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Abstract 

The overall focus of my doctoral research was to characterize how sensory and 

behavioral context affect how the auditory brain perceives and interprets sound. In 

Chapter 1, I overview the anatomical and physiological background for the experimental 

work presented in the following chapters. In Chapter 2, we explored the neural bases of 

auditory streaming in the ferret cued by the repetition of a complex sound in the presence 

of a changing mixture. In humans, sound repetition evokes a strong pop-out effect that 

leads to the separation of the repeated sound in the foreground in the context of a 

changing background composed of a mixture of noise. We first confirmed that ferrets 

were able to perceive complex sound repetitions as distinct sensory objects. We then 

recorded single- and multiunit extracellular activity in response to these stimuli in core 

(A1) and belt (PEG) regions of the ferret auditory cortex. We found that auditory 

responses were reduced in response to the repetition of any given sound, likely as a 

consequence of neural adaptation. However, activity evoked by the repeating, foreground 

stream was selectively enhanced compared to the background, an effect that was more 

prominent in PEG and for units whose responses were tuned to the repeating sound. 

Taken together these results provide evidence for stream segregation that emerges in A1 

and is refined in PEG. In Chapter 3, we combined behavior, electrophysiological and 

pupil size recordings, and modeling to dissociate the modulatory effects of two state 

variables, task engagement and arousal, on auditory processing at the level of the 

auditory midbrain and cortex. We found that arousal as indexed by pupil size accounted 

for a large component of the activity modulation between behavioral contexts. Because 

task- and arousal-related effects on neural activity were correlated, we found that many of 
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the units – particularly in the IC – that would have been counted as modulated by task in 

a more traditional analysis, were in fact modulated either solely by arousal or by both. 

Furthermore, in IC, but not in A1, units with weaker auditory responses showed stronger 

state modulation. Taken together, these results demonstrate that task engagement and 

arousal can be dissociated in most neurons. This approach provides a general method for 

dissociating the influence of continuous and discrete behavioral state variables on sensory 

representation. 
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Chapter 1: Introduction 

The auditory system detects sound derived from the mechanical disturbance of 

particles in a medium (for humans, usually the Earth’s atmosphere), propagating as 

alternating compression and rarefaction pressure waves generated by the vibration of an 

object, i.e. a sound source. The anatomical structures involved in sound processing have 

evolved over millions of years across different animal lineages to optimize hearing as an 

active process. Hearing requires the integration of the physical properties of sound, such 

as amplitude and frequency, with information relevant to its interpretation within the 

specific context in which auditory perception occurs. In this introduction, I provide an 

anatomical and physiological overview of auditory processing to frame the experimental 

work presented in the following chapters.  

The auditory brain coordinates the meaningful integration of auditory information 

with information from other senses, and uses internal and external cues to inform the 

correct interpretation of the incoming sound to guide behavior. Essential to this process is 

separating and distinguishing sound sources. In Chapter 2, using ferrets as an 

experimental model, we present evidence to support a hierarchical theory in which 

repetition facilitates sound source segregation. This process appears to begin in primary 

auditory cortex and be refined in secondary auditory cortical regions.  

Another remarkable ability of the auditory brain is its adaptability to an ever-

changing environment. It is well-established that in higher levels of the auditory pathway, 

auditory perception relies extensively on past experience, attention, and emotional state 

(Cherry 1953; Dai et al. 1991; Shinn-Cunningham & Best 2008). These state variables 
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likely do not operate in isolation, making it difficult to parse out the unique contributions 

of each to auditory processing. Therefore, state-dependent modulation of the auditory 

brain has not yet been integrated into a coherent model of auditory representation. In 

Chapter 3, we present an approach that allowed us to investigate the simultaneous 

contributions to firing rate modulations of two state variables, task engagement and 

arousal, in the inferior colliculus and primary auditory cortex. 

 

Overview of the auditory system: structure and connectivity 

Sensory systems are classically described in terms of a hierarchical organization 

of the brain regions that comprise them. In the case of the auditory system, we observe a 

progressive transformation of sound representation from the cochlea to the auditory 

cortex. Physical attributes of sound are encoded more faithfully in “lower level” regions 

(auditory nerve and brainstem nuclei), whereas abstract properties related to the 

perception and meaning of the stimulus are encoded in “higher level” regions (auditory 

cortex and above) (Bizley & Cohen 2013). The anatomical bases of such organization are 

composed of intricately organized networks of ascending and descending auditory 

projections (Winer & Lee 2007) (see Figure 1.1 for a schematic representation of this 

circuit).  

Ascending auditory projections start in the ear and run in parallel all the way up to 

the cortex.  In mammals, sounds waves are funneled into the ear canal by the auricle (also 

known as pinna), and are mechanically transmitted to the sensory organ for hearing, the 

organ of Corti, situated in the cochlear partition of the inner ear. It is here that vibrations 

are transduced into electrical and chemical signals. In response to receptor potentials 



 3 

generated by the cochlear hair cells, auditory nerve fibers (collectively forming the VIII 

cranial nerve) transmit information to the brainstem in the form of a pattern of action 

potentials. Starting at the first brain auditory region, the cochlear nucleus, sound 

information diverges into a number of tracts converging at the obligatory midbrain 

auditory structure, the inferior colliculus (IC). From there, auditory information is 

transmitted to the auditory thalamus, and relayed to the auditory cortex (AC). 

Starting in the midbrain, ascending pathways are subdivided anatomically into 

two systems known as the primary (lemniscal) and secondary (non-lemniscal) projections 

(Figure 1.2). Physiological studies have shown that primary and secondary neurons 

across auditory regions are different in many ways, and potentially play different roles in 

auditory perception (Elgueda et al. 2019; Lee 2015; Rauschecker & Tian 2000). 

Descending projections from the AC connect with virtually every nucleus in the 

midbrain, brainstem, all the way to the periphery. This feedback network is less 

understood, but it is thought to be tasked with selecting the salient information that can 

then guide behavior (Winer & Lee 2007).  

Because my dissertation focuses on the IC and primary and secondary regions of 

the auditory cortex, I will now review the known anatomical and physiological properties 

of these areas.   

 

The inferior colliculus 

Although sound frequency and intensity are directly encoded in the ear, some 

aspects of sound localization require the integration of cues that are extracted from the 
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spectral, temporal, and level differences collected from both ears. This integration starts 

in the IC (Winer & Schreiner 2005).  

The IC sends projections to several portions of the auditory thalamus (i.e., medial 

geniculate body or MGB) (Andersen et al. 1980, Huffman & Henson), as well as 

feedback projections to almost all brainstem nuclei from which it receives input 

(Huffman & Henson). The IC receives ascending projections from almost all parts of the 

brainstem auditory nuclei (Masterton et al. 1992; Morest & Oliver 1984; Oliver 1987; 

Saint Marie et al. 1997), and descending input from the MGB. It also receives a large 

efferent projection directly from the auditory cortex (Winer et al. 1998). This information 

is integrated locally by a complex network of intrinsic and commissural connections 

(Aitkin & Phillips 1984; Malmierca et al. 1995; Oliver et al. 1991; Saldaña & Merchán 

1992). 

Anatomical and cytoarchitectonic properties of the IC have been used to assign 

three main sub-regions: the central nucleus (CN), the lateral nucleus (LN), and dorsal 

cortex (DC) (Figure 1.2), each of which has different neuronal structure (Morest & Oliver 

1984), connections (Rockel & Jones 1973a,b), and functional properties (Semple & 

Aitkin 1979). The CN is the largest division of the IC, and it is tonotopically organized 

into distinct iso-frequency laminae along a dorso-medial axis (Huang & Fex 1986). 

Neurons in the CN receive direct input from auditory brainstem nuclei (lemniscal 

pathway) and tend to have characteristic short response latency and narrow bandwidth 

tuning (Aitkin & Moore 1975; Aitkin et al. 1975; Moore et al. 1983; Slee & David 

2015a). 
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A classical model describes the LN and DC as areas predominantly contacted by 

auditory fibers descending from the thalamus and cortex, as well as the main destination 

of neuromodulatory and other sensory input (Winer 2005). However, thanks to new 

techniques of cell-specific monosynaptic tracing, we now know that external cortex IC 

regions do in fact receive a large ascending projection (Chen et al. 2018). Neurons in 

these regions typically have longer response latencies, considerably broader auditory 

tuning, and, in general, lack consistent tonotopic organization (Slee & Young 2013; Syka 

et al. 2000). 

Converging anatomical and physiological evidence has shown that, in addition to 

auditory information, the IC processes multisensory information, such as visual, 

oculomotor, and somatosensory, as well as signals relating to behavioral context, 

motivation, and reward contingencies (Gruters & Groh 2012). The major sources of  

neuromodulatory input targeting the IC are the locus coeruleus and the dorsal raphe 

nucleus (Coleman & Clerici 1987; Klepper & Herbert 1991). Furthermore, the large 

corticofugal system has been hypothesized to be implicated in context-dependent 

modulation of IC activity either directly via the cortico-collicular (Winer et al. 1998) and 

thalamo-tectal (Kuwabara & Zook 2000) systems, or indirectly via midbrain modulatory 

centers, such as the pedunculopontine and latero-dorsal tegmental nuclei (Chen et al. 

2018; Motts & Schofield 2009). Interestingly, top-down projections from other auditory 

areas, multisensory input, and most neuromodulatory fibers tend to overlap in the same 

non-lemniscal regions of IC, suggesting that neuromodulators play a key role in 

modulating the convergence of ascending auditory information with descending auditory 

and non-auditory information.  
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The auditory cortex  

The organization of the auditory cortex is relatively well conserved from 

insectivores to primates, despite vast differences in terms of number of areas, relative 

position, connections, and topographic organization (Hackett 2011; Winer 1992) (Figure 

1.3). The regional boundaries are based on cytoarchitectonic, physiological, and 

connective properties, and often reflect methodological artifacts rather than actual 

functional differences (Oliver 2005). A common theme across auditory cortices in 

different species, is the presence of a core region, referred to as the primary auditory 

cortex (A1) (Luethke et al. 1988) (Figure 1.3). This region receives direct auditory input 

from lemniscal areas of the MGB (mainly ventral divisions). A1 neurons tend to respond 

reliably to pure tones, and do so with relatively short latencies and a frequency preference 

clearly organized along a tonotopic axis (Ehret & Schreiner 1997; Heil et al. 1994; 

Schreiner & Mendelson 1990), the orientation of which varies across species (Figure 

1.3). 

Systematic variations in the response properties of AC have been used as a basis 

for segregating different auditory fields into distinct processing streams (Griffiths & 

Warren 2004; Rauschecker & Tian 2000; Read et al. 2002). Primary core regions are 

surrounded by secondary belt regions, in which sound-evoked onset activity of neurons is 

delayed with respect to core regions, less reliable across repetitions, and have broader 

bandwidth (Rauschecker 1998). Secondary auditory areas are predominantly innervated 

by primary auditory areas (A1), and also receive input from non-lemniscal regions of the 

auditory thalamus (mainly medial and dorsal divisions).  
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In human and non-human primates, there is also a tertiary region referred to as the 

parabelt (Kaas & Hackett 2000; Moerel et al. 2014). Tertiary regions are primarily 

innervated by secondary areas and project to auditory association areas, which have been 

related to decision-making, such as the dorsolateral prefrontal cortex (dlPFC). Neurons in 

these areas tend not to respond to pure tones but rather preferring complex stimuli, such 

as vocalizations and other natural sounds (Hackett et al. 1998a,b). Furthermore, a recent 

study showed that neurons in the rostral ventral posterior auditory field (VPr) of the 

tertiary cortex of the ferret exhibited context-dependent changes in auditory responses, 

encoding non-acoustical sound features such as associated behavioral meaning and task 

timing (Elgueda et al. 2019). 

 

The ferret as an animal model for sensory processing 

In this thesis we used the ferret as an animal model. The ferret provides an ideal 

preparation for studying high-order auditory representations because of its rich behavioral 

repertoire (Bajo et al. 2010; Bizley et al. 2013; David et al. 2012; Fritz et al. 2003) and 

well-characterized auditory network (Atiani et al. 2014; Bizley et al. 2005, 2015). The 

well-defined auditory network provides potential advantages over mice, where the 

cortical organization is less clearly hierarchical (Bandyopadhyay et al. 2010; Hackett 

2011). At the same time, the ferret allows for substantially lower costs and handling 

complexity than non-human primates, providing a valuable, complement for studies of 

brain networks. 

The ferret IC is located under the cerebellum, about 7-9mm deep below the 

surface of the cortex. It receives bottom up projections, mostly contralateral, from 
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virtually every regions of the auditory midbrain (Moore 1988) and top down projection 

from the auditory thalamus and cortex (Bajo et al. 2007).The ferret auditory cortex is 

located in the temporal lobe and occupies a large portion of the ectosylvian gyrus (Bizley 

et al. 2005) (Figure 1.3). Core regions, A1 and the anterior auditor field (AAF), are 

located in the medial part of ectosylvian gyrus. Belt regions are located more posteriorly, 

and are named posterior pseudosylvian field (PPF), and posterior supra-sylvian field 

(PSF). Parabelt regions are positioned more anteriorly, and comprise the anterior dorsal 

field (ADF) and the anterior ventral field (AVF).  

 

Sensory- and behavior-dependent modulation of sound representation in the 

auditory system 

In the past 20 years, evidence from human and non-human studies has revealed 

that the neural encoding of sound, particularly in cortical regions, does not solely depend 

on the sensory input. Rather, it is heavily influenced by the context in which such input is 

presented and perceived. With the term “context”, I here refer to both the sensory 

conditions in which a given sound is presented, and the behavioral state of the animal 

receiving sensory stimulation. Many of these studies have challenged the classical and 

simplistic model that views primary sensory areas as static encoders of the attributes of 

the physical stimulus. In order to understand how the brain allows humans and other 

animals to successfully experience, react, and adapt to complex, ever-changing sensory 

environments, it is important to explore mechanisms of sensory processing that include 

and control for context variables that are likely to affect sound representation. 
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Sensory context effects have been associated with the ability of auditory neurons, 

both cortically and subcortically, to rapidly adapt to the statistics (e.g., spectral and 

temporal components) of sound (Bendixen et al. 2012; Winkler et al. 2009). The effects 

of behavioral context reflect relatively slower changes in sound-evoked activity occurring 

as a consequence of changes in the task structure and reward/penalty association, or 

changes in the internal state of the listener, e.g., arousal, sleep, and state of anesthesia 

(Osmanski & Wang 2015).  

 

Sensory context: Streaming of complex sounds in the auditory cortex 

Separating and distinguishing sound sources are essential processes of hearing. 

Complex mixtures of sounds generated by different sources often arrive at the ears 

simultaneously or in close succession, and yet are effortlessly decomposed by the 

auditory brain into distinct sound sources (Griffiths & Warren 2004). The computational 

difficulty of this task is emphasized by the fact that for subjects with hearing impairments 

and for speech recognition devices, it is extremely hard to decompose sound signals and 

correctly estimate the sound of interest embedded in a mixture (Divenyi 2004; Marrone et 

al. 2008; McDermott 2009; Wang & Brown 2006). 

Psychologist Albert S. Bregman was the first to extensively describe these 

processes and to popularize them under the name of auditory scene analysis (Bregman 

1990). The principles of auditory scene analysis are simple and based on the statistical 

analysis of streams of sounds; auditory streams that come from the same sound source 

share common spectro-temporal properties that make them separable (i.e., “stream 
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segregation”) from other sources, and perceivable as unique acoustic events (Bregman 

1990; Schnupp et al. 2012; Winkler et al. 2009).  

The principles of stream segregation have been extensively investigated using 

sequences of pure tones, denoted “A” and “B”, presented in alternating patterns 

(Bregman 1990; Moore & Gockel 2012; van Noorden 1975). One common pattern is the 

“ABAB” pattern, which generates a different percept based on the frequency separation 

(ΔF) and presentation rate (PR) of the two tones (Figure 1.4A). If the ΔF is small (<10%) 

and the PR is slow (<10Hz), a human subject would perceive the sound as a coherent 

alternating sequence, a single stream. However, if the ΔF is large or the PR fast, the 

stimulus would be perceived as two separate streams (Figure 1.4C). Intermediate cases 

are ambiguous as they can be perceived as either one or two streams, in a so-called 

bistable percept (Pressnitzer & Hupé 2006; Schnupp 2008; Schnupp et al. 2012). 

Furthermore, the perception of two streams does not occur instantly following the 

alternated presentation of two successive sounds. Instead, the probability of segregation 

to occur increases with time of sequence exposure (Anstis & Saida 1985; Bregman 

1978a). This “buildup” effect suggests that the auditory brain accumulates information 

over time, and the final percept depends on the information available in a specific sensory 

context. 

Early models of sound segregation describe the perceptual organization of 

sequential sounds as based on spectral differences, because two tones at different 

frequencies lead to two or more non-overlapping (or weakly overlapping) activations of 

different “channels” in the cochlea (Beauvois & Meddis 1996; Hartmann & Johnson 

1991; McCabe & Denham 1997). This place-based model of segregation is supported by 
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a series of seminal findings by Fishman and colleagues. The authors presented un-

anesthetized macaque monkeys with alternating A and B tones at different PRs, while 

recording multiunit activity from A1 regions tuned to the frequency of A tones but not to 

the B tones (Fishman et al. 2001, 2004). As the PR and pitch separation of A and B tones 

increased, the firing rate increased in response to the A tones, while it decreased in 

response to the B tones. These findings have since been replicated (Bee & Klump 2004, 

2005; Bidet-Caulet & Bertrand 2009; Kanwal et al. 2003; Micheyl et al. 2007a) and 

found a possible explanation in the phenomenon of “forward masking”, i.e., the reduction 

in the neural response to a stimulus due to a preceding stimulus (Brosch & Schreiner 

1997; Calford & Semple 1995). These results are consistent with what is sometimes 

referred to as the “peripheral channeling” or “population separation” hypothesis, in which 

peripheral and pre-attentive neural mechanisms underlying frequency selectivity and 

differential forward masking are described as the main contributors to the perceptual 

segregation of sequential acoustic events (Beauvois & Meddis 1996; McCabe & Denham 

1997).  

Although most models based on the population separation hypothesis have 

successfully accounted for many important aspects of perceptual integration and 

separation of sequential streams of pure tones, they fail to account for the observed 

influence of time in synchronous presentations of the same sound sequences (Figure 

1.4B). Elhilali et al. (2009) showed that sequences of tones separated by an octave or 

more – which would be perceived as two streams if presented in alternation – are 

perceived as a single stream when presented synchronously and fully coherently in time 

(Elhilali et al. 2009a; Shamma et al. 2011). In addition, psychophysical and physiological 
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studies conducted in humans using simultaneous, multi-talker paradigms, have 

demonstrated that even if the frequency spectra overlap, one stream of speech can be 

perceptually segregated from another as long as they differ on any other perceptual 

dimension, such as pitch (Akeroyd et al. 2005; Mesgarani & Chang 2012), timbre 

(Cusack & Roberts 2000; Roberts et al. 2002; Singh & Bregman 1997), or spatial 

location (Carlyon 2004; Micheyl et al. 2007a). These results led Elhilali and collaborators 

to formulate an alternative model for sound segregation based on the temporal coherence 

between responses that encode various features of a sound source (Elhilali et al. 2009a; 

Shamma et al. 2011). In addition to spectral separation, the model proposes that temporal 

relationships between sound elements are key factors used by the auditory system to 

perceptually organize acoustic scenes (Elhilali et al. 2009a; Micheyl et al. 2013b,a; 

Shamma et al. 2011). Psychophysical (Teki et al. 2013) and physiological (Christiansen 

et al. 2014; O’Sullivan et al. 2015; Teki et al. 2016) studies have since provided 

experimental evidence in support of this model. 

The discussed streaming models considered here are primarily based on pre-

attentive processes. With pre-attentive or “bottom-up” processes, I here refer to auditory 

processes that are driven solely by stimulus physical characteristics, and therefore 

presumably do not require “top-down” processes, such as prior knowledge or focused 

attention to the sounds. However, it is well established that auditory experience is 

influenced by central and top-down mechanisms of learning and attention (Bee & 

Micheyl 2008; Elhilali et al. 2009b; Shinn-Cunningham & Best 2008). Support for a 

theory of sound segregation that includes central mechanisms in addition to bottom-up 

mechanisms, is provided by investigations of the role of attention in auditory streaming. 
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For example, upon presentation of ambiguous combinations of sequential streams, human 

listeners are able to intentionally bias their perception toward grouping or streaming 

(Pressnitzer & Hupé 2006). Another example is that the buildup of stream segregation 

can be reset by changes in the ear of stimulus presentation or by experimentally 

controlled shifts in attention (Cusack et al. 2004; Snyder et al. 2006). 

In summary, although stream segregation is promoted by several acoustic cues 

whose contribution can be explained by simple mechanisms of peripheral activation of 

different frequency channels, it is likely that central mechanisms involving auditory and 

non-auditory brain regions are tasked with selectively enhancing these attributes (Alain & 

Arnott 2000; Alain & Woods 1994; Snyder et al. 2012; Sussman & Steinschneider 2006).  

 

Repetition as a cue for stream segregation 

Complex auditory scenes with sound sources overlapping in both spectral and 

temporal dimensions, represent a common everyday experience for hearing animals, 

including humans. Sounds emanating from animate and inanimate objects in the 

environment tend to be statistically regular and often repetitive (e.g., water falling, 

flapping wings, locomotion sounds). Thus, the ability to detect regularities within the 

incoming sensory input is a critical aspect of scene analysis.  

