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ABSTRACT	

Malignant brain tumors remain incurable and improving outcomes will require 

personalized treatment strategies. In personalized medicine, therapeutics are tailored to each 

tumor. To apply personalized medicine to brain tumors, a more thorough understanding of 

therapeutically actionable tumor features in individuals and patient cohorts is needed. Actionable 

tumor features include genetic mutations, aberrantly expressed proteins, and tumorigenic 

microenvironment elements. In brain tumors, applying personalized treatment strategies is 

complicated by multi-layered heterogeneity, biological complexity, and difficult drug delivery. 

In this dissertation I investigated factors that currently hinder the use of personalized medicine 

for malignant brain tumors. 

The first chapter of this dissertation reviews the known heterogeneity, brain tumor 

microenvironment, and current therapeutic approaches for the two most common and deadly 

brain tumors: glioblastoma multiforme (GBM) and brain metastases, specifically from breast 

cancer. In GBM, tumor heterogeneity presents one of the most pressing current issues. GBM 

heterogeneity hinders reliable comparisons and detection of actionable tumor features within and 

between tumors. Meanwhile, in brain metastases, understanding how infiltrating tumor cells 

interact with the brain microenvironment remains incompletely characterized, and thus presents a 

potentially untapped therapeutically targetable feature. 

In chapters 2 and 3 I analyzed transcriptomic data from histologic and magnetic 

resonance imaging (MRI) defined tumor regions of human GBM with the aim of better 

understanding tumor heterogeneity. Our results showed that intra-tumoral histologic variability 

influences tumor classification when assessing subtyping and prognostic gene signatures, and 
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identified the cellular tumor as a GBM structure from which gene signatures can be applied to 

more accurately stratify patient cohorts. Furthermore, GBM regions with different MRI 

phenotypes also displayed transcriptional variance, and this variance reflected biological and 

immunological differences. These results support that developing imaging biomarkers are a 

viable, non-invasive option for evaluating potentially therapeutically predictive biological 

processes and key microenvironments in GBM. 

The fourth chapter of this dissertation investigates crosstalk between metastatic human 

epidermal growth factor receptor 2 (HER2) positive breast cancer cells and the brain tumor 

microenvironment. We found that the cell surface receptors αvβ3-integrin and HER2 physically 

interact and influence the motile capabilities of human breast cancer cells in vitro and in vivo. 

We demonstrated that microglia in the tumor microenvironment express a protein, Galectin-3 

(Gal3), which can bind and activate αvβ3-integrin. In vitro, microglia secrete Gal3 and increase 

the migration of breast cancer cells. Inhibiting Gal3 in vivo, failed to influence tumor growth, 

however, it is possible the inhibitor was unable cross the blood brain barrier. These results 

highlight that microglia and metastatic tumor cells engage in tumorigenic cross-talk, which may 

provide novel therapeutic targets. 

 The central theme of this dissertation is to address some of the paramount issues 

hindering the use of personalized medicine in malignant central nervous system tumors. Future 

directions from this work include validating our imaging biomarker development findings in a 

prospective cohort and at the protein level. This method would provide a non-invasive tool to 

robustly evaluate actionable alternations and therapeutically targetable microenvironments in 

GBM. Future directions also include evaluating therapeutically actionable points in the crosstalk 

between infiltrating breast cancer cells and microglia. As such, we present several alterative 
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growth factors and cytokines that may be important in this interaction.	Together,	our	findings	

and	future	directions	support	developing	personalized	treatment	strategies	for	malignant	

brain	tumors.



	 1	

CHAPTER 1: TOWARD PERSONALIZED MEDICINE FOR MALIGNANT BRAIN 

TUMORS: IMPLICATIONS OF THE HETEROGENEOUS, COMPLEX TUMOR-

MICROENVIRONMENT FOR BRAIN TUMOR THERAPY. 

 

 

 

 

 

 

 

 

 

 

 

Important notes: Text and figures within this chapter’s ‘Imaging Genomics’ section will also be 

published in the book chapter:   

Kersch, CN and Barajas Jr., RF (2019) Imaging Genomics.  Glioma Imaging: Physiologic, 

Metabolic, and Molecular Approaches. Springer International Publishing AG.  

 

Minor discussion on the brain microenvironment and neurovascular unit are also published in: 

H. L. McConnell, C. N. Kersch, R. L. Woltjer, E. A. Neuwelt, The Translational Significance of 

the Neurovascular Unit. J Biol Chem 292, 762-770 (2017). 
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1.1 Personalized care for malignant brain tumors. 
 

Treatments for cancer are moving toward personalized and precision medicine, with the 

goal of therapeutically targeting tumor characteristics unique to each person. The aim of 

personalized medicine is to account for unique variances between tumors (such as genetic, 

epigenetic, and tumor microenvironment features) in tailoring optimal therapeutic strategies to 

each patient. It is the hope that this therapeutic approach will provide substantial benefit over the 

more traditional “one size fits all” approaches for biologically heterogeneous and aggressive 

tumors such as malignant brain tumors. At present, major barrier to applying personalized 

medicine tactics to brain tumors include: (1) the highly invasive nature of the most malignant 

cells that form tumors in the central nervous system (CNS), (2) the unique and incompletely 

characterized microenvironment of brain tumors, (3) the relatively recent appreciation for the 

role that innate and adaptive immunity play in these tumors, and (4) the impact of the blood-

brain barrier (BBB) and blood-tumor barrier (BTB) on drug delivery to the CNS compartment. 

These factors have limited therapeutic advancements for the most malignant brain tumors: 

glioblastoma multiforme (GBM) and metastatic brain tumors.  

 GBM is the most common and malignant primary brain tumor in adults. GBM is 

uniformly fatal with a median survival of 12-15 months applying standard of care treatment (1, 

2). Standard treatment consists of maximally safe surgical resection followed by radiation 

therapy with concurrent and adjuvant temozolomide. An overall survival increase of nearly 5 

months was recently reported with the addition of tumor-treating fields (TTFields), but otherwise 

the prognosis of GBM has changed little over the past 15 years (3). The global age-adjusted 

incidence of GBM is 3.99 and 2.52 cases per 100,000 for males and females, respectively (4). 

The diagnosis of GBM is made by histopathological analysis, with recent subdivisions defined 
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by the World Health Organization (WHO) based on the mutational status of isocitrate 

dehydrogenase 1 (IDH1) (5). Many other genetic and molecular phenotypes of GBM have been 

identified, but are not yet classified as official subtypes, and understanding of their role in 

disease progression and treatment sensitivity is ongoing. Biologically, GBMs are highly 

heterogeneous, display marked invasiveness, and elicit remarkable local and systemic 

immunosuppression. 

 While GBM is the most common primary malignant brain tumor, metastatic brain tumors 

outnumber GBMs more than 10:1 (6). Brain metastasis is a late-stage complication of numerous 

systemic cancers, occurring most commonly in lung cancer, breast cancer, and melanoma (7). 

Brain metastases are nearly all incurable, with the exception of some metastatic melanomas that 

have very recently shown long-term durable responses to immunotherapies (8, 9). The incidence 

of brain metastasis is variable, but is as high as 30% in certain breast cancer subtypes (10, 11). 

At the morphological level, brain metastases show less local invasiveness through the brain 

parenchyma than GBMs and are considered grossly well-circumscribed masses. However, these 

malignancies are known to be highly invasive in nature, as evidenced by their metastatic 

capacity. Also dissimilar from GBMs is the immunogenic phenotype of brain metastases. While 

GBMs are characteristically immunosuppressive, metastatic tumors frequently cause immune 

stimulation, though this variable between and within metastatic tumor types. 

 Developing personalized medicine approach for both GBM and metastatic brain tumors 

has the potential to be hugely beneficial for patient outcomes. To enable the use of personalized 

medicine for brain tumors a more thorough understanding of actionable tumor features specific 

to individuals and/or patient cohorts is needed. Actionable features include genetic mutations and 

altered protein expression of the neoplastic cells (such as overexpressed or mutant growth factor 
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receptors), as well as specific tumor-microenvironment and tumor-immune interactions (for 

instance, programmed death-ligand 1, PDL1) that can be pharmacologically targeted. 

Unfortunately, the vast heterogeneity, biological complexity, and difficult drug delivery greatly 

complicate this approach in the setting of brain tumors. In this dissertation I evaluated several 

critical factors that limit the applicability to personalized care to malignant brain tumors. 

 

1.2 Glioblastoma Multiforme (GBM). 

 

1.2.1 GBM overview. 

 GBMs are primary brain tumors, tumors that initiate within the CNS (12). Primary brain 

tumors include both benign and malignant neoplasms. In adults, gliomas account for 75% of all 

malignant primary brain tumors (4). Gliomas are neuroepithelial tumors derived from glial 

precursors, include astrocytomas, oligodendrogliomas, and ependymomas, and are categorized as 

grades I-IV by histopathological and molecular characteristics. WHO grade I gliomas are defined 

as well circumscribed masses that are benign and frequently curable with complete surgical 

resection. WHO grades II-IV gliomas are diffusely infiltrative tumors that are stratified by 

histopathological features including nuclear atypia, mitoses, necrosis, and vascular proliferation 

and the presence or absence of IDH1 mutation, alpha thalassemia/mental retardation syndrome 

X-linked (ATRX) mutation, and 1p/19q deletion status. Grade IV gliomas are GBMs; these are 

the most aggressive gliomas and have a dismal prognosis. GBMs represent more than 50% of all 

gliomas. Median survival for GBM as 12-15 months with standard treatments, but may be 

extended to 20 months with the addition of TTFields to the treatment regiment (1-3).  
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GBMs are diagnosed by the histological presence of necrosis and vascular proliferation. 

As of the 2016 WHO update to CNS tumor classification, GBMs are sub-classified as IDH1-

mutant, IDH1-wildtype, and not otherwise specified (NOS; tumors where IDH1 status could not 

be assigned). IDH1 mutation was first reported in GBM in 2008 (13) and is associated with a 

survival benefit (14). IDH1-mutant GBM occurs in approximately 10% of GBM and is typically 

found in younger patients with a mean age at diagnosis of 45-years-old. Comparatively, the mean 

age of patients with IDH1 wildtype GBM is 56-59 years of age (14).  

 

1.2.2 GBM development and heterogeneity. 

 

GBM natural history. 

 The tumor initiating events in GBM are an area of active and controversial research. It is 

probable that a multi-factorial progression of genetic and epigenetic changes in different cell 

populations and variable microenvironments gives rise to GBMs, and contribute to their 

characteristic heterogeneity. Advances in lineage tracing experiments applied to developmental 

neurobiology research have identified two main neurogenic regions in the adult brain: the 

subventricular and subgranular zones in the lateral ventricles and in the dentate gyrus of the 

hippocampal formation (15). Adult neural stem cells in these regions are multipotent cells with 

unlimited self-renewal capacity that give rise to proliferative progenitor cells, which in turn can 

differentiate into mature neurons, astrocytes, and oligodendrocytes (16, 17). Experimental 

evidence from murine glioma models suggests that these progenitor cells as well as adult CNS 

cells can both develop oncogenic mutations and give rise to tumors (18-20). These cell 

populations can develop one or more mutations driving tumor initiation and growth. Multiple 
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oncogenes and tumor suppressor genes are commonly present in GBM including tumor protein 

53 (TP53), phosphatase and tensin homolog (PTEN), neurofibromatosis type 1 (NF1), epidermal 

growth factors receptor (EGFR), HER2, retinoblastoma 1 (RB1), phosphoinositide-3-kinase 

regulatory subunit 1 (PIK3R1), and phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) 

(21, 22). These mutations arise in different tumor initiating cells, contributing to inter-tumoral 

diversity. For instance, in mice, the same oncogenic driver mutation in two different cell types 

(adult neural and oligodendrocyte progenitors) results in the development of molecularly distinct 

tumors (19).  

 In human GBM, there is a clear delineation of at least two divergent pathways of GBM 

development. “Primary GBMs” develop through gain of one or multiple genetic and/or 

epigenetic aberrations including alterations to EGFR, P53, PTEN, O6-methylguanine-DNA 

methyltransferase (MGMT), and larger chromosomal losses. These tumors spontaneously 

develop directly into a GBM with now lower grade tumor prior to diagnosis of the grade IV 

lesion. “Secondary GBMs” develop from neoplastic precursor cells that have mutant IDH1 

and/or IDH2. Secondary GBMs progress from low-grade gliomas to grade IV tumors. 

Throughout their progression, these tumors can acquire further genetic and epigenetic changes.  

 

GBM heterogeneity. 

 GBMs are the archetypal heterogeneous tumor (23). After the initial oncogenic genetic 

insult, malignant cells acquire by additional mutations, epigenetic changes, and micro-

environmental influences, leading to variations between and within tumors. Inter-tumoral 

heterogeneity describes the variance observed between different tumors. Clinically, inter-tumoral 

variances are often categorized based on gene and protein expression differences such as 
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mutations and/or methylation of IDH1, MGMT, and EGFR. Several of the most common 

mutations and epigenetic changes in GBM have known functional consequences and are 

associated with differences in overall survival and treatment sensitivity (Table 1.1). 

In addition to single gene inter-tumoral variability, multi-gene panels also describe tumor 

cohorts (Table 1.1). The most well characterized multi-gene expression-based panel is The 

Cancer Genome Atlas (TCGA) delineation of molecular subtypes. Philips et al., 2006 described 

three GBM molecular subtypes termed proneural, proliferative, and mesenchymal, based on 

dominant biological features in the gene lists that characterized each subclass (24). These three 

subclasses were associated with different prognoses. In 2010, Verhaak et al. refined the gene 

expression-based subclassification of GBM using gene expression data from 200 newly 

diagnosed GBM cataloged by TCGA (25). Their analyses resulted in an 840-gene expression 

signature that defined four molecular subtypes: proneural, neural, classical, and mesenchymal. 

Again, the nomenclature was based on known functions of the signature genes. A recent revision 

of these subtypes signatures redefined only 3 subtypes (proneural, classical, and mesenchymal) 

based on expression of a smaller 150-gene panel (26).  

 Several GBM subtypes are correlated with specific gene mutations. Aberrations in 

EGFR, NF1, and platelet-derived growth factor receptor alpha (PDGFRA)/IDH1 are enriched in 

the classical, mesenchymal, and proneural subtypes, respectively. These subtypes also show 

differences in their biology, with the mesenchymal subtype exhibiting a more robust immune 

response with increased lymphocytic infiltrate and microglial/macrophage activation (26-32). 

Several groups have reported the co-occurrence of multiple subtypes within a single tumor and a 

shift in subtypes in a single patient over the course of treatment (26, 33). Unfortunately, subtype 

classification has yet to show significant correlations with clinical outcomes. 
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Table 1.1 Clinically and/or biologically significant molecular aberrations in GBM. 
 
Molecular 
Characteristic 

Biological Function Clinical 
Significance 

References 

EGFR 
amplification or 
truncation 

A receptor tyrosine kinase involved 
in multiple cancer signaling 
pathways. Deletion of exons 2-7 is 
termed EGFRviii and is 
constitutively activated. EGFR is 
amplified in ~50% of GBM and 
truncated to EGFRviii in 25-33%. 
EGFR amplification is common in 
the classical subtype (see below). 

EGFRviii is 
associated with a 
worse prognosis. 
Clinical significance 
of other EGFR 
mutations and 
amplifications 
remains unclear. 

Aldape et al., 2004 
(34). Taylor et al., 
2012 (35). Yang et 
al., 2017 (36). 

PTEN  
mutation 

PTEN mutation occurs more 
frequently in primary than secondary 
GBM. 

PTEN loss is a 
negative prognostic 
marker. 

Tohma et al., 1998 
(37). Han et al., 2016 
(38) . 

MGMT promoter 
methylation 

A DNA repair enzyme that removes 
alkyl groups from the O6 position of 
guanine. In 40% of GBM, promoter 
methylation inhibits gene expression. 

Associated with 
increased sensitivity 
to temozolomide 
and longer survival. 

Hegi et al., 2005  
(39). Weller et al., 
2010 (40). 

IDH1/2  
mutation  

Oncogenic mutation that causes cells 
to produce 2-hydroxyglutarate 
instead of NADPH, and may 
increase sensitivity to oxidative 
stress. Mutated in 10% of GBM, 
predominantly in younger patients 
(<55 years of age). Associated with 
secondary GBM. Most frequent 
mutation is R132H. Common in the 
proneural subtype. 

Associated with 
significantly longer 
overall survival. 
Now defines distinct 
primary and 
secondary GBM 
entities, as defined 
by the WHO. 

Ohgaki 2013 (14). 
Sanson et. al., 2009 
(41). Cohen et. al., 
2013 (42). 

1p/19q  
co-deletion  
or LOH 

Co-deletion of the short arm of 
chromosome 1 and the long arm of 
chromosome 19; loss of one is 
termed loss of heterozygosity 
(LOH). This is uncommon in GBM. 

Improved treatment 
response and longer 
survival in 
oligodendrogliomas. 

Aldape et al., 2007 
(43). Zhao et al., 
2013 (44). 

ATRX  
mutation 

Functions to help incorporate histone 
variant H3.3 into heterochromatin, 
causing genomic instability. 
Common in younger 
patients/secondary GBM with IDH 
and TP53 mutations. 

Associated with 
increased treatment 
sensitivity and 
longer survival. 

Schwartzentruber et 
al., 2012 (45). 
Koschmann et al., 
2016 (46). 
Nandakumar et al., 
2017 (47). 

P53  
Mutation (gain of 
function) 

Tumor suppressor gene mutated in 
25-30% of primary and 60-70% of 
secondary GBM. May decrease 
MGMT expression. 

Prognostic 
significance remains 
controversial.  

Wang et al., 2014 
(48). England et al., 
2013 (49). Chaurasia 
et al., 2016(50). 

Transcriptionally
- defined 
molecular 
subtypes 

4 molecular subtypes: mesenchymal, 
proneural, neural, and classical are 
defined based on an 840-gene 
signature. The mesenchymal subtype 
is more inflammatory. 

Clinical significance 
is controversial. 
Proneural may carry 
a survival benefit. 

Phillips et al., 2006 
(24). Verhaak et al., 
2010 (25). Wang et 
al., 2017 (26). 
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 In addition to their inter-tumoral variances, GBMs also display intra-tumoral 

heterogeneity (23, 51), whereby one area of a tumor differs from another area of that same tumor 

or aspects of a single tumor changes over time (33, 52-55). Spatial variance within a tumor can 

be multi-factorial: (1) the genetic or molecular make-up of the malignant cells can vary across a 

tumor, as demonstrated by single-cell genomic and transcriptomic analyses (33), and (2) the 

tumor microenvironment varies across a tumor, as exemplified by differing histologic structures, 

areas of necrosis, and regions with extensive angiogenesis (56). Several of the single gene 

aberrations commonly found in GBM, such as EGFR amplification and MGMT promoter 

methylation, can vary in subclones of a single GBM (57, 58). Furthermore, these genetic traits 

can fluctuate over time, with divergent clonal evolution (51). Intra-tumoral heterogeneity has 

been implicated as a major contributor to therapeutic resistance in GBM and other cancers, with 

clonal variants in a single GBM tumor displaying different therapeutic sensitivity and resistance 

(59, 60).  

 

Imaging genomics: a non-invasive method to assess GBM heterogeneity. 

Robustly evaluating GBM inter- and intra-tumoral heterogeneity presents a significant 

challenge to the Neuro-Oncology field. Variable tumor features (genomic and proteomic) are 

commonly assessed using physical tissue samples, and this remains the gold standard. However, 

collecting tissue specimens in CNS malignancies is more problematic than other tumor types 

because sampling requires invasive neurological surgery that poses significant cognitive risks to 

the patient. Furthermore, sampling multiple regions can be complicated by the necessity to 

preserve tissue in critical function brain regions. These factors make evaluating tissue features 

nearly impossible across a whole tumor and over time. Thus, analysis of tumor heterogeneity 
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utilizing tissue samples provides a small snapshot of a tumor at a single point in time. In contrast, 

clinical imaging obtains a global view of the entire tumor, now with significantly increased 

resolution for morphological and physiological tumor characteristics, and can be employed to 

follow these characteristics over time through sequential imaging sessions. However, current 

imaging techniques and their analytic methods do not directly assess genetic/molecular changes 

of the tumor.  

To overcome the limitations of physical tissue sampling and clinical imaging techniques 

for tumor analyses, a new field of imaging genomics has developed (Fig. 1.1). Imaging genomics 

studies the relationship between clinical imaging features and patterns of gene expression, 

genetic mutations and protein modifications (61-69). The central goal of this field is to permit the 

molecular characterization of tumors across space and time in a non-invasive manner. Imaging 

genomics is distinguished from ‘radiomics’ which studies the extraction of quantitative imaging 

features, and ‘radiogenomics’ which can be used either synonymously with imaging genomics or 

alternately refer to the relationship between genomic changes and response to radiation therapy. 

Imaging genomics has the capacity to improve clinical decision-making and treatment through 

advanced interpretation of the genetic and biological patterns using non-invasive imaging (67). 
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Figure 1.1. Integrating radiophenotypes with molecular features in GBM. Pre-treatment 

MRI sequences are obtained (1a) followed by collection of tumor tissue, sometimes under 

image-guidance (1b). Imaging data undergoes pre-processing (2a) while tissue is subjected to 

genomic, transcriptomic, and/or proteomic analyses. The imaging and molecular data are 

integrated to evaluate associations between radiophenotypes and molecular features (3). These 

associations are interpreted in the context of the clinical disease and known complex biological 

processes and pathways.  
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Table 1.2. MR imaging techniques and their major utility in GBM assessment 
 
Conventional techniques Advanced techniques 
Sequence Utility Sequence Utility 

Contrast Enhanced 
T1-weighted 
imaging  
(T1W) 

Visualizing tumor 
mass via qualitative 
microvascular 
permeability 
characteristics 

Perfusion-weighted 
imaging (PWI)  
[DSC and DCE] 

Quantitative measures 
of vascularity, 
vascular permeability 

T2-weighted 
imaging  
(T2W) 
 

Peri-tumoral edema, 
non-enhancing 
tumor 

Diffusion-weighted 
imaging (DWI) and 
apparent diffusion 
coefficient (ADC) 

Cellularity (higher 
cellularity corresponds 
to lower ADC) 

Fluid attenuated 
inversion recovery 
(FLAIR) imaging 
 

Peri-tumoral edema, 
non-enhancing 
tumor 

Diffusion-tensor 
imaging (DTI) Tractography 

 T2* susceptibility  
sequence (SWI) 

Blood products, 
calcifications 

MR Spectroscopy 
(MRS) Metabolic profiles 

*Adapted from ElBanan et al. 2015 and Mabray et al. 2015 (62, 70) 
 

Imaging genomics has begun to create noninvasive biomarkers of clinically relevant 

molecular and biological hallmarks of GBMs including MGMT methylation status, IDH1 

mutation status, EGFR mutation, molecular subtype, and level of immunoreactivity (62, 71-76). 

Over the first decade of imaging genomics, the field has progressed significantly from binary 

classification of imaging characteristics with the presence or absence of a molecular feature to 

complex whole genomic analyses corresponding to computer-identified image spatial textures 

and advanced imaging elements (Fig 1.2) (69, 77). Despite these improvements, imaging 

genomics remains an area with many unanswered questions and significant potential for future 

work to influence clinical care by bridging medical imaging with tumor characteristics used to 

evaluate tumor heterogeneity and plan personalized care. 
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Figure 1.2. Summary of imaging genomics studies in GBM. Following the seminal studies in 

imaging genomics the field has investigated imaging biomarkers of (1) specific individual 

molecular traits of the tumor (such as the presence or absence of EGFR amplification or MGMT 

methylation) or (2) associations with multi-gene signatures. Multi-gene signature studies are 

either directed, investigating gene sets known to influence GBM biology/classification (i.e. 

molecular subtypes or signatures of biological processes such as angiogenesis), or undirected 

(exploring transcriptional patterns without a priori knowledge of the gene signature functions 

being probed). The molecular/genomic features can be assessed from tumor tissue of unknown 

origin or of known spatial location within the tumor (collected under image-guidance). Analyses 

of genomic markers from non-selective tissue sampling correlates the presence or presence of the 

genomic/molecular feature with a general imaging phenotype, while analysis of genomic 

markers from known spatial locations can be directly related to the imaging feature of that tumor 

area.  

Types of imaging genomics studies in GBM *

Early studies laid to the ground work (roughly 2003 – 2011)

Association of radiophenotypes with 

individual predictive and prognostic 

molecular/genomic features of GBM

Association of radiophenotypes with 

large-scale gene expression 

signatures in GBM.

Exploratory analyses 

probing genomic and 

transcriptomic patterns in 

an undirected manner 

(targeting all biological 

pathways, not only 

specific ones of interest)

Analyses probing 

specific genomic and 

transcriptomic patterns 

that have known 

potential clinical 

significance in the 

context of GBM.

Continued studies build upon earlier work, incorporating more 

complex imaging features, genomic patterns, and analytic methods 

*All of these types of analyses can use 
tissue collected in a spatially defined 
manner (image-guided biopsy) or not, 
yielding different information about 
their associations with 
radiophenotypes.
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1.2.3 The GBM tumor microenvironment. 

 

Overview of the brain tumor microenvironment. 

 A critical element of inter- and intra-tumoral heterogeneity in GBM, and a potentially 

untapped therapeutically actionable tumor feature, is the tumor microenvironment. The tumor 

microenvironment in GBMs is a complex milieu consisting of malignant cells, an array of 

resident brain cells (astrocytes, microglia, oligodendrocytes, endothelial cells, pericytes, and 

neurons), infiltrating immune cells (mostly macrophages and lymphocytes), extracellular matrix 

(ECM), cerebral vasculature (that is distinguished from vasculature elsewhere in the body by the 

presence of the BBB), and variable metabolic and stress features (Figure 1.3) (78). Many of these 

elements are also present in the microenvironment of metastatic brain tumors. The tumor 

microenvironment across a single GBM is variable, with different areas containing extensive 

necrosis (primarily within the tumor core), elevated mitosis (in the tumor mass), or interactions 

with local brain elements (at the leading edge and infiltrative tumor). Collectively, all of the 

elements of the tumor microenvironment influence the growth characteristics and therapeutic 

sensitivity of GBMs, and present potential therapeutic targets. A thorough understanding of the 

tumor microenvironment will be essential to personalize therapy for malignant brain tumors. 
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Figure 1.3. The GBM microenvironment. The tumor microenvironment in GBM is composed 

a variety of resident in infiltrating cell types that interact the malignant tumor cells to influence 

their survival, growth, and treatment sensitivity. Non-neoplastic cells in the tumor include 

microglia, macrophages, astrocytes, and infiltrating cells from the peripheral immune system. 

Non immune cells and acellular microenvironment elements include vasculature, neurons, and 

extracellular matrix (ECM). Adapted from Quail and Joyce 2017  (79). 
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Components of the healthy CNS microenvironment. 

Under physiologic conditions, local cells and specialized vasculature in the CNS operate 

synergistically to support cognitive function. Cellular components of the CNS include neurons, 

support cells (oligodendrocytes, astrocytes and microglia), and vascular cells (endothelial cells 

and pericytes). Neurons are basic working unit, able to communicate through chemical and 

electrical signals. The axons of neurons are wrapped in a myelin sheath produced by 

oligodendrocytes. Astrocytes are a heterogeneous population of star-shaped cells that 

dynamically support biochemical, physical and metabolic process in the brain, such as 

modulation of neuronal synapses (80). Microglia are amoeboid-shaped, CNS resident 

macrophages involved in scavenging and immune function (79). 

 The endothelial cells lining cerebral blood vessels are the core anatomic unit of the BBB, 

which protects the brain from systemic influences (81). Cerebrovascular endothelial cells display 

several unique properties that allow them to function optimally as a barrier. Vascular endothelial 

cells (1) contain no fenestrae and undergo very low rates of transcytosis, (2) express tight 

junctions and adherens junctions between endothelial cells that impede paracellular diffusion of 

solutes, and (3) possess polarized expression of transporters, metabolite-degrading enzymes, 

receptors, and ion channels on their luminal and abluminal membranes that form a selective 

transport interface (82). These features ensure that essential nutrients are delivered to the brain 

from the blood, while solutes and metabolic waste products are effluxed to the blood. The 

specialization of the BBB reflects the requirement of the brain to remain in a truly homeostatic 

ionic environment free of neuroactive blood-borne solutes. The vascular endothelium is 

surrounded by a two-layer basement membrane that is composed of a unique array of ECM 

proteins, compared to vasculature elsewhere in the body (83). Pericytes are embedded in the 
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basement membrane, where they contribute to cerebral vascular formation and function. 

Meanwhile, astrocytes extend end-foot processes around vasculature, basement membrane, and 

pericytes to delineate a functional perivascular space. These cellular and acellular components 

combined with adjacent neuronal processes form the neurovascular unit (NVU) (81).  

 

Components of the CNS microenvironment in GBM. 

Resident CNS cells, particularly astrocytes and microglia, and cerebral vasculature 

function aberrantly in GBM. Reactive astrocytes are frequently within and surrounding GBMs. 

Recent studies employing single cell transcriptomic and flow cytometry protein analytic 

techniques identified subpopulations of differentially activated astrocytes within murine models 

of GBM (84, 85). Katz et al. found that spatially restricted astrocytes in bulk tumor and in 

perivascular tumor niches display distinct RNA expression profiles (84). Meanwhile, Lin et al. 

described five astrocytes phenotypes that have variable presence in GBMs dependent on the 

tumor’s molecular subtype (85). Through secretion of soluble factors and direct contact, these 

tumor associated astrocytes exert numerous pro-tumorigenic effects. Astrocytes increase the 

invasive and proliferative capacity of malignant cells, support GBM initiation, enhance 

malignant cell migration and invasion, promote drug resistance, and help tumors evade immune 

attack (78, 86). Factors secreted by reactive astrocytes include tumor necrosis factor α (TNFα), 

transforming growth factor β (TGFβ), interleukin (IL) 6, insulin-like growth factor 1 (IGF-1), 

and growth/differentiation factor 15 (GDF-15), all of which promote cancer cell proliferation 

and/or migration (86). In vitro co-culture experiments have demonstrated that astrocyte secretion 

of osteopontin, TGFβ, IL-6, IL-8, and ECM proteins increase in the invasive capabilities of 

GBM cell lines and GBM stem cells (87-90). Soluble factors and exosomes released by 
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astrocytes also increase the ability of GBM cells to evade apoptosis and to withstand hypoxic 

conditions and chemotherapy treatments (91-93). The roles of microglia and endothelial cells in 

GBM are discussed in detail in the following sections. 

 

Tumor vasculature and the dysfunctional BBB. 

The vascular niche is a significant element of the brain tumor microenvironment. This 

region serves as a the point of entry for systemic immune cells, its cellular components elicit 

tumorigenic effects, it is a known GBM stem cell niche, and it influences the bioavailability of 

intravenously delivered therapeutics (94-99). Endothelial cells support tumors by secreting 

factors including TGFβ, β fibroblast growth factor (β-FGF), and epidermal growth factor (EGF) 

(100-103). Endothelial cells in the tumor may be part of previously established vasculature or 

may be newly formed neovasculature. In response to local hypoxia and increased metabolic 

demands in the bulk of the tumor, neoplastic cells and macrophages/microglia secrete soluble 

factors, including vascular endothelial growth factor (VEGF), that stimulate angiogenesis (99, 

104). Tumor angiogenesis leads to formation of vessels with abnormal structure and function, 

which are a hallmark feature of GBM (105). Tumor vasculature abnormalities include altered 

protein expression on the epithelial cell membrane (such as diminished or absent tight junction 

proteins), inadequate pericyte coverage, and altered basement membrane protein composition. 

Tumor cells themselves can perform endothelial mimicry, forming functional vessels (106, 107). 

Neoplastic cells can also physically disrupt the NVU by residing between the astrocyte endfeet 

and abluminal side of endothelial cells, altering vascular tone and decreasing tight junction 

protein expression (108). To account for these differences from the healthy BBB, this barrier in 

tumors is sometimes referred to as the blood-tumor barrier (BTB). 
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The abnormality of vasculature in GBMs results in increased, but variable, vascular 

permeability (109). Typically, the bulk tumor region of GBMs have more dysfunctional and 

leaky vasculature, while vasculature in the tumor periphery resembles more normal cerebral 

blood vessels (Figure 1.4). These patterns of variable leakiness across a tumor are exemplified by 

gadolinium contrast enhancement in CNS tumors on MRI (98). In much of the bulk tumor, 

intravenously administered gadolinium is able to leak out of cerebral vasculature and into the 

extracellular space in the brain parenchyma manifesting as regions of hyperintensity on T1W 

MRI sequences. Meanwhile, areas of brain surrounding these T1W gadolinium contrast 

enhancing lesions show more diffuse tumor cell infiltration when assessed by histochemistry and 

lack contrast leakage (110). 

 

Figure 1.4. The blood-brain barrier (BBB) in GBM. Vasculature is heterogeneous across 

GBMs, displaying variance in its cellular elements, protein expression, and permeability 

characteristics. In the bulk tumor, the BBB is typically leaky, while at the tumor periphery the 

BBB is more intact and prevents most anti-cancer therapeutics from reaching malignant cells in 

this niche.  Reprinted from Van Tellingen et al. 2015 (98).  
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Contribution of immune cells to the GBM microenvironment. 

The CNS was previously considered an immune privileged site. Rationale for this dogma 

included: (1) low expression of adhesion receptors on the BBB that are important for leukocyte 

extravasation, (2) minimal expression of major histocompatibility complex (MHC) proteins in 

healthy brain, (3) absence of a brain lymphatic system, and (4) limited antigen presenting cells in 

the CNS (111).  It is now known that the brain has a unique lymphatic system that includes 

perivascular flow pathways and meningeal associated lymphatics (112, 113), a functional 

immune system with a resident macrophage population (microglia), and active surveillance by 

both the innate and adaptive arms of the systemic immune system (79). Immune cell infiltrates in 

GBMs include macrophages, T-cells, B-cells, and natural killer (NK) cells. Despite the presence 

of these immune populations, GBMs characteristically result a body-wide immunosuppressive 

state. 

 Microglia and macrophages can account for more than 30% of the cells in the bulk tumor 

mass of GBMs and and influence angiogenesis, tissue remodeling, and tumor progression (Fig. 

1.5) (78, 111, 114). Microglia and macrophages are differentiated based on their developmental 

origin. Microglia migrate to the brain from yolk sac progenitor cells early in development and 

form a self-propagating, tissue resident phagocytic cell population in the CNS (115). 

Macrophages migrate into the brain throughout life from circulating bone marrow derived 

monocytes. Collectively, microglia and macrophages associated with GBMs are referred to as 

tumor associated macrophages (TAMs), which are highly plastic, multi-faceted cells. 

Differentiating the origins of TAMs is challenging as their protein expression changes in 

pathological states (114). Thus, lineage tracing experiments have become the gold standard to 

differentiate these cells. Recent studies in mouse glioma models suggest that approximately 85% 
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of TAMs in GBM are macrophages that have infiltrated the tumor from systemic circulation and 

preferentially locate near tumor vasculature, while the remaining 15% of TAMs are locally 

activated microglia that are most abundant in the peritumoral region (116).  

 

 

 

Figure 1.5 TAM activation and divergent phenotypes. Tumor associated macrophages 

(TAMs) activate along a spectrum of M1 to M2 phenotypes and influence the initiation, survival, 

growth, and local microenvironment in GBM and metastatic tumors through numerous cellular 

cross-talk networks. Image adapted from Genard et al. 2017 (117) . 

 

TAMs in brain tumors can activate into functional cell phenotypes along a spectrum of 

pro-inflammatory (M1) to anti-inflammatory (M2) (Fig. 1.5). M1 polarized TAMs are 

considered anti-tumorigenic and M2 polarized TAMs are pro-tumorigenic. While the 
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bipolarization M1/M2 model is grossly oversimplified and more realistically operates as ends of 

a spectrum, it provides a framework to understand the multifunctional roles of TAMs (118). 

Classically activated M1 macrophages typically differentiate in response to pathogen- or 

damage-associated molecular patterns such as lipopolysaccharide and other toll-like receptor 

ligands (119). M1 macrophages secrete pro-inflammatory cytokines including IL-6, IL-12, IL-

23, and TNFα, and express immune stimulatory proteins MHC-II, CD68, CD80, and CD86 

(120). The functional changes in M1 polarization lead to the propagation of inflammation. As 

such, this population functions in pathogen and tumor killing, antigen presentation, and 

activation of a TH1 cell response (121). Alternately activated M2 macrophages differentiate in 

response to soluble signaling molecules such as IL-4, IL-13, IL-10, and TGFβ, which blunt or 

terminate inflammation (114, 122). Physiologically, cells of the M2 phenotype function to 

contain and resolve inflammatory reactions. M2 macrophages are highly phagocytic, express 

characteristic proteins including arginase 1 (ARG1), CD163, CD200R, CD204, CD206, MGL1, 

and MGL2, and secrete anti-inflammatory cytokines IL-10 and TGFβ, which propagate the anti-

inflammatory response (120, 123). Several studies in GBM suggest that TAMs predominantly 

take on an anti-inflammatory phenotype (124-126), while others report that TAMS express a 

combination of M1 and M2 markers (126).  

