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ABSTRACT 

Non-small cell lung cancer (NSCLC) is the deadliest form of cancer and represents nearly 

a fourth of all cancer related deaths worldwide. Identifying molecular targets and 

developing effective therapeutic regimens to improve NSCLC treatments and patient 

quality of life is needed. Nanoparticles possess unique properties to enhance treatment 

efficacy and reduce toxic side effects of traditional therapies. In my dissertation, I 

exploited versatile mesoporous silica nanoparticles (MSNP) to improve radiation therapy 

and immunotherapy, which are two key treatments for NSCLC patients.  

For radiation therapy, I developed the MSNP as a radiation sensitizer by linking it to an 

antibody against the epidermal growth factor receptor (EGFR; overexpressed in 50% of 

lung cancer patients and a mediator of DNA repair) and delivering small interfering RNA 

(siRNA) against polo-like kinase (PLK1; a key mitotic regulator whose inhibition enhances 

radiation sensitivity). I showed that the nanoparticle platform targets EGFR+ cells and 

reduces PLK1 expression, leading to cell cycle arrest, reduced DNA repair capacity, and 

cell death in NSCLC cells. Furthermore, I found that the combination of the nanoparticles 

and radiation was synergistic and significantly reduced cell survival, which was confirmed 

in vivo in A549 NSCLC flank tumors. I also demonstrated the translational potential of the 

platform as a systemic lung cancer therapeutic in an orthotopic lung tumor model, where 

administration of NP reduced tumor growth and led to prolonged survival of mice.  

Additionally, the effects of PLK1 on anti-tumor immunity were elucidated. I found that 

PLK1 knockdown or inhibition results in significant increase in the expression of the 

immune checkpoint programmed death ligand 1 (PD-L1; which exhausts cytotoxic T cell 
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function) in mouse and human lung cancer cells. In clinics, PD-L1 blockade with 

antibodies has provided promising results for some patients, however, the majority of 

patients do not respond to immune checkpoint blockade. Thus, I investigated the 

combination of PLK1 inhibition and PD-L1 blockade in order to augment their individual 

therapeutic effects. A PLK1 small molecule inhibitor was loaded in the nanoparticle core, 

and the PD-L1 antibody was conjugated to the nanoparticle surface. The combination 

was significantly more effective than the single drug counterparts in reducing tumor 

growth and prolonging survival of mice. Furthermore, in a metastatic lung tumor model, 

systemic administration of the nanoparticles was found to be as effective in improving 

survival as the free drugs delivered at a 5-fold higher dose, which highlights the potential 

to reduce side effects.  

In conclusion, I developed MSNP to serve as a: 1) targeted therapeutic that is applicable 

to over 50% of NSCLC patients and is a radiation sensitizer, and 2) immuno-nanoparticle 

to improve immune checkpoint blockade responses. My findings suggest that clinical trials 

with PLK1 inhibitors should be conducted with radiation and/or immunotherapy to 

capitalize on the potential of targeting PLK1. Furthermore, our nanoparticle platform is a 

promising drug delivery vehicle, which is able to maximize therapeutic effects and 

warrants further investigation for NSCLC.  
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Chapter 1: Introduction and background 

1.1 Medical needs for lung cancer treatment  

Non-small cell lung cancer (NSCLC) makes up 85% of lung cancers and is the leading 

cause of cancer mortality, representing nearly a fourth of total related cancer deaths 

worldwide.1 Care of patients with NSCLC relies on a variety of treatments depending on 

which stage the cancer is diagnosed, molecular profiling, and overall patient health at the 

time of diagnosis.  

For early stage NSCLC (stage I, stage II), surgical resection of tumors is preferred for 

patients who are medically fit to undergo surgery. In addition to surgery, patients may 

undergo radiation therapy before or after tumor resection as an adjuvant therapy. For 

patients who are not fit for surgery, radiation is the primary treatment. For locally 

advanced stage III NSCLC, which comprises about 30% of total diagnoses, radiation 

therapy usually in combination with platinum based chemotherapy is the first line therapy. 

For stage IV metastatic NSCLC, a tumor biopsy to obtain the molecular nature of the 

cancer is used to determine treatment. Patients with known mutations (e.g. EGFR 

mutation or ALK translocation) are administered targeted therapies against these 

mutations. For patients who do not harbor EGFR or ALK mutations and have high PD-L1 

expression (over 50% of tumor cells are PD-L1+), immune checkpoint blockade is the first 

line therapy. For patients who do not harbor an identified druggable mutation or have high 

PD-L1, platinum based chemotherapy regimens are administered. 

While targeted therapies against EGFR or ALK have dramatically improved treatments 

and reduced side effects compared with platinum based chemotherapy, these therapies 
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are ultimately prone to resistance. Moreover, only a minority of patients (15-20%) harbor 

EGFR or ALK mutations and can benefit from these therapies.2 Similarity, immune 

checkpoint blockade has provided very promising results for some patients; however, the 

majority of patients will not respond to checkpoint blockade and many initial responders 

eventually relapse. In all, despite advancements in NSCLC treatments, the overall five 

year survival remains just 18%.1 There is a need to develop more effective therapies to 

improve NSCLC patient outcomes.  

In the era of precision medicine, identifying molecular targets to enhance existing 

therapies is crucial to improve survival of difficult to treat cancers such as lung cancer. 

One such target that has been investigated is the key mitotic regulator polo-like kinase 1 

(PLK1). Previous studies have shown that PLK1 is upregulated in lung cancers and high 

PLK1 expression is correlated with worse prognosis.3,4 In addition to its role in initiating 

and regulating mitosis, PLK1 has been shown to mediate other key signaling pathways 

in cancer progression.4-7 For this reason, PLK1 is a strong molecular target to improve 

NSCLC therapies. However, despite the promise, specific inhibition of PLK1 in tumors 

has been elusive in clinics. Numerous PLK1 inhibitors have reached clinical trials but 

many were terminated due to unmanageable toxicities and none have reached FDA 

approval.  

To improve traditional therapies, nanotechnology has garnered great attention in recent 

years. In particular, nanoparticle drug delivery vehicles can improve cancer treatment by 

localizing therapeutic effects to tumors which reduces doses and side effects, and 

enabling novel combination strategies. Mesoporous silica nanoparticles (MSNP) are a 

promising drug delivery vehicle owing to their biological safety,8-10 ease of manufacturing 
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and scalability,11,12 and high surface area to volume ratio that allows for delivery of high 

therapeutic payloads.12 The focus of this dissertation is on the development of MSNP 

platforms to improve radiation therapy and immunotherapy for NSCLC. Radiation therapy 

remains a backbone of NSCLC treatment being administered to patients in both early and 

late stage disease, while immunotherapy is a promising new approach which warrants 

further investigation to improve clinical responses.  

1.2 Overview of radiation therapy and radiation sensitizers 

Radiation therapy is foundational in the treatment of cancer, with over 60% of cancer 

patients receiving radiation. Radiation therapy is administered by delivering ionizing 

radiation to the tumor site. Ionizing radiation acts by two mechanisms to damage cells – 

1) direct action: which create double strand breaks in DNA and 2) indirect action:  which 

create  reactive oxygen species (ROS) which in turn damage the DNA.13 Both methods 

ultimately compromise the DNA of the cell and lead to cell death. The ultimate goal of 

radiation therapy is to maximize tumor damage and minimize normal tissue toxicity. This 

is referred to as therapeutic ratio. Our understanding of radiation biology has led to 

radiation schemes and methods that serve to enhance the therapeutic ratio. This 

includes: 1) the use of imaging and radiation technologies to accurately deliver doses to 

the tumor site, 2) delivering radiation doses in fractions, and 3) administering drugs (i.e. 

radiation sensitizers) which enhance radiation effects to cancer cells.   

Advances in medical imaging and radiation delivery have improved our ability to localize 

radiation to the tumor site. Techniques such as 3D conformal radiation therapy, intensity 

modulated radiation therapy (IMRT), and stereotactic body radiation therapy (SBRT) have 



4 
 

allowed maximizing the radiation delivered to tumor and minimizing radiation to the 

surrounding normal tissue.14 However, normal tissue toxicity cannot be entirely avoided. 

Ultimately, the amount of normal tissue exposure to radiation limits the dose that can be 

administered to the tumor. For instance, in the clinical trial RTOG 0617, dose escalation 

from 60 Gy to 74 Gy in locally advanced unresectable NSCLC did not improve patient 

outcomes, but rather increased toxicity and reduced overall survival.15   

The clinical standard in delivering radiation for NSCLC is delivery of fractions of small 

doses (e.g. 2 Gy), rather than in large single doses of radiation, to reach the desired 

biological effect. Conventional radiotherapy regimens for NSCLC consist of 60 Gy 

radiation delivered in 30 fractions of 2 Gy.15 The basis of fractioning radiation doses to 

improve therapeutic ratio relies on the 4R’s of radiation biology principles as described by 

H.R. Withers in 1975. The 4Rs of radiation biology are repair, repopulation, reassortment, 

and reoxygenation.16 Differences between normal tissue and tumors in regards to the 4Rs 

lead to an increase in therapeutic ratio with fractionation. By fractioning the dose, normal 

tissue are allowed to repair sub-lethal damage and repopulate more efficiently than 

cancer cells and thus can survive while the cancer cells do not. On the other hand, 

reoxygenation and reassortment potentiate the effects of fractioned radiation on cancer 

cells. Reoxygenation is the introduction of oxygenated regions in tumor as the number of 

cancer cells are reduced, and reassortment refers to the cycling of cancer cells to more 

sensitize phases of the cell cycle, in particular G2/M which is the most radiation sensitize 

cell cycle phase. Aside from the 4Rs of radiobiology, a 5th R is now appreciated as the 

intrinsic radiation resistance of cancer cells.17 In particular, cancer stem cells are known 

to be radiation resistant and are the culprits of relapse following radiation therapy.18 
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As the same way fractionation enhances the therapeutic ratio due to the 4Rs, we can also 

enhance the therapeutic ratio by manipulating the cancer cell by any one of the 4Rs. For 

example, some of the first efforts to enhance radiation sensitivity were aimed at increasing 

oxygen in tumor tissue – in other words, reoxygenate the tumor. Another class of radiation 

sensitizers are chemotherapies, which can enhance radiation by affecting DNA repair or 

inducing cell cycle arrest (reassortment). More recently, efforts in precision medicine have 

motivated the use of molecularly targeted therapies to improve radiation response of 

cancer. Radiation sensitizers are reviewed in these three classes as follows, with a focus 

on molecularly targeted therapeutics.  

Oxygen/oxygen mimics: Oxygen enhances radiation damage by reacting with free 

radicals to ‘fix’ (make permanent) damaged DNA.19 Initially, to augment radiation with 

oxygen, the use of hyperbaric chambers was introduced. However, hyperbaric chambers 

are cumbersome and difficult to transfer in clinical setting, thus efforts here have 

subsided. The use of hydrogen peroxide (H2O2) to produce oxygen in the tumor has also 

been investigated20 and intratumoral injection of H2O2 is currently under evaluation in 

phase I/II breast cancer clinical trial.  An alternative strategy in this area has been the use 

of oxygen mimics rather than increasing oxygen in tumors directly. Oxygen mimics are 

compounds that contain nitrogen groups that act in the same manner as oxygen by fixing 

the damage induced by free radicals.21 Misonidazole and nimorazole are two such agents 

that have been evaluated in preclinical and clinical settings. Misonidazole showed 

promising radiation sensitizing effects in preclinical studies in many solid tumors, 

however, the results in clinical trials were not promising.21 Likewise, nimorazole showed 

promising preclinical results but its use in clinics is now limited to head and neck cancers, 
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where it is recommended for use with radiation in Denmark.21 In all, despite the efforts 

made in this area, adverse effects of compounds and lack of tumor specificity limit the 

clinical translation of this strategy.  

Chemotherapy: Another class of radiation sensitizers are chemotherapies which can 

enhance radiation by affecting mechanisms of DNA repair or inducing cell cycle arrest. 

For example, taxanes are mitotic arrest agents that can induce G2/M arrest and have 

been used in combination with radiation in hopes of garnering synergistic effects.22 Other 

chemotherapies such as 5-FU, gemcitabine, and cisplatin interfere with DNA damage 

response and have been shown to sensitize cells to radiation.23 As such, chemotherapy 

and radiation regimens have become routinely administered in several settings and have 

demonstrated an overall improvement in survival and cure rates. However, the toxicity 

associated with chemoradiotherapy is of great concern and ultimately limits the 

therapeutic benefit garnered.24 In contrast, molecular targeted therapeutics which can act 

specifically on cancer cells provide an avenue to improve the tumor response of radiation 

while not increasing toxicity to normal cells. This has motivated efforts to develop targeted 

therapeutics to selectively enhance radiation effects to cancer cells only.25,26     

Molecularly targeted radiation sensitizers: In the current era of precision medicine, efforts 

to utilize molecularly targeted therapeutics to enhance radiation effects are being 

investigated. By targeting a number of pathways associated with radiation response at 

the molecular level we can ultimately improve the therapeutic ratio of radiation leading to 

better outcomes (Figure 1). The most promising targets that are under investigation in 

clinical trials are reviewed (Table 1.1).  
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Figure 1. Increasing therapeutic window of radiation. At any given dose, there is a probability 
of tumor control or adverse event, the separation between tumor control and adverse event is 
therapeutic ratio (window). (A) Narrow therapeutic window can be increased by sensitizing tumors 
to radiation via various mechanisms, shifting tumor control curve to the left. (B) Increased 
therapeutic window after treatment with sensitizing drug.  

 

EGFR: The epidermal growth factor receptor (EGFR) is a cell survival/growth signaling 

receptor that is overexpressed in several cancers.27 Activation of EGFR following 

radiation has been reported and leads to downstream signaling contributing to cancer cell 

survival following radiation.28 Moreover, EGFR has been shown to participate in mediating 

DNA repair following radiation. After radiation damage, EGFR is phosphorylated and 

translocated to the nucleus where it has been shown to interact with DNA-dependent 

protein kinase, catalytic subunit (DNA-PKcs) and repair the damaged DNA.29 Clinical 

trials investigating EGFR inhibition to enhance radiation sensitivity have been 

investigated in a variety of cancer types using both EGFR monoclonal antibodies and 

small molecule inhibitors. The most promising results were in head and neck cancer 

where cetuximab, the EGFR monoclonal antibody, improved outcomes when combined 

with radiation therapy compared with radiation therapy alone.30 In NSCLC, the addition of 

cetuximab to chemoradiation regimen did not show benefit.31 However, retrospective 

analysis showed that improved survival was limited to the patients with high expression 
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of EGFR.31 To date, cetuximab remains the only FDA approved targeted therapy for 

combination with radiation (for head and neck cancers).25 

PARP: Poly(ADP-ribose) polymerase (PARP) proteins represent another strong target to 

interfere with the DNA damage response post radiation. PARP inhibitors function as 

radiation sensitizers by blocking repair of single strand breaks (SSBs) in DNA following 

radiation, resulting in complex lesions that cells are unable to repair.32 Inhibition of PARP 

has shown to be radiosensitizing in a variety of cancers in pre-clinical studies32 and the 

combination of radiation and PARP inhibitors (olaparib or veliparib) are ongoing in clinical 

trials in several cancers including breast, glioblastoma, NSCLC, and head and neck 

cancers.32,33 Importantly, PARP inhibitors induce synthetic lethality in cancers with DNA 

repair mutations such as cancers harboring BRCA1/2 mutations, and have recently been 

granted FDA approval as single agent therapeutic for ovarian and metastatic breast 

cancer patients with BRCA mutation.34 Not surprisingly, it has been shown that PARP 

inhibitors are more effective radiation sensitizers in BRCA-deficient tumors than BRCA-

proficient tumors.35 Thus, it is likely that the role of PARP inhibitors as radiation sensitizers 

will be most beneficial for patients with deficiencies in DNA repair such as BRCA mutant 

cancers. If germline DNA repair mutations are present, however, then systemic 

distribution of PARP inhibitors would also sensitize normal cells to radiation which raises 

toxicity concerns.  

HDAC: Histone deacetylases (HDAC) are epigenetic regulators that alter chromatin by 

removing acetyl groups and in turn alter gene expression. Abnormal activity of HDAC has 

been demonstrated in cancer development and progression, resulting in transcriptional 

alteration of oncogenes and tumor suppressor genes.36 Hence, inhibitors of HDAC are 
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studied to control the epigenetic programming of cancer cells.  In the context of radiation 

therapy, inhibitors of HDAC have shown promise in pre-clinical studies37-39and have 

advanced to clinical trials in various cancer types. Although the exact mechanism of how 

targeting HDAC improves radiation response is not entirely understood, studies have 

shown that inhibiting HDAC reduces expression of several DNA repair genes.40-43 

Moreover, inhibiting HDAC relaxes chromatin and can result in more DNA damage 

following radiation.44,45 The most promising HDAC inhibitors, vorinostat, panobinostat, 

and valproic acid have entered clinical trials in glioblastoma, NSCLC, and pancreatic 

cancers. However, attributed to a lack of specificity, HDAC inhibitors have shown limited 

efficacy in clinical trials,46 and off-target effects on normal cells remain a concern.47 This 

lack of specificity ultimately compromises their potential benefit as radiation sensitizers.  

ATM/ATR: The ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-

related (ATR) proteins are two key mediators of DNA damage response. These proteins 

work together to facilitate DNA repair in response to cellular stress.48 As such, inhibitors 

of these proteins have been developed in an effort to impair DNA repair after radiation 

and hence increase radiation sensitivity.49 This is highlighted by the finding that ATM-

deficient patients are the most sensitive patients to radiation.50 Preclinical findings using 

ATM or ATR inhibitors have supported targeting these regulators to enhance radiation 

effects,51,52 which has led to initiation of clinical trials in glioblastoma, lung cancer brain 

metastasis, and head and neck cancer. Results of these trials have not been reported.  