The temporal coherence model highlights the role of time in the formation of 

separate streams. Teki et al. (2016) demonstrated that human listeners are highly 

sensitive to the repetition of a sound presented in the context of a changing mixture of 

chords. Perceptually, the repeating sounds are fused together into a “foreground” that 

pops out from a randomly changing “background” (Teki et al. 2011, 2013). McDermott, 
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Wrobleski, and Oxenham (2011) demonstrated that for human listeners repetition alone is 

sufficient to induce segregation of complex sounds (McDermott et al. 2011). The authors 

used a set of artificially-generated, naturalistic stimuli that lacked first-order statistics of 

natural sounds carrying major grouping cues for auditory streaming (e.g., common onset 

and harmonicity), while retaining second-order correlations of natural sound statistics 

(e.g., high nearby spectro-temporal correlations) (Figure 1.5 A-B). Human subjects 

presented with sequences of temporally overlapping mixtures of these sounds were able 

to successfully report the occurrence of a repeating novel “target” sound if it appeared in 

the context of non-repeating, spectrally diverse mixture of other sounds. Similar to what 

was shown by Teki and coworkers with sequences of tone pips, perceptually, the repeated 

sequence popped out as a foreground from a simultaneously presented changing 

background. These findings are consistent with the observation that, in natural 

environments, sounds that come from the same source tend to repeat with consistency 

(i.e., are co-modulated) and therefore are grouped by the brain into a single object (Bizley 

& Cohen 2013). 

Listeners can use prior knowledge of specific features of sounds. For example, in 

the case of speech, humans can isolate the presence of a word or a phoneme presented 

simultaneously with another sound (Warren 1970). Listeners also assume that frequency 

components that are regularly spaced (Cheveigné et al. 1998; Roberts & Brunstrom 1998) 

start and end at the same time (Darwin & Ciocca 1992), come from the same spatial 

location (Best et al. 2005), or belong to the same source. However, because the complex 

naturalistic sounds used by McDermott et al. were artificially generated and could not 

have mapped into any meaningful object in the memory of their listeners, the authors 
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concluded that prior knowledge of sounds is not required to stream sources using 

repetition as the sole cue for stream segregation (McDermott et al. 2011). In a subsequent 

experiment, the authors showed that streaming sound sources via repetition is likely a 

pre-attentive effect. Human listeners engaged in a decoy visual task were also able to 

correctly report the identity of a sound when repeated in the context of a changing 

background (Masutomi et al. 2015).  

In Chapter 2 of this dissertation, we used a very similar paradigm to McDermott 

et al. (2011) to investigate the neurophysiological underpinnings of streaming cued by 

repetition using the ferret model. Our findings suggest that streaming of repeated 

sequences might engage mechanisms of adaptation, similar to those described below. 

 

A dominant idea in studies of sensory context is that the brain’s ability to detect 

regularities is not only crucial for identifying an auditory object embedded in a busy 

scene, but also allows subjects to form predictions about the environment, thereby 

making the system sensitive to deviance. Deviance detection has been extensively 

explored in humans, with experiments often combining behavior with 

electroencephalography (EEG) recordings and event-related brain potentials (ERPs). 

ERPs are time-locked events extracted from the ongoing EEG recording. The composite 

ERP component mismatch negativity (MMN) has been widely used as an index of 

deviance detection and to assess processes of auditory streaming. MMN is elicited by 

sound input violations in a regularly presented pattern of sounds (Näätänen 2001).  

At the level of single unit activity, a parallel phenomenon to MMN has been 

described as stimulus-specific adaptation (SSA) (Pérez-González & Malmierca 2014; 
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Ulanovsky et al. 2003). SSA is a particular case of response adaptation; while the 

response to a repeated sound adapts, a new “oddball” sound presented at random times in 

the sequence elicits a rapid and strong response. This adaptation specific to the stimulus 

is thought to arise from a combination of feedforward synaptic depression and local 

cortical inhibition (Ayala & Malmierca 2013; Natan et al. 2015; Yarden & Nelken 2017). 

Although the exact correlation between SSA and MMN remains debated, some have 

argued that SSA is not the direct substrate of MMN because the two phenomena differ in 

latencies, NMDA receptor-dependence, and sensitivity to certain regularities (Khouri & 

Nelken 2015).  

SSA was first observed in single-unit activity in auditory cortex, but has since 

been described also in the IC (Ayala & Malmierca 2013; Duque & Malmierca 2015; 

Malmierca et al. 2009) and in the auditory thalamus (Anderson et al. 2009; Antunes et al. 

2010; Malmierca et al. 2015). Interestingly, it appears to be stronger in non-lemniscal 

divisions of these auditory nuclei (Pérez-González & Malmierca 2014). 

Given that the majority of sound stimuli that have been used to investigate 

deviance detection have been very simple (i.e., sequences of repeated tones), it has been 

hypothesized that the adaptation of neural response is likely a major contributor to the 

observed deviant responses (Briley & Krumbholz 2013; Grill-Spector et al. 2006; Nelken 

2014). Another hypothesis sees deviant response as a phenomenon arising from the 

neural processes associated with a circuit primed to report any mismatch detected 

between incoming sensory input and an expected template of what that input might look 

like given some learned expectations (Daikhin & Ahissar 2012; Khouri & Nelken 2015; 

Taaseh et al. 2011). 
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The results presented in Chapter 2 indicate that in A1 and even more so in PEG, 

there are units that may hold the signature of streaming sounds as a virtue of its repetition 

in the context of changing backgrounds. We found that streams containing the repetition 

were often less suppressed or even enhanced compared to the background streams of 

random mixtures. Even though our findings contradict what we would predict from SSA 

– responses to the repeating stream were relatively enhanced with respect to the 

background stream – mechanisms and circuits of adaptation similar to those underlying 

SSA may be used to stream sequences of repeating objects. These brain processes would 

make it possible for the brain to selectively enhance a stream of repeating sound, 

exploiting its predictable statistical structure to extract it as a separate source (Rubin et al. 

2016; Winkler et al. 2009). 

 

Behavioral context: state-dependent modulation in the AC and IC  

Over the past 20 years, a large number of studies have shown that the information 

represented in primary cortical areas is strongly influenced by the behavioral state of the 

animal and by the association between a given sound and contingencies of the task. Non-

sensory variables such as motor activity, arousal, learning, and task engagement have 

been found to strongly modulate responses in primary visual (Niell & Stryker 2010; 

Shuler & Bear 2006), somatosensory (Petreanu et al. 2012; Sachidhanandam et al. 2013), 

and auditory cortices (Downer et al. 2015; Niwa et al. 2012; Otazu et al. 2009; Rodgers 

& DeWeese 2014; Schneider et al. 2014). These studies have challenged the traditional 

assumption that sensory primary cortical regions are simple sensory analyzers, and that 

comprehension and behavioral relevance are confined to non-sensory areas farther away 
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from the periphery (Campbell 1905). Moreover, these studies have helped reshape our 

understanding of the adult brain and its components from that of a static organ, to an 

ensemble of cells infused with possibility. Given that the brain is highly plastic, it should 

not be surprising that the activity of sensory neurons can be altered by a number of non-

sensory variables. In the next section, I review some of the key studies that have led 

scientists to these conclusions, highlighting findings that are relevant to the questions 

investigated in this dissertation.  

 

Task-related plasticity in primary auditory cortex and inferior colliculus 

The first controlled evidence of adult plasticity in A1 was provided by 

Weinberger and colleagues in a series of pioneering experiments in the mid-1990s. They 

showed that the tuning of A1 neurons shifted to match the frequency of pure tones 

presented as conditioned stimuli in a classical conditioning paradigm (Bakin & 

Weinberger 1990; Bakin et al. 1992; Weinberger 1997). These results demonstrated that 

the plasticity of receptive fields of A1 neurons is associative, as it requires pairing of a 

conditioned acoustic stimulus, a pure tone, and an aversive stimulus, a mild shock; and it 

is specific, as the maximum increase in response happened at the conditioned stimulus 

frequency, while neighboring frequencies remained unchanged or decreased their firing 

rates (Bakin et al. 1992). 

A few years later, Fritz and colleagues used instrumental conditioning to train 

ferrets on an avoidance go/no-go tone detection task (Figure 1.6A). Ferrets were 

instructed to freely lick from a water spout during the presentation of broadband 

reference stimuli, temporally orthogonal ripple combinations (TORCs) (Klein et al. 
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2000), but to promptly refrain from licking upon presentation of a target tone. Failure to 

lick during the target window would lead to a mild shock to the posterior paw, which 

acted as a negative reinforcer (Fritz et al. 2003, 2005b). To investigate stimulus-specific 

changes related to task engagement, the authors measured spectro-temporal receptive 

fields (STRFs) of A1 units derived from the responses to the TORCs, and compared them 

between active engagement and passive listening (Figure 1.6A). An STRF is a linear 

encoding model that uses a weighted version of the stimulus spectrogram (a measure of 

the energy in the stimulus at each frequency and time) to predict the neuronal discharge 

rate. The multiunit data showed a population enhancement of the responses to the target 

tone and suppression at adjacent frequencies (Figure 1.6B, left).  

These results corroborated Weinberger and colleagues’ findings that auditory 

cortex plasticity can be highly specific in the adult brain. However, the findings differed 

on a few important points. In Fritz et al., animals were not anesthetized, and receptive 

field plasticity occurred rapidly (after as few as five trials) as the ferrets switched from 

passive listening to the task stimuli to active engagement in which the same stimuli had a 

learned association with reward and penalty. Moreover, while in the case of Weinberger 

et al., receptive field changes in the direction of the conditioned frequency persisted for 

days and even weeks after a single 30-trial conditioning (Weinberger et al. 1993), in Fritz 

et al. (2003), receptive field changes for many neurons tended to rapidly revert back to 

the passive listening (baseline) condition.  

These results and results from similar experiments by the same group (Fritz et al. 

2005b, 2007b) led to a model of real-time adaptive plasticity, in which the auditory 

system changes its filter properties to optimize the ability to discriminate task relevant 
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sounds by enhancing the target (in this paradigm paired with a shock) and suppressing the 

references (paired with reward) (Fritz et al. 2007a). However, when the same group 

attempted to replicate the findings in a positive reinforcement, approach version of the 

task – one in which animals had to refrain from licking a water spout during the TORC 

reference stimuli and lick only to report the occurrence of a target tone to get a water 

reward (Figure 1.6A) – they found the opposite pattern of plasticity: for several recorded 

units in A1, active behavior responses were suppressed near the target frequency of 

neurons whose BF matched the one of the target compared to the passive condition 

(David et al. 2012) (Figure 1.6B,C). The results were in agreement with previous results 

from Otazu et al., who found task engagement effects in rat A1 was also suppressive of 

sounds-evoked activity (Otazu et al. 2009). David et al. (2012) concluded that reward 

contingencies were likely responsible for this inversion of the sign of plasticity.  

Another aspect of task-related plasticity investigated by the Fritz, Shamma 

research group, is the influence of task difficulty on the magnitude of these changes. 

Atiani and coworkers modified the avoidance task used in Fritz et al. (2003) such that the 

target was no longer presented alone, but embedded in one of the TORCs that acted as a 

masker (Atiani et al. 2009). By changing the signal-to-noise ratio (SNR) of the 

tone/masker, they were able to titrate the difficulty of the task. Under these 

circumstances, they found that A1 units tuned near the target frequency displayed an 

enhanced sensitivity at their BF, while those far from it experienced suppressed activity. 

Furthermore, these effects were stronger in experiments when behavioral performance 

was best, indicating that the strength of plasticity might be tightly related to motivation 

and reward. These results suggest that as perceptual demand increases, greater effort is 
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required to perform the task, and the increased effort might be what is reflected in cortical 

activity.  

 

So far, I have presented an overview of task-related plasticity focused on work in 

primary auditory cortical regions. A few studies have also explored how auditory 

representation emerges and transforms along the auditory pathway. Slee and David 

(2015) conducted an experiment with stimuli, animal model, and behavioral paradigm 

matching the experiment in David et al. (2012) to allow for a direct comparison (Slee & 

David 2015a). The authors computed STRFs from single-unit responses recorded in the 

IC while animals performed the approach version of the tone discrimination task, and 

compared them to the STRFs computed with responses during the passive condition. 

During training the target tone frequency was selected randomly – but spanned a broad 

range of the ferret’s frequency range, whereas during recording it was selected to either 

match (on-BF) or be at or above 0.5 octaves (off-BF) from neurons’ best frequency (BF). 

Just as in A1, local gain changes measured by the STRF at the target frequency were 

suppressed in both the central nucleus (CN) and external cortex areas of the IC (LN and 

DC) (Figure 1.6C). Moreover, these effects were stronger when the target frequency was 

on-BF. However, global gain changes measured across frequencies tended to be also 

suppressive in IC, while the same analysis performed on the A1 data showed that global 

gain changes were equally likely to be suppressed or enhanced (Slee & David 2015a).  

To investigate task-related modulation in higher level regions of auditory 

processing, similar experiments have been performed in ferret belt areas and in frontal 

cortex (Atiani et al. 2014; Fritz et al. 2010; Niwa et al. 2013). Here behavioral 
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modulation was found to be stronger, gradually moving towards a more abstract 

representation of task-related categories and behavioral outcome. Taken together these 

results support a hierarchical model of auditory representation in which a selective 

encoding of an attended object begins subcortically and emerges gradually as information 

ascends along the cortical pathway. 

 

State-dependent modulation of auditory activity 

The rapid changes in sound-evoked activity described in the previous section are 

strong evidence in favor of an active mechanism of re-tuning that develops within 

minutes as listeners engage in learned associative behaviors. Such modulations are often 

described using encoding models of neural activity that use both stimulus and context 

variables as model parameters (David 2018). However, several studies, many of which 

are cited above, have only focused on a single aspect of behavioral context, such as task 

engagement, and explored its influence on neural activity as a binary variable (e.g., 

passive/active). Although this discretization is convenient as it increases the statistical 

power and can capture changes across trials in each condition, it likely fails to capture the 

granularity of other changes that might be associated with fluctuations of factors related 

to the internal state of the animal (Brody et al. 2003; Ecker & Tolias 2014; McGinley et 

al. 2015b). 

It is increasingly clear that factors that are not purely sensory can be responsible 

for some of the variability in sensory neurons’ excitability (Kato et al. 2012; Luck et al. 

2013; McGinley et al. 2015b; Schwartz & David 2015). Factors like arousal, indexed by 

changes in pupil size, locomotion, and whisking, for example, have been shown to 
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change smoothly in non-anesthetized animals over the course of an experiment, and to 

track fluctuations of sensory neurons’ membrane potentials and behavioral performance 

(Cohen & Maunsell 2010; Goris et al. 2014; McGinley et al. 2015a; Niell & Stryker 

2010; Poulet & Petersen 2008; Reimer et al. 2014; Vinck et al. 2015).  

In our laboratory, we found that during passive recordings of single neurons in A1 

of non-anesthetized ferrets presented with repetition of two 3s-long ferret vocalizations, 

pupil size varied considerably under constant luminance (Figure 1.7A). In some neurons, 

this variation in pupil size was tightly coupled with trial-by-trial variability in 

spontaneous and sound-evoked activity (Figure 1.7B-E). These fluctuations are likely to 

contribute to the variability in experimental results observed across studies, cortical areas, 

and even across different time points within a single experiment. Therefore, in order to 

formulate coherent theories of sensory representation, it is important that experiments 

control for known variables and incorporate such variables into traditional auditory 

encoding models (David 2018). 

In Chapter 3 of this dissertation, we show that accounting for pupil size variability 

accounts for some but not all changes in neural activity between active and passive 

behavior in A1 and more so in IC. 
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Figure 1.1: Auditory pathway from the cochlea to primary auditory cortex 

Schematic of ascending (cyan) and descending (pink) auditory pathway with main 

auditory structures. Descending fibers below the inferior colliculus are not shown. 
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Figure 1.2: Lemniscal and non-lemniscal auditory pathways. 

Schematic diagram of the auditory pathway, showing the major stations and projections 

that constitute the lemniscal and non-lemniscal pathways. Adapted from (Malmierca et 

al. 2015).  
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Figure 1.3: Auditory cortex anatomy across species 

Schematics of the auditory cortex in selected mammals. Primary core auditory areas are 

darkly shaded. Belt and parabelt areas are unshaded. Tonotopic gradients are indicated by 

H (high) and L (low) frequency. Dorsal-rostral axis marker applies to all panels except 

macaque and human. Adapted from (Hackett 2011). 
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Figure 1.4: Examples of sequential and simultaneous organization of pure-tone sequences 

A. Two tones, A and B, presented sequentially (incoherently), with frequency difference 

ΔF > 10% are usually perceived as two separate streams. The green color indicates a 

separate stream. Shaded regions indicate two hypothetical neural auditory channels 

activated by the tones. B. Same sequence as in A, but presented simultaneously 

(coherently). In this case the two sequences are perceived as a single stream, despite the 

large ΔF. C. Alternating tones of nearby frequencies (ΔF < 10%) are usually heard as a 

single perceptual stream that oscillates in frequency regardless of tone presentation rates. 

Figure adapted from (Shamma et al. 2011). 
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Figure 1.5: Naturalistic sounds used in McDermott et al., 2011 

A. Correlation between nearby time-frequency cells as a function of their temporal (left) 

and spectral (right) separation. B. Spectrogram of a spoken word, a bullfrog vocalization, 

and two synthetically generated stimuli. Adapted from (McDermott et al. 2011). 

  

Spoken words
Animal vocalizations
White noise
Exp. stimuli

Experimental stimuli

A

B



 29 

Figure 1.6: STRF measurement and differences observed in A1 and IC 

A. Approach versus avoidance behaviors. In both tasks, animals were required to detect a 

pure tone target (red) after a random number of reference noise sounds (blue). During the 

approach behavior (timeline), subjects were positively rewarded with water for licking a 

water spout 0.1–1.0 s after target onset (green bar) and punished with a timeout for 

licking earlier (red bar). During avoidance, subjects were rewarded by licking a 

continuously flowing stream of water during the references and punished with a mild tail 

shock if they failed to stop licking 0.4 s after target offset. Reference stimuli were used to 

compute a spectro-temporal receptive field (STRF), a linear model that shows the time-

varying receptive field of a unit. Red regions indicate frequencies and time lags with 

increased responsiveness, and blue regions indicate a decrease. Green regions indicate no 

change. B. STRF examples from IC (top) and A1 (bottom) neurons that show how STRF 

differences between passive listening and active behavior are computed. Both examples 

are from approach task. C. Average STRF difference between approach behavior and 

passive listening, aligned at the target frequency and averaged across units for approach 

(left) and avoidance (right) tasks. It the approach behavior, the average STRF difference 

showed a selective local decrease in sound-evoked responses near the target frequency. 

The opposite was observed in the avoidance task. Figure adapted with authors’ 

permission from (David et al. 2012) panel A, top, and panel C; (Fritz et al. 2003) panel A, 

bottom; and (David 2018) panel B. 
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Figure 1.7: Pupil size tracks neural activity in A1 

A. Pupil size recorded under constant illumination over the course of an experimental 

session where the animal was passively listening to ferret vocalizations. B. Spectrogram 

of one of two ferret vocalizations presented to the animal. C. Raster plot of the activity of 

an A1 single unit. Each row is a trial organized according to presentation time. This 

neuron presented a strong inhibition of its activity in response to sound, followed by a 

rebound excitatory response whose strength varied across trials. D. Same as in C., but 

trials are ordered here according to pupil size. E. Peri-stimulus time histogram (PSTH) of 



 31 

unit’s firing rate for trials in which pupil size was small (< 0.7 mm), medium (0.7-1.4 

mm), or large (> 1.4 mm). Data and figure kindly provided by Zachary Schwartz 

(unpublished). 
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Abstract 

Statistical regularities in natural sounds facilitate the perceptual segregation of 

auditory sources, or streams. Repetition is one cue that drives stream segregation in 

humans, but the neural bases of the perceptual phenomenon remain unknown. We trained 

ferrets to detect a stream of repeating noise samples (foreground) embedded in a stream 

of random noise samples (background). While ferrets were listening passively, we 

recorded neural activity in primary (A1) and secondary (PEG) fields of the auditory 

cortex. We used context-dependent encoding models to assess whether evidence for 

streaming of the repeating stimulus could be observed in these brain areas. Separate 

models tested whether the strength of the neural response was better predicted by scaling 

the prediction to both streams equally (global response gain), or by scaling the predicted 

response of one stream relative to another (stream-specific response gain). Consistent 

with adaptation, we found a reduction in global response gain when the stimulus was 

repeated. However, when we measured stream-specific changes in gain, neural responses 

to the foreground stream were enhanced relative to the background stream. This relative 

enhancement was stronger in PEG than in A1. In A1, the degree of enhancement 

depended on auditory tuning. It was strongest in units that displayed low sparseness (i.e., 

broad sensory tuning), and were tuned preferentially to the repeated sample. Thus, while 

overall auditory responses were reduced by the repeating sound, a relative enhancement 

of the foreground stream relative to the background provides evidence for stream 

segregation that emerges in A1 and is refined in PEG. 
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Significance Statement 

To interact with the world successfully, the brain must parse behaviorally 

important information from a complex sensory environment. Essential to this process is 

separating and distinguishing sounds. Complex mixtures of sounds often arrive at the ears 

simultaneously or in close succession, yet they are effortlessly segregated into distinct 

sound sources. This process breaks down in hearing-impaired individuals and speech 

recognition devices. By identifying the underlying neural mechanisms that facilitate 

streaming, we can develop strategies for ameliorating hearing loss and improving speech 

recognition technology in the presence of background noise. Here, we present evidence to 

support a hierarchical model in which sound repetition facilitates sound segregation. This 

process begins in primary auditory cortex and is refined in secondary auditory cortical 

fields. 
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Introduction 

Sounds generated by different auditory objects (sound sources) impinge on the ear 

as a complex mixture, with acoustic energy generated by each source overlapping in both 

time and frequency. The auditory system has the remarkable ability to group these 

dynamically changing spectro-temporal sound features into percepts of their distinct 

sources, in a process known as auditory streaming (Bregman 1990; Griffiths & Warren 

2004). Streaming requires statistical analysis of sound sources: streams that come from 

the same sound source share statistical properties, and the brain uses these properties as 

cues for stream integration or segregation (Bregman 1990; Carlyon 2004; Darwin 1997; 

McDermott 2009; Winkler et al. 2009). 