TAMs support GBMs in an aggressive feed-forward cycle whereby malignant cells 

secrete factors that polarize TAMs to in turn produce factors that promote tumor growth and 

invasion (123, 127). Tumor derived factors, such as macrophage colony stimulating factor (M-

CSF), drive TAMs toward a M2 phenotype, and blocking this reduces glioma cell invasion (128, 

129). In response to stimulation by the glioma cells, TAMs secrete multiple soluble factors 

including stress-inducible protein 1 (STI1), EGF, interleukins, and TGFβ that positively 
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influence neoplastic cell behaviors and support their aggressive phenotype (114). In vitro work 

demonstrates that the presence of microglia triples the motility of GBM cells in co-culture (130).  

In addition to their direct influence on tumor cells, TAMs help orchestrate the recruitment 

and activation of systemic immune cells to the tumor. Immune cells found in GBM include 

CD4+ T helper cells, CD8+ cytotoxic T-cells, CD4+CD25+FoxP3+ regulatory T-cells (Tregs), 

NK cells, and rare B-cells (131). CD4+ T-cells are more numerous than CD8+ T-cells in GBM, 

but have not been associated with clinical outcomes (131). CD8+ T-cell infiltrates in GBM have 

been associated with prolonged survival in patients. Although CD8+ T-cells are present, they 

may be inactive as several studies have reported that they the lack CD25 expression (132-134). 

In contrast to CD8+ cells, Tregs have been correlated with a worse prognosis, though their 

presence in GBMs can be variable ranging from 1-14% of the total intratumoral T-cell 

population (135-137). Tregs function as immune-suppressive T-cells, involved in the resolution 

of inflammation, and similarly, can repress the anti-tumor immune response in numerous 

cancers. Overall, T-cell infiltrates are not homogeneously distributed across GBMs, but rather 

cluster near tumor vasculature, their point of entry (137). NK cells can also be found sparsely in 

GBMs (131, 138). Like CD8+ T-cells, NK cells are directly cytotoxic and kill tumor cells.  

 

Immune checkpoints in GBM. 

 Immune checkpoints are key elements of immune responses in infection, injury, and 

cancer. Physiologically, immune checkpoints prevent and/or limit the activation of immune 

responses to self-antigens. Tumors, including GBMs, hijack these mechanisms to prevent 

immune cells from mounting an inflammatory response against malignant cells (Fig. 1.6).  
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Figure 1.6. Immune checkpoints in GBM. Tumor antigens released from GBM are taken up by 

TAMs (microglia and macrophages), which present the antigens to local T-cells or can 

theoretically migrate to cervical lymph nodes and to activate peripheral lymphocytes. Activated 

lymphocytes, via their T-cell receptor (TCR) can then migrate to the tumor and perform their 

effector functions. Alternately, GBM antigens may traffic via perivascular flow and meningeal 

lymphatics to cervical lymph nodes to activate nodal antigen presenting cells (APCs) and 

lymphocytes. In the tumor, the malignant cells, TAMs, and activated lymphocytes all secrete 

cytokines that propagate pro- and anti-inflammatory events. These cytokines recruit and activate 

other immune cells, such as NK cells, which contribute to neoplastic cell death. Immune 

checkpoints commonly targeted thus far in the setting of GBM are PDL1, programmed cell death 

protein 1 (PD1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which function 

locally in the tumor and in the draining lymph nodes. Schematic reprinted from Huang et al. 

2017 (139).  
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In the absence of immune checkpoint activation, the immune system has the capacity to 

inhibit cancer growth through a series of steps (140, 141). First, tumor cells produce tumor-

specific antigens that are either expressed on the cell surface, secreted, or released upon cell 

death. Tumor-specific antigens can be proteins that are greatly overexpressed, aberrantly 

expressed, mutated, or uniquely post translationally modified. Antigen presenting cells (APCs) 

display these antigens on MHC I and II molecules to CD8+ and CD4+ T-cells. These 

interactions occur in both the tumor microenvironment and in lymph nodes that drain the tumor 

tissue. Activated T-cells then migrate to the tumor tissue, where CD8+ cells elicit cytotoxic 

functions resulting in tumor cell killing. During tumor cell death, more antigens are released 

triggering this cycle to repeat. Immune checkpoints function throughout this process during 

points of cell-cell contact that activate TAMs and T-cells. These checkpoints are secondary 

protein-protein interactions that serves as co-stimulatory or co-inhibitory signals to either 

confirm or inhibit immune cell activation in response to tumor-antigen presentation. If a co-

inhibitory signal is present or a co-stimulatory signal is absent simultaneously with presentation 

of the tumor antigen, then the immune cell activation will not occur and the immune cell may 

enter an exhausted, anergic state where it cannot be activated in the future. Activation of both 

NK cells and cytotoxic T-cells can be inhibited by immune checkpoints in tumors. 

T-cell and NK cell activation are major points of immune response control, and present 

therapeutic targets. As noted above, two signals are required for T-cell activation: (1) antigens 

presented on MHC molecules bind antigen-specific T-cell receptors (TCRs), and (2) co-

stimulatory and/or co-inhibitory signals, which are immune checkpoints. Co-stimulatory 

signaling proteins include CD28, CD80, CD86, CD40L, CD137, OX40 (also termed tumor 

necrosis factor receptor superfamily member 4, TNFRSF4), CD58, CD28, and inducible T-cell 
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costimulator (ICOS) (Fig. 1.7) (140, 141). Co-inhibitory proteins include PD1, CTLA4, 

lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain-3 (TIM3), B- 

and T-lymphocyte attenuator (BTLA), and adenosine A2A receptor (A2aR) (Fig. 1.7) (140, 141). 

Decreased expression of co-stimulatory proteins or overexpression of co-inhibitory proteins are 

mechanisms tumor cells use to evade immune attack. Immunotherapies that increase activation 

of the co-stimulatory molecules or inhibit activation of co-inhibitory proteins are in multiple 

clinical trials. Commonly modulated targets in GBM are CTLA4, PD1, and PD-L1.  

 

 

 

 

Figure 1.7. Key immune checkpoint 

proteins. Ligand-receptor interactions 

that mediate immune activation include 

co-stimulatory (green + arrows) and co-

inhibitory (red – arrows) signals. 

Therapeutically targeting the PDL-1/PD1 

and CD80 or CD86/CTLA4 interactions 

have been the most extensively 

investigated and are in clinical trials for 

GBM. Reprinted from Pardoll et al. 2012 

(140).  
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The consequence of immune checkpoints extend beyond their functions in T-cells 

(adaptive immunity), and also influence innate immunity-mediated anti-tumor responses (142). 

Several immune checkpoints are also expressed and utilized in the activation of NK cells and 

TAMs, and recent studies shows that NK cells respond to PD1 and PDL-1 inhibition (142, 143). 

PD1/PD-L1 signaling mediates NK cell activation and cytotoxicity in certain tumors and can 

independently eradicate advanced tumors in the absence of CD8+ T-cells. Tumor–infiltrating NK 

cells acquire high levels of PD-L1 expression, resulting in impaired dendritic cell maturation and 

reduced tumor-specific CD8+ T-cell priming, and are associated with NK cell exhaustion (144, 

145). TAMs also express PD-L1 and blocking the PD1/PD-L1 axis may enhance their 

independent antitumor activity (146). Thus, while significantly less is known immune 

checkpoints in innate immunity, recent evidence suggests these cell populations may be 

therapeutically mobilized to increase immune-mediated tumor cell death, similar to T-cells, 

thorugh immune checkpoint modulation. 

 In GBM, tumor cells and TAMs express ligands for immune checkpoint receptors and 

secrete immunosuppressive proteins (i.e. anti-inflammatory cytokines such as prostaglandin E2  

[PGE2], TGFβ, indoleamine 2,3-dioxygenase [IDO], and IL-10). Prominent expression of PD-

L1 (the ligand for PD1) has been found in 88% of patients with newly diagnosed GBM and in 

72% of recurrent GBM tissue (147). These values are higher than in many other cancers (141). 

Variability of PD-L1 expression in GBM has been partially attributed to molecular subtypes, 

with the mesenchymal subtype demonstrating the highest expression of PD-L1 (148). Expression 

of PD-L1 has been found in the neoplastic GBM cells, circulating monocytes in GBM patients, 

and in TAMs (149-152). PD-L1/PD1 mediated immunosuppression appears to not be exclusive 

to GBM tumors, but is active in multiple CNS malignancies (147, 153, 154).  
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1.2.4 The current state of treatments for GBM. 

 

 An increased understanding of GBM heterogeneity and its microenvironment are already 

impacting therapy development for GBM. Targeted therapies are being assessed to harness 

tumor-specific antigens for selective cell death and to mediate responses in specific tumor 

niches, such as vascular proliferation. Meanwhile, immunotherapies are being actively 

investigated as new modalities to alter the tumor-immune interaction towards an anti-tumor 

response. Most recently, the possibility of therapeutically targeting TAMs as an anti-tumor 

mechanism has gained traction. Together, a combination of these tactics applied to the unique 

state of each person’s tumor, will allow for personalized medicine in GBM.  

 One prominent category of anti-cancer treatment targets drugs directly at genetic, 

epigenetic and protein aberrations in malignant cells. Examples include small molecular weight 

receptor tyrosine kinase (RTK) inhibitors and monoclonal antibodies (mAbs) targeting EGFR 

and EGFRviii, such as erlotinib and cetuximab (155). While several agents in this category have 

shown anti-tumor effects in preclinical GBM models, they failed prolong survival in clinical 

trials. Signaling pathways activated by EGFR have also been tested as druggable vulnerabilities 

in GBM. These pathways include the phosphoinositide-3 kinase (PI3K)/ protein kinase B (AKT) 

pathway and the Ras/RAF/Mitogen-Activated Protein Kinase Kinase (MAPKK)/Mitogen-

Activated Protein Kinase (MAPK) pathway. Again, inhibition of these pathways with agents 

including temsirolimus and everolimus showed promise in rodent GBM models, but had 

disappointing results when tested for clinical efficacy (155). Agents targeting MGMT to enhance 

temozolomide chemotherapy sensitivity have similarly not been clinically useful, but new 

antisense oligonucelide approaches may make MGMT a viable target in the future (156, 157). 
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 As researchers are recognizing the GBM microenvironment as a strong regulator of 

tumor growth, therapeutically targeting specific elements of the tumor microenvironment has 

become another treatment strategy. Of the tumor microenvironment components, the vascular 

niche has received significant interest (105, 158, 159). Strategies to prevent angiogenesis include 

inhibition of VEGF, downstream signaling of VEGFR, and certain integrin receptors implicated 

in vascular development. The only current U.S. Food and Drug Administration (FDA) approved 

drug that directly influences tumor vasculature in GBM in bevacizumab, a humanized mAb that 

binds VEGF-A. In preclinical models, bevacizumab inhibits GBM growth. Early clinical trials 

with bevacizumab showed a significant decreased in the enhancing volume on MR imaging, 

leading to its rapid FDA approval. Unfortunately, two large phase 3 clinical trials have since 

demonstrated no survival benefit in patients with GBM following the addition of bevacizumab to 

standard of care therapy (160, 161). Pharmacological agents such as cediranib and enzastaurin 

that inhibit downstream signaling in the VEGF cascade also did not show improved efficacy over 

standard of care in phase 3 clincal trials (162, 163). Integrins are another family of cell surface 

proteins that are involved in vascular development and remodeling. Integrin inhibitors decreased 

tumor growth in preclinical GBM models, but showed no survival benefit in clinical trials (164). 

Thus, while the vascular niche is still considered a key microenvironment in GBM, 

therapeutically targeting it without patient stratification, and perhaps with suboptimal 

combinations of other therapies, has thus far failed. 

 Modulating the tumor-immune interaction is a current topic of interest in GBM treatment. 

Immunotherapies aim to harness the body’s natural immune system to destroy tumor cells. 

Several types of immunotherapies exists including checkpoint inhibitors, immunogenic vaccines, 

and chimeric antigen receptor (CAR) T-cells (139-141). Immune checkpoint modulation is 
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typically achieved using mAbs to target key ligands and receptors (Fig. 1.6). In contrast, CAR T-

cell therapies, employ exogenously generated host derived T-cells that express receptors 

engineered to selectively bind antigens on that patient’s tumor. Lastly, in the cancer vaccine 

strategy, a patient is immunized with an antigen that is specific to their tumor. These approaches 

have demonstrated robust, durable responses in a broad spectrum in cancers and are approved by 

the FDA as therapeutic options in specific clinical scenarios.  

In the setting of GBM, numerous immunotherapy trials have been completed or are 

ongoing (111, 165). Trials that have reached interim analyses or their end points have 

unfortunately shown little to no overall survival benefit in the entire test cohort. For example, the 

CheckMate-143 study showed promise in its early phase, but eventually failed to meet its 

endpoints, at least in part due to faulty response assessment (165-167). However, a durable 

response occurred in a small subset of the patients enrolled in the trial. Given the inter-tumoral 

heterogeneity characteristic of GBM, post hoc sub group analyses have been proposed and may 

shed light on subsets of GBM patients that will benefit from these therapies. 

 Recently, TAMs have been proposed as a potential therapeutic target in GBM (114). 

TAMs influence the entire immune response within the tumor microenvironment and impact the 

sensitivity of neoplastic cells to chemotherapies and radiation therapy (79). Thus, targeting 

TAMs can have a two-fold benefit: directly inhibit tumor growth and/or modify the tumor 

microenvironment in such a way that it becomes sensitized to other therapies. Techniques to 

modulate TAMs can alter their recruitment, survival, and activation state. Modulation of TAMs 

as therapeutic targets in numerous malignancies have been recently been reviewed (120, 123, 

168). In glioma, inhibition of the CSF-1 receptor on TAMs decreased tumor volume and 

prolonged survival in a mouse GBM model (129, 169). Disrupting periostin signaling is another 
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avenue of TAM modulation that has shown potential therapeutic benefit preclinically. In mouse 

GBM models, periostin inhibition decreased the M2 polarized, pro-tumorigenic macrophage 

population (170, 171). Interestingly, several agents that are classically used as antibiotics, 

Amphotericin B and minocycline, have both shown benefits in GBM models by altering 

microglial activation and interaction with GBM stem cells (172, 173). As trials are ongoing, the 

clinical efficacy of modulating of TAMs remains unknown.  

 Despite these exciting new avenues of GBM therapy, efforts to advance care are 

hampered by a still incomplete understanding of the complexity of GBM: the tumor antigens, 

microenvironments within a tumor, immune-tumor interactions, and differences between tumors. 

A more thorough understanding of these elements is essential to develop novel therapeutic 

targets, understand how to most effectively utilize currently available therapies, and craft 

treatment strategies that will have the best efficacy for each individual patient.  

 

1.3 Breast cancer brain metastases. 

 

1.3.1 Brain metastasis overview. 

 While decades of research have begun to unravel the multifaceted biology of GBM, less 

is known about the complex landscape of metastatic tumors in the brain, which are 10 times 

more common than all primary malignant brain tumors combined. Brain metastases are almost 

uniformly fatal and occur in more than 20% of all cancers (174). However, this incidence rate 

may grossly underestimate the incidence of brain metastases as autopsy studies have shown the 

presence of metastatic brain lesions in up to 40% of subjects (7). Brain metastases occur most 

commonly in breast cancer, lung cancer, and melanoma. Within breast cancer brain metastasis, 
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the specific breast cancer subtype influences brain metastasis incidence, with HER2 positive and 

triple negative subtypes having the highest incidence rates and negatively impacting patient 

prognosis (10, 175-178).  

The propensity of specific cancer types to selectively seed and colonize brain tissue 

highlights the organotropic nature of metastasis, and the fact that this is not a random process 

(179). The theory of organ specific metastasis by different types of malignancies is commonly 

explained by the “seed and soil” principle, which was first described by Stephen Paget in 1889. 

In this theory, the seed (a metastatic cancer cell) can only survival and grow in certain soils 

(tissue microenvironments), explaining the propensity of specific tumor cells for successful 

interactions with select organ microenvironments (180). This phenomenon highlights that 

cancer-stromal interactions play a key role in the process of metastasis.  

 

1.3.2 Breast cancer heterogeneity and development of brain metastases. 

 

Breast cancer heterogeneity. 

 Breast cancer is the most common cancer in women worldwide (181). Breast cancer is an 

umbrella term describing a heterogeneous collection of malignancies that share a tissue of origin, 

but vary in their clinical behavior, histological features, and molecular and genetic 

characteristics. Developing a unifying taxonomy for breast cancers continues to be a challenge 

(182).  

Multiple classification systems based on these different features have been implemented 

over the past decade that have led to a current multidisciplinary classification approach (183). 

Conventionally, morphological and histological features defined by the WHO differentiated at 
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least 17 histological subtypes including infiltrating ductal and lobular carcinoma, tubular 

carcinoma, mucinous carcinoma, medullary carcinoma, invasive papillary carcinoma, and others 

(184, 185). Analyzing gene expression patterns subtyped breast cancers into 6 molecularly 

defined classes: basal-like, HER2 positive, normal breast-like, luminal A, luminal B, and luminal 

C. This subtyping method intrigued the scientific and clinical oncology communities as the 

resulting subtypes were associated with variable clinical outcomes and had implications for 

differing therapeutic sensitivities (186). As one of the primary rationales for subtyping cancers is 

to identify patient cohorts that have specific therapeutic sensitivities, breast cancers can also be 

classified based on the presence of absence of key actionable targets, such as tumor-specific 

receptors. Under this classification scheme, breast cancers are subdivided as triple negative 

(lacking expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2), 

HER2 positive, luminal B, and luminal A. Of these subtypes, triple negative tumors have the 

worst prognosis and are typically treated with chemotherapies, HER2+ tumors have mixed 

prognoses and can be treated with targeted therapies such as trastuzumab, and the luminal B and 

A subtypes have the best prognoses and may be sensitive to endocrine-targeted therapeutic 

approaches as they are often ER and/or androgen receptor positive (182). The distinction of 

basal-like and luminal-like are also used in discussing breast cancer heterogeneity, and are 

categorized based on expression of cytokeratins present in basal cells and absent in luminal cells 

of the mammary duct tissue (187). While these do not perfectly line up with other classifications, 

basal-like tumors typically overlap with triple negative malignancies and share their poor 

prognosis, while luminal-like tumors overlap with the luminal molecular classes. Based on 

mixed expression of several specific cytokeratins, a basoluminal class has also been identified, of 

which many are HER2 positive (188). Recent advances in ‘omic’ technologies have further 
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complicated the sub classification of breast cancers. Numerous genetic mutation, transcriptomic, 

and epigenetic modification based classifications have been proposed (189-191). While these 

multiple methods complicate the sub classification of breast cancer, they have made breast 

cancer the optimal target for personalized medicine as therapies can more easily be targeted to 

multiple distinct characteristics of each tumor (192).  

Of these classification systems, the receptor expression model has been primary assessed 

in the propensity of breast cancers to metastasize to the brain. The triple negative and HER2 

positive subtypes most commonly result in metastatic brain lesions (10, 11, 176-178, 193-195). 

A recent population-based study on the incidence of brain metastases in newly diagnosed breast 

cancer found that of patients with metastasis at the initial time of breast cancer diagnosis, 11.5% 

of those with hormone receptor negative and 11.4% of patients with HER2 positive tumors had 

already established metastatic brain tumors (175).  

Heterogeneity of metastatic tumors is further complicated by variances in molecular 

differences between the primary and metastatic tumors. Several groups have classified 

differences between metastatic brain tumors and their primary tumor counterparts (196, 197). 

These studies reveal that expression of cell surface receptors, such as EGFR and its ligand 

heparin-binding EGF (HB-EGF), likely contribute to the cells metastatic potential.  

 

Breast cancer metastasis to the brain: the metastatic cascade. 

The process of successful metastatic tumor formation follows a series of pathological 

steps known as the metastatic cascade (Fig. 1.8). The metastatic cascade consists of a series of 

sequential, interrelated steps that result in neoplastic cells from a primary tumor to seed, survive, 

and grow in a foreign tissue microenvironment (7, 198). The first stage of the metastatic cascade 
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occurs before tumor cells leave the primary tumor and is termed the “pre-colonization” phase of 

metastasis. During this phase changes occur in both the primary tumor cells and in distant tissue 

where future metastatic lesions can grow. In breast cancer, a pre metastatic change critical to 

tumor invasion and dissemination is the epithelial-mesenchymal transition (EMT) program in 

primary tumor cells. Physiologically, EMT is a developmental and wound healing process that 

can be hijacked by neoplastic cells (199). In malignant cells, EMT increases their invasiveness, 

motility, and ability to degrade stromal elements such as the ECM. EMT involves a loss of 

traditional epithelial cell properties, such as polarized expression of cell-cell adhesion and 

structural proteins (e.g. e-cadherin and certain cytokeratins), and acquisition of mesenchymal 

properties, such as a spindle-shaped morphology and increased expression of n-cadherin, 

vimentin, and the EMT promoting transcription factors Snail, Slug, Twist, and Zeb1 (199, 200). 

Similar to the evolving understanding of M1/M2 phenotype as a spectrum of macrophage 

polarization rather than clearly delineated cell types, the classification of neoplastic cells as 

epithelial or mesenchymal also operates along a continuum and malignant cells can identify as 

intermediate EMT states (201).  

Concurrent with the genetic and epigenetic changes occurring in the cancer cells, future 

metastasis niches are conditioned and primed by soluble factors, including cytokines and 

exosomes, and infiltrating immune cells (202, 203) (204). Preclinical studies of breast cancer 

brain metastasis suggest that prior to seeding of malignant breast cancer cells in the brain there is 

increased infiltration of myeloid-derived cells mediated by elevated S100 calcium-binding 

protein (S100)-A9 (204). This generates a more hospitable environment for incoming breast 

cancer cells. Preclinical studies have also shown that malignant cells release growth factors, 

cytokines and extracellular vesicles that contain biologically activate microRNAs (mir), which 



	 36	

can alter endothelial cell properties in the BBB, enhancing the binding and brain transmigration 

of future intravascular metastatic cells (205-207). 

The EMT properties acquired by breast cancer cells increase the release of stromal 

modifying factors, such as matrix metalloproteinases (MMPs), which enable cells to leave the 

primary tumor tissue and enter systemic vasculature (208). Tumor cells escape the primary tumor 

as single cells, small clusters of cells, or as a growing edge of the large bulk tumor, and then 

intravasate, entering the systemic circulatory system. Once in the blood stream, metastasizing 

cells, now termed circulating tumor cells (CTCs), are subject to extreme stressors such as shear 

forces, lack of adhesion, and different nutrients (199). CTCs can physically and functionally 

associate with platelets and monocytes to facilitate their survival and entry into distant tissues 

(198, 199, 209-211). Mechanical entrapment of CTC in small capillaries, which have a diameter 

of only 8µm, serves as the main mechanism by which CTC begin their invasion of foreign 

organs. Intravascularly arrested CTCs can actively extravasate between endothelial cells 

(transendothelial migration) or cause vessel rupture, leading to seeding of distal organs as single 

cells or emboli, respectively. The high proportion of total blood flow to the brain increases the 

exposure of CTCs to brain capillary beds (7, 199, 212).  

In the brain, malignant cells must cross the BBB and components of the NVU to reach 

the brain parenchyma. Several signaling molecules including the sialyltransferase enzyme 

ST6GALNAC5, cathepsin S, mir-105, and mir-181c have been found to mediate the ability of 

metastatic cells to breach the BBB by increasing adhesion to or destruction of the endothelium 

(196, 207, 213, 214). Metastatic cells can also increase intracellular signaling pathways, such as 

Src signaling, which stimulate the production and release of factors that break down the BBB 

and its basement membrane components (215-217). Gene expression and proteomic studies of 
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breast cancer cells destined for the brain show increased expression of multiple genes and 

proteins that improve their ability to traverse the BBB (196, 213). 

 

 

Figure 1.8 The metastatic cascade leading to successful formation of brain tumors. Breast 

cancer metastasis to the brain follows a series of steps known as the metastatic cascade. These 

steps include changes within the primary tumor to the neoplastic cells and their 

microenvironment, priming of the pre-metastatic niche, dissemination of primary tumor cells, 

seeding of distant organs, and growth of metastasized tumor cells in the brain. Reprinted from 

Achrol et al 2019 (7). 

 

Once metastatic cells have seeded a distant organ they are termed disseminated tumor 

cells (DTCs). Upon initial entry of DTCs into new tissue microenvironments, the malignant cells 

must survive a new set of pressure and stressors; the vast majority of metastasizing cells perish at 

this point. Rodent models of the metastatic cascade suggest that more than 90% of tumor cells 
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that enter the brain disappear within 1 week (218, 219). As previously described herein, the CNS 

is known to have an active immune system. It has been proposed that immune surveillance 

significantly contributes to the high attrition rate of metastasizing cells in the brain. Local CNS 

cells, including microglia and astrocytes, have also been shown to interact with metastatic cells 

upon brain entry in both pro- and anti-tumorigenic fashions. Valiente et al. 2014 demonstrated 

that astrocytes secrete serine protease plasminogen activator, which ultimately functions to 

initiate apoptosis in infiltrating cancer cells. However, the invading metastatic cancer cells, 

similar to GBM cells, can secrete immune inhibiting factors that alter their new 

microenvironment to a more hospitable niche to overcome local anti-tumor reseponses (220, 

221). For example, tumor cells can stimulate the production and release of MMPs from 

astrocytes and proteinase cathepsin S from macrophages, both of which alter the brain 

microenvironment to become a more favorable niche for breast cancer survival and growth (213, 

221). 

Once DTCs set up a favorable pro-tumorigenic environment, they are able to survive 

dormant in the brain for years to decades and grow into overt, clinically significant metastases. 

Established metastatic tumors continue to release self-survival signals, modify the activation 

state of local and immune cells, and develop resistance pathways to therapeutic insults. 

Metastatic breast cancer can reside as single cells or small clusters within the perivascular niche 

in a state of dormancy in the brain for long periods of time, even years (218, 219, 222). It has 

been proposed that perivascular-specific microenvironmental factors such as thrombospondin 1 

may actively signal infiltrating cells to survive in a dormant state in this location (219). Recent 

reports suggest that pharmacologically targeting metastatic cells in the perivascular niche can 

increase their sensitivity to chemotherapy (223). In other metastatic tumor sites, modulation of 
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immune cell reactions to cancer cells contributes to maintenance of dormant metastatic cell 

populations, however this has not yet been assessed in the context of brain metastasis (199). 

Clinically, understanding the dormant niche is critical as it may be a critical cellular reservoir 

responsible for delayed relapse in patients with no other evidence of clinical disease following 

treatment for their primary tumors. The specific signals that activate dormant metastatic breast 

cancer cells in the brain remain unclear.  

Actively growing metastatic tumors in the brain contain diverse intra-tumoral regions, 

analogous to the intra-tumoral heterogeneity in GBM. Metastatic tumors have a more defined 

leading edge than GBMs, as exemplified by their clear delineation on MR imaging. At this 

tumor/brain interface, the malignant cells are in close proximity to resident brain cells including 

astrocytes, microglia, and neurons. Meanwhile, in the bulk tumor, malignant cells encounter 

regions of increased angiogenesis, hypoxia, and necrosis.  

Understanding the cellular signaling pathways that control metastatic cell (1) survival in 

the brain, (2) dormancy, (3) and overt outgrowth into the brain parenchyma will aid in 

developing therapeutic options for tumors at different stages of metastasis. In this dissertation I 

focus on factors contributing to outgrowth of established tumors, as the majority of clinical cases 

present at this stage. 

 

1.3.3 The microenvironment of breast cancer brain metastases. 

 

Overview of the metastatic brain tumor microenvironment. 

Similar to GBM, the microenvironment of metastatic brain tumors influence the tumor’s 

survival, local invasiveness, and therapeutic sensitivity/resistance. The interactions between the 
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tumor and its microenvironment are bidirectional, with the malignant cells impacting the non-

malignant CNS cells, and vice versa. As in GBM, the malignant cells primarily interact with 

astrocytes, microglia, endothelial cells, pericytes, neurons, infiltrating immune cells and ECM 

(224). Developing a more thorough understanding of the heterogeneous microenvironment 

interactions in brain metastases will aid in the development of personalized treatment approaches 

for these tumors. 

 

Components of the CNS microenvironment in breast cancer brain metastases. 

Astrocytes have multiple pro- and anti-tumorigenic effects on breast cancer brain 

metastasis. In nearly all brain metastases there is significant astrogliosis in the peritumoral brain 

and moderate, but more variable, astrogliosis within the bulk tumor (225). Reactive astrocytes 

interact with the breast cancer cells through secreted factors and direct physical contact (226-

229). Factors secreted by astrocytes that activate oncogenic signaling pathways in carcinoma 

cells and/or degrade ECM to permit cell invasion include IL6, TGFβ, interferon α (IFNα), TNF, 

MMP2, MMP9, and growth factors (226, 228-230). In murine models of brain metastasis, 

inhibiting several of these factors, such as IL-6, that can initiate the production and release of 

additional cytokines that in turn elicit anti-tumor effects (230, 231). Murine models have also 

been used to assess physical contact between astrocytes and breast cancer cells that promote 

tumor survival and growth. These studies have shown that functional gap junctions composed of 

Connexin-43 exisit between astrocytes and breast cancer cells in the brain and allow passage of 

tumor promoting metabolites directly between the cytoplasm of the two cells (229). Inhibiting 

these gap junctions with meclofenamate and tonabersat decreased the formation of breast cancer 

brain metastases and shrank established metastatic lesions. The direct and indirect interactions of 
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astrocytes and breast cancer cells increase the expression of survival genes, including signal 

transducer and activator of transcription 5 (STAT5), B-cell lymphoma 2 (BCL2)-L1, and twist-

related protein 1 (TWIST1), and contribute to therapeutic resistance (232, 233). Subsets of 

astrocyte populations secrete cytokines that upregulates EGFR signaling in cancer cells in 

response to estrogen, ultimately leading to increased S100A4 that in turn promotes tissue 

invasive cellular behaviors (234). Astrocytes also exhibit anti-tumor responses. For example, 

astrocytes can release exosomes containing miRNAs that inhibit tumor growth (235). The 

multifaceted roles of astrocytes in the setting of breast cancer brain metastasis remain 

incompletely understood, but pre-clinical evidence collected to date demonstrates that they are 

significant contributors to tumor growth and therapeutic sensitivity. 

Microglia and macrophages are important elements of the metastatic brain tumor 

microenvironment and cluster around metastatic brain tumors in murine models and human 

tumors (221, 225, 236, 237). Less is known about the role of TAMs than astrocytes in metastatic 

brain tumors. Lineage tracing experiments, with corroboration of cell-specific protein expression 

in human brain metastasis samples, have shown that both local microglia and bone marrow 

derived macrophages infiltrate metastatic brain tumors (238). Potential differing roles of these 

cells in metastatic tumors are areas of active investigation. In the metastatic brain tumor 

microenvironment, TAMs are activated by several extracellular factors, including relaxins, 

chondroitin sulfate, proteoglycans and neurotropin 3, produced by the tumor cells (239-242).  

Numerous reports suggest that TAMs preferentially develop an M2 polarization phenotype, 

which impairs further anti-tumor immune responses (242-245). However, recent experimental 

evidence suggests that both M1 and M2 TAM populations are present in metastatic tumors, and 

that selectively eliminating the M2 TAM population in a murine models elicits anti-tumor effects 
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(246). One mechanism by which TAMs promote brain colonization is by increasing Wnt 

signaling in malignant cells (242). Opposingly, increased production of MMPs and angiostatin 

by TAMs in response to tumor produced granulocyte-macrophage colony-stimulating factor 

(GM-CSF) suppressed tumor growth (247). TAMs have also been found to influence BBB and 

phagocytose fragments of damaged vasculature (248, 249). Similar to vascular mimicry by 

neoplastic cells in GBMs, TAMs appear to have a vascular mimicry capacity within metastatic 

lesions. Increased expression of E-cadherin allows TAMs to transiently form functional vessels 

in tumors (249). Despite these advances and ongoing studies, the mechanisms that dictate TAM 

phenotype in brain metastases and the ability of TAMs to alter tumor growth remain largely 

uncharacterized. 

Very little is known about the interactions of metastatic cells with neurons. One report 

found that breast cancer cells in the CNS mimic neuronal properties, such as expression of 

gamma-aminobutyric acid receptors, which increases malignant cell proliferation (250). 

Metastatic cells have also been found to cause neuronal cell death, but experimental models 

show neuronal function can be maintain by modulating the cytokine pigment epithelium–derived 

factor (251). 

Interactions between invading malignant cells and tumor vasculature has been more 

thoroughly studies than interactions with resident brain cells, as the tumor-vasculature 

relationship is critically involved in metastatic cell seeding and tumor growth. Early in metastatic 

tumor development, invading cancer cells reside in the perivascular niche where they adhere to 

and travel/grow along the abluminal side of vasculature (218, 221, 252). Here, tumor cells bind 

vascular basement membrane components via cell surface receptors, such as β1-integrin, which 

impact cell survival during the brain colonization phase of tumor development (252). As the 
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protein composition of both the vascular basement membrane and endothelial cell itself differs in 

CNS and breast tissues, malignant cells likely utilize a different set of cell surface receptors for 

optimal interactions as they invade the brain (83). Furthermore, experimental models suggest that 

protein composition in the brain’s vascular niche change throughout metastatic tumor 

progression and that this variable protein expression can be targeted to inhibit tumor growth. For 

instance, the expression of proteins including E-selectin, vascular cell adhesion protein 

(VCAM)-1, activated leukocyte cell adhesion molecular (ALCAM), intracellular adhesion 

molecule (ICAM)-1, very late antigen (VLA)-4, and β4 integrin were markedly increased on 

endothelial cells early in tumor seeding, and inhibiting ALCAM and VLA-4 decreased the 

number of metastatic tumors in murine models (253). The vascular co-option displayed by 

metastatic tumor cells is also mediated by serpins, which influences the expression of L1 cell 

adhesion molecule (L1CAM), and present another potential point for therapeutic intervention 

(220). Pericytes are another important cell in cerebral vasculature that influence the 

vascularization of metastatic tumors, integrity of the BBB in these tumors, and tumor dormancy 

(219, 254). The intricate interactions of invading tumor cells with existing vasculature and 

neovasculature elements within the tumor alters BBB properties. As in GBM, the permeability of 

brain metastases is inconsistent and can vary between tumors and within a single tumor, which 

can be seen by multiple imaging modalities (109, 255-257). Different subtypes of breast cancer 

have different effects on BBB integrity. Metastatic brain tumors of the HER2 positive breast 

cancer subtype have a more intact BBB than tumors of the triple negative breast cancer subtype 

(258). The variable BBB permeability in metastatic tumors have been proposed as a cause of 

therapeutic failures in brain metastases (259). Key differences between a healthy BBB and the 

BBB/BTB in metastatic brain tumors include: increased VEGF, swollen endothelial cells, altered 
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expression of junctional proteins, cytokine receptors, and transporters by endothelial cells, varied 

basement membrane composition, presence of reactive microglia and astrocytes, altered 

expression of aquaporin 4 on astrocyte endfeet, and altered pericyte phenotypes (7, 254). 

Infiltration of systemic immune cells into metastatic brain tumors is variable and remains 

incompletely characterized in metastatic breast cancer. Rare CD8+ cytotoxic T-lymphocytes, 

CD4+ T-cells, and B-cells can be present (153, 236).  Comparing brain metastases with their 

matched primary breast tumors, T-cell infiltration is significantly lower in the metastatic tumors 

than in primary tumors (260). Within metastatic brain tumors, those with higher numbers of T-

lymphocyte infiltration had longer overall survival. While analyses of immune checkpoints 

expression have been limited, expression of PD1/PD-L1 appears to be common in brain 

metastases, irrespective of tumor subtype (153). 

 

Breast cancer cell surface receptor exploited in CNS microenvironment interactions. 