PI3K/AKT/mTOR: The PI3K/AKT pathway is a key signaling pathway promoting cancer 

cell survival and proliferation.53 Previous studies have reported that activation of this 

pathway following radiation results in radiation resistance.54,55 This has led to efforts to 
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target this pathway to enhance radiation sensitivity. Nelfinavir was originally developed to 

treat HIV infection but was also found to inhibit PI3K/AKT,56 and has been investigated in 

combination with radiation in NSCLC, glioblastoma, pancreatic, cervical and rectal cancer 

clinical trials. Results of nelfinavir with chemoradiation in locally advanced NSCLC 

showed median progression-free survival and overall survival of 12 months and 40 

months, respectively.57 This is a promising result, albeit with a low population size (35 

patients), and warrants further investigation. Another target in the pathway is mammalian 

target of rapamycin (mTOR) which is a downstream protein kinase of PI3K/AKT. 

Specifically, PI3K activates AKT which in turn can activates mTOR.58 As with PI3K/AKT 

inhibition, inhibitors of mTOR have shown radiation sensitizing properties in preclinical 

investigations.59,60 Everolimus, mTOR inhibitor, has been tested in clinical trials in several 

cancers. However, results from phase I clinical trial in NSCLC indicated that the 

combination is associated with increase in pulmonary toxicity, where 5 out of 26 patients 

experienced grade 3-4 interstitial pneumonitis.61    

VEGF: Vascular endothelial growth factor (VEGF) is another target thought to enhance 

radiation therapy by affecting the angiogenesis of the tumors. Indeed, cancer cells secrete 

high levels of VEGF to promote irregular vascularity in the tumor microenvironment.62 

This irregular vascular network may result in hypoxic regions harboring radiation resistant 

cells. Based on this, combining anti-angiogenesis agents with radiation has been 

investigated.63 Bevacizumab, a monoclonal antibody targeting VEGF-A, is the most 

advanced anti-angiogenic drug and has been evaluated with radiation in large clinical 

studies.64 While encouraging results have been reported in some settings, toxicity is a 

concern as adverse events are higher with the combination of bevacizumab and 
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radiation.65,66 Furthermore, the concept that vascular normalization reduces tumor 

hypoxia has been challenged as prolonged exposure of anti-angiogenic agents may 

cause reduction of tumor vascularity that would result in an increase in tumor hypoxia.67 

This would reduce the efficacy of radiation therapy as previously discussed. Further 

studies are needed to evaluate the effects of VEGF inhibition on tumor hypoxia. Timing 

and duration of anti-angiogenic agents may be key to garnering clinical benefit with 

radiation therapy.   

Immune checkpoints (PD-1, PD-L1, CTLA-4): Recently, the targeting of immune 

checkpoints has transformed treatments of NSCLC and other cancer types. Immune 

checkpoints serve to dampen the immune response leading to avoiding anti-tumor 

immune effects and cancer survival. Specifically, three targets have provided motivating 

results in various cancers. PD-1 which is expressed on cytotoxic T cells and binds to PD-

L1 on cancer cells to exhaust T cells and avoid immune mediated death.68 CTLA-4 is 

expressed on T cells and negates activation by dendritic cells.69 Antibodies targeting PD-

1, PD-L1, and CTLA-4 have received FDA approval and are now considered crucial in 

the treatment of cancers. The application of these therapies with radiation has been 

studied since radiation leads to the release of damage-associated molecular patterns 

(DAMPs) and induces cancer cell death to release antigens. DAMPs and antigens can 

then prime immune cells to stimulate an anti-tumor response.70 Implementation of 

immunotherapy with radiation was motivated with the observance of the abscopal effect, 

which describes a tumor response that is outside the irradiated field indicating that an 

immune response was generated. Clinical trials in almost all solid tumors including 

NSCLC are currently evaluating immune checkpoint antibodies with radiation in both 
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sequential and concurrent formats.71 Optimization of timing and schedule, identification 

of potential responders, and minimization of adverse events will be required. Ultimately, 

as our understanding of the intricate interplay between tumor cells and immune cells in 

the tumor microenvironment improves, we can identify appropriate strategies to capitalize 

on this combination. In the following section, the role of immunotherapy in the 

management of NSCLC is discussed in more detail. Table 1.1 summarizes molecularly 

targeted therapies that have been in clinical trials with radiation therapy for various cancer 

types.  
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Table 1.1: Molecularly targeted therapies in clinical trials with radiation therapy 

*FDA approved with radiation, CRC: colorectal cancer, CRT: chemoradiotherapy, GBM: glioblastoma, HNC: head and neck cancer, MNS: Mediastinal nodal sterilization, NSCLC: non-small cell lung 
cancer, OS: overall survival, PFS: progression free survival, RT: radiation therapy.

Target Drug 
Mechanism of 

Action Cancers investigated Result in NSCLC 

EGFR 

*cetuximab, 
panitumumab, 
nimotuzumab, 

erlotinib,  
getfinib 

DNA damage 
response/Cell 

survival signaling 

NSCLC, HNC, CRC, GBM, 
pancreatic, prostate, skin, 

esophageal 

Cetuximab + CRT in stage III: no benefit in overall survival. Higher rate of grade 3 or worse toxic 
effects (86% vs. 70%]. 2-year OS benefit in patients with high EGFR (544 patients) [NCT00533949]. 
 
Panitumumab + CRT in stage III: MNS rates were 68.2% and 50.0%, for CRT and CRT + 
panitumumab. Higher toxicity in experimental arm (60 patients) [NCT00979212]. 
 
Erlotinib + CRT in stage III: median time to progression was 14.0 months. 1-, 2-, and 5-year OS rates 
were 82.6%, 67.4%, and 35.9%. Acceptable toxicity (0 grade 4-5, 11 grade 3 adverse events. 12 
patients had no progression and 34 had local and/or distant failure (46 patients) [NCT00563784].  

PARP olaparib,  
veliparib 

DNA damage 
response 

NSCLC, HNC, breast, GBM, 
ovarian 

Olaparib Dose Escalating Trial + Concurrent RT with or without Cisplatin in locally advanced NSCLC 
(Recruiting) [NCT01562210]. 

ATM AZD1390 DNA damage 
response 

GBM NA 

ATR AZD6738, 
M6620 

DNA damage 
response 

NSCLC brain metastasis, 
HNC, solid tumors 

M6620 and whole brain RT for brain metastases from NSCLC, SCLC, or neuroendocrine tumors 
(Recruiting) [NCT02589522]. 

PI3K/AKT nelfinavir  
cell survival 

signaling 
NSCLC, GBM, CRC, 
pancreatic, cervical 

Combination CRT and nelfinavir in stage III NSCLC: PFS 12 month, OS 40 month, 5 year OS was 37 
% (35 patients) [NCT00589056]. 

mTOR everolimus 
cell survival 

signaling 
NSCLC, HNC, prostate, 

GBM 
Everolimus + RT followed by consolidation chemotherapy in locally advanced or oligometastatic 
untreated NSCLC: 24% of patients experienced grade 3-4 pneumonitis (26 patients) [NCT01167530]. 

VEGF bevacizumab angiogenesis NSCLC, CRC, GBM, 
pancreatic 

(1) Terminated (toxicity) [NCT00531076]. 
(2) Combination CRT and bevacizumab in unresectable stage III NSCLC. Of 29 patients, 17 did not 
complete study (5 due to adverse events, 2 treatment related death) [NCT00334815]. 

HDAC 
vorinostat, 

panobinostat, 
valproic acid  

chromatin 
modification 

NSCLC, GBM, HNC, 
pancreatic, prostate 

Palliative radiotherapy with vorinostat in advanced or metastatic NSCLC phase I: maximum tolerated 
dose of vorinostat given concurrently with thoracic radiotherapy is 400 mg per fraction (17 patients) 
[NCT00821951]. 

PD-1 pembrolizumab, 
nivolumab 

immune checkpoint 
blockade 

NSCLC, HNC, CRC, GBM, 
breast, cervical,  pancreatic, 

prostate, melanoma, 
esophageal 

Consolidation pembrolizumab following CRT in stage III: median PFS was 15.4 months. 16 (17.2%) 
patients developed grade ≥2 pneumonitis, 5 (5.4%) had grade 3-4 pneumonitis. 1 pneumonitis-related 
death. Improvement over historical controls (92 patients) [NCT02343952]. 

PD-L1 atezolizumab, 
durvalumab 

immune checkpoint 
blockade 

NSCLC, HNC, CRC, GBM, 
breast, cervical,  pancreatic, 

prostate, melanoma, 
esophageal 

Durvalumab consolidation post CRT: (473 patients received durvalumab and 236 received placebo). 
24-month OS rate of 66.3% in durvalumab group vs. 55.6 in the placebo group. Median PFS 17.2 
months vs. 5.6 months in placebo group. Median time to death or distant metastasis was 28.3 months 
vs. 16.2 months in placebo group. Grade 3-4 adverse events 30.5% vs. 26.1% in placebo group; 
15.4% and 9.8% of the patients, respectively, discontinued due to adverse events [NCT02125461]. 

CTLA-4 ipilimumab 
immune checkpoint 

blockade 

NSCLC, HNC, CRC, 
cervical,  pancreatic, 
prostate, melanoma, 

esophageal 

Two patients experienced dose-limiting toxicity and 12 (34%) grade 3 toxicity. Response outside the 
radiation field was assessable in 31 patients. Three patients (10%) exhibited partial response outside 
irradiated field and 7 (23%) experienced clinical benefit (i.e. partial response or stable disease lasting 
≥6 months) (35 patients) [NCT02239900]. 
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1.3 Overview of immunotherapy  

In recent years, the interplay of immune system and tumor development has garnered 

great attention and some mechanisms of how cancer cells avoid immune destruction 

have been elucidated.  

The immune response 

Our body fights off infections and diseases by mechanisms of innate (non-specific) 

immunity and adaptive (specific) immunity. Innate immunity is the initial rapid response 

while adaptive immunity is the progressive and sustained response. The key cells in 

innate immunity are neutrophils, macrophages, and NK cells. These natural defensive 

cells are triggered by sensing inflammation and respond by clearing out the 

pathogen/invader via distinct mechanisms, such as phagocytosis or release of perforins. 

The innate immunity functions to clear the invader whereas the adaptive immunity is 

triggered to provide the sustained immune response. In adaptive immunity, foreign (non-

self) antigens are recognized and prime antigen presenting cells (APCs, e.g. dendritic 

cells, B cells, macrophages) which in turn activate helper CD4+ T cells or cytotoxic CD8+ 

T cells. Cytotoxic CD8+ T cells bind to MHC class I on target cells expressing the antigens 

to initiate cell death. Helper CD4+ T cells aid the APCs in priming naive CD8+ T cell by 

direct activation or by releasing T cell cytokines (e.g., IL-2). CD4+ T cells also activate B 

cell proliferation to generate antigen-specific antibodies. Importantly, recognition of non-

self antigens is also accompanied by the sensing of damage associated molecular 

patterns (DAMPs), which stimulate pattern recognition receptors (PRR) on APCs. It is 

believed that both non-self antigens and DAMPs must be sensed for priming and 

activation of T cells. Activated CD4+ or CD8+ T cells (effector T cells) then proliferate to 
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generate more effector T cells or memory T cells. Effector T cells carry out the same tasks 

as the parental cells, while memory T cells remain dormant until reactivated by its 

distinguished antigens. In this way, an immune response loop is generated to clear the 

infection. In order to avoid attack against normal tissues, host cells utilize checkpoints 

(e.g. CTLA-4, PD-1/PD-L1 axis) to inhibit an over-activation of immune response. CTLA-

4 is expressed on T cells and receives an inhibitory signal from CD80/86 ligands on APCs. 

PD-1 is also expressed on T cells and receives inhibitory signal from PD-L1 ligands. This 

tightly controlled regulation of the immune response is required to clear invaders while 

maintaining normal tissue functions.    

Cancer immune evasion 

It is now appreciated that one of the hallmark characteristics of cancers is their ability to 

evade the immune response.72 A cancer that has progressed has established 

mechanisms of immuno-editing to evade recognition by host immune system. For 

example, cancer cells can reduce their antigen presentation by downregulating MHC 

class I on their surface.70 Cancer cells can also alter their tumor microenvironment by 

secretion of cytokines to promote pro-tumor immune cells (e.g. M2 macrophages, myeloid 

derived suppressor cells (MDSCs), and regulatory T cells (Tregs)) that protect from 

immune destruction.73 For instance, IL-6, IL-10, TGF-β, PGE, and IDO are cytokines in 

the TME that promote immune evasion and cancer progression.74-77 Interestingly, DAMPs 

released by dying or stressed cancer cells can also promote immunosuppression,73 rather 

than stimulate APCs, in the TME. Furthermore, cancer cells can hijack immune 

checkpoints such as the PD-1/PD-L1 axis. Cancer cells upregulate PD-L1 on their cell 
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surface that binds to PD-1 receptors on cytotoxic T cells to exhaust them and inhibit their 

cytotoxic function.68,78,79 

Cancer immunotherapy 

Strategies of immunotherapy to treat cancer have focused on altering the described 

mechanisms of cancer immune evasion. Until recently, little success had been achieved; 

however, the discovery of the key immune checkpoints in the last decade (CTLA-4 and 

PD-1 on T cells, and PD-L1 on cancer cells) have shown what the promise of 

immunotherapy for cancer treatment can hold and have reinvigorated the efforts in this 

field. 

Indeed, immune checkpoint blockade with CTLA-4, PD-1, or PD-L1 antibodies has led to 

robust and durable responses for patients in a variety of cancers, and are now considered 

one of the key treatments in the management of cancers. In NSCLC, the PD-1 antibody 

nivolumab was the first to receive FDA approval in 2015 as second line therapy after 

tumor progression following platinum-based chemo or EGFR/ALK targeted therapy. 

Following promising results in clinical trials compared with standard platinum 

chemotherapy,80 another PD-1 antibody pembrolizumab received FDA approval as first 

line therapy for metastatic NSCLC patients who do not harbor ALK or EGFR mutation, 

and whose tumors express over 50% PD-L1 expression. Two PD-L1 antibodies 

(atezolizumab and durvalumab) were also granted FDA approval for NSCLC. Durvalumab 

became the first immunotherapy approved for unresectable stage III NSCLC for patients 

whose tumors have not progressed following chemoradiotherapy regardless of their PD-

L1 expression status.81 Current FDA approved immunotherapies for NSCLC and their 

indications are listed in Table 1.2.
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Table 1.2 – FDA approved immunotherapies for NSCLC 

 

 

Limitations of immune checkpoint blockade 

While patients who respond to immune checkpoint blockade may show robust and 

durable responses, only a minority of total patients respond, and even for patients with 

high PD-L1 expression, response rates remain under 50%.80 Furthermore, many initial 

responders will develop resistance and ultimately relapse.82 Another limitation is the 

identification of potential responders to immune checkpoint blockade. PD-L1 high 

expression does suggest a response to PD blockade; however it is far from definitive as 

PD-L1 negative tumors have also shown response to PD blockade.68,83 This may be due 

Target Drug 
PD-L1 
status 

Indication 
FDA 

approval 

PD-1 

Pembrolizumab 

>1% 
Metastatic NSCLC whose tumors express PD-
L1 (TPS ≥1%) with disease progression on or 
after platinum-based chemotherapy 

10/2015 

>50% 

First-line treatment of patients with metastatic 
NSCLC, with PD-L1 expression (tumor 
proportion score ≥50%, with no EGFR or ALK 
genomic tumor aberrations 

10/2016 

NA 

First line treatment in combination with 
pemetrexed and platinum-based chemotherapy 
for metastatic nonsquamous NSCLC, with no 
EGFR or ALK genomic tumor aberrations. 

03/2017 

Nivolumab NA 

Metastatic NSCLC with progression on or after 
platinum-based chemotherapy. Patients with 
EGFR or ALK genomic tumor aberrations and 
disease progression on FDA-approved therapy 
for these aberrations 

10/2015 

PD-L1 

Atezolizumab NA 

Metastatic NSCLC whose disease progressed 
during or following platinum-based 
chemotherapy. Patients with EGFR or ALK 
genomic tumor aberrations and disease 
progression on FDA-approved therapy for 
these aberrations 

10/2016 

Durvalumab NA 

Unresectable stage III non-small cell lung 
cancer (NSCLC) whose disease has not 
progressed following concurrent platinum-
based chemotherapy and radiation therapy. 

02/2018 
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to PD-L1 having dynamic and inducible expression, changing in response to therapies. 

Sampling for PD-L1 expression is another issue as PD-L1 is heterogeneously expressed 

in tumor microenvironment and in various cell types. 

While in general immune checkpoint blockade has less severe and distinct toxicity from 

chemotherapy, autoimmune disorders caused by immunotherapy is a concern. Systemic 

distribution of these antibodies can cause aberrant and uncontrolled immune response, 

leading to immune-related adverse effects (irAEs).84 While generally manageable, 

discontinuation of treatment due to irAEs have occurred and in some instances irAEs can 

be fatal.84  

Thus, based on these limitations, strategies to improve the response, therapeutic efficacy, 

and manage toxicities of immune checkpoint blockade are highly warranted for NSCLC 

and other cancers. Consequently, research efforts have been directed towards improving 

immunotherapy by combination strategies with other therapies.  

