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Abstract 

Acute Myeloid Leukemia (AML) is the most common acute adult leukemia, accounting for approximately 

1% of all new cancers in 2018. DNA methylation is an epigenetic modification that has been shown to 

play a strong role in the development and progression of AML. Disruption of DNA methylation in 

patients is often due to somatic mutations of epigenetic modifier genes (e.g. (DNMT3A, TET2, IDH1/2, 

WT1, EZH2, ASXL1). Typically, studies of DNA methylation in AML and other cancers focus on regions of 

differential methylation (DMRs) between cancer patients and their healthy counterparts. Using the data 

from The Cancer Genome Atlas study on 194 AML patients, we investigated differential methylation 

between patients with and without mutations of the epigenetic modification genes commonly mutated 

in AML. We identified 20,567 differentially methylated probes within 2,893 DMRs and analyzed the 

affected regions for involvement in AML. In particular, we identified a region within the promoter of 

PRDM16 which, when hypermethylated, is associated with decreased survival (p = 0.017). In conclusion, 

we find DMRs between AML patients with and without somatic mutations of epigenetic modification 

genes that affect biologically relevant pathway and show association with the development and 

progression of AML.  



Introduction 

Acute Myeloid Leukemia (AML) is a cancer of the blood and bone marrow characterized by 

abnormal growth and differentiation of hematopoietic stem cells, the precursor to normal blood cells. 

As of 2016, AML was the most common form of acute leukemia in adults. [1] With an incidence rate of 

4.8 (per 100,000) in 2014, AML continues to affect many patients every year. [2]  

 Cytogenetics have been established and verified as a strong prognostic predictor of AML [3, 4], 

though only 40 – 50% of AML patients have an abnormal karyotype [1], leaving open a need for 

investigation to other potential factors. Aside from karyotypic level abnormalities, known genomic 

mutations have been identified in the pathogenesis of AML, though there are fewer than in most solid 

tumors. [1] The Cancer Genome Atlas (TCGA) conducted a study of AML and found that in the 200 

patients of their cohort, there was an average of only 13 genetic mutations in each patient. Of those, 

there were an average of 5 genes that would be recurrently mutated in AML. [5] Mutations in several 

genes have been determined as prognostically relevant in AML, including several genes directly and 

indirectly involved in DNA methylation (DNMT3A, TET2, IDH1/2, WT1, EZH2, ASXL1). [6, 7]  DNA 

methylation, primarily de novo methylation, is believed to be a primary epigenetic mechanism involved 

in gene regulation during cell differentiation [8] and development. [9] In general, DNA methylation 

events in the promoter of a gene has an inverse effect on expression [10, 11] and, in some genes, has 

even been shown to mimic the effects of genomic mutations. [12] Since DNA methylation is a normal 

epigenetic process, [9] the abundance of mutations in the genes involved in establishing this mark is 

indicative of a possible predisposition to AML due to disrupted epigenetic machinery. [13] 

Events of disrupted DNA methylation have been observed in leukemia [14] and have been 

implicated as a strong driver in the progression from intermediate myelodysplastic syndromes to AML. 

[15] With DNA methylation being a reversible process, targeted therapies have been developed to 

attempt to remove irregularities in the methylome of patients. [16] Identifying regions affected by 



differential methylation is essential in order to drive such targeted therapies. Moreover, documenting 

which modifications are more likely to occur in patients carrying mutations in epigenetic modification 

genes may aid in the early detection and tailoring of such targeted therapies. Previous studies have 

found a number of mutation events in DNMT3A that lead to disruption of tetramer formation and 

processive function [17] and a global hypomethylation phenotype. [14] Additionally, mutations in 

histone modification genes such as EXH2 and ASXL1 have been shown to lead to changes in methylation 

[18] due to DNMT3A binding to them during histone modification. [19] Lastly, studies have found that 

IDH1/2 and TET2, enzymes involved in the demethylation of CpG sites, disrupt the methylome with a 

general hypermethylation phenotype when mutated, [20] as well as when mutations to WT1 cause loss 

of TET2 function. [21]  

Given the high frequency of mutations in key genes involved in establishing DNA methylation, 

we hypothesized that patients with mutations in epigenetic modifier genes (DNMT3A, IDH1/2, TET2, 

WT1, EZH2, and ASXL1) would display different DNA methylation patterns when compared to patients 

without these mutations. Moreover, we hypothesized that differential methylation would occur in 

regions biologically and functionally relevant to AML and therefore have a role in disease progression 

and/or survival. To test these hypotheses we leveraged data from The Cancer Genome Atlas (TCGA) 

study of AML [5] where methylation was measured using the Illumina Infinium® HumanMethylation450 

BeadChip array. 

