
Computer-aided	diagnosis	of	prostate	cancer	using	multi-
parametric	MRI	-	Evaluation	of	feature	extraction	and	

classification	

By	

Sean	R.	Babcock	

A	Thesis/Dissertation	

Presented to the Department of Medical Informatics and Clinical 
Epidemiology and the Oregon Health & Science University 

School of Medicine in partial fulfillment of the requirements for 
the degree of 

Master	of	Science	

March	2019	



	 i	

	
	

TABLE	OF	CONTENTS	
	

List	of	figures	and	tables........................................................................................................ii	

List	of	abbreviations ..............................................................................................................iv	

Acknowledgments ..................................................................................................................vi	

Abstract .................................................................................................................................... vii	

Chapter	1:	Introduction .........................................................................................................1	
Background......................................................................................................................................... 1	
MRI ......................................................................................................................................................... 3	
Current	PCa	Imaging	Methodology	and	Methods................................................................... 4	
Project	Definition.............................................................................................................................. 4	

Chapter	2:	Materials	and	Methods .....................................................................................5	
Image	Dataset..................................................................................................................................... 5	
Image	Analysis	Workflow .............................................................................................................. 7	
Image	Pre-processing ...................................................................................................................... 8	
Texture	Feature	Extraction .........................................................................................................14	
Dimensionality	Reduction ...........................................................................................................22	
Classification ....................................................................................................................................24	
Model	Training,	Test,	and	Evaluation ......................................................................................24	
Software .............................................................................................................................................28	

Chapter	3:	Results................................................................................................................. 29	
Image	De-noising	Results .............................................................................................................29	
Model	Tuning....................................................................................................................................32	
T2W	and	ADC	Image	Analysis .....................................................................................................33	
Complete	Feature	and	Model	Analysis ....................................................................................38	
Ensemble	of	Models	Classification ............................................................................................47	
Patient	Level	Classification..........................................................................................................50	

Chapter	4:	Discussion ...........................................................................................................51	
Image	Misclassification.................................................................................................................52	
Tumor	Heterogeneity ....................................................................................................................53	
Limitations ........................................................................................................................................55	

Chapter	5:	Conclusions........................................................................................................ 56	

References............................................................................................................................... 56	
	
	
	
	
	
	
	
	



	 ii	

List	of	Figures	and	Tables	
	

Figure	1.	McNeal	zonal	view	of	the	prostate	gland .......................................................1	

Figure	2.	Malignant	and	benign	image	comparisons	 ..................................................6	

Figure	3.	T2W	and	DWI	ADC	ROI	Images	 ........................................................................7	

Figure	4.	Image	analysis	algorithm....................................................................................7	

Figure	5.	Simple	autoencoder	configuration ..................................................................9	

Figure	6.	Variational	autoencoder .................................................................................. 10	

Figure	7.	Example	of	a	CNN ................................................................................................ 12	

Figure	8.	CAE	as	implemented	for	this	project	........................................................... 13	

Figure	9.	Extraction	of	a	ROI	image................................................................................. 14	

Figure	10.	The	four	directions	of	adjacency	 ............................................................... 15	

Figure	11.	Co-occurrence	matrix	construction	example	for	an	image	consisting	
of	8	grey	levels...................................................................................................... 15	

Figure	12.	Steps	used	to	calculate	the	neighborhood	LBP	score	.......................... 16	

Figure	13.	Example	of	the	calculation	of	a	GLRLM	using	an	image	with	4	grey	
levels	....................................................................................................................... 17	

Figure	14.	Calculation	of	a	GLSZM	from	and	image	containing	4	grey-levels	 .. 19	

Figure	15.	Wavelet	quad-tree	consisting	of	three	layers	........................................ 20	

Figure	16.	Dimensionality	reduction	autoencoder	 .................................................. 23	

Figure	17.	T2W	original	and	de-noised	ROI	images	................................................. 30	

Figure	18.	ADC	original	and	de-noised	ROI	images	 .................................................. 30	

Figure	19.	ROC	curves	for	the	mRMR	+	Random	forest	model	using	combined	
T2W	and	ADC	LBP	features.	 ............................................................................ 44	

Figure	20.	Performance	metrics	for	all	5	classification	models............................ 46	

Figure	21.	ROC	curves	for	ensemble	classifier	........................................................... 48	

Figure	22.	Performance	metrics	for	all	6	classification	models	........................... 48	

Figure	23.	T2W	and	ADC	ROI	images	for	comparing	misclassified	benign	
patient	 .................................................................................................................... 49	

Figure	24.	Heatmap	of	a	misaligned	ROI	image	 ......................................................... 52	

Figure	25.	Prostate	gland	ROI	identified	by	six	MR	image	slices	 ......................... 53	

Figure	26.	Image	examples	of	malignant	and	benign	tissue	stratification	in	a	
heterogeneous	tumor	 ....................................................................................... 54	

	



	 iii	

	
Table	1.	Top	feature	extraction,	dimensionality	reduction,	and	classification	

methods	obtained	from	current	literature ...................................................4	

Table	2.	Distribution	of	benign	and	malignant	patients	and	images .....................5	

Table	3.	The	11	statistical	calculations	used	for	the	GLRLM.................................. 18	

Table	4.	Numbers	of	extracted	features	and	generated	feature	vectors	for	each	
feature	extraction	method ............................................................................... 21	

Table	5.	10-fold	cross-validation	splits ......................................................................... 25	

Table	6.	List	of	seven	representative	tuning	feature	vectors................................. 27	

Table	7.	Software	packages	used	and	their	function ................................................ 28	

Table	8.	Average	MSE	for	T2W	and	ADC	images	for	all	de-noising	techniques 29	

Table	9.	MSE	for	representative	T2W	and	ADC	images	for	all	de-noising	
techniques ............................................................................................................. 30	

Table	10.	Resulting	AUC	for	each	image	type,	de-noising	method,	and	model 31	

Table	11.	T2W	and	ADC	results	for	mRMR	+	SVM...................................................... 33	

Table	12.	T2W	and	ADC	results	for	mRMR	+	Random	Forest ................................ 34	

Table	13.	T2W	and	ADC	results	for	Autoencoder	+	SVM ......................................... 35	

Table	14.	T2W	and	ADC	results	for	Autoencoder	+	Random	Forest.................... 36	

Table	15.	T2W	and	ADC	results	for	ElasicNet	............................................................. 37	

Table	16.	Multiparametric	results	for	mRMR	+	SVM	 ............................................... 39	

Table	17.	Multiparametric	results	for	mRMR	+	Random	Forest	.......................... 40	

Table	18.	Multiparametric	results	for	Autoencoder	+	SVM	................................... 41	

Table	19.	Multiparametric	results	for	Autoencoder	+	Random	forest	 .............. 42	

Table	20.	Multiparametric	results	for	ElasticNet	...................................................... 43	

Table	21.	Comparison	of	single	and	multiparametric	image	modalities	.......... 45	

Table	22.	Image	level	ensemble	model	confusion	matrix	...................................... 47	

Table	23.	Patient	diagnosis	using	malignant	probability	threshold	of	0.5 ....... 50	

Table	24.	Patient	diagnosis	using	malignant	probability	threshold	of	0.4 ....... 51	

	
	
	
	
	
	



	 iv	

List	of	abbreviations	
	
PCa:	prostate	cancer	
MRI:	magnetic	resonance	imaging	
mp-MRI:	multiparametric	magnetic	resonance	imaging	
PSA:	prostate-specific	antigen	
TRUS:	transrectal	ultrasound-guided	
DRE:	digital	rectal	exam	
PZ:	Peripheral	zone	
TZ:	Transition	zone	
CZ:	Central	zone	
AFS:	Anterior	fibromuscular	stroma	
T2W:	T-2	weighted	
T2WI:	T-2	weighted	image	
DWI:	Diffusion-weighted	image	
ADC:	apparent	diffusion	coefficient	
ADCmap:	apparent	diffusion	coefficient	map	
NN:	neural	network	
CNN:	convolutional	neural	network	
GLCM:	grey-level	co-occurrence	matrix	
GLSZM:	grey-level	size	zone	matrix	
GLRLM:	grey-level	run	length	matrix	
LBP:	local	binary	pattern	
FD:	fractal	dimension	
MRFD:	multi-resolution	fractal	dimension		
ROI:	region	of	interest	
2D:	two-dimensional		
3D:	three-dimensional		
ROC:	receiver	operating	characteristic		
AUC:	area	under	the	curve	
DAE:	de-noising	autoencoder	
VAE:	variational	autoencoder	
CAE:	convolutional	autoencoder	
ReLU:	rectified	linear	unit	
FC:	fully	connected	
SRE:	Short	Run	Emphasis	
LRE:	Long	Run	Emphasis	
GLN:	Grey	Level	Non-uniformity	
RLN:	Run	Length	Non-uniformity	
RP:	Run	percentage	
LGRE:	Low	Grey	Level	Run	Emphasis	
HGRE:	High	Grey	Level	Run	Emphasis	
SRLGE:	Short	Run	Low	Grey	Level	Emphasis	
SRHGE:	Short	Run	High	Grey	Level	Emphasis	
LRLGE:	Long	Run	Low	Grey	Level	Emphasis	



	 v	

LRHGE:	Long	Run	High	Grey	Level	Emphasis	
DBC:	Differential	Box	Counting	
mRMR:	minimum-redundancy–maximum-relevancy	
SVM:	support	vector	machine	
RF:	random	forest	
MSE:	mean	squared	error	
SD:	standard	deviation	
PPV:	positive	prediction	value	
NPV:	negative	prediction	value	
	
	
	



	 vi	

Acknowledgements	
	

I	would	like	to	first	thank	my	thesis	advisor	Xubo	Song	PhD.	Not	only	was	she	my	
thesis	advisor,	she	was	also	the	instructor	in	both	my	machine	learning	and	image	
analysis	 classes,	 which	 played	 a	 key	 role	 in	 my	 understanding	 of	 the	 concepts	
needed	 to	complete	 this	 thesis.	When	deciding	a	 thesis	 topic,	 she	helped	drive	my	
interest	 in	 computer	 image	 analysis,	 and	 specifically,	 computer-aided	 analysis	 of	
cancer	images	to	aid	radiologists	in	early	detection	and	diagnosis.	Dr.	Song	also	was	
key	in	identifying	a	dataset	and	helped	me	to	build	a	useful,	and	masters	thesis	level	
project	around	this	dataset.	

I	would	 like	to	thank	the	other	members	of	my	thesis	advisory	committee,	Ted	
Laderas	PhD,	and	Guillaume	Thibault	PhD,	for	their	expertise,	guidance,	and	insight	
into	 the	 technical	 aspects	 of	 this	 project	 and	 the	 thesis	 dissertation	 process	 as	 a	
whole.		I	had	the	pleasure	of	knowing	Ted	from	many	of	the	classes	I	took	during	my	
time	 in	 the	 DMICE	 BCB	 program.	 Ted	 offered	 a	 unique	 insight	 into	 the	
bioinformatics	 and	 clinical	 aspects	 of	 this	 project,	 which	 were	 extremely	 helpful	
during	 my	 work.	 Guillaume	 brought	 a	 wealth	 of	 technical	 expertise	 in	 computer	
image	 analysis.	 In	 addition	 to	 currently	 working	 in	 the	 field	 of	 computer	 image	
analysis	pertaining	to	cancer	research,	he	has	also	published	several	papers	on	the	
subject.	

Without	 several	 key	 contributors	 to	 this	 project,	 I	 would	 have	 never	 had	 the	
resources	 to	 succeed	 in	 my	 goals.	 First,	 Dr.	 Fergus	 Coakley	 M.B.	 B.Ch	 who	 was	
generous	enough	to	provide	the	image	dataset	used	in	my	thesis	study.	Dr.	Coakley	
also	offered	radiologist	resources	to	compile	the	dataset	and	offered	understanding	
to	how	the	dataset	was	classified.	Secondly,	I	would	like	to	offer	a	special	thanks	to	
Archana	 Machireddy,	 a	 PhD	 student	 in	 the	 Center	 for	 Spoken	 Language	
Understanding	who	first	worked	with	a	radiologist	to	collate	the	dataset	and	put	it	
into	 a	 form	 which	 I	 was	 able	 to	 apply	 to	 my	 thesis	 goals.	 Without	 these	 two	
individuals,	the	project	would	have	never	gotten	off	the	ground.		

My	 family,	 Bob,	 Diane,	 and	 Darcie	 Babcock,	 played	 a	 critical	 role	 in	 not	 only	
supporting	my	decision	to	enter	the	bioinformatics	and	computational	biomedicine	
program	enabling	me	to	achieve	all	I	have	this	far.	By	also	offering	their	support	and	
understanding	 during	 the	 difficult	 times,	 as	 well	 as	 sharing	 their	 joy	 of	 my	
accomplishments,	 they	gave	me	the	will	 to	move	forward.	 I	would	specially	 like	to	
thank	my	sister,	Darcie	Babcock,	who	has	worked	at	OHSU	for	many	years	and	was	
responsible	 for	getting	me	 interested	 in	 the	bioinformatics	 field	by	 requesting	my	
help	 using	 sequencing	 software	 in	 a	 genetics	 project.	 	 From	 this	 first	 kernel	 of	
understanding	 I	 decided	 to	 find	 out	 more	 about	 bioinformatics	 and	 enroll	 in	 the	
DMICE	BCB	program.	

Lastly	 with	 all	 my	 heart	 I	 wish	 to	 thank	 my	 late	 wife	 Jacqueline	 Babcock.	
Although	she	is	no	longer	with	me,	she	has	been	a	constant	source	of	strength	and	
guidance	 in	 all	my	 endeavors,	 including	 the	 desire	 to	 study	 and	 treat	 cancer	 and	
hopefully	one	day	be	involved	in	finding	promising	cures	and	treatments.	

	
	



	 vii	

Abstract	
	
According	to	the	NIH1,	prostate	cancer	is	the	third	leading	cancer	type	in	the	United	
States.	 It	 is	projected	 in	2018	that	prostate	cancer	(PCa)	will	account	 for	 the	most	
newly	diagnosed	cancer	cases	(164,690),	which	accounts	for	9.5%	of	all	new	cancer	
cases,	and	be	the	second	leading	cause	of	death	(29,430)	among	males	in	the	United	
States1,	2.	 Two	 factors	determine	 the	5-year	 survival	 rate	 of	 prostate	 cancer:	 early	
diagnosis	 and	 tumor	 localization	 in	 the	 prostate	 gland1.	 To	 underscore	 this	 point,	
the	 5-year	 survival	 rate	 for	 localized	 prostate	 cancer	 diagnosed	 early	 is	 100%1.	
Current	 methods	 of	 prostate	 cancer	 detection	 can	 result	 in	 overdiagnosis	 and	
overtreatment	 of	 non-aggressive	 cancer	 by	 failing	 to	 distinguish	 between	 non-
aggressive	 cancer	 and	 more	 aggressive	 cancer	 (Gleason	 score	 >	 7)3.	 In	 addition,	
variability	 between	 radiologists	 when	 reading	 and	 grading	 MR	 images	 is	 also	 a	
cause	of	misdiagnosis	and	overtreatment.	Overdiagnosis	and	overtreatment	can	be	
costly,	 and	 put	 unnecessary	 burden	 on	 patients,	 insurance,	 and	medical	 facilities.	
Imaging	has	increasingly	shown	promise	in	aiding	in	the	detection	and	diagnosis	of	
prostate	 cancer.	 Specifically,	 multiparametric	 MRI	 (mp-MRI)	 has	 shown	 great	
promise	 in	 developing	 computer-aided	 techniques	 to	 aid	 radiologists	 in	 detecting	
and	 accurately	 assessing	 prostate	 cancer4.	 In	 fact,	 computer	 imaging	 studies	 from	
Stanford	 University	 in	 2017	 using	 deep	 learning	methods,	 demonstrated	 that	 for	
skin	 cancer	 diagnosis	 the	 deep	 learning	 classification	 method	 matched	
dermatologist	 accuracy5	 and	 for	 pneumonia	 diagnosis,	 the	 deep	 learning	 image	
analysis	method	exceeded	radiologist	diagnosis	accuracy6.		

The	 goal	 of	 this	 project	 was	 to	 evaluate	 the	 feasibility	 of	 machine	 learning	
methods	 based	 on	 feature	 extraction	 and	 classification	 for	 differentiating	 benign	
and	 malignant	 prostate	 cancer	 tumors	 in	 mp-MRI	 with	 the	 intent	 of	 building	 an	
algorithm	 that	 best	 reduces	 over-biopsy	 and	 enables	 in-silico	 biopsy.	 The	 model	
used	 regions	 of	 interest	 (ROI)	 in	 2D	multiparametric	magnetic	 resonance	 images	
(mp-MRI)	 selected	 by	 the	 radiologist	 as	 possible	 prostate	 cancer	 tumors.	 The	
specific	 aim	 of	 this	 project	 was	 to	 evaluate	 various	 extracted	 texture	 features,	
dimensionality	reduction,	and	machine	learning	classification	methods	to	determine	
the	computer-aided	analysis	model	that	provides	the	greatest	classification	accuracy	
for	malignant	and	benign	prostate	cancer	images.	From	these	image	level	models,	a	
patient	level	diagnosis	decision	support	model	was	determined	that	best	diagnoses	
malignant	cancer	patients.	
This	project	has	demonstrated	several	key	results.	First,	I	have	shown	the	viability	
of	 my	 algorithm	 using	 image	 feature	 extraction	 and	 classification	 to	 develop	 a	
computer-aided	clinical	diagnosis	decision	support	model,	which	has	shown	perfect	
malignant	 patient	 diagnosis	 using	 the	 dataset	 available	 to	 me	 for	 this	 study.	
Secondly,	 I	have	shown	that	mp-MRI	 is	 the	preferred	 imaging	method	than	that	of	
using	 single	 MRI	 image	 types	 such	 as	 T-2	 weighted	 (T2W)	 or	 apparent	 diffusion	
coefficient	maps	(ADCmaps)	for	this	type	of	model.	
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Chapter	1:	Introduction	

Background	
As	 of	 2015,	 the	 current	model	 for	 prostate	 cancer	 screening	 and	 detection	 is	 the	
analysis	 of	 prostate-specific	 antigen	 (PSA)	 levels	 and/or	 a	 digital	 rectal	 exam	
(DRE)7,	 8.	 If	 indicated	 by	 elevated	 PSA	 levels	 or	 DRE	 screening,	 a	 transrectal	
ultrasound-guided	 (TRUS)	 biopsy	 or	 MRI	 guided	 biopsy	 are	 used	 as	 a	 follow	 up	
diagnosis	 step7,	 8.	 Biopsy	 has	 been	 shown	 to	 be	 the	 most	 accurate	 method	 of	
confirming	the	presence	of	prostate	cancer,	however	PSA	testing,	which	prompts	a	
biopsy,	 has	 shown	 to	 be	 unreliable	 in	 finding	 a	 suitable	 threshold	 to	 indicate	 if	 a	
biopsy	is	required9.	While	the	PSA	screen	and	TRUS	biopsy	diagnostic	methods	are	
reported	 to	 have	 increased	 the	 detection	 of	 prostate	 cancer,	 they	 suffer	 from	
overdiagnosis	and	overtreatment	due	to	many	of	the	identified	cases	being	low	risk	
and	 clinically	 insignificant,	 and	 also	may	 not	 detect	 anterior	 tumors	 that	 are	 of	 a	
small	 size7.	 A	 conventional	 biopsy	 taken	 without	 imaging	 guidance,	 known	 as	 a	
“blind”	 biopsy,	 have	 been	 reported	 to	 find	 more	 non-aggressive	 cancer	 than	
aggressive	 cancer3.	 Another	 prostate	 cancer	 detection	 method,	 the	 DRE,	 is	 also	
shown	to	be	effective	in	detecting	prostate	cancer	in	the	posterior	peripheral	zone	
(PZ),	 but	 is	 ineffective	 in	 detecting	 cancer	 in	 all	 others	 zones	 of	 prostate	 gland10.		
Figure	19	shows	the	zones	of	the	prostate	gland	with	the	PZ	highlighted	in	pink.	
	

	
Figure	 1.	 McNeal	 zonal	 view	 of	 the	 prostate	 gland9.	 Central	 zone:	 CZ	 (green),	 Transition	
zone:	TZ	 (yellow),	Anterior	 fibromuscular	 stroma:	AFS	 (blue),	 Peripheral	 zone:	PZ	 (pink),	
Seminal	vesicle:	SV	(grey),	Bladder:	B	(grey),	Urethra:	U	(grey).	
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Regardless	 of	 the	 biopsy	method,	 the	 biopsy	 result	 is	 reported	with	 a	Gleason	
score,11,12	 used	 by	 pathologists	 and	 clinicians	 to	 evaluate	 the	 current	 cancer	 state	
and	 aggressiveness,	 and	 also	 to	 guide	 clinical	 treatment	 options.	 The	 Gleason	
scoring	system	grades	prostate	tissue	and	cells	on	a	scale	from	1-5	and	represents	
the	biological	behavior	of	 the	 cancer.	A	 grade	of	1	 is	 assigned	 to	 cancerous	 tissue	
that	highly	resembles	healthy	prostate	tissue;	a	grade	of	5	assigned	to	cancer	cells	
that	 look	 highly	 abnormal	 and	 show	 cancer-like	 growth.	 The	 final	 Gleason	 score	
report	(Gleason	sum),	 is	a	combination	of	 two	scores	having	a	potential	maximum	
score	of	10,	for	example,	7=4+3.	The	two	scores	in	the	Gleason	sum	represent	two	
areas	of	 the	prostate	 tumor,	where	 the	 first	score	represents	 the	majority	 (largest	
area)	 cancer	 grade,	 and	 the	 second	 score	 represents	 the	 minority	 (smaller	 area)	
cancer	grade.		

