8387 

Patient 0.9131† 0.7527 0.8095 0.9080† 0.6935 0.7715 

Frequency System 0.9127 0.9083 0.9105 0.9745 0.8398 0.9022 

Patient 0.9200 0.9171 0.9126 0.9667 0.8483 0.8971 

Duration System 0.8571 0.2835 0.4260 0.8889 0.0945 0.1708 

Patient 0.4264 0.2746 0.3169 0.1957 0.0879 0.1128 

† All patient-level measures, except precision for the field “route”, were significantly different (p < 0.05). No statistical 
tests were performed for system-level measures. 

Table 3: Phrase-level vertical performance of MedXN and MedXN-FHIR using the i2b2 test set, 
where P = Precision, R = Recall, F = F1-measure 

 

Differences in performance are quoted using patient-level measures, with the 95% confidence 

interval enclosed in parentheses. Both MedXN and MedXN-FHIR exhibited good performance for 

medication name, dose, and frequency fields with F1-measures above 0.8. For medication name, 

MedXN-FHIR produced an increase of 0.0373 in precision (0.0284 – 0.0462), a decrease of 0.0128 

in recall (0.0067 – 0.0189), and an increase in F1-measure of 0.0115 (0.0058 - 0.0173). Except for 

patient-level duration and route, MedXN-FHIR consistently produced a higher precision than 

MedXN. However, this improvement in precision is counterbalanced by lower recall across all 

medication attributes. MedXN-FHIR performed worst for the duration field, with a decrease in F1-

measure of 0.204 (0.157 – 0.252).  
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Discussion 

While MedXN-FHIR shares some features with MedXN (source vocabulary, decomposition 

strategy, attribute annotator), MedXN-FHIR uses ontology-based reasoning for merging and 

normalizing drug annotations to RxNorm identifiers. Unfortunately, the performance of MedXN-

FHIR in assigning RxCUI could not be evaluated in this study due to the lack of RxCUI annotations 

in the i2b2 dataset. 

For medication name, MedXN-FHIR has a higher precision, which could be an outcome of the 

brand-ingredient merging procedure. The procedure may have helped to reduce the number of 

overlapping annotations and therefore reduce the number of false positives. On the other hand, 

MedXN’s higher recall could be due to the addition of manually curated synonyms (less false 

negatives). Medication attributes are linked to a medication name in an entry, i.e. the number of 

medication attributes retrieved increases with the number of medication names retrieved. 

Therefore, the tradeoffs that are observed between precision and recall for medication attributes 

in MedXN-FHIR could be partially attributed to the same factors affecting medication name. 

Comparing across system- and patient-level performance, both systems exhibited similar stability 

except for the duration field, where MedXN-FHIR performed poorly. This result could be due to 

the difference in the number of duration fields that were retrieved by the systems. Referring to 

Table 2, MedXN-FHIR had one-third the number of duration annotations as compared to MedXN. 

Due to the shorter lookup window in MedXN-FHIR, the system was unable to capture the duration 

terms that extended across drug tokens or beyond one line of text. It is also worthwhile to note 

that the duration field posed a similar challenge for MedXN in its initial study (F1-measure = 0.645) 

(12) and for the top 10 participants of the 2009 i2b2 Medication Extraction Challenge (F1-measure 
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between 0.180 and 0.525). The i2b2 team concluded that the duration field was difficult to 

annotate because of the greater length and variability of the content (28). 

Overall, this is a positive result for MedXN-FHIR because its performance was not compromised 

by the replacement of its main annotators. Furthermore, both MedXN and MedXN-FHIR are 

comparable to the top 10 i2b2 participants in the phrase-level vertical category (excluding the 

“medication reason” field). Even though MedXN was built using a significantly different dataset 

(31), the system also maintained a relatively good performance. 