Immune checkpoint blockade combination strategies 

As previously discussed, the combination of immunotherapy and radiation was motivated 

due to the immunogenic alteration caused by radiation. Likewise, chemotherapies are 

being investigated in combination with immune checkpoint blockade in clinical trials in 

NSCLC and other cancers. In NSCLC, the majority of these trials are investigating PD-1 

or PD-L1 antibodies with platinum based chemotherapies since they remain the standard 

of care for majority patients. Other preclinical efforts have aimed at identifying 

chemotherapies that cause immunogenic cell death to combine with immune checkpoint 

blockade.  
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Several molecularly targeted therapies are also being investigated in combination with 

either PD-1 or PD-L1 blockade in clinical trials, including inhibitors of CDK4/6, PARP, 

HDAC, and VEGF, which have all shown promise in preclinical studies.70 Moreover, for 

patients with known mutations (EGFR mutation or ALK translocation), combination of 

immune checkpoint blockade with inhibitors against those mutations are also being 

explored.85 Lastly, combination with dual immunotherapies is also under investigation 

such as administering antibodies against both PD-1 and CTLA-4, or inhibiting cytokines 

such as IDO with immune checkpoint blockade.70  

Ultimately, as with radiation therapy and chemotherapy, the goal of these combinations 

will be to improve cancer cell killing but not increase systemic toxicity. Furthermore, higher 

response rates and more durable responses for NSCLC patients are desired. In the next 

section, the potential of PLK1 as a therapeutic target to improve existing therapies is 

discussed.  
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1.4 The mitotic regulator PLK1: a strong therapeutic target in cancer 

treatment 

PLK1 is a highly conserved mitotic protein which plays a role in nearly every aspect of 

cell division including mitotic entry, centrosome maturation, bipolar spindle formation, 

chromosome segregation, cytokinesis, and mitotic exit.86 PLK1 is only expressed in 

rapidly dividing cells making it a potential target for cancer therapy.5 Indeed, lung and 

other cancers overexpress PLK1, and high PLK1 expression is correlated with reduced 

survival for lung cancer patients.3 Importantly, PLK1 signaling also mediates many 

molecular mechanisms associated with cancer. Previous studies have shown PLK1 

interacts with both tumor oncogenes and tumor suppressor genes, resulting in cancer 

progression and therapeutic resistance.4-7 In fact, PLK1 inhibition has been shown to 

mediate resistance of cancer to a variety of drugs including chemotherapies and targeted 

therapies.87 For example, in NSCLC cells, PLK1 inhibition was found to overcome T790M 

mutation of EGFR which is induced following treatment with EGFR small molecule 

inhibitors in clinics and leads to resistance.88 Moreover, PLK1 has been identified as a 

target to kill various cancer stem cells,89-91 which are intrinsically resistant to standard 

therapies and lead to relapse.  

The role of PLK1 with critical oncogenes and tumor suppressor genes are outlined in 

Figure 1.2 and reviewed below. The potential of PLK1 as a target to augment radiation 

therapy and immunotherapy is also discussed.   
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Figure 1.2. Summary of PLK1’s role with tumor oncogenes (red), tumor suppressors (blue), 
immune regulators (purple), and DNA repair genes (green).  

 

PLK1 inactivation of tumor suppressors (e.g., p53, PTEN): Perhaps the most well-

known tumor suppressor gene is p53. P53 keeps rogue cells from becoming cancerous 

by maintaining genomic stability and initiating apoptosis when needed. Several studies 

have shown that PLK1 and p53 are negative regulators of each other.92,93 Thus, PLK1 

inhibition can lead to functional p53 activity which can promote cancer suppressive 

effects. Similarly, PLK1 has also been linked to PTEN tumor suppressor and acts as a 

negative regulator by phosphorylating PTEN to inhibit its suppressive functions.94,95 PTEN 

acts as a tumor suppressor by blocking the activation of PI3K/AKT/mTOR pathway, which 

is a key pathway in cancer proliferation and survival as discussed previously.  
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PLK1 and oncogenic transcriptional regulators (e.g., MYC, FOXM1): The MYC 

oncogene is a master transcriptional regulator of various processes including cell growth, 

proliferation, metabolism, cell cycle progression, and apoptosis.96 Aberrant MYC 

regulation has been found in the majority of cancers and developing effective therapeutics 

to effectively target MYC has long been sought after.97 Several studies have reported 

PLK1 to directly phosphorylate MYC,98,99 thus PLK1 is a target to kill MYC-dependent 

tumors. Another transcription factor tied to PLK1 is FOXM1. The role of FOXM1 in 

promoting tumorigenesis have been described,100 and overexpression of FOXM1 

correlates with worse prognosis for cancer patients.101 Phosphorylation of FOXM1 

regulates transcriptional activity leading to cell proliferation and PLK1 was found to 

phosphorylate FOXM1, which in turn transcribes PLK1.102 Thus, PLK1 and FOXM1 create 

a positive feedback loop to allow for mitotic progression and expression of tumor 

promoting genes.  

PLK1 in DNA damage response: PLK1 has been shown to play a role in DNA damage 

response, particularly in homologous recombination (HR), which is the predominant 

mechanism of DNA repair during mitosis. For instance, Chabalier-Taste et al. showed 

that PLK1 phosphorylated and recruited BRCA1 for DNA repair.103 Yata et al. reported 

that PLK1 also phosphorylates RAD51, another participant in HR DNA repair, to increase 

their concentration and mediate HR.104  

PLK1 and cancer stem cells: Cancer stem cells are a subpopulation of cancer cells that 

possess stem cell properties such as self renewal and ability to differentiate to varying 

cell types with altered gene expression.105  Studies have shown that CSCs are resistant 

to standard therapies such as radiation and chemotherapy, and ultimately are the culprits 
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of cancer relapse following therapy.106,107 Intriguingly, PLK1 has been identified as a 

potential target in cancer stem cells in various cancers including colon,89 glioblastoma,90 

and breast cancers.91 

PLK1 for radiation therapy: As discussed, PLK1 inhibition results in mitotic arrest where 

cells are most sensitize to radiation. Previous reports have shown this in preclinical 

studies in several cancer types. Furthermore, studies have shown that due to PLK1’s role 

in DNA damage, inhibiting PLK1 also reduces DNA repair capacity and may also increase 

radiation sensitivity in this way.108 Lastly, PLK1 inhibitors have been shown to target 

cancer stem cells, which cause relapse after radiation therapy as discussed above. 

Consequently, these observations suggest that PLK1 is a very promising target to 

improve radiation responses. However, to date, no PLK1 therapies have been 

investigated in clinical trials with radiation therapy.  

PLK1 and immune regulation: Several studies have indicated that PLK1 may have a 

role in regulating tumor immunity. Li et al. assessed PLK1 expression with tumor immunity 

in various cancer types. The authors found that high PLK1 expression in various tumor 

tissues correlated with lower HLA (encode MHC proteins) expression, and decreased B 

cells, NK cells, and tumor infiltrating lymphocytes.109 Furthermore, PLK1 inhibition in 

cancer cells was found to increase HLA mRNA and MHC class I protein.109 Studies have 

also shown that PLK1 regulates STAT3 activation. STAT3 is expressed in both tumor and 

immune cells and its activation promotes production of immunosuppressive factors to 

promote a pro-tumor environment and immune evasion.110 PLK1 and STAT3 were shown 

to control each other’s activation in esophageal squamous cell carcinoma, and PLK1 

inhibition led to reduced STAT3 and phosphorylated STAT3 expression.111 In NSCLC 
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cells, Yi et al. showed that inhibiting PLK1 reduced STAT3 phosphorylation, but not total 

STAT3.112 PLK1 has also been found to regulate type I interferon (IFN) production.113,114 

Specifically, PLK1 associates with the mitochondrial antiviral-signaling protein (MAVS) 

and negatively controls its activity in inducing IFN. Arresting cells in G2/M with nocodazole 

inhibited IFN induction, which was partially restored with PLK1 depletion.114 This suggests 

that PLK1 may promote tumorigenesis through inhibition of innate immune responses.  

Collectively the many roles of PLK1 suggest that it is a strong molecular target for cancer 

treatment and to improve existing therapies. However, effective PLK1 inhibition remains 

a clinical challenge.  

Limitation of current PLK1 therapies 

Based on the promise of targeting PLK1, several PLK1 small molecule inhibitors have 

been developed and reached clinical trials. However, the majority of trials were terminated 

early due to adverse toxicities, in particular hematological toxicities.115 To achieve 

sufficient tumor bioavailability, PLK1 inhibitors have been designed to have long half-

lives. This results in long exposure times with hematopoietic precursor cells in blood and 

bone marrow, and ultimately leads to dose-limiting toxicity of neutropenia (low 

neutrophils) and thrombocytopenia (low platelets). Additionally, PLK1 inhibitors can also 

have off-target effects and inhibit other PLK family members, namely PLK2 and PLK3, 

whose roles are not entirely understood.116 Of all PLK1 inhibitors, volasertib (BI6727) was 

the most advanced and reached phase III clinical trial for acute myeloid leukemia (blood 

cancer),115 but eventually failed to meet primary endpoint of objective response.117 For 

lung cancer, volasertib was terminated as a monotherapy early in a clinical trial due to 
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lack of response at the determined maximum tolerated dose.118 Inhibition of PLK1 with 

small molecule inhibitors remains a clinical challenge.  

An alternative to PLK inhibition with small molecules is the use of small interfering RNA 

(siRNA) to knockdown PLK1 at the mRNA level. SiRNA are short synthetic nucleic acids 

that can specifically target any mRNA sequence and cleave the mRNA, halting the 

production of the associated protein. SiRNA gene therapy has been extensively 

researched for cancer treatment since its Nobel prized discovery in 2006, with the 

motivation that the technology can be harnessed to inhibit any oncogene with great 

specificity. It is also advantageous over antibodies and inhibitors as it orchestrates its 

effect at the mRNA levels instead of at the protein levels. As a result, we have previously 

reported that siRNA can overcome both intrinsic and acquired resistance of cancer cells 

to the antibody and inhibitor that target the same protein (e.g., HER2),119 and cancer was 

not as prone to develop resistance to siRNA as they were to the protein targeting 

therapies.120 However, siRNA requires a delivery vehicle to allow long blood circulation, 

intracellular delivery, and release in cytoplasm of the target cell. In this regard, 

nanoparticles are a very promising siRNA delivery vehicle supported by many preclinical 

studies, and various platforms have reached clinical trials for a variety of diseases 

including cancer. For targeting PLK1, TKM-PLK1, a liposomal nanoparticle delivering 

PLK1 siRNA, was evaluated in phase I/II clinical trial and showed promising results when 

used to treat liver cancer (stable disease in 51% of 43 patients),121 but it was not as 

promising for cancer outside the liver.122 

Collectively, these results suggest that alternative therapeutics targeting PLK1 are 

needed. Furthermore, as previous studies have elucidated the extensive interplay of 
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PLK1 with many genes that regulate cancer progression and immune evasion, this 

highlights that monotherapy with PLK1 inhibitors alone may be ineffective. Consequently, 

to illicit the full potential of targeting PLK1, combination with other therapeutic modalities 

is likely needed.  

 

1.5 Nanoparticles in cancer treatment  

The application of nanotechnology in cancer has become a central focus in biomedical 

research. In particular, nanoparticles (NPs) possess unique properties to overcome the 

limitations associated with traditional cancer therapies, and they have been developed as 

drug delivery vehicles to provide tumor targeting and deliver therapeutics such as chemo 

drugs, inhibitors, and nucleic acids.123 First, the increased size of NPs can eliminate fast 

renal clearance of small molecules. Nanoparticles can also mediate toxicity concerns of 

systemic distribution by localizing therapeutic effects in tumors due to the enhanced 

permeability and retention (EPR) effect. The EPR is enabled by the physiological nature 

of tumors which upregulate pro-angiogenic factors leading to formation of immature and 

leaky vasculature which can increase nanoparticle infiltration in tumors.124 Moreover, poor 

lymphatic drainage increases nanoparticle retention within the tumors. This abnormal 

vasculature is known to allow for the accumulation of appropriately sized NPs (30-200 

nm) in tumors compared with normal tissues.123 Additionally, the use of polyethylene 

glycol (PEG) as a nanoparticle coating can avoid opsonization and rapid clearance by the 

mononuclear phagocytic system, which prolongs their half-life and tumor accumulation. 

To further enhance targeting and reduce systemic toxicity, nanoparticles can also be 

decorated with targeting agents (e.g., antibodies) to specifically target cancer cells. 
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Another feature of nanoscale materials is their high surface area to volume. This enables 

loading with high therapeutic payloads and/or imaging agents.125 Furthermore, delivery 

of multiple therapeutics can be achieved on a single platform which may enhance 

potential synergistic effects of the therapeutics. Nanoparticles can also deliver agents that 

would otherwise be non-functional in physiological conditions. For instance, as 

aforementioned, siRNA hold great promise and they can be designed to target any 

oncogene with great specificity. In fact, most of cancer genetic aberrations identified are 

undruggable with current small molecule inhibitors or antibodies. Consequently, 

efficacious nanoparticles for siRNA delivery in cancer treatment are sought after. Lastly, 

in addition to serving a delivery vehicle, nanoparticles can also have intrinsic effects (e.g., 

photothermal, ROS scavenging, ROS generating) on cancer cells depending on the 

components of the nanomaterials. This versatility of nanoparticles have been utilized in 

various cancer treatment settings. Below examples of the use of nanoparticles as 

radiation sensitizers and for immunotherapy are reviewed.  

1.5.1 Nanoparticles as radiation sensitizers 

Nanoparticle delivery of chemotherapies for radiation therapy 

A number of studies have investigated delivery of chemotherapies with nanoparticles in 

combination with radiation. As discussed in section 1.2, certain chemotherapies can 

potentiate radiation effects and chemoradiation therapy has become a backbone in a 

variety of cancers. However, the combination of chemotherapy and radiation also results 

in significant toxicity which hinder potential synergistic benefits and may reduce patient 

quality of life. Thus, attempts to improve chemo delivery with nanoparticles has been 

explored. Abraxane, albumin bound paclitaxel, improves solubility of hydrophobic 
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paclitaxel and can reduce systemic toxicity of paclitaxel given with castor oil. Several 

clinical trials are ongoing to evaluate abraxane in combination with chemoradiotherapy 

for NSCLC, pancreatic, and head and neck cancers. CRXL101 is a cyclodextrin-PEG 

polymeric nanoparticle formulation with the chemo drug camptothecin. A phase I clinical 

trial of CRXL101 in combination with capecitabine and radiation therapy in rectal cancers 

has recently been initiated.  

High atomic number nanoparticles for radiation therapy  

Another strategy for nanoparticle radiosensitization is the use of high atomic number (Z) 

materials. High Z materials are promising material for use with radiation as they can 

enhance attenuation of x-rays and thus escalate the biological effects of radiation on 

DNA. The most studied metallic nanomaterial as radiation sensitizer is gold. Gold is a 

promising material in this setting due to its biological inertness, as well as its ease in 

manufacturing and scalability. For example, Zhang et al. reported on 2 nm gold 

nanoclusters covered with glutathione (GSH) shell that could accumulate in tumors via 

EPR effects and significantly enhanced radiation effects in U14 mouse cervical cancer 

model.126 While this material relied on EPR to accumulate the gold particles in tumors, 

Liang et al. developed gold nanoclusters with cyclic RGD peptide shell to target αvβ3 

integrin positive cancer. The targeted nanoclusters with radiation were shown to improve 

tumor control compared with non-targeted nanoclusters with radiation, or radiation alone 

in a 4T1 mouse breast tumor model.127 Another metal based nanoparticle is NBTXR3, 

which is hafnium oxide nanoformulation. As with gold, hafnium oxide enhances the 

absorption of ionizing radiation in cells. NBTXR3 showed promising preclinical results and 

is currently under clinical investigation for soft tissue sarcomas (phase II/III) and head and 
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neck cancers (phase I), where it is administered intratumorally in combination with 

radiation.128   

Molecularly targeted nanoparticles for radiation therapy 

More recently, efforts have shifted to developing molecularly targeted nanoparticles as 

radiation sensitizers. Wang et al. delivered HDAC inhibitors, vorinostat and quisinostat, 

with nanoparticles consisting of PLGA/inhibitor core coated with layer of DSPE-PEG.47 

Nanoparticle delivery of each inhibitor was shown to be superior to the inhibitor alone and 

could enhance the radiation effects in colorectal and prostate cancers by enhancing 

gH2ax foci formation.47 Similarly, Karve et al. utilized the same nanoparticle construct to 

deliver wortmannin, an inhibitor of PI3K pathway, which is highly toxic agent when 

delivered alone. Delivery of wortmannin on the NP was shown to provide radiation 

sensitivity while significantly enhancing the maximum tolerated dose of wortmannin.129 

As discussed above, siRNA based therapeutics hold great promise for cancer treatment. 

While several siRNAs have shown promise to combine with radiation in vitro, only a few 

studies have shown in vivo radiation sensitizing effects using siRNA due to limitations of 

in vivo delivery of siRNAs. In one study, an iron oxide nanoparticle coated with chitosan, 

PEI, and PEG polymers delivered siRNA against APE1, an enzyme involved in base 

excision repair of DNA, and was shown to be effective as a radiation sensitizer in 

glioblastoma mouse models.130 To date, despite the promise of siRNA, no siRNA 

therapeutic has entered clinical trials in combination with radiation. 
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1.5.2 Nanoparticles for immunotherapy 

The promising clinical outcomes with immune checkpoint blockade have led to the 

emergence of several new strategies to induce immune responses using nanoparticles. 

In this area, nanoparticles provide tremendous benefits as they can enable co-delivery of 

immune regulating agents on a single platform. Indeed, in the last couple of years, 

nanoparticles have been designed to deliver antigens, adjuvants, TME modulators, and 

checkpoint blockade agents in preclinical studies with some very promising results. 

Strategies in this area are reviewed below.  

Antigen/adjuvant delivery on NPs (cancer vaccines) 

Nanoparticles can protect antigens from degradation and increase their circulation time 

leading to enhanced delivery to APCs. Kranz et al.131 developed RNA-lipoplexes (RNA-

LPX) to deliver RNA-based antigens to dendritic cells. The vaccine led to the generation 

of effector and memory T cells and IFN-α dependent tumor regression in mice. Results 

of the lipoplex vaccine delivering common tumor antigens in the first three melanoma 

patients in phase I clinical trial was also reported. Promisingly, induction of IFN-α and 

antigen-specific T cell responses were observed for each patient. Another advantage of 

nanoparticles is the ability to incorporate both antigen and adjuvant on the same construct 

to act as a vaccine and induce a potent immune response. Kuai et al.132 reported on high 

density lipoprotein-mimicking nanodiscs that deliver antigen peptide and CpG adjuvant 

(stimulator of TLR9). The nanovaccine was shown to stimulate 47-fold more antigen-

specific CD8+ T cells than vaccine without NP. When combined with checkpoint inhibitors 

(PD-1 and CTLA-4 antibodies), the vaccine led to complete tumor control in almost all of 

the mice with MC38 or B16F10 tumors.132 In addition to delivering antigens and adjuvants, 
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other immune modulatory agents can also be incorporated. For example, Zhu et al.133 

developed L-glutamic acid polypeptide and PEG nanocapsules to deliver antigen, CpG, 

and shSTAT3. STAT3 signaling is immunosuppressive and can also reduce effectiveness 

of CpG immune stimulation. The vaccine induced 8-fold more antigen-specific CD8+ T 

cells than antigen and CpG alone, and resulted in reduction of antigen-specific colorectal 

tumors (in lungs of mice). While antigen delivery is a promising approach, a limitation 

remains in the identification of appropriate neoantigens which may be difficult to identify 

for each tumor type and also vary greatly for each patient.  