Metastatic cancer cells interact with cellular and extracellular brain microenvironment 

components through cell surface receptors. Understanding the specific roles of key surface 

receptors on malignant cells in the metastatic niche is essential as they provide therapeutic 

targets. Two key families of cell surface receptors involved metastatic cancer progression are 

integrins and growth factor receptors. Integrins are cell membrane proteins that classically bind 

ECM, and have been implicated in nearly every step of cancer progression and metastasis (261-

263). Similarly, growth factor receptor signaling is altered in many malignancies and their 

metastatic complications. Growth factor receptors, as their name implies, respond to growth 

factors in the tumor microenvironment, activating numerous intracellular signaling pathways that 

regulate cell fate, proliferation, and motility. 
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Integrins are heterodimeric transmembrane receptors that consist of an α and β subunit 

(264). At present, 18α and 8β subunits have been identified that can form 24 functional 

heterodimers. These heterodimeric integrins facilitate bi-directional signaling between extra- and 

intracellular environments that are capable of inside-out and outside-in signal transmission 

across the cell membrane (261, 262).  Several integrins bind only one ECM ligand, but most 

integrin heterodimers can bind multiple ECM proteins that contain similar motifs within the 

protein structure.  For example, αvβ3-integrin binds vitronectin, fibronection, thrombospondin 

and others. Integrins are grouped into classes based on their ligand preferences. The four classes 

of integrins are receptors that recognize Arg-Gly-Asp (RGD) peptide motifs (that are present in 

several ECM components), laminin receptors, collagen receptors, and integrins that are 

expressed solely in leukocytes (264). Upon ligand binding or activation through intracellular 

signals, integrins form clusters on the cell membrane. These clusters can function as signaling 

platforms, which recruit modulators of variable downstream signaling cascades that control 

cellular behaviors including survival, motility, invasiveness, and cell division. The dynamics of 

integrin recycling between the cell membrane and intracellular compartments, and localized 

expression of integrins on specific cell membrane features contribute to the diverse signaling 

cascades they activate (265, 266). 

In cancer, integrins are associated with nearly all phases of disease progression and 

metastasis including metastatic niche priming, therapeutic resistance/sensitivity, and malignant 

cell migration, invasion, survival, stemness, dormancy, extravasation in foreign tissue, and 

outgrowth (Fig. 1.9) (261, 263). In particular, the αv subunit and the αvβ3 heterodimer are 

associated with breast cancer brain metastasis. The αv-integrins are frequently overexpressed in 

metastases (267-270), and influence cancer cell survival, proliferation, migration and invasion  
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(271-273). Activation of αvβ3-integrin promotes tumor angiogenesis and metastatic growth in 

mouse brain (274), while transcriptional silencing of this integrin with MYC decreases migration 

and invasion of breast cancer cells in vitro and in vivo (275). Integrin-αvβ3 has several known 

ECM ligands that are expressed around cerebral vasculature (83), giving this receptor the 

potential to coordinate interactions with the brain perivascular microenvironment. Non-ECM 

soluble factors, such as Gal3, which has been identified in the brain microenvironment, can also 

cause clustering and activation of αvβ3-integrin (276-281). In preclinical models, targeting αv 

with the monoclonal antibody intetumumab or αvβ3- and αvβ5-integrins with the cyclic peptide 

cilengitide have shown anti-tumor effects as well as metastasis prevention activity (282-284). 

However, in clinical trials, intetumumab and cilengitide have demonstrated minimal therapeutic 

efficacy inducing tumor cell death in metastases (285-287). The inadequacies of current therapy 

emphasize the need to precisely understand the tumor-specific biology and signaling within the 

brain niche so that suitable biomarkers and therapeutic strategies can be developed. 
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Figure 1.9. The multi-faceted roles of integrins in cancer metastasis. Integrins are involved in 

tumor-microenvironment interactions, migration/invasion, metastasis, and therapeutic sensitivity. 

Reprinted from Hamidi & Ivaska 2018 (261). 

 

 Growth factor receptors are another family of cell surface proteins expressed by 

metastatic cells that regulate important tumorigenic interactions between the malignant cells and 

their microenvironment. Numerous growth factor receptors including EGFR, HER2, PDGFR, 

insulin like growth factor 1 receptor (IGF1R), and insulin like growth factor 2 receptor (IGF2R) 
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have been implicated in metastatic progression. In the setting of breast cancer brain metastasis, 

the role of the growth factor receptor HER2 in tumor establishment and growth is particularly 

intriguing given the high proficiency of HER2 positive breast cancers to metastasize to the brain; 

up to 30% of patients with HER2 positive breast cancers develop brain metastases. 

HER2, a member of the EGFR RTK family (ERBB1-4, also termed EGFR, HER2, 

HER3, and HER4), is an orphan RTK overexpressed in some breast cancers. Activation of most 

RTKs is initiated by binding their respective growth factor ligand(s). HER2 is the exception, as it 

has no known ligand. Receptor activation leads to oligomerization with adjacent growth factor 

receptor monomers, trans-autophosphorylation of their intracellular domains, and induction of 

variable intracellular signaling cascades. Specific ligand binding selectivity is dictated by the 

homo- and heterodimer receptor composition (Fig. 1.10).  

 

Figure 1.10. Ligand -

receptor interactions in the 

EGFR family. Homo-and 

hetero-dimers have 

differential ligand bindings 

capacities (288). Reprinted 

from Linardou et al. 2009. 

 

In the setting of breast cancer brain metastasis all members of the EGFR family have 

been implicated in some fashion (289). Similar to correlative studies showing increased brain 

metastasis in HER2 positive breast cancer, primary breast cancers that express EGFR have also 
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been found to have increased incidence of brain metastasis (11, 290).  Analysis of clinical breast 

cancer brain metastasis samples have shown that 39% of the tumors express EGFR, and that 

compared to primary breast tumors, EGFR expression is increased in brain metastases (291, 

292).  Expression of HER3 is also significantly higher in brain metastases than in primary breast 

tumors (293). A possible contributing factor to this selection the high expression of neuregulin 

(NRG1) in the brain, which is the ligand for HER3. Ligands for EGFR are present in the brain 

and in the brain tumor microenvironment, including EGF and HB-EGF. Differential gene 

expression analyses have implicated HB-EGF in specifically mediating breast cancer metastasis 

to the brain, compared to metastasis to other organs (196). In contrast to the other members of 

the EGFR family, HER4 expression is down regulated in breast cancer brain metastases 

compared to primary breast tumors (197). 

RTKs have been shown to physically and functionally interact with in cancer cells, and in 

doing so promote metastatic cellular behaviors and drug resistance (294). Interactions of 

integrins with growth factor receptors including PDGFR, EGFR, hepatocyte growth factor 

receptor (HGFR), and VEGF receptor (VEGFR) can induce growth factor receptor activation 

even in the absence of growth factor bindings (215, 294-298). Further exploring the relationship 

between cell surface receptors known to be upregulated in brain metastasis and able to mediated 

microenvironment interactions has the potential to open up new therapeutic avenues. 

 

1.3.4. Advancing treatments for breast cancer brain metastases. 

 

 Current treatments for breast cancer brain metastases are similar to those employed in 

treatment of GBM including cytotoxic chemotherapy and radiation therapy, with stereotactic 
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radiosurgery used in well-defined lesions (7). Surgical resection is used if there are three or 

fewer metastatic lesions, but patients often have a large number of dispersed lesions (299). 

Unfortunately, outcomes remain dismal for brain metastases, with the overall survival after 

initial diagnosis of brain metastasis from HER2 positive breast cancer being 16.5 months (300). 

Several factors have hampered improving effective therapies for breast cancer brain metastases 

including: poor penetrance of therapeutics across the BBB, differing actionable mutations across 

patients, molecular heterogeneity within the tumor, and protective effects of the tumor 

microenvironment.  

 Therapies for breast cancer brain metastasis falls into two broad categories: preventing 

the formation of metastases in high-risk patients with systemic disease and shrinking established 

brain lesions (301). Prevention strategies can target nearly every step of the metastatic cascade, 

including disrupting CTCs, blocking CTC binding to brain vasculature, inhibiting CTC 

translocation into the brain parenchyma, and maintaining the DTCs in a dormant state. Specific 

targets include proteins with upregulated expression in metastatic tumors compared to their 

primary tumor counterparts and/or proteins known to confer an increased risk of neurotropic 

metastasis. Treatment of micrometastases and clinically overt metastases could target mutations 

that alter key cellular signaling pathways and cell viability, functional interactions between the 

malignant cells and their brain microenvironment, and soluble factors and exosomes that mediate 

perivascular tumor dissemination and interaction with the CNS niche. Recent advances in 

genomic techniques have allowed improved characterization of metastatic tumors, revealing that 

53% of brain metastases harbor pharmacologically actionable mutations not present in their 

matched primary tumors (302). 
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 Targeted therapeutics, such as inhibitors of HER2, are effective in systemic breast cancer, 

but these have limited efficacy in brain metastases (303-306). Anti-HER2 drugs include low 

molecular weight RTK inhibitors such as lapatinib and neratinib, mAbs such as trastuzumab 

(Herceptin), and antibody-drug conjugates such as azo-trastuzumab emtansine (307). To date, 

anti-tumor effects from these drugs on metastatic lesions have been modest at best. Trastuzumab 

is unable to cross the intact BBB and has poor penetrance across the BTB (303-306). Slightly 

improved trastuzumab CNS penetrance can be achieved following BBB disruption with radiation 

therapy, increasing CSF to plasma levels from 1:420 to 1:76 (305). Intrathecal administration of 

trastuzumab in combination with pertuzumab has also been tested as a method to circumvent the 

BBB, and results are pending (NCT02598427). Both lapatinib and neratinib are able to cross the 

BBB. Results of clinical trials with lapatinib have been mixed and ongoing trails are evaluating 

the efficacy of neratinib in combination with chemotherapy treat treatment of metastatic brain 

tumors (308).  

 Integrins present druggable targets in brain metastases. Integrin αvβ3 can be inhibited 

with the small molecular inhibitor cilengitide. Cilengitide was original evaluated in CNS 

malignancies for treatment of gliomas, where it failed to show efficacy in phase III trials (164). 

Despite this failure, preclinical work suggests that cilengitide may be efficacious in preventing 

the spread of metastatic tumors in the brain, administered alone and/or in combination with other 

agents including radioimmunotherapy (282, 287, 309). 

 Interrupting pro-tumorigenic interactions between the malignant cells and the brain tumor 

microenvironment may block processes that are indispensable for tumor survival and growth. 

Druggable aspects of this complex milieu include angiogenesis, the dysfunctional BBB/BTB, 

and direct and indirect bidirectional communication between malignant cells and reactive 
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microglia and astrocytes, neurons, endothelial cells, and infiltrating leukocytes (Fig. 1.11) (7, 

301). Modulators of several of these interactions have entered clinical trials (7). While 

immunotherapies have been studied in melanoma and non-small cell lung cancer (NSCLC) brain 

metastases, less is known about the influence of immunotherapies in breast cancer metastases. 

 

 

 
 

Figure 1.11. Targeting the tumor microenvironment in brain metastasis. Therapeutic 

strategies to control brain tumors through modulation of the brain tumor microenvironment and 

microenvironment molecular interactions with malignant cells are in various phases of 

preclinical and clinical development. Yellow boxes: agents being investigated for efficacy 

preclinically. Green boxes: inhibitors currently in clinical trials. Reprinted from Achrol et al. 

2019 (7). 
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1.4 Remaining challenges in developing personalized treatment for CNS tumors. 

 

 While significant work has been done to begin characterizing malignant brain tumors and 

their microenvironment, several barriers remain and prevent the translation of novel findings to 

improved patient care. In GBM, the influence of intra-tumoral heterogeneity on tumor 

assessment hinders our ability to reliably characterize tumors. Furthermore, evaluating this 

variability currently require invasive techniques that do not permit assessment of the whole 

tumor across space and time. In breast cancer brain metastases, interactions between the tumor 

cells and their microenvironment are emerging as significant drivers of tumor progression, yet 

remain incompletely characterized. Furthermore, the potential interactions between proteins 

overexpressed in neurotropic breast cancer and the brain microenvironment have been minimally 

explored, and these molecular interactions may provide biological explanations for the success of 

certain cancers to colonize the brain and present novel therapeutic targets. 

 In this dissertation I address these remaining problems in CNS malignancies. Chapters 

two and three aim to identify new methods to assess the heterogeneity of GBM and develop non-

invasive techniques to evaluate tumor characteristics including the immune microenvironment. 

Chapter four investigates how expression of cell surface receptors on metastatic breast cancer 

cells promotes pro-tumorigenic interactions with the brain microenvironment. Together, these 

findings will aid in the continued development of personalized medicine approaches for GBM 

and metastatic brain tumors by providing improved tools for tumor assessment and increased 

knowledge of the complex biological interactions critical for tumor progression.  
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2.1.	Abstract	

	
Glioblastoma multiforme (GBM) are rapidly fatal, extremely diverse tumors that exhibit both 

intra- and inter-tumoral heterogeneity. To improve outcomes, personalized treatment strategies 

are needed. Personalized treatment of GBM will require tumor stratification into subtypes that 

differ in therapeutic vulnerability and outcome. To date, GBM stratification has been hampered 

by immense intra-tumoral heterogeneity, limiting our ability to compare tumors in a consistent 

manner. In the present study we used open-source transcriptional profiles of predefined 

histological structures from human GBM to develop methods that mitigate the impact of intra-

tumoral heterogeneity on transcriptomic-based patient stratification. We show that intra-tumoral 

histologic architecture influences tumor classification when assessing established gene signatures 

for subtyping and prognostic marker development, and that using mixed structure samples, 

which are classically used for these types of studies, can give misleading results. We identify the 

cellular tumor as a GBM structure from which transcriptional subtyping and prognostic strategies 

can be applied to more accurately stratify patient cohorts. We analyzed this specific architecture 

to create an improved risk stratification tool. Our results highlight that biomarker performance 

for diagnostics, prognostics, and prediction of therapeutic response can be improved by 

analyzing transcriptional profiles in pure cellular tumor, which is a critical step toward 

developing personalized treatment for GBM. 

	

2.2.	Introduction	

	
GBM, grade IV gliomas, are the most common and aggressive malignant primary brain 

tumor, with a median survival of only 18.1 months (1). Efforts to improve survival are hindered 
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by the current inability to stratify GBMs into groups with differential sensitivity to therapy 

(chemoradiotherapy [CRT], immunotherapies, and targeted therapies), and to identify patients 

with the highest risk of rapid disease progression. Being able to identify patient cohorts with 

similar GBM tumors would improve clinical decision-making, design of clinical trials, 

preclinical therapeutic development, and ultimately patient outcomes.  

Stratification of GBM is particularly challenging because these tumors display complex 

multilayered inter- and intra-tumoral heterogeneity, as their name “multiforme” implies(23, 310). 

Current clinical stratification methods include: extent of resection, Karnofsky Performance Score 

(KPS), age, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and 

isocitrate dehydrogenase 1 (IDH1) mutation, none of which capture the intricate molecular and 

heterogeneous landscape of GBM (13, 39, 311-314). However, modern ‘omic’ technologies, 

such as high-throughput genomic, transcriptomic, and proteomic profiling enable new 

approaches for tumor subset identification. Omic analyses of GBM samples from The Cancer 

Genome Atlas (TCGA) defined four molecular subtypes: classical, neural, proneural, and 

mesenchymal(25). However, these subtypes and subsequent prognostic gene signatures have not 

found clinical utility. 

We explore the hypothesis that GBM’s intra-tumoral heterogeneity has impeded the 

development of robust molecular tools for patient stratification in this tumor type due to 

sampling regions that differ in histological structure composition. Nearly all omic studies 

investigating GBM have used samples collected with little regard for histological structure other 

than necrosis (22). This methodology captures non-uniform, varying amounts of histologically 

diverse tissue architecture composed of cancer cells, stromal cells, vasculature, immune 

infiltration, and some necrosis. Samples that contain a mixture of these elements may obscure 
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detection of key tumorigenic processes enriched or depleted in specific tumor 

microenvironments. This histologic heterogeneity likely interferes with inter-patient comparisons 

when biopsies are composed of inconsistent tissue architecture. 

In the present study we show that characterizing transcriptional patterns in intra-tumoral 

heterogeneity enables identification of a consistent histologic region that can be assayed to 

improve inter-patient comparisons. Specifically, we demonstrate that (1) histologic structures 

within a tumor are molecularly distinct and that variations in histology confound results of 

established gene signatures created from mixed structure samples, and (2) focusing specifically 

on the dense cellular tumor histological structure improves both GBM subtyping into 

biologically distinct cohorts and patient risk stratification that are more strongly associated with 

clinical outcome. These advances will guide the future development of personalized medicine 

approaches for GBM and enhance prognostics to identify patients with the highest risk of rapid 

progression. 

	

2.3.	Methods	

	
Data sets. The analyses described herein were performed on either the Ivy Glioblastoma Atlas 

Project (IvyGAP) or The Cancer Genome Atlas (TCGA) dataset with described processing steps.  

IvyGAP. We mined RNA-sequencing data from the open-source Ivy Glioblastoma Atlas 

Project (Allen Brain Institute) and Swedish IvyGAP Database for clinical data. A detailed 

explanation of the methods used to generate these data are available 

(http://glioblastoma.alleninstitute.org). Briefly, tissue blocks were obtained at tumor resection, 

subdivided, and rapidly frozen. Tissues were later sectioned and subjected to H&E staining (Fig. 
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2.1). Pre-defined histologic structures including IT, LE, MVP, HBV, PNZ, PAN, and CT were 

outlined on one section and then laser microdissected on adjacent sections (Table 2.1). Dissected 

structures then underwent RNA sequencing; results were normalized as fragments per kilobase 

of exon per million reads (FPKM) mapped reads. The total number of patients enrolled was 42; 

36 patients (18 male; 18 female) had usable samples with intact RNA, and of these each subject 

had variable numbers of samples obtained for each region. Not all patients have data from all 

structures and recurrent tumors (2) were excluded.  

 

Fig. 2.1. Tissue collection and processing. (A) Tissue collection, sub-sectioning, and freezing 

done by the Allen Brain Institute (ABI). (B) Example of histologic structure identification done 

by the ABI. (C) Slide layout for serial sections for structure alignment, completed by the ABI. 

Images: ABI, technical white paper. 
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Table 2.1. Tumor structure definitions. Adapted from IvyGAP Technical White Paper Fig. 2-9 

Structure Example Images Definition 

Leading Edge 
(LE) 

 

“Leading Edge is the outermost boundary of the tumor, 
where the ratio of tumor to normal cells is about 1-3/100. 
Layers of the cortex are often observed.” 

Infiltrating 
Tumor (IT) 

 
“Infiltrating tumor is the intermediate zone between the 
Leading Edge (LE) and Cellular Tumor (CT), where the 
ratio of tumor cells is about 10-20/100. Neuronal cell 
bodies as well as glial cell aggregating on neurons, are 
often observed.” 

Cellular 
Tumor (CT) 

 
“Cellular tumor constitutes the major part of core, where 
the ratio of tumor cells to normal cells is about 100/1 to 
500/1. Tumor densities often exceed typical levels of cells 
(left panel), but can also have low cell mass due to edema 
or early necrosis (right panel).” 

Microvascular 
Proliferation 
(MVP) 

 “…generally found in the core of tumors, and is marked by 
two or more blood vessels sharing a common vessel wall of 
endothelial and smooth muscle cells (e.g. 100 μm 
diameter). They can appear as glomerulus (left panel, 100 
μm diameter), or as a “garland” of multiple interconnected 
blood vessels (right panel, 50 μm diameter x 1-6 mm).” 

Hyperplastic 
Blood Vessels 
(HBV) 

 
Hyperplastic blood vessels are found throughout tumors, 
and exhibit many sizes and shapes (left panel). The features 
are marked by increased density of blood vessels that 
appear to have thickened walls (endothelial cell 
proliferation) (right panel). 

Pseudo-
palisading 
Cells around 
Necrosis 
(PAN) 

 Pseudopalisading cells around necrosis is generally found 
in the core of tumors. Tumor cells aggregate or line up in 
rows 10-30 nuclei wide at higher density than the 
surrounding CT to form pseudopalisading cells, which may 
appear to point toward a common center in necrosis. 
Necrosis is required for PAN.” 

Perinecrotic 
Zone (PNZ) 

 
“Perinecrotic zone is generally found in the core of tumors, 
and refers to a boundary of tumor cells typically 10-30 
nuclei wide along the edge of necrosis that lacks a clear 
demarcation of PAN.” 

Necrosis 
(NE)*  

 
“Perinecrotic zone is generally found in the core of tumors, 
and refers to a boundary of tumor cells typically 10-30 
nuclei wide along the edge of necrosis that lacks a clear 
demarcation of PAN.”  
*No RNAseq data for this structure 
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TCGA. The gene expression data (174 cases, Workflow Type: HTSeq-FPKM) and 

corresponding clinical information were downloaded from the Genomic Data Commons Data 

Portal for the Glioblastoma Multiforme projects (TCGA-GBM; 

https://portal.gdc.cancer.gov). Methylation data was downloaded from https://tcga-

data.nci.nih.gov/docs/publications/gbm_2013/. Recurrent tumors and normal brain samples were 

excluded yielding a total of 156 cases.  

Data pre-processing. To obtain a log-transformed, normal distributed data set, we 

excluded genes with very low expression across all samples by applying the following filtering 

method to IvyGAP and TCGA data sets: 1) Take expression values for all genes and all samples, 

remove zero’s and find quartiles to be used as filtering value. 2) Calculate mean of each gene 

across samples and exclude genes with a mean less than the lower quartile filtering value. A 

combination of raw FPKM values, log2-transformed data, and z-score normalized values, where 

every transcript had mean value of 0 and standard deviation of 1, were used for all analyses.  

 

Variation in gene expression is primarily explained by histologic structure. To assess the 

interrelationships between all samples in the IvyGAP data set, we used principal component 

analysis (PCA) and transcript-to-transcript correlation network analysis. To determine the 

optimal number of clusters within the dataset, we applied the gap statistic method, followed by 

k-means clustering and hierarchical clustering to identify the constituents of the optimally 

numbered clusters. 

PCA. We performed PCA using the 1000 most variable genes in the IvyGAP data set to 

assess the variance among sample transcriptomes on the log2-transformed and z-score 
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normalized data matrix (PCA() function in [FactoMineR R package] and [factoextra package in 

R]) (315).  

Correlation network analysis. Regional differences were also assessed in BioLayout 

Express3D by plotting a sample-to-sample correlation graph with the Pearson correlation 

threshold, r = 0.92, for visualization. Nodes represent individual samples, and edge length 

depicts the degree of correlation between samples with Pearson correlation coefficients above the 

selected threshold. 

Gap statistic analysis. To identify the optimal number of clusters for subsequent 

partitioning methods in the IvyGAP dataset, we determined the gap statistic on the top 1000 most 

variable genes, which compares the total intra-cluster variation for k = 1-10 with expected values 

under null distribution of the data. The optimal number of clusters is the value that maximizes 

the gap statistic, meaning that the clustering structure is far from random uniform distribution 

(fviz_nbclust() function [factoextra R package]) (315). 

K-means clustering. To identify which of the seven histologic structures collapse together 

for subsequent analysis, we performed k-means clustering on the 1000 most variable genes in the 

IvyGAP data set using k=4, the optimal number of clusters determined by the gap statistic 

analysis. The clusters were visualized by principal components (kmeans() function [stats R 

package]; fviz_cluster() function [factoextra R package]) (315). 

Dendrogram. To identify which of the seven histologic structures collapse together for 

subsequent analysis, we also computed a distance matrix on the 1000 most variable genes in the 

IvyGAP dataset using Euclidean distance measure and performed hierarchical cluster analysis 

using Ward’s method. The dendrogram was constructed using k=4 groups, as determined by gap 
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statistic analysis (distance matrix and clustering was computed using dist() and hclust() functions 

in [stats R package]; fviz_dend() function in [factoextra R package]) (315). 

 

Structure-based lasso logistic regression classifier. We aimed to create a method for 

discriminating between GBM histologic structures using transcriptomic features with the goal of 

applying this method to mixed GBM samples to identify the predominant CT region for further 

analysis.  

The IvyGAP data set was first balanced between structures and evenly split into train and 

test sets based on structure using Stratified K-Folds cross-validator (n_splits=5). Next, using 

train sets, a lasso regularized multinomial logistic regression classifier was built to predict GBM 

structure in independent data sets (penalty=‘L1’; solver=‘saga’; C=‘1/8’, multi-class= 

‘multinomial’, fit intercept=True, ). The 5-fold cross validation average accuracy for the logistic 

regression classifier on test sets is 98.45%. Lastly, the classifier was used to predict the structure 

classification of all GBM-TCGA samples (class sklearn.linear_model.StratifiedKFolds and 

.LogisticRegression; Python3.6) (316). 

 

Gene Set Enrichment Analysis (GSEA) to assess for enriched biological processes and 

perform GBM subtype analysis. Gene set enrichment analysis was performed using GSEA 

software with FPKM gene expression data (317). Defaults were used for GSEA analysis, 

including Signal2Noise ranking metrics. Gene sets were excluded that were smaller than 15 

genes and greater than 500 genes, and enrichment p-values were estimated by 1,000 

permutations and corrected for multiple testing using the Benjamini-Hochberg method. Analyzed 
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gene sets were from the molecular signature database (MsigDB), Gene Ontology (C5), Hallmark 

(H), or Positional (C1) collections, at www.broadinstitute.org/gsea/msigdb/collections.jsp.  

For structurally enriched biological processes, GSEA results were visualized using the 

Enrichment Map plugin for Cytoscape (V2.8, www.cytoscape.org) (318). For visualization 

purposes, clusters of functionally related enriched GO terms were manually circled and labeled, 

and significance thresholds were set to be highly conservative for the LE/IT and HBV/MVP 

structures (p-value cutoff 0.005; FDR q-value cutoff 0.001), conservative for PNZ/PAN (p-value 

cutoff 0.005; FDR q-value cutoff 0.1), and loose for CT (p-value cutoff 0.1; FDR q-value cutoff 

0.4).  

 

Survival prediction using an established prognostic gene signature and metagene score. To 

determine if expression of an established multigene predictor of GBM outcome has structural 

specificity, we calculated a metagene score for each sample in the IvyGAP dataset (z-scored 

using all samples) following methods from Colman and colleagues(319).Kaplan-Meier survival 

analysis was performed using the metagene score to separate all IvyGAP samples into high 

(metagene score > 0) and low risk (metagene score < 0) groups.  

To test if assessing the gene signature within a specific structure could accurately stratify 

subjects in terms of overall survival, we z-scored samples within each structure independently, 

and re-calculated a metagene score for each sample followed by Kaplan-Meier analysis as 

before. 
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Cox proportional hazards model for survival analysis. We aimed to create a method for 

discriminating between high risk (short overall survival) versus low risk (long overall survival) 

patients using transcriptomic features in the CT and clinical characteristics to calculate an 

individual’s risk score. This risk score method was then applied to CT predicted GBM samples 

for validation. 

Univariate Analysis. To determine whether the clinical covariates age, gender, MGMT 

methylation status, IDH1 mutation status, 1p19q deletion status and KPS score were significantly 

associated with overall survival in the IvyGAP CT samples, univariate Cox proportional hazards 

regression was performed (coxph() function in [survival package in R]). 

Multivariate Analysis. To determine whether genes were significantly associated with 

overall survival and independent of clinical covariates, multivariate Cox proportional hazards 

regression using the clinical covariates MGMT methylation status, IDH1 mutation status and age 

was performed. Each gene was assigned a hazard ratio (HR), Wald statistic, and a corresponding 

p-value using Cox regression analysis. Genes were selected as candidates significantly associated 

with survival if the p-value was < 0.05, which also coincides with the confidence interval for the 

combined HR for a given gene not crossing the baseline risk (HR = 1). The HR for a given gene 

>1, was defined as a potential risk gene, <1, it was defined as a potential protective gene 

(coxph() function in [survival package in R]).  

Stepwise selection. The gene candidates from multivariate analysis were applied to the 

process of forward stepwise selection, which is designed to add genes to the base model with 

clinical covariates that increase the model’s ability to discriminate between long versus short-

term survivors. First, 10 random seeds were generated and for each seed the IvyGAP CT samples 

were split into train and test sets using 5-fold cross validation. Next, using train sets, HR’s, log-
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rank test scores and associated p-values are computed for the base model, iteratively fit with each 

candidate gene. An updated model is created adding only the candidate gene with the highest 

log-rank test score (and the lowest log-rank test p-value) to the base model. Then, the process is 

repeated to determine which of the remaining candidate genes will lead to the greatest 

improvement if added to the model. This process is continued until the concordance for the 

model reaches 1, signifying that the discriminatory power of the model is perfect, or 10 genes 

have been added, whichever occurs first (createFolds() function in [caret R package]; coxph() 

function in [survival package in R]).  

Internal validation. The model for each train set that underwent stepwise selection was 

used to predict the HR of the corresponding test set and the concordance and log-rank test p-

value was computed. Models were excluded that, upon prediction on the test set, had 

concordance < 0.5 or log-rank test p-value > 0.05. To avoid overfitting, the model that was 

selected for subsequent analyses was the model with concordance nearest the mean (0.75) of all 

remaining models (predict() function in [stats package in R]).  

Finalized survival model. Since we want to ensure generalizability and that each feature 

of the model is an independent predictor, to finalize the model, it was applied to the entire 

IvyGAP CT data set and features were excluded that had a Wald statistic p-value >0.05. The 

resulting finalized model was trained on the IvyGAP CT data and used to predict the HR’s for 

each sample in the IvyGAP CT set alone as well as the entire IvyGAP data set (coxph() function 

in [survival R package]; predict() function in [stats R package]). 

External validation. The GBM-TCGA samples that were predicted to be predominantly 

CT by the structure-based lasso logistic regression classifier were used for external validation of 

the finalized survival model. The model was trained on the IvyGAP CT data and used to predict 
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the HR’s for the GBM-TCGA CT samples alone as well as the entire GBM-TCGA data set 

(predict() function in [stats package in R]). 

Survival analysis. Under different circumstances, an HR of 1 (high risk: HR > 1; low 

risk: HR < 1) was taken as the cut-off point for group classification, or tertiles of HR values were 

used to classify into two (high risk: HR > quantile(2/3); low risk: HR < quantile(2/3)) or three 

groups (high risk: HR > quantile(2/3); medium-risk: quantile(1/3) < HR < quantile(2/3); low risk: 

HR < quantile(1/3)). The Kaplan-Meier method was used to generate survival curves based on the 

different cut-offs and the difference between survival curves was evaluated using the log-rank 

test. All tests were two-tailed, and p-values less than 0.05 were considered to be significant 

(survfit() function in [survival package in R]; ggsurvplot() function in [survminer R package]).  

 

Heatmaps. For all heatmap visualizations, if clustering was performed, transcripts and samples 

were organized by unsupervised hierarchical clustering using Ward’s method with the Euclidean 

distance metric. Heatmap visualization and hierarchical clustering were performed on log2-

transformed and z-score-normalized data (pheatmap() function [pheatmap R package]).   
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2.4.	Results	

	
Histologic structures in GBM tumors are molecularly distinct, explaining in part intra-tumoral 

heterogeneity  

We analyzed RNA-sequencing and corresponding clinical data from the Ivy 

Glioblastoma Atlas Project (IvyGAP) to compare the transcription profiles of different 

histological structures (56). The IvyGAP dataset is comprised of two companion databases: (1) 

RNAseq and In Situ Hybridization data from histologically identified tumor structures and (2) 

clinical information including patient demographics, pathology, and survival. Briefly, this 

database was generated by analyzing RNA in GBM tissue blocks that were obtained at tumor 

resection (Fig. 2.1 A). Pre-defined histologic structures including: infiltrative tumor (IT), leading 

edge (LE), cellular tumor (CT), perinecrotic zones (PNZ), pseudopalisading cells around 

necrosis (PAN), areas of hyperplastic blood vessels (HBV), and areas of microvascular 

proliferation (MVP), were outlined on H&E stained tumor sections and microdissected on 

adjacent sections at the Allen Brain Institute (Fig. 2.2 A; Fig. S2.1 B-C; Table 2.1). The number 

of different structures sampled varied between patients. Dissected structures underwent RNA 

sequencing and results were archived as Fragments Per Kilobase of transcript per Million 

(FPKM) mapped reads. We used the FPKM data from 34 newly diagnosed GBM in the present 

analyses.  
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Fig. 2.2. Variation in GBM sample gene expression is primarily explained by histologic 

structure. (A) Representative image demonstrating the histologic structures identified by the 

Allen Brain Institute (ABI), outlined by different colors. The ABI microdissected these 

structures, performed RNAseq on the dissected structures, and then archived the FPKM level 

data in the Ivy Glioblastoma Atlas Project (IvyGAP) database. See Fig. S1 for higher 

magnification structure images and definitions. (B-D) Analysis of the 1000 most variable genes 

in the IvyGAP data set. (B) Principle component analysis (PCA) of dimensions 1 (Dim1) and 2 

(Dim2) demonstrate that most variation in the data is explained by the histologic structure from 

which the RNA was extracted. Each sample is represented as a symbol, and colored by the 

structure the sample is from; ellipses are drawn around samples from the same structure (ellipse 
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level=0.66). (C) Correlation network analysis shows samples from a histologic structure are 

clustered. Nodes represent samples, color represents the structure samples came from, and edge 

length depicts the degree of correlation between samples. (D) Dendrogram of hierarchically 

clustered (k = 4) samples demonstrating structures with the most similarity.  

 

 

We analyzed histological structure specific transcriptional profiles from the IvyGAP 

database using principal component analysis (PCA) and correlation network analysis (315, 320, 

321). The first two principal components in the PCA explained 50.9% of the variance in the 1000 

most variable genes in the dataset and separated samples by structure, but not by other clinical 

features associated with GBM such as KPS, age, MGMT promoter methylation, and IDH1 

mutation (Fig. 2.2 B; Fig. 2.3 A-G). This finding suggests that sample variance was driven by 

histologic structure and not by other patient characteristics. Transcript-to-transcript correlation 

network analysis corroborated PCA results, confirming that samples within a region were more 

highly correlated to one another than to samples from different regions, even in cases where 

samples were from the same patient (Fig. 2.2 C) (320, 321).  

Samples from several of the 7 histologically-defined structures had overlapping clusters 

in PCA and network analyses, indicating that their transcription profiles were similar. Applying 

the gap statistic method, k-means clustering, and hierarchical clustering showed that the original 

7 histologic structures could be collapsed to 4 molecularly distinct structures having high tumor 

cellularity (CT), tumor invasion (LE/IT), vascular involvement (HBV/MVP) and necrosis 

(PAN/PNZ) (Fig. 2.2 D; Fig. 2.3 H-I). The analyses that follow focus on these four structures. 
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Fig. 2.3. Additional PCA and clustering analyses. (A) Scree plot showing percent of variance 

described by each principle component (dimension) in analysis of the top 1000 most variable 

transcripts. PCA labeling clinical patient stratifiers (B) MGMT methylation status, (C) 

Karnofsky Performance Score (KPS), (D) IDH1 mutation status, (E) overall survival days, (F) 

patient age at time of diagnosis, and (G) gender of the samples (each symbol represents and 

individual sample). No alternative labeling explains variance in the data set as well or better than 

histologic structure seen in figure 1. (H) Gap statistic method identifying optimal number of 

clusters for k=1-10. (I) K-means clustering using k=4 and visualization of clusters using PCA.  
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Distinct biological processes are enriched in tumor structures 

We analyzed whole transcriptome measurements of each of the four transcriptionally 

distinct structures using Gene Set Enrichment Analysis (GSEA) of gene ontology (GO) to 

identify biological processes enriched in each structure relative to the rest of the tumor (Fig. 

2.4)(317, 318, 322-324). The LE/IT structure, where the ratio of tumor cells to central nervous 

system (CNS) cells is low, had enrichment of normal CNS processes such as neuron 

development, synaptic signaling, and regulation of ion and neurotransmitter homeostasis. Thus, 

transcriptomic analysis of the bulk tumor edge captures CNS processes, rather than cancer 

specific biology. The vascular architecture (HBV/MVP), as expected, was associated with 

angiogenesis, regulation of blood pressure, vascular permeability, cell junction assembly, and 

extracellular structure organization. This region also was enriched in immune processes 

including regulation of phagocytosis, leukocyte migration and activation, and cytokine 

production, suggesting this is an inflammatory microenvironment in GBM. The PNZ/PAN 

architecture also was associated with enhanced immune processes, such as monocyte and 

lymphocyte differentiation, and leukocyte migration and chemotaxis. Additionally, the 

PNZ/PAN region was characterized by biological networks associated with necrosis, cellular 

starvation, hypoxia, and oxidative stress.  

