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ABSTRACT 

Type 1 diabetes (T1D) is a chronic disease where the pancreas does not produce 

sufficient insulin. Exogenous insulin is required to be delivered. Over delivery of 

insulin can cause hypoglycemia, which can cause coma or death if not treated. Under 

delivery can cause hyperglycemia; long-term exposure can cause chronic health 

problems including neuropathy, retinopathy, and limb loss. The artificial pancreas 

(AP) is an automated technology for helping people with T1D control their glucose. 

A single-hormone (SH) AP consists of three main components: a glucose sensor that 

is inserted in the body, a control algorithm for calculating insulin infusion based on 

the glucose levels, and an insulin pump. A dual-hormone (DH) AP system includes a 

glucagon pump; glucagon stimulates endogenous glucose production. Exercise is 

challenging for people with T1D as it can cause hypoglycemia. Glucagon can help 

avoid exercise-induced hypoglycemia. In AP systems, the control algorithm is a 

critical component that affects how well glucose is managed including avoidance of 

hypoglycemia and hyperglycemia. Model predictive control (MPC) is a state-of-the-

art method for controlling glucose levels in people with T1D. There is currently not 

an adaptive MPC for single and dual-hormone AP control systems that can 

effectively handle exercise. 
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In this dissertation, I contributed the following. First, I developed a new virtual 

patient population (VPP) simulator that can be used to mathematically represent 

people with type 1 diabetes and can be used for in-silico simulations before a clinical 

trial. We compared the results of this VPP with patients with T1D under equivalent 

test conditions and found that the VPP behaved similarly to the patients. Second, I 

developed a SH- and a DH-MPC that appropriately model exercise. I assessed the 

importance of model complexity on controller performance for the SH-MPC. Both 

controllers were validated with real-world meal scenarios, and designed for fast 

action insulin delivery. I demonstrated the importance of including an exercise 

model within the MPC, showing that time in hypoglycemia could be reduced by 40 

minutes per day on average. Third, I have developed an adaptive algorithm to 

personalize insulin dosing after meals. The Adaptive Learning Postprandial 

Hypoglycemia-prevention Algorithm (ALPHA) was developed to reduce post-

prandial hypoglycemia. ALPHA reduced time in hypoglycemia from 1.92% to 

0.54%. Lastly, I developed an adaptive algorithm called the Insulin Sensitivity 

Adaptation (ISA) algorithm to personalize each patient’s insulin sensitivity model 

parameter within the MPC controllers. ISA reduced average glucose significantly to 

136.5 mg/dl from 140.2 mg/dl. 
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1 Introduction 

Type 1 diabetes (T1D), known as insulin-dependent diabetes, is an autoimmune 

disease which typically has onset in childhood or early adolescence. The 

autoimmune system suppresses the β-cell production of insulin. Without exogenous 

insulin delivery, glucose fails to get absorbed into cells and tissues for energy 

production, and the blood glucose becomes elevated. Elevated glucose levels are 

particularly problematic during mealtime where carbohydrates increase glucose 

levels.  

When glucose exceeds 180 mg/dl, hyperglycemia occurs, according to American 

Diabetes Association (ADA). On the other hand, when glucose utilization increases 

(e.g. during physical activity and exercise), glucose uptake of glucose within the 

body increases and blood glucose can drop sharply. It can be dangerous and even 

deadly if glucose levels should not drop below a minimum threshold. The ADA has 

identified a low boundary (70 mg/dl or 3.9 mmol/L), below which is defined as 

hypoglycemia. Severe health problems may occur if hypoglycemia remains [1].  

According to ADA, 1.25 million people with T1D live in the United States and 

approximately 40,000 people are diagnosed with T1D each year [2]. Because 

diabetes mellitus is the seventh leading cause of death in the US, with more than 
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252,000 death certificates in 2015 [3], it is essential to maintain glucose in the target 

range and reduce time spent in hyper- and hypoglycemia. If hyperglycemia remains 

untreated, people with T1D will be exposed to long-term complications such as 

kidney disease, nerve disease and blindness [4]-[5]. To treat hyperglycemia, 

exogenous insulin is infused; however; over-delivery of exogenous insulin may lead 

to hypoglycemia. If hypoglycemia remains untreated, even for a short period, 

diabetic coma may occur [1]. In general, symptoms of people with T1D are divided 

into two categories: acute and chronic. Acute symptoms of hypoglycemia occur 

instantaneously and are divided into adrenaline and neurological-based symptoms. 

Acute symptoms of hyperglycemia occur after several months to several years. Table 

I categorizes the symptoms of hyper- and hypoglycemia. 

Table I Symptoms of hyper/hypoglycemia 

Symptoms Hyperglycemia Hypoglycemia 

Acute 

1. Blurry vision 

2. Thirst 

3. Frequent urination 

Adrenaline based 

1. Shakily 

2. Nervousness 

3. Sweeting 

4. palpitation 

Neurological based 

1. Confusion 

2. Seizures 

3. Stroke-like 

coma 

Chronic 
1. Retinopathy 

2. Neuropathy 

3. Nephropathy 

1. Unawareness 

2. Lose adrenaline response 
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1.1 Diabetes Diagnosis and Treatment 

For pre-evaluating diabetes, the rate of glucose changes and the diabetic symptoms 

are examined. If frequent diabetic symptoms exist or the rate of glucose reduction in 

urine is significant, the likelihood of diabetes increases and three main tests will be 

performed for diagnosis.  

1- Fasting glucose test: glucose is measured before breakfast. If it exceeds 7 

mmol/L (126 mg/dl), diabetes mellitus may be present [6]. 

2- Oral glucose tolerance test: glucose is given orally and the glucose level is 

measured every 30 to 60 minutes up to 3 hours. If the glucose level exceeds 200 

mg/dl, diabetes mellitus may be present [6], [7].  

3- A1c test: average of glycated hemoglobin during the past 2-3 months is 

measured. If it exceeds 7%, likelihood of diabetes mellitus increases [8]. 

To determine the type of diabetes, a zinc transporter-8 autoantibody (ZnT8Ab) test is 

performed [9]. Zinc transporter-8 is a membrane protein of the pancreatic β-cells, 

which is an autoantigen in people with T1D. ZnT8Ab can be used as a marker to 

identify T1D [10].  