Immune checkpoints on NPs 

In addition to delivering antigens and adjuvants, nanoparticles have also been utilized to 

improve the existing therapies targeting immune checkpoints. Schmid et al.134 reported 

on PLGA/PEG nanoparticles conjugated with PD-1 antibody to target T cells and deliver 

TGF-β inhibitor to counter immune dampening. The platform improved tumor control and 

extended survival of mice bearing MC38 colon tumors compared with free drug 

administration at the same dose. Furthermore, delivery of TLR7/8 agonist (R848) with the 

PD-1 antibody conjugated NPs enhanced infiltrated CD8+ T cells in tumors and sensitized 

tumors to subsequent PD-1 blockade. Similarly, Mi et al.135 developed PLGA/PEG 

nanoparticles conjugated with PD-1 and OX40 antibodies as a dual immunotherapy 

platform. Co-delivery of the antibodies on NP was shown to enhance T cell infiltration and 

resulted in improved tumor control than the free antibodies or single antibody NPs in 

B16F10 and 4T1 tumor models.135 

Kosmides et al.136 reported on iron oxide nanoparticles containing two antibody types that 

stimulate 4-1BB on T cells and block PD-L1 checkpoint on tumor cells. The nanoparticles 
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significantly delayed tumor growth and extended survival of mice bearing B16F10 or 

MC38 tumors, compared with free antibodies or single antibody nanoparticles. A similar 

approach by Chiang et al.137 was to develop fucoidan polysaccharide–dextran iron oxide 

nanoparticle for delivery of CD3 and CD28 antibodies for T cell activation, and PD-L1 

antibody for checkpoint blockade. In this study, the iron oxide core was also used to 

enable magnetic guided delivery to tumors to reduce off-target effects. The regimen 

enhanced tumor immunity, improved tumor control, and extended survival in 4T1 breast 

cancer model, while magnetic guidance could reduce organ accumulation of NPs. Meir 

et al.138 utilized gold nanoparticles conjugated to PD-L1 antibodies to allow for prediction 

of response with CT imaging, and to improve tumor delivery of the antibody. As immune 

checkpoints currently only work for a subset of patients, early identification of responders 

would be beneficial in clinics as non-responsive patients could be switched to a different 

treatment regimen. Accumulation of anti-PD-L1 conjugated gold NPs in tumors was 

shown to predict response of the PD-L1 blockade as early as 48 hours post treatment. 

Delivery with gold NPs also reduced tumor growth with one fifth of the standard clinical 

dose. Other reports have aimed at delivering chemotherapy with PD-L1 targeted 

nanoparticles. Xu et al.139 developed PEG-PCL NPs conjugated to PD-L1 antibody for 

targeted delivery of docetaxel. The PD-L1 targeted nanoparticles showed higher uptake 

in cells compared with non-targeted nanoparticles and could enhance G2/M arrest and 

apoptosis in gastric cancer cell lines. Emami et al.140 developed polymeric (lipoic acid-

PEG) gold nanoparticles to conjugate PD-L1 antibody for delivery of doxorubicin to 

colorectal cancer cells. Treatment of nanoparticles with NIR irradiation significantly 

increased apoptosis and cell cycle arrest in CT-26 colon cancer cells. In vivo data were 
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not reported for either nanoparticle delivering chemo with PD-L1 antibody. One clinical 

trial has investigated the combination of nab-paclitaxel (abraxane) with atezolizumab for 

metastatic TNBC.141 Results of the clinical trial were promising and this combination has 

recently been granted FDA approval as the first line treatment for metastatic TNBC.  

1.5.3 Translation of nanoparticle delivery platforms for cancer 

Overall, despite the promise and many efforts, the translation of nanoparticles for cancer 

treatment has not significantly progressed.128 To date only four nanoparticles have been 

granted FDA approval for solid tumors. Abraxane (albumin bound paclitaxel nanoparticle) 

and Doxil (liposomal doxorubicin) were the first approved FDA nanoparticles for cancer, 

where they were shown to alleviate some systemic toxicity compared with the free 

chemotherapy counterpart in clinical trials. Eligard is a leuprolide acetate polymeric 

(PLGH) nanoparticle, a GnRH agonist, which is approved for advanced prostate cancer. 

Onivyde is a liposomal irinotecan which received FDA approval in 2015 for treatment of 

metastatic pancreatic cancer that has been previously treated with chemotherapy. For 

NSCLC, abraxane received FDA approval in 2012 as the first line treatment in 

combination with carboplatin for locally advanced or metastatic NSCLC who cannot 

undergo surgery or radiation. Abraxane remains the only approved nanoparticle 

therapeutic for NSCLC.   

In regards to siRNA delivery, most nanoparticle carriers that have reached clinical trials 

are lipid based without stealth material (e.g., PEG) and targeting agent, thus they 

intrinsically home to the liver and are not effective at treating other solid tumors (such as 

TKM-PLK1 as aforementioned).142 The only FDA approved siRNA therapeutic is patisiran 
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(approved in 2018) which targets transthyretin for the rare but fatal liver disease familial 

amyloid polyneuropathy. For cancer, no siRNA (or miRNA) therapeutic is FDA approved. 

Several issues in clinical trials have been observed143-145 including toxicity to the liver and 

spleen (e.g., ALN-VSP02), immunogenicity (e.g., MRX34), immature destabilization (e.g., 

CALAA-01), non-specific uptake due to the lack of targeting agents (e.g., DCR-MYC, 

Atu027, TKM-PLK1, ALN-VSP02) and challenges in large-scale manufacturing. Superior 

nanoparticle delivery platforms are needed to meet the clinical demands of delivering 

therapeutics effectively to tumors. 

 

1.6 Novel mesoporous silica nanoparticles for cancer  

Our group has extensively developed and optimized mesoporous silica nanoparticles for 

drug and siRNA delivery. As compared with other nanoparticle materials, MSNP provide 

several advantages. First, MSNP are highly scalable and reproducibly synthesized at a 

much cheaper cost than many alternative platforms such as gold. Moreover, MSNP is 

porous and can be loaded with imaging agents and drugs in the pores, while therapeutics 

such as siRNA and antibodies can be loaded on the exterior. We and others have also 

shown that MSNP degrades to benign silicic acid,146,147 which is cleared by the kidneys 

in urine. Silica is the third most abundant trace element in the body after iron and zinc, 

implicating its intrinsic safety.148 Systemic administration of MSNPs has been investigated 

in clinical trials for delivering an imaging agent149 or as a coating of gold particles.150 

However, MSNP as a therapeutic carrier has yet to be investigated in clinical trials for 

cancer treatment.  
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To allow for in vivo delivery of therapeutics, our MSNP platform is assembled in a layer-

by-layer fashion with: (1) cross-linked cationic polymer (polyethylenimine, PEI) allowing 

endosomal escape of siRNA and other nucleic acids, (2) PEG to prevent nucleic acids 

from enzymatic degradation and to make the nanoparticle stealth from the body’s immune 

system, and (3) antibody for tumor targeting. PEI was chosen as the most effective 

endosomal-escape polymer. As high molecular weight (MW) PEI can be toxic, we cross-

linked small MW PEI with a bio-reducible crosslinker to achieve the efficacy of high MW 

PEI while releasing small clearable PEI fragments afterward to mitigate toxicity. 

Moreover, small molecule inhibitors or chemotherapies can be loaded in the pores of 

MSNP prior to the polymer coating, while nucleic acids can be attached to the final 

construct (via electrostatic interaction with PEI) with just a few minutes mixing in saline. 

This versatility allows for practically any therapeutic to be integrated into the platform and 

novel combination therapy strategies to be evaluated. The multiple therapeutic delivery 

capability of the nanoparticles opens doors for future precision medicine approaches, 

where biomarkers can initiate facile development of patient-specific targeted 

nanoparticles. Figure 1.3 illustrates the layer-by-layer synthesis procedure of the MSNP 

platform.   
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Figure 1.3. Mesoporous silica nanoparticle platform. Small molecule inhibitors or 
chemotherapies can be loaded in pores of MSNP. Following polymer surface modification with 
PEI and PEG, antibodies can be conjugated and nucleic acids (e.g. siRNAs) can be 
electrostatically bound.  

 

The MSNP platform was originally developed as a HER2+ breast cancer targeted therapy, 

which has been under development with two fast-track phase I/II SBIR awards from the 

NCI. Under the awards, our group has shown (1) formulation optimization and stability 

after a long-term storage,151,152 (2) siRNA, PEI and silica release mechanisms, body 

distribution and clearance,153 and (3) safety of the platform in rodent models.153 Overall, 

the platform has very favorable efficacy and safety profile, and all success indicates great 

clinical translational potential of the platform.   
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Chapter 2: PLK1 and EGFR targeted nanoparticle as a 

radiation sensitizer for non-small cell lung cancer 

 

2.1 INTRODUCTION 

Non-small cell lung cancer (NSCLC), which makes up 85% of lung cancers, is the leading 

cause of cancer mortality, resulting in more deaths than colon, breast, and prostate 

cancers combined, and represents nearly a fourth of total cancer deaths.1 Radiation 

therapy remains a cornerstone in lung cancer treatment that is administered to over half 

of all patients as part of their treatment paradigm.154 Advances in medical imaging and 

radiation technology have allowed for more precise and accurate radiation delivery; 

however, outcomes for lung cancer patients have not improved155 as the five year survival 

remains 18%.1 The radiation therapy oncology group clinical trial RTOG 0617 for stage 

III NSCLC, which aimed to improve local tumor control and prolong survival by increasing 

the radiation dose (from 60 Gy to 74 Gy) in a chemoradiation regimen, did not result in 

better outcomes but rather caused higher toxicity to patients leading to reduced survival.15 

In the same trial however, the addition of cetuximab (an EGFR-directed monoclonal 

antibody believed to inhibit DNA repair) led to modest improvements in patients with high 

EGFR expression.15 This highlights the potential of molecularly targeted agents to 

improve the therapeutic ratio of radiation leading to better outcomes for patients. The goal 

of this research is to develop a targeted therapeutic to enhance radiation sensitivity of 

lung cancer. We previously reported on a human epidermal growth factor receptor 2 

(HER2) antibody conjugated mesoporous silica nanoparticle (MSNP) that could target 

cancer cells in multiple HER2+ breast tumor mouse models and deliver small interfering 
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RNA (siRNA) to impart gene silencing efficacy.119,151,156 Herein, I developed the MSNP 

platform for lung cancer, where effective targeted therapies are an urgent need. By 

conjugating an EGFR monoclonal antibody on MSNPs and delivering siRNA against polo-

like kinase 1 (PLK1), I show that the nanoparticle is effective as both a single agent 

therapy and as a radiation sensitizer for NSCLC.   

We target PLK1, a key mitotic regulator, which is overexpressed in lung cancer and other 

various types of cancer.4 Previous studies have shown that high PLK1 expression is 

correlated with reduced survival for cancer patients.3,157,158 Inhibition of PLK1 results in 

failure to complete mitosis, which leads to G2/M cell cycle arrest and apoptotic cell death. 

As G2/M is the most radiation sensitive cell cycle phase, PLK1 inhibition also sensitizes 

cancer cells to radiation.159 Furthermore, PLK1 has been shown to contribute to 

resistance of cancer cells to several drugs including taxanes, doxorubicin, gemcitabine,87 

and EGFR inhibitors.88 In addition, PLK1 has been identified as a target to kill various 

cancer stem cells,89-91 which are resistant to standard therapies including radiation and 

chemotherapy, and therefore lead to cancer relapse. Collectively, these observations 

suggest that inhibition of PLK1 may have promising therapeutic potential for cancer 

treatment.  

To deliver the nanoparticle platform specifically to lung cancer cells, the EGFR 

monoclonal antibody, cetuximab, was conjugated on MSNP. EGFR is overexpressed in 

several cancers, and its high expression correlates positively with poor prognosis.160-163 

In NSCLC, EGFR is overexpressed in about 50% of patients164 with higher EGFR 

expression in more advanced stages.160,165 Thus, the receptor is an appropriate homing 

target. Furthermore, following radiation damage, EGFR is phosphorylated and 
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translocates to the nucleus where it plays a role in mediating DNA repair.29 In this regard, 

addition of cetuximab may have therapeutic benefit as it has been shown to block the 

translocation of EGFR to the nucleus following irradiation.166 Indeed, cetuximab has 

shown promise in clinical trials as a radiation sensitizer in head and neck cancer167 and 

EGFR+ lung cancer.168 Therefore, cetuximab on the nanoparticle may also provide a 

therapeutic effect, in addition to mediating the targeting to EGFR+ lung cancer cells. I 

hypothesized that the combination of the EGFR antibody cetuximab and PLK1 siRNA on 

the nanoparticles (C-siPLK1-NP) would serve as potent radiation sensitizer for NSCLC, 

as illustrated in Fig. 1A. An effective radiation sensitizer would render cancer cells more 

susceptible to death by radiation, thereby improving treatment efficacy and reducing 

adverse effects of radiation therapy. Thus, this study highlights a novel strategy that may 

significantly improve the outcomes and quality of life for lung cancer patients.   

 

2.2 MATERIALS AND METHODS 

2.2.1 Nanoparticle synthesis and characterization  

Sol-gel synthesis of bare MSNPs and layer-by-layer surface coating of MSNPs was 

carried out in the same manner as in our previous report.11,151 For conjugation of 

cetuximab to PEG of the nanoparticles, cetuximab (2 mg/ml, Eli Lilly and Company) was 

buffer-exchanged to PBS pH 8 using Zeba Spin columns (Thermo Fisher Scientific) and 

thiolated with Traut’s reagent (50-fold molar excess) for 2 hr (350 rpm). Thiolated 

cetuximab was then exchanged to buffer PBS pH 7.2 and added to MSNP-PEI-PEG at 

10% w/w for shaking (300 rpm) overnight at 4oC. The next day, nanoparticles were 
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washed 2x with PBS pH 7.2. SiRNA is loaded last by quick mixing with NP (~5 minutes). 

Nanoparticles size and charge were determined by Zetasizer (Malvern).  To quantify 

polymer loading, 1 mg nanoparticles (MSNP, MSNP-PEI, or MSNP-PEI-PEG) were 

heated to 950 oC (20 oC/min) with TGA Q50 (TA Instruments). Weight/temperature 

profiles of MSNP, MSNP-PEI, and MSNP-PEI-PEG were compared to determine percent 

loading of each polymer and final silica yield. Amount of antibody on NP was determined 

by Pierce BCA protein assay kit (Thermo Fisher Scientific). SiRNA loading extent on NP 

was determined by fluorescence using a fluorescent tagged siRNA (Dy677-siSCR), as in 

our previous report.151  

2.2.2 Cell culture and reagents  

Non-small cell lung cancer cells A549 (CCL-185) and H460 (HTB-177) were obtained 

from ATCC and cultured in RPMI-1640 medium with 10% fetal bovine serum (FBS). A549 

cells with stable expression of red-shifted firefly luciferase gene (Bioware® Brite Cell line 

A549-Red-Fluc) were purchased from Perkin Elmer and maintained under the same 

conditions as parental A549 cells. Normal lung epithelial cells NL20 (CRL-2503) were 

purchased from ATCC and maintained in the recommended complete growth medium. In 

vivo grade siRNA was purchased from Dharmacon. The siRNA sequences used were: 

PLK1 (antisense 5’-UAUUCAUUCUUCUUGAUCCGG-3’); scrambled SCR (antisense 5’-

UUAGUCGACAUGUAAACCA-3’). Scrambled siRNA with dyes (DyLight 677 or Alexa 

Fluor 488) attached to the sense strand were purchased from Dharmacon. 

2.2.3 Nanoparticle cellular internalization and EGFR surface expression 

Nanoparticle internalization in cells was performed in suspension as we have previously 

reported.151 Briefly, cells (1x106) were harvested and incubated with Alexa Fluor 488 dye 
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tagged siSCR nanoparticles (100 g NP) for one hr. Cells were then washed 3x with 

FACS buffer and resuspended in 0.5 mL FACS buffer. Trypan blue (0.4% in PBS, 0.5 mL) 

was added to each suspension to exclude signal from non-internalized nanoparticles. 

Cells were analyzed on a Guava easyCyte (Millipore Sigma) flow cytometer (10,000 

events per sample). For EGFR cell surface expression of cancer and normal cells, human 

EGFR antibody (cetuximab) was used as primary antibody followed by washing 3x with 

FACS buffer, before staining with anti-human Alexa Fluor 488 secondary antibody (Life 

Technologies) for one hr. Cells were then washed 3x with FACS and analyzed with flow 

cytometer. For EGFR cell surface expression post treatments, 1 million cells were treated 

with non-target NP, C-NP (3 g cetuximab), or cetuximab (100 g) for two hr. Cells were 

washed with FACS buffer before staining with an Alexa Fluor 647 labeled EGFR antibody 

(BD Biosciences), washing, and analyzing with flow (10,000 events per sample, biological 

replicates). 

2.2.4 Western blot 

Cells were seeded in 6 well plates overnight and treated with PBS or C-NP with SCR or 

siPLK1 (50 nM – NP/siRNA = 50). Cell culture medium was changed one day after 

treatment. Three days post treatment, cells were lysed in RIPA buffer (50-100 l per well). 