The CT structure has the highest density of neoplastic cells and the transcription profiles 

of this structure varied between patients, suggesting that analysis of transcription profiles from 

CT might enable more precise identification of biologically distinct GBM cohorts. The variation 

between patients decreased our ability to identify biological processes associated with the overall 

CT structures. However, there was a trend toward enhancement of traditional cancer processes 

including DNA replication and repair, chromatin remodeling, and stem cell proliferation.  
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The diversity of biological networks interacting in spatially distinct histological structures 

highlights the complexity of GBM tissue. These studies suggest that efforts to compare tumors 

using samples containing unknown quantities of these structures may be compromised by 

variance in the tumor architecture. Instead, comparing tumors using gene expression profiles 

measured for a consistent structure across patients, particularly the CT, may be an effective inter-

tumoral comparison method. 
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Fig. 2.4. Biological processes enriched in tumor structures. Gene Set Enrichment Analysis 

(GSEA) followed by enrichment map visualization shows gene ontology (GO) biological 

processes enriched in (A) leading edge (LE) and infiltrating tumor (IT), (B) cellular tumor (CT), 

(C) hyperplastic blood vessels (HBV) and microvascular proliferation (MVP), as well as (D) 

perinecrotic zones (PNZ) and pseudopalisading cells around necrosis (PAN) relative to the rest 

of the tumor. Nodes represent GO terms. Clusters of functionally related enriched GO terms 

were manually circled and labeled. Node color represents the structure enriched (Purple: LE/IT; 

Green: CT; Dark orange: HBV/MVP; Blue: PNZ/PAN). Node size within each structure 

quadrant is proportional to the number of genes within each GO term. Edge thickness signifies 

the overlap between GO terms (number of genes shared between two gene sets); thicker edges 

depict connections between nodes that share more genes than thinner edges. For visualization 

purposes, significance thresholds were set highly conservative for the LE/IT and HBV/MVP 

structures (p-value cutoff 0.005, false discovery rate (FDR) q-value cutoff 0.001), conservative 

for PNZ/PAN (p-value cutoff 0.005, FDR q-value cutoff 0.1), and very loose for CT (p-value 

cutoff 0.1, FDR q-value cutoff 0.4). 
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Molecular subtype classification depends on structure, with CT best able to distinguish subtypes 

Existing GBM molecular subtypes (mesenchymal, classical, neural, and proneural) 

defined by expression of an 840-gene classifier, are not strongly associated with clinical 

endpoints (25). Thus, this gene classifier has not translated clinically. Additionally, several 

analyses have reported classification of a single tumor into multiple subtypes (33, 51, 325). We 

reasoned that both of these issues might be related to histological heterogeneity within and 

between tumors. 

Our analyses of subtype gene expression profiles showed that histological architecture 

significantly influenced subtype classification of samples, using previously defined subtype 

criteria (25) (Fig. 2.5 A; Fig. 2.6 A). Neural and proneural subtype-defining genes were strongly 

expressed in LE and IT samples, while mesenchymal subtype genes were highly expressed in 

HBV and MVP samples. This suggests that a biopsy taken from the tumor edge might be 

classified as neural or proneural, while a biopsy from the same tumor taken from a highly 

vascular region might be classified as mesenchymal. To test this, we subtyped all samples from 

each structure, using single-sample GSEA. We found that, in many cases, a single patient would 

be classified as every subtype depending on the structure analyzed. To avoid this problem, we 

focused on using solely the CT since this structure showed the most variability in subtype gene 

expression. Our analyses demonstrated that all four subtypes could be distinguished in CT (Fig. 

2.5 B-C; Fig. 2.6 B). Furthermore, these results suggested three main subtypes exist: proneural, 

classical, and mesenchymal (Fig. 2.4 C). This result supports the idea that the original neural 

subtype may have been an artifact (26). 
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Fig. 2.5. Molecular subtype classification depends on the structure sampled, with cellular 

tumor (CT) able to distinguish biologically distinct subtypes. (A) Expression of subtype gene 

set (y-axis) in IvyGAP samples from each region (x-axis) show that sample structure is a main 

contributor to expression of subtype gene signatures. Genes corresponding to each subtype were 

organized independently by unsupervised hierarchical clustering. (B) Subtype classification for 

samples corresponding to subjects with ≥4 samples from different regions. All sample calls are 

shown in Fig. S3b. CT* represents subtype analysis using only CT (z-scored data across CT 

samples only). (C) Unsupervised hierarchical clustering of IvyGAP CT samples (z-scored data 
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across CT samples only) showing 3 main clusters with signatures of proneural, classical, and 

mesenchymal GBM subtypes. (D) Unsupervised hierarchical clustering of TCGA samples 

predicted to be composed predominantly of CT, also showing 3 main clusters with signatures of 

proneural, classical, and mesenchymal subtypes. (E) Enrichment of hallmark gene sets in the 

GBM subtypes (stratified based on the CT sample analysis) showing statistically significantly 

enriched processes in proneural and mesenchymal tumors (none were statistically significant in 

classical or neural). Proneural and mesenchymal tumors have enrichment of cell cycle 

checkpoints and immune processes, respectively. NES: normalized enrichment score; FDR: false 

discovery rate. 
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Fig. 2.6. IvyGAP molecular subtyping. (A) Expression of subtype gene set (y-axis) in the 

IvyGAP samples from each region (x-axis) showing sample structure is a main contributor to 

expression of subtype gene signatures. Samples were organized by unsupervised hierarchical 

clustering using Ward’s method and the Euclidean distance metric. (B) Subtype classification 

calls for structures from all samples. CT* represents subtype calls using CT z-scored data across 

only the CT samples. 
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The finding that analyses limited to CT structures could stratify molecular subtypes 

needed to be validated in an independent dataset. Doing so was complicated since all other GBM 

gene expression databases, to our knowledge, have been created from mixed-structure samples. 

Therefore, we created a novel gene expression classifier, using lasso logistic regression on each 

of the 4 transcriptionally distinct tumor structures in the IvyGAP database, to identify expression 

profiles that distinguish the 4 structures (Fig. 2.7 A-B) (316). Applying this new gene classifier 

to tissue composed of mixed structures identifies the predominant structure in a sample. We 

applied this structure classifier to GBM samples from TCGA and identified 40 samples predicted 

to be composed of predominantly CT (Fig. 2.7 C) (21). Clustering these 40 predicted CT samples 

revealed proneural, classical, and mesenchymal cohorts, similar in pattern to the IvyGAP CT 

samples (Fig. 2.5D). 

 

Molecular subtype classification using CT distinguishes tumors with unique biology 

We applied GSEA to the proneural, classical, and mesenchymal cohorts identified in the 

CT samples from the IvyGAP database to identify enriched hallmark gene sets in each subtype 

(317, 326). The proneural and mesenchymal, but not classical and neural, cohorts had 

significantly enriched gene sets (Fig. 2.5 E; Fig. 2.8). Cell cycle checkpoints (G2M and E2F 

hallmark gene sets) and MYC signaling (MYC targets hallmark gene set) were enriched in 

proneural tumors, while the mesenchymal tumors were highly inflammatory (enriched 

inflammatory response, IL6/JAK/STAT3 signaling, coagulation, and IFNγ response gene sets). 

These patterns were corroborated in the CT-predicted TCGA samples (Fig. 2.8).  
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Fig. 2.7. Structure-based gene 

signature. (A) Heatmap displaying 

z-score normalized expression of 

the structure-based genes signature, 

which was created by logistic 

regression modeling on the IvyGAP 

data with known tumor structures. 

(B) Heatmap of the structure-based 

signature genes in the TCGA GBM 

data. The predominant structure was 

predicted by applying the model 

learned by logistic regression from 

the IVGAP data to the TCGA GBM 

data. (A,B) Samples and genes were 

organized by unsupervised 

hierarchical clustering, which 

results in a nearly perfect separation 

of the structure (A). Genes are on 

the y-axis, samples on the x-axis. 
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Fig. 2.8. GSEA hallmark gene set enrichment in CT stratified molecular subtypes. 

Enrichment plots of top enriched hallmark gene sets in IvyGAP CT samples from (A) Proneural 

versus REST (all samples not classified as proneural), and (B) Mesenchymal versus REST (all 

samples not classified as mesenchymal) analyses. The top enriched hallmark gene sets in 

IvyGAP CT samples were also enriched in TCGA CT-predicted samples as shown by 
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enrichment plots of (C) Proneural versus REST, and (D) Mesenchymal versus REST analyses. 

No results were statistically significant in Classical or Neural versus REST in both IvyGAP and 

TCGA analyses. Molecular subtyping was determined after z-score normalizing within only the 

IvyGAP CT and TCGA CT-predicted samples. ES: Enrichment score; NES: Normalized 

enrichment score; NOM: Nominal; FDR: False discovery rate.  

 

Survival prediction using an established prognostic gene signature is driven by tumor structure 

We applied an established multigene predictor of GBM outcome to transcriptomic 

profiles from structurally distinct samples and observed that predicted outcome was confounded 

by structure (Fig. 2.9 A; Fig. 2.10 A) (319). This analysis predicted that samples rich in LE 

and/or IT would have good prognoses, while samples rich in PNZ, PAN, HBV, and/or MVP 

have poor prognoses, independent of patient origin. In other words, an individual could be 

assigned either a good or poor prognosis based on the histological structure analyzed (Fig. 2.9 B; 

Fig. 2.10 B) (319). Using the metagene score to separate all IvyGAP samples into high versus 

low-risk groups showed no survival difference in Kaplan-Meier analysis. This result was 

observed due a single endpoint being associated with multiple samples with opposite outcomes. 

We performed independent Kaplan-Meier analyses on samples within each structure to 

test whether applying the survival prediction gene signature to a specific structure could 

accurately stratify patients. CT showed a minor trend in correctly stratifying patients, but only 

analysis of HBV samples was statistically significant (p<0.05). However, analysis of HBV 

samples inverted the survival curve, alarmingly predicting opposite outcomes; patients predicted 

to have a poor prognosis had longer overall survival. 
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Fig. 2.9. Established prognostic gene signature expression is driven by tumor structure. (A) 

A survival prediction gene set, composed of genes associated with poor or good prognosis, 

shows differential expression based on tumor structure, with opposite expression in the IT/LE 

compared to the PAN/PNZ/HBV/MVP. The prognostic gene sets were organized independently 

by unsupervised hierarchical clustering. (B) Prognostic prediction for samples from subjects with 

≥4 samples from different structures, with prognosis determined based on sample metagene 

score. A single patient (subject) can be predicted to be either high or low risk depending on 

which structure in their tumor is analyzed. All sample calls are shown in Fig. S6b. (C) Kaplan-

Meier survival analysis of all IvyGAP samples. (D) Analysis of survival prediction using a 

metagene score based on only CT samples. Results in a Kaplan-Meier curve show a minor, but 
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correct trend in survival stratification. (E) Analysis of survival prediction using a metagene score 

based on only HBV samples results in a statistically significant Kaplan-Meier curve that 

incorrectly, and oppositely, stratified long versus short survivors. For survival analysis, metagene 

scores were used to risk stratify (poor prognosis: metagene score > 0; good prognosis: metagene 

score < 0). Differences between survival curves was evaluated using the log-rank test. All tests 

were two-tailed; p-values < 0.05 were considered significant. 
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Fig. 2.10. Analysis of established prognostic gene signature expression with all samples. (A) 

A survival prediction gene set, composed of genes associated with poor and good prognosis, 

shows differential expression based on tumor structure, with opposite expression in IT/LE 

compared to PAN/PNZ/HBV/MVP. Samples and genes were both organized by unsupervised 

hierarchical clustering. (B) Survival prediction for each sample, with prognosis determined based 

on sample metagene score (poor prognosis: metagene score > 0; good prognosis: metagene score 

< 0). 
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Our analyses suggest that applying this existing gene signature to a mixed structure 

sample could assign a prognosis based on the structure composition of the sample more than 

aggressiveness of the neoplastic cells, with highly vascular and necrotic tumors having a worse 

prognosis. Guided by this, we next asked whether patients could be better stratified according to 

outcome using gene expression profiles measured for the cancer cell rich CT structure. 

 

A novel prognostic gene signature, created utilizing CT transcriptomics, identifies highest-risk 

GBM patients 

We performed stepwise multivariate Cox proportional hazards regression on IvyGAP CT 

samples to create a novel prognostic model and risk score equation for GBM (Fig. 2.11 A; Table 

2.2). We included known prognostic factors including age, MGMT status, and IDH1 mutation in 

the model. The final risk score calculation included MGMT status, age, and expression of 6 

genes: phosphoglycerate mutase family member 4 (PGAM4), ethanolamine kinase 2 (ETNK2), 

melanoma inhibitory activity (MIA), guanine monophosphate synthase (GMPS), B-cell 

lymphoma 7B (BCL7B), and integrin binding sialoprotein (IBSP). 



	 87	

 

Fig. 2.11. Novel prognostic gene signature created utilizing solely cellular tumor (CT) 

sample gene expression data. (A) Risk score and hazard ratio (HR) prediction equation created 

using a novel prognostic model for GBM. The risk score is calculated as the sum of the product 

of the defined weighting factors with the corresponding predictors, MGMT promoter 

methylation status (0: not methylated; 1: methylated), patient age (in years), and normalized 

expression values of 6 genes: PGAM4, ETNK2, MIA, GMPS, BCL7B, and IBSP. Kaplan-Meier 

survival analysis of (B) IvyGAP CT samples, (C) CT-predicted TCGA samples, (D) all IvyGAP 

samples, and (E) all TCGA samples dichotomized into high and low risk groups based on 

MGMT promoter methylation status (left) and predicted HR (right). For MGMT promoter 

methylation status, survival was evaluated by separating samples into methylated (low risk) or 

unmethylated (high risk) groups. For assessing survival using the new prognostic model, tertiles 

of HR values were used to risk stratify (high risk: HR > quantile(2/3); low risk: HR < 
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quantile(2/3). Differences between survival curves was evaluated using the log-rank test. All tests 

were two-tailed; p-values < 0.05 were considered significant. Shading on survival lines 

correspond to 95% confidence intervals. *MGMT promoter methylation status. ** Samples 

predicted to be predominantly CT as classified using the structure-based lasso logistic regression 

classifier. 

 

Table 2.2. New prognostic marker gene signature components. 

 

We assessed hazard ratios in samples from IvyGAP and validated these using the CT 

samples in the TCGA dataset in order to determine whether our prognostic signature improved 

survival prediction over MGMT methylation status alone. In both datasets, stratification of 

patients into moderate versus highest-risk groups was statistically significant and better than 

MGMT expression alone (Fig. 2.11 B-C). When we applied the gene signature to all samples 

from IvyGAP and TCGA (not only CT samples), the model correctly stratified patients, again 

improving stratification over MGMT expression alone (Fig. 2.11 D-E). These results suggest that 

our survival prediction model, created based on CT gene expression, can be applied to samples 

containing either pure CT or mixed structures. The model also effectively identified medium and 

low risk groups (Fig. 2.12). 
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Fig. 2.12. Survival analysis using the new survival prediction gene signature. Kaplan-Meier 

survival analysis of (A,B) IvyGAP CT samples, (C,D) all IvyGAP samples, (E,F) CT-predicted 

TCGA samples, and (G,H) all TCGA samples. Based on predicted HR, samples were separated 

into high, medium, and low risk groups (A,C,E,G; high risk: HR > quantile(2/3); medium risk: 

quantile(1/3) < HR < quantile(2/3); low risk: HR < quantile(1/3)), or high and low risk (B,D,F,H; 

high risk: HR > 1; low risk: HR < 1). Differences between survival curves was evaluated using 

the log-rank test. All tests were two-tailed, and p-values less than 0.05 were considered to be 

significant. Shading on survival lines correspond to 95% confidence intervals. *Predicted to be 

predominantly CT as classified using the structure-based lasso logistic regression classifier. 

 

We next asked whether genes associated with high-risk had enriched biological patterns 

that could highlight key tumorigenic processes. To test this, we ranked the entire transcriptome 

in order of the Wald statistic calculated during multivariate Cox regression analysis. We then 

used GSEA to probe this ranked list for established gene signatures enriched in transcripts with 

the greatest Wald statistic. Hallmark pathways, including oxidative phosphorylation, MYC 

targets, MTORC1 signaling, Glycolysis and DNA repair, were associated with high-risk genes 

(Fig. 2.13 A). Furthermore, enrichment of genes at chromosomal locations Chr13q12, ChrXp11, 

Chr16p12, Chr3q22, and Chr3q25 were associated with high-risk status (Fig. 2.13 B). 
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Fig. 2.13. Enriched gene sets in IvyGAP CT genes associated with increased risk. (A) 

Hallmark and (B) chromosome location gene sets enriched in genes associated with high risk of 

short overall survival with enrichment plots of the top 3 gene sets for each. ES: Enrichment 

score; NES: Normalized enrichment score; NOM: Nominal; FDR: False discovery rate.  

	

2.5.	Discussion	

	
Improving outcomes for GBM is hindered by our inability to stratify patients into cohorts 

that have biologically distinct tumors requiring different clinical care. Patient-to-patient tumor 

comparisons are problematic in GBM due to intra-tumoral heterogeneity. We demonstrated that 

histologic structures account for part of this heterogeneity, and propose that assessing gene 

expression in CT will improve inter-tumoral comparisons. Our results highlight that using 

mixed-structure samples or samples rich in non-CT regions to determine GBM subtype could 

produce invalid results, while classifying subtypes using CT identifies distinct cohorts with 

unique biology. Additionally, utilizing exclusively CT, we created a prognostic model to identify 

the highest-risk patients. The biological patterns uncovered in the subtypes and risk-stratified 

groups have important implications for guiding precision medicine and steering future studies 

investigating malignant pathways in GBM.  

The enriched biological processes we identified in GBM subtypes have the potential to 

guide therapeutic intervention. Proneural tumors showed enrichment of genes expressed during 

cell cycle checkpoints, stages of cell replication when DNA integrity is assessed. Current 

standard-of-care treatment for GBM is CRT, which functions through eliciting DNA damage (1). 

Having elevated expression of cell cycle checkpoints makes it plausible that proneural tumors 
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have different sensitivity to CRT than other subtypes, as CRT is known to have increased 

efficacy on highly proliferative cells. Accordingly, purely proneural tumors have been reported 

to have longer survival than other GBMs, while mesenchymal differentiation has been associated 

with therapeutic resistance and decreased survival (24, 27, 33). In contrast, mesenchymal tumors 

had enriched immune processes - the target of immunotherapies. This is consistent with previous 

reports showing that mesenchymal GBM has elevated immune activation and leukocyte 

infiltration (30, 31, 141). This distinction is essential to consider in the context of 

immunotherapies, as highly immunogenic tumors are more responsive to immunotherapy than 

tumors with a weak endogenous immune response (140). Thus, mesenchymal GBM may be 

exceptional candidates for single-agent immunotherapy, whereas proneural tumors may require 

an immunogenic vaccine prior to immunotherapy (141, 327, 328). Future studies should 

investigate the influence of pretreatment levels of cell cycle checkpoint transcripts and immune 

phenotype on GBM susceptibility to CRT and immunotherapies. Additionally, stratifying 

patients based on CT-characterized subtype in analysis of retrospective and prospective 

treatment efficacy trials may identify cohorts sensitive or resistant to specific therapies. 

Our analyses of the established prognostic gene signature suggest that structure 

composition contributes to its prognostic prediction. Colman and colleagues noted that worse 

prognosis in their gene set was associated with a mesenchymal-angiogenic phenotype (319). This 

observation is supported by our findings that vascular and necrotic tissue have a poor prognostic 

signature and that vascular regions have a strong mesenchymal phenotype. While GBM is 

differentiated from grade III gliomas by the presence of vascular proliferation and necrosis (5), 

much less is known about how the extent of vascular proliferation and necrosis within GBM 

relate to the rate of tumor progression. It is plausible that the relative amount of these regions 
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within GBM may be prognostic themselves, perhaps secondary to rapid tumor proliferation. 

Other groups have noted that angiogenic, necrotic and highly proliferative GBMs may be more 

aggressive (24, 329, 330). As immunohistochemistry and magnetic resonance imaging (MRI) 

can detect these elements (331, 332), investigating the relationship between the level of 

vascularity and necrosis in GBM with survival merits further evaluation. 

Using CT to create a novel prognostic gene signature allowed us to identify the highest-

risk patients and probe the underlying biology of this cohort. Among the pathways we identified 

in the high-risk genes, MYC targets are attractive because MYC has multiple pro-tumorigenic 

functions in GBM (333, 334). Unfortunately, there are currently no clinically viable MYC 

inhibitors (335). Work developing these inhibitors is critical as they may have utility in treating 

the most aggressive GBMs. Additionally, multiple metabolic pathways were associated with 

high risk of rapid progression (Fig. 2.13A). Previous work has demonstrated a link between 

differential metabolic signatures with GBM subtypes (proneural-like and mesenchymal-like 

GBM stem cell lines) and outcomes (336). Taken together with our findings, this highlights the 

importance of GBM subtypes as possibly harboring distinct biology, bioenergetics, proliferative 

capacity, immune interaction, and disease progression, all of which are appreciable when 

accounting for structural variability in tumor analysis. Expression of genes from specific 

chromosomal locations were also enriched in the high-risk group. As MGMT promoter 

methylation is strongly correlated with survival outcomes in GBM (39), it is probable that 

unappreciated epigenetic modifications that drive rapid tumor progression exist. Epigenetic 

modifications are aberrant in many cancers, and are intriguing as they provide modifiable targets 

(337). While studies have investigated global methylation in GBM (338), we propose that 

specifically analyzing these patterns in CT may expose novel drivers of GBM malignancy. 
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As we have shown, CT-based transcriptomics permit inter-patient comparisons. This 

method can now be applied to developing a host of predictive gene signatures for clinical utility 

in GBM, and may be considered in developing transcriptomic-based predictions in other 

heterogeneous cancers. Specifically, the next steps include (1) creating predictive signatures for 

tumor sensitivity and response to different treatments, and (2) identifying methods to collect CT 

without microdissection. To create predictive signatures for treatment sensitivity that can be used 

for personalized medicine, studies should correlate gene expression in newly diagnosed GBM 

with outcomes following CRT, targeted therapies, and immunotherapies. This may be done in 

conjunction with standard treatment and during future clinical trials. Unfortunately, using CT for 

clinical purposes will be hindered by the labor-intensive microdissection that was used in 

development of the IvyGAP database, and work is needed to identify clinically feasible methods 

to collect CT. Image-guided biopsy is one potential method to obtain predominantly CT tissue. 

Previous investigations demonstrated that diffusion weighted MRI and amino acid positron 

tomography can localize GBM regions with elevated tumor cellularity and mitotic indices prior 

to resection (339, 340). These imaging modalities are already being integrated into the operating 

room via neuro-navigational image-guided tissue sampling and would allow for selective CT 

localization and biopsy (341). Alternatively, macro-dissection may be sufficient to collect 

cellular tumor with minimal contamination of other structures, and a study comparing the utility 

of this method versus microdissection is needed. 

We have shown that analysis of transcriptomics in CT can stratify patients into distinct 

cohorts, and that using mixed structure samples can give misleading information. Ultimately, we 

believe the present study is a critical step in generating a novel set of transcriptomic-based 

clinical tools utilized to plan and execute optimal care for GBM patients. 
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3.1.	Abstract	

Background: Glioblastoma multiforme (GBM) is the most common and aggressive primary 

malignant brain tumor. Personalized treatment strategies for this tumor type is needed, but will 

require patient stratification, which is complicated by extensive tumor heterogeneity. We 

previously found that accounting for intra-tumor histological variability improved GBM genetic 

subtyping and tumor stratification. Unfortunately, analysis of transcriptional variance in 

histologically-defined tumor regions requires invasive tissue sampling, labor-intensive laser 

microdissection, and only provides a small snapshot of a single part of a tumor at one point in 

time. We hypothesize that neuroimaging measures correlate with genetic signatures, providing 

an alternative method for stratification.  

Methods: We correlated gene expression patterns with magnetic resonance imaging (MRI) and 

histological features in newly diagnosed human GBM, using previously collected transcriptional 

profiles of GBM tissue obtained from image-guided biopsies. Gadolinium contrast enhancing 

lesion (CEL) and non-enhancing lesion (NCEL) regions within GBMs were subdivided based on 

physiologic imaging parameters (relative cerebral blood volume [rCBV] and apparent diffusion 

coefficient [ADC]) and histopathological features. Gene expression networks were probed using 

Gene Set Enrichment Analysis, while key immunologic genes were individually examined. 

Results: GBM regions with different MRI and histopathological phenotypes displayed extensive 

transcriptional variance. This variance reflected biological networks, including multiple immune 

pathways. Comparing CEL and NCEL tumor revealed that CEL areas were more immunologic 

than NCEL, while NCEL regions showed stronger immune signatures than gliotic non-tumor 

brain. Subdividing CEL and NCEL based on rCBV, ADC, and histological phenotypes identified 
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sample clusters with different immune responses and expression of immune checkpoints. 

Mesenchymal subtype samples had the greatest immune response in all subgroup analyses. 

Conclusion and implications: MRI features identify tumor regions with discrete immunologic 

phenotypes. In the era of immunotherapies, understanding intra- and inter-tumoral immunologic 

variability is critical. Imaging biomarkers are a viable option for localizing GBM biological 

processes and tumor immune microenvironments across space and time.  

 

 

3.2.	Introduction	

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant 

brain tumor, with a median survival of 18.1 months with standard of care surgical resection 

followed by chemoradiation (1, 2). Improved therapeutic protocols are desperately needed, but 

given the extensive inter-tumoral heterogeneity of GBM will necessitate stratifying patients 

based on different tumor biology and predicted therapeutic sensitivity (23, 51). Unfortunately, it 

is particularly challenging to stratify GBMs because this tumor also displays extensive intra-

tumoral heterogeneity. The intra-tumoral heterogeneity of GBMs likely impacts therapeutic 

efficacy across a single tumor due to variable malignant cell phenotypes (such as The Cancer 

Genome Atlas (TCGA) molecular subtypes) and unique immune microenvironments in different 

spatial regions (342). 

Previous work by our group demonstrated that GBM stratification techniques are 

improved by accounting for tissue histological variance (See Chapter 2). However, histological 

microanalysis relies on assessing gene signatures from laser microdissected tumor tissue, which 

is costly, labor-intensive, and unlikely to be clinically feasible. Furthermore, assessment of gene 



	 101	

expression from physical tissue samples requires invasive tumor sampling, which for patients 

with brain tumors can be accompanied by risks of cognitive deficits that have high morbidity 

(343). Tumor tissue sampling also captures only a small region of the tumor at a single point in 

time, and thus presents a small snapshot of the whole tumor and does not take into account 

therapeutically induced changes in the tumor over time. To overcome these significant clinical 

limitations, methods to assess clinically relevant molecular-level tumor biology using non-

invasive imaging or simple tissue histochemistry biomarkers are needed. 

Imaging genomics is a relatively new field within cancer biology and examines the 

relationship of imaging features with genomic and/or molecular tumor traits (67). It is the 

analytic marriage of new “omic” data with advanced non-invasive imaging phenotypes. Imaging 

features can be derived from multiple modalities including magnetic resonance imaging (MRI), 

computed tomography, and positron emission tomography (PET). The genomic and/or molecular 

tumor traits associated with imaging features can be (1) single gene or protein expression 

patterns or (2) multi-gene/protein networks. Most work in the field has focused on using imaging 

features as biomarkers to predict the phenotype of tumor related to a single prognostically 

significant gene. For instance, a large non-enhancing frontal lobe GBM lesion has been 

associated with isocitrate dehydrogenase 1 (IDH1) mutation, and rim enhancement in GBM is 

correlated with unmethylated O6-methylguanine–DNA methyltransferase (MGMT) promoter 

status (73, 74). In this approach, the presence or absence of a radiographic feature from an entire 

MRI scan is correlated with the presence or absence of a molecular or genetic tissue 

characteristic that is assumed to be homogenous across a tumor; i.e. MGMT would be 

methylated in all tumor regions and thus the location of the tissue sample within the tumor is 

irrelevant. As such, the majority of imaging genomics studies have used samples from 
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unspecified locations within the tumor. Recently, imaging genomics studies have begun using 

image guidance to collect tissue from areas with defined imaging features (68, 77, 344). 

Common features sampled are gadolinium contrast-enhanced lesion (CEL) and non-contrast-

enhanced lesion (NCEL). These image guided tissue samples with known imaging phenotypes 

enable identification of genetic/molecular signatures that vary across a tumor and are correlated 

with specific localized changes in gross tumor imaging. As this is a relatively new field, many 

molecular-imaging associations remain untested leaving important potential imaging biomarkers 

undiscovered. 

Previous work by Barajas et. al., 2010, one of the first publications linking spatially 

unique gene expression patterns to advanced imaging phenotypes, found that genetic and cellular 

expression patterns influence both anatomic and physiologic imaging of GBMs (77). The authors 

collected tissue under stereotactic image-guidance during initial tumor resection, targeting 

regions with pre-defined imaging characteristics including gadolinium CEL verses NCEL, and 

further defined areas of high verses low relative cerebral blood volumes (rCBV) and high verses 

low relative apparent diffusion coefficients (rADC) across their samples. rCBV, a measure of 

tumor angiogenesis, is obtained using dynamic susceptibility-weighted contrast-enhanced MRI. 

rADC, obtained using diffusion-weighted imaging, provides a measure of water diffusion within 

tissue. They performed RNA microarray analysis of the tissue samples and identified individual 

genes differentially expressed in samples with contrasting imaging regions. Additionally, the 

authors performed correlation analyses between histological patterns (tissue vascularity, hypoxia, 

and cellularity) with the imaging metrics. This seminal paper provided a foundation for the field, 

while also creating a data resource for further exploration of associations between tissue genetic 

characteristic with standard and advanced imaging phenotypes.  
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We questioned if the imaging and tissue expression patterns collected in Barajas et al 

could be used to develop biomarkers that identifying clinically important, unique biological and 

immunological networks in GBM. Previous analysis of this data investigated associations 

between standard immunohistochemical patterns and individual gene expression with imaging 

phenotypes, but did not probe larger biological networks. Now with current big data analysis 

tools, having whole transcriptome data allows for analysis of multi-gene signatures, which can 

provide robust associations between biological networks and sample variables (317). In the era 

of immunotherapies, we focused particularly on investigating gene signatures that inform on the 

immune landscape of GBMs and their relationship with imaging features that could provide non-

invasive biomarkers for variable immune microenvironments. We tested the hypothesis that 

advanced imaging features can provide biomarkers for clinically important molecular 

phenotypes, including the tumor immune microenvironment. 

In the present study we had three aims: (1) investigate the contribution of imaging 

metrics, histochemical features, and molecular attributes to heterogeneity in gene expression 

across all tumor samples, (2) explore tissue heterogeneity in the CEL, specifically probing for 

correlations between physiologic MRI and histopathological phenotypes with biological and 

immunology networks, and (3) examine tissue heterogeneity in the NCEL, again exploring 

correlations between physiologic MRI and histopathological phenotypes with biological and 

immunology networks. These analyses will help understand GBM inter- and intra-tumoral 

heterogeneity, aid in the development of non-invasive biomarkers to GBM tissue biological 

variances, and better understand biologic tissue features that underlie MRI features. 
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3.3.	Methods	

 

The data set and gene expression pre-processing. The analyses described herein were performed 

on previously described data (77). We mined imaging characteristics, histologically graded 

quantification, and microarray dataset. A detailed explanation of the data and methods used to 

generate these data are available, see Barajas et al 2010. Briefly, adult patients seen by the 

Neurological Surgery Department of the University of California, San Francisco were enrolled 

prospectively in a Health Insurance Portability and Accountability Act and Institutional Review 

Board compliant study. The total number of patients included in the final study was 13 (age 

57.5±11 mean±SD; 8 male; 5 female). All tumors were newly diagnosed, treatment naïve 

primary GBM. Preoperatively, each subject underwent MR imaging on a 1.5 T Sigma Horizon 

MR imager (GE Medical systems, Milwaukee, WI). Diffusion weighted (DW) and dynamic 

susceptibility weighted contrast enhanced (DSC) MR imaging sequences were previously 

described (77). T2* DSC perfusion weighted (PW) images and DW images were used to produce 

cerebral blood volume (CBV) and apparent diffusion coefficient (ADC) maps, respectively. 

rCBV and rADC were calculated by standardizing the PW and DW measurements to a normal 

appearing white matter region on the contralateral hemisphere. MR images were processed by a 

blinded author on the original study and scored for tumor location, presence/absence of contrast 

enhancement, and area(s) of central necrosis. These regions were used for selection of biopsy 

site; up to six CEL and peritumoral NCEL regions were selected per subject prior to surgery.  

Tissue specimens were collected with image-guided stereotactic biopsy. Each subject had 

variable numbers of samples obtained for each imaging region. Not all patients have data from 
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both regions. Half of each biopsy sample was used for histopathological assessment and half for 

RNA microarray analysis. For histopathology the following features were quantified: tumor 

cellular density, proliferation index, hypoxia, and microvascular expression and morphology 

(Table 3.1). Microarray analysis was performed using standard techniques by the UCSF Sandler 

Asthma Basic Research Center Functional Genomics Core Facility and staff (345, 346). 

Microarray RNA expression patterns from six gliotic, non-neoplastic human brain specimens 

were included for comparison. The RNA expression data was quantile normalized using the 

Linear Models for Microarray Data (LIMMA) R package (Bioconductor, Cambridge, England). 

These values were used for all analysis herein. For heatmap visualizations, the expression values 

were z-score normalized by gene across either all samples, CEL only samples, or NCEL only 

samples as indicated, where every transcript had mean value of 0 and standard deviation of 1. 

 

Fig. 3.1. Image-guided tumor tissue collection for gene expression analysis. MR imaging of a 

51-year-old male with a left temporal GBM showing (A) T1-weighted contrast enhanced image, 

(B) aligned CBV map, and (C) aligned ADC map. Pink circles represent peritumoral contrast 

non-enhancing lesion (NCEL) tissue. Green circles represent contrast-enhancing lesion tissue 

(CEL). Green and pink circles show examples of biopsy location selection. Figure adapted from 

Barajas et al. 2010 (77). 
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Table 3.1. GBM MR imaging and histopathological phenotypes definitions; definitions 

adapted from Barajas et al. 2010 (77). 

Tissue phenotype Description 

Contrast Enhancing Lesion 
(CEL) 

Post-gadolinium signal enhancements on anatomic (T1- and T2-
weighted) MR imaging. 

Non-Contrast Enhancing Lesion 
(NCEL) 

Post-gadolinium regions of non-enhancing tissue on anatomic (T1- and 
T2-weighted) MR imaging that surrounds enhancing material 
(‘peritumoral’). 

ADC 

Diffusion weighed (DW) images were processed to obtain the apparent 
diffusion coefficient (ADC). DW measurements were standardized to a 
normal appearing white matter region on the contralateral hemisphere to 
generate the relative ADC (rADC). 

rCBV 

T2* dynamic susceptibility weighted contrast-enhanced (DSC) 
perfusion weighed (PW) images were processed to calculate the cerebral 
blood volume (CBV). PW measurements were standardized to a normal 
appearing white matter region on the contralateral hemisphere to 
generate the relative CBV (rCBV). 

CEL- or NCEL- CBV mean 
Diffusion weighed (DW) images were processed to obtain the apparent 
diffusion coefficient (ADC). The mean of ADC measurements from the 
CEL or NCEL were then calculated.  

Ca9 level* 

Carbonic anhydrase IX (Ca9) monoclonal antibody 
immunohistochemical staining for tissue hypoxia on tissue sections 
were quantified on a four-tier scale: 0 = no immunoreactivity; 3 = 
intense immunoreactivity) in three 20x magnification fields. 

Vascular Expression 
(Factor VIII morphology)* 

Factor VIII monoclonal antibody immunohistochemical staining for 
vascular endothelium on tissue sections were quantified on a four-tier 
scale: 0 = no immunoreactivity; 3 = intense immunoreactivity) in three 
20x magnification fields. Vascular morphology was graded as either: 
1. Delicate: resembling normal vasculature. 
2. Simple: hyperplastic vessels with a definitive lumen. 
3. Complex: glomeruloid hyperplastic vessels. 

MIB1L* 
Mindbomb homolog 1 (MIB1L; AKA, Ki-67) monoclonal antibody 
immunohistochemical staining on tissue sections were quantified on a 
standard proliferation index (ref 40-45 in original pub). 

Cell  
Count* 

The total number of cells in 3 high power (20x magnification) fields 
were manually quantified and averaged. 

*All assessment of histochemical tissue staining was performed by a blinded neuropathologist at UCSF. 
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Heatmap Visualizations. Transcripts and samples were organized by unsupervised hierarchical 

clustering using Ward’s method with the Euclidean distance metric; for molecular subtype 

heatmap displays rows were not clustered to maintain pre-determined gene order in relation to 

subtype signatures. Heatmap visualizations and hierarchical clustering were performed on z-

score normalized data in R (pheatmap() function [pheatmap R package]) (Supplementary code 

S2, section 2.2). Gene lists for immune phenotypes were manually curated based on extensive 

literature search. 

 

Principal Component Analysis (PCA). To assess variance among all sample transcriptomes in the 

data set, we performed PCA using the 1000 most variable genes (PCA() function in 

[FactoMineR R package] and [factoextra package in R])(315). Plots were made displaying 

principle component (PC) 1 vs PC2, PC3 vs PC4, and PC5 vs PC6. Samples on plots were 

colored by imaging metrics (contrast enhancement, rCBV, rADC mean, or CEL or NCEL ADC 

mean), histological score (overall vascular expression, Factor VIII expression with the 

morphological traits of delicate, simple, and complex vascular architecture, Ca9 expression, 

MIB1L expression, and total cell count), and TCGA molecular phenotype (original and revised 

molecular subtype gene expression signatures for proneural, neural, classical, and mesenchymal 

GBM subtypes) (25, 26) (Supplementary code S2, section 2.3). 