Results 

Characterization of samples 

Methylation data for 194 samples were obtained from the Genomic Data Commons (GDC) 

Legacy Data Portal, for which 183 samples were retained for analysis after quality control. Mutation 

data was acquired from cBioPortal [22, 23]. Mutation data for each patient was screened for somatic 



mutations in genes in the following mechanisms: DNA methylation (DNMT3A), DNA demethylation 

(TET2, IDH1, IDH2, WT1), or histone modification (EZH2, ASXL1). Due to small sample size within each 

group the samples were not divided in separate groups based on which gene group was mutated. . Of all 

AML samples, 81 were determined to have some form of somatic mutation in at least one of these 

genes and were labeled as “mutated”; the remaining 102 samples were labeled as “non-mutated”. 

Patient characteristics are summarized between the two groups in Table 1. Cytogenetic risk is the only 

variable which is significantly imbalanced between the “mutated” and “non-mutated” groups (Pearson 

Chi-Square test, p < 0.0001). 

Differential methylation analysis 

 Probe-wise differential methylation analysis was conducted between the “mutated” and “non-

mutated” samples. The raw unprocessed data utilized in this study [5] was collected by TCGA using the 

Illumina Infinium HD HumanMethylation450K Array . This data was normalized and then scored as a β-

value at each site. This value, ranging from 0 to 1, represents the percentage of methylation at that site 

for a given sample. The distribution of this value at each site for each group was compared to determine 

whether one group, the “mutated” patients, were differentially methylated compared to the “non-

mutated” patients.  

 Between the two groups, 20,567 probes (of 427,462) remaining after preprocessing were 

identified as significantly different using a 5% False Discovery Rate cut-off (Figure 1) and the limma 

package from Bioconductor. [24] Probes where considered hypermethylated if the distribution of β 

values was significantly higher in the “mutated” group as compared to the “non-mutated” group and 

conversely for hypomethylated. Of these, 12,428 probes were identified as hypermethylated and 8,139 

as hypomethylated. The distributions of these differentially methylated probes (DMPs) in relation to 

CpG islands were similar in both groups, with roughly 28.28% of probes in CpG Islands, 32.65% in open 

sea, 31.26% in CpG shores, and 7.8% in CpG shelves (Supplementary Figure S1). 



Identified Differentially Methylated Regions and their involvement in cancer 

 Differentially Methylated Regions (DMRs) were identified (Materials and Methods), lifted over 

to the human assembly (GRCh38), then annotated using an in-house pipeline which matches regions to 

known coding regions, then promoters, and finally to the closest transcription start site (TSS) when 

found in intergenic regions. In total we identified 2894 DMRs, one of which was lost when we LiftOver 

from hg19 to hg38. DMRs range in size from 2 CpGs to 62 CpGs, with a median of 5 CpGs and a mean of 

roughly 7 CpGs. Distributions of DMR size and number of CpGs within DMRs by each chromosome can 

be seen in (Supplementary Figure S2). 

In order to further functionally annotate DMRs, we employed the Genomic Regions Enrichment 

of Annotations Tool (GREAT) [25] that associates each gene with a ‘regulatory domain’ defined as 5 kbp 

upstream and1 kb downstream from the TSS and an extension within 1 Mb up to the regulatory domain 

of the nearest upstream or downstream genes.  In the GREAT tool, biological processes related to cell 

fate commitment and hemopoiesis were found to be significantly enriched with DMRs at a false 

discovery rate of 5%, though their ranks were relatively low (93, 149, and 160 of 365, Table S1, 

Supplemental Data). GOrilla [26, 27] was used to look for enrichment of gene ontology terms. Several 

biological processes involved in DNA repair and histone methylation were identified as enriched with 

unadjusted p-values less than 0.001, though none of these were considered statistically significant after 

adjusting for multiple testing (Table S2, Supplemental Data).  