Lysate was sonicated and centrifuged (15,000 RPM for 15 minutes) and supernatant was 

collected. Amount of total protein was quantified using BCA. 30 g of proteins (per 

sample) were mixed with 4X Novex NuPAGE LDS sample buffer and beta-

mercaptoethanol (10% final concentration). Samples were denatured for 5 min at 95 oC 

and loaded onto gel (NuPAGE) for electrophoresis. Proteins were then transferred onto 

PVDF-FL membrane and blocked with LICOR blocking buffer. Membranes were 
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incubated with primary antibodies overnight (PLK1, -actin) at 4oC. Next day, membranes 

were rinsed with TBS-T and IRDye conjugated secondary antibodies (LI-COR) were 

added for 1 hour under rocking at room temperature. Membranes were scanned on a LI-

COR Odyssey CLx imaging system.  

2.2.5 RNA isolation and RT-PCR 

RNA was isolated and purified from cells or tumors with GeneJet RNA purification kit 

(Thermo Fisher Scientific) according to manufacturer’s instructions. Tumors were 

homogenized in lysis buffer using Bullet Blender 5E (Next Advance) prior to RNA 

isolation. One-Step qRT-PCR was performed using EXPRESS One-Step Superscript™ 

qRT-PCR Kit (Invitrogen). 20 ng RNA per reaction was used. Cycling conditions were 50 

oC for 2 min, 95 oC for 10 min, 40 cycles of 95 oC for 15 s, and 60 oC for 1 min.  TAQMAN 

gene expression primer Human HPRT mRNA (Hs99999909_m1) was used as 

housekeeping gene and Human PLK1 mRNA (Hs00983225_g1) was used to assess 

PLK1 gene knockdown in tumors and cell lines (PLK1 relative to HPRT). Data was 

analyzed using 2–ΔΔC(t) method.  

2.2.6 Cell cycle arrest  

Cells (50K/well) were seeded in 6 well plates overnight and treated with PBS, PLK1 

inhibitor BI6727 (10 nM), C-siSCR-NP, or C- siPLK1-NP (50 nM – NP/siRNA = 50). Cell 

media was changed one day after treatments. At various time points, cells were collected, 

washed with FACS, and stained with Hoechst for 30 min at 37 °C before analyzing with 

flow cytometer. Percentage of cells in each phase was determined using FlowJo software.  
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2.2.7 Cell viability  

For cell viability without radiation, cells were seeded in 96 well plates overnight and 

treated with PBS, C-siSCR-NP, or C-siPLK1-NP (30-60 nM – NP/siRNA = 50). Cell media 

was changed one day after treatments. 4 days post treatment, CellTiter-Glo (CTG) assay 

(Promega) was performed according to manufacturer’s instructions. Tecan plate reader 

was used to quantify luminescence. For cell viability following radiation, cells were treated 

with NP and radiation as in described for clonogenic survival. Following radiation, cells 

were plated in 96 well plate (1K cells/well) in quadruplicates. One week post radiation, 

CTG assay was performed.  

2.2.8 Clonogenic survival 

Cells (50K/well) were seeded in 6 well plates overnight and treated with PBS, C-siSCR-

NP, or C-siPLK1-NP (15-120 nM – NP/siRNA = 50). Cell media was changed one day 

after treatments. 72 hr post treatment, cells were irradiated using a Cs-137 irradiator 

(Sheperd Mark) with 0, 2, 4, 6 Gy. Cells were then harvested, counted, and re-plated in 

6 well plates (50-100 cells for 0 Gy, 100-200 cells for 2 Gy, 200-400 for 4 Gy, 500-2000 

for 6 Gy). Two weeks post radiation, colonies were fixed with methanol and stained with 

crystal violet (0.5% in 25% methanol) and counted. Colonies of >50 cells were scored. 

Survival fraction was calculated as described in literature 169.  

2.2.9 H2ax staining  

Cells (1500/well) were seeded in 96 black well plates overnight and treated with PBS, 

siSCR-NP, siPLK1-NP, C-siSCR-NP, or C-siPLK1-NP (30 nM – NP/siRNA = 50). Cell 

media was changed one day after treatments. 72 hr post treatment, cells were irradiated 

with 0, 2, 6 Gy using Cs irradiator. 24 hr post irradiation, cells were fixed with methanol, 
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washed, and stained with phosphor-histone H2ax antibody (Cell Signaling #2577) for 1 

hr. Cells were washed and stained with anti-rabbit Alexa Fluor 488 secondary antibody 

(Life Technologies) for 1 hr, followed by Hoechst 33342 (10 ug/ml) for 15 minutes. Cells 

were imaged on an EVOS FL Auto fluorescence microscope at 20X magnification. H2ax 

foci per nuclei was determined using Cell Profiler (Broad Institute).  

2.2.10 Apoptosis 

Cells (50K/well) were seeded in 6 plates overnight and treated with PBS or C-siPLK1-NP 

(50 nM – NP/siRNA = 50) the next day. Cell media was changed 24 hr after treatments. 

72 hr post treatment, cells were irradiated with 0 or 6 Gy. One day post radiation, cells 

were collected and washed with FACS buffer. Annexin V primary antibody (Abcam 

ab14196) was added for 30 minutes at room temperature, followed by Alexa Fluor 488 

secondary antibody for 30 minutes at room temperature. Cells were then washed 2x with 

FACS buffer and propidium iodide (PI) was added at 10 g/ml for 5 minutes. Cells (10,000 

events per sample) were analyzed with flow cytometer. Annexin-/PI- indicates healthy 

cells, Annexin-/PI+ indicates  dead cells, Annexin+/PI- indicates  early apoptotic cells, 

and Annexin+/PI+ indicates late apoptotic cells.  

2.2.11 Animal Studies 

For evaluation of the therapeutic as a radiation sensitizer, A549 cells (5 million) were 

subcutaneously injected into left and right flank of 6-week old male SCID mice (NCI 

SCID/NCr; Charles River Laboratories) in matrigel (Corning). Tumor growth was 

monitored using a Vernier caliper and volume calculated by 0.5 x length x width2. When 

tumor sizes reached average of 120 mm3, mice were grouped to receive saline, C-siSCR-
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NP, or C-siPLK1-NP intra-tumoral injections to both left and right tumors. Three days 

following each NP injection (0.3 nmol siRNA per tumor), the left tumors of mice were 

irradiated at 2 Gy using a small animal x-ray irradiator. Mice were anesthetized and a lead 

shield (Braintree Scientific) that exposes only the left flank of mice was used. NP and 

radiation were administered once a week for 6 consecutive weeks. Two weeks after last 

radiation dose, mice were sacrificed and all tumors were harvested, weighed, and 

prepared for RNA analysis.  

To establish orthotopic tumors in lungs of mice, I adopted an intra-tracheal instillation 

procedure.170 Mice were anesthetized using isoflurane, placed on intubation stand 

(BrainTree Scientific) angled at 60°, and held in place by hooking upper incisors over a 

small rubber band located at the top of the stand. A fiber optic light source was placed 

over from the neck of the mouse. The mouse's tongue was then retracted to one side to 

visualize trachea. Once the tracheal opening was visualized, the gavage catheter (2 mm 

round tip) is inserted with attached syringe containing 100 l of sterile saline at the 

opposite end of the syringe. If in the trachea, motion of the saline occurs as the mouse 

breathes. The syringe containing saline was then removed, and a solution containing 5 

million A549-Luc cells with 5 mM EDTA in cell media was pipetted in the gavage catheter, 

followed by 100 l of air. Mice were monitored until recovery from anesthesia. Three 

weeks following intra-tracheal instillation, mice were injected intravenously with 300 l of 

saline, C-siSCR-NP, or C-siPLK1-NP (0.5 mg siRNA/kg animal). Luminescence in lungs 

(tumor burden) was monitored with IVIS. For IVIS, mice were i.p. injected with 150 mg/kg 

luciferin (Gold Bio) 20 minutes prior to imaging. Tumor burden was determined by 

averaging photon flux of mice in prone and supine positions. Mice were monitored daily 
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and weighed once a week during the course of study. All studies were reviewed and 

approved by Institutional Animal Care and Use Committee (IACUC) at Oregon Health and 

Science University (OHSU).  

2.2.12 Statistical analysis 

Comparison between two groups was performed with Student’s t test. Comparisons 

among 3 or more groups were performed using one-way ANOVA with Bonferroni’s 

correction for multiple comparisons, or two-way ANOVA with Tukey’s correction when 

comparing treatments across radiation doses (i.e. H2ax). Tumor burden over the course 

of treatment was analyzed using two-way ANOVA with Tukey’s correction for multiple 

comparisons. Kaplan Meier survival curve was analyzed using the log-rank (Mantel-Cox) 

method. Significance was set at p < 0.05. In vitro data are expressed as mean ± SD; in 

vivo data are expressed as mean ± SEM. GraphPad Prism 8.0 (GraphPad Software Inc.) 

was used for all statistical analysis.  
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2.3 RESULTS 

2.3.1 Nanoparticle characteristics  

In comparison to other nanoparticle drug carriers, MSNPs offer several advantages such 

as being biologically benign, having large surface area and high porosity, ease of 

controlling size and modifying surface chemistry, and high scalability. Fig. 2.1A depicts a 

schematic representation of the proposed combination effect of EGFR antibody and 

siPLK1 on our nanoparticle platform. Our platform consists of an MSNP core (~50 nm by 

TEM – Fig. 2.1B) coated layer-by-layer with: 1) bio-reducible crosslinked polyethylene 

imine (PEI) which allows the use of low MW PEI as a cationic polymer for siRNA binding 

and effective endosomal escape, 2) polyethylene glycol (PEG) to prevent aggregation, 

opsonization, and immune response, and 3) antibody to target specific cell type. To target 

EGFR+ cells, cetuximab was conjugated to the nanoparticle platform (Fig. 2.1C) to obtain 

a final particle size of 115 nm (Fig. 2.1D) with a slightly cationic charge of +13 mV in 10 

mM NaCl (Table 1). I achieved excellent batch to batch nanoparticle synthesis as 

measured in terms of core particle size, final size after surface modification, siRNA 

loading, and knock-down efficacy using luciferase as a model gene as shown in Figure 

2.2. The composition of the final construct contains 15% PEI and 10% PEG (quantified 

by thermal gravimetric analysis, TGA), and 2.7% antibody/MSNP (quantified by BCA 

assay) (Table 1). SiRNA (2 wt.% of MSNP) is loaded last onto the nanoparticle via 

electrostatic interactions between the negatively charged siRNA and the cationic polymer 

PEI. As the loading of siRNA on the nanoparticle is sequence non-specific, any siRNA (or 

a set of siRNAs) can be loaded in under 5 minutes.11 This flexibility in changing siRNAs 

offers potential for future personalized medicine approaches.
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Table 2.1

  
MSNP size 

(nm) 

Hydrodynamic size with 

modifications 

  
Zeta 

potential 

(mV)  

  
TGA 

  
BCA 

  
complete siRNA 

loading 
  

Size (nm) 
  

PDI 
  

%PEI 
  

%PEG 
  

%antibody/MSNP 

  
61.7 ± 2.0 

  
115.8 ± 6.9 

  
0.23 ± 0.02 

  
13.4 ± 0.7 

  
15.4 

  
9.8 

  
2.7 

  
2-4% 
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Figure 2.1. EGFR-targeted (cetuximab) mesoporous silica nanoparticle (NP) platform for 
PLK1 siRNA (siPLK1) delivery or C-siPLK1-NP. (A) Scheme of central hypothesis illustrating 
the proposed combination effect of EGFR antibody and siPLK1 on our nanoparticle platform as a 
novel radiation sensitizer. C-siPLK1-NPs bind to EGFR receptors and are internalized, resulting 
in the loss of EGFR and phosphorylated EGFR, which can normally reach the nucleus to repair 
DNA. This reduces the cell’s ability to repair the damage caused by radiation. Simultaneously, 
siPLK1 on the nanoparticles is released in the cytosol and incorporated in the RNA induced 
silencing complex (RISC) to mediate PLK1 mRNA cleavage, which reduces PLK1 protein 
expression and arrests the cells in G2/M where they are most sensitive to radiation damage. 
Therefore, the platform serves a dual role (by targeting PLK1 and EGFR) to sensitize NSCLC 
cells to radiation. (B) TEM image of 50-nm MSNP (scale bar = 50 nm). (C) Schematic of the 
nanoparticle construct with layer-by-layer surface modifications. (D) Representative 
hydrodynamic size of C-NP with (solid) and without siRNA (dotted) loading by Zetasizer.  
 

 
Table 2.1.  Characterization of C-siRNA-NP. Hydrodynamic size of bare MSNP and C-siRNA-
NP determined by Zetasizer. Data expressed as mean ± SD. Polymer loading (PEI and PEG) 
determined by thermal gravimetric analysis (TGA). Antibody (cetuximab) loading determined by 
BCA assay. Complete siRNA binding at 2 wt.% and 4 wt.% assessed by loading a fluorescent 
labeled siRNA (Dy677-siRNA) on C-NP. 
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Figure 2.2 Reproducibility of nanoparticle synthesis. (A) Hydrodynamic size of core MSNP (3 
batches). (B) Hydrodynamic size of MSNP after polymer coating and siRNA binding (6 batches). 
(C) Summary of NP size before and after surface modifications, and luciferase silencing vs. siSCR 
at dose of 30 nM siRNA against luciferase. Data presented as mean ± SD. 
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2.3.2 Cetuximab conjugated nanoparticles are internalized in EGFR+ cancer cells.   

To determine whether cetuximab conjugated nanoparticles (C-NP) target EGFR+ cancer 

cells, I performed flow cytometry on EGFR+ cells incubated with siRNA-loaded C-NP. 

EGFR was chosen as the homing target for NSCLC due to its overexpression, as well as 

its role in DNA damage repair following radiation. Dye tagged (Alexa Fluor 488) siRNA 

was loaded to C-NP and incubated with two high EGFR expressing NSCLC cell lines 

(A549 and H460) and a low EGFR normal lung epithelial cell line, NL-20 (see EGFR 

expression in Fig. 2.3A). After quenching cells with Trypan blue (to exclude non-

internalized particles), uptake in the cell lines was quantified by flow cytometry. The 

EGFR+ cancer cells internalized the nanoparticles more than 8-fold over the EGFR-low 

normal lung cell line, illustrating the preferential targeting of nanoparticles to EGFR+ cells 

(Fig. 2.3B). To confirm the engagement of C-NP to EGFR, cancer cells were treated with 

C-NP, non-targeted nanoparticles, or free cetuximab antibody. Following a two hr 

incubation, cells were washed and analyzed with flow cytometry for cell surface EGFR 

level. As shown in Fig. 2.3C-D, the targeted nanoparticles effectively reduced cell surface 

EGFR level  by over 50% in both cell lines when compared with cells treated with non-

targeted nanoparticles or non-treated cells. Moreover, C-NP was more effective than free 

cetuximab antibody despite much lower dose of  cetuximab on the nanoparticles (3 µg 

cetuximab) than free cetuximab (100 µg). This owes to the high density of cetuximab on 

the nanoparticles (i.e., at 2.7 wt.% and 8.8 x 1013 nanoparticles per gram, there are 

1.3x103 antibodies per one nanoparticle) that the cell surfaces were exposed to.   
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Figure 2.3. Specific cellular uptake of C-siRNA-NP to EGFR+ cells. (A) EGFR levels of 
NSCLC (A549, H460) and normal (NL20) cells by flow cytometry. (B) A fluorescent labeled siRNA 
(Dy677 siRNA) on C-NP shows higher internalization in EGFR+ NSCLC cells (A549, H460) over 
normal NL20 lung cells by 8-fold. EGFR surface labeling in (C) A549 and (D) H460 upon 

incubation with C-NP, cetuximab, or NP in NSCLC cell lines. 100 g NP or C-NP doses (2.7 g 

cetuximab), and 100 g free cetuximab, were treated; all with 2 hr contact time. Data presented 
as mean ± SD from independent duplicates (10,000 events per sample); *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001.  
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2.3.3 Efficacy of PLK1 knockdown with C-siPLK1-NP  

PLK1 is a key target to treat lung cancer and other cancers.4 However, effective PLK1 

inhibition in the clinics remains elusive.  To examine PLK1 silencing efficacy by C-NP in 

vitro, NSCLC cells were treated with C-NP loaded with siRNA against PLK1 (C-siPLK1-

NP) or scrambled siRNA (C-siSCR-NP). The selected siPLK1 sequence was previously 

screened and identified to have the best PLK1 knockdown efficacy.156 As shown in Fig. 

2.4, C-siPLK1-NP effectively knocked down >80% of PLK1 mRNA (Fig. 2.4A) and 

reduced > 90% of PLK1 protein expression (Fig. 2.4B) in both EGFR+ lung cancer cells, 

while the scrambled siRNA nanoparticle had no effect. The consequence of PLK1 

knockdown in the NSCLC cells resulted in significant loss of cell viability (Fig. 2.4C). 

Furthermore, PLK1 knockdown resulted in the accumulation of cells in G2/M phase of cell 

cycle, similar to the effect of the PLK1 inhibitor BI2536 (Fig. 2.4D-E). Inducing G2/M arrest 

increases the cell’s sensitivity to radiation damage, as cells in the G2/M phase are more 

sensitive to radiation than cells in G1 or S phase.171 Based on this, I determined the time 

point in which PLK1 knockdown resulted in the highest accumulation of cells in G2/M 

(Figure 2.5). G2/M arrest induced by PLK1 knockdown was first observed at 24 hr and 

increased up to 72 hr post treatment. I used the 72 hr time point in subsequent studies to 

assess the efficacy of C-siPLK1-NP as a radiation sensitizer.  
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Figure 2.4. Effects of C-siPLK1-NP treatment on NSCLC (A549, H460) cell lines. (A) 48-hr 
PLK1 mRNA knockdown (HPRT used as house-keeping gene) and (B) 72-hr PLK1 protein 
reduction at 50 nM siRNA dose in A549 and H460. (C) 4-day cell viability at 30 nM siRNA dose 
in A549 and H460. Data presented as mean ± SD from 3-4 independent samples; ***P<0.001, 
****P<0.0001 vs. siSCR control. Cell cycle arrest increase in G2/M phase in (D) A549 and (E) 
H460 72 hr post treatment of C-siPLK1-NP (50 nM as siRNA) or BI2536 (PLK1 inhibitor, 10 nM). 
Data presented as mean ± SD from independent duplicates (10,000 events per sample); 
****P<0.0001 vs. untreat control. 
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Figure 2.5. NP dose response and cell cycle arrest. Dose response of various NP treatments 
on NSCLC cell viability in (A) A549 and (B) H460. (C) Cell cycle arrest increase in G2/M phase at 
varying time points post treatment of C-siPLK1-NP. (D) Representative histogram of untreat and 
72 hr post treatment of C-siPLK1-NP in A549 cells. Data presented as mean ± SD.  