 

Gene Set Enrichment Analysis (GSEA) to assess for correlated biological and immune processes 

and perform GBM subtype analysis. Gene set enrichment analysis was performed using GSEA 

software on quantile normalized expression values to compare CEL, NCEL and non-neoplastic 

gliotic tissue samples groups, and on pre-ranked lists of (1) z score normalized expression data of 
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CEL samples for subtyping analyses and (2) correlation coefficients from CEL and NCEL 

samples (described below) for association of biological and immunological processes with 

imaging and histopathological phenotype (317, 322, 326, 347, 348). Defaults were used for 

GSEA analysis, including Signal2Noise ranking metrics. Gene sets were excluded that were 

smaller than 15 genes and greater than 500 genes, and enrichment p-values were estimated by 

1,000 permutations and corrected for multiple testing using the Benjamini-Hochberg method. 

Analyzed gene sets were from the curated molecular signature database (MsigDB): Gene 

Ontology (C5), Hallmark (H), or Immune (C7) collections, available at 

www.broadinstitute.org/gsea/msigdb/collections.jsp (326, 347, 348). 

 To test the correlation between gene expression networks and continuous (not 

dichotomized) imaging and histopathological metrics, a multi-step analysis pipeline was 

developed. The following was performed for CEL and NCEL samples separately. Spearman 

correlation analysis between every gene in the array dataset and each macroscopic and 

microscopic imaging phenotype variable (rCBV, rADC mean, CEL or NCEL ADC mean, 

MIB1L, Ca9, Cell Count, Vascular Expression, and Factor VIII simple, delicate and complex 

scores) were calculated (df.corr() function in R) (Supplementary code S2, section 2.4). Results 

including the gene name, statistic, and rho value were bound to a results table and exported. For 

each macroscopic and microscopic imaging phenotype variable, genes were ranked by their rho 

value. The ranked lists were converted to .rnk files and uploaded to GSEA software for 

interrogation of established gene sets for network analyses. Each ranked list was run for 

enrichment of Hallmark (n = 50) and Gene Ontology biological processes (n = 4436) gene sets. 

Ranked correlation lists describing the relationship between advanced physiologic MRI imaging 

parameters and gene expression were additionally probed for expression of Immunologic (n = 
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4872) gene signatures (C7) (326, 347, 348). Conservative Normalized Enrichment Score (NES) 

and false discovery rate (FDR) q values of 2.0 and 0.05, respectively, were selected as cut offs to 

define significantly enriched gene signatures. Compiled lists of all significantly enriched results 

are provided (Supplementary file S3). Functionally related enriched gene sets were manually 

interpreted and summarized herein. ‘NA’ in the summarized results tables indicates tests where 

no gene sets reached our thresholds for significance, with the exception of ‘NA’ in the NCEL 

correlation Ca9 and Factor VIII – Complex rows indicating comparisons that were not possible 

because the histopathological phenotypes did not exist in that tumor region. 

For biological processes correlated with imaging features, GSEA results were visualized 

using the Enrichment Map plugin for Cytoscape (V2.8, www.cytoscape.org) (318). For 

visualization purposes, clusters of functionally related enriched GO terms were manually circled 

and labeled, and significance thresholds were set at a p-value cutoff 0.005 and an FDR q-value 

cutoff of 0.1. 

 

Single gene expression assessment. Quantile normalized expression values for individually 

selected genes were plotted using GraphPad Prism version 6.0. Significant for differences 

between groups was tested applying a student’s t-test with Bonferroni corrections to account for 

multiple comparisons. A p-value threshold of 0.05 was used to determine significance. 

 

Ivy Glioblastoma Atlas Project (IvyGAP) database and analysis. Data from the IvyGAP, as 

described in detail in Chapter 2, was downloaded and used to assess expression of immune 

checkpoint genes and immune cell markers genes across GBM histological structures (56). Fold 
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change of individual gene expression was calculated from FPKM values. Significance was 

determined using a student’s t-test, applying the Bonferroni method to correct for multiple 

comparisons. A p-value threshold of 0.05 was used to determine significance. 

 

3.4.	Results	

3.4.1. MRI features, histopathological patterns, and molecular subtypes contribute to gene 

expression variability between and within GBMs. 

 

Gadolinium contrast enhancement stratifies GBM samples with unique transcriptional 

characteristics.  

We retrospectively analyzed microarray and corresponding imaging and 

histopathological data that were previously collected at the University of California, San 

Francisco (UCSF) (77). This dataset is comprised of microarray data from CEL and NCEL 

treatment naïve primary GBM tissue (Fig. 3.1). Advanced physiological imaging features (rCBV 

and ADC mean) were derived by a trained clinical neuroradiologist, and immunohistochemistry 

was performed on corresponding tissue blocks to assess vascularity (Factor VIII), hypoxia (Ca9), 

proliferation index (MIB1L), and cellularity (H&E) at UCSF (Table 3.1). In the present analyses 

we used quantile normalized microarray gene expression data from 13 subjects. 

We analyzed the transcriptional profiles of CEL, NCEL, and non-tumor gliotic brain 

samples using principle component analysis (PCA) and gene set enrichment analysis (GSEA) 

(Fig. 3.2) (315, 317, 326). The first two principle components in the PCA explained 57.9% of the 

variance in the 1000 most variable genes in the dataset (Figure 3.2B). Samples separated along 



	 111	

the first principle component by enhancement characteristic (CEL vs NCEL) (Fig. 3.2 C). GSEA 

comparing CEL to NCEL and CEL or NCEL to gliotic non-neoplastic brain showed enrichment 

of cell division and immune processes, with cellular stress processes elevated in the CEL 

samples. 
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Figure 3.2. MRI, histological, and molecular subtype features contribute to patterns of 

variation in GBM sample gene expression. (A) Heatmap displaying z-score normalized 

expression of the 1000 most variable genes (rows) in the dataset across all samples (columns; 

CEL, NCEL, and non-tumor controls). Samples and genes were organized by unsupervised 

hierarchical clustering, which results in a nearly perfect separation of the samples by 

enhancement region and of controls. Slight patterns of separation of samples by advanced 

imaging, histological, and molecular subtype features are also apparent. (B) Scree plot showing 

percent of variance described by each principle component (dimension) in analysis of the top 

1000 most variable transcripts. (C) Principle component analysis (PCA) of dimensions 1 (Dim1) 

and 2 (Dim2) demonstrate that most variation in the data is explained by presence or absence of 

contrast enhancement in the tumor region from which the RNA was extracted. Each sample is 

represented as a symbol, and colored by the region (contrast enhancing, CEL, or peritumoral 

non-enhancing, NCEL) the sample was from; ellipses are drawn around samples from the same 

enhancement region (ellipse level=0.66). (D) Results from GSEA comparing samples showing 

major subdivisions in (A). Hallmark gene sets were tested, significance was defined as having a 

normalized enrichment score (NES) > 2.0 and false discovery rate (FDR) q value < 0.05. 
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Physiologic MRI, simple histological, and previously establish molecular features contribute to 

variance in GBM gene expression.  

To determine if physiologic MRI, histopathological, and/or molecular features contribute 

to GBM gene expression heterogeneity we investigated if these characteristic contribute to any 

of the data point spread in the first six dimensions of the PCA, which together account for 81.3% 

of variance in the 1000 most variable genes. Our analyses revealed that while imaging and 

histopathologic features other than contrast enhancement contributed a lesser degree to variance 

in the 1000 most variable genes than contrast enhancement alone, they did show trends of 

impacting heterogeneous gene expression patterns (Fig. 3.3-3.5). Specifically, there were slight 

separations of samples along (1) the first and second principle component by rCBV, rADC mean, 

CEL ADC mean, Factor VIII expression classified morphologically, and Ca9 expression, (2) the 

third and fourth principle component by Factor VIII expression with complex morphology, and 

(3) the fifth and sixth principle component by MIB1L expression and cell count.  
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Figure 3.3. PCA labeling MRI features. Labeling samples from regions of (A) CEL and 

NCEL, (B) high rCBV (greater than the median rCBV in CEL [median = 3.79] and NCEL 

[median = 1.105]) and low rCBV in CEL and NCEL samples, (C) high rADC mean (greater than 

the median rADC mean in CEL [median = 1.09] and NCEL [median = 1.635] and low rADC 

mean in CEL and NCEL samples, and (D) high CEL or NCEL ADC mean (greater than the 
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median not adjusted ADC mean in CEL [median = 914] and NCEL [median = 1413.5] and low 

CEL or NCEL ADC mean on CEL and NCEL samples. Left column displays PC1 and PC2, 

middle column displays PC3 and PC4, and right column shows PC5 and PC6. Each symbol 

represents an individual sample. Ellipses are drawn around samples from the same imaging 

feature region (ellipse level = 0.66). 
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Figure 3.4. PCA labeling histologically defined vascular features. Labeling samples from 

regions of (A) high overall factor VIII expression (expression score ≥ 5 or 3 for CEL or NCEL, 

respectively) and low factor VIII expression (score < 5 or 3) in CEL and NCEL samples and (B) 

high and low factor VIII expression subdivided into complex, simple, and delicate vascular 

morphology (high expression score ≥ 2 for CEL and NCEL; low <2) in CEL and NCEL samples. 



	 117	

Left column displays PC1 and PC2, middle column displays PC3 and PC4, and right column 

shows PC5 and PC6. Each symbol represents an individual sample. Ellipses are drawn around 

samples from the same histological feature category (ellipse level = 0.66). 

 

 

 

 

 

 



	 118	

 

Figure 3.5. PCA labeling histologically defined tumor features. Labeling samples from 

regions of (A) high and low Ca9 (high expression score ≥ 2 for CEL and NCEL; low <2) in CEL 

and NCEL samples, (B) high MIB-1L.I% (greater than the median MIB-1L.I% in CEL [median 

= 22.1] and NCEL [median = 3.5]) and low MIB-1L.I% in CEL and NCEL samples, and (C) 

high total cell count (greater than the median cell in CEL [median = 1259] and NCEL [median = 

617]) and low cell count in CEL and NCEL samples. Left column displays PC1 and PC2, middle 

column displays PC3 and PC4, and right column shows PC5 and PC6. Each symbol represents 

an individual sample. Ellipses are drawn around samples from the same histological feature 

category (ellipse level = 0.66). 
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Molecular gene expression panels have previously been shown to contribute to variance 

in GBM gene expression (349). Existing GBM molecular subtypes (proneural, neural, classical, 

and mesenchymal) were originally defined by expression of an 840-gene signature (25). 

Recently, this classification system was revised to three subtypes (proneural, classical, and 

mesenchymal) based on a 150-gene profiler (26). Previously, we showed that subtype signatures 

are more robust when classified based on gene expression in the cellular tumor histological 

structure (Chapter 2). As the contrast enhancing regions of GBM have the highest density of 

neoplastic cells, while peritumoral non enhancing tumor regions have lower cellularity (77), we 

reasoned that classification of subjects based on gene expression from CEL samples would be 

superior to classification calls derived from gene expression in NCEL samples. We therefore 

assigned the molecular subtypes of subjects in the current dataset based on gene expression in 

the CEL samples, and labeled samples from the NCEL the same subtype as their matched (same 

subject) CEL sample. Two NCEL samples did not have a matched CEL sample, and thus do not 

have a molecular subtype call. Molecular subtypes were determined using the single-sample 

GSEA subtyping method with pre-ranked gene expression lists (26, 350). Two molecular 

subtype calls were made for each subject applying the original and revised molecular subtype 

signatures. Other than the neural samples from the original subtype gene set calls, only two 

samples were reclassified as a different subtype using the revised molecular subtype gene 

signature. All samples labeled neural applying the original gene signature were re-classified as 

classical when the revised gene panel was used. 

Similar to the imaging and histological features, molecular subtype classification 

contributes to variance in the gene expression dataset (Fig. 3.6). Heatmap visualization of the 

original and revised molecular subtype genes in all samples (CEL, NCEL, and non-tumor 
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controls) shows excellent separation of subtypes (Fig. 3.6 A,B). Furthermore, applying the 

original molecular subtype gene signatures showed that all of the control samples clustered 

together with high expression of the neural subtype genes. Neural has been proposed to be an 

artifact of the original gene signature that represent typical central nervous system tissue. It also 

appears that rCBV may be slightly elevated in the mesenchymal samples relative to other 

subtypes. Probing the top six principle components, subtype classification contributed to sample 

spread in multiple dimensions (Fig. 3.6 C,D). 
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Figure 3.6. Molecular subtype classification contributes to variance in the dataset. (A, B) 

Heatmap visualizations of the gene signatures for (A) the original GBM molecular subtype 
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classification scheme and (B) revised molecular subtypes gene signature in all samples. 

Unsupervised hierarchical clustering of samples (with individual gene expression z-score across 

all samples) showing clustering of samples based one subtype with minor patterns of sub-

clustering relating to imaging features. (C, D) PCA plots labeling samples by molecular subtype 

as defined by (C) the original gene signature and (D) the revised gene signature. Left column 

displays PC1 and PC2, middle column displays PC3 and PC4, and right column shows PC5 and 

PC6. Each symbol represents an individual sample. Ellipses are drawn around samples from the 

same subtype (ellipse level = 0.66). 

 

3.4.2. MRI features, histopathological patterns, and molecular expression signatures distinguish 

biological and immunological microenvironments within the CEL. 

 

Biologically unique molecular subtypes can be distinguished within the CEL. 

As discussed in Chapter 2, existing molecular subtypes of GBM (proneural, neural, 

classical, and mesenchymal) do not yet aid in clinical decision-making. We previously found that 

subtype gene expression varies across histological structures of GBMs, with gene expression in 

the cellular tumor best able to distinguish the subtypes. We reasoned that assessing subtype gene 

expression in the CEL of GBMs could provide a method to subtype tumors by targeting a region 

of high cellularity, but without having to microscopically dissect out cellular tumor. Our present 

analysis of subtype gene expression in CEL GBM samples showed that strong molecular subtype 

gene signatures are indeed present in the CEL, using both the original GBM molecular subtype 

gene signature and the revised gene signature (Fig. 3.7 A,B). Subtle patterns of potential 
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associations between subtype-specific gene expression and imaging and histopathological 

features were present. While we were unable to perform statistical comparisons due to the 

limited sample size for each subtype, these observational patterns provide hypothesis-generating 

information for future work. The mesenchymal subtype samples compared to the proneural 

subtype may be associated with elevated ADC, rCBV, and simple vasculature, and with 

decreased cell count, proliferation, and hypoxia. Meanwhile, the proneural subtype may have the 

highest cell count, proliferation index, and hypoxia of all the subtypes and the lowest rCBV and 

CEL ADC mean. Classical subtype samples appeared to fall between mesenchymal and 

proneural on the spectra of MRI features and histological tumor cellularity, proliferation and 

hypoxia. All samples that were classified as neural using the original subtype gene signature 

were re-classified as classical subtype with the updated signature. Performing unsupervised 

hierarchical clustering based on expression of only the revised gene set produced a near perfect 

split of the classical subtype samples that had been classified as classical in using both gene 

signature from those samples that were classified as neural using the original gene signature and 

then classical with the revised version (Fig. 3.7 B).   

Using the revised subtype classification to define the molecular subtype of each CEL 

sample we tested the underlying biological differences between the subtypes. Our enrichment 

analysis testing hallmark gene sets differently expressed between the subtypes showed results 

that were remarkably similar to the those seen for the proneural and mesenchymal subtypes from 

both the IvyGAP and TCGA sample cohorts analyzed in Chapter two (Fig. 3.7 C,D). Proneural 

tumors had enrichment of cell cycle checkpoints (G1S and G2M) as well as elevated MYC 

targets. Mesenchymal tumors had enrichment of immunological processes including the IL-6, 

JAK, STAT3 signaling pathway, IFNγ response, and TNFα signaling via NFκB (Fig 3.7 D).  
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Figure 3.7. Molecular subtype classification of samples from the CEL are biologically 

distinct. (A) Heatmap displaying expression of the original GBM molecular subtype genes 

applying unsupervised hierarchical clustering of CEL samples (z-scored data across CEL 
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samples only) shows 4 main clusters with signatures of classical, mesenchymal, neural, and 

proneural GBM subtypes. (B) Heatmap displaying expression of the revised GBM molecular 

subtype genes applying unsupervised hierarchical clustering of CEL samples (z-scored data 

across CEL samples only) shows 3 main clusters with signatures of classical, mesenchymal, and 

proneural GBM subtypes. (C-D) Enrichment plots of hallmark gene sets in CEL samples from 

(C) Proneural versus REST (all samples not classified as proneural), and (D) Mesenchymal 

versus REST (all samples not classified as mesenchymal) analyses. Molecular subtyping was 

determined after z-score normalizing within only CEL samples and applying the revised GBM 

subtyping gene signature. ES: Enrichment score; NES: Normalized enrichment score; NOM: 

Nominal; FDR: False discovery rate. 

 

Radiophenotypes are correlated with immunologic and tumor proliferation networks in the CEL.  

 We next investigated correlations between imaging features (radiophenotypes) and 

enriched hallmark and gene ontology biological processes in the CEL tumor samples. Our results 

showed that primarily immunologic, angiogenic, and tumor proliferation networks are 

significantly correlated with rCBV, rADC, and CEL ADC mean (Tables 3.2-3.3; Fig. 3.8, 3.9). 

Increasing rCBV is associated with elevated immunological networks including aspects of both 

the innate and adaptive immune system, type I and II interferon signaling, cytokine regulation 

and production (IL-1, 2, 4, 6, and 8), and macrophage activation with increased phagocytosis. 

Increasing rADC and CEL ADC mean were both positively correlated with a potentially less 

robust immune response, but still including interferon signaling, regulation of interleukins, 

production of TNF, and regulation of lymphocyte and macrophage activity. Alternately, 
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increases in rADC and CEL ADC mean were negatively correlated with cell proliferation 

networks such as cell cycle checkpoints and DNA replication, recombination, and repair.  

 

Table 3.2 Hallmark networks associated with radiophenotypes in CEL. 

 Positive correlation Negative correlation 

rCBV 

Strong immune response (IFN𝛾 and IFN𝛼 responses, 
TNF signaling via NF𝜅B, and IL6/JAK/STAT3 and 

IL2/STAT5 signaling), Epithelial-mesenchymal 
transition, Hypoxia, Angiogenesis, KRAS signaling 

NA 

rADC  Mild immune response (IFN𝛾 and IFN𝛼 responses, 
IL2/STAT5 signaling) 

Cell cycle/proliferation (E2F 
targets and G2M checkpoint), 

MYC targets expressed 
CEL 
ADC 
mean 

Mild immune response (IFN𝛼 and IFN𝛾 responses) 
Cell cycle/proliferation (E2F 
targets and G2M checkpoint), 

MYC targets expressed 

 

Table 3.3 Biological process networks associated with radiophenotypes in CEL. 

 Positive correlation Negative correlation 

rCBV 

Immune response (response to type I and II IFN, 
Leukocyte migration and activation, IL6 and IL8 
production, regulation of IL1, IL2, and IL4, TLR 

signaling, innate and adaptive immune response, T 
and B cell migration and activation, macrophage 

activation and increased phagocytosis), 
Angiogenesis 

Normal neuronal biological 
processes (synaptic signaling, 

regulation of calcium homeostasis, 
neurotransmitter transport and release), 

RNA processing 

rADC  

Immune response (response to type I and II IFN, 
negative regulation of a defense response and 

inflammation, B cell differentiation, Regulation of 
Th1 immune response, cytokine mediated 

signaling, regulation of IL1 and IL17 production, 
regulation of leukocyte activation and migration) 

Cell proliferation (DNA transcription, 
replication, repair, and packaging, 

sister chromatid separation, cell cycle 
phase transition, histone methylation, 

cell division, microtubule organization, 
RNA processing) 

CEL 
ADC 
mean 

Immune response (innate & adaptive, positive & 
negative regulation of inflammation, regulation of 

IL1, IL6, IL4, IL10, and IL13 production, IL1 
secretion, positive regulation of TNF superfamily 

production, T cell activation/differentiation, 
regulation of Th1 response, regulation of 

phagocytosis and respiratory burst) 

Cell proliferation (DNA replication, 
recombination, repair, and packaging, 

sister chromatid separation, 
chromosome segregation, cell cycle 

phase transition, histone methylation, 
cell division, RNA processing) 
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Figure 3.8. Biological networks correlated with ADC in CEL. Gene Set Enrichment Analysis 

(GSEA) followed by enrichment map visualization shows gene ontology (GO) biological 

processes that are positively (red nodes) and negatively (blue nodes) correlated with increasing 

ADC in CEL samples. Nodes represent GO terms. Clusters of functionally related enriched GO 

terms were manually circled and labeled. Node color represents a positive (red) or negative 

(blue) correlation. Node size is proportional to the number of genes within each GO term. Edge 

thickness signifies the overlap between GO terms (number of genes shared between two gene 

sets); thicker edges depict connections between nodes that share more genes than thinner edges. 

P-value cutoff = 0.005, FDR q-value cutoff = 0.1. 
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Figure 3.9. Biological networks correlated with rCBV in CEL. Gene Set Enrichment 

Analysis (GSEA) followed by enrichment map visualization shows gene ontology (GO) 

biological processes that are positively (red nodes) and negatively (blue nodes) correlated with 

increasing rCBV in CEL samples. Nodes represent GO terms. Clusters of functionally related 

enriched GO terms were manually circled and labeled. Node color represents a positive (red) or 

negative (blue) correlation. Node size is proportional to the number of genes within each GO 

term. Edge thickness signifies the overlap between GO terms (number of genes shared between 

two gene sets); thicker edges depict connections between nodes that share more genes than 

thinner edges. P-value cutoff = 0.005, FDR q-value cutoff = 0.1. 
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Histopathological phenotypes are correlated with immunologic, tumor proliferation, 

angiogenesis, cellular stress, and cellular metabolism networks in the CEL.  

 We tested correlations between histopathological phenotypes (immunohistochemistry 

markers of hypoxia, vascular expression and morphology, cell proliferation, and total cellularity) 

with enrichment of hallmark and biological processes in a similar manner to the imaging 

correlations addressed above. Our results showed that the underlying gene expression of tissues 

matched their histopathological phenotypes, which increased our confidence in the validity of the 

gene expression data and analysis pipeline used herein. For instance, enrichment of angiogenesis 

networks were significantly correlated with increasing expression of vascular markers and 

enrichment of cell division networks was significantly correlated with markers of cell 

proliferation and tumor cellularity. Our results also showed that increased expression of Ca9 is 

correlated with a robust and complex immune response, which likely includes counteracting 

arms of the immune system that both positively and negative regulate the immune response 

(Table 3.5). Vascular morphology patterns were shown to be differentially associated with 

molecular networks. Increased levels of simple and complex vasculature were positively 

correlated with angiogenesis, cellular metabolic processes, and cellular stress/hypoxia, while 

delicate vasculature was negatively correlated with cellular metabolic processes and vascular 

development. Increases in MIB1L (a marker of cell proliferation index) and total cellularity were 

negatively correlated with immunological networks including cytokine signaling, lymphocyte 

and monocyte chemotaxis, and positive and negative regulation of innate and adaptive immune 

elements (Table 3.4). 
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Table 3.4 Hallmark networks associated with histopathological phenotypes in CEL. 

 Positive correlation Negative correlation 

Ca9 

Cell cycle/proliferation (E2F targets and 
G2M checkpoint), MYC targets expressed, 

MTORC1 signaling, and cell stress 
(unfolded protein response) 

Immune response (IFN𝛾 and IFN𝛼 
responses and complement) 

Vascular 
Expression 

Immune response (IFN𝛾 and IFN𝛼 
responses, TNF𝛼 signaling via NF𝜅B, and 
TGF𝛽, IL6/JAK/STAT3, and IL2/STAT5 

signaling), Epithelial-mesenchymal 
transition, hypoxia, and apoptosis 

NA 

FVIII 
Delicate NA 

Epithelial-mesenchymal transition, cell 
cycle/proliferation (E2F targets,  G2M 

checkpoint, and mitotic spindle), 
MTORC1 and MYC signaling, hypoxia, 

glycolysis, cytokine signaling (TNF𝛼 
signaling via NF𝜅B), coagulation, and 
cell stress (unfolded protein response) 

FVIII 
Simple 

Epithelial-mesenchymal transition, 
immune response (IFN𝛾 & IFN𝛼 

responses, TNF𝛼 signaling via NF𝜅B, and 
IL6/JAK/STAT3 and IL2/STAT5 
signaling), hypoxia, glycolysis, 

angiogenesis, cellular stress (apoptosis, 
unfolded protein response, and UV 

response), cholesterol homeostasis, 
coagulation, and PI3K/AKT/MTOR & 

MTORC1 signaling 

NA 

FVIII 
Complex 

Epithelial-mesenchymal transition, 
immune response (IFN𝛾 & IFN𝛼 

responses, TNF𝛼 signaling via NF𝜅B, and 
IL6/JAK/STAT3), hypoxia, apoptosis, and 

coagulation 

NA 

MIB1L 
Cell cycle/proliferation (E2F targets, G2M 

checkpoint, and mitotic spindle), MYC 
targets expressed, and MTORC1 signaling 

Immune response (IFN𝛾 and IFN𝛼 
responses) 

Cell Count 
Cell cycle/proliferation (E2F targets, G2M 
checkpoint, and mitotic spindle) and MYC 

targets expressed 
NA 
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Table 3.5 Biological process networks associated with histopathological phenotypes in 

CEL. 

 Positive correlation Negative correlation 

Ca9 

Cell division (DNA replication, repair, and 
packaging, sister chromatid segregation, cell 

cycle phase transition, membrane disassembly, 
mitotic nuclear division, chromatin 

modification, and histone methylation), RNA 
processing 

Positive & negative regulation of an 
immune response (innate & adaptive, 
response to IFN𝛾, myeloid leukocyte 

activation, regulation of IL1, IL4, IL6, 
& TNF production, macrophage 

activation, monocyte chemotaxis, Th1 
response, positive regulation of: 

lymphocyte differentiation, B & T cell 
proliferation, and phagocytosis, and 

negative regulation of: IL1 production, 
coagulation, and cell killing. 

Vascular 
Expression 

Immune response (IFN𝛾 mediated signaling, 
antigen processing and presentation, response 

to type I IFN), and tissue morphogenesis 
(extracellular structure organization, cell 

matric adhesion, morphogenesis of epithelial 
sheet, blood vessel development, branching 

morphogenesis of an epithelial tube, 
establishment of planar polarity) 

Mixed cellular metabolic processes 
(RNA catabolic process, protein 

localization to the ER, translation 
initiation), and cholinergic synaptic 

transmission 

FVIII 
Delicate 

Normal neuronal processes (neurotransmitter 
transport, synaptic signaling, calcium ion 

homeostasis, and dendritic spine development) 

Mixed cellular metabolic processes 
(ER nucleus signaling, response to ER 

stress, ATP generation from ADP, 
telomere maintenance, monosaccharide 
biosynthesis, and response to topically 

incorrect protein), vascular 
development (blood vessel 

morphogenesis and extracellular 
structure organization), and DNA 

packaging and repair 

FVIII 
Simple 

Angiogenesis (blood vessel & branching 
structure morphogenesis, extracellular structure 

organization, smooth muscle cell migration), 
immune response (positive regulation of 

innate response, antigen 
processing/presentation via MHC I, response to 

type I and II IFN, and TLR4 signaling), cell 
metabolic processes (ER-nucleus signaling, 
ER stress, macromolecular metabolism, ATP 

generation from ADP), and cellular stress 
(glucose & amino acid starvation, extrinsic 

apoptotic signaling, membrane protein 
proteolysis, cytochrome c release from 

mitochondria, IRE1 mediated unfolded protein 
response, response to 𝛾 radiation) 

Mixed cellular metabolic processes 
(RNA catabolic process, protein 
localization to the ER and cell 

membrane, translation initiation, and 
cytoplasmic translation) and 

neurotransmitter regulation 
(neurotransmitter transport, regulation 
of neurotransmitter levels, dopamine 

secretion, and neurotransmitter uptake) 
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FVIII 
Complex 

Angiogenesis (extracellular organization, 
morphogenesis of vasculature, VEGF 

production, and regulation of endothelial cell 
apoptosis), mixed cellular metabolic 
processes (ER-nucleus signaling and 

macromolecular & nitrogen species metabolic 
processes), cellular senescence, immune 

response (IFN𝛾 mediated signaling, leukocyte 
apoptosis, and antigen processing/presentation 
via MHC I), cellular stress (membrane protein 

proteolysis and response to: ER stress, 
topically incorrect proteins, & heat) 

NA 

MIB1L 

Cell division (sister chromatid segregation, 
DNA replication, recombination, repair, & 

packaging, cell cycle transitions/checkpoints, 
chromatin modifications, telomere 

organization, mitotic spindle organization) and 
RNA processing (tRNA transport, mRNA and 

ncRNA processing, and RNA splicing) 

Positive and negative regulation of 
innate and adaptive immune 

responses (cellular defense response, 
myeloid leukocyte activation, response 

to type I and II IFN, monocyte 
chemotaxis, Th1 response, Positive 
regulation of: IL1 secretion, T cell 

differentiation & proliferation, 
leukocyte proliferation, lymphocyte 

migration, and Negative regulation of: 
cell killing, leukocyte mediated 

immunity, IL1 production, lymphocyte 
mediated immunity, and leukocyte 

apoptosis 

Cell Count 

Cell division (sister chromatid segregation, 
DNA replication, mitotic nuclear division, 

recombination, repair, & packaging, cell cycle 
transitions/checkpoints, chromatin 

modifications, telomere organization, mitotic 
spindle organization), RNA processing (tRNA 

transport, mRNA and ncRNA processing, 
RNA splicing), and positive regulation of 

cytokines 

Immune response (chemokine 
mediated signaling, lymphocyte & 

monocyte chemotaxis, regulation of 
IL6 production, and detoxification) 
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The CEL has a heterogeneous immune microenvironment, including variable expression of 

immune checkpoint genes. 

 Detection of immunologic networks were some of the most variable biological patterns 

observed in the CEL samples in the correlation analysis, leading us to investigate specifics of the 

immune response in enhancing regions of GBM. In the era of immunotherapies, establishing a 

detailed understanding the heterogeneity of cells crucial for tumor-immune interaction and 

expression of immune checkpoints is imperative. Furthermore, developing simple 

histopathological or even non-invasive imaging biomarkers for these tumor-immune interaction 

patterns will aid in the continued development and personalized use of immune modulating 

therapies.  We probed the expression of immune checkpoint genes and individual genes known 

to mark immune cell types critical to the tumor-immune response (T cells, NK cells, and 

macrophages/microglia). Mesenchymal tumors had CEL regions with strong expression of both 

immune checkpoint and immune cell specific genes (Figure 3.10 A,B). As TAMs can activate to 

pro-inflammatory (anti-tumorigenic) or anti-inflammatory (pro-tumorigenic), also referred to as 

M1 and M2 phenotypes respectively, we questioned if there was heterogeneity in the polarization 

of TAMs across the CEL of GBMs. We found that genes associated with both M1 and M2 

phenotypes were upregulated in the mesenchymal subtype CEL samples, while both were down 

regulated in proneural tumors, and displayed moderate expression in classical tumors (Fig. 3.10 

C,D). 
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Figure 3.10. Immune gene expression in CEL samples. Heatmaps showing unsupervised 

hierarchical clustering of (A) immune checkpoint genes, (B) immune cell marker genes, and (C, 

D) M1 and M2 polarization gene panels. All genes were z-score normalized across CEL samples.  
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Cellular tumor samples from mesenchymal GBMs in the IvyGAP database display up regulated 

immune checkpoint and immune cell genes, corroborating the immune patterns of the CEL. 

 

Contrast enhancing regions of GBM have generally higher tumor cellularity, thus it is 

plausible that gene expression in the cellular tumor of samples in the IvyGAP dataset may 

contain similar gene expression patterns to those of the image-guided CEL samples. We assessed 

if the expression of immune microenvironment and immune checkpoint genes differed between 

molecular subtypes in the cellular tumor using the IvyGAP database. Our results showed the 

same patterns that we observed in the CEL samples: mesenchymal tumors showed elevated 

expression of immune cell genes and immune checkpoint genes in the cellular part of the tumor 

compared to other subtypes, while proneural tumors had the lowest expression of these features 

(Figure 3.11). 
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Figure 3.11. Immune checkpoint distribution in the cellular tumor of different GBM 

molecular subtypes from the IvyGAP database. Mean gene expression and standard deviation 

for proneural (PRO), mesenchymal (MES), classical (CLA), and neural (NEU) samples for (A) 

immune checkpoint genes expressed by tumor and antigen presenting cells, (B) immune 

checkpoint genes expressed by T cells, and (C) T cell and macrophage/microglia marker genes. 

Fold changes was calculated for each by dividing the average gene expression for subtype by the 

average gene expression of all other subtypes. P values were corrected for multiple comparisons 

using the Bonferroni method. Fold changes highlighted in red with * have p-values < 0.05 after 

correcting for multiple comparisons, while fold change values in green with † had p-values  < 
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0.05 before adjusting for multiple comparisons, but not after. Red arrows: overall trend of 

differential gene expression in that row. 

 

Radiophenotypes in the CEL may provide biomarkers for specific immune network expression. 

Immune networks were among the top enriched processes in the hallmark and biological 

networks in the CEL samples. As developing an imaging biomarker for variable immune 

phenotypes would be clinically beneficial, we investigated deeper into complex immune 

processes correlated with radiophenotypes. We evaluated correlations between physiologic 

imaging phenotypes in the CEL with a large database of immunologic gene signatures (348).  

Our analysis of the immune microenvironment in the CEL revealed that rCBV, rADC, 

and CEL ADC mean are all correlated with unique immune phenotypes (Table 3.6). Increasing 

rCBV was positively correlated with a high prevalence of mixed phenotypic macrophages/ 

microglia with evidence for M2 polarization, T cell populations (CD4+ and CD8+) that may be 

immunosuppressive, a minor population of unstimulated B cells, and a unique subset of 

polyfunctional NK cells that are potentially more prevalent than other cytotoxic cells. Increasing 

rADC was positively correlated with weakly stimulated macrophages, pro-inflammatory 

activated lymphocytes, the presence of polyfunctional NK cells, and possible mast cell 

infiltration. Lower rADC was correlated with IL-4 stimulated and resting macrophages, effector 

CD8+ cytotoxic T cells, unstimulated B cells, and IL-15 stimulated NK cells (IL-15 has been 

shown to cause exhaustion in NK cells) (351). Patterns of immunologic networks that were 

correlated with rADC and CEL ADC mean were highly similar. Results also suggested that 

increasing CEL ADC mean correlated with increased neutrophils. 
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Table 3.6 Immunological networks associated with radiophenotypes in CEL. 

  Positive correlation Negative correlation 

rCBV 

Macrophage 
& Microglia 

Mixed phenotypes: Possible IFN𝛾 stimulated 
microglia and M2 polarization, 

untreated>TGF𝛽 or IFN𝛾 stimulated 
macrophages, pro-inflammatory monocytes 

NA 

T cell 

Possibly CD4+>CD8+, effector>memory and 
memory>unstimulated CD8+, CD8+ are 

BTLA+, CD161high, and CXCR1-, Tregs 
present, possible Th2 and Th23 CD4+ 

NA 

B cell Naïve/unstimulated > plasmablasts, IgM, or 
IgG stimulated cells, less B than T cells NA 

NK cell Polyfunctional subset present (CD56dim 
CD62L+), NK > NKT and CD8+ T cells NA 

Other Macrophages > other immune cell types; 
possible neutrophil & basophil presence NA 

rADC  

Macrophage 
& Microglia 

Weakly stimulated macrophages and 
monocytes, more macrophages than other 

immune cells 

IL4 stimulated and resting 
macrophages (vs steroid 

treated and M2 cells) 

T cell Th1>Th17, IL4>control & untreated>IL2 or 
IL21 stimulated 

Effector CD8+, Unstimulated 
CD4+, Induced Treg presence 

B cell B2 (adaptive) > B1 (innate phenotype) Unstimulated>IgM stimulated 

NK cell Polyfunctional subset present (CD56dim 
CD62L+) IL15 stimulated 

Other Possible mast cell presence NA 

CEL 
ADC 
mean 

Macrophage 
& Microglia 

Weakly stimulated macrophages and 
monocytes, more macrophages than other 

immune cells 

IL4 stimulated and resting 
macrophages (vs steroid 

treated and M2 cells) 

T cell IL4>control & untreated>IL2 stimulated, 
possible Tregs & memory CD8+ 

Effector CD8+, Unstimulated 
CD4+, Induced Treg presence 

B cell NA Unstimulated>IgM stimulated; 
likely more B than NK cells 

NK cell Polyfunctional subset present (CD56dim 
CD62L+) IL15 stimulated 

Other Possible neutrophil presence NA 
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3.4.3. MRI features, histopathological patterns, and molecular expression signatures distinguish 

biological and immunological microenvironments within the NCEL. 

 

Molecular subtype defining genes are expressed irregularly in the NCEL. 