Diabetes treatment is generally divided into two categories: islet-cell transplantation 

and insulin therapy. Islet cell transplantation is a costly treatment where donor cells 

are transferred to patients resulting in higher production of endogenous insulin. 



 

4 

 

Although it shows significant improvements for patients with a history of 

neuropathy, it may not perform appropriately for patients under insulin therapy [11].  

Insulin therapy is a prevalent type of diabetes treatment where insulin is exogenously 

injected. Insulin therapy is divided into two modes: open loop and closed-loop. Open 

loop insulin therapy is also divided into two main categories based on the type and 

the quality of insulin. These categories are multiple daily insulin injection (MDI) and 

continuous subcutaneous insulin infusion (CSII).  

In MDI therapy, multiple blood glucose measurements are taken throughout the day 

using a lancing device to prick the finger to extract blood that is put into a glucose 

meter.  Both short-acting and long-acting insulin (e.g. Lantus, Levemir) with 

prolonged action of 24 hours are injected using a needle [12]. Because the absorption 

time (1-4 hours) and the time-to-maximum of peak effect (4-12 hours) of insulin in 

MDI therapy are high, management with MDI can be challenging.  CSII therapy is 

an alternative therapy whereby fast acting insulin is dosed continuously throughout 

the day to improve glucose management [12]-[13]. In CSII therapy, rapid-acting 

insulin (e.g. Humalog, Novolog) with faster absorption time (10-30 minutes) and 

shorter time-to-maximum of peak effect (0.5-3 hours) is infused via an insulin pump 

(e.g. Tandem t:slim, Insulet Omnipod, Medtronic) [13]. An insulin pump delivers a 

small amount of basal insulin continuously throughout the day pre-set by the patient. 
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The pump has the ability to alarm the user when insulin is not delivered or is 

discontinued. 

Many studies have shown improved glucose control with the CSII therapy compared 

to the MDI therapy [12], [14]-[15]. In the latest version of the CSII therapy, known 

as Sensor Augmented Pump therapy (SAP), a subcutaneously inserted glucose sensor 

(e.g. Dexcom, Medtronic) is mounted used for continuous glucose monitoring 

(CGM) [16] -[17]. Because CGM data are measured subcutaneously, they are less 

precise than the blood-based finger-stick measurements made by a glucose meter; 

however, SAP therapy has shown better clinical performance in terms of reduced 

time spent in hyper- and hypoglycemia [18]. If a CGM detects hypoglycemia, it 

prompts the users to shut down insulin infusion manually. The CGM enables patients 

to adjust basal insulin rates based on real-time glucose measurements and also be 

enabling patients to review prior CGM data.  

Notice that in MDI therapy long-acting basal insulin is injected multiple times per 

day whereas in CSII and SAP therapies, short-acting basal insulin is infused 

continuously throughout the day. For all therapies described above, extra insulin is 

dosed for meals; we call this meal bolus insulin. Bolus insulin is a larger amount of 

insulin delivered at the start, or some minutes before, a meal is consumed and is used 
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to lower carbohydrate-induced high glucose levels. The magnitude of administered 

bolus insulin is directly proportional to the amount of carbohydrate intake. 

While insulin pumps deliver a constant amount of insulin throughout the day, in 

closed-loop control, known as Artificial Pancreas (AP), basal insulin rate is updated 

continually based on the measured CGM. The sampling interval of the CGM data 

with advanced glucose sensors is 5 minutes, and the basal insulin rates are computed 

at each 5-minute time interval, enabling more rapid response to rapidly changing 

glucose levels. Generally, clinical studies have shown that AP systems result in 

better glycemic management compared with SAP therapy, especially during 

nighttime [19, 20]. If low glucose levels occur during sleep, AP systems reduce or 

turn off basal insulin delivery. In an advanced version of the SAP therapy called 

predictive low glucose suspend therapy (PLGS), insulin is suspended for impending 

hypoglycemia if glucose level reaches a threshold of 90 mg/dl [21].   

1.2 Clinical Metrics 

Seven clinical metrics have been proposed to evaluate the performance of the insulin 

therapy methods across patients. These clinical metrics are: 

1- Time spent in hypoglycemia: period of day that glucose levels are below 70 

mg/dl (%). 
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2- Time spent in hyperglycemia: period of day that glucose levels are above 180 

mg/dl (%). 

3- Time spent in euglycemia: period of day that glucose levels are between 70 

mg/dl and 180 mg/dl (%).  

4- Number of rescue carbs: When blood glucose drops below 70 mg/dl, a 20-

gram carbohydrate is given to patients and blood glucose is re-measured after 20 

minutes. If it is still less than 70 mg/dl, another 20-gram of carbs is given until no 

more hypoglycemia is observed. In this situation, when a rescue carb is given to 

patients, basal rates are turned down to 25% for 40 minutes. If the glucose level 

drops below 50 mg/dl, intravenous carbohydrates will be given to increase blood 

sugar faster [22].  

5- Average glucose level: the most desirable average glucose level for people 

with T1D is when it is less than 154 mg/dl per each 2-3 months. 

6- Glycated Hemoglobin, HbA1c, is another metric for evaluating diabetes 

mellitus. The concentration of HbA1c is measured every 8-12 weeks and is 

considered reasonable if it is less than 7% [23]-[24].  

7- Low Blood Glucose Index (LBGI): LBGI shows the risk of getting 

hypoglycemia. It considers the number of glucose levels less than 112 mg/dl.  

8- High Blood Glucose Index (HBGI): HBGI shows the risk of getting 

hyperglycemia. It considers the number of glucose levels greater than 112 mg/dl.     
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Although there is a positive correlation between LBGI and hypoglycemia and HBGI 

and hyperglycemia, LBGI and HBGI show the skewness of the distribution of 

glucose levels around 112 mg/dl. Whereas, time in hypoglycemia and hyperglycemia 

only show the amount of time spent below 70 mg/dl and above 180 mg/dl, 

respectively. Particularly, LBGI and HBGI indicate the probability of hypoglycemic 

and hyperglycemic episodes, respectively. Table II shows the ranges of the LBGI 

and HBGI during glucose control [25]. 