Recently,	the	use	of	imaging	is	an	emerging	method	for	prostate	cancer	detection	
and	 evaluation,	 where	 the	 use	 of	Magnetic	 Resonance	 Imaging	 (MRI),	 specifically	
multiparametric	 MRI	 (mp-MRI),	 is	 gaining	 popularity4,7,9,13.	 Computer	 image	
analysis,	 using	machine	 learning	 techniques,	 offers	 a	 new	path	 in	 prostate	 cancer	
detection	 and	 diagnosis	 by	 overcoming	 deficiencies	 that	 exist	 in	 current	 prostate	
cancer	 detection	 and	 diagnosis	methodologies.	 Currently,	 humans	 are	 involved	 in	
the	analysis	and	interpretation	of	images	in	prostate	cancer	detection	and	diagnosis.	
Limitations	and	 issues	 facing	a	 radiologist	 can	be	divided	 into	 three	areas:	human	
visual	perception,	 the	complexity	and	overlap	of	 tumor	 features	 in	 the	MR	 images	
being	 analyzed,	 and	 inter/intra-human	 variability3,4.	 Image	 complexities	 further	
hinder	 the	 limitations	 on	 human	 visual	 perceptions	 due	 to	 the	 complex	 nature	 of	
patterns,	 intensity	 variations,	 and	 structures	 seen	 in	 many	 cancer	 tumors4.	 In	
addition,	 reading	and	 interpreting	MR	 images	 is	a	subjective	process	and	 is	highly	
influenced	by	a	radiologist’s	experience	level,	training,	and	a	lack	of	standardization	
in	image	interpretation14.	The	subjective	nature	of	image	interpretation	can	lead	to	
errors	and	low	repeatability	in	the	diagnosis	of	prostate	cancer,	causing	costly	and	
invasive	over	biopsy	with	possible	incorrect	or	overtreatment,	and,	 in	the	extreme	
case,	undertreatment	of	a	patient	with	a	malignant	tumor.	To	underscore	experience	
level	as	an	issue,	several	 image	analysis	studies	using	deep	learning	methods	from	
Stanford	University	in	2017,	demonstrated	that	for	skin	cancer	diagnosis,	the	deep	
learning	classification	method	matched	dermatologist	accuracy5	and	for	pneumonia	
diagnosis,	the	deep	learning	CheXNet	image	analysis	algorithm	exceeded	4	Stanford	
radiologists	diagnosis	accuracy6.		

To	date,	many	of	the	computer	image	analysis	efforts	based	on	previous	ground	
truth	 biopsy	 results	 in	 prostate	 cancer	 detection	 have	 been	 directed	 at	 aiding	
radiologists	 by	 removing	 many	 of	 the	 limitations	 that	 currently	 exist	 in	 the	
interpretation	 of	 prostate	 cancer	 MR	 images4,15.	 These	 computer	 image	 analysis	
models	also	promise	to	improve	cancer	detection	and	treatment.	This	statement	has	
been	verified	in	several	studies.	The	first,	Chan	et	al.16,	and	verified	by	Dean	et	al.17,	
show	 a	 4%	 increase	 in	 breast	 cancer	 detection	 over	 current	 non-computer	 image	
analysis	assisted	methods.	In	fact,	Chan	et	al.16	also	proposed	that	a	computer	image	
analysis	could	be	of	added	benefit	to	radiologists	with	less	training	and	experience	
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than	 more	 experienced	 radiologists.	 Like	 authors	 mentioned	 in	 the	 skin	 cancer	
study5,	 and	 the	 pneumonia	 study6,	 the	 proposed	 hypothesis	 that	 computer	 image	
analysis	could	be	of	added	benefit	to	radiologists	with	less	training	and	experience	
by	Chan	et	al.	16,	was	later	proven	in	a	study	of	prostate	cancer	by	Hambrock	et	al.18.	
Several	other	studies	supporting	the	hypothesis	 that	computer	 image	analysis	will	
improve	cancer	detection	rates	are	also	cited	for	lung	and	colon	cancers	in	Lemaitre	
et	al15.	

Beyond	 aiding	 pathologists	 in	 image	 interpretation	 and	 cancer	 diagnosis	
accuracy,	 computer	 image	analysis	of	MRIs	also	shows	promise	 in	 the	areas	of	 in-
silico	 biopsy	 and	 radiogenomics.	 A	 very	 accurate,	 proven,	 and	 trusted	 image	
analysis	 method	 could	 one	 day	 fulfill	 the	 promise	 of	 in-silico	 (computer)	 biopsy,	
eliminating	 the	need	 for	 expensive,	 invasive,	 and	 time-consuming	biopsy	methods	
currently	 used	 today.	 Radiogenomics,	 also	 referred	 to	 as	 imaging	 genomics,	 has	
recently	 emerged	 as	 a	 new	 method	 in	 cancer	 research19.	 By	 combining	 image	
feature	analysis	and	high-throughput	genomics,	radiogenomics	seeks	to	further	the	
understanding	 of	 the	 biology	 of	 cancer	 tumors,	 improve	 diagnosis	 and	 treatment	
selection,	and	evaluate	clinical	outcome	and	response	to	cancer	treatment.	
	

MRI	
Multiparametric	MRI	 (mp-MRI)	 refers	 to	 a	 combination	 of	 anatomic	 imaging	 (T2-
weighted	 images:	T2WI),	 functional	 imaging	 (diffusion	weighted	 images:	DWI	and	
dynamic	contrast	enhancement	images:	DCE),	and	metabolic	imaging	also	known	as	
MR	spectroscopic	images20.	For	this	study,	the	mp-MRI	image	set	will	include	T2WI	
and	DWI.	

Here	some	basic	MRI	physics	will	be	explained,	and	how	T2W	and	DWI	relate	to	
prostate	cancer	 imaging.	 In	an	MRI	magnetic	 field,	a	 radio	 frequency	(RF)	pulse	 is	
applied	 causing	 the	 protons	 in	 the	 atoms	 in	 the	 body	 to	 spin	 transverse	 to	 the	
magnetic	plane.	T2W	images	are	characterized	by	transverse	relaxation	time,	which	
is	the	time	it	takes	protons	that	have	been	excited	by	the	RF	pulse	to	decay	to	their	
natural	state	or	lose	phase	with	each	other.	This	relaxation	time	is	dependent	on	the	
tissue	type	being	imaged	with	T2W	images	highlighting	both	fatty	tissue	and	tissue	
water	content.	For	prostate	cancer,	T2W	images	have	shown	to	be	most	useful	 for	
showing	 extracapsular	 extension	 of	 cancer	 tumors	 and	 intrusion	 into	 the	 seminal	
vesicle13.	 However,	 in	 the	 prostate	 central	 and	 transitional	 zones,	 where	 both	
healthy	and	cancerous	 tissue	both	have	similar	 signal	 intensity,	T2W	suffers	 in	 its	
ability	 to	 differentiate	 these	 tissue	 types21.	 The	 DWI	 functional	MRI	 relies	 on	 the	
diffusion,	 or	 motion,	 of	 a	 water	 molecule	 in	 body	 tissue.	 More	 specifically,	 the	
cellular	 density	 (cellularity)	 and	 the	 degree	 to	which	 the	 cellular	membranes	 are	
intact,	will	affect	the	diffusion	of	the	water	molecules	measured	in	DWI.	In	addition	
to	DWI,	the	apparent	diffusion	coefficient	(ADC)	map	is	also	used	in	prostate	cancer	
imaging.	The	ADC	 is	a	quantitative	measure	of	 the	amount	of	diffusion	 in	a	 tissue.	
DWI	can	overcome	some	of	the	failings	of	T2W	to	detect	prostate	cancer	tumors	by	
its	 ability	 to	 use	 ADC	 values	 to	 better	 differentiate	 between	 healthy	 tissue	 and	
malignant	 and	 benign	 tumors21.	 Due	 to	 the	 increased	 cellular	 density	 and	
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corresponding	 low	diffusion	 rate	 found	 the	 cancerous	 tissues22,	 these	areas	of	 the	
prostate	gland	are	shown	to	have	lower	ADC	values	when	prostate	cancer	is	present.	
	

Current	PCa	Imaging	Methodology	and	Methods	
A	 review	 of	 current	 literature	 shows	 two	 preferred	 computer	 aided	 MRI	 image	
analysis	 methods	 for	 prostate	 cancer	 detection	 and	 classification:	 Convolutional	
Neural	 Networks	 (CNN)8,23,24,25,	 and	 texture	 feature	 extraction	 and	
classification3,9,26,27,28.	 In	 addition	 to	 using	 T2W	 MRI	 to	 aid	 in	 the	 detection	 and	
classification	 of	 prostate	 tumors,	 several	 previous	 studies10,21,22,29,30	 show	 that	
combining	DWI	MRI	with	T2W	MRI	will	produce	better	classification	accuracy	than	
can	be	obtained	using	T2W	images	alone.	

Since	 this	 project	 will	 focus	 on	 texture	 feature	 extraction	 and	 classification	
methods,	it	is	that	literature	which	has	been	reviewed.	Table	1	shows	a	summary	of	
the	top	texture	feature	extraction	methods3,26,28,	dimension	reduction	methods3,26,31,	
and	classification	methods10	found	in	current	literature.		
	
	 Popular	Methods	
Feature	Extraction	 Grey	Level	Co-occurrence	Matrix	(GLCM),	Wavelets,	First	

order	statistics	(Mean,	median,	standard	deviation)	
Dimension	Reduction	 Minimum-Redundancy–Maximum-Relevancy	(mRMR),	

Lasso	and	Ridge	Regression	
Classification	 Support	Vector	Machine	(SVM),	Random	Forests	

	
Table	 1.	 Top	 feature	 extraction,	 dimensionality	 reduction,	 and	 classification	 methods	
obtained	from	current	literature.	
	
	

Project	Definition		
Evaluate	 the	 feasibility	 of	 machine	 learning	methods	 based	 on	 feature	 extraction	
and	classification	for	differentiating	benign	and	malignant	prostate	cancer	tumors	in	
mp-MRI	with	the	intent	of	building	an	algorithm	that	best	reduces	over-biopsy	and	
enables	 in-silico	 biopsy.	 The	 model	 will	 use	 regions	 of	 interest	 (ROI)	 in	 2D	
multiparametric	magnetic	 resonance	 images	 (mp-MRI)	 selected	 by	 the	 radiologist	
as	 possible	 prostate	 cancer	 tumors.	 This	 project	 will	 evaluate	 various	 extracted	
texture	 features,	 dimensionality	 reduction,	 and	 machine	 learning	 classification	
methods	to	determine	the	computer-aided	analysis	model,	or	models,	 that	provide	
the	 greatest	 classification	 accuracy	 for	 malignant	 and	 benign	 prostate	 cancer	
images.		
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Chapter	2:	Materials	and	Methods	

Image	dataset	
Both	T2W	and	DWI	sets	have	been	obtained	from	a	cohort	of	81	patients	and	have	
been	correlated	with	biopsy	results	 for	both	malignant	and	benign	 tumors.	 In	 this	
dataset	 the	 classification	 of	malignant	 is	 defined	 by	 a	 Gleason	 score	 of	 >	 6	 and	 a	
benign	classification	is	defined	as	not	having	a	Gleason	score.	All	of	the	patients	in	
this	 study	 had	 previously	 undergone	 TRUS	 biopsy	 that	 yielded	 indeterminate	
results	and	thus	were	re-screened	using	the	MRI	 in-bore	guided	biopsy	method.	 It	
was	 from	 this	 second	 biopsy	 that	 the	 Gleason	 scores	 and	 malignant/benign	
classification	were	obtained.		

Of	the	81	patients	currently	in	the	dataset,	3	were	omitted	from	the	dataset	due	
to	 inconclusive	 biopsy	 results	 (Atypical	 small	 acinar	 proliferation),	 yielding	 78	
patients	 for	 this	 study.	 It	 should	 be	 noted	 that	 only	 images	 that	were	 deemed	 as	
possibly	 cancerous	 by	 a	 radiologist	 have	 been	 included	 in	 this	 dataset,	 and	 as	 a	
consequence,	all	patients	do	not	all	have	the	same	number	of	images.	Table	2	shows	
the	 distribution	 of	 patients	 and	 their	 associated	 images	 for	 the	 benign	 and	
malignant	 classes,	 patient	 image	 set	 size	 range,	 and	 the	distribution	of	 images	 for	
the	transition	zone	(TZ)	and	the	peripheral	zone	(PZ)	of	the	prostate	gland.		

	
	 Patients	 Images	 Patient	image	set	

size	range	
PZ	

Images	
TZ	

Images	
Benign	 23	 64	 1	-	6	 21	 43	
Malignant	 55	 155	 1	-	8	 50	 105	
Total	 78	 219	 	 71	 148	

Table	2.	Distribution	of	benign	and	malignant	patients	and	images.	
	
As	 one	 can	 see,	 the	 dataset	 is	 unbalanced	 having	 more	 malignant	 patients	 and	
images	than	benign.	The	unbalanced	distribution	of	the	dataset	will	cause	a	bias	in	
prediction	towards	the	malignant	class	at	the	expense	of	misclassifying	the	benign	
class.	In	an	attempt	to	balance	the	dataset	between	malignant	and	benign	images,	an	
oversampling	 technique	will	 be	 used	where	 all	 64	 benign	 images,	 and	 associated	
patients,	 will	 be	 reused	 during	 the	 training	 and	 test	 process.	 This	 method	 will	
essentially	increase	the	benign	image	set	to	128	and	leave	the	malignant	image	set	
at	 155,	 while	 allowing	 the	 study	 to	 include	 all	 78	 patients	 and	 their	 associated	
images.	 Although	 the	 oversampling	 method	 better	 balances	 the	 dataset,	 an	
imbalance	 of	 27	 benign	 images	 still	 exists.	 The	 exact	 details	 regarding	 the	
implementation	 of	 this	 dataset	 balancing	 method	 are	 outlined	 in	 the	 model	
evaluation	section	later	in	the	document.	
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Figure	2	serves	to	highlight	differences	and	similarities	between	T2W	and	DWI	
ADCmap	images	for	both	malignant	and	benign	cases.	As	can	be	seen	the	ADCmap	
images	show	a	better	contrast	between	the	ROI	and	healthy	tissue	than	do	the	T2W	
images	
	

	
	

Figure	2.	Malignant	and	benign	image	comparisons.	The	ROI	for	each	image	is	indicated	by	
the	red	arrow.	(a)	Benign	T2W	image,	(b)	malignant	T2W,	(c)	benign	ADCmap	with,	and	(d)	

malignant	ADCmap.		
	

	
To	aid	in	image	analysis	efforts,	the	regions	of	interest	(ROI)	have	been	outlined	

by	 radiologists	 for	 the	 T2W	 and	 ADC	 images,	 and	 will	 be	 used	 by	 the	 computer	
image	analysis	models	for	classification	of	images.	Figure	3	shows	examples	of	both	
types	of	mp-MR	images	obtained	for	this	project.		
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Figure	3.	T2W	and	DWI	ADC	ROI	Images.	(a)	shows	a	T2W	image	with	the	ROI	outlined	in	
red,	indicated	by	the	red	arrow,	(b)	shows	a	DWI	ADC	map	with	region	of	interest	indicated	

by	the	red	arrow.	
	

Image	analysis	workflow	
The	image	analysis	workflow	in	Figure	4	applies	an	image	pre-processing	step	to	de-
noise	and	generate	extracted	ROI	images	from	both	the	T2WI	and	ADCmaps.	
	

	
	

Figure	4.	Image	analysis	algorithm	
	
Both	original	and	de-noised	versions	of	the	T2WI	and	ADCmaps	are	used	to	create	
the	 ROI	 images.	 Once	 the	 ROI	 images	 have	 been	 created,	 five	 feature	 extraction	
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methods,	 described	 in	 the	 next	 section,	 are	 used	 to	 create	 texture	 feature	 vectors	
from	these	images.	The	appropriate	malignant	and	benign	class	is	assigned	to	each	
feature	vector	for	use	in	later	supervised	learning	steps.	In	order	to	identify	features	
that	best	describe	each	class,	 three	dimensionality	reduction	and	 feature	selection	
methods	 have	 been	 used:	 maximum	 relevance	 minimum	 redundancy	 (mRMR),	
autoencoder,	 and	 Elastic	 Net,	 are	 applied	 to	 the	 full	 texture	 feature	 vectors	 to	
produce	 reduced	 texture	 feature	 vectors	 associated	with	 each	 class.	 The	 reduced	
texture	 feature	 vectors	 are	 then	 used	 by	 three	 supervised	 machine	 learning	
classification	 techniques:	 Support	 Vector	 Machine	 (SVM),	 Random	 Forest,	 and	
Linear	 Regression,	 to	 classify	 the	 images,	 and	 produce	 a	 Receiver	 Operating	
Characteristic	 (ROC)	curve.	The	ROC	curve	will	be	used	to	analyze	 the	accuracy	of	
the	various	methods	in	order	to	obtain	the	best	image	analysis	model.	

In	 determining	 the	 best	 image	 analysis	 model,	 cross	 combinations	 of	 the	 5	
texture	 feature	 extraction	 methods,	 3	 dimension	 reduction	 methods,	 and	 3	
classification	methods	will	be	used.	 In	addition,	 the	T2W	and	ADC	ROI	 images	will	
be	 used	 separately	 and	 together,	 as	 inputs	 to	 each	 cross-combination	 model,	 to	
determine	which	 image	modality	 best	 predicts	 the	malignant	 and	 benign	 classes.	
The	 final	goal	 is	not	only	 to	develop	 the	best	prediction	 image	analysis	algorithm,	
but	also	to	gain	an	understanding	of	the	MRI	modality	type	and	image	features	that	
can	best	predict	malignant	and	benign	prostate	cancer	in	the	given	dataset.		
	

Image	Pre-processing	
In	this	study	the	 image	pre-processing	step	contains	two	elements:	 the	removal	of	
any	unwanted	noise	“de-noising”	from	the	original	images,	and	extraction	of	the	ROI	
portion	from	the	complete	MR	image.	

In	 any	 image,	 unwanted	 noise	 is	 added	 to	 the	 image	 during	 the	 acquisition	
process	and/or	during	subsequent	processing	steps.	It	is	because	of	this	unwanted	
noise,	 that	 image	de-noising	techniques	are	employed	 in	an	attempt	to	restore	the	
original	image	integrity	for	more	accurate	analysis.	Several	reports	list	noise	in	MRI	
images	 follows	 a	 Rician	 distribution32,33	while	 another	 report	 indicates	MRI	 noise	
consists	 mainly	 of	 Salt	 and	 Pepper,	 Speckle,	 Gaussian	 and	 Poisson	 noise34. Many	
image	 de-noising	 techniques	 exist,	 from	 which	 three	 are	 used	 in	 this	 study:	 the	
median	 filter,	 variational	 autoencoder,	 and	 the	 convolutional	 autoencoder.	 The	
order-specific	median	filter	is	perhaps	the	simplest	and	most	used	de-noising	filter	
in	image	processing.	The	median	filter	is	popular	for	its	ability	to	remove	or	reduce	
random	 noise,	 and	 is	 specifically	 effective	 in	 removing	 salt	 and	 paper	 (impulse)	
noise	while	adding	less	blurring	than	similar	sized	smoothing	filters35.	The	median	
filter	works	by	replacing	the	intensity	value	of	a	given	pixel	with	the	median	values	
of	pixels	in	a	given	local	neighborhood	around	that	pixel. 

Autoencoders	 form	the	basis	 for	 two	of	 the	noise	reduction	techniques	used	 in	
this	 study.	 Since	 an	 autoencoder	 is	 also	 used	 as	 a	 dimensionality	 reduction	
technique	 described	 later	 in	 this	 paper,	 it	 is	 appropriate	 to	 discuss	 the	 basic	
autoencoder	 function	 at	 this	 time.	 An	 autoencoder	 is	 a	 fully	 connected	 neural	
network	 (NN),	 with	 the	 goal	 of	 the	 output	 reproducing	 the	 values	 present	 at	 the	
input	 of	 the	 network.	 Figure	 5	 shows	 a	 three	 layer	 autoencoder	 consisting	 of	 an	
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input	and	output	layer	of	m	neurons,	and	a	hidden	layer	of	n	neurons,	where	n	<	m.	
The	autoencoder	is	composed	of	two	parts:	an	encoder	and	a	decoder.	The	hidden	
layer	shown	in	Figure	5,	also	known	as	the	latent	layer,	is	an	encoded	version	of	the	
autoencoder’s	input	variables.		
	

	
	

Figure	5.	Simple	autoencoder	configuration.	
	