 Expression of genes defining the original and revised GBM molecular subtypes show 

only minor expression patterns in the NCEL (Fig. 3.12 A,B). We previously found that GBM 

samples from the infiltrative and leading edge of the tumor contain variable amounts of non-

tumor brain tissue that skews genotyping toward the neural and proneural subtypes, independent 

of gene expression within the malignant cells. Therefore, we did not subtype the NCEL samples; 

all molecular subtype assignments were determined based on gene expression in the matched 

CEL sample. Subjects that had only a NCEL sample with no CEL sample do not have a subtype 

call. Clustering of samples followed subtype calls from the matched CEL samples, as 

demonstrated by the clustering of subtype calls at the top of each heatmap (Fig. 3.12 A,B). 

Again, samples that were classified as neural applying the original subtype signature and 

classical utilizing the revised gene set, separated from all other classical samples. Samples 

classified as mesenchymal show a minor trend in having increased NCEL ADC mean, while 

classical subtype NCEL samples show low rCBV values. We were unable to test differences in 

hallmark gene expression of NCEL samples of varying subtypes due to the small sample size 

within each subtype cohort. 
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Figure 3.12. Expression of molecular subtype defining genes in samples from the NCEL. 

(A) Heatmap displaying expression of the original GBM molecular subtype genes applying 

unsupervised hierarchical clustering of NCEL samples (z-scored data across NCEL samples 

only) shows 3 weak clusters with signatures of classical, mesenchymal, and proneural GBM 

subtypes. (B) Heatmap displaying expression of the revised GBM molecular subtype genes 

applying unsupervised hierarchical clustering of NCEL samples (z-scored data across NCEL 

samples only) shows weak sample clustering. Subtypes calls in the top two rows of each of the 

heatmap visualizations were determined based on gene expression from matched CEL samples. 
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Radiophenotypes are correlated with immunologic and cellular proliferation networks in the 

NCEL.  

 We next investigated correlations between imaging features and enriched hallmark and 

gene ontology biological processes in the NCEL tumor samples, as we previously tested in the 

CEL samples. Primarily immunologic, mitotic, and cellular respiration networks were 

significantly correlated with rCBV, rADC, and CEL ADC mean (Table 3.7-3.8; Fig. 3.13, 3.14). 

Increasing rCBV was positively correlated with elevated immunological networks including 

aspects of both the innate and adaptive immune system, IFN𝛾 signaling, regulation of interleukin 

signaling (IL-1, 2, 4, 6, 8, and 10), macrophage activation with decreased phagocytosis, and 

negative regulation of Il-1 and TNF production, while it negatively correlated with cell 

proliferation networks. Unlike in the CEL, rADC and NCEL ADC mean oppositely correlated 

with immunologic networks. While rADC was negatively correlated with immune networks, 

NCEL ADC was positively correlated with immune processes. 

 

Table 3.7 Hallmark networks associated with radiophenotypes in NCEL. 

 Positive correlation Negative correlation 

rCBV 

Immune response (IL2/STAT5, 
IL6/JAK/STAT3, and TNFα via NF𝜅B 
signaling, and IFN𝛾 response), KRAS 

signaling 

Cell cycle/proliferation (E2F targets and 
G2M checkpoint), MYC targets expressed 

rADC  NA 
Immune response (IFNα and IFN𝛾 

response, and IL6/JAK/STAT3 and TNFα 
via NF𝜅B signaling) 

NCEL 
ADC 
mean 

Mild immune response (IL6/JAK/Stat3 
signaling and INF𝛾 response Oxidative phosphorylation 
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Table 3.8 Biological process networks associated with radiophenotypes in NCEL. 

 Positive correlation Negative correlation 

rCBV 

Immune response (positive and negative 
regulation of defense & immune response, 
activation of innate & adaptive immunity, 

macrophage activation, positive regulation of 
T cell proliferation, B cell receptor signaling, 
cytokine secretion, regulation of IFN𝛾, IL6, 

IL4, IL8, & IL10, positive regulation of IFN𝛾, 
IL6 & IL10 production, negative regulation of 
Il1 & TFN superfamily cytokine production, 

phagocytosis, and mast cell immunity) 

Positive and negative regulation of 
mitosis (DNA replication, chromatin 

remodeling, membrane disassembly, DNA 
repair, cell cycle checkpoints, negative 

regulation of the G1-S phase of cell cycle, 
and chromosome segregation) RNA 

processing and transport, gene silencing 

rADC  Protein-protein interactions and nucleosome 
organization 

Immune response (antigen processing and 
presentation via MHCI, response to type I 
and II IFN, activation of innate immune 

response, FC receptor signaling, and 
pattern recognition receptor signaling) 

NCEL 
ADC 
mean 

Immune response (innate and adaptive 
inflammatory response, pattern recognition 

receptor and toll like receptor signaling, 
Regulation of IL6, IL1, IL12, and TNF 

superfamily cytokine production, positive 
response to IL6 production, regulation of T 
cell activation and proliferation, myeloid 
leukocyte activation, necrotic cell death, 

leukocyte degranulation) 

Normal neuronal processes (synapse 
structure and function, dendrite 

morphogenesis, synaptic plasticity, 
neurotransmitter transport, ion transport, 
cognition), oxidative phosphorylation 

and cellular respiration 
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Figure 3.13. Biological networks correlated with ADC in NCEL. Gene Set Enrichment 

Analysis (GSEA) followed by enrichment map visualization shows gene ontology (GO) 

biological processes that are positively (red nodes) and negatively (blue nodes) correlated with 

increasing ADC in NCEL samples; no ADC positive correlations met the statistical threshold for 

NCEL samples. Nodes represent GO terms. Clusters of functionally related enriched GO terms 

were manually circled and labeled. Node color represents a positive (red) or negative (blue) 

correlation. Node size is proportional to the number of genes within each GO term. Edge 

thickness signifies the overlap between GO terms (number of genes shared between two gene 

sets); thicker edges depict connections between nodes that share more genes than thinner edges. 

P-value cutoff = 0.005, FDR q-value cutoff = 0.1. 
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Figure 3.14. Biological networks correlated with rCBV in NCEL. Gene Set Enrichment 

Analysis (GSEA) followed by enrichment map visualization shows gene ontology (GO) 

biological processes that are positively (red nodes) and negatively (blue nodes) correlated with 

increasing rCBV in NCEL samples. Nodes represent GO terms. Clusters of functionally related 

enriched GO terms were manually circled and labeled. Node color represents a positive (red) or 

negative (blue) correlation. Node size is proportional to the number of genes within each GO 

term. Edge thickness signifies the overlap between GO terms (number of genes shared between 

two gene sets); thicker edges depict connections between nodes that share more genes than 

thinner edges. P-value cutoff = 0.005, FDR q-value cutoff = 0.1. 
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Histopathological phenotypes are correlated with immunologic, tumor proliferation, 

angiogenesis, cellular stress, and cellular metabolism networks in the NCEL.  

 We tested correlations between histopathological phenotypes with enriched 

hallmark/biological processes. Gene expression patterns matched their histopathological 

phenotypes, similar to results observed in the CEL samples (Table 3.9, 3.10). For instance, 

enrichment of cell division networks was significantly correlated with immunohistochemistry 

markers of cell proliferation and tumor cellularity. Two of the immunohistochemistry tissue 

features assessed in the CEL were not testable in the NCEL; Ca9 expression and expression of 

factor VIII showing complex morphology were not present in the non-enhancing tissue. The 

remaining vascular morphology patterns (total vascular expression, and factor VIII expression 

subdivided into delicate and simple vascular architecture) were positively correlated with cell 

proliferation networks and protein synthesis. Overall vascular expression was additionally 

positively correlated with immune features including response to interferons and antigen 

processing and presentation. Similar to networks patterns observed in the CEL, elevated MIB1L 

and cell counts were negatively correlated with immunological networks.  
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Table 3.9 Hallmark networks associated with histopathological phenotypes in NCEL. 

 Positive correlation Negative correlation 

Ca9 NA NA 

Vascular 
Expression 

Cell cycle/proliferation (E2F targets and G2M checkpoint), 
immune response (IFNα and IFN𝛾 response), epithelial-

mesenchymal transition, MYC targets expressed, and cell 
stress (unfolded protein response) 

NA 

FVIII 
Delicate 

Cell cycle/proliferation (E2F targets and G2M checkpoint) 
and MYC targets expressed NA 

FVIII 
Simple 

Cell cycle/proliferation (E2F targets and G2M checkpoint), 
immune response (IFNα and IFN𝛾 response), epithelial-

mesenchymal transition, and MYC targets expressed 
NA 

FVIII 
Complex NA NA 

MIB1L Cell cycle/proliferation (E2F targets and G2M checkpoint) 
and MYC targets expressed Protein secretion 

Cell Count Cell cycle/proliferation (E2F targets and G2M checkpoint) Protein secretion 

 

Table 3.10 Biological processes associated with histopathological phenotypes in NCEL. 

 Positive correlation Negative correlation 
Ca9 NA NA 

Vascular 
Expression 

Cell division (DNA replication, repair, & 
packaging, sister chromatid separation, 
spindle assembly, and cell cycle phase 
transition), RNA processing (tRNA 

transport, gene silencing by RNA, ncRNA 
processing ), immune response (response 

to IFN𝛾, antigen processing and 
presentation of peptide antigen), and 

epigenetic regulation of gene expression 

Autophagosome organization and 
glutamate secretion 

FVIII 
Delicate 

Gene organization and expression (gene 
silencing by RNA, positive epigenetic 

regulation of gene expression, chromatin 
silencing, telomere organization, and DNA 

replication) and protein synthesis and 
localization (tRNA transport, protein 

localization to ER, ribosome biogenesis, 
and protein sumoylation) 

Normal neuronal processes (modulation 
of synaptic transmission, neurotransmitter 

transport, glutamate secretion, synaptic 
signaling, amino acid transport, neuronal 

action potential, clathrin mediated 
endocytosis, calcium ion regulated 

exocytosis, and regulation of potassium 
ion transport) 
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FVIII 
Simple 

Cell division (cell cycle phase transition, 
DNA packing, chromatin structural 

changes, sister chromatid segregation, 
histone methylation), protein synthesis and 

localization (mRNA catabolic processes 
and protein localization to the ER), 

response to IFNα 

Catabolic processes (fatty acid and 
monocarboxylic acid catabolic process, 

fatty acid 𝛽 oxidation) 

FVIII 
Complex NA NA 

MIB1L 

Positive and negative regulation of cell 
division (centromere complex assembly, 
DNA replication, repair, and packaging, 

Histone exchange, sister chromatid 
segregation, membrane disassembly, and 

cell cycle transition), gene expression 
(positive regulation of epigenetic gene 

expression, RNA splicing, and ribosome 
biogenesis) 

Immune response (myeloid leukocyte 
activation, granulocyte activation, and 

positive regulation of macrophage derived 
from foam cell), vascular regulation 

(positive regulation of vasodilation & cell 
junction assembly), and cell structure 

modification (microvillus organization, 
membrane raft organization, and protein 

localization to cell surface) 

Cell Count 

Normal neuronal processes (synapse 
organization, synaptic signaling, synaptic 

transmission, dendrite development, 
glutamatergic synaptic transmission, 

modulation of excitatory action potential, 
exocytosis, GABA signaling pathway, 

glutamate secretion, neuron differentiation) 

Immune response (regulation of 
macrophage derived from foam cell) and 
cell structure modification (microvillus 

organization and membrane raft 
organization) 

 

 

The NCEL has a heterogeneous immune microenvironment, including variable expression of 

immune checkpoint genes, but different expression patterns than in the CEL. 

 Immunologic networks emerged as some of the most variable biological patterns in the 

NCEL samples. Thus, we probed further into the specifics of the immune response in the non-

enhancing GBM tissue. Different patterns of immune presence and immune checkpoint 

expression in CEL and NCEL are critical to appreciate as they will likely contribute to treatment 

sensitivity and resistance mechanisms (111, 352). Immune checkpoint genes were most strongly 

expressed in NCEL samples that had matched CEL tissue classified as mesenchymal, but 

perhaps more interestingly has the most elevated NCEL ADC mean values (Figure 3.15 A,B). 
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Unexpectedly, NCEL samples with low expression of immune checkpoint genes appeared to 

have matched CEL samples of the classical subtype. Assessment of immune cell marking gene 

expression patterns in the NCEL suggest that T-cells may not be present in the same samples that 

have elevated expression of markers for phagocytic cells (Fig. 3.15 B). Furthermore, samples 

with elevated cell count and proliferation appear to have the lowest expression of immune cell 

genes. Probing expression gene panels associated with the M1 and M2 macrophage/microglia 

activation phenotypes showed mixed expression of the selected genes across samples (Fig. 3.15 

C,D). 
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Figure 3.15. Immune gene expression in NCEL samples. Heatmaps showing unsupervised 

hierarchical clustering of (A) immune checkpoint genes, (B) immune cell marker genes, and (C, 

D) M1 and M2 polarization gene panels. Genes were z-score normalized across NCEL samples. 
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Radiophenotypes in the NCEL may provide biomarkers for specific immune network expression. 

 As we observed that immune networks were again some of the top enriched processes out 

of all hallmark and biological networks in the NCEL, we interrogated complex immune networks 

correlated with radiophenotypes in these samples. Our results demonstrated that rCBV, rADC, 

and NCEL ADC mean are all correlated with unique immune phenotypes in the NCEL (Table 

3.11). Higher rCBV values were positively correlated with lowly activated macrophages, 

unstimulated and potentially pro-inflammatory lymphocyte populations, and possible low levels 

of NK cells, neutrophils, and eosinophils. Interestingly, rCBV was negatively correlated with 

effector CD8+ cytotoxic T cells. Increasing rADC was negatively correlated with immune 

networks including lowly stimulated, potentially M2 macrophages, anti-inflammatory T 

lymphocytes (both cytotoxic and helper T cells), naïve B cells, and possible small amounts of 

neutrophils and eosinophils. Unexpectedly, NCEL ADC mean was oppositely correlated with an 

immune reaction compared to rADC. However, this was similar to patterns we observed when 

testing for correlations with hallmark and biological processes in the NCEL. NCEL ADC mean 

was positively correlated with infiltrating monocytes/macrophages and activated microglia, 

mixed T cell phenotypes, and the presence of NK cells. 
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Table 3.11 Immunological networks associated with imaging phenotypes in NCEL. 

  Positive correlation Negative correlation 

rCBV 

Macrophage 
& Microglia 

Possible unstimulated and pro-
inflammatory monocytes; more 

macrophages/monocytes than T or NK 
cells 

NA 

T cell 
Th1>anergic Th1 CD4+, untreated>IL2 
stimulated &IL4>control treated CD4+, 

Early memory>naïve CD8+ 

Effector CD8+ cell week 1 post 
activation 

B cell Unstimulated>IgM stimulated B cells, 
less B than CD4 T cells NA 

NK cell Less NK cells than macrophages NA 

Other Possible neutrophils and eosinophils NA 

rADC  

Macrophage 
& 

Microglia 
NA 

Lowly stimulated possibly anti-
inflammatory microglia, 

macrophages and monocytes 

T cell NA 
BTLA+ CD8 cells, early memory 
CD8 cells, CXCR1- effector CD8 

cells, Th2 CD4 cells, Tregs present 
B cell NA Naïve B cell > Plasmablast 

NK cell NA NA 

Other NA Possible neutrophils and eosinophils 

NCEL 
ADC 
mean 

Macrophage 
& 

Microglia 

Possible monocytes, lowly activated 
microglia, and non-tumor suppressive 

macrophages 
NA 

T cell 
Mixed phenotypes, IL4>untreated and 
untreated>IL2 CD4, CD161 high CD8 

cells 
NA 

B cell NA NA 

NK cell NK > NKT cells NA 

Other Macrophages > NK or T cells NA 

 

Several key immune genes are differential expressed between CEL, NCEL, and control samples. 

 To investigate potential differences in immune cells and immune checkpoint genes 

between tumor regions we compared the quantile normalized gene expression values across 

groups (CEL, NCEL, and controls) (Fig. 3.16). For most genes there were modest differences 
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between groups. Several genes did show differing expression levels and provide hypothesis-

generating results for future work to assess protein levels for confirmation. FCGR3A, a gene 

expressed by NK cells (353), showed highest expression in CEL, medium expression in NCEL 

and lowest expression in gliotic non-tumor controls. CD68 and CD163 showed similar 

expression patterns to FCGR3A, and are expressed by macrophages, with CD163 frequently 

used to label M2 polarized cells, though this is controversial (354). CD8A, while not have a large 

spread in expression values did have a small cluster of 3 samples with elevated expression in the 

CEL. Follow-up analysis of these samples is warranted as CD8+ T cells are the main targets of 

many immune modulating therapies and understanding inter-tumoral differences in their 

presence is important to optimal therapeutic planning (355). Several of the immune checkpoint 

genes were differentially expressed in the groups. In particular, CD276 (which encodes B7-H3 

protein) and CD40 (a member of the TNF-receptor superfamily) showed significant difference 

between CEL and controls (p-values = 0.015 and 0.042 respectively), and CD276 also showed a 

significant difference between CEL and NCEL samples (p-value = 0.001), after correcting for 

multiple comparisons. If these checkpoints are expressed and intact, this could provide a 

potential resistance mechanism to mono-therapies targeting other immune checkpoints, and 

requires further study. Other checkpoint genes showed trends in differences between tumor 

regions and controls, though were no longer significant once we accounted for multiple 

comparisons.  
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Figure 3.16. Immune cell and immune checkpoint gene expression in CEL, NCEL, and 

control sample groups. (A) Expression of T and NK cells markers genes clustered by group 

(CEL, NCEL, and gliotic non-tumor brain). (B) Expression of macrophage/microglia markers 

genes clustered by group. (C) Expression of immune checkpoint genes clustered by group. Each 

symbol represents an individual sample’s expression value. C = CEL; N = NCEL; G = gliotic 

non-tumor control. Expression levels and quantile normalized gene expression values. * p-value 

< 0.05 after Bonferroni corrections. 
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3.5.	Discussion		

Improving outcomes for patients with GBM will require tailoring treatment regiments to 

the unique characteristics of each tumor and tumor microenvironment. Doing so necessitates 

gaining a better understanding of the extensive heterogeneity displayed by GBMs, and 

developing modalities to assess therapeutically-important tumor traits across a whole tumor, over 

time. We begin to address to the pressing issue of evaluating GBM heterogeneity, by 

investigating variable gene expression networks that correlate with tumor regions defined by 

MRI and histological features. We demonstrate that CEL and NCEL can be subdivided by 

physiologic imaging metrics (rCBV and rADC) and histological phenotypes to define tumor 

tissue with unique biological and immunological processes. Subdividing the CEL and NCEL was 

able to identify biological and immune niches within GBM tissue that on standard contrast 

imaging appear as a more homogenous tumor region. Differences in rCBV, rADC, and ADC 

mean all distinguished sub-regions of CEL and NCEL with differing immune composition. The 

CEL tissue in GBM displayed the strongest immune response and cellularity, compared to NCEL 

and control brain tissue. Relative CBV was correlated with inflammatory processes in both the 

CEL and NCEL, however it appeared to be polarized to an anti-inflammatory immune response 

in the CEL and a pro-inflammatory immune response in the NCEL. Interestingly, ADC, a marker 

of cellularity, was negatively correlated with inflammation in the NCEL. These results highlight 

that it may be feasible to develop imaging biomarkers of specific tumor-immune interaction 

niches. It is important to note that all biological and immunological patterns described herein are 

based solely on RNA expression and require confirmation at the protein level and validation in a 

prospective study to identify biomarkers. 
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Understanding the complexity of the immune response occurring within a tumor is 

crucial as the neuro-oncology field embarks on incorporating immune modulating therapies into 

treatments for GBM. The immune microenvironment of a GBM appears to be diverse across a 

tumor and between different tumors (28, 32). While GBMs are typically highly 

immunosuppressive compared to other tumor types (356-358), they have a tremendous number 

of macrophages and microglia throughout the bulk of the tumor, often accounting for 30-50% of 

the cells in the bulk tumor mass (78, 138, 359, 360). Our results support this finding, as 

upregulated gene expression signatures were indicative of elevated microglia and macrophages 

relative to other immune cells. Tumor associated macrophage (TAMs) play a significant role in 

tumor survival and growth, and helping orchestrate the overall immune response (123). 

Unexpectedly, we found that gene signatures for M1 and M2 macrophage polarization were 

upregulated in the same tumor samples, suggesting that TAMs in GBM are a mixed population 

and/or represent some intermediate phenotype on the M1/M2 spectrum. Future studies 

investigating protein expression patterns in tumor tissue from these regions is needed to 

differentiate these possibilities. Applying multiplexed immunohistochemistry methods to 

investigate the spatial co-distributions of M1 and M2 marker proteins in these samples would be 

highly valuable to better understand the distribution of TAM phenotypes in GBM (361). 

Inter-tumoral variability in the immunologic state of GBM has been previously 

associated with GBM molecular subtypes (26, 30-32). Additionally, mesenchymal GBM subtype 

samples from TCGA have elevated PDL1 expression compared to other subtypes (148). Our 

results show that numerous immune checkpoints are upregulated in CEL samples of 

mesenchymal tumor, and that proneural tumors have very little expression of these genes. Early 

research studying immune checkpoints in cancer and the efficacy of immune checkpoint 
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blockade in murine models of various carcinomas suggest that more immunogenic tumors 

respond better to immunotherapies, while tumors with little pre-treatment immune infiltration 

require an immune stimulating vaccine prior to immunotherapy for anti-tumor effects (140). It is 

possible to speculate that mesenchymal GBMs, which consistently demonstrate a robust immune 

response, may be more responsive to immune modulating therapies, while tumors of the 

proneural subtype that have minimal immune features may require an immunogenic vaccine. As 

we observed a slight trend in mesenchymal tumors having elevated rCBV in their CEL and 

proneural tumors demonstrating lower rCBV in their CEL, exploring the potential use of rCBV 

threshold(s) in the CEL as a potential biomarker of GBM subtypes and response to immune 

checkpoint inhibition merits future investigation. Moreover, areas of CEL that had elevated 

rCBV were associated with possible immunosuppressive immune phenotypes, providing further 

evidence that the presence of this radiophenotype could identify patient cohorts that may benefit 

from checkpoint inhibition. 

The immune microenvironment of GBM is not static, but can change over the course of 

treatment during both standard chemotherapy and immune modulating therapy (26). After 

chemoradiotherapy about 36% of GBMs show radiographic evidence of tumor growth (increased 

size of the gadolinium-enhancing lesion), that overtime resolves and the tumor volume decreases 

(362, 363). This imaging phenomenon is termed pseudoprogression and is nearly impossible to 

differentiate from tumor growth on standard MR imaging, greatly complicating clinical decision-

making. Pseudoprogression is thought to be enhancement caused by an inflammatory response to 

the dying tumor cells (364). Ferumoxytol-enhanced MRI is one method that is being investigated 

and used to distinguish tumor progression from pseudoprogression, but additional modalities are 

needed. It is plausible that imaging biomarkers for variable immune phenotypes may provide 
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enhanced methods to different treatment-induced inflammation from tumor growth. 

Pseudoprogression is also observed following immunotherapies, and thus presents a significant 

problem in evaluating patients during clinical trials (365). Methods to resolve tumor 

inflammatory process by imaging would be highly applicable and clinically useful in this 

scenario (139). 

Understanding the biology and immune microenvironment of the NCEL is import 

because this niche is implicated in treatment resistance and disease recurrence (366-368). GBM 

cells are highly infiltrative in nature. As such, the NCEL contains normal appearing brain with 

low numbers of dispersed tumor cells that may not be surgically resected and are then 

responsible for tumor regrowth. Developing imaging biomarkers for the underlying biology and 

unique immune response to this particular tumor microenvironment would help identify 

druggable targets unique to the non-resectable tumor edge, that could be inhibited in conjunction 

with resection of the bulk tumor to improve outcomes. In the current study we found that areas of 

NCEL with lower rADC values likely represent microenvironments with an anti-inflammatory 

immune response, which may benefit from immune checkpoint inhibitors.  

In summary, the current study describes the biological differences in GBM tissue 

stratified into tumor microenvironments by MR imaging and simple histopathological features. 

We demonstrated that imaging and histologic differences in the tumor are associated with 

different molecular biology signatures, and the immune response plays a large role in the 

variance between tumor samples. Immune checkpoint genes are unevenly distributed across and 

between GBMs, and this may be identifiable in the future by molecular subtype and non-invasive 

imaging biomarkers. Future investigations are required to validate our findings in an independent 

cohort, and assess if these biological patterns are conserved at the protein level. Additionally, 
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evaluating associations between potential imaging biomarkers and responses to therapies in 

current and future clinical trials should be considered. We propose that imaging biomarkers may 

represent a feasible approach to non-invasively identify biologically and immunological unique 

tumor areas, which have the potential aid treatment planning and interpretation of therapeutic 

responses in GBM. 
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4.1. Abstract 

Background: Several integrins and the human epidermal growth factor receptor 2 (HER2) are 

associated with breast cancer brain metastasis. We tested the hypotheses that αvβ3-integrin and 

HER2 influence the invasive phenotype of brain-trophic breast cancer cells through interactions 

with ligand(s) produced by reactive glia. 

Methods: Clones of MDA-MB231-BR human breast cancer cells with stable knock down of αv- 

or β3-integrin in combination with high or low levels of HER2 were created. The interactions of 

these proteins and their combined effect on cell migration and invasion were investigated in vitro 

and in vivo. Expression of known ligands of these receptor families were evaluated for co-

localization with reactive glia in rat models of breast cancer brain metastases and human breast 

cancer brain metastasis tissue by immunohistochemistry. Human breast cancer cells were 

stimulated with these ligands in vitro then assessed for changes in proliferation, morphology, and 

intracellular signaling. The effect of inhibiting one of these ligands, Galectin-3 (Gal3), on tumor 

growth was investigated in a xenograft model. 

Results:  HER2 co-precipitated with αv-integrin in three breast cancer cell lines in vitro, 

suggesting they complex in cells; immunofluorescent confocal and super resolution imaging 

demonstrate their localization in membrane nanodomains near cell protrusions. Knockdown and 

pharmacological inhibition of αv- and β3-integrin significantly reduced cell motility. After 

intracerebral inoculation, cells expressing high levels of αvβ3-integrins and HER2 showed a 

diffusely infiltrative tumor phenotype, while cells deficient in either integrin subunit with or 

without HER2 displayed a compact tumor growth phenotype. In the infiltrative tumors, the 

invading malignant cells were localized to the perivascular space where they were in close 

proximity to reactive glia. Reactive glia around these tumors expressed several known 
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tumorigenic ligands including Gal3. In vitro, Gal3 increased pro metastatic cellular phenotypes 

and was secreted by microglia when co-cultured with human breast cancer cells. 

Pharmacological inhibition of Gal3 in a xenograft model had minimal effect of tumor growth. 

Conclusions: αvβ3-integrin and HER2 influence the invasive phenotype of breast cancer cells, 

possibly in response to ligands, including Gal3, produced and secreted by reactive microglia in 

the tumor microenvironment. Targeting αvβ3-integrin in HER2-positive breast cancer cells or 

Gal3 in their microenvironment may slow growth and decrease infiltration in the brain. 

 

4.2. Introduction 

Breast cancer is the most common cancer in women, and ranks as the second most 

common malignancy to metastasize to the brain (369). Breast cancer brain metastases remain 

incurable. To improve outcome for patients with breast cancer brain metastases, a better 

understanding of how metastatic cells colonize and grow in the brain microenvironment are 

needed. Numerous reports identify differences between metastatic breast cancer cells and their 

primary tumor counterparts. Large genomic and proteomic studies have taken the mass data 

approach, while more focused reports have investigated individual or small numbers of specific 

proteins suspected to be altered or upregulated in metastatic cells and tumors based on a priori 

observations (196, 267, 270, 274, 275, 289, 290). Through these methods, two key families of 

cell surface receptors have been identified to be upregulated on metastatic breast cancer cells that 

could coordinate their interactions with the brain microenvironment: integrin adhesion receptors 

and growth factor receptors (GFR), including those of the epidermal growth factor receptor 

(EGFR) family (11, 267, 270, 274, 284, 370, 371).  
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The integrin family of transmembrane receptors mediate cell-ECM and cell-cell 

interactions, and are implicated in multiple steps of the metastatic cascade (261, 271-273). 

Integrins function as obligate αβ dimers, forming 24 known combinations of 18 α and 8 β 

subunits (264), The αv-integrin subunit is overexpressed in metastases, including brain 

metastases, and are important in the survival, proliferation, migration and invasion of cancer 

cells (267-273). Activation of the αvβ3-integrin heterodimer promotes tumor angiogenesis and 

metastatic growth in mouse brain (274), while transcriptional silencing of αvβ3-integrin with 

MYC decreases migration and invasion of cancer cells in vitro and in vivo (275). In preclinical 

models, targeting αv-integrin with the monoclonal antibody intetumumab or αvβ3- and αvβ5-

integrins with the cyclic peptide cilengitide has shown anti-tumor effects as well as metastasis 

prevention activity (282-284). However, in clinical trials, intetumumab and cilengitide have 

demonstrated minimal therapeutic efficacy inducing tumor cell death in metastases (285-287).  

The EGFR family of proteins is also associated with increased breast cancer brain 

metastasis (11). This family of includes EGFR and the human epidermal growth factors receptors 

2, 3, and 4 (HER2, HER3, and HER4). Members of the EGFR family form homo- and hetero-

dimers upon ligand binding, leading to trans-autophosphorylation of their intracellular tail, and 

triggering activation of downstream cellular signaling cascades that ultimately impacts cell 

survival, proliferation, migration, invasion, and drug resistance (289). Of this family, HER2, also 

known as ErbB2, is of particular interest in brain metastasis. HER2 is an orphan receptor 

tyrosine kinase that is implicated in enhanced cancer cell proliferation and aggressive 

tumorigenic behavior (372). Malignancies with HER2 overexpression show increased brain 

metastatic outgrowth in preclinical models and a high incidence of brain metastases clinically, 

with up to 30% of patients developing central nervous system lesions (370, 371, 373). However, 
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it is poorly understood how HER2-overexpressing cells gain an invasive metastatic phenotype 

that requires dynamic remodeling of cell adhesion, actin cytoskeletal assembly, and navigation of 

the ECM (373, 374). Similar to the failures of integrin-mediated therapies, HER2-target 

treatments have had modest results in decreasing breast cancer brain metastases (158). One of 

the main anti-HER2 therapies, trastuzumab, does not cross the blood-brain barrier, and thus has 

poor penetration into metastatic brain tumors (306). However, newer HER-2 targeted 

monoclonal antibodies, such as neratinib, have improved brain-brain barrier permeability and are 

being investigated for efficacy in HER2-positive brain metastases (304).  

The failures of integrin- and HER2-targeted therapies emphasize the need to precisely 

understand the tumor-specific biology in the brain niche so that better use of current inhibitors or 

novel methods to inhibit these metastatic cellular behaviors can be achieved. Physical 

interactions between integrins and various growth factor receptors and crosstalk between these 

signaling systems have been reported in normal and pathological conditions, including cancer 

(265, 375-378). It is plausible that these interactions alter the effect of their functions in the 

tumor. Additionally, in the brain microenvironment these receptors can sense and respond to 

factors produced by non-neoplastic cells in the tumor microenvironment, including microglia and 

astrocytes (224, 225). Understanding tumorigenic interactions between malignant and resident 

brain cells could provide novel avenues for therapeutic intervention (301). 

In this study, we evaluated the interaction of αvβ3-integrin and HER2 using a brain-

trophic breast cancer cell line (MDA-MB231-BR-HER2) (370) and two non-transformed HER2-

positive breast cancer cell lines, and assessed what factors produced by the brain 

microenvironment could act through these receptors to increase the metastatic potential of breast 

cancer. Our results suggested that αvβ3-integrin interacts with HER2, potentially through a 
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multi-protein complex on functional nanodomains of the cell membrane, and disrupting these 

proteins decreased the invasive behaviors of breast cancer cells. Further, we show that reactive 

glia in the tumor microenvironment produce several factors known to stimulate these receptors, 

and that Gal3 production by reactive microglia may contribute to a pro-tumorigenic signaling 

loop in brain metastasis outgrowth. 

 

4.3. Methods 

 

Human tumor tissue. 

 Human subjects. Archived human tissue specimens from confirmed breast cancer brain 

metastases that were previously collected at Oregon Health & Science University with informed 

consent by subjects and in accordance with the requirements of the local IRB remained de-

identified throughout the course of present study and were used in accordance with the 

requirements of the local IRB. Immunohistochemical evaluation was performed on archival 

tissue from four subjects. Immunohistochemical staining was performed as described below. 

 Immunohistochemistry of paraffin-embedded tissue samples. Paraffin-embedded, 7-μm-

thick tissue sections were cut and mounted onto charged microscope slides. 

Immunohistochemical stains were applied to sections after deparaffinization and antigen retrieval 

(5 min at room temperature in 95% formic acid followed by 30 min incubation in citrate buffer, 

pH 6.0, at 80°C). Tissue sections were blocked with 3% nonfat dry milk in phosphate buffered 

saline and stained with antibodies to HER2 (catalog #2242, Cell Signaling Technologies, 

Beverly MA) (1:200), αv-integrin (Q20-R, Santa Cruz Biotechnology, Dallas TX) (1:200), or 

Gal3 (sc-19283, Santa Cruz Biotechnology, Dallas TX) (1:200). Results were visualized after 
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application of appropriate secondary antibodies using 3, 3’-diaminobenzidine tetrahydrochloride 

hydrate (D5637, Sigma-Aldrich, St. Louis MO) or Vector Red (SK-5100, Vector Laboratories, 

Burlingame CA) as chromagens using an Olympus Bx50 microscope (Olympus Scientific 

Solutions, Waltham MA). 

 

Cell lines and clonal line development. 

Cell Lines. SKBR3, HCC1954, and MDA-MB-361 breast cancer cells, were obtained 

from ATCC (Manassas, VA), and cultured in McCoy’s Medium (Corning Life Sciences—

Mediatech, Manassas VA), RPMI1640 (Lonza BioWhittaker, Allendale NJ) and Leibovitz’s L-

15 Medium (ATCC, Manassas VA) respectively, supplemented with 10% fetal bovine serum.  

BV2 murine microglial cells were obtained from Dr. Randy Woltjer (Department of Pathology, 

Oregon Health and Science University, Portland OR) and cultured in RPMI1640 (Lonza 

BioWhittaker, Allendale NJ) supplemented with 10% fetal bovine serum. The brain-trophic 

human breast cancer cells transfected to express high HER2 (MDA-MB231BR-HER2, herein 

termed MM2BH cells) were obtained from Dr. Patricia Steeg (NCI, Rockville MD) and cultured 

in DMEM (Corning Life Sciences – Mediatech, Manassas VA) supplemented with 20% fetal 

bovine serum (IFBS-HU-24879, Innovative research, Novi MI), 20mM HEPES (BP310, Fischer 

Scientific, Waltham MA), 350mM Zeocin (#1621177A, Gibco Life Tech., Waltham MA) (370). 

Clonal cell line generation. MM2BH cells were transduced with one of two distinct αv-

integrin sequence-specific lentiviral shRNAi constructs (TRCN-768 and TRCN-769), two 

distinct β3-integrin sequence-specific lentiviral shRNAi constructs (TRCN-3236 and TRCN-

3238) or a scrambled control shRNA (TRC1) derived from the MISSION library of Sigma-

Aldrich (St Louis, MO). After 48 h, transduced cells were seeded in 96-well plate (catalog 
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#353072, Corning Life Sciences, Durham NC) with limited dilution per well and cultured in the 

presence of 1µg/ml puromycin (A11138-03, Gibco Life Technologies, Waltham MA). Stably 

transduced clones were selected and expanded from individual wells. The expression of αv-

integrin, β3-integrin, and HER2 in selected clones was verified by western blotting of whole cell 

lysates and by flow cytometry. Five MM2BH clones with high or low expression of αv-integrin 

and high or low HER2 expression, as well as five MM2BH clones with high or low expression of 

β3-integrin and high or low HER2 expression were chosen for study: (a) αv+H2+, (b) αv+H2-, 

(c) αv-H2+sR1 (shRNA TRCN-769), (d) αv-H2+sR2 (shRNA TRCN-768), (e) αv-H2-, (f) 

β3+H2+, (g) β3+H2-, (h) β3-H2+sR1 (shRNA TRCN-3236), (i) β3H2+sR2 (shRNA TRCN-

3236), (j) β3H2-. Knockdown clones were maintained in 0.5 µg/ml puromycin (A11138-03, 

Gibco Life Technologies, Waltham MA).  

 

Flow cytometry.  