Table II Ranges of LBGI and HBGI 

Risk LBGI HBGI 

Minimal ≤ 1.1 ≤ 5.0 

Low > 1.1 - ≤ 2.5 > 5.0 - ≤ 10.0 

Medium > 2.5 - ≤ 5.0 > 10.0 - ≤ 15.0 

High > 5.0 > 15.0 

1.3 Background on AP systems                   

The Artificial Pancreas (AP) is an emerging technology which was developed 

initially in the 1970s. Albisser et al. [26] designed the first AP in 1974 and evaluated 

it across 3 subjects with T1D. In the first day of the experiment, subcutaneous insulin 

and measured meals were given to the subjects. On the second day, intravenous (IV) 
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insulin with the same pattern of meals were administered. Their control algorithm 

calculated the basal insulin rates based on the glucose concentrations and the rate of 

glucose changes.  

They found that IV insulin better managed glucose levels and reduced the time spent 

in hyperglycemia; however, the time spent in hypoglycemia was increased. A similar 

approach was performed by Mirouze et al. [27] in 1977. They designed a simple AP 

and evaluated it across 20 subjects with T1D. Their algorithm used both the current 

glucose level and the rate of change of glucose to estimate intravenous insulin 

injection. They found no severe hypoglycemic episodes; however, time spent in 

hypoglycemia was not negligible due to the frequent over-delivery of postprandial 

insulin doses. In the aforementioned AP systems, the apparatus for recording glucose 

and delivering intravenous insulin rates was bulky and not convenient. Furthermore, 

delivery of insulin directly into a vein is not practical and can be dangerous in real-

world situations. Various research groups have been working on new generations of 

the AP to improve glucose control and to miniaturize the system. Generally, AP 

systems consist of three main components: Insulin and glucagon pumps, CGM 

sensor and controller algorithm device (Figure 1.1) [28]. 

Insulin and glucagon pumps are electromechanical devices, which deliver basal 

insulin and glucagon subcutaneously. In dual-hormone APs, both pumps are active; 



 

10 

 

whereas, in the single-hormone AP, insulin is the only hormone for glucose 

regulation. Glucagon is an alternative to rescue carbs for increasing glucose level. It 

is delivered when low glucose levels are observed. Lack of glucagon causes people 

with T1D to be vulnerable to hypoglycemia [29].  

CGM sensor consists of a glucose sensor, a transmitter and a receiver to measure 

interstitial glucose level. The transmitter sends the glucose readings to the receiver 

wirelessly, and the receiver displays and stores the data. CGM sensor can measure 

glucose every 5 minutes and provide more data than the conventional finger-stick 

approach. The only disadvantage of the CGM data is that they are not as accurate as 

the finger-stick measurements and are prone to measurement noises. This 

measurement noise is random at each time-point and its highest magnitude is 15% 

from the capillary glucose level [30]. 

The controller algorithm runs on a smart phone.  The smart phone uses Bluetooth 

Low Energy (BTLE) to wirelessly receive the CGM data and calculate the basal 

insulin doses. Then, it sends the insulin dose to the pumps [31]-[32]. In some APs, 

the CGM requires calibration by a glucose meter, which measures capillary blood 

glucose [33].  
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Figure 1.1 Hardware components of the OHSU dual-hormone AP 

The accurate functionality of all the components in an AP is important. The control 

algorithm or controller is a critical component of the AP role maintaining good 

glucose management. If the controller misestimates basal rates, frequent hypo- and 

hyperglycemic episodes will occur.  

The general schematic of a control system is depicted in Figure 1.2. It consists of 

three components. The plant is the controllable system. In diabetes glucose 

management control system, the plant is either the patient’s body or a virtual patient 

during in-silico simulations. In this dissertation, all the results and methods were 
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evaluated during in-silico simulations using the virtual patient population. The 

second component of a control system is the controller that considers the error 

between the control target level and the processed output received from the feedback 

component.  

In diabetes glucose management control systems, the output of the plant is glucose 

level and the output of the controller (or input to the plant) is insulin and optionally 

glucagon for dual-hormone control systems. The feedback component processes the 

output before it is used in the controller. In some studies, the feedback component is 

a low-pass filter for de-noising the output. Subcutaneous glucose measurements 

include noise and so filtering is oftentimes required prior to use within a controller.  

There are three popular controllers that have been designed for AP systems: model 

predictive control (MPC), proportional integral derivative (PID) controller and fuzzy 

logic controllers. 

 

Figure 1.2 General schematic of control systems 
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1.4 MPC-based APs 

Model Predictive Control uses a mathematical model to predict glucose levels over a 

prediction horizon and then calculates the optimum basal insulin/glucagon rates over 

the control horizon by minimizing the error between the projected target trajectory 

and the predicted values. This mathematical model (known as glucoregulatory 

model) describes the relationship between carbohydrate consumption, insulin, 

glucagon and glucose. Models that are more accurate can yield better glucose 

control. Single- and dual-hormone MPCs can be designed and are presented below. 

1.4.1 Single-Hormone MPC  

The first use of an MPC within an AP system was published by Parker et al. [34] in 

1999. They used a linearized nineteenth-order mathematical model within the 

controller. In the first implementation of the MPC (standard MPC), they used a step-

response function for relating insulin to glucose. The coefficients of the function 

were determined by an identified impulse response of the model [34]. In the second 

implementation, they used state-space representation of the mathematical model 

(MPC/SE). The control horizon was set to 10 minutes for both implementations. The 

prediction horizon was 40 and 50 minutes for the standard MPC and the MPC/SE, 

respectively. They compared the performance of these two implementations with a 

50-gram oral glucose tolerance test in one diabetic patient. Their finding showed that 
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MPC/SE had a tighter glucose control along with a higher time spent in euglycemia 

compared to the standard MPC [34].  

In the year 2000, Kan et al. [35] compared the performance of a single-hormone 

MPC with a Proportional Derivative (PD) controller on 11 diabetic dogs. They used 

a STG-22 glucose sensor to monitor venous blood glucose levels. The sampling 

interval of the glucose sensor was 10 seconds. And, the controller calculated the 

intravenously injected basal insulin rate every 2 minutes [35]. When glucose fell 

below a target level (100 mg/dl), an intravenous glucose was injected to prevent 

hypoglycemia. In their MPC controller, the control and the prediction horizons were 

set to 10 seconds and 15 minutes, respectively. They found that the mean insulin 

infusion rate was significantly lower with the MPC compared to the PD.               