Basic acoustic features, such as separation in frequency and time, are key 

perceptual cues for segregating simple, alternating sequences of pure tones (Bregman 

1978b; Bregman et al. 2000; Oberfeld 2014; van Noorden 1975). However, segregating 

more complex, spectrally overlapping sounds require perceptual dimensions such as pitch 

(Akeroyd et al. 2005; Mesgarani & Chang 2012), timbre (Cusack & Roberts 2000; 

Roberts et al. 2002; Singh & Bregman 1997), spatial location (Carlyon 2004; Cusack & 

Roberts 2000; Mesgarani & Chang 2012; Micheyl et al. 2007b; Roberts et al. 2002; Singh 

& Bregman 1997), and temporal regularity (Agus et al. 2010; Andreou et al. 2011; 

Bendixen et al. 2010; Szalárdy et al. 2014). McDermott et al. (2011) tested specifically 

for the benefit of temporal regularity with a set of artificially-generated naturalistic noise 

samples that lacked other cues for streaming, such has harmonicity and common onset 

(McDermott et al. 2011). The authors found that simple repetition was sufficient for 

humans to recover the identity of individual noise samples from mixtures, while the same 
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samples could not be segregated from background noise outside of the context of 

repetition. The neural bases of this perceptual pop-out remain unknown. 

In contrast to the robust perceptual enhancement reported for a repeating 

foreground stream, studies of auditory cortical activity during presentation of temporally 

regular stimuli have emphasized a suppressive effect of repetition (Pérez-González & 

Malmierca 2014). Single neurons undergo stimulus-specific adaptation (SSA), where 

responses to repeated tones adapt, but responses to an oddball stimulus, such as a tone at 

a different frequency, are less adapted or even facilitated, reflecting perceptual pop-out of 

the oddball sound (Nelken 2014; Ulanovsky et al. 2003). In recordings of human 

electroencephalography (EEG), a possibly related phenomenon is observed in a late 

event-related component, called the mismatch negativity (MMN). Although the dynamics 

differ from SSA, MMN is also elicited by rare deviant sounds randomly interspersed 

among frequent standard sounds (Näätänen 2001). While there is no evidence that links 

SSA or MMN with repetition-based grouping, it is possible that these processes share 

some of the same circuits. How the brain might use adaptation to a repeating sound to 

enhance its perception is not known. 

In this study, we investigated the neuronal correlates of streaming induced by 

repetition of complex sounds in primary (A1) and secondary (PEG) fields of the auditory 

cortex of ferrets. We first established the ferret as an animal model for streaming of 

repeating noise sounds, by designing a behavioral paradigm that assessed the animal’s 

ability to detect repetitions embedded in mixtures. We then recorded single- and multi-

unit activity in A1 and PEG of un-anesthetized, passively listening ferrets either trained 

or naïve to the detection task. We tested the prediction that auditory cortical neurons 



 37 

facilitate stream segregation by selectively enhancing their response to the repeating (i.e., 

foreground) stream. We used context-dependent sound encoding models to quantify the 

relative contribution of the two overlapping streams to the evoked neural response. We 

found that neural responses to the repeated stimuli were reduced overall in both areas. 

Yet, some neurons in both brain regions had foreground-specific responses that were 

enhanced with respect to responses to the simultaneous background stream. These results 

provide evidence for a model of streaming cued by repetition that starts in primary and is 

refined in secondary fields of the auditory cortex. 

 

Materials and Methods 

All procedures were approved by the Oregon Health and Science University 

Institutional Animal Care and Use Committee and conform to the United States 

Department of Agriculture standards. 

 

Surgical procedure 

Animal care and procedures were similar to those described previously for 

neurophysiological recordings from awake ferrets (Slee & David 2015b). Five young 

adult ferrets (two females, three males) were obtained from an animal supplier (Marshall 

Farms, New York). Normal auditory thresholds were confirmed by measuring auditory 

brainstem responses. A sterile surgery was then performed under isoflurane anesthesia to 

mount a post for subsequent head fixation and to expose a 10-mm2 portion of the skull 

over the auditory cortex where the craniotomy would be subsequently opened. A light-

cured composite (Charisma, Heraeus Kulzer) anchored a custom stainless-steel head-post 
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on the midline in the posterior region of the skull. The stability of the implant was also 

supported by 8-10 stainless self-tapping set screws mounted in the skull (Synthes). The 

whole implant was then built up to its final shape with layers of Charisma and acrylic 

pink cement (AM Systems). 

During the first week post-surgery, the animal was treated prophylactically with 

broad-spectrum antibiotics (10 mg/kg Baytril). For the first two weeks the wound was 

cleaned with antiseptics (Betadine and Chlorexidine) and bandaged daily. After the 

wound margin was healed, cleaning and bandaging occurred every 2-3 days through the 

life of the animal. This method revealed to be effective in minimizing infections of the 

wound margin. 

 

Stimuli and Acoustics 

Repeated embedded noise stimuli used in the present study were generated using 

the algorithm from McDermott et al. (2011) (McDermott et al. 2011). Brief, 250- or 300-

ms duration samples of broadband Gaussian noise were filtered to have spectro-temporal 

correlations matched to natural sounds but without common grouping cues, such as 

harmonic regularities and common onsets (McDermott et al. 2011). The spectral range of 

the noise (125-16,000 Hz or 250-20,000 Hz) was chosen to span the tuning of the current 

recording site. An experimental trial consisted of continuous sequences of 10-12 noise 

samples (0 ms inter-sample interval) drawn randomly from a pool of twenty distinct 

samples (Figure 1). The order of samples varied between trials. Either one stream of 

samples was presented (single stream trial) or two streams were overlaid and presented 

simultaneously (dual stream trial). At a random time (after 3-11 samples), the sample in 
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one stream (target sample) began to repeat. In dual stream trials, this repetition occurred 

only in one of the two streams, while samples in the other stream continued to be drawn 

randomly. In human studies, the repeating sample has been shown to pop out 

perceptually as a salient stream (McDermott et al. 2011). Thus, the stream containing the 

repeated sample is referred to here as the foreground, and the non-repeating stream as the 

background (Figure 1B). The period of the trial containing only random samples is 

referred to as the random phase, and the segment starting with the first repetition of the 

target sample, where the two streams perceptually diverge, is referred to as the repeating 

phase (Figure 2.1B). 

All behavioral and physiological experiments were conducted inside a custom 

double-walled sound-isolating chamber with inside dimensions of 8’ × 8’ × 6’ (L × W × 

H). A custom second wall was added to a single-walled factory chamber (Professional 

Model, Gretch-Ken Inc.) with a wooden frame and an inner wall composed of ¾” MDF 

board. The air gap between the outer and inner walls was 1.5”. The inside wall was lined 

with 3” sound absorbing foam (Pinta Acoustics). The chamber attenuated sounds above 2 

kHz by more than 60dB. Sounds from 0.2-2 kHz were attenuated 30-60 dB, falling off 

approximately linearly with log-frequency. 

Stimulus presentation and behavioral control were provided by custom MATLAB 

software (Mathworks Inc.). Digitally generated sounds were D/A converted (100 kHz, 

National Instruments PCI-6229), and presented through a sound transducer (Manger 

W05) driven with a power amplifier (Crown D-75A). The speaker was placed one meter 

from the animal’s head, 30° contralateral to the cortical hemisphere under study. Sound 
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level was calibrated using a ½” microphone (Bruel & Kjaer 4191). Stimuli were 

presented with 10ms cos2 onset and offset ramps. 

 

Behavior 

Two ferrets (one male, ferret H, and a female, ferret O) were trained to report the 

occurrence of repeated target noise samples in the repeated embedded noise stimuli using 

a go/no-go paradigm (David et al. 2012). Two weeks after the implant surgery, each 

ferret was gradually habituated to head fixation by a custom stereotaxic apparatus in a 

plexiglass tube. Habituation sessions initially lasted for 5 minutes and increased by 

increments of 5-10 minutes until the ferret lay comfortably for at least one hour. At this 

time the ferret was placed on a restricted water schedule and began behavioral training. 

During training and physiological recording sessions that involved behavior, the ferret 

was kept in water restriction for five days/week, and almost all the daily water intake (40-

80 ml) was delivered through behavior. Their diet was supplemented with 20 ml/day of 

high protein Ensure (Abbott). Water restriction was to be discontinued if weight dropped 

below 20% of the initial weight, but this did not happen with either ferret. Water rewards 

were delivered through a spout positioned close to the ferret’s nose. Delivery was 

controlled electronically with a solenoid valve. Each time the ferret licked the waterspout, 

it caused a beam formed by an infrared LED and photo-diode placed across the spout to 

be discontinued (Figure 2.1A). This system allowed us to precisely record the timing of 

each lick relative to stimulus presentation. 

After trial onset, animals were required to refrain from licking until the onset of 

the repeating phase, i.e., after the occurrence of a repeated sample. Licks during the 
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random phase were recorded as false alarms and punished with a 4-6 sec time-out. Licks 

that occurred in the repeating phase were recorded as hits and always rewarded with one-

two drops of water (Figure 2.1B). Each behavioral session had two target samples whose 

identity varied from session to session to avoid ferret overexposure to a given target 

spectro-temporal features. 

To shape the animal's behavior, training started with a high signal-to-noise ratio 

(SNR) between random and repeating phases. SNR was then slowly decreased until 0dB 

SNR was reached. Parameters such as spectral modulation depth of the two streams and 

length of the random phase/false alarm window were also adjusted over the training 

period. Performance was assessed by a discrimination index (DI) computed from the area 

under the receiver operating characteristic (ROC) curve for detection of the target in the 

repeating phase (David et al. 2012; Yin et al. 2010). DI combines information about hit 

rate, false alarm rate, and reaction time, and has a higher value for the higher, lower, and 

faster these scores are, respectively. A DI greater than 0.5 indicates above-chance 

performance. Criterion was reached as the ferret performed at DI > 0.5, with 0 SNR and 0 

modulation depth difference for four consecutive days. 

 

Electrophysiology 

Single- and multi-unit neural recordings were performed in the two trained 

animals and in three additional task-naïve animals. A small (~1-2 mm diameter) 

craniotomy was opened over the auditory cortex, in a location chosen based on 

stereotaxic coordinates and superficial landmarks on the skull marked during surgery. 

Initial recordings targeted primary regions of the ferret auditory cortex (A1), and 
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recording location was confirmed by characteristic short-latency responses to tone stimuli 

and by tonotopic organization of frequency selectivity (Bizley et al. 2005). Recordings in 

secondary auditory cortex (PEG) were then performed in the field ventral to A1, 

identified by a reversal in the tonotopic gradient. 

On each recording day, 1 to 4 high-impedance tungsten microelectrodes (FHC or 

A-M Systems, impedance 1-5 MΩ) were slowly advanced into cortex with independent 

motorized microdrives (Alpha-Omega). The electrodes were positioned (Kopf 

Instruments) such that the angle was roughly normal to the surface of the brain (~28-40°). 

Stimulus presentation and electrode advancement were controlled from outside the sound 

booth, and animals were monitored through a video camera. Neural signals were recorded 

using open-source data acquisition software (MANTA, (Englitz et al. 2013)) Raw traces 

were bandpass-filtered (0.3-10 kHz), amplified (10k, A-M Systems 1800 or 3600 AC 

amplifier), digitized (20 kHz, National Instruments PCI-6052E) and stored for subsequent 

offline analysis. Putative spikes were extracted from the continuous signal by collecting 

all events ≥4 standard deviations from zero. Different spike waves were separated from 

each other and from noise using principle component analysis and k-means clustering 

(David et al. 2009). Single units (>95% isolation) and stable multiunits (>70% isolation) 

were included in this study, resulting in a total of 141 A1 and 136 PEG units. 

Between recording sessions, the exposed recording chamber surrounding the 

craniotomy was covered with polysiloxane impression material (GC America). After 

several electrophysiological penetrations (usually about 5-10), the craniotomy was 

expanded or a new craniotomy was opened to expose new regions of auditory cortex. 
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When possible, old craniotomies were covered with a layer of bone wax and allowed to 

heal. Multiple craniotomies were performed on both hemispheres. 

 

Analysis 

Effect of repetition on target responses 

To assess the effect of repetition on overall responsiveness, we first measured 

changes in the response to the target sample between random and repeating trial phases. 

We computed the peristimulus time histogram (PSTH) response to each occurrence of 

target sample in the stimulus separately for the random phase and repeating phase, using 

data from dual-stream trials only. Spontaneous rate was subtracted from the PSTH to 

ensure the fraction term reflected changes in the evoked response. We then computed the 

gain term that minimized the least squares difference between evoked responses in the 

two phases. Log of the measured gain is reported to allow for direct comparison with the 

results of subsequent modeling analysis (see below).  

 

PSTH-based models 

Auditory cortical neurons could support segregation of the repeated stream either 

by changing the overall gain of their response to the repeating stream (stream-

independent) or by differentially enhancing responses to one or the other stream (stream-

dependent). To test these alternative predictions, we fit the data using stream-independent 

and stream-dependent models. In both models, responses were predicted using a 

weighted sum of time-varying responses to each noise sample. During the random phase, 
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the time-varying response was the linear sum of a response to the foreground stream, 

response to the background stream, and spontaneous spike rate: 

 !"#$%&'(), '+), ,- = !&'(), ,- + !&'+), ,- + !0 (Eqn. 2.1). 

Here, '()	and '+)  are the identity of samples in the foreground and background 

streams, respectively, and !0 is the spontaneous rate. !̅(', ,) is the contribution of sample 

S to the evoked spike count in i-th time bin following sample onset.  

For the stream-independent model, responses during the repeated phase were 

computed, 

 !"56_8$%&'(), '+), ,- = 9!&'(), ,- + !&'+), ,-: × <=>)?@+#? + !0  (Eqn.2.2), 

where AB)?@+#?  scales responses to both streams. For the stream-dependent 

model, responses during the repeated phase were computed, 

 !"56_%56&'(), '+), ,- = !&'(), ,- × <=>() + !&'+), ,-<=>+) + !0 (Eqn. 2.3), 

where AB() and AB+) modulate the respective stream responses separately before 

they are summed. The use of an exponent simplifies interpretation of gain changes such 

that values of AB > 0 indicate enhancement and values of AB < 0 indicate suppression. 

!̅(', ,) can be negative, which allows for suppressed responses relative to the 

spontaneous rate. In this case, if a unit has both enhanced and suppressed responses, AB 

will scale both responses equally (e.g., if AB > 0, there will be a decrease in spike rate 

during negative responses and an increase in spike rate during enhanced responses). The 

difference AB() − AB+) is the relative enhancement between streams, here referred to as 

foreground enhancement. If AB() > AB+), then the neural response to the foreground 

stream is stronger than to the background stream. 
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Models were fit to maximize Poisson likelihood of free parameters using 

Bayesian regression. A normal prior with mean 0 and standard deviation 10 was set on 

both !0 and !̅. A normal prior with mean 0 and standard deviation 1 was set on all RG 

parameters. The model was fit three times using a different set of random starting values 

for each coefficient. Two thousand samples for each fit were acquired with a No-U-Turn 

Sampler, an extension to Hamiltonian Monte Carlo that eliminates the need to set a 

number of steps (Hoffman & Gelman 2011). Gelman-Rubin statistics were computed for 

each fit to ensure all the fits converged to the same final estimate (! < 1.1). 

The posteriors for AB)?@+#? , AB() and AB+) were extracted from the Bayes 

model. An AB parameter for which the 95% credible interval (as derived from the 

posterior) was less than 0 were considered to have significant suppression. Parameters 

with an interval greater than 0 were considered to have significant enhancement. For all 

data points shown, the means of the relevant posterior are plotted. 

 

Lifetime sparseness and target preference 

We quantified sparseness (S), a measure of unit selectivity for a given sample 

relative to the others in the collection (adapted from (Vinje & Gallant 2000)), 

 

' = G1 −
I1J∑ !8$

8LM N
O

1
J∑ !8O$

8LM

P / R1 −
1
J
S 

 

(Eqn. 2.4), 

where !8 is the standard deviation of the PSTH (computed using the average of 

response to the token in the random phase of single-stream trials) for the ith sample and n 

is the total number of noise samples. We quantified target preference (TP), a measure of 

how well the target sample modulates the unit’s response, 
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 TU = !V#"
I1J∑ !8$

8LM NW  (Eqn. 2.5), 

where !V#" is the standard deviation of the target PSTH and the other terms are 

defined as for sparseness. The use of standard deviation to measure response magnitude 

means that strong suppression or enhancement yield similar response strength.  

To assess whether there was a significant effect of cortical area, sparseness and/or 

target preference, we used a mixed linear model with area (A1 or PEG), sparseness (S), 

and target preference (TP) as the fixed effects and unit as the random effect. All two- and 

three-way interactions were included according to the following model design:  

X0 + XM	UYB + XO	' + XZ	UYB	' + X[	TU + X\	UYB	TU + 

+X]	'	 +	X^	UYB	'	TU 

 

(Eqn.2.6). 

 

Spectro-temporal receptive field models 

In addition to the PSTH-based models, which fit responses to individual noise 

samples, we confirmed that the same streaming effects were captured by a context-

dependent spectro-temporal receptive field (STRF) model (David 2018). The classic 

linear-nonlinear (LN) STRF models neural activity as the linear weighted sum of the 

preceding stimulus spectrogram, the output of which passes through a static nonlinearity 

to predict the time-varying spike rate response (Aertsen & Johannesma 1981; deCharms 

et al. 1998). The STRF, ℎ(`, a) is as a linear weight matrix that is convolved with the 

logarithm of the stimulus spectrogram, b(`, c): 

 
!def(c) = ggℎ(`, a)	b(`, c − a)

h

iLM

	
j

kLM

 
(Eqn. 2.7), 
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where x = 1…X are the frequency channels, t = 1…T is time, and a is the time lag 

of the convolution kernel. Taking the log of the stimulus spectrogram accounts for 

nonlinear gain in the cochlea. Free parameters in the weight matrix, ℎ, indicate the gain 

applied to frequency channel x at time lag u to produce the predicted response. Positive 

values indicate components of the stimulus correlated with increased firing, and negative 

values indicate components correlated with decreased firing. 

The output of the linear STRF is passed through a static nonlinear sigmoid 

function to account for spike threshold and saturation (Thorson et al. 2015), 

 !(c) = l[!def(c)] (Eqn. 2.8), 

 l(`) = !0 + o	exp9−exp&s(` − `0)-: (Eqn. 2.9). 

Free parameters here are `0, inflection point of the sigmoid, !0, spontaneous spike 

rate, A, maximum spike rate, and s, the slope of the sigmoid. 

We developed a modified LN STRF to account for stream-dependent changes in 

gain. The input spectrogram for each stream was scaled by a gain term that depended on 

stream identity (foreground or background) and trial phase (random or repeating). We 

refer to this model as the phase+stream model. The stimulus was modeled as the sum of 

two log spectrograms, computed separately for the foreground and background streams, 

s1 and s2, respectively. In the random phase, the total stimulus, b(`, c), was modeled as 

the linear sum of these two stimuli: 

 b(`, c) = bM(`, c) + bO(`, c) (Eqn. 2.10). 

In the repeating phase, each stimulus was scaled by a repetition gain for the 

respective stream, 

 b(`, c) = AB()		bM(`, c) + AB+)		bO(`, c) (Eqn. 2.11). 
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All model parameters were estimated by gradient descent (Byrd et al. 1995; David 

2018; Thorson et al. 2015). STRF parameters were initialized to have flat tuning (i.e., 

uniform initial values of h) and were iteratively updated using small steps in the direction 

that optimally reduced the mean squared error between the time-varying spike rate of the 

neuron and the model prediction. To maximize statistical power with the available data, 

the STRF was fit using both single- and dual-stream data. For single-stream trials, the 

second stimulus spectrogram was fixed at zero, bO(`, c) = 0, and a separate gain term 

was fit for those trials to prevent bias in estimates of AB()		and AB+). Measurements of 

prediction accuracy were obtained by 20-fold cross validation, in which a separate model 

was fit to 95% of the data then used to predict the remaining 5%. Fit and test data were 

taken from interleaved trials. This procedure was repeated 20 times with non-overlapping 

test sets, so that the final result was a prediction of the entire time-varying response. 

Prediction accuracy was then measured as the correlation coefficient (Pearson’s r) 

between the predicted and actual response. Standard error on prediction correlation was 

measured by jackknifing (Efron & Tibshirani 1986), and only units with prediction error 

significantly greater than zero were included in model comparisons (p < 0.05, jackknife t-

test). 

To quantify effects of phase- and stream-dependent gain, we also fit models using 

the same data and fitting procedure, but where stream identity (phase-only model) or both 

phase and stream (baseline model) were shuffled in time. An improvement in prediction 

accuracy for a model with a non-shuffled over shuffled variable indicated a beneficial 

effect of the corresponding gain parameter on model performance, and thus of a stream-

dependent change in sound encoding. Significant differences in model performance were 
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assessed by a Wilcoxon rank sum test between prediction correlations for the set of units 

fit with each model. 

 

Results 

Ferrets perceive repeated patterns embedded in noise 

To investigate the physiological underpinnings of repetition-based streaming in an 

animal model, we first developed a behavioral paradigm to assess ferrets’ ability to detect 

repetitions embedded in noise. The repeated embedded noise stimuli were composed of 

two overlapping continuous streams of brief (250- or 300-ms) noise samples (McDermott 

et al. 2011). The noise samples had second-order statistics (i.e., spectral and temporal 

correlations) matched to natural sounds. Consistent with the goal of this study, the only 

streaming cue was repetition. These stimuli lacked other conventional streaming cues 

such as harmonicity and onset time. 