From	the	base	autoencoder	concept,	two	types	of	autoencoder	are	shown36,37	for	
image	 de-noising:	 the	 De-noising	 Autoencoder	 (DAE),	 and	 the	 Variational	
Autoencoder	 (VAE).	 The	 DAE	 follows	 the	 architecture	 of	 the	 basic	 autoencoder	
shown	in	figure	5.	In	the	encoder	portion	of	the	DAE,	the	input	is	converted	into	the	
latent	 encoded	 vector,	which	 contains	 a	 single	 value	 for	 each	 encoded	dimension.	
One	 issue	with	 the	 encoding	method	 of	 the	DAE	 as	 a	 generative	model	 is	 that	 its	
encoded	latent	layer	may	not	be	continuous.	The	discontinuous	nature	of	the	DAE’s	
latent	layer	will	tend	to	cluster	images	together,	making	it	useful	for	replicating	the	
same	images,	but	does	not	allow	easy	interpolation	of	images	that	differ	from	those	
used	to	train	the	model.		

In	contrast	to	the	DAE,	the	VAE	encodes	an	input	in	a	probabilistic	manner.	This	
probabilistic	encoding	provides	a	continuous	latent	space,	and	describes	each	latent	
variable	 as	 a	 probability	 distribution	 and	not	 a	 single	 value	 as	 does	 the	DAE.	The	
decoder	 portion	 of	 the	 VAE	 randomly	 samples	 from	 the	 latent	 distributions	 to	
reconstruct	the	input	at	the	output	of	the	encoder.	In	order	to	achieve	a	continuous	
latent	space,	it	is	assumed	the	prior	follows	a	normal	distribution,	and	the	VAE	splits	
up	the	 latent	vector	 into	two	vectors,	one	of	the	 input	means,	and	the	other	of	the	
input	 standard	 deviations	 as	 shown	 in	 Figure	 6.	 The	 VAE	 decoder	 samples	 and	
generates	 the	sample	 layer	 from	the	 latent	distribution	 layers,	mean	and	standard	
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deviation,	 created	 from	each	 input	variable.	This	sampled	 layer	 is	 the	 input	 to	 the	
decoder,	which	attempts	to	reconstruct	the	input	at	the	output	layer	of	the	network.		
	

		
Figure	6.	Variational	Autoencoder.	Latent	distributions	showing	the	mean	and	standard	

deviation	latent	layers	and	sampled	input	layer	to	the	decoder.	
	
Because	 the	 VAE	 encodes	 a	 continuous	 latent	 space	 that	 allows	 for	 interpolation	
between	encodings,	 it	 is	desired	that	these	encodings	be	as	close	as	possible	while	
still	 being	 distinct,	 allowing	 for	 smooth	 interpolation.	 To	 make	 sure	 that	 the	
encodings	follow	this	desire,	the	Kullback–Leibler	divergence	(KL)	term	is	added	to	
the	loss	function:	
	

€ 

L θ,φ;xi( ) = −DKL (qφ (z | xi) || pθ (z) + Eqφ (z|xi )
[log pθ (xi | z)]	 	 (2)	

	
where	the	first	 term	is	the	KL	divergence	containing	the	continuous	 latent	variable	

€ 

q(z | xi) ,	 and	 the	 second	 term	 is	 expected	 reconstruction	 error37	 containing	 the	
reconstructed	 image	

€ 

pθ (xi | z) .	 In	 this	 study,	 both	 binary	 cross-entropy	 and	 mean	
squared	error	will	be	used	as	the	reconstruction	error	function	to	determine	which,	
if	either,	yields	the	best	network	performance.		
In	practice,	due	to	random	sampling	of	the	latent	distributions	used	to	calculate	the	
sampled	layer,	model	training	using	backpropagation	becomes	very	difficult37,38.	We	
can	 still	 use	 backpropagation	 however	 by	 employing	 a	 method	 knows	 as	 the	
“reparameterization	 trick”37,38.	 The	 “reparameterization	 trick”	 takes	 a	 random	
sample	ε	from	a	unit	Gaussian	distribution;	the	sample	ε	is	then	shifted	by	the	mean	
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of	the	latent	distribution,	and	scales	it	by	the	latent	distributions	standard	deviation.	
This	yields	a	new	sampled	distribution	Z	in	the	form:	
	
	 	 	 	

€ 

z = µ +σ ⊗ε 	 	 		 	 	 	 							(3)	
	
and	the	new	loss	function	can	be	written	as:		
	

€ 

L(θ,φ;xi) ≈ 0.5 (1+ log(σ j
2

j=1

J

∑ ) − µ j
2 −σ j

2) +
1
L

log(pθ
l=1

L

∑ (xi | zi,l )) 		 	 (4)	

	 	
	

 
where	

€ 

zi, j = µi +σ i ⊗ε l 	
	

For	 the	VAE	 implementation	 in	 this	project,	 the	 input	 images	are	 cropped	 to	a	
standard	size	of	200x200	pixels	centered	on	the	ROI.	The	cropped	images	are	then	
flattened	into	a	vector	of	40,000	pixel	 intensity	values	that	will	be	the	input	to	the	
VAE	and	also	used	at	the	output	of	the	VAE	during	training.	Hidden	layers	Y	and	Y’	
consist	 of	 2000	 nodes	 fully	 connected	 to	 the	 input	 and	 output	 layers.	 Finally,	 the	
latent	 layers	mean	 and	 standard	 deviation,	 along	with	 the	 sampled	 layer,	 contain	
200	nodes	each.	

In	 addition	 to	 using	 de-noising	 autoencoders	 such	 as	 the	 VAE,	 that	 use	 one-
dimensional	 input	 vectors	 constructed	 from	 an	 image,	 a	 two-dimensional	 input	
Convolutional	 Autoencoder	 (CAE)	 can	 be	 used	 for	 image	 denoising39,	 and	
dimensionality	reduction.	The	CAE	is	based	on	the	conventional	autoencoder	model	
containing	 both	 encoding	 and	decoding	 layers.	Unlike	 the	 autoencoders	 discussed	
thus	 far,	 which	 have	 fully	 connected	 layers,	 the	 CAE	 is	 based	 on	 Convolutional	
Neural	Network	(CNN)	architecture.	The	CNN	has	become	a	mainstay	 in	computer	
vision	 and	 has	 also	 shown	 to	 be	 valuable	 in	 prostate	 MRI	 analysis	 and	
classification8,23,24,25.	A	CNN	 is	 like	a	conventional	neural	net	 (NN)	 in	 that	 the	CNN	
contains	hidden	layers	of	neurons	that	have	weights	and	bias	that	can	be	configured	
during	 the	 learning	process.	The	CNN	also	 shares	 similar	 computations	 to	 the	NN	
such	 as	 sum	 of	 products,	 added	 bias,	 and	 results	 passed	 through	 activation	
functions,	 where	 the	 activation	 value	 becomes	 the	 input	 to	 the	 next	 neuron.	
However,	 unlike	 conventional	 neural	 networks	 that	 use	 a	 vector	 as	 an	 input,	 the	
CNN	uses	2-D	arrays	(images)	thus	making	them	ideal	for	analyzing	and	classifying	
images.	One	advantage	of	using	a	CNN	over	a	NN	for	image	analysis	is	that	a	NN	does	
not	scale	well	to	full	images	due	to	their	fully	connected	layer	architecture.	This	fully	
connected	 architecture	 rapidly	 increases	 the	 number	 of	 learnable	 weights	 as	 the	
image	size	 increases	and	will	become	computationally	unmanageable	and	possibly	
lead	 to	overfitting	of	 the	net.	Because	 the	CNN	assumes	 the	 inputs	are	 images	 the	
architecture	can	be	modified	to	be	more	efficient	for	image	specific	tasks	utilizing	a	
3D	 connection	 of	 neurons.	 Figure	 7	 shows	 a	 LeNet	 architecture	 of	 a	 CNN	 as	 an	
example	of	the	general	elements	(layers)	contained	in	a	CNN.		
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Figure	7.	Example	of	a	CNN35.		

	
The	input	stage	of	the	CNN	employs	neighborhood	processing	of	a	receptive	field	in	
the	 input	 image.	 The	 computation	 of	 the	 receptive	 field	 employs	 sum	of	 products	
and	 set	 of	 kernel	weights	 and	 is	 commonly	 known	 as	 the	 convolution	 layer.	 Each	
convolution	 produces	 a	 single	 value	 to	 which	 a	 bias	 is	 added	 and	 passed	 to	 an	
activation	 function.	 There	 are	 several	 choices	 of	 activation	 functions	 including	
sigmoid,	tanh,	and	rectified	linear	unit	(ReLU).	This	layer	is	commonly	known	as	the	
activation	layer	and	can	be	thought	of	as	the	output	of	the	neuron.	A	2D	array,	called	
a	feature	map,	 is	created	from	the	output	of	the	activation	layer.	The	process	after	
convolution	 and	 activation	 is	 subsampling	 (or	 pooling),	 and	 is	 used	 to	 reduce	 the	
size	of	 the	feature	maps	creating	a	set	of	pooled	feature	maps	(one	pooled	feature	
map	 for	 each	 feature	 map).	 In	 addition	 to	 subsampling	 pooling	 helps	 with	
translational	and	rotational	 invariance.	There	are	several	methods	of	 reducing	 the	
feature	maps	including	averaging	of	values	in	a	field	or	the	maximum	of	value	in	a	
field.	 Commonly	 a	 2x2	 field,	 or	 pooling	 neighborhood,	 is	 used	 in	 the	 subsampling	
layer.	The	convolution,	activation,	and	pooling	 layers	can	be	repeated	a	number	of	
times	to	tune	the	CNN	for	optimal	performance.	In	Figure	7,	we	observe	two	sets	of	
convolution,	 activation,	 and	 pooling	 layers	with	 the	 inputs	 to	 the	 2nd	 convolution	
layer	being	the	pooled	feature	maps.	In	the	final	output	stage	of	the	CNN,	the	pooled	
feature	maps	 are	 vectorized	 to	 create	 a	 single	 input	 vector	 used	 as	 the	 input	 of	 a	
fully	connected	neural	net	(FC	layer).	

Unlike	the	general	example	of	the	CNN	shown	in	Figure	7,	the	CAE	used	in	this	
project,	shown	in	Figure	8,	does	not	have	a	final	FC	layer	since	the	CNN	is	being	used	
as	an	autoencoder.	Like	the	VAE,	the	input	images	are	cropped	to	a	standard	size	of	
200x200	pixels	centered	on	 the	ROI.	These	 images	are	used	at	both	 the	 input	and	
output	layers	during	training	of	the	CAE.	The	feature	maps	and	pooled	feature	maps	
have	a	depth	of	32	and	the	size	are	scaled	down	twice	in	the	encoder,	and	scaled	up	
twice	 in	 the	 decoder.	 All	 activation	 functions	 are	 ReLU	with	 the	 exception	 of	 the	
output	convolution	layer	where	a	sigmoid	function	is	used.		
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Figure	8.	CAE	as	implemented	for	this	project.	

	
	

The	 second	 step	 in	 the	 image	 pre-processing	 phase	 is	 ROI	 extraction,	 using	
either	 the	 original	 or	 de-noised	 images.	 The	 original	 image	 dataset	 contains	 both	
modes	of	the	MR	images,	and	ROI	masks	obtained	from	a	radiologist.	These	masks	
are	images	where	the	radiologist	outlined	ROI	area	with	white	(255	grey	scale)	and	
the	remaining	image	is	black	(0	grey	scale),	and	are	aligned	with	the	MR	images.	By	
normalizing	the	ROI	mask,	and	then	multiplying	the	mask	with	the	MR	image,	a	new	
image	with	 just	 the	ROI	visible.	To	reduce	 image	storage	space	and	compute	 time,	
the	new	ROI	image	is	cropped	to	the	size	of	the	visible	ROI,	to	produce	the	final	ROI	
image	as	shown	in	Figure	9.	It	is	this	final	cropped	ROI	image	that	will	be	used	for	
feature	extraction.	
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Figure	9.	Extraction	of	a	ROI	image.	(a)	Original	or	de-noised	MR	image,	(b)	ROI	mask,	(c)	

Resulting	cropped	final	ROI	image	
	

Texture	Feature	Extraction	
The	term	texture	is	generally	accepted	as	a	way	to	characterize	a	region	of	an	object.	
There	 are	many	ways	 to	 characterize	 a	 texture,	with	 some	of	 the	most	 commonly	
used	methods	being	periodicity,	 intensity,	and	heterogeneity.	 In	this	study,	texture	
feature	extraction	of	the	image	ROI	areas	will	be	accomplished	using	three	statistical	
matrix	 methods:	 grey-level	 co-occurrence	 matrix	 (GLCM),	 grey-level	 size	 zone	
matrix	 (GLSZM),	 and	grey-level	 run	 length	matrix	 (GLRLM).	 In	 and	effort	 to	make	
the	 matrices	 less	 sensitive	 to	 noise,	 one	 approach	 is	 to	 quantize	 the	 intensities	
(grey-levels)	 into	 a	 smaller	number	of	 groups.	Before	 feature	 extraction,	 the	pixel	
intensity	values	will	be	binned	 in	 sizes	of:	1	 (original	 image),	8,	16,	 and	32.	As	an	
example	of	bin	size	8,	intensity	values	from	1-7	are	set	to	1,	intensity	values	of	8-15	
are	set	 to	2	and	so	on.	 In	addition,	Multiresolution	Fractal	Dimension	analysis	and	
Local	Binary	Pattern	(LBP),	will	also	be	used.	Thibault	et.	al.40,41	discuss	the	use	of	
these	statistical	matrices	in	cell	nuclei	classification	and	the	analysis	of	MR	images	in	
breast	cancer	 therapy	response42.	This	project	will	evaluate	 these	methods	 for	 the	
possibility	 of	 enhancing	 the	 analysis	 and	 classification	 of	 prostate	 cancer	mp-MR	
images.	

The	 GLCM	 is	 a	 popular	 and	 widely	 used	 statistical	 method	 of	 texture	 feature	
extraction	based	on	the	spatial	relationship	of	pixels	in	an	image	by	calculating	the	
second	order	statistics	of	image	texture.	The	GLCM	is	an	NxN	matrix	where	N	in	the	
total	number	of	grey	level	intensity	values	for	a	given	image.	The	(i,j)th	entry	in	the	
matrix	represents	the	total	number	of	times	a	pixel	with	a	grey	level	of	i	is	separated	
from	another	pixel	with	a	grey	level	value	of	j	separated	by	a	distance	k	for	a	given	
displacement	vector	

€ 

d
→

= (dx,dy ) .	This	calculation	is	shown	in	equation	5:	
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dM (i, j) = card
((r,s),(r + dx,s+ dy )) /
I(r,s) = i,I(r + dx,s+ dy ) = j

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 	 	 (5)	

	
Figure	10	shows	the	adjacency	directions	(0o,	45o,	90o,	135o)	that	make	up	the	four	
matrices	from	which	the	Haralick	features	are	calculated.		
	

	
Figure	10.	The	four	directions	of	adjacency.	

	
	
Figure	 11	 shows	 and	 example	 of	 the	 construction	 of	 a	 GLCM	 using	 a	 pixel	 pair	
relationship	of	d=1,	angle	=	0o.	It	can	be	seen	that	the	pair	(1,1)	occurs	only	once	in	
image	f	where	the	pair	(6,2)	occurs	3	times.		
	

	
Figure	11.	Co-occurrence	matrix	construction	example	for	an	image	consisting	of	8	grey	

levels35.	
	
In	 the	 example	 shown	 in	 figure	 10	 there	 are	 only	 8	 grey	 levels	 making	 the	 co-
occurrence	matrix	relatively	small,	however	for	images	with	larger	numbers	of	grey	
levels,	e.g.	256	or	even	65535,	the	co-occurrence	matrix	can	become	quite	large	and	
computationally	expensive.	There	are	a	number	of	useful	statistical	descriptors	that	
can	be	used	 to	characterize	a	GLCM.	 In	 this	study,	13	Haralick	 features43,44	will	be	
extracted	 from	 the	 ROI	 images.	 Note	 that	 intensity	 0	 is	 considered	 background	
around	 the	 ROI	 and	 is	 not	 used	 in	 any	 feature	 extraction	 calculations	 by	 the	
software.	 Once	 the	 image	 intensity	 values	 have	 been	 binned,	 the	 features	 are	
extracted	and	 feature	vectors	generated.	The	 feature	vectors	are	generated	 in	 two	
ways:	 a	 composite	 of	 the	 13	 Haralick	 features	 generated	 in	 each	 of	 the	 four	
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directions,	 yielding	 a	 vector	 of	 length	 52,	 and	 a	 rotationally	 invariant	 feature	 set	
averaging	all	four	directions,	yielding	a	vector	of	length	13.	

The	 LBP	 texture	 analysis	 method	 is	 known	 for	 its	 grey	 scale	 invariance,	
robustness	 to	 noise,	 and	 characterization	 power.	 The	 general	 LBP	method	 uses	 a	
pixel	 neighborhood,	 usually	 3x3,	 the	 pixel	 intensities	 in	 the	 neighborhood	 are	
thresholded	 using	 the	 center	 pixel	 value,	 a	 pattern	 is	 computed,	 and	 the	 pattern	
value	assigned	to	the	center	pixel.	 	Figure	12	shows	the	steps	used	to	calculate	the	
neighborhood	LBP	score.	
	

	
Figure	12.	Steps	used	to	calculate	the	neighborhood	LBP	score.	(a)	Original	image	3x3	
neighborhood,	(b)	thresholding	derived	binary	values,	(c)	weight	matrix,	(d)	resulting	

matrix	used	to	calculate	LBP	score45.	
	

Figure	12a	shows	the	 image	neighborhood	used	 to	calculate	 the	LBP	score	 for	 the	
center	pixel.	The	center	pixel	 is	also	used	as	the	threshold	value	(in	this	case	6)	to	
create	the	binary	values	of	the	neighboring	pixels	shown	in	Figure	12b.	If	a	pixel	is	
below	the	center	pixel	threshold	value	then	it	is	assigned	0,	or	1	otherwise:	
	

	 	 	 	 (6)	
	
Where	G(x,y)	 is	 the	assigned	binary	value,	 I(0,0)	 is	 the	center	pixel	 intensity	value	
(threshold)	and	I(x,y)	is	the	intensity	value	of	the	neighboring	pixels.	The	resulting	
threshold	 binary	 values	 undergo	 and	 element-wise	 multiplication	 with	 weighted	
values	(figure	12c)	to	produce	a	result	matrix	shown	in	figure	12d.	The	LBP	score	is	
determined	by	summing	the	resulting	values	in	figure	12d,	in	this	example	the	LBP	
score	is:	2+8+16+128	=	154.	All	resulting	LBP	scores	are	used	to	build	a	histogram,	
which	represents	the	structural	texture	characteristics	of	the	image.	
For	a	3x3	neighborhood,	8	pixels	are	used	to	calculate	the	LBP,	known	as	the	LBP8	
operator46.	The	LBP8	operator	generates	a	total	of	256	unique	binary	patterns	from	
the	8	pixel	values	surrounding	 the	center	pixel.	 If	 the	 image	 is	 rotated,	a	different	
pattern	contained	in	the	256	pattern	set	will	be	selected.	To	remove	this	rotational	
effect,	36	unique	rotational	invariant	patterns	can	be	identified	using	the	definition:	
	

€ 

LBP8
ri36 =min ROR(LNP8,i) | i = 0,1,...,7{ } 	 	 	 (7)	
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where	ROR(x,i)	is	a	right	clockwise	pixel	rotation	that	yields	the	maximal	number	of	
most	significant	bits	as	0,	or	a	right	shift	of	the	8-bit	binary	pattern	x,	 i	number	of	
times.	

€ 

LBP8
ri36 	can	be	considered	a	feature	detector	as	it	quantifies	the	occurrence	of	

these	36	patterns	to	various	features	contained	in	the	 image.	This	study	will	use	a	
histogram	of	 the	36	rotationally	 invariant	patterns	 to	 form	the	LBP	 feature	vector	
for	 each	 MRI	 modality	 (T2W	 and	 ADC).	 Two	 histograms	 will	 be	 created,	 the	
standard	 LBP	 normalized	 histogram	 that	 shows	 the	 probabilities	 of	 each	 pattern	
extracted	 from	 an	 image,	 and	 a	 non-normalized	 histogram	 that	 contains	 pattern	
counts	for	the	36	patterns	calculated	from	the	image.	A	second	modification	to	the	
standard	LBP	methodology	 is	 to	analyze	the	effects	of	grey-level	 intensity	binning,	
as	 used	 in	 the	 GLCM,	 GLRLM,	 and	 GLSZM,	 compared	 to	 the	 standard	 method	 of	
analyzing	each	grey	level	individually,	which	in	this	case	is	256	grey-levels.	

The	 GLRLM	 is	 another	 widely	 used	 statistical	 matrix	 technique	 for	 texture	
characterization47.	In	the	GLRLM	a	run	is	defined	as	the	consecutive	pixels	with	the	
same	value	in	a	given	direction.	As	with	the	GLCM,	the	directions	used	to	calculate	
run	 length	 are	 (0o,	 45o,	 90o,	 135o).	 Since	 run	 calculations	 are	 symmetric,	 it	 is	 not	
necessary	 to	 use	 the	 directions	 (180o,	 225o,	 270o,	 315o)25.	 Each	 element	 of	 the	
GLRLM	 contains	 the	 number	 of	 runs	 for	 a	 given	 grey-level	 and	 run	 length.	 An	
example	of	the	calculation	of	a	GLRLM	using	an	image	with	4	grey	levels	is	shown	in	
Figure	13.		
	