In 2004, Hovorka et al. [36] designed a non-linear MPC algorithm. They used eight 

differential equations to represent the MPC’s model and defined a 4-hour prediction 

horizon. They tested the MPC algorithm across 10 subjects with T1D for 8-10 hours 

during nighttime where no meals were given. The sampling interval for measuring 

glucose concentration and delivering insulin was 15 minutes. They found no 

overnight hypoglycemic episodes.  

The following studies from the same research group utilized this MPC algorithm for 

glucose control. Hovorka et al. [37] examined the feasibility of their MPC controller 
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across 19 young people with T1D. They designed three randomized therapies 

starting form CSII therapy over all studies and then switched to three different 

closed-loop (CL) therapies. At one CL study (Arm_1), glucose levels were 

controlled overnight (from 20:00 to 8:00). At the other CL study (Arm_2), glucose 

levels were controlled when subjects had both slowly-and rapidly- absorbed large 

meals. At the last CL study (Arm_03), subjects had a 45-gram meal at 16:00 

followed by a 45-minute aerobic exercise bout on a treadmill with 55% PVO2max at 

18:00. Glucose levels were controlled by the CSII therapy, and CL system from 

20:00 to 8:00.  

Although there was no significant difference between the performances of the above 

arms, overnight time spent in hypoglycemia was significantly less with the CL 

systems compared to the CSII therapy. Elleri et al. [38] assessed the effect of low 

glucose suspend during overnight closed-loop control across seven young subjects 

with T1D. Insulin delivery was suspended if either glucose levels fell less than a low 

glucose threshold or predicted glucose levels were less than a hypoglycemia 

threshold or the rate of the glucose drop was rapid [38]. Insulin delivery was 

suspended 3 hours on average across subjects. In addition, plasma glucose levels 

increased at 0.01 mmol/L/min for 105 minutes after the suspension.  
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Kumareswaran et al. [39] examined the efficacy of overnight CL control across 17 

adolescents and 24 adults with T1D. Each group underwent CL control or CSII 

therapy resulting in four randomized crossover studies. The adolescents had an 

evening meal followed by a 40-minutes moderate aerobic exercise. Adults had either 

60-grams or 100-gram of carbs followed by a glass of white wine. They found that 

the average time in euglycemia increased significantly across both groups with the 

CL control compared to the CSII therapy. The CL control reduced average time 

spent in hypoglycemia across both groups.  

Elleri et al. [40] investigated the effect of CL initiation time on glucose regulation 

across eight children with T1D in an overnight study. Subjects had a meal in the 

evening followed by a snack three hours afterwards. The closed loop control started 

on two occasions (18:00 or 21:00). They found similar results between these two CL 

control strategies. Finally, Hovorka et al. [41] evaluated the feasibility and efficacy 

of the MPC-based CL control in an overnight study across 16 adolescents with T1D. 

Glucose levels were controlled through SAP therapy during daytime whereas either 

CL control or SAP therapy were used during nighttime from 23:00 to 7:00. They 

found that mean glucose level and time spent in euglycemia were improved 

significantly with the CL control.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kumareswaran%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22226252
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Later, in 2007, Magni et al. [42] designed two MPC algorithms (one non-linear and 

one linear) by using a more complex MPC’s model defined by differential equations. 

They tested their MPC algorithms versus a PID controller during in-silico 

simulations. The prediction horizon for both MPC algorithms was 4 hours. They 

found that the non-linear MPC algorithm outperformed the linear one, and hence, did 

not provide the results of the linear MPC in their paper. Generally, the non-linear 

MPC performed more appropriately in term of smaller maximum postprandial 

glucose peaks and smaller minimum glucose level during the nighttime, compared to 

the PID controller.  

Then, in 2009, Magni et al. [43] designed another MPC algorithm with a different 

model structure. They used the autoregressive with exogenous input (ARX) model to 

represent the MPC’s model. In addition, they individualized their algorithm by 

tuning one parameter to determine the aggressiveness of glucose regulation based on 

a run-2-run control. In the run-2-run control, the performance of the controller was 

analyzed on any given day in order to modify the parameters of the controller for the 

following day. Their MPC algorithm was tested with a 100 virtual patient population 

generated in the University of Padova’s (UVa). 

They found that the majority of the postprandial glucose peaks across the virtual 

patients were below 180 mg/dl. In another study by Magni et al. [44], the non-linear 
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MPC defined by the differential equations was compared to the enhanced linear 

MPC. In the enhanced linear MPC, the model was determined by AR-modeling of 

the full model defined by the differential equations. Likewise, they found that the 

non-linear MPC outperformed the enhanced linear MPC, and time spent in 

hyperglycemia was fewer with the non-linear MPC. For both MPC algorithms, time 

spent in hypoglycemia was zero.  

Later, in 2014, Del Favero et al. [45] were the pioneers for evaluating their 

developed model predictive control algorithm. They tested their algorithm across six 

people with T1D. Each subject underwent a 42-hr study and their glucose levels 

were controlled by SAP in the first 14-hr of the study (at the first night) and by the 

AP in the remaining 28hr of the study. Results showed a significant improvement for 

time in euglycemia with the AP compared to the SAP during nighttime. In addition, 

overnight hypoglycemia significantly reduced to 0% with AP compared to 8.2% with 

the SAP.        

In 2010, Grosman et al. [46]  designed a Zone model predictive control (Zone-MPC) 

algorithm. The Zone-MPC was created based on an ARX model. And it was 

developed to maintain the coefficient of variation of the glucose (CV =  


µ
 , : 

standard deviation, µ: mean) within acceptable boundaries. In the zone-MPC, at each 

control-time interval (i.e. 5 minutes), predicted glucose levels and the CV for three 
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regions were computed. The regions included the samples below the lower boundary, 

between lower and upper boundary and above the upper boundary. CV values were 

used to adjust the cost function to obtain more appropriate insulin doses by reducing 

the number of predicted samples outside of the desired boundary.  