During the initial phase of each trial, samples for both streams were drawn 

randomly from a pool of 20 distinct noise samples. We refer to this initial phase of the 

trial as the random phase (1-2.5 sec, Figure 2.1B). When the samples are drawn 

randomly for both streams, they are perceived as a single object. At the end of the 

random phase, a target noise sample, different for each behavioral block, started to repeat 

in one sequence but not in the other. In humans, this stimulus structure leads to 

perceptual separation of the two sequences into discrete streams (McDermott et al. 2011). 

We refer to this phase of the trial as the repeating phase. In addition, we refer to the 

sequence that contains the repeating target sample as the foreground stream, and the 

sequence with no repetition as the background stream (Figure 2.1B). 
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Two ferrets (O and H) were trained to report when they detected the repetition of 

the target using a go/no-go detection paradigm. Head-fixed animals were required to 

withhold from licking a waterspout during the random phase and to lick shortly after the 

onset of the repeating phase (Figure 2.1A-B). In each behavioral block (~50-100 trials), 

two noise samples were chosen as targets from a pool of 20, each with 50% chance of 

occurring in a trial. Changing the identity of the targets between blocks to help avoid 

overtraining on a specific target. To measure behavioral performance in a task with 

continuous distractors and variable target times, we used a discrimination index (DI, see 

Materials and Methods). This metric uses hit rate, false alarm rate, and reaction time to 

compute the area under the receiver operating characteristic (ROC) curve for target 

detection (David et al. 2012; Yin et al. 2010). A DI greater than 0.5 indicates above-

chance behavior. Both ferrets were able to learn the task and perform above chance 

within two months of training, indicating that they were able to perceive the repeating 

noise stream (Ferret O: mean DI = 0.61±0.004 SEM, n = 327; Ferret H: mean DI = 

0.55±0.005 SEM, n = 171; Figure 2.1C). 

 

Neuronal responses are suppressed during the repeating phase  

We recorded multi- and single-unit neural activity in primary (A1, n = 152) and 

secondary (PEG, n = 138) regions of the auditory cortex of five ferrets passively listening 

to the task stimuli. Two were trained on the repetition embedded noise task (behavior 

described above), and three were naïve to the task. Although all physiological data 

presented here were recorded in passively-listening ferrets, for consistency we refer to the 

same trial structure terminology described in the previous section. During 
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electrophysiological recordings, one of the noise samples selected as target, was chosen 

to match each unit’s best response while the other was chosen at random (see Materials 

and Methods). Both targets were presented with the same probability of occurrence 

across trials. 

To investigate the neurophysiological underpinnings of streaming due to 

repetition, we first looked at the raw firing rates of the recorded units in response to the 

repeated noise stimuli. Given the enhanced representation of repeating stimuli observed 

in behavioral experiments (Agus et al. 2010; Masutomi et al. 2015; McDermott et al. 

2011), we reasoned that evidence for the selective enhancement of foreground 

representation should be found at the level of the auditory cortex. If this were true, we 

would expect the neural response to a target sample to change between random and 

repeating contexts.  

To test this prediction, we first computed the average peristimulus time histogram 

(PSTH) response across all occurrences of the target noise samples in the random phase, 

and compared them to the average PSTH response to the first three repetitions of the 

target in the repeating phase (Figure 2.2A). Since the background sample was randomly 

selected for each presentation of the target, responses to the background sample were 

averaged out, and the PSTHs primarily reflected responses to the target. To quantify 

changes in the response, we computed the gain term that scaled the PSTH for the random 

phase to match the PSTH for the repeating phase. To allow for a direct comparison 

between gains generated by models (see below), all gain terms were log-transformed. 

Thus, negative values indicated suppressed responses during repetition and positive 

values indicated enhanced responses. For most units in A1 and PEG the gain term was 
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less than zero (Figure 2.2B), indicating that the average target response in the repeating 

phase was suppressed with respect to the average target response in the random phase. 

Considering neural adaptation to repeated stimuli in the auditory cortex (Pérez-González 

& Malmierca 2014; Ulanovsky et al. 2003), a decreased response to the target in the 

repeating phase is not unexpected. 

 

Relative enhancement of responses to the repeating foreground stream 

Simply comparing the average neural response to the target in the repeating phase 

relative to the random phase does not provide insight into any stream-specific effect that 

might emerge as a consequence of the repetition. To test for evidence of streaming in the 

neural response, we needed to independently assess the responses in the two streams. We 

reasoned that, even if the total response was suppressed, activity in the foreground stream 

in response to the repetition could be enhanced (or suppressed) relative to the background 

stream. 

To test this prediction, we developed an encoding model in which the neural 

response was the sum of responses to samples in each stream (stream-dependent model, 

see Materials and Methods). In the random phase, the responses to the two concurrent 

samples, plus a constant term representing baseline firing rate, were added (Eqn. 2.1). For 

the repeating phase, the response to each sample was scaled according to whether it 

occurred in the foreground or background stream by repetition gain terms AB() and 

AB+) , respectively, before summing (Eqn. 2.3). We compared this model to a stream-

independent model in which responses to samples in both streams were scaled equally by 

a single term, AB)?@+#? (Eqn. 2.2). Since the predicted responses to the samples are 
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relative to baseline firing rate and the gain terms are log-scaled, positive gains indicate 

stronger modulation of the unit’s response (i.e., greater excitation and inhibition) and 

negative gains indicate weaker modulation of the unit’s response relative to baseline 

firing rate.  

Figure 2.3 plots the average responses to the target stimuli and predictions by the 

stream-dependent model for example units in A1 (top) and PEG (bottom). In both 

examples, the repetition gain for the background stream was negative (AB+)   = -1.0 in A1 

and -1.6 in PEG). This means that neural responses to the background stream in the 

repeating phase were strongly suppressed (i.e., on a linear scale, the neural response was 

scaled by 0.37 in A1 and 0.20 in PEG) relative to the random phase (Figure 2.3, black 

dotted line). Conversely, the foreground repetition gain term positively scaled the target 

sample response in the repeating phase (AB()  = 1.6 in A1 and 2.2 in PEG; blue dashed 

line), leading to an overall enhancement of the combined response (orange solid line). 

That is, the neural modulation to the foreground stream was 5 (A1) and 9 (PEG) times 

greater in the repeating phase than in the random phase.  

Across the population, repetition gain was negative in the majority of unit-target 

pairs for both foreground and background streams (Figure 2.4A; A1: n = 304 unit-target 

pairs; mean AB+) = -0.610, mean AB()  = -0.486; PEG: n = 276; mean AB+)  = -0.935; 

mean AB()= -0.518). Similarly, in the stream-independent mode, units in both A1 and 

PEG usually had a negative AB)?@+#?  (Figure 2.4B). This global suppression was 

consistent with the decrease observed in the average target response described above 

(Figure 2.2B; Pearson’s r = 0.63 between AB)?@+#?  and target response gain, p < 0.0001). 



 54 

To test for the relative enhancement of foreground responses in the stream-

dependent model, we measured the foreground enhancement, the difference between 

foreground and background repetition gain (Figure 2.4B). A subset of unit-target pairs 

displayed significant foreground enhancement (41/304 in A1, 58/276 in PEG, Figure 

2.4B, dark purple), meaning that in the repeating phase responses in the foreground 

stream were less suppressed or enhanced relative to responses in the background stream. 

In contrast, fewer units showed foreground suppression in either area (26/304 in A1, 

12/276 in PEG, light purple). Across the set of unit-target pairs, mean foreground 

enhancement was significantly greater than zero in A1 (0.124, p = 0.004, Wilcoxon 

signed-rank) and PEG (0.416, p < 0.0001, Wilcoxon signed-rank) (Figure 2.4B). Mean 

foreground enhancement was stronger in PEG than in A1 (p < 0.0001, independent two-

sample t-test). 

Despite the overall suppression of activity during the repeating phase, these 

results support a model of selective enhancement of responses to the repeated foreground 

stream, consistent with the enhanced perception of the repeated stream relative to the 

random background (McDermott et al. 2011).  

 

Auditory tuning properties predict the degree of repetition enhancement 

As described above, we used two different target samples during each recording 

of an individual unit. Next, we wondered if the units showing significant foreground 

enhancement had distinct acoustic response properties or preference for the target stimuli. 

For each unit, we quantified lifetime sparseness, a measure of selectivity for any one 

sample relative to the others (see Materials and Methods, Eqn. 2.4) (Vinje & Gallant 
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2000). This metric is bounded between 0 and 1, where 0 indicates low sparseness (equal 

responses to all stimuli) and 1 indicates high sparseness (non-zero response to only one 

stimulus). Example responses to each noise samples in our collection of a unit with 

relatively high sparseness are plotted in Figure 2.5A. For each unit-target pair, we also 

computed target preference, the ratio of evoked response to the target sample versus the 

average response to all samples (see Materials and Methods, Eqn. 2.5). A target 

preference of 1 indicates that the modulation by the target is equivalent to the average 

response for all samples. 

The relationship between each unit’s sparseness, target preference, and auditory 

field (A1 or PEG) and its foreground enhancement (Figure 2.5C) was quantified by a 

general linear mixed model (see Materials and Methods, Eqn. 2.6) with area, target 

preference, and sparseness as fixed effects and unit as a random effect. All two- and 

three-way interactions between the fixed parameters were included, and complete results 

are shown in Table 2.1. This model demonstrated a significant relationship between 

target preference and foreground enhancement which was significantly modulated by 

sparseness. Foreground enhancement was stronger in units with high target preference; 

however, this relationship was influenced by the unit’s sparseness as indicated by the 

negative interaction between target preference and sparseness (Table 2.1). This means 

that A1 units with strong responses to a target had significantly larger foreground 

enhancement for that target; however, this effect decreased with increasing sparseness. In 

contrast, in PEG there was no relationship between foreground enhancement and either 

sparseness, target preference, or the interaction of target preference and sparseness (Table 

2.1).  
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Thus, in A1, units that responded to many stimuli (low sparseness) but had a 

relatively strong preference to a target (high target preference) tended to show the most 

foreground enhancement. In PEG, enhancement was stronger overall and affects 

responses more uniformly, regardless of auditory selectivity. These differences between 

PEG than A1 suggest a gradual emergence of repetition-related streaming along the 

cortical auditory pathway. 

 

Foreground enhancement increases accuracy of spectro-temporal receptive field 

models 

To validate the gain changes observed in the PSTH-based model and to quantify 

the effect of these changes on sound-evoked activity, we modeled the same data with a 

spectro-temporal receptive field (STRF). In the classic linear-nonlinear (LN) STRF (see 

Material and Methods, Eqns. 2.7-2.9), the time-varying neural response is modeled as a 

linear weighted sum of the stimulus spectrogram (Depireux et al. 2001; Thorson et al. 

2015). We developed a context-dependent model, in which spectrograms for each stream 

were scaled separately by a gain term before input to the STRF (see Material and 

Methods, Eqns. 2.10-2.11). This stream-dependent scaling followed the same logic as the 

PSTH-based model described above. That is, each stream was scaled by free parameters 

that depended on stream identity (foreground or background) and phase (random or 

repeating). The rescaled spectrograms were summed and then provided input to a 

traditional LN STRF. Context gain parameters and STRF parameters were fit 

simultaneously (Figure 2.6A) (David 2018). In the text and figures, we refer to this model 

as the phase+stream STRF. 
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We used 20-fold cross validation to compare the prediction accuracy of the 

phase+stream STRF to two control models. A phase-only STRF, in which stream identity 

was shuffled in time before fitting; and a baseline STRF, in which both phase and stream 

identity were shuffled. The phase-only STRF accounted for changes in gain due to 

repetition but independent of foreground versus background stream identity, analogous to 

the stream-independent model above. The phase+stream STRF predicted time-varying 

responses more accurately than the phase-only STRF in both A1 and PEG, confirming a 

significant influence of stream identity on relative gain (A1: p < 0.0001, PEG: p < 

0.0001, Wilcoxon signed-rank test, Figure 2.6B).  

To measure the relative enhancement of the two streams, we compared the 

stream-specific gain terms from the model fits, equivalent to AB()  and AB+)  discussed 

above. We observed a significant relative increase in foreground versus background gain 

in both A1 (mean increase 0.159; p < 0.0001, Wilcoxon signed-rank test) and PEG (mean 

increase 0.291; p < 0.0001, Wilcoxon signed-rank test, Figure 2.6C). This result provided 

further evidence for stream-dependent changes in gain. These changes in gain followed 

the same pattern as for mean foreground enhancement computed by the stream-dependent 

model (Figure 2.4). 

The comparison of phase-only and baseline STRFs measured the effect of 

repetition alone on evoked activity (independent of stream identity). On average, the 

phase-only STRF had greater prediction accuracy than the baseline STRF in both areas 

(A1: p < 0.0001, PEG: p < 0.0001, Wilcoxon signed-rank test, Figure 2.6D). Overall, 

gain was suppressed during the repeating phase (mean A1: -0.11, PEG: -0.042), as 

observed in the PSTH-based models above (Figure 2.4). Thus, this approach provides 
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additional evidence for a model in which repetition leads to overall suppression of the 

neural responses, but with less prominent suppression of the foreground stream relative to 

the background stream. 

 

Discussion 

In natural environments, temporally co-varying sound features tend to be grouped 

by the brain into a single object (Bizley & Cohen 2013). Sound repetition is sufficient to 

induce stream segregation in human listeners (McDermott et al. 2011), and subjects are 

able to identify individual, previously unheard noise samples if they are presented in 

repeated succession simultaneously to a mixture of different non-repeating samples. The 

goal of the current study was to investigate the neural underpinnings of streaming cued 

by sound repetition. We developed an animal model for repetition detection and found 

evidence for enhanced representation of the repeating foreground signal in the auditory 

cortex. This representation appears to emerge hierarchically, as the streaming effects 

were stronger in secondary (PEG) than in primary (A1) auditory cortex. 

 

Mechanisms of repetition-induced stream segregation 

Previous studies that have explored the neural signature of streaming at the single-

unit level have primarily used alternating sequences of pure tones (Fishman et al. 2001; 

Micheyl et al. 2005). Micheyl and collaborators presented “ABA_” sequences to awake 

macaques and examined the pattern of activity evoked in A1. Tone A was chosen to be 

on the best frequency of the recorded unit, while tone B was placed at a frequency of 1-9 

semitones from tone A. The authors found that, even if responses to both tones decreased 
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relative to their presentation in isolation, responses to the non-preferred B tones 

decreased to a greater extent (Micheyl et al. 2005). In the current study, we observed a 

similar effect, that relative enhancement of the foreground stream was more pronounced 

in units well-tuned to the target noise sample. Thus, our results are consistent with 

observations based on the ABA tone paradigm. Moreover, our results provide evidence 

that the same principles generalize to streaming of complex, naturalistic sounds presented 

simultaneously, a situation that more closely relates to animals’ everyday sound 

experience. 

Sound features that belong to the same source tend to begin and end at the same 

time. This phenomenon has been formalized for streaming in the temporal coherence 

model (Elhilali et al. 2009a; Shamma et al. 2011). Teki et al. (2016) demonstrated that 

human listeners are highly sensitive to repetition of sounds presented in the context of a 

random mixture of chords. Similar to our findings, the authors observed that repeating 

sounds tend to fuse together into a “foreground” that emerges from a randomly changing 

background (Teki et al. 2011, 2013). Here, we propose that foreground enhancement 

contributes to streaming repeating sounds in the context of a random background.  

However, it is important to note that an expectation of enhanced responses to 

“foreground” stimuli may reflect a biased expectation. There is no a priori requirement 

for sounds that perceptually pop out as a foreground to evoke an enhanced (or less 

suppressed) neural response. For example, Bar-Yosef and collaborators, investigated the 

interactions in neural activity during simultaneous presentation of bird chirps and 

background noise, simulating a naturalistic auditory scene (Bar-Yosef & Nelken 2007; 

Bar-Yosef et al. 2002). To their surprise, responses of A1 neurons in anesthetized cats 
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were in fact dominated by the background noise, despite it being presented at a lower 

intensity than the foreground bird chirp. The authors interpreted this finding in an 

evolutionary context that sees it as advantageous for a prey to pay attention to subtle 

changes in the background to avoid predators which might be using foreground sounds to 

mask the sound of their own approach. This example shows that the brain might enhance 

different components of the sound depending on the context and identity of that sound. 

Thus, it is important to interpret the current findings through the critical lens of our own 

biased interpretation of what they might mean and consider the traditional ecosystem 

niche of the animal model. More experiments directly comparing these variations in 

context will be needed to further elucidate how the brain streams repeated sound features. 

 

Streaming analysis 

To capture differences in responses to simultaneous repeated and non-repeated 

noise samples, we relied on model predictions. In this paradigm, the neural response is 

necessarily the sum of responses to two simultaneous stimuli, and the component 

responses cannot be separated in the raw neural firing rate. Therefore, we constructed 

encoding models that teased apart stream-dependent activity computationally. This 

analysis showed that, even though most neural responses were suppressed by repetition—

likely due to the phenomenon of response adaptation (Grill-Spector et al. 2006; Pérez-

González & Malmierca 2014; Ulanovsky et al. 2004), responses to the foreground stream 

where less suppressed than the background or even enhanced. This approach established 

a methodology that could be used in similar cases in which there is a need to separate 

effects on neural responses of simultaneously occurring inputs.  
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The challenge of separating responses to simultaneously occurring sounds has 

been previously addressed for neural population activity using a similar modeling 

approach (Ding & Simon 2012). Ding and Simon asked human subjects to listen to one of 

two competing speakers and recorded brain activity via magnetoencephalography 

(MEG). To investigate the neural encoding process, they fit a separate STRF (or more 

precisely a “TRF”, given that MEG data could not resolve spectral tuning) model for 

each of the two simultaneously presented speech streams. Neural activity was found to 

selectively synchronize to the speech of the speaker to whom attention of the listener was 

directed. Furthermore, the latency and source location of the two components suggested a 

hierarchy of auditory processing in which the representation of the attended object 

emerges from core (primary) to posterior (secondary) auditory cortex (Ding & Simon 

2012). These results are largely consistent with the foreground enhancement observed in 

the current study, suggesting that top-down attention and bottom-up pop-out effects could 

be mediated by common mechanisms. 

Another approach used to investigate the neural signature of streaming is by 

stimulus decoding, or reconstruction (Ding & Simon 2012; Mesgarani & Chang 2012; 

Mesgarani et al. 2009). A decoding model describes the relationship between stimulus 

and response similarly to the STRF, but in the opposite direction. That is, decoding uses 

the neural output to reconstruct the sound stimulus input. If the reconstruction of the 

envelope has a higher correlation to the envelope of the attended stream rather than the 

non-attended stream or the two streams combined, it would suggest enhanced coding of 

the attended stream. In a human MEG study, Ding and Simon (2012) found that this was 

indeed the case. Similar results were also obtained by Mesgarani and Chang (2012) using 
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data collected from non-primary auditory cortex via electrocorticography (ECoG) 

(Mesgarani & Chang 2012). 

In our study, a decoding analysis could complement the encoding approach, 

potentially revealing how the relative enhancement of the repeating stream allows for the 

separation of the two streams. Specifically, we would predict that for units with positive 

foreground enhancement the stimulus reconstruction would be more accurate for the 

foreground stream compared to the background stream, matching perception. However, 

in order to avoid numerical bias towards the foreground stream, an experimental design 

in which the background stimulus is always composed by the same set of stimuli would 

be necessary. 

 

Relation of repetition enhancement to stimulus-specific adaptation 

The ability of the brain to detect regularities is not only crucial for identifying an 

auditory object embedded in a noisy scene, but also for making predictions about the 

environment, thereby making the system sensitive to deviance (Bendixen et al. 2010; 

Winkler et al. 2009). Substantial effort has been devoted to understanding the 

mechanisms of deviance detection. In human encephalography (EEG), an enhanced 

deviant response is observed in the mismatch negativity (MMN), a pre-attentive event-

related potential elicited by rare sounds randomly interspersed among frequent standard 

sounds (Näätänen 2001).  

A similar, but arguably not overlapping (Farley et al. 2010; Nelken et al. 2013) 

phenomenon observed at the single-neuron level is stimulus-specific adaptation (SSA). 

SSA is the attenuation in the responses to a common, repeated sound that does not 
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generalize, or only partially generalizes, to a second, rare sound that is presented in the 

same sequence in alternative pattern (May & Tiitinen 2010; Pérez-González & 

Malmierca 2014; Ulanovsky et al. 2003). While evidence for SSA has been found in the 

inferior colliculus and thalamus (Anderson et al. 2009; Antunes et al. 2010; Malmierca et 

al. 2009), the first lemniscal region in which SSA has been shown to be prominent and 

strong is A1 (Malmierca et al. 2015; Nelken & Ulanovsky 2007). Mechanistically, SSA is 

thought to arise from a combination of feedforward synaptic depression and local cortical 

inhibition (Ayala & Malmierca 2013; Natan et al. 2015; Yarden & Nelken 2017). 

Selective enhancement of the neural response to a repeating sound might seem 

like an intuitive prediction, based on behavioral studies of repetition-induced streaming 

(Agus et al. 2010; McDermott et al. 2011). However, this enhancement may be surprising 

when viewed in the context of SSA (Taaseh et al. 2011; Ulanovsky et al. 2003). If SSA 

affects responses to simultaneous stimuli the same way as responses to sequential stimuli, 

one would expect a relative suppression of responses to the foreground stream in repeated 

embedded noise. Additionally, response adaptation should be larger in units preferring 

the target over other samples. However, our results show the opposite effect, i.e., a 

relative suppression of the non-repeating background stream, especially for target-

preferring neurons. We propose that while SSA can account for the overall decreased 

response to both streams (Grill-Spector et al. 2006; Pérez-González & Malmierca 2014), 

a separate mechanism must be responsible for the additional suppression of sounds that 

occur simultaneously to the repeating foreground. Furthermore, the fact that foreground 

enhancement was more prominent in secondary auditory cortical fields (PEG) with 
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respect to primary areas (A1), suggests a hierarchical mechanism by which the 

enhancement emerges along the auditory cortical pathways. 