Compared to MedXN, MedXN-FHIR has the added advantage of a FHIR-based ontology. With the 

flexibility of FHIR data models, the drug ontology can be updated with newer versions of RxNorm 

to handle new medications and other changes in the terminology. Alternatively, the drug ontology 

can be built using older versions of RxNorm. This flexibility is useful to account for semantic shifts 

when annotating unstructured notes from different time periods. Unlike its predecessor, MedXN-

FHIR can seamlessly switch between different FHIR servers, each containing a different set of 

resources. Moreover, since the merging and normalization rules in MedXN-FHIR are defined 

intensionally using attributes from FHIR data models, only minor adjustments will be needed for 

MedXN-FHIR to work with other drug terminologies. As demonstrated using RxNormToFHIR, the 

universality of FHIR models can be exploited to transform local terminologies, such as those used 

in health systems, and other national terminologies into FHIR resources. 

These advantages make MedXN-FHIR suitable for a number of use cases. MedXN-FHIR can be 

used as part of an audit system to monitor clinical data quality for both structured and 

unstructured data. For example, MedXN-FHIR can help validate the accuracy of existing mappings 

and assess the completeness of medication records. Additionally, with its inference feature, 

MedXN-FHIR can be used to suggest RxCUIs that most closely represent drug products that are 
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available in the pharmacy. This feature can help reduce the initial transcribing effort for 

pharmacists who are working with free-text prescriptions. In terms of integration patterns, 

MedXN-FHIR can be modularized within NLP pipelines, as in NLP2FHIR (4), or scaled up to handle 

enterprise-level loads using Distributed UIMA Cluster Computing (DUCC). 

Lastly, this study demonstrated the feasibility of transforming a drug terminology into FHIR 

resources and reusing the resources as a drug ontology for a medication NLP system. With the 

extensibility and ease of implementation of FHIR, this approach could be beneficial in distributing 

terminology standards. National drug terminologies, such as AMT, Dictionary of Medicines and 

Devices (dm+d), and Singapore Drug Dictionary (SDD), are generally developed and mandated as 

de jure standards for healthcare interoperability. It follows that a national drug terminology and 

an accompanying NLP component can be distributed to heath IT implementers in a format that 

can be loaded into FHIR-enabled systems readily. FHIR resources can be used without the need 

for terminology services or description logic reasoners. The potential benefits are two-fold: 

1. Reducing the burden of health IT implementers in maintaining mappings from local to 

national terminologies. RxNorm distributed as FHIR Medication resources could be used 

as a basis for a drug formulary within EHR and pharmacy systems. No further mapping is 

necessary as the concept identifiers are already in RxCUI format. For new implementation 

sites, a “prescribable” subset of FHIR Medication resources with drug names from 

RxTerms would be especially useful. 

2. Minimizing the creation and consumption of unstructured data at source (i.e. EHR and 

pharmacy systems). FHIR resources are structured and can be used to support clinical 

data entry. Additionally, NLP can be applied to normalize new unstructured data. Hence, 

a “virtuous circle” of terminology standardization can be established. 
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While ML techniques offer us a glimpse of a solution to the “grand challenges” of healthcare 

informatics (32), I believe that the pursuit of standardization can complement the efforts of ML 

practitioners in expanding their field into actual care settings. By harmonizing the semantics of 

clinical data across institutions, the generalizability of ML models can be improved. 

Limitations 

The performance of MedXN-FHIR in assigning RxCUIs was not evaluated. Future studies could 

incorporate a panel of independent reviewers to evaluate the RxCUI annotations using the same 

performance measures. The evaluation protocol should account for additional inferences made 

by human reviewers that would unintentionally increase false negatives, as observed by the Mayo 

Clinic team in their work on MedXN (12). 

One of the causes of lower precision for MedXN is the presence of HTML entities (“&amp;”) that 

were wrongly annotated as the ingredient “amp” (adenosine monophosphate). A simple 

modification to exclude these textual artifacts would have increased MedXN’s precision for 

medication names by 0.05. Clinical corpora used in the future should be cleansed to prevent such 

artifacts from affecting the analysis. 

The current iteration of MedXN-FHIR only validates the merging of brand and ingredient 

annotations. Future versions of MedXN-FHIR could use the drug ontology to validate the merging 

of strengths to ingredients. Another component that would be useful in matching strength 

information is a conversion library that could handle the units of measure used for medications, 

such as weight/weight concentrations, percentage strengths, and conversion factors for specific 

drugs (e.g. penicillin and insulin). 