Grosman et al. [46] compared the performance of the Zone-MPC with the 

conventional open-loop therapy during in-silico simulations across 10 UVa virtual 

patients. They also investigated the performance of the Zone-MPC with announced 

and unannounced meals. When a meal was announced to the controller, the 

controller delivered the bolus insulin. They found that Zone-MPC outperformed the 

open-loop therapy during the both meal strategies. In addition, when meals were 

announced, time spent in euglycemia substantially increased whereas, time spent in 

hypoglycemia worsened.  

In another study by the same research group, Forlenza et al. [47] used the zone-MPC 

across 19 adults with T1D and compared its performance with the SAP therapy. 

They found that the time spent in euglycemia and hypoglycemia significantly 

improved with the CL therapy during both overnight and all-day periods. Dassau et 

al. [48] evaluated their developed MPC algorithm, designed by Parker et al. [34] in 

1999,  across 17 subjects with T1D. In addition, they investigated the effect of 

various glucose levels at the start of the CL control (84 to 251 mg/dl). In this 
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scenario, a small-unannounced meal was given to all subjects. They found that the 

low and high glucose indices (LBGI and HBGI) were 0.34 and 0.51 respectively; and 

the time spent in euglycemia was 70%.  

Boiroux et al. [4] designed an individualized MPC algorithm using a less complex 

model and tested it against a more complex plant. They used a priori information of 

the patient such as basal insulin, insulin sensitivity factor and insulin action time to 

create a personalized model. They used eight differential equations reported in 

Hovorka et al. [36]. And, they proposed a second order approximation of the 

Hovorka’s model by using an autoregressive moving average model with exogenous 

input (ARIMAX). This was done to maintain a less complex model in the MPC 

algorithm. 

 The AR and the MA components were related to glucose and insulin levels 

respectively, and the exogenous input was referred to sensor noise and artifacts. The 

order of the AR, the MA and the sensor noise were 2, 2 and 3 respectively. The 

prediction and the control horizon in this study were set to 10 hours. They created 

100 virtual patients for the in-silico simulations. They also changed the insulin 

sensitivity factor of the controller by ±30% at the midnight to move the system 

towards more extreme conditions. During the overnight simulations, they found no 

hypoglycemic episodes by reducing the insulin sensitivity factor. However, time 
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spent in hyperglycemia significantly increased. In addition, they tested their 

developed controller across 1 subject with T1D and found few hypoglycemic 

episodes.  

In this dissertation in chapter 5, I show how my work has extended the above work 

in that I have developed [49] evaluated the feasibility of a new exercise-enabled 

single-hormone MPC algorithm during in-silico simulations. In this work, I varied 

the complexity of the MPC’s model and tested the different complexity models 

against a more complex plant. I combined simpler insulin kinetics, insulin dynamics 

and glucose kinetics models to create simpler glucoregulatory models for the MPC’s 

model. I proposed four different models and tested them across 163 virtual patients. 

The glucoregulatory model used as the plant was derived from Hovorka et al. [36]. I 

found that the rising and settling time decreases with more complex MPC models. In 

addition, time spent in euglycemia and hyperglycemia was improved with models 

that were more complex. I also simulated the effect of 45-minutes aerobic exercise 

by integrating an exercise model into the MPC model and I found that the time spent 

in hypoglycemia was reduced by approximately 40 min by including this model.  

1.4.2 Dual-Hormone MPC 

Batora et al. [50] designed a switchable model predictive controller. They modeled 

insulin and glucagon responses reported by Hovorka et al. [36] and Herrero et al. 
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[51] with two separate ARMAX models, similar to the study done by Boiroux et al. 

[4] with the insulin-only model. Then, they designed the dual-hormone MPC with 

two separate single-hormone MPCs. For glucose levels above 90 mg/dl the insulin-

only MPC was controlling glucose levels. When glucose dropped below 90 mg/dl, 

the glucagon-only MPC was activated. They compared the performance of this dual-

hormone MPC with another dual-hormone controller where insulin and glucagon 

were computed using the insulin-only MPC and a glucagon-only PD controller, 

respectively. They used 3 subjects with T1D and found that time spent in 

hypoglycemia and euglycemia worsened with the dual-hormone MPC. However, the 

glucagon dosages were substantially smaller. 

 In this dissertation in chapter 4, I describe how we [52] evaluated the performance 

of our single-hormone and dual-hormone MPC algorithms across virtual patients. In 

the dual-hormone controller, unlike the prior dual-hormone MPC designs, glucagon 

and insulin could be delivered simultaneously. We also incorporated the effect of 

exercise into the controller and found that time spent in hypoglycemia reduced 

significantly with the dual-hormone MPC compared to the single-hormone MPC. In 

addition, we found that adding the model of exercise into the MPC could prevent 

exercise-induced hypoglycemia substantially.   

1.4.3 Summary of MPC-based APs 
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Parker et al. [34], in 1999, published the first SH-MPC for AP using a nineteenth-

order mathematical model, and he linearized the nonlinearities in the model. 

Kan et al. [35], in 2000, designed a SH-MPC for intravenous insulin injection. 

Hovorka et al. [36], in 2004, designed a non-linear SH-MPC with sampling intervals 

of 15 minutes using eight differential equations. They have been testing the 

controller only during overnight trials. 

Magni et al. [42], in 2007, designed a non-linear and a linear SH-MPC using a 

thirteen-order mathematical model. He found that nonlinear SH-MPC outperformed 

the linear SH-MPC without publishing the results of the latter. He, later in 2009, 

developed another MPC by using an autoregressive model [43].  

Grosman et al. [46], in 2010, designed a Zone MPC using an autoregressive model 

which was followed by Boiroux et al. [4] in 2012.  

In this dissertation, I have developed a SH-MPC [49] that is: 

 Designed with a less complex model – specifically, a fifth-order 

mathematical model. 

 Linearized and updated at each time point based on the latest states of the 

mathematical model. 
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 Compatible for subcutaneous insulin delivery since the mathematical models 

are designed for subcutaneously injected insulin. 

 Designed based on the mathematical models defined by differential equations 

rather than autoregressive models. This approach enables us to interpret the 

parameters of the model more appropriately.  