Cells were harvested using TrypLE Express (12605-028, Gibco Life Technologies, 

Waltham MA) and suspended in blocking buffer (3% BSA in PBS pH 7.4) as a single-cell 

suspension. Cell surface protein expression was evaluated with the following antibodies: anti-

HER2/neu-APC (BD340554, BD Biosciences, San Jose CA; 2.5uL per reaction), anti-αv-

integrin (Q20-R, Santa Cruz Biotechnology; 1:200), anti-β3-integrin (ab75872, Abcam, 

Cambridge MA; 1:200), and Alexa Fluor 647 conjugated secondary antibody (Life 

Technologies, Waltham MA; 1:500) was used for αv- and β3-integrins. Cells (106 per antibody) 

were incubated with primary or direct conjugated antibodies for 45 min at 4°C, then with 

secondary antibodies for 30 min at 4°C. Cells were washed and resuspended in FACS buffer 

(PBS with 10% FBS and 0.1% NaN3), and assessed within 1 h of antibody staining using the 
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FACSCanto II flow cytometer (BD Biosciences, San Jose CA) at the Oregon Health and Science 

University flow cytometry core. Analyses were completed using FlowJo software 

(http://www.flowjo.com/). For fixed permeabilized and not permeabilized cell analyses, the 

above methods were performed with fixation prior to incubation with the primary antibodies. 

Cells with either fixed with 4% paraformaldehyde and then immediately blocked and stained, or 

permeabilized with tritonX-100 (X-100, Sigma-Aldrich, St Louis MO) and then immunostained. 

 

Protein interaction. 

 Co-immunoprecipitation. Modified lysis buffer (50mM Tris-Cl pH 7.5, 150mM NaCl, 

1% NP-40, 0.5% Na-deoxycholate, 1mM EDTA and 1mM EGTA) supplemented with 1x Halt 

protease and phosphatase inhibitor cocktail (cat#78441, Thermo Scientific, Waltham MA), was 

used for lysate preparation from HCC1954, SKBR3, and MM2BH cells grown under normal 

culture conditions. After 30 min incubation in the lysis buffer on ice, cell suspensions were 

passed through a 21-gauge needle to disrupt genomic DNA and centrifuged to clarify 

unsolubilized proteins. 500µg cell lysate was incubated overnight with 5µg antibody against 

HER2, αv-integrin, β3-integrin, or EGFR. ProteinA-conjugated agarose beads (Thermo 

Scientific, Waltham MA) were added and incubation was continued for additional 2-3h. The 

immunocomplex was separated from unbound lysate by centrifugation and then pulled down 

proteins were eluted by boiling at 95°C for 5 min in Lamaelli buffer (catalog #161-0747, Bio-

Rad, Hercules CA). Samples were assessed by western blotting (274, 275, 376). 

Western blotting. Samples from co-immunoprecipitation assays and cell lysates were 

assessed by western blot. For general cell lysate preparation, cells were harvested using TrypLE 

Express (catalog #12605-028, Gibco Life Technologies, Waltham MA) and suspended in cold 
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RIPA buffer (50mM Tris-Cl, 150mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% 

SDS) supplemented with 1x Halt protease inhibitor cocktail (catalog #78430, Thermo Scientific, 

Waltham MA). After 15 min on ice, the suspension was centrifuged at 4°C to clear insoluble 

debris from supernatant lysate. Protein concentration was measured with the BCA assay kit 

(catalog #23225, Thermo Scientific, Waltham MA) and the western blotting was performed 

using SDS-PAGE loading equal amounts of protein per lane. The intensity of individual protein 

bands on immunoblots was quantified using UN-SCAN-IT gel software 6.1 (Silk Scientific, 

Orem UT) and normalized with that of β-actin (A1978, Sigma-Aldrich, St. Louis MO) loading 

control.  

 Proximity ligation assay. Duolink Proximity Ligation Assay (PLA) was performed on 

HCC1954 and SKBR3 cells, seeded onto #1.5 cover slips per company protocol (DUO92101, 

Sigma-Aldrich, St. Louis MO, USA). Cells were cultured in normal growth media prior to 

fixation with 4% paraformaldehyde. Cells were imaged on a Zeiss LSM-780 confocal 

microscope maintained by the OHSU Advanced Light Microscopy Core. 

 

Protein localization. 

 Cell immunofluorescence. Cells were grown in 24 well-plates (catalog #353047, Corning 

Life Sciences, Durham NC) on #1.5 glass coverslips (catalog #12-545-81, Thermo Fisher 

Scientific, Waltham MA) for confocal imaging and in 8 chamber slides with #1.5 cover glass 

bottoms (C7182 , Thermo Fisher Scientific, Waltham MA) for super resolution imaging. Cells 

were fixed with 4% paraformaldehyde (Tousimis, Bethesda MD) at room temperature (RT), 

permeabilized with 0.25% TritonX-100 (X-100, Sigma Aldrich, St. Louis MO) and blocked in 

5% bovine serum albumin (Sigma Aldrich, St. Louis MO). Fixed cells were incubated overnight 
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in primary antibodies (1:200) and fluorophore-conjugated species-specific secondary antibody 

was used at 1:600 dilution for 1-2h at RT. Antibodies used in this study are as follows; αv-

integrin (sc-6617 Q20-R, Santa Cruz Biotechnology, Dallas TX), HER2 (catalog #2242, Cell 

Signaling Technology, Beverly MA), β3-integrin (ab75872, Abcam, Cambridge MA ), αvβ3-

integrin (MAB1976, Millipore, Temecula CA), CD9 (SC-13118 C4, Santa Cruz Biotechnology, 

Dallas TX), FAK (catalog #13009, Cell Signaling Technology, Beverly MA), pFAK (tyr925) 

(catalog #8556, Cell Signaling Technology, Beverly MA), Alexa Fluor-conjugated secondary 

antibodies were purchased from Life Technologies (Waltham, MA) or conjugated by the Nan 

laboratory as previously described (379, 380). F-Actin was stained with rhodamine phalloidine 

(R415; Life Technologies, Waltham MA) and Hoechst (H21486, Life Technologies, Waltham 

MA) was used to co-stain nuclei, and coverslips were mounted on microscope slides with 

Fluoromount-G (catalog #0100-01, Southern Biotech, Birmingham AL). Cells were post-fixed in 

4% paraformaldehyde for 10 min at RT. Confocal cell imaging was performed using a laser 

scanning Zeiss LSM 780 confocal microscope (Carl Zeiss, Oberkochen, Germany) maintained 

by the OHSU Advanced Light Microscopy core facility. Post-acquisition processing was 

performed using FIJI:ImageJ software (NIH, Bethesda MD). Super resolution images were 

collected as previously described in collaboration with Dr. Xiaolin Nan (379, 380). 

 Tissue immunofluorescence. Cell membrane localization of αv-integrin and HER2 were 

probed in a human breast cancer brain metastasis specimen by super resolution microscopy using 

methods detailed in Creech et. al., 2017 (379). 2µm-thick sections were immunostained. After 

sectioning, tissues were treated and incubated with the primary antibodies as detailed above in 

the Immunohistochemistry of paraffin-embedded tissue samples section. Antibodies used in this 

study are as follows; αv-integrin (sc-6617 Q20-R; Santa Cruz Biotechnology, Dallas TX), and 
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HER2 (catalog #2242, Cell Signaling Technology, Beverly MA). After overnight incubation 

with primary antibodies at 4oC in a humidity chamber, tissues were washed 3 x 5 min in PBS and 

then incubated with secondary antibodies for 1h at RT in the dark. Tissues were washed 5 x 5 

min in PBS, post fixed for 10 min at RT with 4% paraformaldehyde, and washed 3x5 min with 

PBS. #1.5 coverslips were mounted with Fluoromount-G (catalog #0100-01, Southern Biotech, 

Birmingham, AL). Images were acquired as detailed in (379). 

 

Assessing in vitro phenotypes in knockdown cell lines. 

 Western blotting. siRNA mediated protein knockdown was assessed by western blotting 

as described above. 

 Transwell migration and invasion assays. The migration and invasion of MM2BH clones 

were examined using transwell inserts (8μm pores; catalog #3422, Corning Life Sciences, 

Manassas VA). Uncoated inserts were used in migration; for invasion assays the upper chamber 

was coated with 30µg of Matrigel (BD Bioscience, San Jose CA). 50,000 cells, suspended in 

serum-free media, were added to the upper chamber and 10% serum was used as the 

chemoattractant in lower wells. Migration was continued for 8h and invasion for 64h after cell 

seeding. Cells were removed from the upper chamber with cotton swabs and cells that migrated 

on the bottom of the membrane were fixed with chilled methanol for 15 min. Subsequently, cells 

were stained in 1:5000 Hoechst solution (H21486, Life Technologies, Waltham MA) for 30min. 

The membranes were excised and mounted cell-side down on microscope slides using ProLong 

Gold antifade reagent (catalog #0100-01, Life Technologies, Waltham MA). Ten random fields 

were imaged at 5x objective magnification on the Zeiss Apotome microscope (Carl Zeiss, 
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Oberkochen, Germany) maintained by the OHSU advanced light microscopy core and the 

number of cells per field was quantified using the FIJI:ImageJ software (NIH, Bethesda MD). 

 Cell proliferation. Serial measurements of the number of viable cells after seeding of 

2500 cells in opaque-walled 96-well plates (catalog #655098, Greiner Bio-One, Frickenhausen 

Germany) were collected using the Cell-Titer Glo luminescent viability assay kit (G7570, 

Promega, Madison WI). Luminescence intensity was quantified using a BioTek Flx800 plate 

reader (Winooski, VT). 

 

In vitro effect of cilengitide on cell migration.  

MM2BH cells were seeded into 96-well plates (catalog #4379, Essen Bioscience, Ann 

Arbor MI), at a density of 30,000 cells/well and grown overnight in their normal growth media. 

Scratch wounds were made per the Essen Bioscience IncuCyte Scratch Wound Assay protocol, 

and then the αvβ3-integrin inhibitor cilengitide trifluoroacetate (catalog #S7077, Selleck 

Chemicals, Houston TX) was added immediately following wounding. Images were collected in 

the IncucyteZOOM every 2 hours for 50 hours. Images were processed using Incucyte ZOOM 

Essen Biosciences Scratch Wound Migration software module (Cat No 9600-0012, Essen 

BioScience, Ann Arbor MI). All experiments were done in triplicate. 

 

Assessing in vivo phenotypes in knockdown cell lines. 

 Xenograft tumor model. The care and use of animals was approved by the Institutional 

Animal Care and Use Committee and supervised by the OHSU Department of Comparative 

Medicine. Female nude rats (rnu/rnu, 200-250g) were anesthetized with intraperitoneal injection 

of ketamine (60 mg/kg) and diazepam (7.5 mg/kg). Buprenorphine (0.1 mg/kg) was applied 
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subcutaneously for analgesia. The head was shaved and the rat placed in a stereotactic frame 

(David Kopf Instruments, Tejunga CA). A 2-mm diameter hole was drilled in the skull and a 27-

gauge needle was lowered into the right caudate putamen using coordinates (bregma = 0; lateral 

= -0.31, vertical = -0.65). Animals were randomized and inoculated with 1.5x 106 of each 

MM2BH cell clone: (a) αv+H2+, (b) αv+H2-, (c) αv-H2+sR1, (d) αv-H2+sR2, and (e) αv-H2- 

(f) β3+H2+, (g) β3+H2-, (h) β3-H2+sR1 (shRNA TRCN-3236), (i) β3H2+sR2 (shRNA TRCN-

3236), (j) β3H2- (n = 6-9 rats per group). Animals were monitored daily by Department of 

Comparative Medicine personnel and by research staff. The predetermined end point was 5 

weeks after tumor implantation; one animal showed weight loss requiring early euthanasia. 

Euthanasia was performed with a lethal dose of IV euthasol (Virbac, Fort Worth TX). Whole 

brains were removed for processing, fixed in formalin for more than 3 days, and then vibratome-

sectioned into 100µm-thick coronal slices (HM650V, Thermo Scientific, Waltham MA).  

Tumor volumetrics. For tumor volumetrics, immunohistochemistry was performed on 

every sixth section, staining for human mitochondrial antigen (ab3298, Abcam, Cambridge, 

MA), as previously described (Wu et al 2012). The chromagen 3,3' Diaminobenzidine 

tetrahydrochloride hydrate (DAB)  (D5637, Sigma-Aldrich, St.Louis MO)  was used to visualize 

antibodies labeling, per manufacturers protocol. Total tumor area was manually outlined on 

scans of all stained sections by a blinded researcher and assessed using FIJI:ImageJ software 

(NIH, Bethesda MD). Tumor volume was determined by multiplying the sum of measured areas 

by the section thickness and section separation (sum [mm2] x0.1mm x6). The area of tumor 

visually judged to match the “infiltrative” phenotype was manually outlined in 2-6 central 

sections and the area occupied by infiltrating tumor cells was determined as a percentage of total 

tumor area. 1-2 rats in each group showed incorrect tumor placement (ventricle or base of brain) 
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or excessive post-mortem autolysis, and these tumors were not included in the analysis of the 

infiltrative phenotype. 

Thick-section assessment using fluorescent immunohistochemistry. For 

immunofluorescent assessment of 100µm-thick, free floating sections, tissue was washed 3x10 

min in PBS, incubated in 1% H2O2 x 30 min at RT, and incubated in permeabilization buffer 

(PBS + 0.2% Triton-X100) x 1 hr at RT. Samples were then blocked for 3 hr at RT in blocking 

buffer (10% sheep serum, 2% BSA, and 0.2% Triton-X100 in PBS). Primary antibodies diluted 

in blocking buffer were incubated with the tissue at 4°C on a rocking plate for 48 hours. Primary 

antibodies used in this study on thick tissue sections are as follows: AQP4 (ab9512, Abcam, 

Cambridge MA), GFAP (ab53554, Abcam, Cambridge MA), CD31 (AF-3628, R&D Systems, 

Minneapolis MN ), Iba1 (GTX100042, GeneTex, Irvine CA), CD163 (catalog #MCA342R, 

Biorad ABDSerotec Inc., Raleigh, NC), NRG1 (H7660, Sigma Aldrich, St. Louis MO ), Gal3 

(sc-19283 D20, Santa Cruz Biotechnology, Dallas TX), HB-EGF (AF-259-NA, R&D Systems, 

Minneapolis MN), HMT (ab3298, Abcam, Cambridge MA), and PanCK (BP5069, Origene, 

Rockville MD). Tissues were washed 3 x 1 hr with PBST (0.05% Tween-20 in PBS) on a 

rocking plate at RT and then incubated with secondary antibodies diluted 1:400 in blocking 

buffer 24-48hr at 4°C on rocking plate. Alexa Fluor-conjugated secondary antibodies were 

purchased from Life Technologies (Waltham, MA ). Sections were stained with Hoechst (1:800; 

H21486, Life Technologies, Waltham MA)  ) and in several cases tomato lectin (1:100; DL1177, 

Vector Laboratories, Burlingame CA) in PBST x 2 hr at RT on rocking plate. Tissues were 

washed 4 x 1 hr in PBST at RT on rocking plate and then mounted with CitiFluor CFMR2tissue 

clearing mounting media (catalog #17979-10, Electron Microscopy Sciences, Hatfield PA) using 

#1.5 cover slips (catalog #22266882, Thermo Fisher Scientific, Waltham MA ). Slides were 
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stored at 4°C until imaging. Tissue imaging was performed using a laser scanning Zeiss LSM 

780 confocal microscope (Carl Zeiss, Oberkochen, Germany) maintained the OHSU Advanced 

Light Microscopy core facility. Post-acquisition processing was performed using FIJI:ImageJ 

software (NIH, Bethesda MD). 

 

Assessing in vivo microenvironment in non-transformed cell line xenograft and 

hematogenous metastasis. 

 Xenograft and hematogenous metastasis tumor models. Female nude rats (rnu/rnu, 200–

250 g, from the OHSU Blood-Brain Barrier Program in-house colony) were anesthetized with 

isoflurane, and a catheter filled with heparinized saline was tied into the right external carotid 

artery. HCC1954 cells (1x106 cells) were infused into the right internal carotid artery as 

previously described; animals were euthanized after 40 days (Wu et. al. 2012). For 

immunohistochemistry analysis, brains were formalin fixed and sectioned at 100μm, as was done 

in the xenograft tumor model. Other tissues were not evaluated. Tissues sections underwent 

immunofluorescent assessment, as detailed above, followed by confocal microscopy imaging. 

 Molday ION macrophage labeling. Nude rats (n=3) were treated with molday ION 

rhodamine B MIRB (8 mg/kg i.v.; CL-50Q02-6A-50, BioPAL, Worcester MA) 1 hour prior to 

implantation of HCC1954 cells (1.5x106) into the right caudate putamen, as previously 

described. Control animal received tumor xenograft without MIRB. Seven days post tumor 

implantation animals underwent MR imaging using a horizontal bore 11.75 T (Bruker Scientific 

Instruments, Billerica MA) under IP dexmedetomidine (0.6 mg/kg) (Zoetis, Lincoln NE) and 

ketamine (15 mg/kg) sedation. Blood was drawn at this time point to assess MIRB in serum. Rats 

were euthanized and underwent perfusion fixation with formalin. Brains were fixed in formalin 
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for 3 days then vibratome sectioned (100µm-thick) for immunohistochemical analysis. 

Fluorescent immunohistochemistry and confocal imaging was performed as detailed above. 

 

In vivo ligand stimulation assays. 

 Incucyte cell proliferation assay. Influence of growth factors on cancer cell growth was 

evaluated using the IncuCyte Cell Confluence Proliferation Assay, per company protocol (Essen 

Biosciences, Ann Arbor, MI). HCC1954 cells were seeded at a density of 3,000 cells/well into a 

96-well plate (catalog #353072, Corning Life Sciences, Durham NC ). After adhering overnight 

in standard growth media, cells were washed 3x with sterile PBS then incubated overnight in 

serum free RPMI media. The following day, cells were washed 3x with pre-warmed serum-free 

RPMI then incubated in 0.1% FBS supplemented RPMI media with one of the following: no 

additional growth factors, 0.1, 1, or 10 µg/mL Gal3 (catalog #599706, Biolegend, San Diego 

CA), 0.1, 1, or 10 ng/mL HB-EGF (AF-259-NA, R&D Systems, Minneapolis MN ), or 0.1, 1, or 

10 ng/mL NRG1 (H7660, Sigma Aldrich, St. Louis MO). All treatments were plated in triplicate. 

96-well plates were immediately placed in the IncucyteZOOM following addition of growth 

factors. Wells were imaged every 2 hours for a total of 3.5 days. Three images were collected per 

well at each time-point and averaged. Images were analyzed using the IncuCyte Software to 

calculate the cell confluence in each treatment group over time. 

 Cell morphology immunofluorescence imaging. HCC1954 cells were seeded onto #1.5 

glass coverslips (catalog #12-545-81, Thermo Fisher Scientific, Waltham MA) in 24 well-plates 

(catalog #353047, Corning Life Sciences, Durham NC) at a density of 10,000 cells/well. Cells 

were allowed to adhere to coverglass for 24 hours then were cultured in serum-free RPMI media 

overnight. Cells were washed 3x with pre-warmed serum-free media and then incubated with 1 
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µg/mL Gal3 (catalog #599706, Biolegend, San Diego CA ) for 5 min or 10 min. Control cells did 

not received Gal3. Cells were immediately fixed in 4% paraformaldehyde, and then 

immunostained as detailed above. Cells were stained with rhodamine-phalloidin (1:500, R415, 

Life Technologies, Waltham MA) to label f-actin and visualize structural changes. Fixed, stained 

cells were imaged using a laser scanning Zeiss LSM 780 confocal microscope (Carl Zeiss, 

Oberkochen, Germany) maintained the OHSU Advanced Light Microscopy core facility. 10 

images were acquired per coverslip, and three coverslips per treatment group were collected for 

each replicate. Post-acquisition processing was performed using FIJI:ImageJ software (NIH, 

Bethesda MD). Images were manually assessed by a blinded researcher to count the number of 

cells positive for lamellipodia, which were defined as flattened, fan-like cell protrusions. If there 

was any question of the lamelipodia presence, the cell was counted as negative, i.e. not 

containing any lamellipodia, thus quantification erred on the side of under quantifying the 

presence of lamellipodia. 

 Phosphorylation assay. HCC1954 cells were seeded into 10cm tissue culture dished and 

grown to 80% confluency. Dishes were then washed 3x with pre-warmed serum-free media and 

incubated overnight in serum-free RPMI media. Dishes was then treated with one of the 

following: serum-free RPMI media, RPMI + 1ng/mL HB-EGF (AF-259-NA, R&D Systems, 

Minneapolis MN ), 1ng/mL NRG1 (H7660, Sigma Aldrich, St. Louis MO), or 1 µg/mL Gal3 

(catalog #599706, Biolegend, San Diego CA ). Two dishes were treated with each of the ligands 

and were washed at fixed after either 20 min or 3 hours of incubation. Cell lysate collection and 

processing for each treatment was completed on ice following the steps outlined in Western 

blotting section above, with the addition of 1x Halt protease and phosphatase inhibitor cocktail 

(cat#78441, Thermo Scientific, Waltham MA) to the lysis buffer (50mM Tris-Cl pH 7.5, 150mM 
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NaCl, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS). Phosphorylated protein levels were 

evaluated by western blot.  

 

In vivo co-culture assays. 

 Co-culture cell migration. For migration co-culture assays, 50,000 BV2 cells were seeded 

into the bottom chamber of a transwell insert (8μm pores; Corning Life Sciences, Manassas VA) 

onto a #1.5 coverslip (catalog #12-545-81, Thermo Fisher Scientific, Waltham MA) in the 

bottom of a 24-well plate (catalog #353047, Corning Life Sciences, Durham NC). Some wells 

were prestimulated with LPS (1 µg/mL; L3012, Sigma Aldrich, St.Louis MO). BV2 cells were 

allowed to adhere to the coverslip for 24 hr in normal growth conditions and media. The bottom 

well was then washed with serum-free media and replaced with RPMI media with 1%FBS. The 

upper chamber was then seeded with 60,000 HCC1954 cells suspended in RPMI media 

supplemented with 1%FBS. The upper chamber of several wells received cilengitide (catalog 

#S7077, Selleck Chemicals, Houston TX) diluted to produce a final concentration of 1ug/mL in 

the well. The transwell set-up was incubated in 5% CO2 at 37°C for 48 hours. At this time the 

inserts were removed and treated as described in the Transwell migration and invasion assays 

methods section to quantify the number of HCC1954 cells that migrated across the porous 

membrane. Media from each condition was collected, and after centrifugation to remove any 

cells, was used fresh or stored at -80°C for future soluble protein testing.  

 ELISA. A solid phase sandwich enzyme-linked immunosorbent assay (ELISA) was 

performed to test the level of Gal3 in the media of co-cultured BV2 and HCC1954 cells. The 

Human LGALS3 ELISA Pair Set (SEK10289, Sino Biological, Wayne, PA) was used for this 
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analysis, following the manufacturers protocol. Absorbance was quantified using a BioTek 

EL800 plate reader (Winooski, VT). 

 Cytokine array. BV2 cells were cultured alone or in transwell set-ups with BV2 in the 

lower chamber and HCC1954 cells in the upper chamber with RPMI media and 1% FBS for 24 

hours. Supernatants (200 µl) from individual and co-cultures were characterized utilizing a 

multiplex Protein Profiler Array per company protocol (Mouse XL Cytokine Array, Cat # 

ARY028, RND Systems, Minneapolis MN). Media used in this assay was used fresh, 

immediately out of the co-culture set ups and was never frozen. Membranes were visualized 

using a 2:1 ratio of pico:femto chemiluminescent reagents (catalog #1859022 and 1856136, 

Thermo Scientific, Waltham MA). Pixel densities of protein spots were analyzed following the 

manufacturers protocol. Two replicates of each treatment group were used in this analysis.  

 

In vivo assessment of GCS-100. 

 Xenograft tumor growth with GSC-100 treatments. HCC1954 xenograft tumors were 

grown as described above. On days 4, 6, and 8 post tumor implantation rats were treated with 

20mg/kg i.p. GCS-100 provided by La Jolla Pharmaceutical Company (San Diego, CA). Rats 

were euthanized on day 11, and whole brains fixed and sectioned for tumor volumetrics and 

immunohistochemical evaluations, as detailed prior.  

 Immunofluorescent assessment of Gal3. 100µm-thick sections were immunostained for 

pan-cytokeratin (BP5069, Origene, Rockville MD ), Gal3 (SC19283, Santa Cruz Biotechnology, 

Santa Cruz CA), and Iba1 (GTX100042, GeneTex, Irvine CA). Tissue imaging was performed 

using a laser scanning Zeiss LSM 780 confocal microscope maintained the OHSU Advanced 

Light Microscopy core facility. Images of each tumor were collected using identical settings on 
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the microscope. Post-acquisition processing was performed using Zen Software (Carl Zeiss, 

Oberkochen, Germany) and FIJI:ImageJ software (NIH, Bethesda MD). The distance of Gal3 

positivity from the Pan-Cytokeratin positive tumor edge was measured from three equidistant 

points along the Pan-Cytokeratin positive tumor mass (green) to the furthest Galectin-3 positive 

(red) point for each image. Three images were analyzed for each tumor for a total of nine 

measurements per tumor, which were averaged to collect a single value for each tumor. 

 

Statistical analysis.  

All in vitro studies were conducted in triplicate and with three biologic replicates, with 

the exception of the protein cytokine array assay, which included only two replicates due to 

supply limitations. Single time point data were compared by Student’s t-test and multiple time 

points were assessed with repeated measures ANOVA. For the animal studies, numbers were 

based on previous studies for the MM2BH tumors and based on supply limitations for the GSC-

100 treatment tumors; no power calculations were made a priori or post hoc. Tumor volume 

(total and infiltrative) was compared using ANOVA to determine overall significance and 

Student’s t-test for comparison of individual groups. Analyses were performed with Microsoft 

Excel and Graphpad Prism software (version 8.0). 
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4.4. Results 

 

αvβ3-integrin and HER2 are expressed in human breast cancer brain metastases and human 

breast cancer cell lines. 

 To confirm previous reports of αv-integrin and HER2 expression in human breast cancer 

brain metastases and test if they are expressed in the same tumor we immunostained four HER2-

positive (HER2+) human breast cancer brain metastases. All HER2+ brain metastases also 

expressed αv-integrin (Fig. 4.1 A,B). We next tested if non-transfected HER2+ human breast 

cancer cell lines (HCC1954 and SKBR3), that are known to successfully form tumors upon 

engraftment into the rat brain, co-express αv- and β3-integrin. Immunofluorescent staining 

demonstrated that αv-integrin and HER2 were localized on or near the cell membrane (Fig. 4.1 

C). Live cell flow cytometry confirmed the presence of HER2, αv- and β3-integrin on these cells 

(Fig. 4.1 D-I). As integrins are known to undergo rapid, carefully orchestrated intracellular 

recycling and we observed a subpopulation in both cell lines that appeared to be negative for β3-

integrin, we investigated if there was an intracellular pool of 3-integrin by flow cytometry of 

fixed and permeabilized cells (Fig. 4.1 J,K). Both cell lines showed a double peak for β3-integrin 

in fixed not permeabilized cells that shifted to a single, positive peak in the fixed and 

permeabilized cells, suggesting the presence of an intracellular pool of β3-integrin.  
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Figure 4.1. HER2, αv- and β3-integrin expression in human breast cancer brain metastasis 

and cell lines. Example image of αv-integrin (A) and HER2 (B) in breast cancer brain metastasis 

tissue. (C) Images from left to right depict typical patterns for αv-integrin, HER2, and their 

overlay in HCC1954 cells. (D-I) Representative flow cytometry fluorescence intensity plots 

demonstrating αv-, β3-integrin, and HER2 in live HCC1954 and SKBR3 cells. Dark grey: 

protein of interest; medium grey: secondary antibody only; light grey: unstained. (J,K) αv-

integrin (red), β3-integrin (blue), and HER2 (orange) in fixed not permeabilized (left) and fixed 

and permeabilized (right) HCC1954 (J) and SKBR3 cells (K).  

 

αv-integrin and HER2 physically interact in human breast cancer cell lines. 

 Integrins and GFRs interact and influence one another’s activation and function (265, 

294). We tested if αv-integrin and HER2 physically interact in human breast cancer cell lines by 

co-immunoprecipitation (co-IP) and proximity ligation assays (PLA). Under non-denaturing 

conditions, αv-integrin and β3-integrin co-precipitated with HER2 in three HER2+ breast cancer 

cell lines, while β3-integrin and HER co-precipitated with αv-integrin (Fig. 4.2 A). As αv-

integrin and β3-integrin failed to co-precipitate consistently we confirmed their association by 

immunofluorescent imaging using an anti-αvβ3-integrin antibody (Fig. 4.2 B). A second 

method, PLA, was used to further examination the interaction of αv-integrin and HER2 in 

HCC1954 and SKBR3 cells (Fig. 4.2 C,D). A red fluorescent signal, indicative of αv-integrin 

and HER2 within 40nm of each other, was observed in both cell lines. Representative images of 

a field of HCC1954 cells (Fig 4.2 C) and of optical sections of a single cell (Fig 4.2 D) are 

shown. The single cell images indicate that the protein interaction is restricted to on or near the 

cell membrane.  
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Figure 4.2. Physical interaction of αv-integrin and HER2 proteins in breast cancer cells. 

(A) Lysates from two non-transfected breast cancer cell lines (HCC1954 and SKBR3) and αv+, 

β3+, HER2+ MM2BH cells were incubated separately with antibodies against HER2 or αv-

integrin. Components of the immunocomplex precipitate were analyzed by western blotting. 

Lysate: whole cell lysate, IP: the immunoprecipated protein complex, IB: immunoblot. (B) Cell 

immunofluorescence demonstrating expression of the αvβ3-integrin heterodimer in HCC1954 

cells. (C) Proximity ligation assay (PLA) validating the close proximity of αv-integrin and 

HER2 in HCC1954 cells (red signal). (D) Close-up images of optical sections of HCC1954 cells 

demonstrating the peripherally localized red signal. 
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αv-integrin and HER2 are expressed on the leading edge and small membrane protrusions of 

human breast cancer cells. 

  Given the co-IP results and PLA signal localization, we investigated αv-integrin and 

HER2 localization by confocal and super resolution microscopy. In migrating cells, based on cell 

morphology (381), polarized αv-integrin and HER2 localization was observed (Fig. 4.3 A-D). At 

the leading edge (yellow asterisk), both proteins were present along the ruffled cell membrane. 

At the trailing edge (right side of image), αv-integrin clusters were present at the ends of actin 

bundles and on thin cell processes. HER2 expression was limited on the trailing edge. Super 

resolution microscopy showed αv-integrin on thin membrane processes and in clusters at the 

edge of thicker cell extensions (Fig. 4.3 E-H). HER2 was strongly expressed along the cell 

membrane and extending out on thin cell protrusions (Fig. 4.3 I-K). Multi-spectral super 

resolution microscopy demonstrated that while areas of co-localization occurred on the cell 

membrane and out along thin protrusions, distinct regions rich in each protein were present on or 

near the cell membrane, with αv-integrin clustered at/below the cell membrane and HER2 

densely localized on membrane protrusions (Fig. 4.3 L,M). Super resolution imaging of a 

HER2+ human breast cancer brain metastasis identified expression of αv-integrin and HER2 

localized on cell membranes (Fig. 4.3 N-Q). Evaluation of polarized cell membrane domains 

were not evaluated in the tissue sample as the areas of positive signal obtained were dense cell 

clusters.  
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Figure 4.3. Localized expression of αv-integrin and HER2 in breast cancer cells and human 

brain metastasis tissue. (A-D) Representative confocal microscopy images of αv-integrin, 

HER2, and f-actin in a polarized HCC1954 cell in vitro. Yellow asterisk: leading edge. Super 

resolution microscopy of αv-integrin (E) on cell membrane protrusions, (F) close-up of outlined 
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region in (E), and in (G) clusters on thicker membrane extensions, (H) close-up of outlined 

region in (G). (I,J) Super resolution microscopy of HER2 on the cell membrane and thin 

membrane protrusions, (K) close-up of outlined region in (J). (L,M) Localization of αv-integrin 

and HER2 by multi-spectral super resolution imaging in vitro. (N) Expression of αv-integrin in 

human breast cancer brain metastasis tissue by super resolution microscopy; (O) close-up of 

outlined region in (N). (P) Expression of HER2 in human breast cancer brain metastasis tissue by 

super resolution microscopy; (Q) close-up of outlined region in (P). 

 

Tetraspanin 29 (CD9) and focal adhesion kinase (FAK) may be involved in a multiprotein 

complex with αv-integrin and HER2 in breast cancer cells. 

Cell motility is a complex behavior essential for metastasis that is orchestrated by multi-

protein interactions on specialized membrane domains (381-383). Given the localization of αv-

integrin and HER2 we hypothesized they may be functional in cell motility. We next 

investigated what additional proteins may be involved in their interaction and function. Co-

immunoprecipitation experiments demonstrated that tetraspanin 29 (CD9) and focal adhesion 

kinase (FAK) precipitated with αv-integrin, β3-integrin and HER2 in HCC1954 and MM2BH 

cells (Fig. 4.4 A). CD9 can physical associated with integrins and with GFRs, while FAK is an 

intracellular signaling partner of integrins that induces cytoskeletal rearrangements for cell 

motility (384-392). CD9 localized to thin cell membrane protrusions, as demonstrated by super 

resolution microscopy (Fig. 4.2 B,C). Confocal imaging supported that CD9 is expressed on thin 

membrane protrusions, where its location overlapped in part with αv-integrin and HER2 (Fig. 

4.4 D,E). FAK expression co-localized near perfectly with αv-integrin in dense clusters on 

thicker cell membrane extension and in clusters at/below areas of cell membrane with strong 
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HER2 presence (Fig. 4.4 F, left and right images, respectively). Taking these results together, we 

propose a potential multiprotein signaling complex involved in cell motility, wherein stimulation 

by either or both integrin and GFR ligands could potentially impact this pro-metastatic cell 

behavior (Fig. 4.4 G). In preliminary support of this hypothesis, we observed ring-like clustering 

of phosphorylated FAK around αvβ3-integrin when cells were stimulated with epidermal growth 

factor (EGF) (Fig. 4.4 H). 
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Figure 4.4. Potential interaction of CD9 and FAK with αv-integrin and HER2 in human 

breast cancer cells. (A) Lysates from HCC1954 and MM2BH cells were incubated separately 
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with antibodies against HER2, αv-integrin, β3-integrin, or EGFR. Presence of CD9 and FAK in 

the immunocomplex precipitate were analyzed by western blotting. Crude lysate: whole cell 

lysate; IP: the immunoprecipated protein complex; IB: immunoblot. (B) Super resolution 

microscopy showing CD9 on cell membrane protrusions; (C) close-up of outlined region in (B). 

Confocal microscopy images from left to right depict typical staining patterns for (D) αv-

integrin, CD, and their overlay, and (E) HER2, CD, and their overlay in HCC1954 cells. (F) 

Representative confocal images of merged FAK (green) with αv-integrin (red) and merged FAK 

(red) with HER2 (green) in HCC1954 cells. White arrows: regions of overlap or close spatial 

association of FAK with αv-integrin and HER2. (G) Hypothesized multi-protein signaling 

complex. (H) HCC1954 cells were stimulated with EGF (1ng/mL) then fixed and 

immunostained. Images from left to right depict localized expression of phosphorylated FAK 

(tyr925), αvβ3-integrin, and their overlay. 

 

 

αv-integrin, β3-integrin and HER2 influence pro-metastatic cellular behaviors in brain tropic 

breast cancer cells. 

The human breast cancer cell line MDA-MB231BR, herein referred to as MM2BH cells, 

are brain tropic metastatic breast cancer cells transfected to overexpress HER2 (370). Utilizing 

this cell line, breast cancer cell clones with stable knockdown of αv-integrin or β3-integrin were 

created using shRNA vectors. As MM2BH cells heterogeneously express HER2 protein, each 

clone was examined for HER2 to identify clonal cell lines with different combinations of αv-

integrin, β3-integrin, and HER2 protein levels. 106 clones were evaluated, and a set of clones 

with relatively high or low expression of each protein was selected: (a) αv+H2+ (high αv-
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integrin, high HER2), (b) αv+H2- (high αv, low HER2), (c) αv-H2(a) (low αv, high HER2 clone 

1), (d) αv-H2(b) (low αv, high HER2 clone 2), (e) αv-H2- (low αv, low HER2), (f) β3+H2+ 

(high β3, high HER2), (g) β3+H2-(high β3, low HER2),  (h) β3-H2(a) (low β3, high HER2 

clone 1), (i) β3H2(b) (low β3, high HER2 clone 2), and (j) β3-H2- (low β3, low HER2). Figures 

4.5 A and B show representative immunoblots, while figures 4.5 C and D indicates protein levels 

quantified from three independent blots. Live cell flow cytometry confirmed a decrease in cell 

surface protein levels in the clonal cell lines (not pictured). 

 To assess the impact of αv-integrin, β3-integrin, and HER2 deficiency on in vitro 

migration and invasion of MM2BH cells, transwell migration and invasion assays were 

performed (Fig. 4.5 E-F). The αv-integrin and β3-integrin knockdown clones showed significant 

inhibition of motility compared to control cells (Fig 4.5 G,H). More than 82% and 77% lower 

migration and invasion was observed for αv-H2+(a) and for β3-H2+(a) cells, respectively (Fig. 