MedXN-FHIR’s poor performance for the duration field could be addressed by increasing its 

lookup window. Alternatively, new medication attribute annotators should be developed using a 
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more structured approach such as those applied by McTaggart et al. (33), with output that 

conform to the FHIR specifications (i.e. Dosage structure and Timing datatype). 

For the analysis in this study, the MedXN annotation output format was reused in MedXN-FHIR 

without modification. Future developers could enhance MedXN-FHIR to generate the annotation 

results as FHIR MedicationStatement resources as depicted in Figure 4 (in dashed lines). The 

integrated FHIR client could be used to send the resources to a FHIR-enabled recipient system 

(e.g. EHR system, pharmacy system, or Apple HealthKit) as part of an end-to-end workflow. 

Conclusion 

I developed a medication NLP system that was derived from MedXN. The new system, termed 

MedXN-FHIR, uses FHIR Medication, MedicationKnowledge, and Substance resources as a drug 

ontology. In addition to using the resources to build a drug vocabulary, I extended the use of FHIR 

data models for ontology-based reasoning in MedXN-FHIR. 

I evaluated the performance of MedXN and MedXN-FHIR in annotating medication name, dose, 

route, frequency, and duration fields using the 2009 i2b2 Medication Extraction Challenge 

dataset. MedXN-FHIR had higher precision, but poorer recall than MedXN. MedXN-FHIR also 

produced F1-measures higher than 0.8 for medication name, dose, and frequency. 

This study demonstrated the feasibility of transforming a drug terminology into FHIR resources, 

and reusing the same resources as a drug ontology to normalize unstructured medication names 

and attributes through NLP techniques. 
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Appendix 

A. FHIR Medication representation of “Zyrtec” in JSON notation 

{ 
    "resourceType": "Medication", 
    "id": "rxNorm-1014677", 
    "meta": { 
        "versionId": "1", 
        "lastUpdated": "2019-03-03T07:01:53.805+00:00" 
    }, 
    "text": { 
        "status": "generated", 
        "div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><div 
class=\"hapiHeaderText\">cetirizine hydrochloride 5 MG Oral Tablet 
[Zyrtec]</div></div>" 
    }, 
    "extension": [ 
        { 
            "url": "http://localhost:8080/fhir/StructureDefinition/brand", 
            "valueString": "Zyrtec" 
        } 
    ], 
    "code": { 
        "coding": [ 
            { 
                "system": "http://www.nlm.nih.gov/research/umls/rxnorm", 
                "code": "1014677", 
                "display": "cetirizine hydrochloride 5 MG Oral Tablet [Zyrtec]" 
            } 
        ] 
    }, 
    "status": "active", 
    "form": { 
        "coding": [ 
            { 
                "system": "http://www.nlm.nih.gov/research/umls/rxnorm", 
                "code": "317541", 
                "display": "Oral Tablet" 
            } 
        ] 
    }, 
    "ingredient": [ 
        { 
            "itemReference": { 
                "reference": "Substance/rxNorm-20610" 
            }, 
            "isActive": true, 
            "strength": { 
                "numerator": { 
                    "value": 5, 
                    "unit": "MG" 
                }, 
                "denominator": { 
                    "value": 1, 
                    "unit": "1" 
                } 
            } 
        } 
    ] 
} 
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B. FHIR MedicationKnowledge representation of “Zyrtec” in JSON notation 

{ 
    "resourceType": "MedicationKnowledge", 
    "id": "rxNorm-1014677", 
    "meta": { 
        "versionId": "1", 
        "lastUpdated": "2019-03-03T10:16:36.710+00:00" 
    }, 
    "code": { 
        "coding": [ 
            { 
                "system": "http://www.nlm.nih.gov/research/umls/rxnorm", 
                "code": "1014677", 
                "display": "cetirizine hydrochloride 5 MG Oral Tablet [Zyrtec]" 
            } 
        ] 
    }, 
    "status": "active", 
    "doseForm": { 
        "coding": [ 
            { 
                "system": "http://www.nlm.nih.gov/research/umls/rxnorm", 
                "code": "317541", 
                "display": "Oral Tablet" 
            } 
        ] 
    }, 
    "synonym": [ 
        "Zyrtec 5 MG Oral Tablet", 
        "Zyrtec (cetirizine dihydrochloride 5 MG) Oral Tablet" 
    ], 
    "associatedMedication": [ 
        { 
            "reference": "Medication/rxNorm-367925" 
        }, 
        { 
            "reference": "Medication/rxNorm-1014570" 
        }, 
        { 
            "reference": "Medication/rxNorm-1014644" 
        } 
    ], 
    "ingredient": [ 
        { 
            "itemReference": { 
                "reference": "Substance/rxNorm-20610" 
            }, 
            "isActive": true, 
            "strength": { 
                "numerator": { 
                    "value": 5, 
                    "unit": "MG" 
                }, 
                "denominator": { 
                    "value": 1, 
                    "unit": "1" 
                } 
            } 
        } 
    ] 
} 
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C. FHIR Substance representation of “Cetirizine” in JSON notation 