	
Figure	13.	Example	of	the	calculation	of	a	GLRLM	using	an	image	with	4	grey	levels25.	

	
It	can	also	be	seen	in	Figure	13	that	the	height	of	the	matrix	is	dependent	on	grey-
levels,	and	the	number	of	columns	in	the	matrix	will	be	dynamic,	dependent	on	the	
size	 of	 the	 longest	 run	 length.	 After	 the	 GLRLM	 has	 been	 constructed	 statistical	
measures	 of	 moments	 from	 -2	 to	 2	 for	 the	 extracted	 texture	 features	 can	 be	
calculated.	In	this	study,	11	joint	statistics	will	be	calculated	as	proposed	in43,44	and	
are	shown	in	Table	3.		
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Table	3.	The	11	statistical	calculations	used	for	the	GLRLM.		
	
As	with	GLCM,	 images	will	 be	 binned	 in	 sizes	 of	 1	 (original	 image),	 8,	 16,	 and	32	
image	 intensity	 groups.	 After	 binning,	 features	 will	 be	 extracted	 to	 form	 feature	
vectors	of	length	44	when	using	the	four	directions	(0o,	45o,	90o,	135o),	and	a	feature	
vector	of	 length	11	will	be	calculated	 for	 the	 rotation	 invariant	averaging	of	 these	
four	directions.	

As	 a	 complement	 to	 the	 GLCM	 and	 GLRLM,	 Thibault	 et.	 al.41	 developed	 the	
GLSZM	to	characterize	the	homogeneity	of	an	image	texture	by	analyzing	zones	by	
their	size	and	grey-level	intensity.	A	homogeneous	texture	will	contain	large	areas	of	
the	same	grey-level	intensities	called	flat	zones.	The	more	homogeneous	the	texture	
the	 wider	 and	 flatter	 the	 matrix.	 An	 example	 of	 the	 computation	 of	 a	 GLSZM	 is	
shown	in	Figure	14.	
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Figure	14.	Calculation	of	a	GLSZM	from	and	image	containing	4	grey-levels40.	

	
The	size	of	 the	zone	 is	calculated	 from	pixels	of	 the	same	grey-level	connecting	 in	
any	direction.	In	this	example	note	that	grey-levels	of	2,	3,	and	4	all	have	zone	sizes	
of	3	but	are	connected	in	different	directions;	grey-level	3	in	the	diagonal	direction,	
grey-level	 2	 in	 the	 horizontal	 direction,	 and	 grey-level	 4	 in	 both	 the	 vertical	 and	
horizontal	directions.	Also,	 like	 the	GLRLM,	 the	GLSZM	contains	a	 fixed	number	of	
rows	determined	by	the	number	of	chosen	grey-levels	and	is	dynamic	with	respect	
to	 the	 number	 of	 columns	 which	 are	 determined	 by	 the	 size	 zones	 found	 in	 the	
image.	Another	aspect	of	the	GLSZM	is	that	 it	 is	 invariant	to	 image	translation	and	
rotation	whereas	the	GLCM	and	GLRLM	are	dependent	on	the	offset	and	orientation	
used	in	their	calculations.	The	same	11	joint	statistics	used	in	the	calculation	of	the	
GLRLM	will	be	used	 to	calculate	 the	GLSZM	and	are	shown	 in	Table	3.	For	clarity,	
“Run”	is	replaced	with	“Area”	in	the	feature	descriptions.		

There	are	many	ways	to	extract	 fractal-based	texture	 features	 from	and	image.	
In	this	study	the	multiresolution	fractal	dimension	texture	analysis	technique45	will	
be	investigated	for	texture	feature	extraction.	The	multiresolution	fractal	dimension	
technique	 for	 texture	 feature	 extraction	 is	 comprised	of	 two	 steps:	wavelet	 image	
decomposition	and	fractal	dimension	analysis	of	the	decomposed	image.	
Most	 tissue	 texture	 is	 shown	 to	 be	 heterogeneous,	 and	 as	 such,	 has	 more	
complicated	texture	features	than	does	a	homogeneous	texture.	It	is	because	of	this	
texture	heterogeneity	that	single	frequency	wavelet	decomposition	may	not	capture	
all	 of	 the	 texture	 features	 and	 thus	 a	 multiresolution	 approach	 is	 required.	 It	 is	
proposed	that	a	set	of	4	different	frequency	Gabor	wavelets	be	used	to	decompose	
the	image	texture	into	sub-bands	in	order	to	capture	multiple	frequency	channels	of	
the	texture.	

Fractal	dimension	will	be	calculated	from	the	Gabore	wavelet	decompositions	of	
the	 image	 using	 the	 Differential	 Box	 Counting	 (DBC)	 method50,51.	 The	 fractal	
dimension	calculation	in	the	DBC	method	is	given	by	equation	8:	
	

FD	=	

€ 

lim
r→ 0

logNr
log(1/r)

	 	 	 	 	 (8)	

	 	 	 	
In	 this	method	 the	 image	 is	 divided	 into	 grids	 of	 size	 SxS	 from	 the	 original	MxM	
image	matrix.	 The	 divisions	 are	 in	 increments	 of	 1/2n	 for	 n	 {1,2,4,…}	 until	 a	 4x4	
minimum	grid	 size	 is	 achieved.	Quantized	 intensity	 level	boxes	are	 calculated	and	
placed	on	the	image	in	what	could	be	considered	the	z-dimension	covering	each	SxS	
grid.	 The	 granularity	 H	 (height	 in	 the	 z-dimension)	 of	 the	 grey	 level	 boxes	 is	
computed	using:	H	=	G	(	S/M	),	where	G	is	the	total	number	of	grey	levels	present	in	
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the	MxM	image.	This	yields	SxSxH	3-dimensional	boxes	covering	the	MxM	image.	To	
compute	 the	 number	 of	 grey	 level	 boxes	 covering	 each	 SxS	 grid,	 we	 identify	 the	
lowest	grey	level	in	the	grid	and	assign	the	box	number	containing	that	grey	level	to	
k,	and	find	the	highest	grey	level	in	the	grid	and	assign	the	box	number	containing	
that	 level	 to	 l.	Thus	we	can	compute	the	thickness	of	 the	boxes	covering	a	specific	
SxS	grid	(i,j)	as:	
		

nr(i,j)	=	l	–	k	+	1	 	 	 	 	 (9)	
	
Over	the	entire	MxM	image,	nr(i,j)	can	be	summed	in	equation	10:	
	
	 	 	 	 Nr	=	

€ 

nr (i, j)
1< i<M ,1< j<M / S
∑ 		 	 	 	 	 (10)	

	
The	fractal	dimension	FD	can	be	estimated	from	the	least	squares	linear	fit	of	a	plot	
of	log(Nr)	vs.	log(1/r)	where	r	=	S/M.	
		
Once	the	fractal	dimensions	of	the	4	wavelet	decompositions	are	calculated,	the	sub-
band	decomposition	with	the	largest	fractal	dimension	is	then	further	decomposed	
using	 the	 4	 wavelet	 frequencies	 and	 these	 4	 decompositions	 are	 then	 used	 to	
calculate	fractal	dimensions.	Figure	15	shows	an	example	of	the	tree	structure	of	the	
wavelet/fractal	steps.		

	
	

Figure	15.	Wavelet	quad-tree	consisting	of	three	layers49.	Wavelet	decomposition	is	
performed	followed	by	fractal	dimension	calculation	to	determine	the	tree	branch	point.	
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In	 some	 cases,	 an	 in-between	 difference	 threshold	 is	 set	 to	 determine	 the	
termination	of	the	tree	when	all	 fractal	dimensions	are	within	this	threshold.	Here	
we	wish	 to	keep	 the	number	of	 fractal	dimensions	constant	 in	our	 texture	 feature	
vector	so	a	tree	depth	of	4	will	be	set	for	all	images,	resulting	in	16	fractal	dimension	
texture	features.	

Table	4	shows	a	summary	of	the	number	of	features	and	the	number	of	feature	
vectors	calculated	from	the	five	feature	extraction	methods	used	in	this	study.			
		
Feature	Extraction	
Method	

Number	of	Extracted	
Features	

Number	of	Feature	
Vectors	

GLCM	 13	per	adjacency	direction,	
for	a	total	of	52	for	all	four	
directions.	
13:	average	of	four	directions	

8	total:	4	adjacency	
directions	and	average	for	
each	of	the	4	intensity	bin	
sizes	

GLRLM	 11	per	adjacency	direction,	
for	a	total	of	44	for	all	four	
directions.	
11:	average	of	four	directions	

8	total:	4	adjacency	
directions	and	average	for	
each	of	the	4	intensity	bin	
sizes	

GLSZM	 11		 4	total:	1	for	each	intensity	
bin	size	

LBP	 36	 8	total:	4	normalized	for	
each	of	the	intensity	bin	
sizes,	and	4	non-normalized	
histograms	for	the	4	
intensity	bin	sizes	

MRFD	 4	per	adjacency	direction	for	
a	total	of	16	for	all	four	
directions.	
4:	average	of	four	directions	

2	total:	for	adjacency	
directions	and	average	of	the	
4	directions.		

Table	4.		Numbers	of	extracted	features	and	generated	feature	vectors	for	each	feature	
extraction	method.		

	
A	 total	 of	 30	 feature	 vectors	 are	 created	 for	 each	 of	 the	 T2W	 and	 ADC	 image	
modalities.	These	30	 feature	vectors	 from	each	 image	modality	 form	 the	basis	 for	
calculating	 the	multiparametric	 feature	 vectors.	 The	 following	 steps	were	 used	 in	
creating	 the	multiparametric	 feature	 vectors	 from	 the	 single	mode	T2W	 and	ADC	
feature	vectors:	
	

1) The	 30	 feature	 vectors	 from	 the	 T2W	 and	 ADC	 images	were	 used	with	 all	
models	 to	 determine	 a	 rank	 of	 features	 by	 AUC	 scores	 for	 each	 image	
modality.	

2) From	the	ranked	lists	of	AUC	scores	from	the	30	T2W	and	ADC	features,	the	
top	5	features	from	each	image	modality	were	selected,	a	vector	T5	=	[t1,	t2,	
t3,	t4,	t5]	for	T2W	and	a	vector	A5	=	[a1,	a2,	a3,	a4,	a5]	for	ADC.	

3) The	vectors	T5	 and	A5	 are	 combined,	A5	⊗	B5	 =	A5T	 T5	 =	 a	5	x	5	matrix	
containing	 the	 25	 top	 T2W	 and	 ADC	 combinations.	 The	 values	 from	 this	
matrix	from	a	vector	of	25	features	M1	=	[f1,	f2,	…,	f25].	
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4) A	 second	 vector,	M2,	 of	 30	 features	 was	 made	 from	 the	 adding	 the	 same	
feature	types	from	the	T2W	and	ADC	feature	sets.	Let	T24	=	[t1,	t2,	….,	t24],	
A24	=	[a1,	a2,	…,	a24]	and	M2	=	T24	+	A24	=	[t1a1,	t2a2,	……	t24a24].	As	an	
example,	 t1	 is	GLCM	Bin	size	1	 for	T2W	 images,	and	a1	 is	GLCM	Bin	size	1	
from	ADC	images.	

5) The	multiparametric	 features	 in	M1	 and	M2	were	 used	with	 all	models	 to	
determine	 a	 rank	 of	 features	 by	 AUC	 scores.	 The	 top	 5	 multiparametric	
features,	m1	–	m5	were	combined	to	form	a	set	of	combined	multiparametric	
features:	{m1m2,	m1m3,	m1m4,	m1m5,	m2m3,	m2m4,	m2m5,	m3m4,	m3m5,	
m4m5}.	

6) The	 set	 of	 combined	 multiparametric	 features	 determined	 in	 step	 5	 were	
then	used	with	all	models	to	determine	their	AUC	scores.	

	
In	 total,	 65	 multiparametric	 features	 were	 created	 for	 model	 evaluation.	 The	
rational	 for	developing	multiparametric	 features	 in	 this	manner	was	 to	determine	
which	 feature	 extraction	method,	 or	 combination	 of	methods,	 performed	 the	 best	
for	each	model	evaluated.		
	

Dimensionality	Reduction	
In	 general,	 an	 important	 step	 in	machine	 learning	 is	 dimensionality	 reduction,	 or	
feature	 selection,	 that	 aims	 to	 find	 the	 subset	 that	 best	 predicts.	 Dimensionality	
reduction	is	important	for	several	reasons:	highly	dimensional	data	sets	tend	to	be	
very	sparse	and	are	prone	to	overfitting	the	model,	decrease	computation	time,	and	
some	methods	improve	interpretation	of	the	data	for	example	to	identify	patterns	or	
clusters.	The	exception	to	the	features	interpretation	after	dimensionality	reduction	
is	 the	 autoencoder,	 which	 make	 the	 data	 impossible	 to	 interpret.	 In	 this	 project	
three	 dimensionality	 reductions	 methods	 are	 proposed:	 Minimum-Redundancy–
Maximum-Relevancy	(mRMR),	Autoencoder,	and	ElasticNet.		

Minimum-Redundancy–Maximum-Relevancy	 (mRMR)	 is	 a	 dimensionality	
reduction	 algorithm	 that	 has	 become	 popular	 in	 texture	 feature	 extraction	 and	
classification3,26,31.	In	order	to	select	the	most	relevant	subset	of	features	one	must	
measure	the	dependence	between	random	variables.	In	information	theory	a	widely	
used	method	to	determine	dependence	is	the	concept	or	mutual	information.	In	the	
mRMR	 approach,	mutual	 information	 can	 be	 used	 to	measure	 both	 the	 relevance	
and	redundancy	of	random	predictor	variables52.	The	Maximum-Relevancy	portion	
of	 the	 algorithm	 determines	 the	 feature	 subsets	with	 the	 highest	 correlation	 to	 a	
prediction	or	classification	value,	while	the	Minimum-Redundancy	portion	of	mRMR	
removes	 redundancy	 from	 these	 subsets	 by	 determining	 the	 largest	 correlation	
between	features.	These	two	operations	are	performed	in	parallel	to	find	a	balanced	
tradeoff	 between	 relevance	 and	 redundancy	 in	 order	 to	 determine	 the	 optimal	
minimum	reduced	 feature	set.	 In	 the	 implementation	of	mRMR	used	 in	 this	study,	
two	thresholds	can	be	set	 to	determine	both	the	relevance	range	w.r.t.	 the	 feature	
variable	with	the	largest	correlation	to	the	classifier,	and	a	threshold	that	specifies	
the	redundancy,	or	correlation,	to	the	other	feature	predictors.	These	thresholds	are	
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set	using	several	feature	vector	types	to	determine	the	best	performance	of	both	the	
SVM	and	Random	forest	classifiers.		

As	mentioned	in	the	image	pre-processing	section,	the	autoencoder	can	be	used	
for	a	variety	of	purposes	such	as	image	de-noising	and	dimensionality	reduction.	As	
the	 dimensionality	 reduction	method	 used	 in	 this	 study,	 the	 autoencoder	 reduces	
the	 input	 vector	 X	 to	 a	 smaller	 latent	 vector	 Z	 as	 shown	 in	 Figure	 16.	 The	 latent	
vector	 Z	 will	 be	 used	 as	 the	 reduced	 predictor	 feature	 set	 used	 by	 the	 SVM	 and	
Random	Forrest	classification	methods.	
	

	
Figure	16.	Dimensionality	reduction	autoencoder.	

	
During	training,	the	input	and	output	are	set	to	the	training	set	of	feature	vectors	at	
X	and	X’.	A	constraint	of	m	>	n	>	k	is	placed	on	the	model	where	m	is	equal	to	the	
size	of	the	input	feature	vector	with	n	and	k	dependent	on	the	size	of	m.	To	reduce	
model	parameter	tuning	time,	several	feature	vectors	of	different	size	m	are	used	to	
test	the	optimal	sizes	of	n	and	k	for	both	the	SVM	and	Random	forest	classifiers.		

ElasticNet	is	a	regularized	regression	method	first	proposed	by	Trevor	Hastie53.	
ElasticNet	 combines	 the	 L1	 penalties	 of	 Lasso	 regression	 and	 the	 L2	 penalties	 of	
Ridge	 regression	 with	 the	 goal	 of	 performing	 as	 well	 as	 Lasso	 regression	 while	
overcoming	 the	 issues	 of	 Lasso	 when	 the	 number	 predictors	 is	 greater	 than	 the	
number	 of	 samples	 (p>n).	Much	 like	 the	 Lasso	method,	 ElasticNet	 simultaneously	
performs	 variable	 detection	 and	 continuous	 variable	 shrinkage.	 In	 addition,	
ElasticNet	 has	 also	 shown	 to	 group	 variables	 into	 subsets,	 which	 may	 be	 either	
included	or	excluded	from	the	model	depending	on	predictive	capability.	In	addition	
to	linear	regression	the	ElasticNet	method	can	also	be	used	with	logistic	regression	
for	 classification.	 In	 this	 study	 logistic	 regression	will	 be	 used	with	 the	malignant	
(1),	and	benign	(0)	classes.	In	addition,	ElasticNet	contains	a	tuning	parameter	used	
to	 specify	 the	 L1	 to	 L2	 ratio	 for	 predictor	 variable	 weighting.	 This	 study	 will	
evaluate	 a	 range	 of	 this	 ratio	 setting	 to	 determine	 the	 optimal	 predictive	
performance	of	the	logistic	regression	model.		
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Classification		
Three	supervised	learning	classification	methods	with	different	learning	approaches	
will	be	evaluated	 in	 this	project:	 Support	Vector	Machine	 (SVM),	Random	Forests,	
and	Logistic	regression.	Training	and	testing	of	the	proposed	classification	methods	
will	employ	a	k-fold	cross-validation	method.	A	more	in-depth	description	of	the	k-
fold	cross-validation	method	used	 in	 this	study	 is	described	 in	 the	Model	Training,	
Test,	and	Evaluation	section	of	this	document.	

Use	of	the	SVM	combined	with	texture	features	in	both	prostate	cancer	and	brain	
tumor	 image	 analysis	 has	 been	 previously	 demonstrated10,54,55.	 The	 SVM	 is	 a	
supervised	learning	model	that	will	be	used	to	classify	the	two	sets	of	mp-MRI	data	
using	texture	feature	statistics.	The	goal	of	the	SVM	is	to	construct	a	hyperplane	that	
develops	 a	maximum	 separation	 between	 the	 two	 classes,	 which	 in	 this	 case	 are	
malignant	 and	 benign.	 The	 SVM	 can	 support	 linear	 classification	 as	 well	 as	 non-
linear	classification	using	a	“kernel”	to	map	the	inputs	into	higher-dimension	feature	
space.	Classification	using	the	SVM	has	used	several	kernels:	linear,	polynomial,	and	
Gaussian,	 in	 order	 to	 determine	 the	 best	 classification	 performance	 for	 the	 class	
distribution	of	this	dataset.	The	kernel	method	takes	data	in	the	original	space	and	
projects	 it	 onto	 linear	 class	 separation	 boundaries	 in	 a	 higher	 dimension	 space.	
Generally,	 linear	 boundaries	 in	 the	 higher	 space	 have	 better	 training	 class	
separation	and	achieve	better	classification	accuracy56.		

The	Random	Forest	classification	method	combines	an	ensemble	(forest)	of	de-
correlated	decision	 trees	and	uses	a	majority	vote	 rule	 from	each	decision	 tree	 to	
determine	class	assignment.	The	bagging	method	(Boostrap	aggregation)	when	used	
with	random	forests	is	used	to	grow	the	decision	trees	during	training	and	take	the	
average	of	the	result.	In	the	case	of	classification,	bagging	simply	takes	the	majority	
vote	 of	 the	 trees	 in	 the	 forest.	 Essentially	 bagging	 reduces	 variance	 by	 averaging	
many	 noisy	 but	 unbiased	 models	 such	 as	 decision	 trees.	 Also,	 since	 the	 bagging	
method	is	used	with	a	random	forest	ensemble	of	trees,	we	are	less	worried	about	
overfitting	 any	 one	 tree	 since	 the	 overall	 classification	 is	 an	 average	 of	 all	 trees.	
Logistic	regression	uses	a	linear	combination	of	input	predictor	variables	to	predict	
K	classes,	where	K=2	 in	 this	study.	The	basis	of	 logistic	regression	 is	 to	model	 the	
posterior	 probabilities	 of	 the	 given	 classes	 using	 linear	 functions	 of	 the	 input	
variables.	 In	 general,	 to	 find	 the	 best	model,	 logistic	 regression	 attempts	 to	 fit	 by	
maximum	likelihood	(best	fitting)	using	the	conditional	likelihood	of	the	probability	
of	 a	 class	 K	 given	 input	 x.	 In	 this	 study,	 ElasticNet	 regression	will	 be	 used	 as	 the	
penalty	for	the	logistic	regression	classifier.		
	