4.5 G,H; P<0.05). The most pronounced decrease in migration and invasion, more than 88% 

lower than control cells, was recorded for αv-H2- and β3-H2- cells (P<0.05). To determine 

whether altered protein expression affected cell proliferation, the growth of each clone was 

measured by a luminescence-based assay. The knockdown of αv-integrin inhibited cell growth 

by 72 hours, while knockdown of β3-integrin had minimal effects on cell proliferation compared 

to control  (Fig. 4.5 I,J). 
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Figure 4.5. Reduced levels of αv-, β3-integrin, and/or HER2 inhibit the migration and 

invasion of MM2BH cells. MM2BH breast cancer cells, previously transfected to overexpress 

HER2, were transduced with lentiviral shRNAs, scrambled or specific to αv-integrin or β3-

integrin, to create stable knockdown cell lines in combination with high or low HER2 protein. 

(A) Immunoblotting of protein expression in MM2BH lines with αv-integrin knockdown in 

combination with high or low HER2 expression. (B) Immunoblotting of protein expression in 

MM2BH lines with β3-integrin knockdown in combination with high or low HER2 expression. 

(C,D) Relative expression of αv-integrin, β3-integrin, and HER2 in MM2BH clones quantified 

by densitometry of immunoblots from three total cell lysates prepared at different culture 

passages. The band intensity was normalized to β-actin as a loading control. Error bars show 

SEM and *p<0.05 in comparison to control cells. (E,F) Transwell migration and invasion assay 

experimental set ups. 10% FBS media was used as chemoattractant. Cell migration was 

evaluated after 7-8h and invasion through the Matrigel matrix was continued for 60h. Cells 

attached on the bottom surface of the insert membranes were counted using ImageJ. (G,H) 

Quantified migration and invasion of clonal cells lines. N=3 mean±SEM, *p<0.05. (I,J) Cell 

proliferation was measured every 24h with the Cell-Titer Glo luminescence assay. The graph 

shows average fold increase from eight replicate wells from separate experiments. Data are 

presented as mean ± SEM, *p<0.05 in comparison to control cells. 
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Pharmacological inhibition of αvβ3-integrin with cilengitide decreases cell migration of brain 

tropic breast cancer cells. 

Results of protein knockdown studies suggested that αvβ3-integrin is involved in cell 

motility. To test if αvβ3-integrin-mediated cell migration could be blocked pharmacologically, 

we applied the small molecule αvβ3-integrin inhibitor cilengitide to MM2BH cells and 

quantified their motility over time in a scratch wound migration assay (Fig. 4.6) (282, 393). 

Increasing doses of cilengitide slowed and prevented wound closure over the course of 40 hours, 

while not having cytotoxic effects, as live cells were clearly visible at the experimental end 

point. A dose of 10 µg/mL cilengitide reduced cell migration more than 75% in multiple 

independent experiments. Melanomas are another cancer that frequently metastasize to the brain 

and display increased expression of αvβ3-integrin (394). A highly invasive melanoma cell line, 

A2058, was also treated with cilengitide and showed significantly decreased wound closure (not 

pictured). 
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Figure 4.6. Pharmacologic inhibition of αvβ3-integrin decreases cell migration in vitro. (A) 

αv+β3+HER2+ MM2BH cells were seeded into 96 well plates and scratch wounds were made 

per the EssenBioscience Scratch Wound protocol. The αvβ3-integrin inhibitor cilengitide was 

added immediately following wounding. Images were collected in the IncucyteZOOM every 2 

hours. Top row: raw images. Bottom 5 rows: A yellow cell mask and a blue wound mask were 

applied to example time-course images to demonstrate variable wound closure. (B) A 

representative graph of the average wound width across four wells is displayed; similar results 

were observed in three independent replicates and in a metastatic melanoma cell line. 
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Reduced expression αv- and β3-integrin alone and in combination with decreased HER2 

reduced the infiltrative phenotype of breast cancer xenografts in the rat brain. 

To evaluate the influence of αv-integrin, β3-integrin and HER2 protein expression on the 

proliferation and dispersal of breast cancer cells in the brain microenvironment we assessed the 

growth characteristics of MM2BH clones after intracerebral implantation in athymic nude rats. 

After 5 weeks of growth, xenograft tumor volumes were highly variable within each cell clone, 

with small and large tumors in each group. There was no difference in tumor volume between 

groups. Sections from αv+β3+H2+, αv-H2(a), αv-H2-, β3-H2(a), and β3-H2- brain tumors (Fig. 

4.7 A,B) showed markedly different patterns of brain infiltration at the tumor edge (arrows in B). 

Xenografts expressing both αv-, β3-integrin and HER2 had a central solid tumor mass 

surrounded by an extensive region of loosely tumor-infiltrated brain (Figure 4.7 AB, left panel, 

and Fig. 4.7 C). In contrast, the cells deficient in αv and HER2 displayed a compact tumor mass 

without, or with minimal, peripheral brain infiltration (Fig. 4.7 D). The single deficient αv-

knockdown clones and all β3-knockdown clones showed an intermediate phenotype. A blinded 

investigator quantified the percentage of tumor volume that was a solid mass versus the diffuse 

growth pattern (Fig. 4.7 E). In αv+β3+H2+ tumors, 57.2 ± 19.0% of the tumor was infiltrative, 

which was significantly different from the αv+H2- and αv-H2+(b) tumors. In the double 

deficient clone αv-H2-, infiltration was 5.8 ± 6.1% of the tumor mass, which was significantly 

less than all other groups (p<0.05). In the β3-H2+(a) clones a 8.1% ± 5.5% of the tumor was 

infiltrative. 

The invasive edge of tumor lost with decreased integrin and HER2 expression appeared 

to follow a vascular pattern. To further investigate this observation we immunostained 

αv+β3+H2+ xenograft tumor sections for CD31, a vascular marker (Fig. 4.7 F). GFP-positive 
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MM2BH cells were observed extending out along cerebral vasculature away from the tumor 

mass. As this phenotype was lost or very minimal in knockdown clonal cell line xenografts it 

could not be evaluated. The GFP positive cells appeared to remain within close proximity to the 

CD31 positive endothelium, so we questioned if the malignant cells were invading through the 

perivascular space. Immunostaining for astrocytic endfeet (aquaporin 4: AQP4), which delineate 

this anatomic region, demonstrated that brain-infiltrating breast cancer cells did indeed spread 

through the perivascular space (Fig. 4.7 G). The GFP positivity had variable levels of intensity in 

the MM2BH cells, making some cells difficult to visualize, so we co-stained for pan-cytokeratin 

(PanCK), proteins expressed in breast but not brain tissue, to ensure cells outside of the 

perivascular space were not missed. High magnification confocal microscopy depicted PanCK 

expressing breast cancer cells situated between tomato-lectin stained cerebral vasculature and 

AQP4-positive astrocyte endfeet. 

To further investigate the brain microenvironment of the invasive tumor edge, lost upon 

knockdown of integrins and HER2, we immunostained αv+β3+H2+ xenograft tumor sections for 

Iba1 and GFAP to label glial cells that are known to influence tumor progression in the CNS. 

Co-staining for Iba1, a marker for microglia and macrophages, revealed these phagocytic cells 

are abundant surrounding perivascular localized breast cancer cells (Fig. 4.7 H). Meanwhile, 

immunolabeling glial fibrillary acidic protein (GFAP), a protein present in astrocytes, 

demonstrated significant astrogliosis immediately around the tumor edge that tapers off into the 

brain around tumor (Fig. 4.8). Tumor cells could be visualized in a vascular pattern within the 

infiltrative tumor, surrounded by AQP4 positive astrocyte processes. 
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Figure 4.7. Reduced expression of αv- or β3- integrin with and without HER2 decreases 

infiltration of MM2BH cells through brain parenchyma in vivo. MM2BH clones were 

intracerebrally inoculated into the caudate putamen of athymic rats. Immunohistochemistry was 

completed with human mitochondrial antigen to mark tumor cells. (A) β3-integrin knockdown 

clone xenograft tumor phenotypes. (B) αv-integrin knockdown clone tumor xenograft 
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phenotypes. Arrows: infiltrative tumor. (C) Representative infiltrative edge of αv+β3+HER2+ 

tumors. (D) Representative dense edge of αv-HER2- tumors. (E) Quantification of infiltrative 

tumor in the clonal cell line xenografts; mean±SD , *p<0.05 compared to control. (F) Confocal 

image of the infiltrative edge of αv+β3+HER2+ tumors immunostained for CD31 to label 

vasculature. Tumor cells are GFP positive. (G) High magnification confocal image of the 

infiltrative edge of αv+β3+HER2+ tumors immunostained for AQP4 to delineate astrocyte 

endfeet, tomato lectin staining the endothelium, and PanCytokeratin (PanCK) to label breast 

cancer cells. Yellow arrows: tumor cells are within the perivascular space; asterisk: vascular 

lumen. (H) Confocal image of the infiltrative edge of αv+β3+HER2+ tumors immunostained for 

AQP4 and Iba1 to identify microglia and macrophages in relation to the tumor cells. Asterisk: 

vascular lumen. 
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Figure 4.8. Reactive brain microenvironment at the infiltrative edge of MM2BH tumors in 

rat brain. αv+β3+HER2+ tumors were immunostained for AQP4 and GFAP to label astrocytes 

and imaged on laser-scanning confocal microscope under 10x magnification. A representative 

image is shown. Tumor cells are GFP+. Bulk tumor is depicted at the top of the image, 

infiltrative tumor in the middle, showing individual cells or small clusters of cells invading into 

the brain in a vascular pattern, and brain around tumor at the bottom. (A-C) Close-ups of 

outlined regions. 
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Reactive glia within and surrounding breast cancer brain metastasis lesions express ligands 

known to active αvβ3-integrin and HER2 heterodimers. 

 As receptors on the cancer cells appeared to be involved in mediating cell motility and 

infiltration at the leading edge of the tumor, we questioned is reactive glia in this particular 

tumor microenvironment could produce ligands that active these receptors. We immunostained 

HCC1954 xenograft tumor sections for the following ligands: Neuregulin 1 (NRG1; also termed 

heregulin, HRG), Gal3, and heparin binding EGF (HB-EGF) (Fig. 4.9 A-F). These proteins are 

known to bind and activate HER2:HER3 and HER2:HER4 heterodimers, αvβ3-integrin, and 

HER2:EGFR heterodimers, respectively (276, 277, 279, 395-400). NRG1 co-localized primarily 

with GFAP+ cells (Fig. 4.9 A,D), Gal3 with ionized calcium-binding adapter molecular 1 (Iba1) 

positive cells (Fig. 4.9 B,E), and HB-EGF with GFAP+ cells (Fig. 4.9 C,F). Gal3 expression was 

confirmed in human breast cancer biopsy sections by immunohistochemistry, where it showed 

localization with both macrophage/microglia and astrocytes, per cell morphology (Fig. 4.9 G). In 

both the human tumor tissue and the rat xenograft, Gal3 was only expressed in glial cells in and 

immediately surrounding the tumor and not in cells more distant from the tumor (Fig. 4.9 H,I). 
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Figure 4.9. Co-localization of NRG1, Gal3, and HB-EGF with reactive glia in rat xenograft 

tumors and human breast cancer brain metastasis tissue. (A) HCC1954 xenograft tumor 

sections were immunostained for (A) HMT, NRG1, and GFAP, (B) HMT, Gal3, and Iba1, or (C) 

HMT, HB-EGF, and GFAP; (D-F) Close-ups of outlined regions with split channels and merged 

images of (A-C) are shown. (G) Example image of Gal 3 positivity in human breast cancer brain 

metastasis reactive glial cells, and (H) negative immunostaining in brain around tumor. (I) 

HCC1954 xenograft tumor immunostained for HMT, Gal3, and Iba1. Sparse tumor cells from 

the infiltrative tumor are seen at the bottom on the image. Moving up in the image displays brain 

at further distance from the tumor’s edge. Gal3 immunoreactivity was not observed in brain 

away from tumor. 

 

αvβ3-integrin and HER2 heterodimer ligands that are expressed in the metastatic tumor 

microenvironment increase tumorigenic characteristics of breast cancer cells in vitro. 

While NRG1, HB-EGF, and Gal3 have been reported in the literature to have numerous 

protumorigenic effects, we tested if some of these effects were maintained in breast cancer cell 

lines able to form tumors in the brain (276, 277, 279, 395-402). Stimulation of HCC1954 with 

Gal3, HB-EGF, and NRG1 all increased cell proliferation, as evidenced by increased cell 

confluence (Fig. 4.10 A-C). Similar effects were seen in SKBR3 cells (not pictured). We next 

aimed to test if stimulation with these factors caused a change in protein localization in the 

cancer cells, evaluated by cell immunofluorescence experiments. While no consistent or clear 

differences were observed in protein localization, a substantial change in cell morphology was 

seen in cells treated with Gal3 (Fig. 4.10 D). At 5 and 10 min post stimulation with Gal3, cells 

formed numerous lamellipodia (Fig.4.10 D, yellow arrows), which are cellular structures formed 
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at the initiation of migration (381, 403-405). Quantification of the number of cells per field of 

view that contained lamellipodia demonstrated that the vast majority of cells extended 

lamellipodia (Fig.4.10 E). Lastly, we explored if these ligands influenced the phosphorylation of 

proteins involved in cell motility. A representative western blot demonstrating minor increases in 

phosphorylation of FAK, extracellular-signal-related kinase (ERK), and glycogen synthase 

kinase (GSK)-3β is shown (Fig. 4.10 F).  

 
 
Figure 4.10. NRG1, HB-EGF, and Gal3 influence pro-tumorigenic cell behaviors in vitro. 

(A-C) Cell confluence assays tested in the IncuCyte. HCC1954 cells were seeded into 96-well 

plate at low density, treated with increasing concentrations of (A) Gal3, (B) HB-EGF, or (C) 

NRG1. Images were taken every 2 hours over the course of 3.5 days. (D) Example images of 

HCC1954 cells with no stimulation or 10 min post treatment with Gal-3. Yellow arrows: 

lamellipodia. (E) Quantification of the number of cells in each treatment group that had 

lamellipodia present. *p<0.001. (F) Western blot of phosphorylated proteins post HB-EGF, 

Gal3, or NRG1 stimulation.  
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Microglia produce and secrete pro-tumorigenic factors in vitro. 

 Our data thus far suggested that reactive glia in infiltrative tumor microenvironment 

express ligands that, when applied to breast cancer cells in vitro, increased cellular 

characteristics important for metastatic tumor growth. We next questioned if microglia cells, 

which co-localized with Gal3, secreted tumorigenic ligands in the presence of breast cancer cells. 

Using a modified boyden chamber migration assay, we tested if HCC1954 cell migration 

increased when BV2 microglial cells were present in the lower chamber. As both cell lines are 

adherent cells, any increase in migration would be due to soluble factors. Breast cancer cell 

migration significantly increased in the presence or BV2 cells, with or without pre-stimulation of 

the BV2 cells by lipopolysaccharide (LPS) (Fig. 4.11 A). Conditioned media from BV2 cells 

showed a trend toward increasing HCC1954 cell migration, but it was not statistically 

significant. Addition of cilengitide abolished the migratory stimulus of the BV2 cells. We next 

investigated what soluble factors could be present in the media that caused the increase in cell 

migration. Using an ELISA, we demonstrated that Gal3 was increased in media of BV2 cells co-

cultured with HCC1954 cells, compared to BV2 cells alone (Fig. 4.11 B). As HB-EGF and 

NRG1 co-localized with astrocytes, we did not assess their concentrations in this assay.  

Beyond NRG1, HB-EGF, and Gal3, numerous cytokines have been implicated in 

increased the migratory behaviors of metastatic cancer cells (7). In the tumor microenvironment 

it is likely that multi-factorial cellular behaviors such as cell migration and invasion will be 

dictated by a combination of factors. Thus, we performed a cytokine protein profiler on BV2 

media and media from BV2 cells co-cultured with HCC1954 cells, demonstrating increased 

levels of multiple cytokines in the co-culture condition compared to the BV2 cells alone (Fig.11 

C,D).  
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Figure 4.11. In vitro microglia increase the migration of human breast cancer cells, 

secreting Gal3 and multiple cytokines. (A) BV2 microglia cells were seeded into the bottom 

well of a modified boyden chamber assay. BV2 cells were allowed to adhere overnight, and 

several wells were treated with LPS to pre-stimulate the cells. HCC1954 breast cancer cells were 

seeded into the upper chamber alone, or with the integrin inhibitor cilengitide. After 48 hours the 
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number of cells that migrated through the porous membrane towards the BV2 cells were 

quantified. Replicates from 3 independent experiments were averaged. Insert: diagram of assay 

set-up. *p<0.05, **p<0.001. (B) Gal3 concentration was quantified in the media of BV2 cells 

culture alone or in combination with HCC1954 cells, as tested by ELISA. *p<0.05, **p<0.001. 

(C) Spot blots of a mouse cytokine protein array, incubated with media from BV2 cells or BV2 

cells co-cultured with HCC1954 cells. Numbers on the blot identify two replicate spots that 

indicate specific cytokines, listed to the left of the blot. (D) Quantification of blot intensity from 

two independent replicates of the example data depicted in (C). While no statistical differences 

were calculated as only two replicates were performed, blots from each replicate showed similar 

results. 
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Galectin-3 expression is reproduced in hematogenous metastases, and co-localized with both 

microglia and infiltrating macrophages. 

 We next aimed to test if the localization of Gal3 with Iba1+ cells could be replicated in a 

hematogenous metastasis model, which better mimics the biological growth of metastatic 

tumors. HCC1954 cells were infused in the right external carotid artery to seed the brain, rather 

than directly inoculated into brain tissue. Gal3 co-localized with Iba1+ cells in a rat 

hematogenous metastasis model tissue (Fig. 4.12 A).  

Iba1+ cells represent a mixed cell population that can include resident brain microglia 

and infiltrating bone marrow derived macrophages. We next investigated if Gal3 was expressed 

solely in one or both of these cell population utilizing a cell tracking technique. Molday IONs 

(MIRBs) are ironoxide nanoparticles coating in a highly cross-linked dextran coating conjugated 

to Texas red fluorophores. MIRBs were engineered specifically for their high propensity to be 

take-up by circulating monocytes. Intravenous injection of MIRB has been demonstrated to 

differentiate infiltrating macrophages from brain resident microglia in previous studies 

investigating CNS inflammatory lesions (406). We injected MIRB i.v. one day prior to 

HCC1954 tumor implantation, and after one week assessed the co-localization of MIRB, Gal3, 

and Iba1. Immunofluorescent imaging demonstrated the co-localization of all three signals 

around tumor lesions, indicating that Gal3 can be expressed by infiltrating macrophages (Fig. 

4.12 B, yellow arrows). Not all Iba1+Gal3+ cells co-stained for MIRB, suggesting that both 

macrophages and microglia likely produce Gal3 around breast cancer brain metastases, however 

technical limitations hindered our ability to decisively conclude the cell of origin. 
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Figure 4.12. Gal3 is expressed in brain around hematogenous metastases and co-localized 

with MIRB, suggesting expression in microglia and infiltrating macrophages. HCC1954 

hematogenous metastasis brain tissue sections were immunostained for pan-cytokeratin 

(PanCK), Gal3, and Iba1, demonstrating the phenotype of Gal3 expression is conserved across 

rodent tumor models. (B) Following i.v. injection of MIRB, HCC1954 cells were inoculated into 

the caudate putamen per standard xenograft model methods. After 7 days the brains were fixed, 

sectioned, and immunostained for Gal3 and Iba1 to assess co-localization with intracellular 

MIRB. Yellow arrows: clusters of cells positive for Gal3, Iba1, and MIRB. 
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Pharmacologically inhibiting Gal-3 had minimal effects on tumor growth and Gal-3 presence 

around breast cancer intracerebral xenografts. 

 Lastly, we questioned if inhibition of Gal-3 could decrease breast cancer xenograft brain 

tumor volume. A small pilot cohort of rats (n=10 total, 5 per group) received HCC1954 tumor 

inoculation into the caudate putamen and then were treated with intra peritoneal (i.p.) GCS-100, 

a Gal-3 inhibitor, on days 4, 6, and 8 (Fig. 4.13 A). Rats were euthanized on day 11, and brains 

were fixed, sectioned, and subject to immunohistochemical analysis for tumor volume and Gal3 

expression. No difference was seen in tumor volumes between the treatment groups (Fig. 4.13 

B). Example images of the tumors are displayed (Fig. 4.13 C). In both the control and treatment 

groups, tumors with large potentially necrotic cores were observed. No statistically significant 

difference was seen in the mean or max distance that Gal3 was expressed away from the tumor 

edge (Fig. 13 D,E). Representative immunofluorescent images of control and treatment tumors 

and their surrounding microenvironment are displayed (Fig. 13 F-I). Gal-3 signal is clearly 

visible in the brain immediately surrounding the PanCK+ tumor cells, where there is a high 

density of Iba1+ cells, in both control and treatment brains. 
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Figure 4.13. Inhibition of Gal3 with GCS-100 has minimal effect on intracerebral xenograft 

growth and their microenvironment. (A) Experimental design. (B) Tumor volumetrics from 

control and treatment arms. (C) Example images of tumors in the control and GCS-treated 

animals. (D,E) Distance of Gal3 expression away from the leading edge of the tumor quantified 

as the mean (D) and maximum (E) distances. (F,G) Representative immunofluorescent images 

of control (F) and GCS-100 treated (G) tumors immunolabeled for PanCK, Gal3, and Iba1. 

(H,I). Single channel images displaying only Gal3 and Iba1 staining in the merged images (F,G). 



	 212	

4.5. Discussion 

The diagnosis of brain metastasis is associated with extremely poor prognosis, yet current 

therapies are limited to radiation and surgical interventions and prevention strategies are 

restricted to whole brain radiation (407). Improving pharmacologic therapies would be extremely 

beneficial, but requires a better understanding of the unique biomolecular properties of brain-

trophic tumor cells and how they aid the metastatic cells in outgrowth in the unique brain 

microenvironment. A complete picture of how cancer cells thrive in the brain microenvironment 

remains unclear (373, 374, 408). 

 

Role of αvbeta3-integrin and HER2 breast cancer brain metastasis. 

Individually, HER2 and integrins are known factors in cancer metastasis. HER2 

accentuates the metastatic phenotype and brain organotropism in breast cancers, increasing brain 

metastasis in preclinical models (370) and in patients (371, 373). However, despite the 

prevalence of HER2 in brain metastases, anti-HER2 agents such as lapatinib and trastuzumab 

have not yet found a role in prevention or treatment of this disease (373). Similarly, αv-integrin 

and αvβ3-integrin have emerged as a negative diagnostic biomarkers (267-270). Targeting 

αvβ3-integrin has both therapeutic and preventive activity in preclinical models (282-284), but 

these benefits have not transferred to the clinical setting (285-287). 

In the current study we investigated the role of αvβ3-integrin and HER2 in breast cancer 

brain metastases, and how they may mediate microenvironment interactions in a pro-tumorigenic 

fashion. We demonstrated that αvβ3-integrin and HER2 can physically interact in human breast 

cancer cells, and that they are spatially associated with membrane protrusions, a potential linker 

protein CD9, and a functional kinase, FAK. Knockdown or pharmacological inhibition of these 
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proteins reduced cell motility in vitro. In vivo, cells with reduced αvβ3-integrin with or without 

HER2 had decreased infiltration into the brain through the perivascular space where they were in 

close proximity to reactive glia.  

Multiple reports document the presence of direct interactions between various integrins 

and members of the EGFR family, and suggest that interactions between these proteins may be 

important in metastatic cancers (271, 376). In breast cancer cells, α3β1 integrin regulates 

dimerization of HER2 to the active form (375), and β4-integrin enhances HER2 activity and 

stimulates mammary cell tumorigenesis (409). Additionally, α6β4 integrin interactions with 

HER2 resulting in increased cell motility and survival (378), and inhibition of this heterodimer 

blocks HER2 signaling and growth of orthotopic xenografts (410). We have now demonstrated 

that αvβ3-integrin and HER2 can also physically interact, and propose that their interaction may 

be involved in regulating cell motility. HER2 and integrins are both known to influence cell 

motility individually (271, 378, 411). 

When the invasive phenotype of these clonal populations was assessed in vivo, a gross 

morphological change was observed. It is important to assess cell motility in the brain 

microenvironment as it plays a crucial and multifactorial role in the progression and metastatic 

dispersal of tumor cells (408). In the xenograft breast cancer brain metastasis model, the tumor 

infiltrative growth phenotype was dependent on both integrin and HER2 expression. A more 

infiltrative phenotype would increase the difficulty of achieving full tumor resection in patients, 

increasing the likelihood of tumor recurrence. It is possible that dual inhibition of integrins and 

HER2 could alter tumor morphology to make them more resectable. Furthermore, the enhanced 

infiltrative nature of breast cancer cells with high integrin and HER2 expression placed them in 

close proximity to glia where they could potentially activate the glial cells to a tumor-supportive 
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phenotype. Modifying this phenotype could alter how metastatic tumor cells engage elements of 

the brain microenvironment to support tumor growth. These possibilities warrant further 

investigation. 

 

Role of the brain microenvironment in HER2-positive breast cancer brain metastatic outgrowth. 

 Components of the brain microenvironment play an essential role in the seeding and 

outgrowth of metastatic tumors in the brain, as was extensively reviewed in Chapter 1. However, 

out of the resident brain cells, microglia have been minimally studied in the context of breast 

cancer brain metastases. In other CNS tumors, such as glioblastoma, microglia are known to play 

critical functions in tumor development, growth, and treatment resistance (78, 130). One 

mechanism by which glial cells impact tumor growth is through the production and secretion of 

soluble factors able to activate oncogenic pathways in malignant cells. In the present study we 

investigated if reactive glia could produce and secrete factors able to influence metastatic breast 

cancer cells through integrins and HER2 heterodimers.  

 Here we report that several factors, Gal-3, NRG1, and HB-EGF are expressed in 

microglia and astrocytes in tumor xenografts, and in vitro increase metastatic phenotypes of 

culture human breast cancer cells. We focus in on one specific factor, Gal3. We identified Gal3 

expression in a hematogenous metastasis model and in human breast cancer brain metastasis 

tissue, to confirm this observation was unlikely to be an artifact of the xenograft tumor model. 

Furthermore, Gal-3 appeared to be expressed in both microglia and infiltrating macrophages 

from systemic circulation. Our co-culture experiments support that microglia can increase pro-

metastatic phenotypes in breast cancer cells, by stimulating an increase in their migration. This 

increased migration was abrogated in the presence of cilengitide, suggesting the soluble factor 
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released by the culture microglial cells the impacts breast cancer cell migration likely functioned 

through activating αvβ3-integrin. In accordance with this observation, we identified increased 

levels of Gal3 in the media of co-cultures compared to BV2 cells alone. Interestingly, BV2 cells 

appeared to have increased release of Gal-3 and cytokines only when co-cultures with the breast 

cancer cells, suggesting that the cancer cells first have to stimulate the microglia.  

When we pharmacologically inhibited Gal-3 with GCS-100 in a xenograft tumor model, 

we observed little to no effect on tumor growth patterns. In this experiment GCS-100 was 

delivered i.p., and the permeability of GCS-100 across the blood-brain barrier (BBB) is 

unknown. It is likely that given the inconsistent permeability of tumor vasculature, that the BBB 

inhibited drug delivery to the tumor. It is plausible that delivering GCS-100 with BBB disruption 

could enhance delivery and result in anti-tumor effects. As a significant body of scientific 

literature is now reporting Gal-3 as a druggable target in several metastatic cancers and GCS-100 

has a favorable side-effect profile in clinical trials, future investigations into the permeability of 

GCS-100 across the BBB and its efficacy when delivery is enhanced are merited (279, 412). 

  

Limitations and future directions. 

A limitation of this study is the use of a single brain-trophic cell line for many of the 

experiments, albeit multiple knockdown clones were used, and we evaluated both in vitro and in 

vivo growth characteristics. Additional studies are required to replicate the experiments in cell 

lines of different origin to confirm the findings. Additionally, many of the findings in this report 

are observational and hypothesis generating. 

Taken together, our findings highlight the complex interaction of integrin and HER2 

signaling on the plasma membrane of neoplastic breast cancer cells and the potential role of the 
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brain tumor microenvironment in promoting metastatic behaviors of invading breast cancer cells. 

Future studies are needed to further investigating the tumor-microenvironment cross talk. 

Specifically, follow-up work assessing the permeability of GCS-100 across the BBB and its 

effects after sufficient delivery into the tumor bed, which could be achieve with osmotic BBB 

disruption of focus ultrasound mediated BBB disruption, are warranted. The results of the 

cytokine protein array herein merit follow-up to assess effects of modulating individual 

cytokines that were upregulated when the BV2 cells were co-cultured with breast cancer cells. 

Several of the cytokines that were upregulated have known pro-tumorigenic effects in other CNS 

malignancies. Lastly, future work should address how the breast cancer cells stimulated the BV2 

cells to increase secretion of pro-metastatic factors. This information would provide a full 

mechanistic loop describing how invading breast cancer cells alter the brain microenvironment to 

become a niche where resident cells produce and secrete tumor promoting factors, and disrupting 

any point in this pro-metastatic cycle would present potential therapeutic targets. 
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CHAPTER 5: IMPROVING OUTCOMES FOR PATIENTS WITH FOR MALIGNANT 

BRAIN TUMORS – WHERE ARE WE NOW AND HOW DO WE PROGRESS? 

 

Current challenges hindering therapeutic improves for brain tumors.  

 Despite exciting preclinical therapeutic results, novel treatment strategies for malignant 

tumors in the CNS have largely failed to improve survival in the clinic. These failures include 

treatments that have shown clinical efficacy in systemic neoplasms, such as targeted therapeutics 

and immunotherapies. Why have these not worked in the CNS? Multiple factors contribute to 

these disappointing results including imperfect model systems for primary and metastatic brain 

tumors, extensive and multi-layered tumor heterogeneity, hindered drug delivery across the 

BBB/BTB, CNS toxicities, limited longitudinal tumor evaluation modalities, and an incomplete 

understanding of the unique brain tumor microenvironment. 

 In this dissertation I explored several of these limitations including tumor heterogeneity, 

modalities to improve CNS tumor evaluation, and tumor-microenvironment crosstalk. An 

improved appreciation for the impact that intra-tumoral heterogeneity has on assessing 

prognostic and predictive gene expression panels can advance methods to robustly compare 

tumors, identify clinically-meaningful cohorts, and potentially predict treatment sensitivity on an 

individual basis. Meanwhile, developing modalities to assess biological tumor properties in a 

non-invasive manner through imaging biomarkers will permit the evaluation of biological 

signatures across a whole tumor and over the course of treatment in each patient. Lastly, 

improving our basic knowledge of how tumors interact with their unique microenvironment to 

promote tumor growth will identify novel pathways that could provide therapeutic benefit in 
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CNS malignancies. Together, these studies deliver important information for the field, generate 

new hypotheses, and highlight the remaining gaps in our knowledge and research tools. 

 

Remaining problems and future directions. 

 1. Brain tumor models – A major limitation in brain tumor research, and thus in 

producing clinically-translatable findings, lies in the currently available model systems. Until 

recently nearly all murine models of CNS tumors have been developed in immunocompromised 

hosts (301, 413). While these models do provide essential tools in the study of brain tumors, they 

do not recapitulate the entire tumor microenvironment and prevent studies investigating the role 

of the systemic immune system in tumors. Syngeneic models for brain tumors are still highly 

limited, and advancements in this area are needed (414). Developing models that incorporate a 

fully intact immune system would permit more detailed investigations of immunotherapies, and 

perhaps help uncover why these therapies have shown limited efficacy in CNS tumors. 

Additionally, neither GBM nor metastatic tumors models perfectly mimic the biological 

properties of their human tumor counterparts. Many common GBM models that have been 

highly utilized in preclinical work do not display the characteristic infiltrative nature of human 

GBM, and thus, their microenvironment interactions may be dissimilar preventing research 

investigating the complex cellular cross-talk that dictates GBM growth. Recent developments of 

patient derived xenograft models of GBM, whereby tumor cells are transferred directly from 

animal to animal without culture outside of the brain, have generated tumors that display 

histologic features more similar to human GBM (415). Though, these tumors are grown in 

immunocompromised rodents. Models of breast cancer brain metastases present an even greater 

challenge, as a perfect model would include all elements of the metastatic cascade to most 
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accurately recapitulate the tumor microenvironment (301, 416). Unfortunately, spontaneous 

breast cancer tumor models are limited and even within these models the development of brain 

metastases is rare (417). Furthermore, as brain metastasis is often a late stage complication in 

cancer, metastatic lesions in other tissues prior to the brain cause the animal to deteriorate before 

biological modulation and treatment studies can be completed on brain lesions. Improved models 

that mimic human tumors as closely as possible are needed to permit studies on the biology of 

tumor-microenvironment interactions, understand the contribution of the systemic immune 

system to these tumors, and better assess the efficacy of novel therapeutics.  

 

 2. Diagnostic tests and biomarkers – a major clinical limitation in care for patients with 

brain tumors is a lack of optimal methods to evaluate and follow tumor progression over the 

course of treatment. As discussed in depth, current tumor evaluation methods include assessment 

of a small panel of prognostic genes/proteins in a random biopsy sample at the time of diagnosis 

and in some cases repeated at the time of tumor relapse. Meanwhile, MR imaging is the principal 

non-invasive modality used to assess tumors over time. Individually, these techniques provide a 

small window of information about the tumor. Improving larger prognostic and predictive 

signatures, and developing robust methods to evaluate these features over the whole tumor and 

across the time-span of treatment will be hugely beneficial. 

Imaging genomics presents a new research area with the potential to have a substantial 

impact on patient care by permitting non-invasive investigation of complex molecular features of 

tumors (61, 62, 418). Importantly, it will be necessary to confirm all potential biological patterns 

identified at the transcriptional level in protein panels and in prospective studies to develop 

validated, robust biomarkers. Developing imaging biomarkers could allow clinicians to follow 
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oncogenic pathways and immune reactions in tumors over time, which would help tailor 

individual treatments to address how each tumor is behaving at a specific point in time. 

Improved imaging metrics are also needed that clearly delineate tumor growth from treatment-

induced inflammation (e.g. differentiate between true tumor growth and radiographic 

pseudoprogression) (363); imaging biomarkers of specific inflammatory processes could provide 

a tool for this delineation. Ferumoxytol contrast enhanced imaging is currently being used to 

evaluate pseudoprogression in patients with GBM (419, 420). Performing imaging genomics 

studies of Ferumoxytol verses gadolinium contrast enhanced tumor regions could provide 

increased resolution of molecular tumor characteristics and merits future investigation. 

 

 3. Drug delivery to tumors behind the BBB/BTB – Drug delivery to brain tumors remains 

a considerable problem despite decades of research on the BBB/BTB and our ability to 

transiently open the barrier using multiple modalities in animals and humans. Unfortunately, in 

rodent tumor models the physical size of the vasculature and surgical ligations required to 

catheterize the external carotid artery for intra-arterial mannitol infusion limit experimental 

models to only one osmotic BBB disruption (BBBD) per animal, making this method not 

feasible for studies testing multiple dose regiments. In human trials, osmotic BBBD followed by 

intra-arterial infusions of chemotherapies has shown benefit in numerous patient cohorts (421-

423). Developing model systems that allow for multiple BBBD treatments would permit studies 

of drug efficacy in CNS tumors without the limitation of restricted passage across the BBB.  

 While decades of research and clinical use of osmotic BBBD have shown its safety in 

humans, recent work is demonstrating that BBBD elicits a sterile pro-inflammatory response in 

the brain that could be harnessed for anti-tumor effects. Similar to results from focused 
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ultrasound mediated BBBD (406), osmotic BBBD causes increased expression of inflammatory 

cytokines and activation of microglia and astrocytes in the brain (unpublished data). 

Transcriptomic profiling of brain tissue following osmotic BBBD suggests that the inflammatory 

response may polarize microglia/macrophages towards an M1 phenotype, and as such could 

serve as a novel technique to activate an anti-tumor immune microenvironment. The role of 

BBBD in not only increasing drug delivery to the brain, but also in altering the brain 

microenvironment to become a hostile niche for tumor growth warrants further research. 

 

Is attempting to improve outcome for brain tumors a futile effort? 

 Malignant brain tumors present an exceptionally challenging scientific and clinical 

problem as they are a highly complex, heterogeneous, multi-factorial set of diseases that will 

likely require personalized treatment for optimal patient outcomes. Developing a thorough 

understanding of the intricate biological, pathological, and physiological processes that promote 

tumor formation, growth, and treatment sensitivity will be paramount in moving the field 

forward, and will likely require a collaborative interdisciplinary approach. Optimistically, recent 

advances in numerous fields critical for studying brain tumors, including large scale data 

production, bioinformatics, data processing/analysis, neurobiology, immunology, oncology, 

radiology, and new rodent models, will make these remaining obstacles surmountable. 
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