Batora et al. [50], in 2014, designed a switching DH-MPC which functioned like two 

separate SH-MPC designs. They used an autoregressive moving average model to 

model the relationship between glucose levels, insulin and glucagon. When glucose 

levels were above 90 mg/dl, insulin-only SH-MPC was controlling the glucose 

levels. When they fell below 90 mg/dl, glucagon-only SH-MPC governed the 

system. In this dissertation, I designed a DH-MPC where glucagon and insulin could 

manage glucose levels simultaneously [52].  

1.5 PID-based APs 

Proportional Integral Derivative (PID) controllers calculate insulin and optionally 

glucagon rates based on the current and past glucose measurements. A PID consists 

of three components: proportional, derivative and integral components. The 

proportional component takes the deviation of the current glucose level from the 

target glucose level (also known as the control error function) into consideration. The 

derivative component takes the rate of change of the error function into account, and 
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the integral component considers the area under the error curve resulting from the 

deviation of the prior data relative to the target value. In the PID controllers, the 

derivative component decreases overshoots, increases steady-state oscillations and 

decreases rising time. On the other hand, the integral component reduces the steady-

state error, decreases rising time and increases overshoot. As a result, the integral 

component of the PID controller may cause an over-delivery of insulin and 

hypoglycemia may occur [53]. Therefore, some studies preferred to design PD 

controllers for T1D.  

1.5.1 Single-Hormone PID 

Shimoda et al. [54] investigated the effect of 3 different insulin delivery methods: 

intravenous regular insulin (IV insulin), subcutaneously injected regular insulin and 

insulin Lispro. A PD controller was used for insulin delivery across all methods. 

They found that the performance of the system with the insulin Lispro was similar to 

the IV insulin. In addition, they found that the postprandial hypoglycemia was less 

with the insulin Lispro compared to the regular insulin [53], [54].  

Matsuo et al. [55] designed a closed-loop PD controller and investigated the effect of 

injecting Lispro insulin subcutaneously and intraperitoneally on 10 diabetic dogs. 

They gave an oral glucose tablet of 2 grams/kg to the dogs and observed the 

postprandial glucose excursions. They found that glucose levels were controlled 
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more appropriately by injecting insulin intraperitoneally, where no hypoglycemic 

episodes were observed.  

O’Grady et al. [56] designed a PID controller-based Closed Loop (CL) system and 

tested it across eight subjects with T1D for 16 overnight trials (from 21:00 to 7:00).  

The performance of the CL controller was also compared with the SAP therapy. 

They found that the time spent in euglycemia and hypoglycemia improved 

significantly with the CL system compared to the SAP therapy. Steil et al. [57] 

examined the feasibility of a PID-based CL controller compared to a SAP therapy 

across 10 subjects with T1D. In the PID controller, the proportional and derivative 

components were defined similarly to the other PD components in the literature; 

whereas, the integral component only took the current and the latest glucose level 

into consideration. No difference was found between the two therapies in terms of 

the mean glucose level and the hypoglycemic episodes, while time spent in 

euglycemia was significantly higher with CL therapy.  

In another study by this group, Weinzimer et al. [58] compared the performance of 

the above PID controller (called fully closed-loop: FCL), developed by Steil et al. 

[57], with a modified version. In the modified version (called Hybrid closed-loop: 

HCL), 25-50% of the meal bolus insulin was given 15 minutes in advance of each 

meal. They examined the FCL and the HCL across 17 pediatric subjects with T1D. 
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They found that the mean glucose level during night- and daytimes was 

insignificantly less with the HCL. However, daytime mean glucose level was 

significantly smaller with the HCL. They also found no significant difference 

between the FCL and the HCL during overnight control.  

Van Bon et al. [59] investigated the feasibility of a 48-hr dual-hormone closed-loop 

therapy versus a 48-hr SAP therapy across 11 people with T1D. They used a PD 

controller. Insulin delivery was personalized relative to the insulin sensitivity factor 

of the subjects. Insulin sensitivity factor was reduced and raised if changes of 

postprandial glucose levels exceeded 5 mmol/L (90 mg/dl) or fell below 3.5 mmol/L 

(63 mg/dl), respectively [59]. Small amount of glucagon (less than 1 mg to treat 

severe hypoglycemia) was administered if glucose was less than 6.5 mmol/L (117 

mg/dl). Time spent in euglycemia and hyperglycemia was similar between the two 

therapies however, time spent in hypoglycemia was improved at the second day of 

the experiment with the CL therapy.  

1.5.2 Dual-Hormone PID 

Castle et al. [60] compared the performance of a dual-hormone CL control with a 

CSII therapy. They also examined the effect of delivering high-glucagon versus low-

glucagon dosages. Seven subjects received the high glucagon dosages and six 

subjects received the low glucagon dosages, both under the CL trial. The dual-
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hormone controller, designed by Gopakumaran et al. [61], consisted of a PD 

controller to calculate insulin and glucagon delivery rates. Insulin was given if both 

proportional and derivative errors were positive. And glucagon dosages were called 

if they were negative.  

For calculating more accurate insulin and glucagon rates in the controller, fading 

memory of past glucose levels were used such that most recent glucose levels had 

more influence to change the delivery rates. Castle et al. [60] named the controller as 

fading memory proportional derivative (FMPD) controller. They found that the time 

spent in hypoglycemia significantly reduced with the CL trial compared to the CSII 

therapy. However, this reduction was not significant between the CSII and the CL 

trial with the low glucagon dosages approach. 

Jacobs et al. [22] designed an improved version of the FMPD controller. In the 

controller, glucagon was delivered relative to the proportional and derivative errors, 

independent of their signs. For better glucose management, the controller filtered 

insulin and glucagon delivery rates through a few decision tree algorithms to prevent 

hypoglycemia and hyperglycemia. In addition, the improved FMPD controller 

consisted of validated strategies for managing meals and safety mechanism. It also 

adjusted nighttime target glucose differently to prevent overnight hypo and 

hyperglycemia. 
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Jacobs et al. [22] evaluated the controller across eight subjects with T1D in an 

inpatient trial using the Dexcom 7+ CGM sensor. They found that the average time 

spent in euglycemia was 73.1% along with 5 hypoglycemic episodes. In another 

study by Jacobs et al. [22], glucose levels of 5 subjects with T1D were managed 

using another CGM sensor (Dexcom G4) and no hypoglycemia was observed.  