 

Animal models for streaming 

Most behavioral studies of auditory streaming have been performed in humans 

(Gutschalk & Dykstra 2014). This is not surprising as measuring auditory streaming in 

nonhuman species is complicated by the fact that they cannot simply be asked to attend to 

a given cue or report what they perceive – for recent reviews on nonhuman behavioral 

studies of auditory streaming see (Bee & Micheyl 2008; Fay 2008). The ferret has been 

previously identified as an animal model for streaming of alternating tone sequences and 

tone clouds (Ma et al. 2010; Micheyl et al. 2007b), and used to study its 

neurophysiological bases (Elhilali et al. 2009a). 

Here, we developed the ferret as a model for streaming repeated sequences of 

simultaneously presented complex sounds. We designed an auditory task where animals 

had to report the occurrence of a repetition emerging from random overlapping noise 

samples. Ferrets were able to perform this task, suggesting that they could perceive 

repetition of complex sound features as a distinct component of the stimulus. 

Furthermore, given that the identity of the repeated sample was changed across 

behavioral blocks, we could exclude the possibility that the animals used specific spectro-

temporal features of the target sample to perform the task. While this is not a direct proof 

that ferrets perceived two separate streams in the same way as humans, it confirms that 

they did perceive the occurrence of repetitions. 
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The role of attention in repetition-induced streaming 

Our physiological experiments were conducted on passively listening ferrets 

without explicit control of attention. While attention is known to modulate sensory 

responses across multiple brain areas (Cohen & Maunsell 2009; Reynolds & Chelazzi 

2004; Sundberg et al. 2009), the role of attention on repetition-based streaming is 

controversial. Masutomi, McDermott et al. tested this question directly by asking human 

subjects to perform the same task as in McDermott et al., 2011, but while also performing 

a decoy visual task (Masutomi et al. 2015). The authors found that human listeners were 

equally able to recover the identity of the repeating noise sample even when their 

attention was directed away from the sound, indicating that repetition-based streaming is 

a bottom-up process. 

Several other studies have shown that human listeners are extremely sensitive to 

regular patterns rapidly emerging from complex sequences of sound (Barascud et al. 

2016; Teki et al. 2011). Barascud et al. investigated how human listeners discover 

temporal patterns and statistical regularities in complex sound sequences (Barascud et al. 

2016). They found that subjects’ behavior matched the one of an ideal observer, even 

when distracted by a decoy visual task, again suggesting that detection of sound 

repetition might be a phenomenon that does not require attentional focus. 

Streaming of more complex sounds, however, is known to be facilitated by 

directing attention to specific sound components that distinguish a foreground from a 

background. For example, Mesgarani & Chang, 2012 presented human listeners with two 

streams of speech. What was referred to as foreground or background changed across 

trials in response to a specific word that cued participants to either listen to the female or 
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the male voice. The authors found that listeners were much better at reporting the content 

of sentences that they were cued to pay attention to with respect to non-cued sentences 

presented simultaneously. Furthermore, the signature of this “foreground enhancement” 

is present at the level of neural activity measured by ECoG (Mesgarani & Chang 2012). 

Future experiments incorporating behavior into neurophysiological recordings may 

explain whether the pre-attentive foreground enhancement effects reported here are 

mediated by the same mechanisms as those that enhance actively attended streams.  
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Figure 2.1: Ferrets are sensitive to repetitions embedded in mixtures. 

A. Ferrets were trained to respond to sound repetition by licking a waterspout. B. 

Schematic of the go/no-go task and spectrograms of repetition embedded noise stimuli 

from an example behavioral trial. Animals were exposed to the combination (bottom 

spectrogram) of two overlapping streams: a foreground stream containing a target sample 

(top), and a background stream, a non-repeating sequence of noise samples (middle). In 

this example, the target sample (orange boxes, bottom panel) starts repeating after three 

random noise samples (grey boxes). The grey dashed line marks the first occurrence of 

the target sample (pale orange), which is included in the random phase for analysis. The 

transition between random and repeating phase is marked by the orange dashed line and 

occurs when the target sample is first repeated. Animals were trained to withhold licking 

from a waterspout during the random phase. To receive a water reward, they had to lick 

the waterspout following repetition onset. C. Distribution of discrimination index (DI) 

across behavior sessions for ferret O and ferret H after training was completed. Dashed 

line (0.5 DI), indicates chance performance. 
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Figure 2.2: Activity in both A1 and PEG was suppressed during the repeating phase 

A. Schematic of two trials. The background stream consisted entirely of random noise 

samples (gray). The foreground stream contained random samples during the random 

phase, which sometimes included the target sample (T). The final sample of the random 

phase is the target (light orange) as it had not yet begun to repeat. Average PSTH 

responses to each pair of samples that contained the target (thick rectangles) were 

computed separately for the random phase and repeating phase (separated by the grey 

dashed line in the schematic). B. Distribution of observed repetition gain (AB@+t) for A1 

and PEG. The majority of target responses were suppressed (AB@+t	< 0) during the 

repeating phase. Red dashed line indicates 0 (i.e., no difference between phases). Since 

results may depend on how well the unit responded to the target, all analyses of neural 

responses were performed separately for each unique unit-target pair (n = 304 A1, n = 

276 PEG). Median AB@+t values, A1: -0.64 (95% CI [-0.74, -0.54]); PEG: -0.70 (95% CI 

[-0.81, 0.60]).  
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Figure 2.3: Example activity A1 and PEG 

Example PSTH responses of units in A1 (top) and PEG (bottom) to the target sample (T) 

in the random versus repeating phase. Spontaneous rate ('A) is shown (1st column) for 

reference. Predictions from the stream-dependent model (orange) broken down into the 

contribution of the foreground (blue, dashed) and background (black, dotted) streams, 

shown for the average responses to the target in the random phase (2nd column), and the 

first three repetitions of the target sample in the repeating phase (3rd, 4th, and 5th 

columns). 
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Figure 2.4: Selective foreground enhancement in A1 and PEG 

A. Foreground (AB()) versus background (AB+)) repetition gain measured in the stream-

dependent model in A1 (n = 304 unit-target pairs; mean AB+)  = -0.610, mean AB()  = -

0.486) and PEG (n = 276; mean AB+) = -0.935; mean AB()= -0.518). Color indicates 

unit-target pairs in which values of AB()	are significantly higher (dark purple) or lower 

(light purple) than values of AB+)  (95% credible interval for the difference does not 

overlap with 0). Grey indicates no significant difference. Dashed line indicates equality. 

B. Foreground enhancement (AB() − AB+)) plotted against overall gain change 

(AB)?@+#?) during the target phase for A1. Colors are as in B. Number of data points with 

significant foreground enhancement, significant background enhancement and no change 

are shown above each plot. Data for examples in Figure 3 are highlighted for A1 (cyan) 

and PEG (green).  
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Figure 2.5: Relationship between target preference and sparseness in A1 and PEG units 

A. PSTH responses to each of the 20 noise samples presented individually to a unit with 

relatively high sparseness (S = 0.13). Units such this one, responded well to only a few 

samples. Numbers indicate unit’s preference for that particular sample with respect to the 

others. Responses to target samples are indicated in orange. B. Scatter plot of target 

preference versus lifetime sparseness for each unit recorded from A1 (left) and PEG 

(right). Target preference quantifies the response of a given unit to a target sample 

compared to the other 19 noise samples. Lifetime sparseness measures selectivity for the 

noise samples. Values of sparseness near 0 indicate units that responded similarly to all 

noise samples, and values near 1 indicate units that responded preferentially to a small 

number of samples. Units with high sparseness tended to have a greater variability in 

target preference. Data for examples in Figure 2.3 are highlighted for A1 (cyan) and PEG 

(green). C. Scatter plots of foreground enhancement as a function of target preference 

and sparseness in A1 and PEG.  
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Figure 2.6: STRF-based model corroborates PSTH-based model findings of stream-

specific gain changes in A1 and PEG. 

A. Schematic representation of the STRF-based model. B. Mean prediction correlation 

coefficient (Pearson’s r) for each area plotted for the baseline STRF-based model (both 

stream identity and repetition permuted in time prior to fitting), for the phase-only model 

(stream identity shuffled), and for the full phase+stream model. C. Histogram of 

difference in prediction accuracy between the phase+stream and phase-only STRF model 

for each neuron in A1 and PEG. A positive change shows a benefit of incorporating 

stream identity (foreground versus background) into the model. Units with a significant 

improvement in accuracy for the full model are plotted in orange (p < 0.05, jackknife t-

test). Mean prediction correlation improved for the phase-only model in both areas (mean 

difference, A1: 0.003, p < 0.0001; PEG: 0.004, p < 0.0001, sign test). D. Histogram of 

difference in prediction accuracy between the phase-only and baseline STRF model for 
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each neuron, plotted as in C. A positive change indicates a benefit of incorporating 

repetition (random versus repeating phase) into the model. Mean prediction correlation 

improved for the phase+stream model over the phase-only model in both areas (mean 

difference, A1: 0.005, p < 0.0001; PEG: 0.007, p < 0.0001). 
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Table 2.1:  

Results of the mixed linear model for foreground enhancement, with target preference 

(TP), sparseness (S), and area as fixed effects. Results are broken down by area. 

Significance was assessed using a post-hoc test of contrasts (t-test). 
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Abstract 

The brain’s representation of sound is influenced my many different aspects of 

internal state. To isolate effects of different state variables on auditory processing, we 

simultaneously controlled task engagement and monitored fluctuations in arousal via 

pupillometry. Single- and multiunit activity was recorded in primary auditory cortex (A1) 

and the inferior colliculus (IC) of ferrets trained to a go/no-go tone detection task. We 

used a generalized linear model to isolate the contributions of task engagement and 

arousal on spontaneous and evoked neural activity. As expected from previous studies, 

fluctuations in pupil-indexed arousal were correlated with changes in task engagement, 

but their effects could be dissociated in most experiments. In both areas, units were 

modulated by task, by arousal, or by both. However, arousal effects were more prominent 

in IC. Engagement and arousal effects had variable sign in IC, but were mostly positive 

with spike rate in A1. These results indicate that some changes attributed to task 

engagement in previous studies should in fact be attributed to global fluctuations in 

arousal. Moreover, these arousal effects may explain differences in neural activity 

observed between passive conditions pre- and post-behavior. This same approach can be 

used to account for other state variables, such as selective attention and behavioral effort, 

providing a general method for dissociating the influence of continuous and discrete 

behavioral state variables.  
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Introduction 

Hearing is a dynamic process that requires integration of the sensory evidence 

provided by physical attributes of sound with information about the behavioral context in 

which auditory perception occurs. It is well-established that sensory cortical and, more 

recently, subcortical regions operate as adaptive processors, making different calculations 

around the incoming auditory stimuli based on the immediate behavioral demand. 

Compared to passive listening, engaging in a task that requires subjects to associate the 

same set of sounds to a behavioral response motivated by a positive or negative 

reinforcer, leads to sizable changes in neurons’ excitability, spectro-temporal and spatial 

receptive fields (Downer et al. 2015; Fritz et al. 2003, 2005a; Knudsen & Gentner 2013; 

Kuchibhotla et al. 2017; Lee & Middlebrooks 2011; Otazu et al. 2009; Ryan & Miller 

1977; Yin et al. 2014). These changes are often attributed to the rapid adaptation of 

auditory neurons to the current behavioral demand, such as sensory representation is 

optimized to the relevant component of the task (Bagur et al. 2018; Fritz et al. 2007a; 

Mesgarani et al. 2010; Natan et al. 2017; Niwa et al. 2012). For some units, changes were 

reported to persist for several minutes after the active behavior, while for others, activity 

and tuning changes were observed to rapidly regress back to baseline (Fritz et al. 2003; 

Slee & David 2015a). One interpretation for such variability might be that the source of 

modulation is a non-auditory input carrying information about another state variable.  

It is increasingly apparent from experimental studies that multiple state variables 

contribute to observed changes following “task engagement”, acting together or in 

opposition to each other. For example, during behavior, the activity of auditory neurons is 

also affected by the anticipation of the sound (Jaramillo & Zador 2011), reward 
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associations (Beaton & Miller 1975; David et al. 2012), self-generated sound/stimulus 

interactions (Eliades & Wang 2003, 2005, 2008), and non-sound related variables, such 

as motor planning (Bizley et al. 2013) and decision-making (Tsunada et al. 2016). 

Furthermore, fluctuations are observed in neural activity throughout the forebrain, 

including primary sensory regions, even in the absence of external sensory input 

(Ringach 2009). This activity is related to cognitive states such as arousal, and might be 

acting to boost responses to sensory stimuli relevant to the current task demand (Fu et al. 

2014; Wimmer et al. 2015). Therefore, attempting to interpret changes in neuronal 

activity solely in the light of a single state variable, such as task engagement, may lead to 

an incomplete and sometimes even incorrect understanding of how sensory information is 

processed under conditions that necessarily engage multiple aspects of cognition.  

A straightforward and non-invasive way to measure ongoing changes in the state 

of cognition, is monitoring non-luminance-mediated changes in pupil size (Appen 1994; 

Granholm & Steinhauer 2004; Kahneman & Beatty 1966). In humans, changes in pupil 

size under constant light exposure have been shown to correlate with mental effort 

(Beatty 1982; Kahneman & Beatty 1966; Wierda et al. 2012; Winn et al. 2015), changes 

in states of arousal (Granholm & Steinhauer 2004; Kahneman & Beatty 1966), aspects of 

decision-making (Gilzenrat et al. 2010), and task performance (Jepma & Nieuwenhuis 

2011; Schriver et al. 2018). Fluctuations in pupil size also closely track locomotion and 

evoked and spontaneous activity of different population of neurons throughout the mouse 

forebrain (McGinley et al. 2015b; Reimer et al. 2016; Stringer et al. 2018; Vinck et al. 

2015). While both pupil size and locomotion have been used as an assay for arousal, 

pupil size has more accurate information as it can reveal changes in arousal even when 
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the animal is not moving (Shimaoka et al. 2018). Thus, pupil size can be easily measured 

alongside neuronal activity and incorporated as a continuous state variable in encoding 

models aimed at characterizing individual and interactive components of the effects of 

multiple state variables onto auditory activity. 

To study the interaction of task engagement and arousal on auditory neural 

coding, we recorded extracellular firing activity and pupil size of ferrets performing an 

auditory task or passively listening to the task stimuli. Single- and multiunit activity was 

recorded from the primary auditory cortex (A1) and inferior colliculus (IC). We used a 

step-wise approach to fit a generalized linear model that quantified the relative 

contribution of pupil-indexed arousal and task-related changes in neural activity. We 

found that incorporating arousal state in the model significantly reduced the variability in 

firing rate attributed to task engagement. This result suggests that some previously 

reported effects of task engagement may in fact be explained by changes in arousal 

captured by pupil size fluctuations. Furthermore, subpopulations of recorded neurons 

were modulated uniquely by task or by arousal, suggesting that these effects might be 

mediated by distinct modulatory circuits. Finally, the magnitude of effects attributed to 

state changes was uncorrelated with auditory responsiveness across neurons in A1. 

Conversely, in IC task effects and responsiveness were negatively correlated, suggesting 

that top-down and bottom-up signals are initially segregated but become intermingled in 

cortex. This work establishes a general method for integrating continuous and discrete 

behavioral state variables into the architecture of encoding models aimed at describing 

sensory processing across behavioral contexts. 
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Materials and Methods 

All procedures were approved by the Oregon Health and Science University 

Institutional Animal Care and Use Committee and conform to the National Institutes of 

Health standards. 

 

Surgical procedure 

Animal care and procedures were similar to those described previously for 

recording neurophysiological activity from awake behaving ferrets (Slee & David 

2015a). Four young adult male ferrets were obtained from an animal supplier (Marshall 

Farms, New York). A sterile surgery was performed under isoflurane anesthesia to mount 

two head-posts for subsequent head fixation and to expose auditory brain regions for 

recordings. A UV light-cured composite (Charisma, Heraeus Kulzer) allowed the placing 

of two custom-made stainless-steel head-posts spaced approximately 1 cm apart along the 

sagittal crest of the skull. The stability of the implant was also achieved via 6-8 stainless 

self-tapping set screws mounted in the skull (Synthes). The whole implant was then 

shaped to its final shape with the Charisma and acrylic denture material (Co-Oral-Ite). On 

each hemisphere, two 1.2x1.2 cm wells in which the skull was covered with only a thin 

layer of Charisma were built to allow access to auditory regions and to contain sterile 

saline during recordings. 

Following the surgery, animals were treated with prophylactic antibiotics (Baytril 

10 mg/kg) and analgesics (Buprenorphin 0.02 mg/kg) under the supervision of University 

veterinary staff. For the first two weeks the wound was cleaned with antiseptics (Betadine 

1:4 in saline and Chlorhexidine 0.2%) and bandaged daily with application of topic 
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antibiotic ointment (Bacitracin). After the wound margin was healed, cleaning and 

bandaging occurred every 2-3 days through the life of the animals. This method revealed 

to be very effective in minimizing infections of the wound margin. 

After recovery (~2 weeks), animals were habituated to a head-fixed posture inside 

the sound-booth chamber for about 2 weeks prior to the beginning of the training. 

 

Behavioral paradigm and training 

Four animals were trained by instrumental conditioning to perform a positively 

reinforced, tone versus noise discrimination task (Ferret L) (Slee & David 2015a) or tone-

in-noise detection task (Ferrets R, B, T) (McGinley et al. 2015a). Animals under training 

were provided access to water ad libitum on weekends, but were placed on water 

restriction during the weekdays (Monday through Friday) to maintain 90% of their 

normal body weight long-term. Animals had to report the presence of a target tone either 

presented alone (tone versus noise task) or embedded last (tone-in-noise task) in a 

sequence of 2-5 temporally orthogonal ripple combinations (TORCs, references; 30 

samples, 5 octaves, 0.75 sec duration, 0.35 sec inter-stimulus interval) (Klein et al. 2006) 

by licking a water spout (Figure 3.1A). Licks were detected by a piezoelectric sensor 

glued to the water spout. Licks occurring within the target window, 100ms after the 

presentation of the target and within 1.4 seconds of target onset, were rewarded with 1-3 

drops of a 2:1 solution of water and Ensure. Licks occurring during the reference 

window, 1.1-4.5 seconds, during the presentation of TORC stimuli resulted in a 5-8 

seconds timeout. The inter-trial interval was 2.5 ± 0.5 seconds. The number of TORCs 

per trial was distributed randomly with a flat hazard function to prevent behavioral timing 
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strategies. During the training phase, the TORC sample masking the target varied 

randomly in each trial to prevent animals from using TORCs’ spectro-temporal features 

to identify targets. Target tone frequency (100 Hz-20000 Hz) was fixed within a 

behavioral block but varied across blocks. During training, target frequency was chosen 

at random to span the frequency range of a ferret. During electrophysiological recordings, 

target tone frequency was selected to best match the best frequency of the recording site. 

At the beginning of training, the tone was presented at +40 dB signal-to-noise ratio 

(SNR; ratio of peak-to-peak amplitude) relative to the TORCs. This difference was 

gradually reduced over the course of two-three weeks until the animal consistently 

performed above chance (three behavioral blocks with performance yielding to > 0.5 

discrimination index, see below) at 0dB SNR.  

For the tone-in-noise variation of the task, the SNR of the tone with respect to the 

overall level of the TORCs (fixed at 55 or 60dB SPL depending on the animal) varied 

between +5 and -20dB SNR, in 5dB steps. Each session included five target/noise SNRs. 

To manipulate task difficulty within each session, the probability of each of the five 

target/noise SNRs varied, yielding two difficulty conditions: a high SNR (“easy”) 

condition in which 60% of the trials the target/noise SNR was either the highest or the 

second to the highest SNR within the target/noise SNR distribution; and a low SNR 

(“hard”) condition in which the two lowest target/noise SNRs occurred in 60% of the 

trials. For example, for ferret B, the distribution after training was completed was kept 

between 0 and -20dB SNR, so that in the easy condition 0 and -5dB SNR targets would 

appear 60% of the time, -10dB SNR 20% of the time, and the remaining -15 and -20dB 

SNR would be presented another 20% of the trials. During electrophysiological tone-in-
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noise experiments, the tone was embedded in a single TORC sample, which also 

occurred in the reference period. We confirmed that animals were not biased to respond 

to this TORC exemplar in the reference phase. 

 

Sound presentation 

Behavioral training and subsequent neurophysiological recording took place in a 

sound-attenuating chamber (Gretch-Ken) with a custom double-wall insert. Stimulus 

presentation and behavior were controlled by custom MATLAB software (code available 

at https://bitbucket.org/lbhb/baphy). Digital acoustic signals were transformed to analog 

(National Instruments), amplified (Crown), and delivered through two free-field speakers 

(Manger, 50-35 000 Hz flat gain) positioned ±30 degrees azimuth and 80 cm distant from 

the animal. Stimuli were presented either from the left or the right speaker, contralaterally 

to the recording site. Sound level was equalized and calibrated against a standard 

reference (Brüel & Kjær). 

 

Pupil recording 

During experiments, infrared video of one eye was collected for offline 

measurement of pupil size. Ambient light was maintained at a constant level to prevent 

light-evoked changes in size and maximize dynamic range. Recordings were collected 

using a CCD camera (Adafruit TTL Serial Camera 397) fitted with a lens (M12 Lenses 

PT-2514BMP 25.0 mm) whose focal length allowed placement of the camera 10 cm from 

the eye. To improve contrast, the imaged eye was illuminated by a bank of infrared 

LEDs. Ambient luminance was provided using a ring light (AmScope LED-144S). At the 
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start of each recording day, the intensity of the ring light was set to a level (~1500 lux 

measured at the recorded eye) chosen to give a maximum dynamic range of pupil sizes. 

Light intensity remained fixed across the recording session. 