Model	Training,	Test,	and	Evaluation	
As	 shown	 in	 Table	 2,	 the	 image	 dataset	 available	 for	 training	 and	 testing	 of	 the	
classifiers	in	this	study	consists	of	55	patients	with	malignant	tumors	providing	155	
images,	 and	23	patients	with	benign	masses	providing	64	 images.	As	 can	be	 seen,	
the	dataset	is	unbalanced	between	the	two	classes,	so	as	not	to	bias	our	predictions	
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toward	 malignant	 images,	 balancing	 the	 datasets	 as	 best	 as	 possible	 is	 of	 great	
importance.	 Adding	 both	 PZ	 and	 TZ	 images	 to	 the	 training	 and	 test	 datasets	 will	
expose	 the	 classifiers	 as	 evenly	 as	 possible	 to	 any	 differences	 that	 may	 exist	
between	 images	 from	 the	 different	 zones	 in	 another	 attempt	 to	 avoid	 any	 added	
bias.		

Cross-validation	 will	 be	 used	 to	 estimate	 the	 prediction	 error	 of	 the	 various	
feature	 extraction,	 feature	 reduction,	 and	 classification	method	 combinations.	 The	
cross-validation	method	breaks	up	the	dataset	into	training	and	testing	data,	trains	
the	 classifier	 using	 the	 training	 data,	 and	 estimates	 the	 expected	 prediction	 error	
using	 the	 test	 data	 sample.	 Ideally	 the	 dataset	would	 be	 large	 enough	 so	 that	we	
could	 obtain	 the	 independent	 test	 data	 from	 the	 dataset	 and	 train	 with	 the	
remaining	 data.	 However,	 in	 this	 case,	 the	 dataset	 is	 too	 small	 to	 hold	 out	 large	
enough	 training	 and	 test	 sets	 from	 the	 original	 data.	 Therefore,	 the	 K-fold	 cross-
validation	method	will	 be	 used.	 K-fold	 cross-validation	 divides	 the	 dataset	 into	 K	
folds	of	approximately	equal	size.	During	training	and	testing,	one-fold	 is	reserved	
for	testing	(calculation	of	prediction	error),	and	the	remaining	K-1	folds	are	used	for	
training	(fitting	the	model).	This	training	and	test	iteration	are	performed	for	k	=	1,	
2,	…,	K	and	the	K	estimates	of	prediction	error	are	averaged.	

A	10-fold	cross	validation	is	used	in	this	study,	so	the	malignant	distribution	will	
be	5-6	patients,	and	15-16	images	per	fold.	However,	due	to	the	unbalanced	nature	
of	the	dataset,	the	benign	distribution	will	be	2-3	patients,	and	5-6	images	per	fold.	
In	an	attempt	to	best	balance	the	dataset,	 the	solution	devised	here	is	to	duplicate	
the	benign	data	between	each	pair	of	5	folds	as	shown	in	Table	5,	where	M1	–	M10	
contain	the	55	malignant	patients	and	155	associated	images,	and	B1	–	B5	contain	
the	23	benign	patients	and	64	associated	images.		
	

Fold	1	 M1	 B1	
Fold	2	 M2	 B2	
Fold	3	 M3	 B3	
Fold	4	 M4	 B4	
Fold	5	 M5	 B5	
Fold	6	 M6	 B1	
Fold	7	 M7	 B2	
Fold	8	 M8	 B3	
Fold	9	 M9	 B4	
Fold	10	 M10	 B5	
Table	5.	10-fold	cross-validation	splits	

	
To	 avoid	 biasing	 the	 benign	 classes,	 the	 typical	 K-fold	 cross-validation	method	 of	
holding	 one	 fold	 for	 testing	 and	 using	 the	 remaining	 folds	 for	 training,	 cannot	 be	
used	with	his	method	as	a	 fold	with	 the	 same	benign	data	 could	be	used	 for	both	
testing	and	training.	To	avoid	this	bias,	the	fold	that	contains	the	same	benign	data	
in	the	training	set,	as	that	contained	in	the	fold	that	is	used	for	testing,	will	be	held	
out	and	not	used.	In	essence	this	makes	the	10-fold	cross-validation	a	9-fold	cross-
validation.	For	example:	if	fold	1	is	reserved	for	testing,	fold	6	will	be	held	out	of	the	
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training	 set	 thus	 making	 the	 training	 set	 fold	 (2,3,4,5,7,8,9,10).	 While	 not	 as	
desirable	as	having	twice	as	much	original	benign	data,	this	method	will	balance	the	
dataset	and	avoid	the	unbalanced	malignant	bias	seen	in	the	5-fold	testing.		

For	each	cross	combination	of	extracted	 feature	set,	 feature	reduction	method,	
and	 classifier,	 a	 Receiver	 Operating	 Characteristic	 (ROC)	 curve	will	 be	 generated.	
The	area	under	the	ROC	curve	(AUC)	will	be	used	as	the	metric	to	judge	a	particular	
classifier’s	accuracy	and	used	to	compare	classifiers	and	the	extracted	features	used	
for	 that	 classifier.	 Note	 that	 when	 the	 term	 “classifier”	 is	 used	 in	 the	 context	 of	
accuracy	 or	 performance,	 the	 extracted	 feature	 and	 feature	 reduction	method	 are	
implicitly	included.	
In	 addition	 to	 the	AUC	 as	 a	 classifier	 performance	measure,	we	 consider	 the	 true	
positive	(malignant)	prediction	accuracy,	also	known	as	sensitivity.	In	clinical	terms,	
it	 is	of	 the	utmost	 importance	not	 to	send	a	patient	with	a	malignant	 tumor	home	
without	a	biopsy,	even	 if	 this	 is	at	 the	expense	of	a	biopsy	performed	on	a	benign	
patient.	In	other	words,	it	is	better	to	over	biopsy	than	to	under	biopsy.	This	is	not	to	
say	that	we	simply	biopsy	every	patient	with	a	suspicious	looking	MRI,	but	instead,	
develop	a	computer	model	that	will	attempt	to	identify	all	truly	malignant	patients	
while	still	 identifying	some,	 if	not	all,	benign	patients.	Therefore,	 the	sensitivity	of	
our	classifier	 should	also	be	a	 top	consideration	when	making	comparisons	of	 the	
various	methods	evaluated	in	this	study.	

Before	evaluation	of	the	5	models	used	in	this	study,	the	various	parameters	of	
each	model	must	be	tuned.	This	tuning	involves	adjusting	the	parameters	for	a	given	
dimensionality	 reduction/feature	 selection	 method	 and	 classifier	 combination	 to	
achieve	 the	 optimum	 classification	 accuracy.	 Extracted	 feature	 vectors	 are	 also	
required	 to	 tune	 the	 models	 presenting	 us	 with	 three	 variable	 sets:	 extracted	
features,	dimensionality	reduction/feature	selection,	and	classification	parameters.	
As	one	can	see,	the	number	of	parameter	values	and	the	number	of	available	feature	
vectors	 can	 grow	 quickly	 and	 make	 the	 optimization	 process	 computationally	
expensive	 and	 time	 consuming.	To	make	 the	 scope	of	 the	parameter	 optimization	
more	 manageable,	 subsets	 of	 each	 parameter	 value	 will	 be	 chosen	 to	 give	 a	
generally	optimized	model	that	can	be	used	in	the	full	model	and	feature	evaluation	
process.	For	the	classification	software	packages,	the	number	of	tuning	parameters	
is	 pre-defined,	 for	 the	 dimensionality	 reduction/feature	 selection	 code	 the	 tuning	
parameters	 are	 method	 and	 architecture	 dependent.	 However,	 for	 the	 available	
extraction	 feature	 vectors,	 the	 number	 of	 vectors	 to	 use,	 and	 which	 extraction	
methods	 to	use,	 is	problem	dependent.	The	strategy	used	here	 is	 to	select	a	set	of	
feature	 vectors	 that	 represent	 the	 size	 range	 of	 the	number	 of	 extracted	 features.	
Table	6	lists	the	chosen	extracted	feature	vectors	and	their	sizes.		
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Extracted	feature	 Vector	size	
GLSZM,	Bin	size	16,	(T2W)	 13	

MRFD,	4	directions	(T2W	and	ADC)	 32	
GLCM,	4	directions,	(ADC)	 52	

LBP,	Bin	size	32,	(T2W	and	ADC)	 72	
GLRLM,	4	directions,	Bin	size	32,	(T2W	and	ADC)	 104	

GLCM,	LBP,	MRFD,	GLSZM,	GLRLM	(T2W)	 169	
GLCM,	LBP,	MRFD,	GLSZM,	GLRLM	(T2W	and	ADC)	 328	

Table	6.	List	of	seven	representative	tuning	feature	vectors.		
	
The	chosen	seven	representative	extracted	feature	vectors	are	used	to	tune	both	the	
dimensionality	 reduction/feature	 selection	 methods	 and	 classifiers	 using	 the	
following	tuning	parameters:	
	

mRMR	
• Predictor	correlation	to	class	thresholds:	[0.75,	0.5,	0.25].	
• Intra-predictor	correlation	thresholds	[0.15,	0.1,	0.05].	
• All	cross	combinations	of	these	thresholds	will	be	tested.		

Autoencoder.	Rules	for	setting	hidden	and	latent	layers:	
• Hidden	layer	size	<	Input	and	output	layer	size.		
• Latent	feature	layer	set	to	sizes:	[5,	10,	20,	30]	
• Hidden	to	latent	layer	ratios:	[4:1,	3:1,	2:1]	
• Epochs:	[500,	1000,	1500,	2000,	2500,	3000]		

SVM	
• C:	Penalty	parameter	of	 the	error	 term.	Set	of	 [10-3,	10-2,	10-1,	100,	101,	

102	,	103]	
• Polynomial	degree	(used	only	for	polynomial	kernel):	[2,	3,	4,	5]	
• Gamma	 (used	 for	 radial	 basis	 function	 kernel,	 it	 defines	 how	 far	 the	

influence	of	a	single	training	example	reaches):	[1,	2,	3]	
• Class_weight	(Used	for	all	kernels):	“balanced”	automatically	determines	

class	weights	based	on	the	class	list	given	for	training.	
Random	forest	

• N_estimators	(number	of	trees):	[100,	250,	500,	1000]	
• Criterion:	gini	
• Max_depth:	None	(nodes	are	expanded	until	all	 leaves	are	pure	or	until	

all	leaves	contain	less	than	min_samples_split	samples)		
• Min_samples_leaf	(The	minimum	number	of	samples	required	to	be	at	a	

leaf	node.	A	split	point	at	any	depth	will	only	be	considered	if	it	leaves	at	
least	 min_samples_leaf	 training	 samples	 in	 each	 of	 the	 left	 and	 right	
branches):	[1,	5,	10,	15,	20]	

• Min_samples_split	 (The	minimum	 number	 of	 samples	 required	 to	 split	
an	internal	node):	[10,	15,	20,	25,	30]	
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ElasticNet	
• L1_ratio	 (ElasticNet	mixing	parameter, ratio	 of	 L1	 to	 L2	penalty):	 [0.1,	

0.2,	0.3,	0.4,	0.5]	
• Max_iter:	[100,	500,	1000]	
• Loss:	log	
• Alpha:	[0.1,	0.5,	1.0]	
• Class_wieght:	balanced	

Software	
All	software	run	on	MacBook	Pro:	2.3	GHz	Intel	Core	i7	CPU,	8	GB	1600	MHz	DDR3	
system	memory,	NVIDIA	GeForce	GT	650M,	512	MB	graphics	memory,	macOS	Sierra	
v10.12.6.	Table	6	lists	the	software	package	and	corresponding	function	used	in	this	
project.	
	

Function	 Software	Package	
ROI	Extraction	 Custom	code	written	by	author	
Median	kernel	image	de-noising	 Custom	code	written	by	author	
Variational	Autoencoder	image	
de-noising	

Custom	code	written	by	author.	Base	code:	
	https://github.com/keras-
team/keras/blob/master/examples/variationa
l_autoencoder.py	

Convolutional	Autoencoder	
image	de-noising	

Custom	code	written	by	author.	Base	code:	John	
Ramey,	https://ramhiser.com/post/2018-05-
14-autoencoders-with-keras/	

Feature	Extraction	(GLCM)	 Mahotas	version	1.4.4	
Feature	Extraction	(LBP)	 Mahotas	version	1.4.4	
Feature	Extraction	(Multi-
resolution	Fractal	Dimensions)	

Scikit-image	version	0.14.0	and	custom	code	
written	by	author.	

GLSZM	 Custom	code	written	by	author	
GLRLM	 Custom	code	written	by	author	
Dimensionality	Reduction	
(ElasticNet)	

Scikit-learn	version	0.19.2	

Dimensionality	Reduction	
(Autoencoder)	

Custom	code	written	by	author	using	the	Keras	
front	end	version	2.1.6,	and	Tensorflow	
backend	version	1.10.0	

Feature	Selection	(mRMR)	 Custom	code	written	by	author	
Build	k-folds	for	training	and	
test	

Custom	code	written	by	author	

Classification	(SVM)	 Scikit-learn	version	0.19.2	
Classification	(Random	Forest)	 Scikit-learn	version	0.19.2	
Classification	(Logistic	
Regression)	

Scikit-learn	version	0.19.2	

Ensemble	Classification	 Custom	code	written	by	author	
Table	7.	Software	packages	used	and	their	function.	
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Chapter	3:	Results	
This	 section	 covers	 the	 results	 of	 the	 image	 de-noising	 methods,	 tuning	 of	 the	
feature	 dimensionality	 reduction/selection	 and	 classification	 methods,	 and	 the	
classification	 results	 of	 all	 models	 for	 all	 extracted	 features.	 In	 addition	 to	
presenting	 the	classification	 results	at	 the	 image	 level,	 the	move	 to	a	patient	 level	
diagnosis	decision	support	model	is	also	discussed	and	results	presented.		
		

Image	de-noising	results	
In	the	image	pre-processing	step,	three	image	de-noising	techniques	were	used	on	
the	original	mp-MRI	 images.	The	question	we	have	 to	answer	 is:	which	of	 the	de-
noising	techniques,	if	any,	result	in	the	best	prediction	performance	of	our	models?	
The	 first	step	 in	answering	 this	question	 is	 to	evaluate	 the	quality	of	 the	resulting	
de-noised	 images	 by	 comparing	 them	 to	 the	 original	 image.	 If	 the	 de-noising	
technique	degrades	the	pattern	and	information	inherent	in	the	original	image	to	a	
degree	 in	 which	 any	 relevant	 feature	 information	 is	 lost,	 the	 images	 obviously	
cannot	be	used.	Remember,	the	goal	of	image	de-noising	is	to	remove	noise,	which	
introduces	bias	and	artifacts	that	have	a	negative	impact	on	feature	extractions	and	
as	a	consequence	on	image	classification	accuracy.	To	evaluate	the	de-noised	image	
deviation	 from	 the	 original	 image,	 mean	 squared	 error	 (MSE)	 was	 used.	 Table	 8	
shows	the	average	of	the	MSE	scores	for	all	T2W	and	ADC	images	for	the	three	de-
noising	techniques	used.	As	can	be	seen,	the	VAE	method	vastly	underperforms	that	
of	 the	 Median	 kernel	 and	 CAE	 methods	 and	 was	 not	 used	 in	 assessing	 model	
performance	 using	 de-noised	 images.	 It	 is	 also	 shown	 that	 the	 Median	 kernel	
method	outperforms	the	CAE	method,	however	both	methods	will	be	used	to	assess	
model	performance	using	de-noised	images.	
	

Image	type	 Kernel	Method	 VAE	Method	 CAE	Method	
T2W	 12.9	 366.3	 27.5	
ADC	 8.6	 1115.6	 80.6	
Table	8.	Average	MSE	for	T2W	and	ADC	images	for	all	de-noising	techniques.	

	
	
	



	 30	

	
	
Figures	 17	 and	 18	 allow	 us	 to	 visually	 view	 the	 image	 differences	 between	 a	
representative	 original	 ROI	 image	 and	 the	 same	 image	 de-noised	 using	 the	 3	
methods.	

	

	
Figure	17.	T2W	original	and	de-noised	ROI	images.	(a)	Original	ROI,	(b)	Median	kernel	de-

noised	ROI,	(c)	VAE	de-noised	ROI,	(d)	CAE	de-noised	ROI	
	

	
Figure	18.	ADC	original	and	de-noised	ROI	images.	(a)	Original	ROI,	(b)	Median	kernel	de-

noised	ROI,	(c)	VAE	de-noised	ROI,	(d)	CAE	de-noised	ROI	
	
As	 can	 be	 observed	 in	 Figure	 17,	 the	 pattern	 of	 pixel	 intensities	 (light	 and	 dark	
areas),	 inherent	 in	 the	 original	 image	 (Figure	 17a),	 are	 mostly	 preserved	 by	 the	
median	 filer	 (Figure	17b),	 and	 the	CAE	 (Figure	17d).	However,	 the	VAE	de-noised	
image	has	lost	much	of	the	pattern	that	existed	in	the	original	image,	thus	removing	
the	significant	 texture	patterns	useful	 for	classification.	Figure	18	shows	 the	same	
pattern	corruption	in	the	VAE	de-noised	ADC	ROI	image	(Figure	18c)	as	compared	
to	the	original	 image	(Figure	18).	Table	8	shows	the	MSE	comparison	for	the	T2W	
and	 ADC	 representative	 ROI	 image	 shown	 in	 Figures	 17	 and	 18.	 As	 can	 be	 seen	
Table	9,	the	VAE,	as	in	Table	8,	shows	the	same	large	amount	of	MSE	error.	
	

Image	type	 Kernel	Method	 VAE	Method	 CAE	Method	
T2W	 3.9	 268.6	 7.1	
ADC	 3.6	 1003.9	 52.8	

Table	9.	MSE	for	representative	T2W	and	ADC	images	for	all	de-noising	techniques.	
	

Having	selected	ROI	images	suitable	for	feature	extraction,	the	second	portion	of	
the	 image	de-noising	question	 can	be	 answered:	which	 image	ROI,	 original	 or	 de-
noised,	 provides	 the	 highest	 classification	 accuracy?	 To	 answer	 this	 question,	 the	
original	ROI	 images	and	each	of	 the	 two	selected	de-noised	ROI	 image	 types	were	
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used	in	the	analysis	workflow	using	the	models	shown	in	Table	10.	AUC	scores	were	
used	as	the	metric	for	comparison	showing	the	maximum	(mean	+/-	SD)	AUC	for	the	
top	extracted	feature	for	each	model.		
	
Analysis	Model	 Original	ROI	 Median	kernel	de-

noised	ROI	
CAE	de-noised	ROI	

mRMR	+	SVM	 0.730	+/-	0.106		
	

0.729	+/-	0.071	
	

0.739	+/-	0.091	
	

mRMR	+	Random	
Forest		

0.754	+/-	0.154	
	

0.739	+/-	0.103	
	

0.725	+/-	0.101	
	

Autoencoder	+	SVM		 0.697	+/-	0.132	
	

0.693	+/-	0.070	
	

0.694	+/-	0.078	
	

Autoencoder	+	
Random	Forest	

0.685	+/-	0.097	
	

0.655	+/-	0.073	
	

0.694	+/-	0.072	
	

ElasticNet		 0.710	+/-	0.072	
	

0.682	+/-	0.166	
	

0.685	+/-	0.072	

	
Table	10.	Resulting	AUC	for	each	image	type,	de-noising	method,	and	model.	The	maximum	
AUC	 is	 shown	 for	 the	 top	 scoring	 extracted	 feature.	 AUC	 is	 represented	 by	 mean	 +/-	
standard	deviation.	
	