Further investigation of the DMRs found were done by looking for previous associations in AML 

and other forms of cancer. This was done using the COSMIC Cancer Gene Census, a highly curated 

collection of genes and their involvement in different cancers, as a filter for genes with a strong, 

demonstrated involvement in AML [28]. Using this method, 12 genes associated with AML were found 

with DMRs in the gene body and/or promoter in 34 unique DMRs. A table of these genes can be found in 



Table 2. The two genes with the highest number of DMRs, PRDM16 and DNMT3A, were chosen for 

further analysis. 

PRDM16 was found to have 18 DMRs in our dataset with one located in the promoter, the 

highest among any genes related to AML or other cancers. Previous studies have found PRDM16 

expression to have prognostic impact in adult [29] and pediatric [30] AML. Additionally, a mouse study 

found that epigenetic silencing of PRDM16 was associated with a fast progression from mixed lineage 

leukemia (MLL) to AML. [31] DNMT3A was found to have four DMRs in our dataset with one being in the 

promoter. While genomic mutations in DNMT3A are found frequently in patients with AML, [14] 

another study found that epimutations, which are regions of differential methylation within the 

promoter of DNMT3A, were found to have similar effects to global methylation as patients with 

DNMT3A mutations. [12] 

Survival Analysis 

 Overall survival was available for all 183 patients via the clinical data acquired from cBioPortal. 

Univariate survival analysis was performed using the Kaplan-Meier estimator. [32]  Epigenetic modifier 

mutation status, as labeled during this study, was first tested and found to not be significantly 

associated with overall survival (p = 0.16) (Supplementary Figure S3). In order to conduct survival 

analyses based on the methylation of the promoter for PRDM16 and DNMT3A, samples would need to 

be labeled as hypermethylated, hypomethylated, or intermediate methylation. To do this, mean 

methylation β values across the probe sites in the DMR were calculated for each patient. Once this was 

calculated, distributions of the mean methylation values were plotted, allowing threshold decisions to 

be made with the help of a biostatistician.  

 The mean methylation values within the promoter of PRDM16 appeared to take a bimodal 

distribution with the median close to 0.5 (Figure 2A). A β value of 0.5 was used to separate 

hypermethylated (β>0.5) and hypomethylated (β<0.5). Univariate survival analysis via the Kaplan-Meier 



estimator found that hypermethylation of the promoter of PRDM16 was significantly associated (p = 

0.017) with decreased survival (Figure 2B).  

The mean methylation values within the promoter of DNMT3A were found to be closer to a 

normal distribution. After consultation with a biostatistician, the decision was made to label all samples 

in the lower quartile of mean β values as hypomethylated, all samples in the upper quartile as 

hypermethylated, and all remaining samples as intermediate methylation (Figure 3A). Univariate 

survival analysis via the Kaplan-Meier estimator found that aberrant methylation of the promoter of 

DNMT3A was not significantly associated (p = 0.23) with survival (Figure 3B). 

Due to the strong prognostic impact of Cytogenetic Risk in AML [3, 5] and the disproportionate 

distribution of cytogenetic risk in the two patient groups (Table 1), it is possible that the results from the 

univariate model are detecting other factors. Multivariate survival analysis was conducted using a Cox 

Proportional Hazards model [33] to combine the age, cytogenetic risk, and PRDM16 hypermethylation 

covariates as a single model (Figure 4). 3 samples were removed as no data was available for cytogenetic 

risk group. Univariate analysis of cytogenetic risk of the patient cohort showed that poor and 

intermediate cytogenetic risk status were found to be significantly associated (p < 0.001 and p = 0.049, 

respectively) with increased risk (HR > 1), along with Age as a linear variable (p < 0.001). In this 

multivariate model, PRDM16 was suggestive, but not significantly associated with increased risk (p = 

0.059).  

Discussion 

Differential Methylation between mutated and non-mutated patients 

Typically, differential methylation is investigated between healthy control patients and patients 

with cancer. While this method may be able to illuminate regions of differential methylation due to the 

broad cancer phenotype, it is possible that smaller changes between patients will be left undiscovered. 



This study took advantage of the dataset available from TCGA to determine if mutations in epigenetic 

modification genes significantly affect the methylation of these patients and potentially affect survival. 