 

Neurophysiology 

After animals demonstrated to perform consistently above chance (DI > 0.5 for 

five consecutive blocks), a small craniotomy was opened to access either primary 

auditory cortex (A1) (Schwartz & David 2018) or central and external nuclei of the 

inferior colliculus (IC) (Slee & David 2015a). Extracellular spontaneous and evoked 

neuronal activity was recorded in non-anesthetized ferrets either using a tetrode (Thomas 

Recording Inc.), or a linear 64-channel silicon probe (Shobe et al. 2015). The impedance 

of the tetrode was measured to be 1-2 MOhm, and the 64-channel probe was 

electroplated to reach a 0.7-MOhm impedance in each electrode. The tetrode or the probe 

were independently moved through the tissue via a motor system (Alpha-Omega).  

Amplified (AM Systems) and digitized (National Instruments) 

electrophysiological signals were stored using the open-source data acquisition software 

MANTA (Englitz et al. 2013) or Open Ephys (Black et al. 2017). Recording sites were 

confirmed as being in A1 based on tonotopy and relatively reliable and simple response 

properties (Atiani et al. 2014; Shamma et al. 1993). Recording location in the IC were 

determined by tonotopic maps and basic tuning properties (Aitkin & Moore 1975; Aitkin 

et al. 1975; Moore et al. 1983; Slee & David 2015a). Neurons in the central nucleus of 

the IC (here referred to as ICC) receive input from the auditory brainstem, and have a 

characteristic short response latency, dorsal-ventral tonotopy, and narrow bandwidth 
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tuning. Conversely, regions around the central nucleus do not receive direct ascending 

input and present longer response latencies, considerably less sharp tuning, lack 

consistent tonotopic organization; these areas were grouped together as NCIC (Slee & 

David 2015a). 

For tetrode recordings, upon unit isolation, a series of brief (100-ms duration, 

200-400ms inter-stimulus intervals, 50 dB SPL) tones and/or narrowband noise bursts 

were used to determine the range of frequencies that evoked the strongest response, the 

best frequency (BF) of the unit(s). If a unit(s) in the site did not respond to the sound 

stimuli (that being an evoked increase or decrease in activity compared to spontaneous 

activity either during or right after sound presentation), the electrode was moved to a new 

recording depth with small, 5um incremental steps. For the 64-channel recordings, we 

lowered the entire depth of the probe (1 mm) such that it spanned the depth of auditory 

cortex or the inferior colliculus. Frequency tuning across the 64 channels varied. For the 

purposes of this study, we considered units isolated from the 64-channel as individual 

units. 

Spike sorting 

Putative spikes were sorted offline by band-pass filtering the raw trace (300–6000 

Hz). Single units were extracted from the continuous signal by collecting all events ≥4 

standard deviations from zero. To separate single units and stable multi units from the 

electrode signal, we used the Catamaran clustering program (kindly provided by D. 

Schwarz and L. Carney) (Schwarz et al. 2012) for tetrode recordings, and the software 

KiloSort (Allen et al. 2018; Pachitariu et al. 2016) for the 64-channel recordings. In both 

cases, units were defined based on visual inspection of traces and by having less than 1% 
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of inter-spike intervals and less than 2.5% inter-spike intervals shorter than 0.75ms for 

single units and multi units, respectively. Stability of single-unit isolation was verified by 

examining waveforms and interval histograms. If isolation was lost during a behavioral 

block, only activity during the stable period was analyzed.  

  

Analysis 

Task performance analysis  

Behavioral performance was measured using signal detection theory (Signal 

Detection Theory for Everyman? 1993; Stanislaw & Todorov 1999). Hits or false alarms 

occurred when the animal licked the piezo waterspout upon presentation of the target or 

the reference stimuli, respectively. Misses or correct rejections (CR) occurred when the 

animal did not lick following presentation of the target or reference. Hit rate (HR) was 

calculated as the proportion of licks that occurred upon presentation of the target sound 

stimuli (P(licks|target)) during the target window (starting 100ms after target onset, 1.4-

sec duration), according to the formula HR=hits/(hits+misses). False alarm rate (FAR) 

was calculated as the proportion of licks that occurred during presentation of a reference 

TORC sound or between TORCs (P(licks|reference)) during the reference window (1.1-

4.5 seconds), FAR=FAs/(FAs+CRs). Sensitivity (d’), a measure of the animals’ ability to 

discriminate between the signal (target) and the noise (non-target, both external and 

internal), was measured by taking the difference between the z-scored hit rate and the 

false alarm rate (d’=ZHR-ZFAR). When the animal cannot discriminate at all, d’=0. 

Animals were considered trained to the task and ready to undergo electrophysiological 

recordings when they performed consistently above chance for three consecutive session. 
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Pupil analysis 

Pupil size was measured using custom MATLAB software (code available at 

https://bitbucket.org/lbhb/baphy). For each video, an intensity threshold was selected to 

capture pupil pixels and exclude the background image. During initial recordings, the 

threshold was selected manually. Because we observed that the first peak in the intensity 

histogram of the image generally corresponded to the pupil, during later recordings we 

automatically positioned the threshold at the first “valley” in the intensity histogram of 

each video frame. Each frame was smoothed by a Gaussian filter to remove shot noise 

before thresholding, then segmented by Moore boundary tracing (Gonzalez & Woods 

2010). The segment with largest area was identified as pupil. We measured pupil size as 

the length of the minor axis of an ellipse fit to this region. We chose to measure the minor 

axis of the elliptical ferret pupil over the major axis, because the latter was sometimes 

interrupted by the reflection of the IR light that was used to visualize the pupil.  To avoid 

identifying shadows or other dark regions of the image as pupil, the search for largest-

area segment was restricted to a rectangular region of interest surrounding the pupil 

identified in the preceding frame (Nguyen & Stark 1993). 

Blink artifacts were identified by extremely rapid, transient changes in pupil size. 

The numerical derivative of the pupil trace was taken and bins with derivatives more than 

6 standard deviations from the mean were marked as blinks. A one-second window was 

removed from the pupil trace around each blink event, and the segment was replaced by a 

linear interpolation between valid points at its edges. 

The framerate of the camera used in the experiments had an upper limit of 30 

frames/second. To compensate for variability in the actual framerate, we recorded a 
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timestamp at the start and end of each trial, then interpolated measurements of pupil size 

as necessary to maintain a constant interval between measurement throughout each 

recording.   

When comparing pupil and neural data, a 750-ms offset was applied to pupil trace 

to account for the lagged relationship between changes in pupil size and neural activity in 

auditory cortex (McGinley et al. 2015a). 

Spectro-temporal receptive fields  

Tuning properties of A1 and IC neurons were characterized by the spectro-

temporal receptive field (STRF) estimated by reverse correlation between time-varying 

neuronal spike rate and the rippled noise used as reference sounds during behavior. For a 

stimulus with spectrogram, b(`, c), and instantaneous firing rate r(t), the STRF, ℎ(`, a) is 

defined as the linear weight matrix that predicts the firing rate response as follows:  

 
!(c) = ggℎ(`, a)	b(`, c − a)

h

iLM

	
j

kLM

              (Eqn. 3.1), 

where a is the time lag of the convolution kernel. Each weight of ℎ indicates the gain 

applied to frequency channel x at time lag u to produce the predicted response. Positive 

values indicate components of the stimulus correlated with increased firing, and negative 

values indicate components correlated with decreased firing. 

While we did not use the STRF to measure or quantify the state modulation, we 

used it to characterize units’ responsiveness to auditory sounds and to determine 

tonotopy. We also use the STRF model to estimate if a unit after the post hoc sorting 

analysis was to considered on-BF, where its best frequency was near the frequency of the 
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target tone, or if it was off-BF, with a distance between unit’s BF and target tone 

frequency of 0.5 octaves or more. 

State models 

We fit a generalized linear model in which time-varying state variables, pupil-

indexed arousal, v(c), and task engagement,	w(c), were used to re-weight each neuron’s 

mean evoked response to each noise stimulus, !0(c), and spontaneous rate, b0, to generate 

a prediction of the single-trial spike rate, !(i??(c), at each point in time. The model 

included multiplicative gain parameters (x) and DC offset parameters (y) to capture both 

types of modulation. We refer to this model as the full model: 

!(i??(c) = b0 Iy0 + y6v(c) + y+w(c)N + !0(c) Ix0 + x6v(c) + x+w(c)N (Eqn. 3.2). 

With additional constant terms x0 and y0, this model required a total of six free 

parameters. For comparison, we calculated a state-independent model here referred to as 

the null model, in which the state variable regressors were shuffled in time, effectively 

reducing the model to 

 !$i??(c) = b0 + !0(c)             (Eqn. 3.3). 

Because shuffling removes any possible correlation between state and neural activity, 

gain and offset parameters are reduced to y0=x0=1 and y6=y+=x6=x+=0. In practice 

fitting to the shuffled data produces parameter values slightly different from zero, and 

controls for noise in the regression procedure. 

We also considered two partial models, one to predict responses based on pupil 

size only, !6(c), and one to predict responses based on behavior only,	!+(c), in which the 

other regressor was shuffled in time. Thus, one model accounted for pupil only 
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 !6(c) = b0 Iy0 + y6v(c)N + !0(c) Ix0 + x6v(c)N             (Eqn. 3.4), 

 and the final model accounted for task engagement only: 

 !+(c) = b0&y0 + y+w(c)- + !0(c)&x0 + x+w(c)-             (Eqn. 3.5). 

These models tested the effects of a single state variable while ignoring the other. 

 By comparing performance of the full model to each partial model, we could 

determine the unique contribution of each state variable to the neuron’s activity. We used 

a 20-fold cross validation procedure to evaluate model performance. The model was fit to 

95% of the data and used to predict the remaining 5%. Fit and test data were taken from 

interleaved trials. This procedure was repeated 20 times with non-overlapping test sets, so 

that the final result was a prediction of the entire response. Model performance was then 

quantified by the fraction of variance explained, i.e., the squared correlation coefficient, 

R2, between the predicted and actual time-varying response. Variance uniquely explained 

by single state variables was calculated as the difference between R2 for the full model 

and for the partial model in which the relevant variable was shuffled in time. 

Modulation Index  

To quantify the modulatory effects of task and arousal on the firing rate of A1 and 

IC units, we computed a modulation index (z{) (Otazu et al. 2009; Schwartz & David 

2018). z{ was defined as the difference between the mean response to the same stimuli 

between two conditions, a and b, normalized by their sum, 

 
z{|} =

&!| − !}-
&!| + !}-
W              (Eqn. 3.6). 

z{ could be calculated between different behavioral blocks or between state 

conditions. In the case of task engagement, z{ was calculated between active and passive 

conditions, z{~�. For arousal, data from an experiment were divided at the median pupil 
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diameter, and z{ was computed between large pupil (pupil > median, high arousal) and 

small pupil (pupil < median, low arousal), z{dÄ. To quantify differences between the first 

and the second passives, z{ was computed between passive 1 and passive 2, z{�M�O. 

To quantify changes in firing rates due to unique contributions of arousal or task, 

we used z{	to test how well the regression model could predict state-related changes in 

neural activity. The modulation between conditions a and b predicted by the full model, 

is denoted z{|}	ÅaÇÇ, where a and b are either active/passive (z{~�	ÅaÇÇ) or large/small 

pupil (z{dÄ	ÅaÇÇ). Similarly, modulations between conditions a and b predicted by the 

pupil partial model or the behavior partial model, are denoted z{|}	vav,Ç	ÉJÇÑ and 

z{|}	cÖbÜ	ÉJÇÑ, respectively. The z{	uniquely predicted by including task engagement as 

a regressor is   

 z{~�		cÖbÜ	aJ,áa< = z{~�	ÅaÇÇ −z{~�	vav,Ç	ÉJÇÑ             (Eqn. 3.7), 

that is, z{	predicted by the full model minus the z{	predicted by a model in which 

behavior condition, but not pupil, is shuffled. The net result is the z{	predicted by task 

engagement above and beyond modulation predicted by changes in arousal alone. 

Similarly, z{	uniquely predicted by including pupil size as a regressor is 

 z{dÄ	vav,Ç	aJ,áa< = z{dÄ	ÅaÇÇ −z{dÄ	cÖbÜ	ÉJÇÑ             (Eqn. 3.8). 

Significant effects of regressing out pupil-indexed arousal were quantified by 

comparing the signed-normalized differences between z{~�		cÖbÜ	aJ,áa< and 

z{~�		cÖbÜ	ÉJÇÑ using a one-sided Wilcoxon signed-rank test with an a = 0.05, including 

zero-differences between the two (Pratt treatment). Differences of the same quantities 

across areas were quantified using rank-sum test. Sign normalization was achieved by 
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multiplying the difference between z{~�		cÖbÜ	aJ,áa< and z{~�		cÖbÜ	ÉJÇÑ in each unit by 

the sign of their mean. 

Significantly modulated units were determined by comparing Pearson’s r 

coefficients associated with the full model and with the difference between the full model 

and the task and pupil partial models using jackknifed t-test with an a = 0.05 (Efron & 

Tibshirani 1986).  

Data preprocessing and analysis were performed using custom MATLAB and 

Python scripts. Neural and pupil activity were binned at 20 samples/s before analysis. A 

Python library for the modeling portion of this analysis is available at 

https://github.com/LBHB/NEMS/. 

 

Results 

Changes in pupil size track task engagement 

To study interactions between arousal and task engagement, we first trained four 

adult ferrets on a go/no-go auditory task. Animals reported the presence of a target tone 

and ignored broadband noise reference stimuli presented from a single speaker (Figure 

3.1A, B). They were required to withhold licking a water spout during the presentation of 

the reference sounds, and were given liquid reward for licking during the target window 

(100-1500ms after target onset). Targets were pure tones, either presented alone (tone 

versus noise discrimination, Ferret L) or embedded in reference stimuli (tone-in-noise 

detection, Ferrets R, B, and T). After training, all animals performed consistently above 

chance (Figure 3.1C).  
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To track and record changes in pupil size, an infrared video camera was used to 

image the eye contralateral to the speaker emitting auditory stimuli (Figure 3.1A). 

Constant luminance was maintained throughout the experiment. Pupil was recorded when 

animals either passively listened to the task stimuli or actively performed the task. The 

distribution of pupil sizes differed between passive and active conditions (Figure 3.1D), 

such that mean pupil size was consistently larger during the active condition (Figure 

3.1E). Within active behavioral blocks, pupil varied with task performance. While 

average values of pupil size were similar for false alarm and hit trials, values of pupil size 

during miss trials were lower, resembling values recorded during passive trials (Figure 

3.1E, F). Furthermore, within trials, pupil dynamics also displayed a strong dependence 

on task condition and behavioral performance. During both hit and false alarm trials, 

pupil size increased rapidly following the trial onset. It remained mostly unchanged 

during passive trials and miss trials (Figure 3.1G-I). Thus, pupil size tracked slow 

changes in task-engagement (active versus passive blocks) as well as more rapid changes 

in trial-by-trial performance during the active condition. 

 

Diversity of task engagement and arousal effects across A1 and IC neurons 

We recorded single-unit (SU) and multiunit (MU) extracellular activity from the 

primary auditory cortex (A1, total of 129 units, 72 SU and 57 MU) and the inferior 

colliculus (IC, total of 66 units, 41 SU and 25 MU) of ferrets, while they switched 

between active engagement and passive listening. In both brain regions, activity was 

recorded from acute penetrations using either high impedance tetrode electrodes or 64-

channel linear silicon arrays. In the IC, we recorded from central (ICC, total of 18 units, 
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14 SU and 4 MU) and non-central regions (NCIC, total of 48 units, 27 SU and 21 MU) 

(Slee & David 2015a). Results from the IC are here presented jointly between the two 

sub-regions, unless otherwise specified.  

 Because we were interested in studying how behavior state-dependent 

modulation of neural activity varied over time, we recorded activity in the same units 

over multiple passive and active blocks. Only well-isolated single units and stable 

multiunits were included in the analyses (see Materials and Methods for isolation 

criteria). To monitor changes in arousal, we recorded pupil diameter throughout each 

experiment. In order to analyze neural responses to acoustic stimulation under different 

behavioral conditions, the peri-stimulus time histogram (PSTH) was computed over 

responses to noise stimuli for each neuron. PSTHs were calculated for passive trials and 

active trials that were hits. On hit trials, animals did not lick during the reference period 

(TORCs noise stimuli). Thus this analysis minimized the possibility that lick-related 

motor signals confounded our results (Nelson et al. 2013; Schneider et al. 2014).  

For many units the activity appeared to be modulated by changes in task 

engagement, as would be expected from previous behavioral studies (David et al. 2012; 

Fritz et al. 2003; Slee & David 2015a). During active behavior, responses to the noise 

stimuli either increased or decreased, and then returned to their baseline passive state 

during subsequent passive periods (example 1, Figure 3.2 A-C). For other units, however, 

no consistent change in activity was observed between active and passive conditions. In 

these cases, firing rate could change between behavioral blocks, but there was no 

significant change between responses for active versus passive conditions (example 2, 

Figure 3.2 E-G). Thus, despite our controls for sound acoustics and motor activity, the 
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firing rates of some units varied over time, but in a way that did not appear to be related 

to task engagement.  

We wondered if changes in activity that could not be attributed to task 

engagement could instead be explained by fluctuations in pupil-indexed arousal. A 

simple way to investigate if arousal affects firing rates is to divide all trials (both hits and 

passive trials) into two groups based on the mean pupil size during each trial and 

compute a PSTH for all units in each respective group. One group was made for trials 

with pupil size smaller than the median, and another for trials with pupil size larger than 

the median. For both example units in Figure 3.2, this analysis showed that activity was 

enhanced when pupil was large (large versus small pupil PSTH, Figure 3.2D, H), 

indicating that pupil size was positively correlated with firing rate. Thus, we 

hypothesized that changes in pupil diameter accounted for fluctuations in firing rate when 

task engagement could not.  

Because the active behavior state was correlated with large pupil (Figure 3.1E), 

we could not dissociate the effects of task engagement and arousal using just the raw 

PSTH. Therefore, to test our hypothesis that pupil accounted for changes in neural 

activity following task engagement, we fit a generalized linear model (full model, Eqn. 

3.2, see Materials and Methods) in which the mean response to each presentation of the 

reference stimuli was modulated by task engagement and arousal (pupil size). Task 

engagement was modeled as a discrete regressor (active or passive) and pupil as a 

continuous regressor. This approach allowed us to measure the relative effects of arousal 

and task engagement on firing rate. Additionally, incorporating pupil as a continuous 

variable avoided arbitrarily dividing the data into large and small pupil groups.  
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Model performance was measured by the correlation coefficient (Pearson’s r) 

between the predicted and actual spike rates averaged across all 20-fold cross-validation 

sets. To test for significant contributions of each regressor, we compared the performance 

of the full model, which included both pupil and task engagement variables, to the 

performance of a state-independent model, which only included the PSTH of the 

responses with pupil and task shuffled in time (null model, Eqn. 3.3, see Materials and 

Methods), and of two partial models, which only included the effects of a single state 

variable while shuffling the values of the other in time (pupil or task partial models, 

Eqns. 3.4, 3.5, respectively, see Materials and Methods).  

We found that some units were driven more by task engagement and others by 

pupil-indexed arousal. Figure 3.2 shows the activity and pupil size dynamics of two A1 

example units recorded simultaneously over the course of a 1-h recording. For units such 

as example 1 in Figure 3.2A-D, the modulation of firing rates in active and passive 

blocks was almost completely accounted for by the unique contribution of the task 

variable with little contribution of pupil-indexed arousal. Figure 3.2B shows model 

predictions plotted against the unit’s firing activity averaged across trials in each 

behavioral block (each passive and active block were halved to show activity over time at 

higher time resolution). Responses predicted by the null model (Figure 3.2B, blue trace) 

did not capture the dynamics of this unit’s modulation (Pearson’s r = 0.47). However, 

when we added the task variable (task partial model; Figure 3.2B, purple trace), 

predictions significantly improved with respect to the null model (Pearson’s r = 0.54; 

jackknifed t-test, p < 0.05). Interestingly, while we showed that pupil size positively 

related to firing rates (Figure 3.2D), adding pupil to the model (full model; Figure 3.2B, 
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black trace) did not improve prediction performance any further (Pearson’s r = 0.54), 

suggesting that all variability in firing rate for this unit was accounted for by task 

engagement, and the apparent pupil effects in Figure 3.2D were in fact explained by task.  

Conversely, for other units, such as the example in Figure E-H, the active/passive 

change in firing rate was significantly accounted for by arousal. A task partial model 

(Pearson’s r = 0.63) did not lead to any significant improvement from the null model 

(Pearson’s r = 0.62), suggesting that task was not a predictor of this unit’s change in 

activity (Figure 3.2F). The pupil partial model, however, well captured this unit’s 

modulation, leading to a significant improvement in prediction accuracy that did not 

differ from the full model (full model Pearson’s r = 0.73; pupil partial model Pearson’s r 

= 0.72; jackknifed t-test, p < 0.05).  Thus, activity of example 1 and example 2 A1 units 

were predominantly modulated by task and arousal, respectively. 

Next, we investigated how common task- and arousal-dominant modulations were 

across the population of A1 and IC units. Out of 129 units in A1 and 66 in IC, 51 (~40%) 

and 34 (~50%) were significantly modulated by one or both state variables, respectively 

(Figure 3.3A). Significance was tested by comparing the cross-validated variance 

explained (R2) of the full model with the cross-validated R2 estimated by the null model 

(jackknife t-test, p < 0.05; see Materials and Methods). Furthermore, by computing the 

difference between the cross-validated R2 for the full model and for the two partial 

models separately, we were able to isolate the units with significant variance uniquely 

explained by either arousal or task alone (Figure 3.3A, B, purple and green, respectively). 