1.5.3 Mixed PID and MPC Controllers 

El-Khatib et al. [62] examined the efficacy of a dual-hormone AP across 4 diabetic 

pigs. They conducted 11 experiments on the pigs. Insulin and glucagon infusion rates 

were computed by a MPC and a PD controller, respectively [33], [62]. They found 

no hypoglycemic episodes. Moreover, the average percent of time spent in 

euglycemia was 74%. Later, Haidar et al. [63] evaluated the dual-hormone AP across 

15 adults with T1D in a randomized crossover study. Each subject underwent either 

a CL control or a CSII therapy at each trial. Each trial lasted for 15 hours including a 

30-minutes aerobic exercise bout at 60% PVO2max followed by a medium-sized meal 

(60 g for females and 80 g for males). They found that the percent time spent in 

euglycemia improved significantly with CL control, and only one subject had 

hypoglycemic episodes compared to eight subjects with the CSII therapy.  

Haidar et al. [19] compared the performance of the dual-hormone AP with the single 

hormone AP and the SAP therapy. Each study lasted 24 hours and was selected 
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randomly by the subjects. In the single-hormone AP, inulin was delivered based on a 

predictive dosing algorithm. In the dual-hormone AP, glucagon was delivered 

relative to glucose concentration and the rate of glucose changes. In the SAP therapy, 

insulin was pre-programmed and delivered based on the prior glucose profile of each 

subject. They found no significant difference across the dual and single hormone 

APs, while both APs significantly outperformed the SAP therapy. In addition, the 

number of hypoglycemic episodes was significantly lower with the APs compared to 

the SAP. 

1.5.4 Summary of the PID-based APs 

Single-hormone PID controllers have been designed since 1997 by Shimoda (1997), 

Matsuo (2003), Steil (2006), Weinzimer (2008), O’Grady (2012), and Van Bon 

(2014) [54-59]. Gopakumaran et al. [61], in 2005, designed the first dual-hormone 

PD controller. Jacobs et al. [22], in 2014, designed a more advanced dual-hormone 

PD controller. It, known as Fading Memory Proportional Derivative controller, has 

been widely used since 2004 [28, 64, 65]. 

However, despite their acceptable performance, PD (in general, PID) controllers are 

unable to account for the inherent delayed kinetics of subcutaneous insulin delivery 

and the action of insulin in plasma [66], which may cause hypoglycemic episodes. In 

addition, they do not take the kinetics of insulin into account. Therefore, I have used 
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MPC in this dissertation, which includes information about the subcutaneously 

infused insulin. I hypothesize that MPC will improve time in target range and reduce 

hypoglycemic episodes compared with PID controllers. 

1.6 Fuzzy-logic based AP 

Fuzzy logic is another controlling concept that changes the pattern of the 

manipulated input (insulin) from a “crisp” pattern to a “fuzzy” pattern. In other 

words, fuzzy logic provides a smoother relationship between the output and the input 

of a system. The fuzzy logic controller can be used in an artificial pancreas. Mauseth 

et al. [67] developed the first fuzzy logic controller for AP.  

In this study, glucose levels and their rates were fuzzified to determine the insulin 

rates. Glucose level (GL) was fuzzified into five categories: very high (250 < GL 

mg/dl), high (180 < GL < 250 mg/dl), medium (120 < GL < 180 mg/dl), low (80 < 

GL < 120 mg/dl) and very low (GL < 80 mg/dl). The glucose rate (GR) was 

fuzzified into five categories: very negative (GR < -2.5 mg/dl/min), negative (-2.5 < 

GR < -1.25 mg/dl/min), zero (-1.25 < GR < 1.25 mg/dl/min), positive (1.25 < GR < 

2.5 mg/dl/min) and very positive (2.5 < GR mg/dl/min). Then, two fuzzy inputs 

(between 0 and 1), based on the actual values of GL and GR, were determined.  
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A ruler 2-dimensional matrix, based on the Mamdani’s fuzzy logic inference rules, 

was created to map the fuzzy inputs to a range of possible fuzzy outputs; then, the 

final value (e.g. Insulin infusion rate) was determined by aggregating the fuzzy 

outputs [68]. Mauseth et al. [67] examined the algorithm across four subjects who 

received either one high (1 gram/kg) or one small (30 grams) carbohydrate intake. 

Ten and two postprandial hypoglycemic episodes were observed with the high and 

low carb intake, respectively, compared to zero hypoglycemic episodes during the 

fasting condition. 

In another study by Mauseth et al [69], the above fuzzy controller was tested during 

a 24-hour trial across 7 subjects with T1D. Subjects were given a 30 gram carbs 

followed by a 60 gram carbs for breakfast and lunch. They found that the average 

glucose level was 165 mg/dl, and the average time spent in euglycemia was 76%. 

1.7 Challenges of Diabetes 

Insulin therapy methods can typically regulate blood glucose properly when there are 

no interventions. The interventions are meals, exercise and stress [70], [71]. Meals 

and stress increase glucose levels, leading to postprandial hyperglycemia [70]. High 

glucose levels induced from meals are compensated with bolus insulin. However, 

over-delivery of the bolus insulin may lead to postprandial hypoglycemia. On the 
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other hand, exercising can instigate serious challenges for diabetes because it 

increases sensitivity of cells to insulin and enhances glucose utilization [72], [73].  

If the effect of exercise is overlooked, hypoglycemia may occur and people with 

T1D may fall into a state of coma. The effect of exercise lasts from several minutes 

to several hours (up to 12 hours [74]) and may cause hypoglycemia, even when 

glucose level is high at the start of the exercise [20]. Figure 1.3 shows the effect of 

exercise and meals on glucose profiles obtained from 21 people with T1D in an 

inpatient closed-loop study done by our lab (Permission to reproduce this figure has 

been granted by John Wiley and Sons and Copyright Clearance Center) [20]. 