 

 

2.3.4 Targeted nano-therapeutic enhances radiation damage in vitro  

The efficacy of the nanoparticles as a radiation sensitizer was assessed in vitro by 

established assays: clonogenic survival, cell viability, H2ax induction, and apoptosis 

(Fig. 2.6). A549 and H460 cells were treated with C-siPLK1-NP, C-siSCR-NP, or PBS for 

72 hr and irradiated at 2, 4, and 6 Gy. As shown in Fig. 2.6A, C-siPLK1-NP alone reduced 

colony formation by 60% and when combined with 2 Gy radiation was more effective than 
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2 Gy and 4 Gy radiation alone and resulted in just 10% survival. Complementary to the 

clonogenic survival, pre-treated cells were irradiated and plated for 7 days to assess cell 

viability by CellTiter-Glo (CTG) assay. Cells that received a combination of radiation and 

either nanoparticle (C-siSCR-NP or C-siPLK1-NP) were significantly less viable than 

those exposed to the single treatments (nanoparticles or radiation alone) (Fig. 2.6B). 

Similar results were obtained with H460 cell line (Figure 2.7). I also determined the 

synergy of the combination using the Chou-Talalay method 172. The clonogenic survival 

dose response curves of C-siPLK1-NP alone, radiation alone, and their combination are 

shown in Fig. 2.6C-D. The combination index (CI) of C-siPLK1-NP (50 nM as siPLK1) 

and radiation indicates a strong synergistic effect (CI ranged from 0.3-0.5) at all radiation 

doses tested (2-6 Gy) (Fig. 2.6E). Additionally, I assessed H2ax foci induction and 

apoptosis (24 hr post irradiation - 4 days post NP treatment). H2ax is phosphorylated in 

response to DNA damaging agents (e.g. chemo or radiation) and thus can be used as a 

marker to assess DNA damage caused by treatments, in particular double strand 

breaks.173 As shown in Fig. 2.6F, radiation or PLK1 knockdown alone induced H2ax foci 

and foci increased significantly after treatment with C-NP than with non-targeted NP. This 

illustrates the therapeutic benefit of cetuximab (reducing DNA repair capacity) on the 

nanoparticles in addition to its targeting to EGFR+ cells (shown in Fig. 2.3B). In addition, 

Annexin V/PI staining was used to confirm apoptotic cell death in response to treatment. 

The combination of C-siPLK1-NP and radiation resulted in over 50% of cells in late 

apoptosis (Annexin+/PI+), compared with 33% and 7% for C-siPLK1-NP or radiation 

alone, respectively (Fig. 2.6G).  
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Figure 2.6. C-siPLK1-NP sensitizes A549 lung cancer cells to radiation. Cells were treated 
with C-NP (50 nM as siRNA) for 72 hrs followed by 2-6 Gy irradiation and re-plated for (A) 2-week 
clonogenic survival or (B) one-week cell viability by CTG assay (B). (C and D) Survival dose 
response of A549 treated with C-NP (15-120 nM, C), radiation (2-6 Gy, D), and the combination 
(50 nM C-NP, 2-6 Gy radiation, D). Data presented as mean ± SD from 2-3 independent samples; 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (E) Chou-Talalay synergy analysis reveals 

synergistic combination at all radiation doses tested. (F) H2ax foci induction 24 hr post irradiation 
(0, 2, or 6 Gy). Non-target NP or C-NP (30 nM) were treated 72 hr prior to irradiation. Data 
presented as mean ± SD from 3-4 independent samples (9 images per sample); *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001. (G) Annexin/PI staining 24 hr post 6 Gy irradiation (10,000 
events per sample).  
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Figure 2.7. C-siPLK1-NP sensitizes H460 NSCLC cells to radiation. Cells were treated with 
C-siPLK1-NP (50 nM) for 72 hrs followed by 2-6 Gy irradiation and re-plated for one week cell 
viability by CTG assay or 2-week clonogenic survival (A). (B) H460 cell viability (1K cells plated 
post radiation). (C, D) Clonogenic Survival of C-siPLK1-NP (50 nM), radiation (2-6 Gy), and the 
combination (50 nM C-NP, 2-6 Gy radiation). Data presented as mean ± SD from 2-3 independent 
samples; **P<0.01, ***P<0.001, ****P<0.0001.  
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2.3.5 C-siPLK1-NP enhances radiation sensitivity in vivo  

To investigate the combination of C-siPLK1-NP with radiation in vivo, I chose a well-

controlled easy-to-irradiate mouse model in which A549 lung cancer cells (5 million) were 

inoculated in both flanks of Nude SCID mice (two tumors per mouse). When tumors 

reached ~120 mm3, I intratumorally injected saline, C-siSCR-NP, or C-siPLK1-NP to both 

tumors on each mouse (at 0.3 nmol siRNA per tumor, once a week). At 72 hr post 

treatment, 2 Gy radiation was administered to the left tumor (see Fig. 2.8A) using a small 

animal x-ray irradiator with a lead shield that exposes only the left flank of the mouse. The 

treatments were administered for 6 consecutive weeks. As shown in Fig. 5, treatments 

with C-siPLK1-NP (Fig. 2.8B) or radiation alone (Fig. 2.8C) slowed down the tumor growth 

after multiple doses of NP or radiation, while the combination of radiation and C-siPLK1-

NP (Fig. 2.8C) resulted in immediate tumor control and eventual regression of the tumors. 

Furthermore, tumors that received the combination of C-siSCR-NP and radiation had 

superior tumor control than radiation alone (Fig. 2.8B-C), owing to the radiation sensitizing 

effects of cetuximab, as previously discussed. Two weeks after the last radiation dose, 

mice were sacrificed and tumors were weighed and harvested for mRNA analysis. A 

significant reduction in tumor weight was observed for mice treated with either 

nanoparticle (C-siSCR-NP or C-siPLK1-NP) in combination with radiation (Fig. 2.8D).  As 

shown in Fig. 2.8E, tumors treated with C-siPLK1-NP and radiation had significantly less 

PLK1 mRNA than saline treated or radiation treated tumors, confirming that tumor 

reduction was correlated to PLK1 knockdown. Although C-siPLK1-NP alone slowed down 

tumor growth during treatments, there was no reduction of PLK1 mRNA in C-siPLK1-NP 

treated mice 2 weeks post last dose, which may have been too long to see the siPLK1 
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effect alone. In all, my in vitro and in vivo findings demonstrate the potential of the nano-

therapeutic as a radiosensitizer.  

 

Figure 2.8. C-siPLK1-NP enhances radiation effects in vivo. (A) 5 million A549 tumor cells 
were inoculated in both flanks of SCID mice. Treatments (0.3 nmol siRNA per tumor, once a 
week) and radiation (2 Gy to the left tumor only; 72 hrs post treatments with nanoparticles) were 
administered for 6 weeks (n=7). Growth of (B) non-irradiated tumors and (C) irradiated tumors in 
A549 tumor bearing mice treated with saline, C-siSCR-NP, or C-siPLK1-NP. (D) Average tumor 
weight at sacrifice (day 52 post first treatment; two weeks post last radiation dose). (E) PLK1 
mRNA expression of the tumors from (D). Arrows indicate treatment dates. Data presented as 
mean ± SEM; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
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2.3.6 Efficacy of C-siPLK1-NP in orthotopic lung tumor model  

To assess the translational potential of the nano-therapeutic as a systemic therapy, I 

developed an orthotopic lung tumor model using a non-surgical intratracheal instillation 

procedure (Fig. 2.9). A549 cancer cells expressing luciferase (5 million) were injected 

through the trachea in anesthesized mice using gavage needles with rounded tips. Tumor 

growth signal was monitored by bioluminescence using in vivo imaging system (IVIS), 

and upon sacrifice, large tumor nodes are macroscopically visible confirming the 

presence of tumor in lungs (Fig. 2.9A). Three weeks after tumor inoculation, mice were 

grouped and injected weekly with saline, C-siSCR-NP, or C-siPLK1-NP intravenously 

(Fig. 2.9B). Tumor growth was monitored weekly by luminescent signal of mice in prone 

and supine positions using IVIS. As shown in Fig. 2.9C-D, C-siPLK1-NP significantly 

reduced the growth of the orthotopic tumors after 8 administrations at a dose of 0.5 mg 

siRNA/kg animal once per week. Furthermore, mice exhibited no weight loss during 

treatments (Fig. 2.9E), indicating the safety of the nanoparticle platform, which is in 

agreement with our prior work. Extended tumor control after the last treatment was also 

observed for mice treated with C-siPLK1-NP (Fig. 2.9F), which led to prolonged survival 

compared with mice treated with C-siSCR-NP or saline (Fig. 2.9G). This confirms my in 

vitro findings that C-siPLK1-NP is effective as a single agent therapeutic for NSCLC, and 

demonstrates the safety and efficacy of the platform, and its potential to serve as a 

targeted therapy for lung cancer. As previously demonstrated, such efficacy is expected 

to signficantly increase when combining with radiation therapy.  
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Figure 2.9. C-siPLK1-NP reduces orthotopic lung tumor growth. (A) In vivo images showing 
luminescent signal of A549-Luc tumors from intratracheal inoculation, which was confirmed with 
the presence of tumor nodes in the lungs. (B) Once tumors were established (3 weeks post 
inoculation), mice were treated with saline, C-siSCR-NP, or C-siPLK1-NP once per week at 0.5 
mg/kg siRNA dose for 8 weeks. (C) IVIS imaging for C-siPLK1-NP, C-siSCR-NP, or saline treated 



 

63 
 

mouse in supine position over the course of treatment. (D) Lung tumor growth determined by 
average photon flux of prone and supine position for each mouse (n=7-8). Arrows indicate 
treatment days. (E) Body weight of mice during NP treatment administration. (F) Orthotopic lung 
tumor growth during and after completion of treatments (marked by arrow). Data presented as 
mean + SEM, *P<0.05, **P<0.01 vs. saline. (G) Kaplan-Meier Survival curve showing extended 
survival for mice treated with C-siPLK1-NP (n=6), P=0.0508 vs. saline. Copyright permission 
obtained from Encapsula NanoSciences for mouse cartoon in (A).  

 

 

2.4 DISCUSSION 

Molecularly targeted therapeutics that can enhance the effects of radiation have potential 

to benefit millions of cancer patients who receive radiation therapy. In contrast to 

traditional approaches used to enhance radiation sensitivity (e.g. chemotherapy, oxygen 

mimics, metallic nanoparticles),174 targeted therapies provide the opportunity to 

preferentially act on cancer cells. Despite this promise, the only FDA approved targeted 

therapy for combination with radiation is cetuximab for head and neck cancer.175 

Identifying targeted therapy and radiation combinations to improve treatment is needed. 

Herein, I have developed a novel radiation sensitizer based on a mesoporous silica 

nanoparticle (MSNP) platform. By conjugating an EGFR-antibody to MSNP and delivering 

PLK1 siRNA, I show that the nano-therapeutic can effectively target NSCLC cells to 

initiate cell death and sensitize tumor cells to radiation.  

The majority of lung cancer patients are diagnosed at advanced disease stages and 

require systemic therapy to relieve symptoms and prolong survival.154 Platinum based 

chemotherapeutics remain the standard of care, but have limited efficacy and carry 

significant side effects.176 For patients who harbor a mutated epidermal growth factor 

receptor (EGFR) or anaplastic lymphoma kinase (ALK) translocation, targeted therapy 
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with EGFR or ALK inhibitors may be administered. While such targeted therapies have 

dramatically improved outcomes for some patients, one drawback is that they are prone 

to resistance.177 Furthermore, most NSCLC patients do not harbor EGFR or ALK 

abnormalities and there are no targeted therapies for KRAS and many other identified or 

unknown oncogenic drivers. Immunotherapy, targeting programmed cell death protein 1 

(PD-1) or programmed death ligand 1 (PD-L1), has shown promising results but still 

benefits just a minority of patients.2,178 Effective systemic therapy with minimal side effects 

is consequently an area of unmet clinical need.  

In this research, I focused on wild type EGFR and KRAS mutant NSCLC (e.g. A549, 

H460) since there are no current targeted therapies for this patient subgroup (over 30% 

of lung adenocarcinomas).179 However, it is anticipated that the therapeutic can be 

applicable to any cancer patient whose tumors have high EGFR expression such as lung, 

breast, colon, glioblastoma, and head and neck cancers,180 and in particular for patients 

receiving radiation therapy. Radiation is currently administered to the majority of lung 

cancer patients in various stages of disease. For unresectable locally advanced NSCLC, 

the standard of care consists of conventional external beam radiation (30 fractions of 2 

Gy each) with concurrent or sequential chemotherapy – which carries significant toxicity. 

Furthermore, the role of radiation therapy for lung cancer patients continues to expand 

with new technologies and techniques. For example, stereotactic body radiotherapy, 

which allows for the delivery of high doses of radiation per fraction (e.g. 4 fractions of 15 

Gy each), has shown promise as an alternative approach to surgical resection for early 

stage lung cancer patients.181 Thus, the targeted radiation sensitizer I have developed 

here will potentially benefit lung cancer patients in all disease stages. 
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While EGFR antibodies and inhibitors are established drugs for patients with EGFR 

mutations, PLK1 inhibitors have been plagued in clinics. A major limitation is that current 

PLK1 small molecule inhibitors are ineffective for solid tumors due to their low tumor 

bioavailability and toxic side effects to healthy cells. PLK1 inhibitors must have long half-

lives to achieve sufficient intra-tumor concentrations, but this results in sustained 

exposure to hematopoietic precursor cells in blood and bone marrow, leading to 

hematologic dose-limiting toxicities (neutropenia and thrombocytopenia).182-185 Of all 

PLK1 inhibitors, volasertib has shown the most promise having reached phase III clinical 

trial but only for acute myeloid leukemia (blood cancer).115 For lung cancer, volasertib 

was terminated as a monotherapy early in a phase II clinical trial due to a lack of 

response.118 As an alternative approach, a PLK1 siRNA nanoparticle (TKM-PLK1) was 

developed and showed promising results with stable disease observed in 51% of patients 

with hepatocellular carcinoma (HCC) in a phase I/II clinical trial.121 However, the material 

has a low therapeutic window (0.6-0.75 mg/kg) and is lipid based; thus, it is only effective 

at treating liver cancers. Therefore, an effective PLK1 therapeutic remains an unmet 

clinical need for other solid tumors, including lung cancers. We expect that C-siPLK1-NP 

can circumvent the issues associated with low tumor bioavailability and toxic side effects 

of current PLK1 inhibitors in clinical trials. SiRNA knockdown of PLK1 may be 

advantageous over antibodies and inhibitors because it orchestrates its effect at the 

mRNA level instead of the protein level, which may overcome certain resistance 

mechanisms. For instance, we have previously reported that siRNA can overcome both 

intrinsic and acquired resistance of HER2+ cancer cells to small molecules or antibodies 

targeting the same protein.119 In addition we also found that cancer was not prone to 
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develop resistance to siRNA as they would to small molecule inhibitors or antibodies.120 

The nanoparticle construct can also improve tumor bioavailability via the enhanced 

permeability and retention effect.186 Furthermore, cancer cell targeting by cetuximab on 

the nanoparticles would reduce off-target effects to healthy cells.  

Ultimately, we envision that the application of EGFR-antibody conjugated nanoparticle for 

delivering siPLK1 will be impactful as a lung cancer treatment in 1) patients with KRAS 

or other mutations for which there are currently no targeted therapies, 2) combination with 

radiation therapy to increase sensitivity and as a result, reduce doses and toxic side 

effects, and 3) overcoming cancer resistance and relapse by effectively targeting PLK1 

of cancer stem cells as shown in previous reports.89-91 In our prior work, we reported on 

the MSNP platform’s overall safety, biocompatibility, long-term storage and stability,11 as 

well as efficacy in multiple breast cancer models.119,151,156 Thus, the platform is already 

well positioned to advance to clinical trials. My findings herein illustrate that C-siPLK1-NP 

has great potential to serve as a potent radiation sensitizer and to meet the clinical need 

of an effective therapeutic against PLK1, which is a key target to defeat cancer. In 

addition, I show that co-targeting both EGFR and PLK1 is a highly effective strategy to 

enhance radiation sensitivity, which warrants further investigation for all high EGFR 

expressing cancers as aforementioned.  
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Chapter 3: Combination of PLK1 inhibition and PD-L1 

blockade for treatment of lung cancer  

 

3.1 INTRODUCTION 

Polo-like kinase 1 (PLK1) is a critical mitotic kinase that is overexpressed in various 

cancers and provokes oncogenic properties.4 Previous studies have illustrated the 

potential of PLK1 inhibition as a therapeutic strategy and several PLK1 small molecule 

inhibitors have reached clinical trials.187 However, PLK1 inhibitors as a monotherapy have 

not advanced beyond clinical trials due to poor efficacy and dose-limiting toxicities.182-185 

The most advanced PLK1 inhibitor, volasertib (BI6727), reached phase III clinical trial for 

acute myeloid leukemia (blood cancer),115 but eventually failed to meet primary endpoint 

of objective response.117 For lung cancer, volasertib was terminated as a monotherapy 

early in a phase II clinical trial due to lack of response at the given dose limiting toxicity 

(300 mg once every 3 weeks).118 These results suggest that alternative therapeutic 

strategies are needed to elicit the full potential of inhibiting PLK1. 