{ 
    "resourceType": "Substance", 
    "id": "rxNorm-20610", 
    "meta": { 
        "versionId": "1", 
        "lastUpdated": "2019-03-03T04:16:19.443+00:00" 
    }, 
    "extension": [ 
        { 
            "url": "http://localhost:8080/fhir/StructureDefinition/synonym", 
            "valueString": "Acetic acid, (2-(4-((4-chlorophenyl)phenylmethyl)-1-
piperazinyl)ethoxy)-" 
        }, 
        { 
            "url": "http://localhost:8080/fhir/StructureDefinition/synonym", 
            "valueString": "Cetirizine Dihydrochloride" 
        }, 
        { 
            "url": "http://localhost:8080/fhir/StructureDefinition/synonym", 
            "valueString": "Cetirizine hydrochloride" 
        }, 
        { 
            "url": "http://localhost:8080/fhir/StructureDefinition/synonym", 
            "valueString": "(2-(4-((4-Chlorophenyl)phenylmethyl)-1-
piperazinyl)ethoxy)acetic Acid" 
        } 
    ], 
    "status": "active", 
    "code": { 
        "coding": [ 
            { 
                "system": "http://www.nlm.nih.gov/research/umls/rxnorm", 
                "code": "20610", 
                "display": "Cetirizine" 
            } 
        ] 
    } 
} 
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D. Annotation for multi-ingredient drugs 

 

Figure 7: MedXN-FHIR annotation output for a multi-ingredient drug "Augmentin" 

Figure 7 shows an outcome of MedXN-FHIR’s capability in merging the ingredients “amoxicillin” 

and “clavulanate” to the brand “Augmentin”. MedXN-FHIR uses matching Medication resources 

to validate the merge. The ingredients to be merged must be found among the ingredients of 

Medication resources with the brand “Augmentin”. Next, strength attributes were linked to 

ingredients in the same order (“500mg” to “amoxicillin and “125mg” to “clavulanate”). 
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E. Comparison in drug normalization 

 

Figure 8: MedXN annotation output for “Tylenol” 

In Figure 8, note that MedXN was able to recognize “tylenol” and “0.5 g” as brand and strength 

respectively. However, MedXN did not assign this annotation with an RxCUI because the phrase 

“tylenol 0.5g” was not found in its dictionary files. 
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Figure 9: MedXN-FHIR annotation output for "Tylenol" 

In Figure 9, MedXN-FHIR assigned an appropriate RxCUI using a different set of extraction and 

normalization rules: 

1. (Named-entity recognition) MedXN-FHIR collated all Medication resources with the 

brand “tylenol” and stored the RxCUIs in the Drug.brand annotation. 

2. (Strength extraction) MedXN-FHIR extracted the strength “0.5 g” as discrete value and 

unit attributes. To facilitate matching, the strength would be converted to “500 mg”. 

3. (Drug concept normalization) MedXN-FHIR compared each collated Medication resource 

against the extracted strength information. Since a unique match was found, the system 

assigned “570070”, the identifier of the matched resource, as normRxCui. 

4. (Inference) After normalizing the route “po” to “oral”, MedXN-FHIR checked each 

Medication resource for an oral dose form. Again, since a unique match was found, the 

system assigned “209459”, the identifier of the inferred resource, as normRxCui2. 

 

1 

2 
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