Overall,	there	is	not	much	difference	shown	in	the	maximum	AUC	between	the	three	
ROI	image	types.	The	CAE	de-noised	results	do	show	a	slight	improvement	over	the	
median	kernel	method	and	the	original	 image	for	2	of	the	5	models;	however,	 this	
difference	 is	 not	 thought	 to	 be	 significant.	 The	 original	 images	 showed	 the	 best	
maximum	AUC	score	for	3	of	the	5	models	and	thus	are	the	image	types	used	in	all	
further	analysis.	We	can	conclude	that	the	noise	present	in	the	original	images	does	
not	 effect	 classification	 performance,	 likely	 because	 likely	 the	 feature	 extraction	
methods	 are	 robust	 to	 noise	 like	 LBP	 or	 GLCM/GLRLM/GLSZM	 after	 intensity	
binning,	 or	 for	 the	 de-noised	 images,	 noise	 was	 removed	 along	 with	
discriminative/crucial	 information	 that	 negatively	 impacts	 classifier	 performance.	
However,	I	recommend	that	if	an	image	de-noising	method	is	used	in	a	study	similar	
to	 this	 one,	 that	 the	CAE	method	be	 implemented	 as	 it	 showed	 greater	maximum	
AUC	 scores	 for	 the	 five	 models	 than	 did	 the	 kernel	 method,	 although	 the	 kernel	
method	showed	a	better	overall	MSE	than	that	of	the	CAE	method.	
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Model	tuning	
Before	 any	 analysis	 of	 the	models	 was	 performed,	 the	 parameters	 of	 the	models	
were	tuned	for	maximum	classification	accuracy	using	the	test	extracted	feature	set.	
The	 parameters	 chosen	 for	 the	 feature	 dimensionality	 reduction	 and	 feature	
selection	methods,	and	all	classifiers	are:	
	

mRMR	
• Predictor	correlation	to	class	and	inter-predictor	correlation	thresholds:	

[0.5,	0.05],	[0.25,	0.1]	
Autoencoder	

• Hidden	/	Latent	layer	sizes:	60/20,	30/10	
SVM	

• C:	1.0	
• Polynomial	degree:	2	
• Gamma	(Radial	basis	function):	1	
• Class_weight:	balanced	

Random	forest	
• N_estimators	(number	of	trees):	500	
• Criterion:	gini	
• Max_depth:	None	(nodes	are	expanded	until	all	 leaves	are	pure	or	until	

all	leaves	contain	less	than	min_samples_split	samples)		
• Min_samples_leaf:	5	
• Min_samples_split:	25	

ElasticNet	
• L1_ratio	(Ratio	of	L1	to	L2	penalty):	[0.1,	0.2,	0.3,	0.4,	0.5]	
• Max_iter:	1000	
• Loss:	log	
• Alpha:	0.1	
• Class_wieght:	balanced	
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T2W	and	ADC	Image	Analysis	
With	 the	 models	 tuned,	 features	 were	 extracted	 for	 both	 the	 T2W	 and	 ADC	 ROI	
images.	At	this	step,	the	goal	was	to	identify	the	top	performing	feature	and	model	
combinations	for	the	T2W	and	ADC	ROI	images,	using	the	classifier	ROC	curve	AUC	
as	the	evaluation	metric.	The	resulting	top	10	features	for	each	model	are	shown	in	
Tables	11	–	15		
	
Features	from	T2W	 AUC	(mean	+/-	SD)	 Features	from	ADC	 AUC	(mean	+/-	SD)	
GLRLM	(Bin	size	32,	
4	directions)	

0.688	+/-	0.093	 GLCM	(Bin	size	1,	
average	4	
directions),	
LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,	
4	directions)	

0.695	+/-	0.140	

GLRLM	(Bin	size	1,	
average	4	directions)	

0.678	+/-	0.172	 LBP	(Bin	size	1,	
normalized)	

0.693	+/-	0.079	

LBP	(Bin	size	16)	 0.658	+/-	0.104	 GLCM	(Bin	size	8,	
4	directions)	

0.682	+/-	0.163	

GLRLM	(Bin	size	1,	
4	directions)	

0.646	+/-	0.162	 GLCM	(Bin	size	1,	
average	4	directions)	

0.677	+/-	0.166	

LBP	(Bin	size	1,	
normalized)	

0.644	+/-	0.084	 GLCM	(Bin	size	16,	
4	directions)	

0.677	+/-	0.169	

LBP	(Bin	size	8,	
normalized)	

0.640	+/-	0.116	 GLCM	(Bin	size	1,	
4	directions)	

0.674	+/-	0.164	

LBP	(Bin	size	32,	
normalized)	

0.640	+/-	0.105	 MRFD	(4	directions)	 0.669	+/-	0.124	

LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,	
4	directions)	

0.616	+/-	0.188	 MRFD	(4	directions)	 0.667	+/-	0.109	

LBP	(Bin	size	32)	 0.607	+/-	0.091	 GLCM	(Bin	size	1,	
4	directions),	
LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,	
4	directions)	

0.665	+/-	0.138	

GLSZM	(Bin	size	32)	 0.605	+/-	0.089	 MRFD	(average	4	
directions)	

0.663	+/-	0.128	

Table	11.	T2W	and	ADC	results	for	mRMR	+	SVM	
	
In	Table	11	 it	can	be	seen	that	 for	the	mRMR	+	SVM	model,	neither	T2W	nor	ADC	
outperforms	the	other	for	the	top	extracted	feature,	although	the	T2W	AUC	scores	
decrease	faster	than	the	ADC	AUC	scores	for	the	top	10	features.	It	is	also	observed	
in	Table	11	 that	 the	 top	10	 features	 from	T2W	consist	mostly	of	LBP	and	GLRLM,	
whereas	 for	ADC	 images,	 the	 top	 10	AUC	 scores	 are	 dominated	 by	 the	GLCM	and	
MRFD.	
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T2W	Feature	type	 AUC	(mean	+/-	SD)	 ADC	Feature	type	 AUC	(mean	+/-	SD)	
LBP	 (Bin	 size	 1),	
GLRLM	(Bin	size	1,		
4	directions)	

0.663	+/-	0.138	 LBP	(Bin	size	8)	 0.714	+/-	0.139	

LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,		
4	directions),	
MRFD	(4	directions)	

0.663	+/-	0.137	 LBP	(Bin	size	16)	 0.680	+/-	0.113	

GLRLM	(Bin	size	1,		
4	directions)	

0.651	+/-	0.138	 LBP	(Bin	size	1)	 0.659	+/-	0.111	

GLRLM	(Bin	size	1,		
average	4	directions)	

0.629	+/-	0.126	 LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,		
4	directions),	
MRFD	(4	directions)	

0.659	+/-	0.110	

LBP	 (Bin	 size	 1,	
normalized)	

0.617	+/-	0.084	 MRFD	(4	directions)	 0.658	+/-	0.089	

LBP	(Bin	size	32)	 0.609	+/-	0.083	 LBP	(Bin	size	32)	 0.656	+/-	0.101	
GLCM	(Bin	size	1,	
average	4	directions),	
LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,		
4	directions)	

0.604	+/-	0.138	 GLSZM	(Bin	size	32)	 0.655	+/-	0.089	

LBP	(Bin	size	8)	 0.594	+/-	0.108	 LBP	 (Bin	 size	 1),	
GLRLM	(Bin	size	1,		
4	directions)	

0.653	+/-	0.087	

GLCM	(Bin	size	1,	
4	directions),	
LBP	(Bin	size	1),	
GLRLM	(Bin	size	1,		
4	directions)	

0.594	+/-	0.150	 GLRLM	(Bin	size	16,		
4	directions)	

0.618	+/-	0.131	

LBP	 (Bin	 size	 32,	
normalized)	

0.585	+/-	0.106	 GLCM	(Bin	size	8,		
4	directions)	

0.613	+/-	0.140	

Table	12.	T2W	and	ADC	results	for	mRMR	+	Random	Forest	
	
Comparing	the	best	results	for	the	mRMR	+	Random	forest	model	in	the	top	row	of	
Table	 12,	 it	 is	 observed	 that	 the	 ADC	 feature	 significantly	 outperforms	 the	 T2W	
feature	 with	 an	 AUC	 of	 0.754	 vs.	 0.663.	 The	 trend	 of	 ADC	 outperforming	 T2W	
continues	for	the	top	10	extracted	features.	For	this	model,	the	top	10	features	for	
both	T2W	and	ADC	show	more	diversity	than	seen	for	the	mRMR	+	SVM	model.	
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T2W	Feature	type	 AUC	(mean	+/-	SD)	 ADC	Feature	type	 AUC	(mean	+/-	SD)	
LBP	(Bin	size	16)	 0.664	+/-	0.071	 MRFD	(4	directions)	 0.661	+/-	0.116	
LBP	(Bin	size	1)	 0.650	+/-	0.144	 GLCM	(Bin	size	16,	

4	directions)	
0.658	+/-	0.157	

LBP	(Bin	size	16,	
GLRLM	(Bin	size	1,	
4	directions)	

0.641	+/-	0.090	 GLCM	(Bin	size	8,	
4	directions)	

0.650	+/-	0.146	

LBP	(Bin	size	32,	
Normalized)	

0.619	+/-	0.117	 MRFD	 (average	 4	
directions)	

0.636	+/-	0.111	

GLRLM	(Bin	size	1,	
average	4	directions)	

0.606	+/-	0.143	 GLCM	(Bin	size	1,	
4	directions)	

0.622	+/-	0.154	

GLRLM	(Bin	size	1,	
4	directions)	

0.601	+/-	0.097	 GLRLM	(Bin	size	1,	
4	directions)	

0.620	+/-	0.108	

LBP	(Bin	size	8)	 0.595	+/-	0.064	 GLSZM	(Bin	size	8)	
	

0.620	+/-	0.189	

LBP	 (Bin	 size	 1,	
normalized)	

0.	582	+/-	0.161	 GLCM	(Bin	size	1,	
average	4	directions	

0.616	+/-	0.169	

LBP	(Bin	size	32)	 0.570	+/-	0.138	 GLRLM	(Bin	size	1,	
average	4	directions	

0.615	+/-	0.101	

LBP	(Bin	size	16),	
GLRLM	(Bin	size	16,		
4	directions),	
MRFD	(4	directions)	

0.568	+/-	0.115	 GLSZM	(Bin	size	32)	 0.606	+/-	0.078	

Table	13.	T2W	and	ADC	results	for	Autoencoder	+	SVM	
	
Like	 the	mRMR	 +	 SVM	model	 shown	 in	 Table	 11,	 the	 autoencoder	 +	 SVM	model	
shows	no	performance	difference	between	T2W	and	ADC	 features.	For	 this	model	
however,	the	T2W	top	scoring	features	are	dominated	almost	exclusively	by	the	LBP	
extraction	 method	 while	 the	 ADC	 image	 features	 show	 a	 variance	 in	 feature	
extraction	type.	
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T2W	Feature	type	 AUC	(mean	+/-	SD)	 ADC	Feature	type	 AUC	(mean	+/-	SD)	
LBP	(Bin	size	16,	
GLRLM	(Bin	size	1,	
4	directions)	

0.640	+/-	0.104	 MRFD	(4	directions)	 0.645	+/-	0.150	

LBP	(Bin	size	16,	
GLRLM	(Bin	size	16,	
4	directions)	

0.636	+/-	0.098	 GLRLM	(Bin	size	1,	
4	directions)	

0.613	+/-	0.116	

LBP	(Bin	size	1)	 0.625	+/-	0.143	 MRFD	(average	4	
directions)	

0.607	+/-	0.119	

LBP	(Bin	size	32)	 0.621	+/-	0.078	 LBP	(Bin	size	32,		
normalized)	

0.605	+/-	0.094	

LBP	(Bin	size	16)	 0.599	+/-	0.085	 GLRLM	(Bin	size	1,		
average	4	directions)	

0.603	+/-	0.109	

LBP	(Bin	size	8,	
normalized)	

0.594	+/-	0.083	 LBP	(Bin	size	32)	 0.599	+/-	0.060	

GLRLM	(Bin	size	1,		
average	4	directions)	

0.557	+/-	0.184	 MRFD	(4	directions)	 0.596	+/-	0.107	

LBP	(Bin	size	8)	 0.556	+/-	0.057	 GLCM	(Bin	size	16,	
4	directions)	

0.596	+/-	0.149	

GLCM	(Bin	size	1,	
4	directions)	

0.547	+/-	0.096	 GLSZM	(Bin	size	32)	 0.595	+/-	0.088	

GLRLM	(Bin	size	8,		
4	directions)	

0.536	+/-	0.153	 LBP	(Bin	size	16)	 0.589	+/-	0.076	

Table	14.	T2W	and	ADC	results	for	Autoencoder	+	Random	Forest	
	
The	results	for	the	autoencoder	+	random	forest	model	shown	in	Table	14	parallel	
those	 shown	 for	 the	 autoencoder	 +	 SVM	 in	 Table	 13:	 no	 performance	 difference	
between	T2W	and	ADC	features,	the	T2W	top	scoring	features	are	dominated	almost	
exclusively	 by	 the	 LBP	 extraction	 method	 while	 the	 ADC	 image	 features	 show	 a	
variance	in	feature	extraction	type.	
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T2W	Feature	type	 AUC	(mean	+/-	SD)	 ADC	Feature	type	 AUC	(mean	+/-	SD)	
LBP	(Bin	size	32)	 0.646	+/-	0.088	 GLCM	(Bin	size	8,	

4	directions)	
0.679	+/-	0.152	

LBP	(Bin	size	16)	 0.636	+/-	0.095	 GLCM	(Bin	size	16,	
4	directions)	

0.678	+/-	0.151	

LBP	(Bin	size	16)	
GLCM	(Bin	size	16,	
4	directions)	

0.634	+/-	0.072	 GLCM	(Bin	size	1,	
4	directions)	

0.	668	+/-	0.164	

GLSZM	(Bin	size	32)	 0.614	+/-	0.118	 MRFD	(0	deg)	 0.659	+/-	0.117	
LBP	(Bin	size	32,	
normalized)	

0.598	+/-	0.086	 GLCM	(Bin	size	1,	
average	4	directions)	

0.657	+/-	0.161	

GLRLM	(Bin	size	32,	
4	directions)	

0.597	+/-	0.146	 MRFD	(average	0,	45	
90,	135	deg)	

0.656	+/-	0.110	

LBP	(Bin	size	8,	
normalized)	

0.586	+/-	0.149	 MRFD	(0,	45	90,	135	
deg)	

0.645	+/-	0.124	

LBP	(Bin	size	1,	
normalized)	

0.575	+/-	0.110	 GLRLM	(Bin	size	1,	
4	directions	

0.626	+/-	0.151	

LBP	(Bin	size	8)	 0.550	+/-	0.157	 LBP	(Bin	size	32)	 0.614	+/-	0.087	
LBP	(Bin	size	16,	
normalized)	

0.548	+/-	0.139	 LBP	(Bin	size	16)	 0.613	+/-	0.083	

Table	15.	T2W	and	ADC	results	for	ElasicNet	
	
Once	 again	 for	 the	 results	 of	 the	 ElasticNet	 model	 shown	 in	 Table	 15,	 no	
performance	difference	between	T2W	and	ADC	features	is	shown	and	the	T2W	top	
scoring	 features	 are	 dominated	 almost	 exclusively	 by	 the	 LBP	 extraction	method	
while	the	ADC	image	features	show	a	variance	in	feature	extraction	type.	
	

Several	 conclusions	 can	 be	made	 comparing	 the	 performance	 of	 the	 T2W	 and	
ADC	 image	 classification	 scores	 over	 all	 five	 model	 types	 and	 extracted	 features.	
First,	 neither	 T2W	 nor	 ADC	 significantly	 outperforms	 the	 other	 for	 the	 top	 AUC	
score	in	3	of	the	5	models,	and	ADC	slightly	outperforms	T2W	in	two	of	the	models.	
Thus,	it	can	be	concluded	that	neither	modality	has	a	distinct	classification	accuracy	
advantage	in	over	the	other.	Secondly,	in	all	models,	the	ADC	scores	are	reduced	at	a	
significantly	 less	 rate	 as	 compared	 to	 the	 T2W	 scores.	 It	 is	 because	 of	 the	 more	
pronounced	reduction	in	AUC	score	for	the	T2W	images	that	only	the	top	5	scoring	
image	 features	 for	 T2W	 and	 ADC	 will	 be	 used	 to	 make	 multi-modal	 feature	
combinations.	

Another	interesting	trend	is	seen	in	the	feature	types	corresponding	to	the	T2W	
and	ADC	modalities.	The	LBP	feature	extraction	method	is	strongly	associated	with	
T2W	 images	 across	 all	models,	 where	 a	more	 diverse	 set	 of	 extracted	 features	 is	
associated	 with	 the	 ADC	 images.	 In	 fact,	 LBP	 will	 also	 play	 a	 role	 in	 the	 highest	
classification	AUC	scores	when	multi-modal	features	are	analyzed.	
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Complete	feature	and	model	analysis	
With	the	model	analysis	complete	for	each	single	image	modality,	multi-parametric	
analysis	of	each	model	was	performed.	Two	sets	of	multi-modal	 features	(features	
from	 both	 T2W	 and	 ADC	 images)	were	 used	 in	model	 evaluation:	 those	 obtained	
through	the	cross-combination	of	the	top	5	AUC	scoring	features	from	each	model,	
and	 the	 combination	 of	 T2W	 and	 ADC	 features	 from	 the	 same	 feature	 extraction	
method.	The	two	combinations	of	T2W	and	ADC	modalities	are	written	as:	T2W	+	
ADC,	when	the	same	feature	extraction	method	is	used	for	both	modalities,	and	T2W	
/	ADC,	when	different	 feature	extraction	methods	are	used	 for	each	modality.	The	
results	of	 the	top	10	performing	extracted	features	 for	each	of	 the	 five	models	are	
shown	in	Tables	16	–	20	for	each	of	the	five	models	used	for	classification.	In	each	
table,	 the	AUC	 score	 selects	 the	 top	 10	 features	 for	 that	 particular	model.	 Also	 in	
each	table,	several	other	classification	metrics	are	listed:	
	

• Sensitivity	or	 true	positive	rate,	 the	proportion	of	 true	positive	predictions,	
which,	in	this	study	is	the	malignant	class.	

• Specificity	 or	 true	 negative	 rate,	 the	 proportion	 of	 true	 negatives	 that	 are	
classified	as	negative,	which	in	this	study	is	the	benign	class.	

• Positive	prediction	value	(PPV),	which	is	the	portion	of	true	positives	vs.	false	
positives.		

• Negative	prediction	rate	(NPV),	which	gives	the	proportion	of	true	negative	
predictions	vs.	false	negative	predictions.		
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Feature	 Modality	 AUC	

Mean	+/-	SD	
Sensitivity		 Specificity		 PPV		 NPV	

LBP	(Bin	size	
1)	

T2W	+	ADC	 0.730	+/-	0.106	 0.88	 0.44	 0.66	 0.76	

GLCM(Bin	size	
1,	Ave	4	
directions),		
LBP	(Bin	size	
1),	GLRLM	(Bin	
size	1,	4	
directions)	

T2W	+	ADC	 0.728	+/-	0.114	 0.82	 0.55	 0.69	 0.71	

T2W+ADC:	LBP	
(Bin	size	16),	
ADC:	GLRLM	
(Bin	size	16,	4	
directions)	

T2W	/	ADC	 0.724	+/-	0.094	 0.74	 0.66	 0.72	 0.67	

LBP	(Bin	size	
1),	GLRLM	(Bin	
size	1,	4	
directions)	

T2W	+	ADC	 0.710	+/-	0.110	 0.90	 0.42	 0.65	 0.78	

T2W:	LBP(Bin	
size	32,	
Normalized),	
ADC:	LBP(Bin	
size	16,	
Normalized)	

T2W	/	ADC	 0.710	+/-	0.114	 0.78	 0.48	 0.65	 0.65	

LBP	(Bin	size	
16)	

T2W	+	ADC	 0.708	+/-	0.094	 0.69	 0.59	 0.67	 0.61	

GLCM(Bin	size	
1,	4	directions),		
LBP	(Bin	size	
1),	GLRLM	(Bin	
size	1,	4	
directions)	

T2W	+	ADC	 0.708	+/-	0.101	 0.81	 0.56	 0.69	 0.71	

GLCM(Bin	size	
1,	Ave	4	
directions),		
LBP	(Bin	size	
1),	GLRLM	(Bin	
size	1,	4	
directions)	

ADC	 0.695	+/-	0.141	 0.72	 0.55	 0.66	 0.62	

LBP	(Bin	size	1,	
Normalized)	

ADC	 0.693	+/-	0.079	 0.85	 0.37	 0.62	 0.67	

GLRLM	(Bin	
size	32,	4	
directions)	

T2W	 0.688	+/-	0.093	 0.74	 0.52	 0.65	 0.62	

Table	16.	Multiparametric	results	for	mRMR	+	SVM	
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Feature	 Modality	 AUC	

Mean	+/-	SD	
Sensitivity		 Specificity		 PPV		 NPV	

T2W:	LBP	(Bin	
size	1),		
ADC:	LBP	(Bin	
size	8)	

T2W	/	ADC	 0.754	+/-	0.154	 0.80	 0.58	 0.70	 0.70	

LBP	(Bin	size	
8)	

T2W	+	ADC	 0.737	+/-	0.102	 0.83	 0.50	 0.67	 0.70	

LBP	(Bin	size	
1)	

T2W	+	ADC	 0.721	+/-	0.096	 0.82	 0.52	 0.67	 0.70	

T2W:	LBP	(Bin	
size	1,	
normalized),		
ADC:	LBP	(Bin	
size	8)	

T2W	/	ADC	 0.721	+/-	0.098	 0.83	 0.52	 0.67	 0.71	

T2W+ADC:	LBP	
(Bin	size	8),		
T2W:	GLRLM	
(Bin	size	1,	4	
deg)	

T2W	+	ADC	 0.720	+/-	0.111	 0.77	 0.55	 0.67	 0.66	

LBP	(Bin	size	
8)	

ADC	 0.714	+/-	0.139	 0.83	 0.48	 0.66	 0.70	

T2W:	GLRLM	
(bin	size	1,	4	
directions),		
ADC:	LBP	(Bin	
size	8)	

T2W	/	ADC	 0.713	+/-	0.129	 0.78	 0.54	 0.67	 0.67	

ADC:	LBP	(Bin	
size	8),	ADC:	
MRFD	(4	
directions)	

ADC	/	ADC	 0.707	+/-	0.146	 0.77	 0.55	 0.67	 0.66	

LBP	(Bin	size	
16)	

T2W	+	ADC	 0.701	+/-	0.117	 0.75	 0.51	 0.65	 0.63	

LBP	(Bin	size	
1),	GLRLM	(Bin	
size	1,	4	
directions),		
MRFD	(4	
directions)	