The recent emergence of immune checkpoint blockade targeting the PD-L1/PD-1 axis 

have provided promising results for NSCLC patients. PD-L1 expression on tumor cells 

inhibits tumor directed cytotoxic CD8+ T cell activity by binding to PD-1 receptor of the T 

cells and suppressing their function.68,78,79 Recently, checkpoint inhibitors for PD-1 and 

PD-L1 (e.g., pembrolizumab, nivolumab, atezolizumab, and durvalumab) received FDA 

approval for treatment of NSCLC, either as first line (pembrolizumab) or second line 

therapy.81 However, while patients who respond may show robust and durable responses, 

only a minority of total patients respond, and many initial responders eventually 
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relapse.80,85,188 Furthermore, systemic distribution of antibodies against immune 

checkpoints can cause aberrant and uncontrolled immune responses, leading to immune-

related adverse effects (irAEs) that damage normal tissues.84 These toxicities can result 

in discontinuation of treatment and in some instances irAEs can be fatal. Thus, strategies 

to improve the response and therapeutic efficacy of immune checkpoint blockade are of 

great interest.189 

A recent study showed that PD-L1 protein abundance fluctuated during cell cycle 

progression in multiple human cancer cell lines, peaking in M and early G1 phase.190 

Accordingly, increased PD-L1 protein abundance was observed in multiple mouse tumor-

derived cell lines arrested in M phase by nocodazole or taxol.190 In my previous study 

(Chapter 2), I identified that reduction of PLK1 induces a strong mitotic arrest that can be 

sustained for several days post treatment. Collectively, these observations led me to 

hypothesize that combining PD-L1 antibodies with mitotic kinase inhibitors, such as PLK1 

inhibitors, can increase cancer cell killing owing to the apoptotic effect of the PLK1 

inhibitors and the anti-tumor immune effect that would be provoked by PD-L1 checkpoint 

blockade.    

Herein, we developed a PLK1 inhibitor loaded mesoporous silica nanoparticle platform 

(MSNP) conjugated to PD-L1 antibody to synergize combination effects of targeting both 

PLK1 and PD-L1. By utilizing the nanoparticle construct to deliver these agents, we can 

effectively co-localize therapeutic effects to the tumor and reduce toxic concerns 

associated with systemic treatment of the drugs. Our study highlights a rationale 

combination strategy to augment existing therapies without increasing toxicity by utilizing 

our MSNP platform as a delivery carrier.  
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3.2 MATERIALS AND METHODS 

3.2.1 Cell lines and reagents 

A549 NSCLC were purchased from ATCC (CCL-185) and maintained in RPMI media with 

10% fetal bovine serum (FBS). Lewis Lung Carcinoma (LLC) metastatic variant, LLC-JSP 

cells, and fluorescent labeled LLC-JSP cells were gift from Dr. Don Gibbons lab (MD 

Anderson Cancer Center), and were cultured in RPMI + 10% FBS. Antibodies used: 

Human PD-L1 antibody (eBioscience), mouse PD-L1 (PE, BD Biosciences), mouse CD3 

(APC, eBioscience), mouse CD8a (Pacific Blue, Invitrogen), mouse CD4 (BV711, BD 

biosciences), mouse PD-1 (PE/Cy7, BioLegend). Alexa Fluor 488 secondary antibody 

was purchased from Life Technologies. In vivo grade mouse PD-L1 antibody was 

purchased from BioXcell (BE0101), and volasertib was purchased from Selleckchem. 

SiRNA sequences: PLK1 (antisense 5’-UAUUCAUUCUUCUUGAUCCGG-3’); scrambled 

SCR (antisense 5’-UUAGUCGACAUGUAAACCA-3’) were purchased from Dharmacon.  

3.2.2 Nanoparticle synthesis and characterization 

Bare MSNPs were synthesized as we have previously reported.151 For PLK1 inhibitor 

loading, volasertib was dissolved in DMSO and diluted in ethanol solution and mixed with 

MSNPs in ethanol for overnight shaking at room temperature (350 RPM). The next day, 

nanoparticles were coated with PEI (Alfa Aesar) and mal-PEG-NHS (Jenkem) following 

our previous studies.11,151 For PD-L1 antibody conjugation, in vivo grade mouse PD-L1 

antibody (BioXcell) was buffer exchanged to PBS pH 8 (Zeba spin column, Thermo 

Fisher) and thiolated using Traut’s reagent (Thermo Fisher) following manufacturer’s 

protocol. Thiolated antibody was added to NP at 20 wt.% and shaken overnight at 4oC 

(300 RPM). Nanoparticles were washed with PBS pH 7.2 before characterization. 
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Nanoparticle size was 90 nm, determined using Malvern Zetasizer. Antibody loading was 

4 wt.%, determined by protein quantification of NP supernatant with BCA assay. To 

quantify PLK1 inhibitor loading, nanoparticles were shaken in DMSO solution to release 

the drug and supernatant was collected. Absorbance of supernatant was measured with 

Tecan plate reader to determine loading extent to be 0.5 wt.%. The p-iPLK1-NP is 

nanoparticle loaded with both PLK1 inhibitor and PD-L1 antibody, p-NP is nanoparticle 

loaded with PD-L1 antibody, and iPLK1-NP is nanoparticle loaded with PLK1 inhibitor.  

3.2.3 Flow cytometry 

Cells (100K cells/well) were plated in 6 well plates overnight and treated with indicated 

treatments the next day. Following treatments, cells were collected and aliquoted to 1 

million cells per sample before washing in FACs buffer and staining. Primary and 

secondary antibodies were stained for 30 mins and 1 hour, respectively, under rocking 

on ice. After staining, cells were washed in FACs buffer before flow analysis with Guava 

easyCyte (Millipore Sigma) flow cytometer (10,000 events per sample). For tumors, 

tumors were harvested, minced, and incubated with 1 mg/ml DNAse for 30 minutes before 

smashing through 70 um filter to obtain single cell suspension. RBC lysis buffer was 

incubated with cells for 5 minutes, and washed with PBS. 1 million cells per sample were 

blocked with Fc-shield before staining with dye conjugated antibodies for 30 minutes (in 

FACs buffer). Cells were then washed with FACs buffer and analyzed with Guava (50,000 

events per sample).  

3.2.4 Cell viability after treatments 

Cells (1500/well) were plated in white flat bottom 96 well plate overnight. The following 

day, cells were treated with drug loaded nanoparticles and controls as indicated and 
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media was changed 24 hr post treatment. 4-5 day post treatment, cell viability was 

assessed using Cell Titer Glo assay (Promega) following manufacturer’s instructions. 

Luminescence was read with Tecan plate reader.  

3.2.5 RT-qPCR to assess PLK1 gene knock down 

RNA was isolated with GeneJet RNA purification kit (Thermo Fisher Scientific) following 

manufacturer’s instructions. One-Step qRT-PCR was performed using EXPRESS One-

Step Superscript™ qRT-PCR Kit (Invitrogen). Cycling conditions: 50 oC for 2 min, 95 oC 

for 10 min, 40 cycles of 95 oC for 15 s, and 60 oC for 1 min. TAQMAN gene expression 

primers Human HPRT mRNA (Hs99999909_m1), Human PLK1 mRNA 

(Hs00983225_g1), and Human PDL1 (Hs00204257_m1) were used. Data was analyzed 

using 2–ΔΔC(t) method.  

3.2.6 Syngenic tumor models and treatments 

For single tumor flank model, LLC-JSP murine lung cancer cells (200K) were inoculated 

in right flank of C57BL/6 female mice (6 weeks) (Charles River NCI colony). At 8 days 

post tumor inoculation, mice received intraperitoneal (i.p.) treatments of volasertib (20 

mg/kg) and/or PD-L1 antibody (10 mg/kg) every 5 days for 3 doses total. Tumors were 

measured with Vernier Caliper and volume calculated by V = 0.5 x length x width2. For 

bilateral tumors, C57BL/6 were inoculated with 100K and 40K LLC-JSP cells in right and 

left flank, respectively. At 12 days post inoculation, the aforementioned treatments were 

administered intratumorally to the right tumor every 3 days for 3 doses total. For both 

single flank and bilateral flank tumor models, mice were sacrificed when total tumor 

burden exceeded 2000 mm3. For metastatic lung tumor model, LLC-JSP (200K) were 

injected intravenously (i.v.) to 6 week old C57BL/6 mice. At 3 days post cancer cell 
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injection, mice were randomly grouped and treated with i.v. saline, p-iPLK1-NP (25 mg/kg 

NP), or i.p. PD-L1 antibody (5 mg/kg) and volasertib (1.25 mg/kg) every 3 days for a total 

of 4 doses. All studies were reviewed and approved by Institutional Animal Care and Use 

Committee (IACUC) at Oregon Health and Science University (OHSU). 

3.2.7 Statistical analysis 

GraphPad Prism 8.0 (GraphPad Software Inc.) was used for all statistical analysis. 

Comparison between two groups was performed with Student’s t test. Tumor growth was 

analyzed using two-way repeated measures ANOVA with Tukey’s correction for multiple 

comparisons. Kaplan Meier survival curve was analyzed using the log-rank (Mantel-Cox) 

method. Significance was set at p < 0.05. In vitro data are expressed as mean ± SD; in 

vivo data are expressed as mean ± SEM.  

 

 

 

 

 

 

 

 

 

 



 

73 
 

3.3 RESULTS 

3.3.1 PLK1 knock-down induces expression of PD-L1 

We and others have previously reported that PLK1 inhibition or knock-down results in cell 

cycle arrest in G2/M.156,191 PLK1 knockdown resulted in an increase in PD-L1 surface 

expression in both human (A549) and murine (LLC-JSP) lung cancer cell lines. As shown 

in Fig. 3.1A, 85% knockdown of PLK1 mRNA (by siRNA against PLK1) resulted in 2.5-

fold increase in PD-L1 mRNA expression in A549 cell line compared with control treated 

cells. This was then confirmed at the surface protein level in A549 (Fig. 3.1B) and LLC-

JSP (Fig. 3.1C) lung cancer cell lines at 3 days post siRNA treatments.   

 

Figure 3.1. PLK1 siRNA knock-down induces PD-L1 expression. (A) PLK1 and PD-L1 mRNA 

expression in A549 (human NSCLC) at 48 hr post treatment with PLK1 siRNA (siPLK1) or 

scrambled siRNA (siSCR) normalized to HPRT housekeeping gene. Data presented as mean ± 

SD from triplicates; ****P<0.0001. (B) PD-L1 surface expression of A549 (B) and LLC-JSP (C) at 

72 hr post treatments assessed by flow cytometry (10,000 events per sample).  
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3.3.2 Combination of PLK1 inhibition with PD-L1 blockade enhances tumor control 

in vivo 

Based on our finding that PLK1 reduction results in PD-L1 increase, we sought to 

investigate whether PLK1 inhibition and PD-L1 blockade would synergize in vivo. We 

used LLC-JSP cell line to develop flank tumor model in immune-competent mice.192 

Established tumors (>60 mm3) at day 8 post tumor inoculation were treated i.p. with the 

PLK1 inhibitor volasertib (20 mg/kg) and PD-L1 monoclonal antibody (10 mg/kg) every 5 

days for a total of 3 doses (Fig. 3.2A) . As shown in Fig. 3.2B, the combination treatment 

significantly reduced tumor growth compared with single drug administrations. Moreover, 

the combination significantly prolonged survival of mice (Fig. 3.2C).  

 

Figure 3.2. PD-L1 blockade potentiates the effect of PLK1 inhibition in syngenic lung 

tumors. (A) C57BL/6 mice were injected with 200K LLC-JSP cells in right flank. On day 8 post 

tumor inoculation, mice were grouped (n=7-8) and received i.p. treatments of control vehicles 

(PBS and HCl/saline), PLK1 inhibitor volasertib (20 mg/kg), PD-L1 antibody (200 g), or 

combination of PLK1 inhibitor and PD-L1 antibody. Treatments were administered every 5 days 

for 3 doses. (B) Tumor growth of mice. (C) Kaplan-Meier Survival curve. Data presented as mean 

± SEM; ***P<0.001, ****P<0.0001.  
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3.3.3 Nanoparticle delivery of PLK1 inhibitor volasertib (iPLK1-NP) 

Despite the promise of PLK1 as a therapeutic target, clinical trials with current small 

molecule inhibitors have been disappointing. To reduce toxicity and improve tumor 

bioavailability of PLK1 inhibitor, we investigated whether our MSNP platform could 

improve the efficacy of a clinically available PLK1 inhibitor. In our prior work, 119,151,156 we 

demonstrated the promise of this MSNP platform to target and deliver siRNA to breast 

tumors including those metastasized to lungs. In this research, we utilized the platform to 

deliver the small molecule inhibitor volasertib, which is the most advanced inhibitor of 

PLK1. Volasertib was loaded onto mesoporous silica (Fig. 3.3A) prior to surface 

modification with polyethylene imine (PEI) and polyethylene glycol (PEG). The final 

nanoparticle (referred to as iPLK1-NP) size is 90 nm (Fig. 3.3B) which is in the appropriate 

range to take advantage of the EPR effect, and contains 0.5 wt.% PLK1 inhibitor 

volasertib. As shown in Fig. 3.3C, treatment of LLC-JSP cells with volasertib or iPLK1-NP 

significantly reduced cell viability compared with vehicle treated cells in a dose-dependent 

manner. Further, treatment with iPLK1-NP reduced cell viability more than the free PLK1 

inhibitor. In agreement with previous finding using PLK1 siRNA (Fig. 3.1), treatment with 

iPLK1-NP resulted in significant increase in PD-L1 cell surface expression (Fig. 3.3D).  
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Figure 3.3. Nanoparticle delivery of PLK1 inhibitor volasertib (iPLK1-NP). (A) Schematic of 
synthesis of iPLK1-NP. (B) Hydrodynamic size of NP (with no inhibitor) and iPLK1-NP measured 
with Zetasizer. (C) Viability of LLC-JSP cells treated with volasertib (in 1%DMSO/PBS), iPLK1 (in 
PBS), or 1%DMSO/PBS for 4 days. Data presented as mean ± SD from 4 independent samples; 
****P<0.0001. (D) PD-L1 surface expression of LLC-JSP cells treated with PBS or iPLK1-NP (42 

g/ml NP, 210 ng/ml volasertib) for 3 days.  
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3.3.4 PD-L1 targeted nanoparticle for iPLK1 delivery (p-iPLK1-NP)  

To evade immune response, many tumors overexpress PD-L1, thus PD-L1 can be utilized 

for tumor targeting of therapeutics. As iPLK1-NP could effectively kill cancer cells and 

simultaneously upregulate PD-L1 of the surviving cells, we aimed to utilize this as an 

advantage to target PD-L1+ cancer cells by conjugating PD-L1 antibody on iPLK1-NP. In 

this sense, a feed-forward loop can be generated where repeated administrations of PD-

L1 targeted iPLK1-NP (referred to as p-iPLK1-NP) would upregulate PD-L1 expression 

and allow for superior tumor targeting to induce both apoptosis (via PLK1 inhibition) and 

anti-tumor immune responses (via PD-L1 blockade). This would be particularly 

advantageous for treating tumors with low PD-L1 expression, and may ultimately allow 

for higher response rates of immune checkpoint blockade. As illustrated in Fig. 3.4A, PD-

L1 antibody was conjugated to PEG on NPs, and antibody amount was determined by 

BCA assay to be 4 wt.%. The hydrodynamic size of the construct is shown in Fig. 3.4B to 

be about 90 nm. As with iPLK1-NP, treatment with p-iPLK1-NP significantly reduced cell 

viability in LLC-JSP cell line (Fig. 3.4C). Furthermore, LLC-JSP cells incubated for 2 hours 

with p-iPLK1-NP blocked PD-L1 surface receptors as much as free PD-L1 antibody 

delivered at 25-fold higher dose. This is likely due to the high local concentration of 

antibody the cell experienced when antibody was delivered with nanoparticles (Fig. 3.4D). 

The iPLK1-NP had no effect on PD-L1 level at this short time point (Fig. 3.4D). Treatment 

of cells for 2 days with iPLK1-NP increased PD-L1 level as anticipated, which was 

reduced to normal level (see untreat) upon treatment with nanoparticle containing PD-L1 

antibody (p-iPLK1-NP) (Fig. 3.4E). This demonstrates the nanoparticle targeting and 

blockade of PD-L1 receptors, which are induced by PLK1 inhibition.    
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Figure 3.4. PD-L1 targeted nanoparticle for iPLK1 delivery (p-iPLK1-NP). (A) Schematic and 
(B) hydrodynamic size of p-iPLK1-NP containing 4 wt.% of PD-L1 antibody and 0.5 wt.% of PLK1 
inhibitor. (C) 5 day cell viability of LLC-JSP cells treated with iPLK1-NP or p-iPLK1-NP. Data 
presented as mean ± SD from 4 independent samples; ns – not significant. PD-L1 surface 
expression assessed by flow cytometry after LLC-JSP cells were incubated with various 
treatments as specified for (D) 2 hrs and (E) 2 days. Doses: free PD-L1 antibody (50 µg/ml), 
iPLK1-NP (50 µg/ml), and p-iPLK1-NP (50 µg/ml, containing 2 µg/ml PD-L1 antibody). Left: 
representative histograms, right: median intensity (RFU). Data presented as mean ± SD from 
independent duplicates (10,000 events per sample); *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001.  
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3.3.5 Local delivery of p-iPLK1-NP reduces local and distant tumor growth  

To assess the anti-tumor immune response of p-iPLK1-NP, we utilized a bilateral flank 

tumor model. C57BL/6 mice were injected with 100K and 40K LLC-JSP cells on the right 

and left flank, respectively. At day 12 post injection, the right flank (local) tumors were 

injected with PBS, p-NP, iPLK1-NP, or p-iPLK1-NP (0.5 mg NP, 2.5 g iPLK1, 20 g PD-

L1) every 3 days for a total of 3 injections (Fig.3.5A). Tumor growth of local (treated) and 

distant (untreated) tumors were monitored. Treatments with p-iPLK1-NP significantly 

reduced tumor growth of local tumor compared with nanoparticle containing a single drug 

(p-NP or iPLK1-NP) (Fig. 3.5B). Importantly, a delay in the onset of distant tumors was 

also observed for p-iPLK1-NP treated mice (Fig. 3.5C), which illustrates that an anti-tumor 

immune response was generated. Furthermore, treatment of p-iPLK1-NP significantly 

prolonged survival of mice compared with saline control or single drug NPs (Fig. 3.5D). 