Ideally, group labeling for this sort of study would consider the impact of the different types of 

mutations present. While mutations to DNMT3A lead to a generally hypomethylated methylome [34], 

mutations in IDH1 and IDH2 result in a generally hypermethylated phenotype. [20] This potentially 

antagonistic effect may lead to a cancellation of signal due to grouping samples that are significantly 

different from each other. In the case of this study, sub-grouping by the potential impact of mutations 

was not possible due to the low sample count.  

The differential methylation analysis revealed many differentially methylated probes between 

the two groups, which then identified differentially methylated regions between the two groups. Using 

the pathway analysis tools GREAT and GOrilla, several biological processes in DNA repair, cell 

differentiation, and epigenetic modification were identified as enriched in the dataset. The genes of 

these pathways and processes are good candidates for further investigation. The use of the COSMIC 

Census allowed for an efficient filtering of a large list of DMRs. While this ensured high confidence of the 

region’s involvement in AML, it causes the findings to be limited to previously discovered associations, 

potentially masking new discoveries. Future study of this dataset should endeavor to investigate regions 

of unknown significance to further advance understanding of the effects. 

Hypermethylation of PRDM16 and Survival 

In the univariate survival analysis, hypermethylation of the promoter of PRDM16 was found to 

be significantly associated with decreased survival. While this effect was not considered significant in 

the multivariate model (p=0.059), it was suggestive of an association with decreased survival. If 

hypermethylation of the promoter typically results in decreased expression [10, 11], then it is possible 

that the reduced survival is due to reduced expression of PRDM16; however, we were unable to test this 

hypothesis in this study. A previous mouse study found that the epigenetic silencing of PRDM16, which 



acts as a histone methyltransferase, led to a decreased latency in development of AML from MLL. [31] 

This could have a similar effect in humans, leading to accelerated development of AML and potentially 

decreased survival. Conversely, another study into the prognostic impact of PRDM16 expression in AML 

patients found that increased expression of PRDM16 was associated with worse survival. [29] These 

competing results illustrate a potentially interesting effect of PRDM16 or a complex interplay between 

under and overexpression of PRDM16. The integration of expression data would need to be performed 

and analyzed in order to properly investigate this effect with the data from this study. 

 In summary, methylation values differ between AML patients with and without mutations in 

genes associated with methylation and chromatin modification. This study has discovered differentially 

methylated regions within genes pertinent to AML. Further research should look to continue 

investigating the effects of mutations to these genes and whether the changes to the methylome are a 

primary driving force in the development of AML. 

Materials and Methods 

Data Collection and Assembly 

Raw methylation array data (TCGA Level 1) for 194 patients from the 2013 TCGA study of AML 

[5] was collected from the Genomic Data Commons (GDC) Data Portal using the GDC Legacy Archive. 

The methylation data was created using the Illumina Infinium HumanMethylation450K Array. Clinical 

and somatic mutation data for 200 patients were collected from cBioPortal [22, 23]. Patients were then 

screened for any somatic mutations in genes related to DNA methylation (DNMT3A), DNA 

demethylation (TET2, IDH1, IDH2, WT1), or histone modification (EZH2, ASXL1). If patients had a 

mutation in any of these genes, they were labeled as “mutated”. No distinction was made for type of 

mutation or existence of complex karyotypes. The remaining patients were labeled as “non-mutated”. 

The mutation status was then combined with the clinical data to be assembled into a sample sheet, 



which is used as the phenotypic data for methylation array analysis. Of the 200 patients, 194 were 

retained for methylation analysis. All data was read into R using the minfi [35] package.  

Quality Control 

The methylation array includes 850 control probes used for quality control. Quality control of 

control probe intensities was conducted using Illumina’s BeadArray Controls Reporter in conjunction 

with their Methylation Module v1.9 for Genome Studio 2011.1. The default thresholds recommended by 

Illumina were considered when flagging samples. Additionally, the minfi [35] and wateRmelon [36] 

packages from Bioconductor were used to assess and visualize the quality of the control probes for 

samples. Four samples were flagged for removal during this phase. 

Probes with a low level of confidence, indicated by detection p-value and bead count 

thresholds, were removed using methods described by wateRmelon. [36] This resulted in the removal of 

4760 probes.  