T2W	+	ADC	 0.697	+/-	0.114	 0.79	 0.50	 0.66	 0.66	

Table	17.	Multiparametric	results	for	mRMR	+	Random	Forest	
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Feature	 Modality	 AUC	

Mean	+/-	SD	
Sensitivity		 Specificity		 PPV		 NPV	

LBP	(Bin	size	
16,	
Normalized)	

T2W	+	ADC	 0.697	+/-	0.132	 0.83	 0.39	 0.62	 0.65	

LBP	(Bin	size	
16)	

T2W	+	ADC	 0.677	+/-	0.133	 0.88	 0.22	 0.58	 0.61	

LBP	(Bin	size	
16)	

T2W	 0.661	+/-	0.116	 0.75	 0.38	 0.59	 0.55	

LBP	(Bin	size	
16),	
	MRFD	(4	
directions)	

ADC	 0.658	+/-	0.157	 0.75	 0.47	 0.63	 0.61	

LBP	(Bin	size	
16,	
Normalized)	

T2W	+	ADC	 0.655	+/-	0.124	 0.88	 0.22	 0.58	 0.61	

GLCM	(Bin	size	
16,	4	
directions)	

ADC	 0.650	+/-	0.124	 0.92	 0.11	 0.55	 0.52	

MRFD	 (4	
directions)	

T2W	+	ADC	 0.650	+/-	0.146	 0.74	 0.47	 0.63	 0.60	

GLCM	 (Bin	 size	
8,	4	directions)	

ADC	 0.650	+/-	0.144	 0.76	 0.41	 0.61	 0.59	

LBP	 (Bin	 size	
1)	

T2W	 0.650	+/-	0.127	 0.74	 0.39	 0.60	 0.56	

MRFD	 (4	
directions)	

T2W	+	ADC	 0.650	+/-	0.124	 0.75	 0.38	 0.59	 0.55	

Table	18.	Multiparametric	results	for	Autoencoder	+	SVM	
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Feature	 Modality	 AUC	

Mean	+/-	SD	
Sensitivity		 Specificity		 PPV		 NPV	

LBP	(Bin	size	
16),		
GLRLM	(Bin	
size	16),	MRFD	
(4	directions)	

T2W	+	ADC	 0.685	+/-	0.097	 0.77	 0.47	 0.64	 0.63	

T2W:	LBP	(Bin	
size	16),		
ADC:	GLRLM	
(Bin	size	16,	4	
directions)	

T2W	/	ADC	 0.646	+/-	0.084	 0.73	 0.38	 0.59	 0.54	

MRFD	(4	
directions)	

ADC	 0.645	+/-	0.150	 0.75	 0.45	 0.62	 0.60	

LBP	(Bin	size	
16),		
GLRLM	(Bin	
size	1,	4	
directions)	

T2W	 0.640	+/-	0.104	 0.72	 0.30	 0.56	 0.48	

LBP	(Bin	size	
16),		
GLRLM	(Bin	
size	16,	4	
directions)	

T2W	 0.636	+/-	0.098	 0.71	 0.30	 0.55	 0.46	

LBP	(Bin	size	
16,	
Normalized)	

T2W	+	ADC	 0.632	+/-	0.131	 0.72	 0.40	 0.59	 0.54	

LBP	(Bin	size	
1)	

T2W	 0.625	+/-	0.114	 0.76	 0.44	 0.62	 0.60	

LBP	(Bin	size	
16),		
GLRLM	(Bin	
size	16,	4	
directions)	

T2W	+	ADC	 0.622	+/-	0.124	 0.78	 0.55	 0.68	 0.68	

LBP	(Bin	size	
16),		
GLRLM	(Bin	
size	8,	4	
directions)	

T2W	+	ADC	 0.621	+/-	0.121	 0.80	 0.52	 0.67	 0.68	

LBP	(Bin	size	
32,	
Normalized)	

T2W	+	ADC	 0.621	+/-	0.099	 0.75	 0.30	 0.55	 0.51	

Table	19.	Multiparametric	results	for	Autoencoder	+	Random	forest	
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Feature	 Modality	 AUC	
Mean	+/-	SD	

Sensitivity		 Specificity		 PPV		 NPV	

LBP	(Bin	size	
16)	

T2W	+	ADC	 0.710	+/-	0.072	 0.58	 0.70	 0.70	 0.58	

LBP	(Bin	size	
16),		
GLCM	(Bin	size	
16,	4	
directions)	

T2W	+	ADC	 0.701	+/-	0.124	 0.67	 0.55	 064	 0.58	

LBP	(Bin	size	
8)	

T2W	+	ADC	 0.692	+/-	0.115	 0.52	 0.67	 0.66	 0.63	

T2W+ADC:	LBP	
(Bin	size	16),	
ADC:	GLCM	
(Bin	size	8,	4	
directions)	

T2W	/	ADC	 0.686	+/-	0.090	 0.61	 0.61	 0.65	 0.56	

T2W:	LBP	(Bin	
size	16),		
ADC:	GLCM	
(Bin	size	8)	

T2W	/	ADC	 0.683	+/-	0.140	 0.67	 0.44	 0.59	 0.52	

GLCM	(Bin	size	
8,	4	directions)	

ADC	 0.679	+/-	0.152	 0.40	 0.77	 0.68	 0.51	

GLCM	(Bin	size	
16,	4	
directions)	

T2W	+	ADC	 0.678	+/-	0.152	 0.47	 0.70	 0.64	 0.51	

GLCM	(Bin	size	
8,	4	directions)	

T2W	+	ADC	 0.678	+/-	0.152	 0.52	 0.64	 0.64	 0.53	

GLCM	(Bin	size	
16,	4	
directions)	

ADC	 0.677	+/-	0.115	 0.45	 0.80	 0.69	 0.53	

T2W:	LBP	(Bin	
size	16),		
ADC:	GLRLM	
(Bin	size	1,	4	
directions)	

T2W	/	ADC	 0.675	+/-	0.082	 0.65	 0.63	 0.68	 0.59	

Table	20.	Multiparametric	results	for	ElasticNet	
	
	
From	 Tables	 16-20	 several	 observations	 and	 conclusions	 can	 be	 made.	 First,	 the	
best	 image	 level	 model	 is	 mRMR	 +	 Random	 forest	 model	 with	 the	 highest	 AUC	
classification	accuracy	of	0.754	+/-	0.154	when	using	the	multiparametric	extracted	
feature	 consisting	 of	 T2W:	 LBP	 (Bin	 size	 1)	 and	 ADC:	 LBP	 (Bin	 size	 8).	 A	 second	
observation	can	be	made	 that	LBP	 is	 totally,	or	partially,	 involved	 in	 the	5	models	
top	AUC	scores.	A	 third	observation	can	be	made	 from	the	 top	AUC	scores	 for	 the	
SVM	 and	 Random	 Forest	 classifiers	 using	 the	 mRMR	 and	 autoencoder	
dimensionality	 reduction	methods;	 given	 the	 same	 classifiers,	mRMR	outperforms	
the	autoencoder	method.		
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Having	determined	 the	mRMR	+	Random	Forest	model	 is	my	recommendation	
for	best	image	level	model,	the	ROC	curves	for	this	model	are	shown	in	Figure	19	for	
all	10	folds	used	during	training	and	testing	of	the	model.	The	highlighted	blue	curve	
in	 Figure	 19	 represents	 the	 mean	 of	 the	 10-fold	 curves,	 and	 the	 grey	 area	
representing	the	standard	deviation.	
	

	
Figure	19.	ROC	curves	for	the	mRMR	+	Random	forest	model	using	combined	T2W	and	ADC	
LBP	features.	Mean	AUC	(highlighted	blue	line)	of	0.754	+/-	0.154	
	

A	very	important	observation	can	be	made	from	the	results	shown	in	Tables	16-
20;	multi-modal	features	account	for	at	least	the	top	two	AUC	scores	for	each	of	the	
5	models.	We	can	draw	the	conclusion	that	a	multi-modal	image	analysis	approach	
produces	 higher	 classification	 accuracy	 (AUC)	 than	 simply	 T2W	 or	 ADC	 images	
alone,	and	based	on	this	conclusion,	I	recommend	multiparametric	features	be	used	
in	MRI	prostate	cancer	image	analysis.	To	highlight	this	conclusion,	the	features	for	
the	 top	2	AUC	 scores	 for	 the	5	models	 are	 shown	 in	Table	21.	The	T2W	and	ADC	
columns	show	the	individual	image	modality	AUC	while	the	multiparametric	column	
shows	 that	 for	 all	 models,	 the	 sum	 of	 the	 individual	 image	 types	 is	 greater	 than	
either	type	alone.	
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Model	 Feature	 T2W		

(mean	+/-	SD)	
ADC	
(mean	+/-	SD)	

Multiparametric	
(mean	+/-	SD)	

mRMR	+	SVM	 LBP	(Bin	size	1)	 0.552	+/-	0.118	 0.657	+/-	0.119	 0.730	+/-	0.016	
mRMR	+	SVM	 GLCM(Bin	size	

1,	Ave	4	
directions),		
LBP	(Bin	size	1),	
GLRLM	(Bin	size	
1,	4	directions)	

0.572	+/-	0.172	 0.634	+/-	0.162	 0.728	+/-	0.114	

mRMR	+	
Random	
forest	

T2W:	LBP	(Bin	
size	1),		
ADC:	LBP	(Bin	
size	8)	

0.568	+/-	0.091	 0.659	+/-	0.110	 0.754	+/-	0.154	

mRMR	+	
Random	
forest	

LBP	(Bin	size	8)	 0.594	+/-	0.108	 0.714	+/-	0.139	 0.737	+/-	0.102	

Autoencoder	
+	SVM	

LBP	(Bin	size	16,	
Normalized)	

0.487	+/-	0.141	 0.586	+/-	0.110	 0.697	+/-	0.132	

Autoencoder	
+	SVM	

LBP	(Bin	size	
16)	

0.567	+/-	0.103	 0.475	+/-	0.087	 0.677	+/-	0.133	

Autoencoder	
+	Random	
forest	

LBP	(Bin	size	
16),		
GLRLM	(Bin	size	
16),	MRFD	(4	
directions)	

0.541	+/-	0.106	 0.529	+/-	0.147	 0.685	+/-	0.097	

Autoencoder	
+	Random	
forest	

T2W:	LBP	(Bin	
size	16),		
ADC:	GLRLM	
(Bin	size	16,	4	
directions)	

0.599	+/-	0.085	 0.573	+/-	0.097	 0.646	+/-	0.084	

ElasticNet	 LBP	(Bin	size	
16)	

0.630	+/-	0.080	 0.613	+/-	0.083	 0.710	+/-	0.072	

ElasticNet	 LBP	(Bin	size	
16),		
GLCM	(Bin	size	
16,	4	directions)	

0.634	+/-	0.073	 0.597	+/-	0.113	 0.701	+/-	0.124	

Table	 21.	 Comparison	 of	 single	 and	 multiparametric	 image	 modalities.	 The	 top	 2	 AUC	
scores	for	each	of	the	5	models	are	shown.	
	

Using	 a	 multiparametric	 feature	 analysis	 approach	 generates	 larger	 extracted	
feature	 predictor	 vectors	 than	 a	 single	 mode	 analysis	 approach,	 and	 puts	 more	
emphasis	 on	 dimensionality	 reduction	 and	 feature	 selection	 methods	 to	 find	 the	
best	 features	 for	 optimum	 class	 prediction.	 The	 mRMR	 feature	 selection	 method	
allows	us	to	not	only	reduce	the	size	of	the	feature	predictor	vector,	but	also	directly	
identify	the	features	selected.	For	the	mRMR	+	SVM	models	top	AUC	feature	set,	72	
features	are	generated	by	the	LBP	feature	extraction	method,	of	which,	15	features	
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are	selected	as	the	input	to	the	classifier.	Of	these	15	features,	5	are	selected	from	
the	 T2W	 ROI	 image	 and	 10	 from	 the	 ADC	 ROI	 mage.	 Similarly,	 for	 the	 mRMR	 +	
Random	 forest	models	 top	AUC	 feature	 set,	 72	 features	 are	 generated	by	 the	LBP	
feature	extraction	method	of	which	9	features	are	selected	for	the	reduced	inputs	to	
the	classifier.	Of	 these	9	 features,	1	 is	selected	from	the	T2W	ROI	 image	and	8	are	
from	 the	 ADC	 ROI	 mage.	 The	 two	 examples	 here	 show	 that	 the	 ADC	 extracted	
features	 for	 the	mRMR	method	 correlate	 better	 to	 the	 classifier	 than	 do	 the	T2W	
extracted	 features.	 The	 autoencoder	 also	 generates	 a	 reduced	 size	 encoded	 latent	
feature	 vector	 from	 the	 original	 input,	 however	 unlike	 the	 mRMR	 method	 the	
reduced	 feature	 vector	 cannot	 easily	 be	matched	 to	 the	 original	 features.	 For	 the	
autoencoder	+	SVM	model,	72	feature	predictors	and	reduced	to	an	encoded	latent	
variable	of	20	 features.	The	autoencoder	+	Random	forest	model	reduces	an	 input	
extracted	feature	vector	of	208	features	to	an	encoded	latent	feature	vector	of	size	
20.		

From	Tables	16	–	20,	we	can	get	an	idea	of	the	classification	accuracy	from	the	
AUC,	sensitivity,	specificity,	PPV,	and	NPV	of	the	five	models	evaluated.	However,	it	
is	also	helpful	in	understanding	the	various	strengths	of	each	model.	As	can	be	seen	
in	Tables	16	–	20,	 classification	accuracy	metrics	vary	between	models.	 Figure	20	
shows	 a	 graphical	 representation	 of	 the	 5	 classification	 metrics	 for	 the	 5	
classification	models	top	extracted	features.		
	

	
Figure	20.	Performance	metrics	for	all	5	classification	models.	

	
As	 can	be	 seen,	 although	 the	mRMR	+	Random	Forest	model	has	 the	highest	AUC	
score	(0.754),	it	does	not	have	the	highest	sensitivity,	and	shows	a	tradeoff	between	
sensitivity	 and	 specificity.	 Comparing	 the	 mRMR	 +	 Random	 forest	 model	 to	 the	
mRMR	+	SVM	model	which	has	the	second	highest	AUC	of	0.730,	the	mRMR	+	SVM	
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model	a	higher,	and	in	fact	the	best	sensitivity	score.	Once	again	the	mRMR	+	SVM	
model	trades	a	higher	sensitivity	for	lower	specificity,	which	is	the	opposite	of	that	
shown	 by	 the	 ElasticNet	model.	 From	 Figure	 19	 it	 is	 shown	 that	 each	model	 has	
different	strengths	and	weaknesses	that	lead	to	the	conclusion	that	an	ensemble	of	
classifiers	can	improve	classification	accuracy	over	any	individual	model.	
	
	

Ensemble	of	Models	Classification	
To	reduce	the	classification	variance	observed	between	the	five	 individual	models,	
an	 ensemble	 classification	 model	 was	 created	 using	 all	 five	 individual	 models	
previously	 discussed,	 and	 majority	 vote	 used	 to	 determine	 the	 final	 image	
classification.	The	confusion	matrix	for	the	ensemble	classification	model	 is	shown	
in	Table	22.	
	

	 Predicted	Benign	 Predicted	Malignant	
Expected	Benign	 66	 62	
Expected	Malignant	 25	 130	

Table	22.	Image	level	ensemble	model	confusion	matrix.	
	
The	AUC	 for	 the	ensemble	model	 is	0.773	+/-	0.070	and	the	ROC	curves	shown	 in	
Figure	21.	A	sensitivity	of	0.84,	and	specificity	of	0.52	 for	 the	ensemble	model	are	
comparable	to	the	mRMR	+	Random	forest	model	(0.80	and	0.58).	

	

	
Figure	21.	ROC	curves	for	ensemble	classifier.	Mean	AUC	of	0.773	shown	in	blue,	standard	

deviation	shown	in	gray.	
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In	 order	 to	 observe	 how	 the	 ensemble	 model	 compares	 over	 the	 5	 classification	
metrics,	these	metrics	are	shown	for	each	model	in	Figure	22.	
	

	
Figure	22.	Performance	metrics	for	all	6	classification	models	

	
Figure	 22	 shows	 that	 besides	 the	 ensemble	 model	 (shown	 with	 the	 black	 bar)	
having	 the	 largest	AUC,	 it	 scores	 at	 or	near	 the	 top	 for	4	 of	 the	5	 classifiers,	with	
specificity	being	the	lower	scoring	metric.	This	graph	demonstrates	the	ensemble	of	
classifiers	does	take	advantage	of	the	strengths	of	the	individual	models	to	build	the	
best	image	level	classification	model	for	this	study.		
	

From	the	confusion	matrix	 in	Table	22,	 it	 can	be	seen	 that	benign	 image	slices	
are	misclassified	at	almost	a	2.5:1	compared	to	 the	malignant	 image	slices.	This	 is	
also	 observed	 in	 the	 other	 models	 with	 the	 exception	 of	 ElasticNet.	 From	 the	
ensemble	model	however,	more	information	on	which	images	are	misclassified	for	
each	model	relative	to	the	others	can	be	observed.	In	taking	the	majority	vote	for	the	
ensemble	classifier,	one	benign	 labeled	patient	stood	out	 from	the	others.	For	 this	
patient,	all	3	images	in	the	set	are	misclassified	as	malignant	over	all	models,	leading	
one	 to	 suspect	 that	 the	patient	 class	may	have	been	mislabeled	when	 the	original	
dataset	was	 compiled.	 A	 comparison	 is	made	 in	 Figure	 23	 between	 the	 T2W	 and	
ADC	ROI	images	for	the	suspected	mislabeled	patient,	a	second	benign	patient	with	
3	 images,	 and	 a	malignant	 patient	with	 3	 images,	 all	 from	 the	 same	 fold	 used	 for	
classification.		
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Figure	23.	T2W	and	ADC	ROI	images	for	comparing	misclassified	benign	patient.		

Misclassified	benign	patient	(a,	d),	malignant	classified	patient	(b,	e),	and	benign	classified	
patient	(c,	f).	

	
Although	 human	 viewing	 and	 classification	 of	 images	 is	 always	 subjective,	 in	 my	
opinion	 the	 T2W	 images	 in	 Figure	 23	 a),	 b),	 and	 c)	 look	 very	 similar	 with	 no	
correlation	 between	 the	 potentially	 mislabeled	 image	 and	 the	 properly	 classified	
benign	 and	 malignant	 images.	 The	 ADC	 ROI	 image	 in	 Figure	 23e)	 does	 look	
somewhat	 different	 than	 those	 in	 d)	 and	 f),	 possibly	 indicating	 that	 the	 patient	 is	
properly	 labeled	as	benign.	 I	believe	however,	 that	based	on	 the	visual	analysis	of	
the	images	in	Figure	23,	no	conclusive	evidence	exists	to	support	calling	the	patient	
in	question	mislabeled.		

To	 this	 point,	 a	 great	 deal	 of	 results	 information	 has	 been	 presented	 and	 I	
believe	 a	 brief	 overview	 of	 the	 results	 is	 warranted.	 It	 has	 been	 shown	 that	 the	
original	images	with	no	de-noising	provided	the	best	model	classification	accuracy.	
However,	 the	CAE	method	performed	well,	and	 if	de-noising	 is	 thought	to	be	need	
on	an	 image	dataset,	 the	CAE	method	 is	 recommended.	 In	 the	next	step,	T2W	and	
ADC	 image	extracted	 features	were	assessed	 for	model	classification	accuracy	and	
the	 results	 showed	 no	 significant	 difference	 between	 the	 image	 modalities.	
However,	multiparametric	features	showed	much	better	classification	accuracy	than	
either	single	image	feature	supporting	the	hypothesis	that	mp-MRI	is	the	preferred	
extracted	feature	for	a	prostate	cancer	image	analysis	study	as	defined	in	this	work.	
Using	 multiparametric	 extracted	 image	 features,	 it	 was	 shown	 that	 the	 mRMR	 +	
Random	 Forest	 was	 the	 best	 single	 classifier	 model,	 but	 that	 the	 best	 overall	
performing	image	level	model	was	the	ensemble	of	classifiers.		
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Patient	level	classification	
Now	that	the	image	classification	performance	of	all	models	has	been	evaluated,	the	
next	question	is:	how	can	these	models	be	used	in	a	clinical	setting?	To	answer	this	
question,	we	must	move	from	image	level	classification,	to	patient	level	diagnosis,	in	
order	to	produce	a	viable	clinical	diagnosis	decision	support	model	to	aid	in	patient	
diagnosis.	 The	 goal	 of	 the	 patient	 level	 model	 is	 defined	 as:	 the	 patient	 level	
diagnosis	model	 zero,	 or	 the	 lowest	 possible	 number	 of	misdiagnosed	malignant.	
The	rational	behind	this	goal	is	that	it	is	better	to	over	biopsy	a	benign	patient	than	
to	misdiagnose	a	malignant	patient	with	an	aggressive	cancer	that	goes	untreated.		