Additionally, in a separate study, mice were injected with saline or p-iPLK1-NP as 

illustrated in Fig. 3.5A and tumors were harvested one day after last treatment to assess 

T cell infiltration. As shown in Fig. 3.5E, tumors treated with p-iPLK1-NP had significantly 

higher CD3+ and CD8+ tumor infiltrating lymphocytes (TILs), while CD4+ TILs were not 

enhanced compared with the control tumors.  
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Figure 3.5. p-iPLK1-NP elicits anti-tumor immune effects. (A) 100K LLC-JSP cells were 
injected in right flank and 40K cells were injected in left flank of C57BL/6 mice. On day 12 post 
tumor inoculation, mice received intratumoral treatments of saline, p-NP, iPLK1-NP, or p-iPLK1-

NP to the right (local) tumor. 0.5 mg NP in 50 l per dose for 3 doses total. (B) Local tumor growth. 
(C) Distant (untreated) tumor growth of individual mice. (D) Kaplan Meier Survival curve. (E) Mice 
were injected with tumors as described in (A) and received treatments of saline or p-iPLK1-NP. 
One day after last treatment, tumors were harvested to assess tumor infiltrating lymphocytes 
(TILs) with flow (50,000 events per sample). Data presented as mean ± SEM; *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001.  
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3.3.6 Systemic administration of p-iPLK1-NP prolongs survival of mice with 

experimental metastatic tumors 

To demonstrate the clinical potential of p-iPLK1-NP for lung cancer, we developed an 

experimental metastatic lung tumor model by intravenous injection of LLC-JSP cells 

(200K cells). Three days post cell injection, mice were randomly grouped and treated with 

saline, p-iPLK1-NP, or free drugs (volasertib + PD-L1 antibody) every 3 days for 4 doses 

total, as shown in Fig. 3.6A. The free drugs were administered at 5-fold higher dose than 

the amounts on NP. Mice treated with p-iPLK1-NP survived significantly longer than those 

treated with saline (Fig. 3.6B). The presence of lung tumor was confirmed visually for 

each deceased mouse. Data indicate that p-iPLK1-NP was as effective as the free drugs 

administered at 5-fold higher dose owing to the ability of nanoparticles for tumor targeting 

and co-localizing the therapeutic effects. Furthermore, treatment with p-iPLK1-NP did not 

cause any weight loss, demonstrating the safety of the construct (Fig. 3.6C).   
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Figure 3.6. p-iPLK1-NP improves survival of mice bearing metastatic lung tumors. (A) 

C57BL/6 mice were injected with 200K LLC-JSP cells intravenously. After 3 days, mice were 

randomly assigned systemic treatments of saline, free drugs (12.5 g volasertib and 100 g PD-

L1 antibody), or p-iPLK1-NP (containing 2.5 g volasertib and 20 g PD-L1) for a total of 4 doses. 

(B) Kaplan-Meier Survival curve. *P<0.05, **P<0.01 (Log-rank Mantel-Cox test). (C) Mice weight 

change post first treatment.   
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3.4 DISCUSSION 

In this research, I report for the first time that PLK1 inhibition results in an increase of 

immune checkpoint PD-L1 expression in human and mouse NSCLC cells. This suggests 

that avoiding the immune response is a mechanism exploited by NSCLC cells that survive 

PLK1 inhibition. Previous studies have also shown roles of PLK1 in regards to immunity. 

For instance, PLK1 has been shown to be a regulator of STAT3 activation,111 which 

promotes an immune suppressive microenvironment, and inhibiting PLK1 resulted in loss 

of phosphorylated STAT3 in NSCLC cells.112 Further, PLK1 was found to associate with 

the MAVS and negatively controls its activity in inducing type I interferons.113,114 

Intriguingly, PLK1 inhibition has also been shown to significantly increase HLA mRNA 

which encode MHC class I protein, the antigen presenting surface receptors.109 These 

studies suggest that PLK1 inhibition may be promising to augment immunotherapy. 

However, to the best of our knowledge, this is the first study to report the effectiveness of 

the combination of PLK1 inhibition with immunotherapy.  

I show that PLK1 inhibition induces PD-L1 upregulation and that PD-L1 blockade 

significantly potentiates the effect of PLK1 inhibition in NSCLC treatment. Other cytotoxic 

agents have also been shown to increase PD-L1 expression, including paclitaxel in 

ovarian cancer,193 CDK4/6 inhibitors,190 and PARP inhibitors194 in breast cancer. 

Therefore, it is logical that these drugs are now in clinical investigations in combination 

with PD-L1 checkpoint blockade.195 My findings also suggest that PLK1 inhibitors should 

be combined with PD-L1 immune checkpoint blockade to facilitate effective therapy in 

clinics.  
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To overcome the efficacy and toxicity limitations of current PLK1 inhibitors that have not 

advanced beyond clinical trials, I developed a PLK1 inhibitor nanoparticle platform and 

conjugated it to PD-L1 antibody to synergize combination effects of PLK1 inhibition and 

PD-L1 blockade. In our prior works, we reported on the efficacy and safety profile of this 

platform in delivering siRNA to mediate gene knockdown of breast and lung tumors in 

vivo.119,151,156 In this research, I demonstrate that the platform can also improve delivery 

of small molecule inhibitors (i.e. volasertib) as treatment with PLK1 inhibitor on 

nanoparticles significantly reduced cell viability compared with free PLK1 inhibitor. 

Further, the therapeutic benefit of nanoparticle delivery was demonstrated in an 

experimental metastatic lung tumor model, where administration of the drugs on 

nanoparticles improved survival as much as the free drugs at 5-fold higher dose. This 

suggests that nanoparticle can overcome dose limiting toxicity issues of PLK1 inhibitors.   

Our research herein focused on lung cancer, the leading cancer killer.1 Like melanoma, 

where immunotherapy has been the most promising, lung cancer is a disease with a high 

mutational load which drives the expression of various neo-epitopes which can be 

recognized by host immune system.196,197 Consequently, immunotherapy is a promising 

approach to treat lung cancer. However, objective response rates are much lower for lung 

cancer patients than melanoma. The research described here illustrates how superior 

responses can be achieved for lung cancers when combining PLK1 inhibition with PD-L1 

blockade. Further, as the increase of PD-L1 is not specific to PLK1 inhibitors, other 

cytotoxic agents that induce upregulation of PD-L1 can be explored to synergize with 

current immune checkpoint blockade agents. Additionally, by co-localizing therapeutic 

effects with our MSNP platform, the dose of the drugs required can be reduced by 5-fold. 
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This suggests that nanoparticles can improve efficacy and reduce systemic toxicities of 

free drugs. This is key to improving outcomes as current combination therapy strategies 

with immune checkpoint blockade can lead to higher rates of adverse events. Lastly, due 

to the versatility of the MSNP platform, siRNA can also be loaded to target any gene 

identified as a regulator of cancer progression or immune evasion, in addition to the 

targeting antibody (e.g. PD-L1) and PLK1 inhibitor. In this regard, the platform may 

ultimately allow for patient-specific combination therapies to be delivered as a single drug 

agent, which can localize therapeutic effects in tumors and mitigate toxicity.  
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Chapter 4: Summary, conclusions, and future directions 

4.1 Summary and conclusions 

In this dissertation, polymer modified mesoporous silica nanoparticles (NP) were 

developed as targeted therapies to augment radiation and immunotherapy for NSCLC. 

As discussed in Chapter 1, radiation therapy and immunotherapy are critical treatments 

in the management of NSCLC. Radiation is currently administered to over half of all 

NSCLC cancer patients, in both early and late disease stages. The ultimate goal of 

radiation therapy is to provide curative outcomes with minimal toxicity. Consequently, 

radiation sensitizers that can escalate radiation effects selectively to cancer cells hold 

great promise for patients receiving radiation. However, despite the efforts, there is no 

targeted therapy currently approved for use with radiation in NSCLC. Immunotherapy, 

specifically immune checkpoint blockade, is a new treatment strategy that has advanced 

rapidly to FDA approval due to the promising durable responses observed for some 

patients. For metastatic NSCLC, four immunotherapy drugs are now routinely 

administered either as first line or second line therapy. However, the majority of patients 

still do not respond to these therapies. Auto-immune disorders from systemic distribution 

of the drugs are also a concern that must be closely managed by clinicians.     

Due to the heterogeneity and plasticity of cancer cells, it is now generally accepted that 

monotherapy will be ineffective in providing curative outcomes, especially for difficult to 

treat cancers such as lung cancer. Identifying rationale combination strategies can 

provide superior outcomes for patients, and may ultimately lead to cures. PLK1 is a 

promising molecular target to improve existing therapies. PLK1 is involved in almost every 
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aspect of mitosis and also regulates a variety of genes involved in cancer progression 

and survival. Nanoparticles provide a means to integrate multiple therapies and co-

localize their anti-cancer killing effects, while improving tumor bioavailability. Our group 

has extensively optimized a MSNP platform to overcome limitations of traditional cancer 

therapies. I utilized this platform to combine rationale therapies into a single drug agent 

in an effort to improve radiation and immunotherapy for NSCLC, the deadliest form of 

cancer.  

In Chapter 2, the MSNP platform was developed as a molecular targeted radiation 

sensitizer. By conjugating EGFR monoclonal antibody cetuximab to MSNP and delivering 

siRNA against PLK1, I showed that this nanoparticle construct (C-siPLK1-NP) effectively 

targets EGFR+ cells and reduces PLK1 expression at the mRNA and protein levels. This 

led to G2/M arrest, reduced DNA repair capacity, and cell death in NSCLC cells. 

Furthermore, I showed a synergistic combination between C-siPLK1-NP and radiation 

that significantly enhances cell death, which was confirmed in vivo in flank A549 lung 

tumors. The translational potential of the platform as a systemic lung cancer therapeutic 

was also demonstrated in an orthotopic lung tumor model, where systemic administration 

of C-siPLK1-NP reduced tumor growth and led to prolonged survival of mice. Further, C-

siPLK1-NP had excellent reproducibility between various synthesized batches. My 

findings in this study demonstrate that C-siPLK1-NP is effective as a targeted therapy 

and as a potent radiation sensitizer for EGFR+ NSCLC. Since EGFR is overexpressed in 

50% of NSCLC patients, C-siPLK1-NP will be applicable to many patients. Importantly, 

EGFR is also a mediator of DNA repair following radiation and thus EGFR antibody on 

the C-siPLK1-NP serves as dual roles in tumor homing and radiation sensitizer. . EGFR 
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is also overexpressed in other cancer types including subtypes of breast cancer, colon, 

glioblastoma, and head and neck cancer, and the level is low in normal human tissues, 

thus C-siPLK1-NP also has promise as an EGFR+ targeted therapy and radiation 

sensitizer beyond lung cancer. 

In Chapter 3, I discovered that PLK1 inhibition results in significant increase in PD-L1 

surface expression in human and mouse lung cancer cells. I then show that the 

combination of PLK1 inhibitor and PD-L1 antibody significantly reduced tumor growth and 

prolonged survival of mice compared with single drug administration. However, PLK1 

inhibitor volasertib alone has shown great toxicity in clinical trials, which will likely increase 

when combined with PD-L1 antibody. Therefore, I used our nanoparticle platform to 

deliver the PLK1 small molecule inhibitor volasertib in an effort to increase efficacy and 

reduce systemic toxicities. I found that delivery of volasertib with nanoparticles 

significantly reduced lung cancer cell viability better than free volasertib at two-fold higher 

concentration.  Further, to co-localize therapeutic effects of PLK1 inhibition and PD-L1 

blockade, I conjugated PD-L1 antibody on the nanoparticles loaded with volasertib to 

create p-iPLK1-NP construct. Upon intratumoral administration of the p-iPLK1-NP, 

significant control of tumor growth was observed for both local (treated) tumors and 

distant (untreated) tumors compared with nanoparticles delivering a single drug or saline 

treated tumors. An increase of CD3+ and CD8+ T cells was also observed in tumors 

treated with p-iPLK1-NP versus saline treated tumors, illustrating the activation of anti-

tumor immune responses. Lastly, the therapeutic benefit of the nanoparticles in delivering 

the drugs was demonstrated in an aggressive experimental metastatic lung tumor model. 

Systemic administration of p-iPLK1-NP was as effective in prolonging survival of mice as 
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the free drugs, which were delivered at a 5-fold higher dose than dose on NP.  In 

conclusion, this study introduces a rationale combination therapy strategy in targeting 

PLK1 and PD-L1 to elicit cell death and generate an immune response. As PD-L1 

antibodies are already an FDA approved treatment for patients (as second line therapy) 

and the PLK1 inhibitor volasertib has been under investigation in several clinical trials, 

the findings are highly impactful and suggest that clinical trials with this combination 

should be investigated. Furthermore, our MSNP platform can co-localize the therapeutics 

to achieve efficacy at lower dose and overcome toxicity issues of the free drugs.  

4.2 Future directions 

In this work, I developed our nanoparticle platform into an effective radiation sensitizer for 

EGFR+ lung cancer, and as an immuno-nanoparticle to improve existing 

immunotherapies. My findings demonstrated the promise of PLK1 inhibition to improve 

radiation therapy (Chapter 2) or immunotherapy (Chapter 3) with the NP platform. Future 

studies should investigate whether targeting PLK1 in combination with both radiation and 

immune checkpoint blockade would further enhance the therapeutic efficacy. As 

discussed in Chapter 1, radiation damage can alter the immunosuppressive 

microenvironment established by cancer cells which may augment immune checkpoint 

blockade. Indeed, the combination of radiation and immunotherapy in efforts to improve 

the abscopal effect is a hot area in cancer research, with many preclinical and clinical 

studies investigating this combination in several cancers. 

My research suggests that PLK1 is a very promising target to combine with radio-

immunotherapy to improve local tumor control and generate abscopal effects, which have 
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so far only been minimally observed in patients. For example, in a clinical trial 

investigating the combination of CTLA-4 antibodies (immune checkpoint blockade 

agents) with radiation, only 3 out of 31 patients showed a partial response in abscopal 

(un-irradiated) tumors.198 By inducing mitotic arrest, PLK1 inhibition will render cancer 

cells more susceptible to radiation damage, while causing an increase in PD-L1 

expression. Treatment with PD-L1 targeted therapies would then release the tumor 

brakes on the immune system and allow for priming of adaptive immunity. In this way, 

systemic anti-tumor immune (abscopal) effects can be generated.  

Due to the versatility of the nanoparticle platform that has been demonstrated in this 

dissertation, another future direction is incorporation of other therapeutic agents to 

facilitate a more robust therapy. For instance, as p-iPLK1-NP can also deliver 

oligonucleotides (Fig. 4.1), incorporating siRNA or miRNA against genes that regulate 

immune evasion or radiation resistance can further improve the efficacy. Adjuvant oligos 

can also be incorporated to enhance vaccination effect. To this end, I investigated 

whether the adjuvant CpG could further stimulate anti-tumor immunity and improve tumor 

control in bilateral tumor model shown in Fig. 3.5. Indeed, I found that incorporation of 

CpG on p-iPLK1-NP (referred to as p-iPLK1-NP-CpG) significantly improved survival of 2 

out of 7 mice, and one mouse was completely free from tumors (Fig. 4.2). CpG 

oligodeoxynucleotides act as a danger associated molecular pattern (DAMP) to stimulate 

PRR, specifically the toll-like receptor 9 (TLR9). As discussed in Chapter 1, this serves 

as a danger signal for the activation of antigen presenting cells and subsequent priming 

of T cells. Thus, by releasing antigens (via cancer killing by PLK1 inhibition), delivering 

CpG adjuvant, and blocking PD-L1 immune checkpoints, this therapeutic tackles various 
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strategies by which cancer cells evade the immune response. My work in Chapter 3 also 

suggests that PLK1 inhibition itself enhanced antitumor immunity, which may owe to 

reduction of STAT3 phosphorylation111,112 or regulation of type I interferon (IFN) 

production,113,114 which should be further elucidated. Whether this therapeutic will lead to 

sustained immune responses and curative outcomes should also be investigated.    

 

Figure 4.1. siRNA knock-down with iPLK1-NP. (A) Hydrodynamic size of siRNA bound NP and 
iPLK1-NP (2 wt.% siRNA). (B) Luciferase expression of LM2-4luc+/H2N treated with iPLK-NP 
loaded with luciferase siRNA (siLUC) or scrambled siRNA (siSCR) (48 hr treatment, 30 and 60 
nM dose siRNA (2 wt.%). Data presented as mean ± SD from 3 independent replicates.  (C) PD-
L1 surface protein expression of LLC-JSP were treated with 60 nM siSCR or PD-L1 siRNA 
(siPDL1) on iPLK1-NP for 3 days, assessed by flow cytometry. Data presented as mean ± SD 
from independent replicates; **P<0.01, ****P<0.0001 vs. siSCR control.  
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Figure 4.2. Adding CpG to p-iPLK1-NP enhances therapeutic benefit as demonstrated by 

Kaplan Meier Survival curve. 100K LLC-JSP cells were injected in right flank and 40K cells 

were injected in left flank of C57BL/6 mice. On day 12 post tumor inoculation, mice received 

intratumoral treatments of saline, p-NP, iPLK1-NP, p-iPLK1-NP, or p-iPLK1-NP-CpG to the right 

(local) tumor. 0.5 mg NP (2.5 g iPLK1, 20 g PD-L1 antibody, 20 g CpG) in 50 l was 

administered every 3 days for a total of 3 doses.  
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While this dissertation focused on NSCLC cancer treatment, the therapies developed 

herein are also applicable to many other cancers, which warrants investigation. 

Ultimately, the goal is to advance our novel therapeutics to clinical trials. To this end, 

more extensive toxicological studies will need to be conducted. So far, the nanoparticle 

platform has demonstrated excellent safety profile in mouse models as demonstrated in 

our prior works. We have also demonstrated the reproducibility, scalability, and long-term 

stabilization and storage of the nanoparticles. Thus, the platform is well positioned to 

make the leap to the clinical setting. By identifying novel combination therapies to deliver 

with the platform, as has been demonstrated in this dissertation, our nanoparticle platform 

may garner significant benefits for cancer patients and improve outcomes and quality of 

life.  
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