Two more significant groups were also found, one of units for which both task and 

arousal were uniquely contributing to the modulation (Figure 3.3A, B, black), and one for 
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which only the combined effect of task and pupil led to a significant state modulation 

(Figure 3.3A, B, dark grey). Interestingly, although the proportion of units with 

significant task modulation was comparable between A1 and IC, only about a third of 

significant state-modulation A1 units (16/51) showed unique arousal-dependent 

modulation compared to about two third for IC (21/34).  

These results suggest that task- and arousal-dependent modulation of auditory 

processing is present in both the midbrain and cortex, and can be dissociated in about half 

of the sampled population of units that showed significant state modulation. However, 

state-dependent modulation in A1 was equally related to task or arousal, while in IC 

arousal signals make up a greater proportion of the state modulation. 

 

Pupil-indexed arousal accounts for some apparent task engagement effects in both 

A1 and IC 

So far, we have shown that a proportion of units in A1 and IC show state-

dependent modulation of activity, with arousal being the dominant state variable in IC. 

Previous studies of task-related plasticity that have not measured pupil might have 

attributed the changes in firing rates across behavioral blocks to task engagement. 

Therefore, we asked to what extent arousal-related modulation could explain changes in 

activity between active and passive blocks that would be otherwise attributed to task 

alone.  

To quantify the magnitude and sign of the modulation by each state variable, we 

compared the responses predicted by each model using a modulation index (z{), a metric 

that captured changes in both response gain and offset (Eqn. 3.6, see Materials and 
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Methods) (Otazu et al. 2009; Schwartz & David 2018). The modulation of activity 

captured by both pupil and task variables was computed from responses predicted by the 

full model (z{~�	ÅaÇÇ). The modulation captured by task alone was quantified by a 

modulation index computed from responses predicted by the partial task model, in which 

the variable pupil was shuffled in time (z{~�	cÖbÜ	ÉJÇÑ, see Materials and Methods). 

The difference between z{~�	ÅaÇÇ and z{~�	cÖbÜ	ÉJÇÑ yielded the residual and unique 

contribution of task engagement after accounting for pupil (z{~�	cÖbÜ	aJ,áa<, Eqn. 

3.7).  

To compare changes in the magnitude of the modulation index after accounting 

for arousal, we normalized the sign for each unit so that the mean of z{~�	cÖbÜ	ÉJÇÑ and 

z{~�	cÖbÜ	aJ,áa< was positive. This normalization accounted for the bidirectionality of 

the modulation while avoiding bias that would result from normalizing by the sign for 

just a single condition. After sign normalization, accounting for arousal led to a 

significant decrease in the average modulation index across all units in both A1 and IC 

(Wilcoxon signed-rank test between values of z{~�	cÖbÜ	ÉJÇÑ and z{~�	cÖbÜ	aJ,áa<; 

A1: statistic = 1469.0, p = 1.533×10-10; IC: statistic = 785.0, p = 0.041; Figure 3.4A). 

Effectively, accounting for pupil led to a 40% and a 65% average reduction in the 

magnitude of z{ in A1 and IC, respectively (A1: mean signed-normalized 

z{~�	cÖbÜ	ÉJÇÑ	= 0.139; mean signed-normalized z{~�	cÖbÜ	aJ,áa< = 0. 084; IC: mean 

signed-normalized z{~�	cÖbÜ	ÉJÇÑ = 0.072; mean signed-normalized 

z{~�	cÖbÜ	aJ,áa<= 0.042). The correction for pupil-related changes also led to an 

overall reduction in the number of units showing significant effects of task engagement.  
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Effects of removing pupil-related activity were not different between central and 

external regions of IC (rank-sum test, statistic = 0.115, p = 0.900). Moreover, there was 

no difference between groups of units for which the best frequency was near or far (> 2 

octaves) from the target tone frequency (rank-sum test, A1: on-BF n = 50, off-BF n = 79, 

statistic = 0.121, p = 0.904; IC: on-BF n = 26, off-BF n = 40, statistic = -1.076, p = 

0.282). Taken together these results suggest that arousal accounted for a significant 

portion of the change in activity between passive and active blocks in both A1 and IC, 

effect that was similar across regions of IC and independent on target frequency. 

 

Task-related modulation is primarily positive in A1 

Previous studies have reported either positive (Fritz et al. 2003, 2007b; Yin et al. 

2014) or negative (Otazu et al. 2009; Slee & David 2015a) changes in spike rate 

associated with measurements of task-related modulation of auditory neurons’ activity. 

Variability in task-dependent changes in auditory cortex has been explained by 

differences in task structure (David et al. 2012), behavioral effort (Atiani et al. 2009), and 

selective attention (Schwartz & David 2018). Given that we used a positive 

reinforcement structure similar to previous studies (David et al. 2012; Slee & David 

2015a), we expected the average sign of the modulation to be about zero in A1 and 

negative in IC. However, we found that IC units were equally likely to be associated with 

negative or positive values of MIAP task only (32/66 positive, 34/66 negative; median 

z{~�	cÖbÜ	ÉJÇÑ values = -0.002; Wilcoxon signed-rank test, statistic = 1054.0, p = 

0.742). In contrast, A1 showed a significantly larger number of units with positive task-

related modulation (85/129 positive, 44/129 negative; median z{~�	cÖbÜ	ÉJÇÑ values = 
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0.048; Wilcoxon signed-rank test, statistic = 2824.0, p = 0.001) (Figure 3.4B). 

Accounting for arousal made the positive modulation less pronounced and no longer 

significant in A1 (75/129 positive, 44/129 negative; median z{~�	cÖbÜ	aJ,áa< values = 

0.012; Wilcoxon signed-rank test, statistic = 3567.0, p = 0.141), while tipping it towards 

more negative values in IC (26/66 positive, 40/66 negative; median z{~�	cÖbÜ	aJ,áa< 

values = -0.008; Wilcoxon signed-rank test, statistic = 823.0, p = 0.071).  

Thus, values of task-related modulation were mostly positive in A1, meaning that 

during active engagement spontaneous and evoked activity tended to be enhanced with 

respect to passive listening. This positive effect of behavior was only partially reduced by 

accounting for arousal. Conversely, in IC significant state-modulate units were equally 

likely to be enhanced or suppressed during active engagement. Accounting for arousal 

did not significantly change this result.  

 

Task- and arousal-related modulation may act via different neural pathways 

In the examples in Figure 3.2, we showed that the effects of task engagement and 

arousal on firing rates are difficult to dissociate by simply looking at raw activity. The 

regression analysis helped us disambiguate unique contributions of these state variables 

to firing rate modulation in several units. Next, we wondered if arousal and task operated 

via functionally separate or common pathways. While identifying the specific circuits 

involved in this modulation was outside the scope of this work, we reasoned that if the 

two modulations were carried through the same pathway, the activity of one unit 

modulated by arousal would also be modulated by task. To test this prediction, we 

measured the correlation between z{~�	cÖbÜ	aJ,áa< (see above) and 
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z{dÄ	vav,Ç	aJ,áa< (Figure 3.4), which quantified the unique contribution of pupil after 

regressing out task engagement effects (Eqn. 3.8, see Materials and Methods). We found 

no significant correlation between these quantities in either area, (A1: Pearson’s r = -

0.148, p = 0.100; IC: Pearson’s r = -0.083, p = 0.510). The absence of a correlation 

suggests that separate neural circuits mediate the task and arousal state modulation in A1 

and IC. 

 

Relationship between state modulation and auditory responsiveness 

While all units were recorded from areas functionally and anatomically 

characterized as auditory, it is well-known that within the same sensory areas and circuits 

different subpopulations of neurons serve distinct functions. Within A1 and IC, neurons 

vary substantially in the degree of auditory responsiveness (Atiani et al. 2014; Gruters & 

Groh 2012). We asked whether the magnitude of the state-dependent modulation in each 

recorded unit was related to its auditory responsiveness. The variance explained by the 

null model was used as a proxy for auditory responsiveness, since it described how 

accurately the PSTH response to the noise stimuli predicted activity on a single trial. The 

null model fit the average activity during the reference portion of the stimulus across the 

whole length of the recording. Therefore, small values of null model R2 were associated 

with units whose activity during the reference period was not reliable across the 

experiment. In IC but not in A1, units that responded less reliably to sound were also 

those whose modulation was explained best by changes in state (A1: Pearson’s r = -

0.084, p = 0.343; IC: Pearson’s r = -0.344, p = 0.005; Figure 3.6). These results also held 

true when the signal-to-noise ratio of the spectro-temporal receptive field (STRF), 
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measured during passive listening, was instead used as a measure of auditory 

responsiveness (A1: Pearson’s r = -0.093, p = 0.297; IC: Pearson’s r = -0.260, p = 0.035; 

data not shown) (Klein et al. 2000). Thus, while state-dependent modulation in A1 did 

not depend on units’ sensory responsiveness, state-dependent effects in IC were more 

common in units with a weaker sensory component. 

 

Are “persistent” state effects explained by arousal? 

Previous studies in both A1 (Fritz et al. 2003) and even more so in IC (Slee & 

David 2015a) have reported examples of task-related modulation persisting in passive 

blocks following active engagement (referred to as “post-passive” blocks). These effects 

have been interpreted as persistent task-related plasticity, but they were highly variable 

and difficult to attribute to any specific feature of the behavior. The examples in Figure 

3.2 suggest that some persistent changes following task engagement may be explained by 

fluctuations in arousal. After the first active block, only for example 1 firing rates 

returned to values comparable to the first passive (Figure 3.2A, B). For the example unit 

2, firing rates continued to decrease as the experiment progressed (Figure 3.2 E, F). For 

this example, we showed that the modulation was tracked and largely accounted for by 

changes in pupil size rather than being a consequence of the animal switching behavioral 

context (Figure 3.2F). However, if we were not measuring pupil, we may have also 

concluded that activity was suppressed due to persistent effects of task engagement. 

To measure the presence of persistent task-related modulation – and the extent to 

which arousal accounts for it – we compared the activity between the first and second 

passive blocks. We performed the same regression analysis as above, but only considered 
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data from passive blocks before (P1) and after (P2) a behavioral block, treating the 

passive block (P1 or P2) as a state variable. Modulation index was computed either for 

responses predicted by a partial model, based only on passive block position 

(z{�M�O	wÇÉàÜ	ÉJÇÑ), or for the unique contribution of passive block position. The latter, 

unique component (z{�M�O	wÇÉàÜ	aJ,áa<) was computed from the difference in z{ 

between a full model and the partial model accounting only for pupil-related effects 

(Figure 3.7A). To assess the effect of pupil on the magnitude of z{ between passive 

conditions, we used the same strategy as for the active/passive analysis above. We 

normalized the sign of z{ for each unit so that the mean of z{�M�O	wÇÉàÜ	ÉJÇÑ and 

z{�M�O	wÇÉàÜ	aJ,áa< was positive. In both areas, the magnitude of firing rate 

modulation between passive blocks was significantly reduced after accounting for effects 

of pupil (A1: statistic = 1504.0, p = 1.673×10-5; IC: statistic = 309.0, p = 1.376×10-5; 

Wilcoxon signed-rank test). Effectively, accounting for arousal led to a 20% and a 48% 

reduction in activity modulation in A1 and PEG, respectively (A1: mean signed-

normalized z{�M�O	wÇÉàÜ	ÉJÇÑ = 0.140; mean signed-normalized z{�M�O	wÇÉàÜ	aJ,áa< 

= 0.100; IC: mean signed-normalized z{�M�O	wÇÉàÜ	ÉJÇÑ = 0.100; mean signed-

normalized z{�M�O	wÇÉàÜ	aJ,áa< = 0.052). 

To evaluate the time course of arousal-dependent modulation of firing rate across 

the length of the experiment, we considered a subset of A1 and IC units for which 

recordings were stable across five consecutive passive/active behavioral blocks (45 units 

in A1; 31 units in IC, Fig. 3.5B). The sign of MI for each unit was normalized so that 

responses were larger during active conditions, and the average modulation index across 

the three passive blocks was 0. In both areas, after accounting for the contribution of 
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arousal, the unique contribution of task to firing rate modulation was reduced (Figure 

3.7B). In IC, the average persistent change in firing rate was completely accounted for by 

arousal. Taken together, these results suggest that some post-behavior effects previously 

reported as persistent plasticity induced by behavior can in fact be explained by 

fluctuations in the state of arousal.  

 

Discussion 

The primary goal of this study was to explore how arousal contributed to task-

related changes in neural activity in the primary auditory cortex (A1) and the auditory 

midbrain (IC). Several previous studies have shown that transitioning from passive 

listening to active behavior leads to sizable changes in neural activity in A1 (Fritz et al. 

2003; Niwa et al. 2012; Otazu et al. 2009) and IC (Ryan & Miller 1977; Slee & David 

2015a). These changes can be specific to properties of the task stimuli (Fritz et al. 2003; 

Jaramillo & Zador 2011; Lee & Middlebrooks 2011) or depend on the structural elements 

of the task, such as reward contingencies (David et al. 2012), task difficulty (Atiani et al. 

2009) or selective attention (Downer et al. 2017; Hocherman et al. 1976; Schwartz & 

David 2018). While it is clear that sensory and behavioral context shapes auditory 

representation, a coherent theory of how multiple state variables interact to influence 

sensory coding has yet to be formed.  

Changes in firing rates associated with different behavioral contexts are likely to 

reflect multiple aspects of internal state (Cohen & Maunsell 2009; McGinley et al. 2015b; 

Niell & Stryker 2010; Polack et al. 2013). Factors like arousal, locomotion, and whisking 

have been shown to change smoothly in non-anesthetized animals over the course of an 
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experiment, tracking fluctuations of sensory neurons’ membrane potentials and 

behavioral performance (Cohen & Maunsell 2010; Goris et al. 2014; McGinley et al. 

2015a; Niell & Stryker 2010; Poulet & Petersen 2008; Reimer et al. 2014; Vinck et al. 

2015).  

One major obstacle to understanding the relationship between state variables and 

firing rate is that they often covary. To overcome this obstacle and dissociate the effects 

of arousal and task engagement on cortical and midbrain activity, we used a step-wise 

linear regression approach in which arousal, indexed by pupil size, and task were counted 

as independent regressors. In nearly half of recorded A1 and IC units, arousal and task 

engagement contributed substantially to the modulation of spontaneous and evoked 

activity between blocks of active engagement and passive listening. Furthermore, our 

data suggest that arousal and other effects of task engagement operate via distinct 

feedback circuits. Thus, task engagement and arousal are effectively two state variables 

that can be dissociated in most state-modulated neurons. 

The main consequence of our findings is that changes in firing rates previously 

attributed to task engagement alone, might have been the results of fluctuations in 

internal state, specifically in arousal, as indexed by pupil size. However, arousal did not 

account for all the activity modulation between active and passive blocks, suggesting that 

other factors might play a role in shaping sound processing. Our approach provides a 

general method for dissociating the influence of continuous internal state variables on 

sensory representation and their relationship with task-related discrete variables often 

imposed by the experimenter. The same method can be adopted to explore the 

contribution of other state variables (e.g., task difficulty, behavioral performance, reward 
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size, and selective attention) measured in normal conditions as well as in perturbation 

experiments to help identify the circuits through which such variables operate.  

 

Comparison with previous studies 

Previous studies that used similar paradigms to the current experiment to measure 

the effects of behavior on auditory representation, described local changes in frequency 

tuning measured in the spectro-temporal receptive fields (STRF) (David et al. 2012; Fritz 

et al. 2003; Slee & David 2015a). Fritz et al., showed that in A1 neural activity near the 

frequency of the target tone in response to reference stimuli was enhanced when ferrets 

were engaged in an avoidance auditory task with respect to passive listening (Fritz et al. 

2003). The sign of the local modulation of the evoked activity was later found to be 

contingent to the structure of the task (David et al. 2012). Conversely to the avoidance 

task, positive reinforcement version of the task (similar to the one used in the current 

study) led to a suppression of evoked responses instead of enhancement at the target 

frequency if placed near the best frequency of the unit. Similarly, in the IC, local changes 

in the STRF were also found to be suppressive during behavior (Slee & David 2015a). 

However, while for A1 the effects of engaging in a task on overall excitability were 

equally likely to be suppressive or enhancing, in IC global, untuned changes were 

predominantly suppressive (Slee & David 2015a). In fact, in several IC units, the overall 

modulation could be described by global suppression of firing rates across frequencies 

rather than a shift in turning (David 2018; Slee & David 2015a).  

Here, we found a different pattern of modulation. Activity in A1 tended to be 

more enhanced during active behavior compared to passive blocks, even after accounting 
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for arousal. In IC activity was equally likely to be enhanced or suppressed. This 

discrepancy with previous findings could reflect differences in task stimuli and/or 

training. The previous studies used exclusively pure-tone targets, while this study used 

tones embedded in a reference noise. Reward associations can also impact sensory 

responses (Baruni et al. 2015). The fact that the noise stimuli were paired with positive 

reward could have impacted changes imposed on responses to the noise when it was 

presented as a reference sound. Moreover, the size of the reward itself has been shown to 

influence firing rate in response to sensory stimulation (Metzger et al. 2006). Further 

studies in which reward associations are targeted systematically and accounted for in the 

encoding model may clarify the differences observed across these studies. 

 

In the current study, significant state-dependent A1 units were equally likely to be 

modulated by task, by arousal, or by both. In IC, however, we found that a larger portion 

of state-dependent changes could be explained by arousal. Furthermore, in IC but not in 

A1, units with less reliable auditory responsiveness were those with a stronger state-

modulation component. This result is perhaps not surprising given that the majority of IC 

units in our sample were recorded from regions of the IC marked as non-central (NCIC). 

These are dorsal and lateral regions of IC that receive input from brain neuromodulatory 

circuits such as the pedunculopontine and latero-dorsal tegmental nuclei (Motts & 

Schofield 2009), as well as multisensory information from somatosensory, visual, and 

oculomotor centers (Gruters & Groh 2012). When we compared the magnitude of the 

state-modulation between the two regions, we did not find any statistically significant 

difference. This result is in line with previous findings by Slee and David (2015), who 
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also found no difference in the local and global task-related modulation of evoked 

responses. Further experiments, however, which include a larger sample of units across 

the different areas would be needed to confirm this finding in the context of arousal-

related modulation.  

 

Possible circuits mediating task and arousal-related modulation in A1 and IC 

Probing the neural circuits underling task and arousal-related modulation was 

outside the scope of this study. However, by measuring the relationship between the 

unique contributions of each state variable, we were able to conclude that the effects of 

task and arousal are dissociated and may be carried via different pathways.  

 Several previous studies have shown the role of neuromodulators in inducing 

short-term changes in activity and sensory tuning in auditory cortical regions 

(Kuchibhotla et al. 2017; Reimer et al. 2016) and midbrain (Gittelman et al. 2013; 

Habbicht & Vater 1996; Hurley & Pollak 2005). Cholinergic fibers projecting to the 

auditory cortex from the nucleus basalis play a key role in rapid switching between 

passive listening and active engagement by modulating the activity of different 

populations of cortical inhibitory interneurons (Kuchibhotla et al. 2017). Furthermore, the 

activity of cholinergic and noradrenergic terminals in auditory cortex was found to be 

elevated during pupil dilation and reduced during pupil constriction (Reimer et al. 2016). 

Given that we find that modulation of task and pupil often covary, it is reasonable to 

hypothesize that cholinergic and noradrenergic pathways enable these aspects of 

cognition. 
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Figure 3.1: Pupil size correlates with task engagement. 

A. Schematic of head-fixed behavioral setup, including a free-field speaker, a piezo spout 

to register licks and deliver the reward, and an infrared video camera for pupillometry. B. 

Schematic of the task structure. False alarms before the target window were punished 

with a time out and hits were rewarded with water. C. Swarm plot showing behavioral 

performance (hit rate or false alarm rate) for each animal. Each plot is a behavioral 

session. Red lines indicate mean and standard error of the mean (s.e.m.) of the sensitivity 

(d’) for each animal. All animals performed above chance (d’ = 0). D. Histogram of pupil 

size during passive and active behavior averaged across all animals and behavior 

sessions. E. Normalized mean pupil size across all trials and animals. Shading indicates 

s.e.m. F. Average pupil size during active behavior, grouped according to performance. 

Axis as in E. G. Trial time-course of average pupil size normalized to pre-trial size 

(averaged across 0.35-sec pre-stimulus window) for active and passive behavioral blocks. 



 111 

H. Trial time-course of average pupil size as in G but during active behavioral blocks and 

grouped according to performance.  I. Pre-trial pupil size plotted against pupil change per 

trial (averaged across 3-sec window during stimulus presentation). Values were 

normalized to peak pupil size in each session. Each dot represents a behavioral block, and 

passive and active blocks within the experiment are connected by a line. 
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Figure 3.2: Example A1 units recorded simultaneously 

A. Firing rate (grey) during the reference period and time-matched pupil size (green) are 

plotted for the duration of one example experiment (total time of the recording ~1h, but 

intra-trial time and target responses are not shown). Purple shading highlights active 

blocks. Dashed lines delineate halved recording behavioral blocks, times that were used 

to compute partial behavioral blocks’ PSTHs in B. B. Partial PSTHs (grey) generated by 

averaging responses across trials in each halved behavioral block as shown in A. Shading 

represents standard error of the mean (s.e.m.). Solid colored lines are the responses 

predicted by the null (blue), pupil partial (green), task partial (purple), or full (black) 

models. Prediction accuracy is quantified by the correlation coefficient (Pearson’s r). 

Solid purple lines above PSTHs indicate active blocks as in A. C. PSTHs of example 1 
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unit’s activity averaged across all passive and active blocks. D. PSTHs of example 1 

unit’s activity when pupil size was larger or smaller than its median across the 

experiment. E-H. Same as in A-D for example Neuron 2. In C-E and H-J, dashed grey 

lines indicate beginning and end of reference noise stimulus. 
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Figure 3.3: Task and pupil-related modulation of firing rates in A1 and IC 

A. Number of units significantly modulated by task, arousal, or both in A1 (left) and IC 

(right). The total number of recorded units is reported in the center of the doughnut plots. 