In	order	to	determine	the	best	patient	level	clinical	model,	a	criterion	needs	to	be	
established	 to	 differentiate	 between	 malignant	 and	 benign	 patients	 from	 the	
classification	of	their	individual	MRI	images.	In	this	analysis,	a	patient	is	considered	
malignant	if	one	or	more	images	for	that	patient	have	been	classified	as	malignant.	
The	 reasoning	 behind	 only	 using	 one	 or	 more	 images	 to	 classify	 a	 patient	 as	
malignant	is;	because	all	images	in	a	patient’s	image	set	are	labeled	based	on	biopsy	
results	and	are	not	correlated	to	a	specific	biopsy	area,	 the	 image	set	may	contain	
both	benign	and	malignant	images	possibly	based	on	intra-tumor	heterogeneity.	We	
should	 remember	 that	 in	 this	 study,	 the	 images	 in	 a	 patient’s	 dataset	 are	 used	 to	
identify	a	suspected	cancerous	region	and	to	define	an	ROI	to	guide	biopsy	and	are	
not	 associated	with	 a	 specific	 biopsy	 site.	 An	 assumption	 is	made	here	 that	when	
using	 this	model,	 that	new	patient	 images	are	acquired	using	 the	same	method	as	
those	 in	 the	dataset	used	 to	 train	 the	 classifiers;	 that	 is,	 regions	of	 an	 image	have	
been	 identified	 by	 a	 radiologist	 as	 possibly	 cancerous	 and	 these	 regions	 (ROI)	
outlined.	

Using	 the	 criteria	 set	 above	 for	 patient	 level	 diagnosis,	 Table	 23	 shows	 the	 6	
classification	models	 using	 their	 top	 scoring	 extracted	 features,	 using	 a	malignant	
probability	threshold	of	0.5	to	define	a	patient’s	diagnosis.	Both	properly	diagnosed	
and	misdiagnosed	patients	are	shown.	As	a	note,	a	misdiagnosed	malignant	patient	
is	one	that	has	it	truly	malignant	and	has	been	diagnosed	as	benign.	This	hold	true	
for	benign	patient	diagnosis	as	well.	
	
	

Model	 Misdiagnosed	
Malignant	

Diagnosed	
Malignant	

Misdiagnosed	
Benign	

Diagnosed	
Benign	

mRMR	+	SVM	 1	 54	 14	 9	
mRMR	 +	
Random	Forest		

7	 48	 14	 9	

Autoencoder	 +	
SVM		

3	 52	 19	 4	

Autoencoder	 +	
Random	Forest	

5	 50	 16	 7	

ElasticNet		 17	 38	 12	 11	
Ensemble		 3	 52	 15	 8	

Table	23.	Patient	diagnosis	using	malignant	probability	threshold	of	0.5	
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Although	the	ensemble	model	has	the	highest	AUC	of	all	the	models,	it	does	not	have	
the	 lowest	 number	 of	 misclassified	malignant	 patients.	 In	 fact,	 the	mRMR	 +	 SVM	
model	 has	 the	 lowest	 number	 of	misclassified	 patients	while	 having	 a	 reasonable	
benign	 patient	misclassification	 as	 compared	with	 the	 other	models.	 To	meet	 the	
goal	of	the	lowest	malignant	misclassification,	the	mRMR	+	SVM	model	is	the	proper	
choice	 for	 the	 clinical	 diagnosis	 decision	 support	 model	 when	 using	 a	 malignant	
probability	threshold	of	0.5.	However,	a	malignant	threshold	other	than	0.5	can	be	
chosen	 to	 evaluate	 patient	 diagnosis.	 Since	 our	 paramount	 goal	 is	 zero	
misdiagnosed	malignant	 patients,	 even	 at	 the	 expense	 of	misdiagnosed	 and	 over-
biopsied	 truly	 benign	 patients,	 some	 error,	 or	 over	 confidence	 can	 be	 added	 by	
shifting	the	malignant	probability	threshold	lower.	In	other	words,	we	can	state	that	
we	 want	 to	 be	 absolutely	 sure	 a	 patient	 is	 benign.	 If	 we	 shift	 the	 malignant	
probability	to	0.4,	we	say	benign	patients	must	have	a	probability	of	0.6	before	we	
diagnose	them	as	such.	Table	24	shows	the	patient	diagnosis	results	when	we	shift	
the	malignant	probability	threshold	to	0.4.		
	

Model	 Misdiagnosed	
Malignant	

Diagnosed	
Malignant	

Misdiagnosed	
Benign	

Diagnosed	
Benign	

mRMR	+	SVM	 0	 55	 15	 8	
mRMR	 +	
Random	Forest		

5	 50	 14	 9	

Autoencoder	 +	
SVM		

0	 55	 19	 4	

Autoencoder	 +	
Random	Forest	

5	 50	 16	 7	

ElasticNet		 3	 52	 12	 11	
Ensemble		 1	 54	 15	 8	

Table	24.	Patient	diagnosis	using	malignant	probability	threshold	of	0.4	
	
From	Table	24	we	now	can	see	two	models	(mRMR	+	SVM	and	autoencoder	+	SVM)	
that	 meet	 our	 goal	 of	 zero	 misdiagnosed	 malignant	 patients,	 but	 which	 model	 is	
better?	In	looking	at	the	diagnosed	benign	patients	between	the	two	models,	it	can	
be	seen	that	the	mRMR	+	SVM	model	has	8	properly	diagnosed	benign	patients	vs.	
only	4	for	the	autoencoder	+	SVM	model.	The	mRMR	+	SVM	achieves	the	goal	of	zero	
misdiagnosed	malignant	 patients	 and	 the	 best	 diagnosis	 of	 benign	 patients	 and	 is	
thus	my	recommended	clinical	diagnosis	decision	support	model.	
	
Chapter	4:	Discussion	
In	this	study	I	have	elaborated	a	valid	algorithm	to	use	extracted	features	from	mp-
MRI	 and	 developed	 an	 accurate	 clinical	 decision	 diagnosis	 support	model.	With	 a	
model	 identified	 for	 clinical	 diagnosis	 decision	 support:	 in	 addition	 to	 aiding	 the	
radiologist	with	image	classification,	several	common	questions	a	patient	may	ask	of	
a	clinician	can	also	be	answered.	The	first	question:	what	is	the	accuracy	of	this	test	
at	 predicting	 malignancy?	 This	 question	 can	 be	 answered	 from	 the	 specificity	
calculation	and	we	can	say	that	there	is	100%	accuracy	the	model,	when	used	with	
the	dataset	I	have	acquired,	will	identify	a	malignant	tumor	and	aid	in	the	decision	
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to	recommend	biopsy.	The	second	question:	if	the	test	predicts	malignancy,	what	is	
the	confidence	that	a	patient	is	truly	malignant	and	not	benign?	This	question	can	be	
answered	 using	 the	 PPV	 value,	 it	 can	 be	 said	 there	 is	 a	 79%	 chance	 you	 have	 a	
malignant	tumor.	Put	another	way,	there	is	only	a	21%	chance	that	you	have	been	
misdiagnosed	as	malignant	and	will	have	to	undergo	an	un-necessary	biopsy.	
	

Image	Misclassification		
Although	the	model	chosen	has	perfect	malignant	patient	diagnosis	for	this	dataset,	
misclassifications	 of	 malignant	 images	 still	 exist,	 and	 thus	 the	 issue	 of	 image	
misclassification	 should	 be	 better	 understood.	 In	 particular,	 an	 understanding	 of	
why	some	 images	 in	a	patient’s	 image	set	are	misclassified	while	others	 in	 the	set	
are	 not,	 is	 useful	 to	 fully	 understanding	 the	 clinical	 diagnosis	 support	 model	
proposed.	To	further	our	understanding,	the	dataset,	and	how	it	was	created	should	
be	analyzed.		

In	 the	MRI	 in-bore	guided	biopsy	process,	 images	are	used	 to	 identify	possibly	
cancerous	areas,	regions	of	 interest	(ROI)	that	are	considered	abnormal	compared	
to	 the	 surrounding	 prostate	 tissue.	 Obviously,	 the	 size	 of	 the	 suspected	 abnormal	
area	will	determine	the	number	of	images	with	an	ROI	for	that	particular	patient.	In	
the	 dataset	 used	 in	 this	 study,	 the	 number	 of	 images	 for	 a	 given	 patient	 ranges	
between	1	and	8,	indicating	various	sized	suspected	tumor	areas	exist	in	the	patient	
cohort	used	to	compile	the	dataset.		

The	number	of	images	acquired	for	a	patient	will	determine	the	possible	factors	
underlying	patient’s	image	misclassification.	First,	let	us	consider	a	patient	with	only	
one	acquired	 image:	 it	 is	possible	 that	 the	biopsy	area	providing	 the	ground	 truth	
label	 for	 this	 patient	 is	 not	 fully	 aligned	 with	 the	 image.	 This	 misalignment	 may	
cause	the	image	to	only	capture	a	small	area	of	the	malignant	tissue,	with	the	rest	of	
the	 image	being	benign.	An	example	of	a	misaligned	 image	 is	 shown	 in	Figure	24,	
where	the	majority	of	the	ROI	area	is	benign,	shown	in	dark	blue	and	light	blue,	or	
slightly	malignant	(Gleason	score	6)	shown	in	green.		
	

	
Figure	24.	Heatmap	of	a	misaligned	ROI	image.	

	
The	 extracted	 features	 for	 such	 an	 image	 will	 skew	 a	 malignant	 labeled	 image	
towards	those	of	a	true	benign	labeled	image.	This	skew,	essentially	a	benign	image	
labeled	 as	 malignant,	 can	 be	 considered	 noise	 in	 the	 dataset	 and	 will	 possibly	
confuse	the	classifier.	
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Tumor	Heterogeneity	
For	malignant	patients	with	multiple	images,	tumor	heterogeneity	can	be	a	cause	of	
mislabeled	images	in	the	patient’s	image	set.	Although	the	patient’s	biopsy	shows	a	
ground	 truth	 of	 malignant,	 and	 images	 in	 the	 patient	 dataset	 contain	 malignant	
features,	 because	 of	 the	 potential	 heterogeneity	 of	 the	 tumor,	 some	 images	 may	
contain	 most,	 or	 all,	 benign	 features.	 It	 is	 these	 benign	 images	 in	 the	 malignant	
patients	 dataset	 that	 will	 be	 mislabeled,	 and	 like	 the	 case	 of	 a	 single	 misaligned	
image,	can	be	considered	noise	in	the	dataset.	

Tumor	 heterogeneity,	 also	 referred	 to	 as	 genetic	 heterogeneity19,57,58,59,	
describes	 both	 a	 spatial	 and	 temporal	 variation	 of	 differing	 cell	 populations	 in	 a	
tumor.	 Spatial	 heterogeneity	of	 a	 tumor	 is	 caused	by	 a	 varied	 stratification	of	 cell	
types	 in	 a	 tumor	60,61,	 where	 as	 temporal	 heterogeneity,	 shows	 a	 variation	 of	 cell	
types	 in	 the	 tumor	over	 time.	 In	 the	context	of	 this	study,	we	are	 interested	 is	 the	
spatial	 heterogeneity	 of	 a	 tumor	 as	 it	 relates	 to	 image	 features	 for	 a	 given	 tumor	
ROI.	The	heterogeneous	nature	of	cancer	tumors	has	been	observed	in	many	cancer	
types	 including	prostate	cancer62,63.	 Intra-tumor	heterogeneity	can	be	 the	cause	of	
inaccurate	biopsy	results	when	image	guidance	is	not	used.	In	the	example	in	Figure	
25,	six	horizontal	MRI	slices	(shown	by	the	black	lines)	have	been	used	to	identify	
an	ROI	in	the	prostate	gland	in	which	to	perform	a	biopsy.		
	

	
Figure	25.	Prostate	gland	ROI	identified	by	six	MR	image	slices.		

	
As	shown	in	the	color	stratification	in	Figure	24,	the	ROI	contains	both	benign	tissue	
and	 various	 severities	 of	 malignant	 tissue.	 Assuming	 the	 Gleason	 score	 biopsy	
protocol	of	a	primary	grade	pattern	(Yellow),	and	a	secondary	grade	pattern	(Red)	
yields	 a	 score	 of	 7	 (3	 +	 4),	 the	 patient	 would	 be	 diagnosed	 as	 malignant.	 In	 the	
dataset	 used	 for	 this	 study,	 the	 six	 image	 slices	 shown	 in	 Figure	 25	would	 all	 be	
labeled	as	malignant.	Labeling	all	six	images	as	malignant	in	this	manner	will	most	
likely	mislabel	image	slice	1,	3,	and	6	as	they	contain	little	or	no	malignant	tissue.	An	
example	of	 the	tissue	variation	 in	horizontal	 image	slices	that	may	be	present	 in	a	
heterogeneous	tumor	such	as	that	shown	in	Figure	25,	and	also	possibly	present	in	
the	dataset	used	in	this	study,	is	shown	in	Figure	26.		
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Figure	26.	Image	examples	of	malignant	and	benign	tissue	stratification	in	a	heterogeneous	

tumor.	
		
The	 image	 in	 Figure	 26c	 shows	 a	 large	 amount	 of	malignant	 tissue	 and	 extracted	
features	would	well	 represent	 the	patterns	 seen	 in	malignant	 tissue.	On	 the	other	
extreme,	 the	 image	 in	 Figure	 26a	 shows	 little	 to	 no	 malignant	 tissue	 and	 the	
extracted	features	would	represent	those	in	a	benign	image.	If	these	images	are	all	
from	a	patient	diagnosed	as	malignant,	the	image	in	Figure	26a,	and	possibly	Figure	
26b	would	be	mislabeled	and	add	noise	 to	 the	dataset.	Added	noise	 in	 the	dataset	
causes	 weak	 predictor	 variables	 with	 low	 correlation	 to	 the	 class	 labels	 thus	
confusing	the	classifier	during	training	and	reducing	classification	accuracy.		

The	 example	 in	 Figure	 25	 shows	 that	 image	 slices	 at	 either	 end	 of	 the	 ROI	
contain	 little	 to	 no	 malignant	 tissue	 suggesting	 that	 mislabeled	 images	 in	 image	
stack	of	a	malignant	patient	may	possibly	be	related	to	their	position	in	the	stack.	An	
analysis	of	the	misclassified	images	for	all	models	used	in	this	study	shows	no	clear	
correlation	 to	 the	 spatial	 position	 in	 the	 image	 stack.	 In	 addition,	 analyzing	
misclassified	malignant	and	benign	images	from	the	results	of	model	testing	shows	
no	 correlation	 to	ROI	 size	or	 the	 zone	of	 the	prostate	 gland	where	 the	 image	was	
acquired.	

Although	 intra-tumor	 spatial	 heterogeneity	 can	 possibly	 cause	 mislabeling	 of	
images	in	malignant	patients,	it	has	been	demonstrated	in	this	study	that	the	criteria	
of	classifying	a	patient	as	malignant	(if	one	or	more	images	is	classified	as	malignant	
the	 patient	 is	 classified	 as	 malignant),	 will	 overcome	 mislabeled	 images	 when	
diagnosing	malignant	patients.	Of	course,	this	criterion	only	applies	if	the	dataset	for	
a	 given	 patient	 contains	 multiple	 images.	 In	 some	 cases	 of	 smaller	 tumor	 size,	
acquiring	 multiple	 images	 may	 not	 be	 possible,	 so	 misclassification	 due	 to	
misalignment	of	 image	and	 tumor	cannot	be	corrected	 for.	A	 larger	concern	 is	 the	
noise	 added	 to	 the	 dataset	 by	mislabeled	 images	 causing	 classifier	 confusion	 and	
reduced	classification	accuracy.	This	classifier	confusion	may	affect	the	classification	
of	both	benign	and	malignant	images	alike.	Using	the	criteria	set	here	for	classifying	
a	 malignant	 patient,	 misclassification	 of	 malignant	 images	 can,	 to	 a	 degree,	 be	
corrected	 for,	 however,	 a	 single	 misclassified	 image	 from	 a	 benign	 patient	 will	
misclassify	that	patient	as	malignant	reducing	the	benign	classification	accuracy	and	
leading	to	over-biopsy.	
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Limitations	
Several	 limitations	 have	 been	 identified	 for	 this	 study.	 As	 has	 been	 previously	
discussed,	 possible	 intra-tumor	 heterogeneity	 causing	 patient	 images	 to	 be	
mislabeled	 is	 one	 such	 limitation.	 A	 second	 limitation	 is	 the	 size	 and	 imbalance	
between	benign	and	malignant	image	samples	of	the	dataset	being	used	to	train	the	
classification	models.	Small	sized	datasets	in	machine	learning	can	cause	overfitting	
of	 the	 models,	 specifically	 the	 autoencoder	 used	 for	 image	 de-noising	 and	
dimensionality	 reduction	 in	 this	 study.	A	small	dataset	also	 increases	 the	negative	
effects	 of	 noise	 and	 outliers	 that	 may	 be	 present	 in	 the	 class	 labels	 and	 in	 the	
predictor	variables.	An	imbalance	in	a	dataset,	such	as	the	one	used	in	this	study,	is	
expected	 since	 the	 radiologist	 who	 has	 determined	 which	 patients	 show	 likely	
malignant	 regions	 that	 should	 be	 biopsied	 strives	 for	 the	 best	 accuracy	 and	 least	
over-biopsy	 possible.	 It	 is	 interesting	 to	 note	 that	 if	 the	 radiologist	 were	 100%	
accurate	in	predicting	suspected	malignant	and	benign	regions	of	interest,	we	would	
have	no	benign	images	in	the	dataset	to	analyze.	The	result	of	an	imbalanced	dataset	
containing	 lower	 numbers	 of	 benign	 data	 samples	 verses	malignant	 samples	 will	
cause	 the	 learner	 to	 be	 biased	 to	 the	malignant	 class	 and	will	 tend	 to	misclassify	
benign	labeled	images.	Although	a	k-fold	cross-validation	method	was	introduced	to	
balance	 the	 dataset	 classes	 by	 reusing	 the	 benign	 images,	 this	 method	 is	 not	 as	
optimal	as	having	a	larger	set	of	unique	benign	images.	A	method	not	used	here	to	
balance	 a	 dataset	 is	 to	 duplicate	 the	 smaller	 class	 data	 with	 added	 noise	 with	 a	
variance	predicted	 from	the	variance	of	 the	 features	within	 the	class.	 It	may	be	of	
interest	 to	 test	 this	 method	 in	 the	 context	 of	 this	 study	 to	 determine	 if	 any	
classification	accuracy	would	be	achieved.		

Lastly,	 a	 third	 limitation	 is	 the	 use	 of	 2D	 images	 verses	 3D	 images.	 Several	
studies64,65,66	 comparing	 the	use	of	2D	and	3D	MRI	 in	 cancer	 image	analysis	 show	
that	 3D	 images	 yield	 better	 classification	 accuracy	 over	 their	 2D	 counterparts	 for	
many	of	 the	same	feature	extraction	and	classification	methods	used	 in	this	study,	
specifically	 LBP,	 which	 is	 used	 in	 the	 top	 performing	 model	 identified	 here.	 3D	
image	features	are	extracted	in	3-dimensional	voxels,	which	yield	more	information	
about	the	tissue	being	analyzed	than	can	be	obtained	with	traditional	2-dimensional	
feature	 extraction	 for	 a	 variety	 of	 cancer	 types,	 including	 prostate67.	 The	 3D	
volumetric	texture	analysis	method	can	overcome	the	issues	associated	with	tumor	
heterogeneity,	seen	in	the	2D	image	analysis	methods	used	in	this	study,	since	more	
accurate	features	can	be	extracted	over	a	volume	in	a	3D	space	of	the	tumor	area.	
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Chapter	5:	Conclusions	
I	have	established	an	algorithm	using	extracted	features	and	classification	to	enable	
computer	 image	 analysis	 of	 benign	 and	malignant	 prostate	 cancer	 patients	 using	
MRI.	 The	 effectiveness	 of	 this	 algorithm	 achieves	 the	 overall	 goal	 of	 this	 project.	
From	the	results	generated	in	establishing	the	computer	image	analysis	algorithm,	I	
have	demonstrated	that	multiparametric	MRI	has	better	classification	accuracy	than	
using	 T2W	 or	 ADCmap	 images	 alone.	 While	 evaluating	 the	 individual	 models	 I	
recognized	that	an	ensemble	of	classifiers	would	be	beneficial,	and	to	the	best	of	my	
knowledge,	 introduced	 the	 ensemble	 of	 classifiers	 to	 mp-MRI	 prostate	 cancer	
computer	 image	 analysis.	 The	 ensemble	 of	 classifiers	model	was	demonstrated	 to	
have	a	better	classification	accuracy	than	any	of	the	individual	models	analyzed.	

	For	 this	 particular	 small	 sized	 and	 unbalanced	 dataset,	 I	 have	 shown	 the	
optimum	 patient	 level	 clinical	 diagnosis	 decision	 support	model	 to	 be	 the	mRMR	
feature	 selection	 method	 with	 the	 SVM	 classifier	 using	 a	 polynomial	 kernel.	 The	
optimum	feature	extraction	method	used	with	 the	optimum	model	 is	 shown	to	be	
LBP	with	a	bin	size	of	1.	 In	 identifying	a	machine	 learning	method,	which	reduces	
the	patient	level	malignant	misdiagnosis	to	zero,	I	have	achieved	the	specific	aim	of	
this	project.	
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