Samples were assessed for their distribution of overall intensities, color bias, and sample 

relationship using methods described and implemented in the lumi [37] package from Bioconductor. 

One sample was identified as an outlier based on the distribution of intensities. When plotting the 

relationship of samples using a subset of probes with a coefficient of variance above 0.1, four samples 

separated completely from the rest of the samples. These samples were considered as outliers and 

flagged as removal. Finally, two additional samples were removed due to lack of documentation and 

metadata from the original study. Overall, 183 samples were retained.  

Normalization 

 Eight methods of normalization were evaluated on the data, including Stratified 

Quantile Normalization [35], Subset-quantile Within Array Normalization (SWAN) [38], Functional 

Normalization [39], Normal-exponential out-of-band (NOOB) [40], DASEN and two variants (DANES and 

NANES) [36], and Beta-Mixture Quantile (BMIQ) [41]. Normalization methods were compared using 



Color Bias and Beta by Probe Type density plots adapted from those in the lumi [37] package. SQN and 

BMIQ were not assessed for color bias correction via these plots as the raw intensities are unavailable 

after normalization. Normalization metrics from the wateRmelon [36] package were used to assess data 

quality after normalization, though only the normalization methods implemented in wateRmelon 

contained the needed data to test the SNP probe metrics. The DASEN method was chosen as the 

method to move forward with based on its performance on the data. After normalization, 81 “mutated” 

samples and 102 “non-mutated” samples remained. 

Differential Methylation Analysis 

Preparation of the normalized data and identification of Differentially Methylated Probes 

(DMPs) and Differentially Methylated Regions (DMRs) was conducted using methods detailed by the 

third version of A cross-package Bioconductor workflow for analysing methylation array data. [42] 

Probes were removed if they were on a sex chromosome (n = 11132), probes with known SNPs (n = 

15879), and probes known to be cross-reactive (n = 26279) [43]. DMPs were identified through pairwise 

comparisons between “mutated” and “non-mutated” patients. A false discovery rate cut-off of 5% was 

used. After comparing the mutated samples to the non-mutated, 12428 probes were identified as 

hypermethylated, 8139 as hypomethylated, and 406895 as insignificant.  

To investigate the regional effects of differential methylation, the final list of individual DMPs 

was used as input to determine differentially methylated regions (DMRs). 2894 DMRs were obtained 

using DMRcate [44], an annotation-agnostic method which only considers the location of DMPs within a 

1000 base-pair window. The identified DMRs were then lifted over to the human genome build 38 using 

the UCSC Genome Browser liftOver tool. [45, 46] DMRs were then annotated using a pipeline developed 

by the Knight Cardiovascular Institute Epigenetics Consortium. The pipeline uses the current Ensembl 

annotation [47] to annotate each DMR for gene-body overlap (exon or intron), overlap with promoter 

regions, and finally the nearest transcription start site for intergenic DMRs.  



Analysis of DMRs 

 The identified DMRs were then explored for pathway relationships using two complimentary 

tools, GOrilla [26, 27] and GREAT [25]. The input for GOrilla was a gene name list extracted from the 

resulting file from the annotation pipeline, using only records where the gene body was overlapped, 

retaining duplicate gene names. The input for GREAT was the unannotated DMR coordinates. The 

GREAT tool uses its own algorithm to annotate for cis-regulatory regions. Resulting pathways from each 

tool were assessed for potential involvement in AML and cancer.  

To narrow the list of candidate genes, the annotation of the DMRs was filtered using data from 

the COSMIC Census [28]. This highly curated list of cancer genes was used to identify DMRs which 

overlapped genes previously shown to be pertinent in AML. DMRs located within PRDM16 (n = 18) and 

DNMT3A (n = 4) were chosen for further focus. Of these, one DMR for each gene was located in the 

promoter of its respective gene. 

Survival Analysis 

 Univariate survival analysis was conducted using the Kaplan-Meier estimator [32] based on 

mutation status, methylation in the promoter of PRDM16, and methylation in the promoter of DNMT3A. 