Significance was determined by cross-validated jackknifed t-test, at a cut-off p < 0.05. 

Purple and green symbols correspond to units with significant unique modulation of task 

or pupil, respectively. Black symbols correspond to units for which both unique task and 

pupil contributions are significant. Dark grey symbols correspond to units for which the 

contribution of task and pupil to model prediction is significant only when both variables 

are present in the model. Light gray indicates units for which there is no significant 

improvement in prediction accuracy between full and null models. B. Variance explained 

(R2) in single-trial activity by full model versus null model. Each symbol represents a unit 

in AC (left) or IC (right; circles for NCIC and triangles for ICC units). Colors as in A. C. 

Active/passive unique variance explained by pupil size (A~�O 	vav,Ç	aJ,áa<, x-axis) 

plotted against unique variance explained by task engagement (A~�O 	cÖbÜ	aJ,áa<, y-axis). 

Star symbols correspond to examples in Figure 3.2A-D (purple) and E-H (green). Arrow 

indicates unit with significant A~�O 	cÖbÜ	aJ,áa< value of 0.23.  
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Figure 3.4: Arousal accounts for some firing rate modulation between active and passive 

behavior 

A. Modulation index computed with responses predicted by the task partial model in 

which pupil is shuffled (z{~�	cÖbÜ	ÉJÇÑ, x axis), plotted against task unique modulation 

in which pupil size modulation is regressed out (z{~�	cÖbÜ	aJ,áa<, y axis) for A1 (left) 

and IC (right; circles for NCIC and triangles for ICC units). Purple and green symbols 

correspond to units with significant unique contributions of task or pupil, respectively. 

Black symbols correspond to units for which both unique task and pupil contributions are 

significant independently. Dark grey symbols correspond to units for which the 
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contribution of task and pupil to model prediction is significant only when both of them 

are present in the model. Light gray indicates units for which there is no significant 

improvement in prediction accuracy between full state-dependent and state-independent 

models. Significance tested by cross-validated jackknifed t-test, p < 0.05. To quantify the 

effects of accounting for pupil in our model, we run a Wilcoxon signed-rank test on 

signed-normalized values of MI. A1: p = 2.816×10-11; IC p = 0.003. B. 

z{~�	cÖbÜ	aJ,áa< and z{~�	cÖbÜ	ÉJÇÑ sorted according to their magnitude for each unit 

in A1 and IC. Accounting for pupil-indexed arousal reduces activity modulation between 

active and passive blocks by 40% and 65% in A1 and IC, respectively.  
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Figure 3.5: Unique task and arousal modulations are uncorrelated 

Unique contribution of task (z{~�	cÖbÜ	aJ,áa<) plotted against unique contribution of 

pupil size (z{dÄ	vav,Ç	aJ,áa<) to activity modulation for A1 (left) and IC (right). The 

two quantities were not significantly correlated as quantified by cross-correlation. A1: 

Pearson’s r = -0.148, p = 0.100; IC Pearson’s r = -0.083, p = 0.510. Colors as in Figure 

3.4. 
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Figure 3.6: Task and arousal-related modulation in A1 and IC 

Mean variance explained (striped bar) for significant units with unique contribution of 

task (purple), pupil (green), or ambiguous (grey) for A1 (left) and IC (right). Solid bars 

represent unique contribution of each state variable as a function of binned null model R2, 

a measure of auditory responsiveness. Colors as in Figure 3.4. 
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Figure 3.7: Persistence of task-related modulation  

A. Modulation index computed with responses predicted by the passive block partial 

model in which pupil is shuffled (z{�M�O	wÇÉàÜ	ÉJÇÑ, x axis), plotted against passive 

block unique modulation in which pupil size modulation is regressed out 

(z{�M�O	wÇÉàÜ	aJ,áa<, y axis) for A1 (left) and IC. Colors as in Figure 3.4. B. Mean MI 

of each behavioral block normalized to the mean value for the three passive conditions 

plotted for a subset of units in A1 (n = 45; left) and IC (n = 31; right) for which 

recordings were stable across five consecutive behavioral blocks. Mean z{ is sign-

normalized to have mean active/passive or large/small response > 0 across blocks to 

account for activity enhancement versus suppression. 32/45 units in A1 and 25/31 units in 

IC had significant state modulation (jackknifed t-test). 
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Chapter 4: Conclusions 

It is well-established that neurons tasked with processing sensory information are 

not mere analyzers of the individual physical components that make up a stimulus. 

Hearing, is an active process that requires integration between physical sound properties 

and information about the context in which the sound is presented. This thesis explored 

two aspects of the role of sensory and behavioral context in modulating sound 

representation. 

We used the ferret as animal model and recorded extracellular single- and multi-

unit activity across three regions of the auditory brain: the inferior colliculus (IC), 

primary auditory cortex (A1), and secondary auditory cortex (PEG). In the first study 

(Chapter 2), we investigated the neural signature of streaming sequences of complex 

sound based on repetition in A1 and PEG. Our results shed new light into the possible 

mechanisms through which the brain uses repetition as a streaming cue. The second study 

(Chapter 3) adds new evidence to the current understanding of how behavior shapes 

sound representation by modulating neural activity in IC and A1. Our results indicate that 

much of the activity modulation classically attributed to task engagement was in fact 

uniquely explained by changes in the internal state of the animal linked to arousal.  

 

Neural signature of streaming repeated-embedded noise in A1 and PEG: limitations 

of the study and future directions 

Frequency separation and presentation rate are key perceptual cues for 

segregating alternating sequences of pure tones (Bregman 1978b; Bregman et al. 2000; 

Oberfeld 2014; van Noorden 1975), and lead to spatially segregated neural responses in 
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the cochlea (Cusack & Roberts 2000) and in the auditory cortex (Bee & Klump 2004; 

Bidet-Caulet & Bertrand 2009; Fishman et al. 2001; Micheyl et al. 2007a). In a more 

naturalistic scenario, however, the challenge is to separate complex sounds that occur 

simultaneously (e.g., in a cocktail party (McDermott 2009)). In this scenario, listeners 

need to direct their attention to a chosen target (e.g., a friend’s voice) while selectively 

ignoring multiple sounds in the background (e.g., music playing), often in conditions 

when these distractors are acoustically more salient (Bee & Micheyl 2008; Cherry 1953). 

Psychophysical and physiological studies conducted in humans that used simultaneous, 

speech multi-talker paradigms, demonstrated that even if the frequency spectra overlap, 

one stream of speech can be perceptually segregated from another as long as they differ 

on any other perceptual dimension such as pitch, timbre, or spatial location (Carlyon 

2004; Ding & Simon 2012; Mesgarani & Chang 2012; Micheyl et al. 2007a). 

Another cue for stream formation is temporal patterning in the ongoing progress 

of overlapping sound sequences (Bendixen et al. 2010; Szalárdy et al. 2014). Sounds 

emanating from the same source likely share statistical regularities, and often repeat. 

McDermott et al. (2011) used a set of artificially-generated stimuli that lacked the major 

grouping cues for auditory streaming but retained the spectro-temporal structure of 

natural sounds to show that simple repetition is sufficient to recover sound sources from 

mixtures in humans (McDermott et al. 2011). Listeners were asked to identify a probed 

sound from a mixture of sequences of overlapping sounds spectro-temporally diverse. 

Only if the probed sound was repeated in the sequence in the presence of a different 

“distractor” sound, participants were able to successfully report the occurrence of that 

sound in the mixture. This finding suggested that sound sources can emerge as 
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foreground and be perceptually separated if they occur repeatedly, and if are mixed 

within background sounds.  

Where does this phenomenon emerge in the brain? What are the neuronal 

correlates of the perceptual “pop-out” of sound repetition? In Chapter 2, we examined the 

neural representation of sound sequences similar to those used by McDermott et al. 

(2011). To our knowledge, our study is the first attempt to understand the underlying 

neural signature of repetition-based streaming of complex, temporally and spectrally-

overlapping sound sequences.  

 

Behavioral paradigm and perceptual streaming analysis 

The behavioral paradigm we used was adapted from McDermott et al. (2011). We 

used the same stimuli, artificially generated sounds with similar spectro-temporal 

properties of natural sound. The stimuli had high point-to-point correlation in frequency 

content and time, but lacked second order statistics that could function as known cues for 

streaming (e.g., harmonic structures (Moore et al. 1986) and common onset (Darwin & 

Carlyon 1995)). Ferrets had to report the presence of the repetition of one of twenty noise 

samples by licking a water spout. A potential pitfall of this behavioral paradigm, is that it 

did not directly test for the perceptual ability of the animals to stream sounds based on 

repetition. However, it does indicate that ferrets were able to detect the repetition 

embedded in a mixture.  

Training ferrets to report the identity of a repeating stimulus would likely be too 

difficult. Therefore, to better understand the processes underlying the perceptual 

categorization of repeating sounds, one could perform a classification image (CIm) 
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analysis using our behavioral data. A CIm is a correlation technique first developed for 

the analysis of visual stimuli (Ahumada & Lovell 1971; Murray 2011), and recently 

adapted to study the identification of functional fine acoustic cues in speech perception 

(Varnet et al. 2013). This method applied to our behavioral data would allow us to 

directly estimate the portions of the sound sequence that modulate the behavior of the 

ferret perceptual system. Therefore, the results of this analysis could confirm whether 

ferrets are indeed a good model for streaming of repeating sounds by showing that their 

behavior conforms to the theoretical ideal strategy for detecting the repeated noise. In 

addition, CIm analysis could potentially explain the high false alarm rate we measured in 

both animals. The high false alarm rate could be related to the fact that random sequential 

samples in the reference phase may contain repeated spectro-temporal patterns by chance, 

inducing animals to perceive a target. If this were the case, false alarm responses would 

be more likely to occur after two different samples occurring in sequence with a highly 

correlated spectrogram. In summary, CIm analyses could inform about strategies used by 

ferrets in to perform the task, increasing our confidence in concluding that the ferret is 

indeed a good anima model for streaming repeated sounds. Furthermore, it could suggest 

modifications of the task to improve behavioral performance.   

 

Streaming analysis 

By analyzing the raw spike rate evoked by the presentation of the continuous and 

overlapping sequences of noise samples, we showed that responses to a given target noise 

were more suppressed when the noise sample was presented in the repeating phase 

compared to the random phase. This result was not surprising in light of what is known 
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about the wide-spread phenomenon of stimulus adaptation in the auditory brain (Pérez-

González & Malmierca 2014). However, to test the hypothesis that the two streams – one 

with a repeating sound (referred to as the foreground stream) and another with a non-

repeating mixture of random samples (referred to as the background stream) – were 

represented differently in the auditory cortex, we had to model the responses to the two 

streams independently. We constructed a Bayesian model with a normal prior and fit a 

stream-specific gain to each predicted response. By doing so, we were able to show that, 

even though in most units both responses to each stream were suppressed by the 

repetition, the response to the foreground stream was less suppressed compared to the 

background stream. This effect was stronger in PEG than A1 and for units that were 

tuned to the target. We thus concluded that this selective foreground enhancement is the 

signature of streaming that emerges A1 and is refined in PEG. 

The challenge of identifying a signature of streaming of simultaneously occurring 

sounds has been previously addressed in humans with a similar approach (Ding & Simon 

2012). These authors asked human subjects to listen to one of two competing speakers, 

either of different or the same sex, and recorded brain activity via 

magnetoencephalography (MEG). To investigate the timing and spatial information of 

the neural encoding process, they fit a separate spectro-temporal receptive field (STRF, 

or more precisely a “TRF”, given that MEG data could not resolve spectral tuning) model 

for each of the two simultaneously presented speech streams. Neural activity selectively 

synchronized with the speech of the single speaker to which the attention of the listener 

was directed. Furthermore, the latency and source location of the two components 
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suggested a hierarchy of auditory processing in which the representation of the attended 

object emerges from core to posterior auditory cortex (Ding & Simon 2012).  

Another approach used to investigate the neural signature of streaming is given by 

a decoding analysis with stimulus reconstruction (Ding & Simon 2012; Mesgarani & 

Chang 2012; Mesgarani et al. 2009). A decoding model describes the same relationship 

between stimulus and response that an encoding model such as the STRF describes, just 

backwards. It typically uses the neural output to reconstruct the input sound stimulus. If 

the reconstruction of the envelope has a higher correlation to the envelop of the attended 

stream rather than the combined stream making up the physical stimulus, it suggests that 

the stimulus mixture is neutrally segregated. In their human study using MEG, Ding and 

Simon (2012) found that this was indeed the case. Similar results were also obtained by 

Mesgarani and Chang (2012) using data collected via electrocorticography (ECoG) 

(Mesgarani & Chang 2012). 

In our study, a decoding analysis could complement the encoding approach we 

used, potentially revealing how the relative enhancement of the repeating stream allows 

for the separation of the two streams. Specifically, I predict that for units with positive 

foreground enhancement the stimulus reconstruction would be more successful for the 

foreground stream compared to the background stream, matching perception. However, 

in order to avoid bias towards the foreground stream, an experimental design in which the 

background stimulus is always composed by the same set of stimuli would be necessary. 
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Role of attention in streaming of repeated-embedded noise 

The human studies mentioned above showed that directing listeners to attend to 

one of two streams presented simultaneously cued subjects to listen to one or the other 

stream of speech (Ding & Simon 2012; Mesgarani & Chang 2012). These studies argued 

that streaming a complex sound such as streams of speech requires – or at least is 

facilitated by – directed attention. However, in a follow-up study to McDermott et al. 

(2011), Masutomi and colleagues found that recovering the identity of noise stimuli using 

repetition as the only cue was robust to inattention (Masutomi et al. 2015). The authors 

were able to show that human listeners continued to perform the task at criterion even 

when distracted by a visual decoy task.  

In the current study, we did not record neural activity during active engagement. 

We only recorded neural activity from trained or task naïve ferrets passively listening to 

the task stimuli. However, it is possible that active task engagement as well as changes in 

arousal could alter the representation of the two streams, such that the foreground stream 

is even more enhanced relative to the background stream. To test this hypothesis, future 

studies will have to include both passive and active presentation of the same stimuli, as 

well as the recording of pupil fluctuations to track arousal. 

 

Task and arousal-related modulation of sound representation in A1 and IC: 

limitations of the study and future directions 

Task engagement and arousal are two state variables that have been independently 

associated with changes in sensory representation at the level of single and multiunit 

activity (Fritz et al. 2003; McGinley et al. 2015a; Niwa et al. 2012; Otazu et al. 2009; 
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Reimer et al. 2016; Vinck et al. 2015). Previous studies using behavioral paradigms 

similar to the current study, have reported changes in excitability and frequency tuning in 

A1 and IC units when responses to reference stimuli were compared between active and 

passive blocks (Atiani et al. 2009; David et al. 2012; Fritz et al. 2003; Slee & David 

2015a). These changes were attributed to the rapid adaptation of auditory neurons to the 

current behavioral demand, in order to optimize the sensory representation of relevant 

task stimuli. For some units these changes were reported to persist for several minutes 

after the active behavior, while for others, activity and tuning changes were observed to 

rapidly regress back to baseline (passive condition) (Fritz et al. 2003; Slee & David 

2015a). One interpretation for such variability might be that the source of modulation is a 

non-auditory input carrying information about another changing state variable – related 

or unrelated to task engagement, such as arousal.  

Given that we observed a distinct variability in pupil size associated with the 

ferret’s engagement with the task, we wondered if this continuous variable, often 

associated with changes in arousal (McGinley et al. 2015a), could explain ongoing 

changes in auditory neurons’ activity that are not explained by task engagement alone. To 

separate the relative contributions of task engagement and arousal indexed by pupil 

diameter, we used a step-wise approach to fit a linear model with task (active/passive) 

and arousal (pupil size) as discrete and continuous variables, respectively. In nearly half 

of the recorded units in A1 and IC, activity was modulated by task, arousal, or both. 

Surprisingly, in IC the majority of the modulation of firing rate between active and 

passive blocks was explained by changes in pupil-indexed arousal, and was more 

pronounced in units with weaker auditory responses. In light of these results, we 
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conclude that previous findings that assigned global changes in evoked activity to task 

engagement alone may in fact be due to changes in arousal.  

 

Behavior and pupil recordings 

Similar to previous studies (Joshi et al. 2016; McGinley et al. 2015a), we found 

that on average pupil size was significantly larger during active engagement with respect 

to passive listening to the task stimuli. During active trials pupil size increased steadily 

prior to the target and the final choice with concomitant motor response. De Gee et al. 

showed that pupil dilation during decision formation was bigger before ‘yes’ than ‘no’ 

choices, and the magnitude of this effect was reflected in the individual criterion such 

that it was strongest in conservative subjects, those who chose yes against their bias (de 

Gee et al. 2014).  

We found that pupil size increased during trials that resulted in hits or false alarm 

responses compared to passive listening and miss choices. A more detailed analysis in 

which every TORC stimulus is considered as a yes/no choice in relationship with pupil 

size is needed to better understand how pupil dilation relates to trial-by-trial decision 

making. For example, to investigate the extent to which pre-trial pupil baseline and time-

course of pupil change could predict upcoming behavior, we could train a simple linear 

decoder and measure its accuracy in correctly classifying trial decision’s outcome 

(Schriver et al. 2018).  
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Tone-in-noise and tone-versus-noise behavior 

The behavioral paradigm used in this study was similar to the one used in other 

studies conducted in our laboratory (David et al. 2012; Slee & David 2015a). However, 

to test for effects of task engagement in conditions closer to psychophysical thresholds, 

we embedded the target tone in one of 30 reference TORC stimuli in our collection 

(Atiani et al. 2009). Overall block difficulty was controlled by changing the signal-to-

noise ratio (SNR) of the target/TORC sound intensity. Three ferrets were trained to the 

tone-in-noise variation of the task as well as to the original tone-versus-noise variant 

(David et al. 2012; Slee & David 2015a). One ferret was trained only to the tone-versus-

noise variant of the task. Not surprisingly, animal performance was lower for animals 

trained to the tone-in-noise task compared to performance for the animal trained to tone-

versus-noise alone. In order to further understand the relationship between performance 

and task difficulty, a more in-depth analysis across subjects’ performance in each SNR 

category is needed.  

One study conducted in ferret auditory cortex (AC) showed that task difficulty 

modulated neural activity (Atiani et al. 2009). Stronger task-related modulations 

correlated with greater difficulty and better behavioral performance. Specifically, the 

authors found an overall decrease in gain under active performance accompanied by a 

selective enhancement at the target frequency when it matched the best frequency of the 

unit. These results suggest a model in which the brain adapts to a noisy background in 

order to increase the sensitivity to the target tone enhanced as a foreground. Furthermore, 

Atiani and collaborators’ results indicate that as perceptual demand increases, greater 
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effort is required to perform the task, and the increased effort is reflected in the cortical 

activity (Atiani et al. 2009). 

In our analysis we did not measure tuning changes in response to task engagement 

and arousal fluctuations. However, given that we used the same reference stimuli used in 

Atiani et al., an STRF analysis could further characterize the contribution of arousal in 

shaping the tuning of sound-evoked activity. Our analysis revealed a predominantly 

positive global modulation of activity during active engagement in A1, persisting even 

after accounting for the contribution of arousal. Given that the task was a positive 

reinforcement approach task previously shown to yield opposite results to the negative 

reinforcement avoidance task (David et al. 2012), I would expect local changes in STRF 

tuning near the frequency of the target to be negative, especially during blocks of low 

SNR. This would maximize the difference between target and reference stimuli, 

increasing the perceptual sensitivity for target detection.  

 

Population code and noise correlation analysis 

For some of our recordings we used a 64-channel array acutely positioned through 

the depth of A1 or IC. However, for the purposes of this study we considered single unit 

and stable multiunit recorded with the array independently. Simultaneous recordings of 

multiple neurons allow for population analyses that might reveal further insight into the 

relationship between state variables and sensory representation, and provide information 

about how the local circuit is engaged.  

Several studies have shown that representations of sensory stimuli are more 

faithful when neural cortical activity is desynchronized due to lower pairwise noise 
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correlations (Averbeck et al. 2006; Bagur et al. 2018; Cohen & Maunsell 2009; Downer 

et al. 2017; Goard & Dan 2009; Jacobs et al. 2018; Marguet & Harris 2011; McGinley et 

al. 2015a; Reimer et al. 2014; Vinck et al. 2015; Zagha et al. 2013). Noise correlations 

quantify the correlation between two neurons’ responses to a given stimulus.  

A common interpretation of the meaning behind neural desynchronized state is 

that it improves the signal-to-noise ratio of the neural code by reducing correlated 

fluctuations in neural activity, thereby leading to more accurate decisions (Cohen & 

Maunsell 2009; Mitchell et al. 2009). In A1, average noise correlation decreases when 

animals perform a task compared to passive listening (Downer et al. 2017; Jacobs et al. 

2018; McGinley et al. 2015a). In a recent preprint, Jacobs et al., 2018 found that the 

desynchronization of activity appears to be related to active engagement rather than 

behavioral accuracy, such that it is more pronounced during hits and false alarms, but not 

during miss trials. Furthermore, while neural desynchronization was found to be 

widespread across cortical regions, sensory and non-sensory, arousal indexed by pupil 

did not fully account for it (Jacobs et al. 2018).  

Future work involving simultaneous recordings across hundreds of neurons and 

measurements of noise correlations across neural cortical and subcortical circuits will be 

needed to investigate the physiological processes underlying the relationship between 

arousal, task engagement, and sensory encoding. Furthermore, designing experiments 

that can control for and measure different state variables known to affect sensory 

representation, such as locomotion (McGinley et al. 2015a; Reimer et al. 2014; Vinck et 

al. 2015), behavioral performance (Atiani et al. 2009; de Gee et al. 2014), and selective 
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attention, will be needed to achieve a more complete picture of how sound is represented 

in a brain that needs to adapt to the current contextual demand. 
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