Methylation of the promoters was defined by taking the average methylation of all probes in the DMR, 

then analyzing the distribution of these averages for all patients. For PRDM16, a bimodal distribution 

was seen and a β value of 0.5 was used to distinguish between hypermethylated (β > 0.5) and 

hypomethylated (β < 0.5) samples (Figure 2B). For DNMT3A, a near normal distribution was observed 

and methylation status were determined using quartiles to separate into hypermethylated (β ≥ top 

25%), intermediate methylation (top 25% < B < top 75%), and hypermethylation (β ≤ top 75%) (Figure 

3B). 

 Multivariate survival analysis was conducted using the Cox Proportional Hazards Model [33] on 

PRDM16 hypermethylation after it was found to be significant in the univariate model. This was done to 



account for the strong prognostic power of cytogenetic risk [3, 5] and determine whether the addition 

of PRDM16 promoter methylation status further informs survival analysis.  

  



Tables 

Characteristic "Mutated" (n = 81) "Non-mutated" (n = 102) 

Sex – no. (%)   

Male 37 (45.7%) 59 (57.8%) 

Female 44 (54.3%) 43 (42.2%) 

Age – years   

Mean 59.5 53.2 

Median (Interquantile Range) 61 (52 - 68) 54.5 (42.3 - 65.8) 

Range 21 - 88 22 - 83 

Cytogenetic Risk – no. (%)   

Good 1 (1.2%) 33 (32.4%) 

Intermediate 65 (80.2%) 40 (39.2%) 

Poor 13 (16.0%) 28 (27.5%) 

No Data 2 (2.5%) 1 (1.0%) 

Survival – no. (%)   

Living 23 (28.4%) 39 (38.2%) 

Deceased 58 (71.6%) 63 (61.8%) 

Survival Time (Deceased) – months   

Mean 12.2 12.7 

Median (Interquantile Range) 8.8 (4.2 - 17.2) 7.7 (2.2 - 17.1) 

Range 0.1 - 46.8 0 - 55.4 

Table 1 Patient characteristics within labeled groups. Patients were labeled as mutated if they had any somatic mutation in DNA 
methylation, DNA demethylation, or histone modification genes. 

   

  



Gene 
Name 

Number of 
DMRs 

DMRs Located In: 

Promoter Exon Intron 

CBFA2T3 2 1 0 1 

CDX2 1 1 1 0 

CREBBP 1 1 1 1 

CUX1 1 0 0 1 

DNMT3A 4 1 0 4 

HOXA13 1 1 1 1 

HOXC13 1 1 1 1 

KRAS 1 1 0 0 

MNX1 1 1 0 1 

PRDM16 18 2 3 17 

PRRX1 1 1 0 0 

RUNX1T1 2 2 1 2 
Table 2 DMRs overlapping the gene body or promoter region of genes implicated in AML were identified for further analysis. 
Filtering was done using the COSMIC Census. DMRs may be overlap multiple elements (promoter, exons, and/or introns), so the 
values in the “DMRs Located In” columns will not add to those in the “Number of DMRs”. 

 

  



Figures 

 

Figure 1 Volcano plot of differentially methylated probes. Probes with an adjusted p-value less than 0.05 were considered 
significant. Probes were labeled hypermethylated and hypomethylated based on their log fold change value being positive or 
negative, respectively. 



 

Figure 2  (A) Mean methylation values across the DMR in the promoter of PRDM16 were calculated by patient. These values 
were then plotted by frequency in a histogram with a bin width of 0.01. \β value of 0.5 was established as the threshold for 
determining methylation status. (B)Kaplan-Meier survival analysis of patients and their methylation status in the DMR located 
within the promoter of PRDM16. There is a significant association between hypermethylated patients (those with average 
methylation level of more than 0.5) in this region with a shortened overall survival time.  

A 

B 



 

Figure 3 (A) Mean methylation values across the DMR in the promoter of DNMT3A were calculated by sample. These values 
were then plotted by frequency in a histogram with a bin width of 0.01. All samples in the lower quartile were labeled as 
hypomethylated, samples in the upper quartile as hypermethylated, and all remaining samples as intermediate. (B) Kaplan-
Meier survival analysis of patients and their methylation status in the DMR located within the promoter of DNMT3A. No 
significant association was found (p= 0.23).  

A 
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Figure 4 Multivariate survival analysis of age, cytogenetic risk, and PRDM16 hypermethylation by way of the Cox Proportional 
Hazards model.  
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