 In this study, a moderate-intensity exercise bout was started at the beginning of the 

experiment following breakfast; and lunch was given approximately 6 hours 

afterwards. Two randomized AP algorithms, APX and APN, were used to control the 

glucose levels. APX was aware of the exercise while APN was not. Glucose levels 

dropped below 70 mg/dl (≈ 4 mmol/l) for a few patients after and during the exercise 

bout. Moreover, postprandial hypoglycemia was observed during the first 4 hours 

following lunchtime, demonstrating the over delivery of pre-meal bolus and 

postprandial basal insulin. However, more post-exercise hypoglycemic episodes 

were observed with APN compared to APX. 
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Figure 1.3 Glucose profiles showing the effect of exercise and meals 

1.7.1 Meals 

Meals are the major source of disturbance for people with T1D. Eating a meal 

increases glucose levels leading to hyperglycemia. To prevent hyperglycemia, a pre-

meal insulin bolus proportional to the amount of carbohydrate is injected. However, 

an insulin bolus cannot rapidly reduce glucose due to the inherent delay between the 

subcutaneous insulin delivery and the action of insulin in plasma. Over delivery of 

insulin can expedite the glucose drop and may cause postprandial hypoglycemia.. 

Additional factors such as meal composition, alcohol consumption and abnormalities 

in gastric emptying may aggravate meals-induced hyperglycemia.  

Elleri et al. [75] investigated the effect of glycemic load (GL) of meals on glucose 

levels under the MDI therapy across people with T1D. Eight subjects consumed a 

low-glycemic-load meal (macaroni cheese) and eight subjects consumed a high-

glycaemic-load meal (vegetable shepherd’s pie). The amount of carbohydrate for 

Time since start of exercise (min) 
                   50     100    150    200     250    300    350    400    450    500 
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both meal types was 121 grams; however, the ratio of protein to fat differed for each 

of the two meal types. At each gram of meal, the ratio of protein to fat for low- and 

high-GL meals was 20/9 and 35/31, respectively. Elleri et al. [75] found that the rate 

of glucose appearance was significantly faster with high-GL meals. 

In another study by this group, Hovorka et al. [76] investigated the effect of meal 

size across 24 adults with T1D under either a CL therapy or the CSII therapy. 

Twelve of the subjects underwent the “eating-in” scenario where they consumed a 

medium-size evening meal (60 gram of carbs). The other 12 subjects underwent the 

“eating-out” scenario where they consumed a large evening meal (100 gram of 

carbs) followed by a glass of white wine. They found that time spent in 

hyperglycemia was significantly lower with the eating-in scenario compared to the 

eating-out scenario, across both the CSII and CL therapy methods. Time spent in 

euglycemia and hypoglycemia significantly improved in both meal scenarios with 

the CL therapy.  

Woerle et al. [77] examined the effect of the gastric emptying rate on postprandial 

glucose excursions across people without diabetes. Fourteen subjects consumed a 

mixed meal followed by a 30 µg of Pramlintide (PRAM) or placebo (PBO). 

Pramlintide is an anti-diabetic medication used to slower the gastric emptying rate. 

They found that plasma insulin and postprandial glucose excursions were lower with 
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pramlintide compared to placebo. In another similar study, Weinzimer et al. [78] 

examined the effect of injecting pramlintide on glucose control across 8 people with 

T1D. The control algorithm used in their study was a PID controller designed in 

Weinzimer et al. [58]. In the control group, no pramlintide was given while in the 

treatment group, 30 µg of pramlintide was given prior to each meal. They found that 

the average time to peak after meals increased from 1.5 hour to 2.5 hour with 

Pramlintide. In addition, the magnitude of the glycemic excursion reduced 

significantly with Pramlintide. 

1.7.2 Exercise  

Exercising is another major challenge for people with T1D. It decreases the amount 

of glucose in blood stream by enhancing glucose utilization. It is generally 

recommended for people with T1D to exercise 2-3 times per week to have their high 

glucose levels reduced [79]-[80]. Manohar et al. [81] recruited 12 people with and 12 

people without diabetes to investigate the effect of post-meal walking. They divided 

each day into two parts. During the first part, one meal followed by no physical 

activity was given, and in the other part, two meals followed by a 30-minute walk at 

a speed of 1.9 mph were given. The Dexcom SevenPlus sensor and triaxial 

accelerometer were used to record the CGM and physical activity data, respectively. 

In both groups, time spent in hyperglycemia and postprandial area under the curve 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Weinzimer%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18252903
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were reduced; however, this reduction was more significant across people with 

diabetes [81].  

The effect of exercising on glucose levels occurs instantly, lasts for several hours, 

and may cause nocturnal hypoglycemia [82], [83]. Maran et al. [82] investigated the 

effect of different types of exercise on glucose control. Eight people with T1D 

interchangeably underwent a 30-minute of either high-intensity intermittent exercise 

or moderate-intensity exercise. They found that the mean glucose levels during 

nighttime were significantly lower with the high-intensity intermittent exercise. And, 

the number of hypoglycemic episodes was higher with high-intensity intermittent 

exercise for the entire trial. 

 Iscoe et al. [83] investigated the effect of two types of exercise across eleven 

athletes with T1D. Subjects underwent 45 minutes of continuous moderate-intensity 

exercise (CON) and continuous moderate-intensity exercise + intermittent high-

intensity exercise (CON+IHE). During the CON, three subjects and during the 

CON+IHE, seven subjects experienced hypoglycemia. During nighttime, the mean 

glucose was significantly lower with the CON compared to the CON+IHE. Reddy et 

al. [65] investigated the effect of late-afternoon exercise on sleep and nocturnal 

hypoglycemia across 10 adults with T1D. Subjects underwent two 45-minute bouts 

of either aerobic or resistance exercise per week and the glucose levels were 
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compared with the events with no exercise. Sleep loss was significantly less with the 

aerobic exercise while it did not change significantly with the resistance exercise. 

Severe hypoglycemia (glucose < 54 mg/dl) occurred eight times with the aerobic and 

three times with the resistance exercise. 

Exercise also affects the duration and severity of post-exercise hypoglycemia. 

Yardley et al. [84] examined the impact of resistance vs. aerobic exercise on 12 

subjects with T1D. Subjects underwent 45 minutes of resistance exercise consisting 

of three sets of eight repetitions, and 45 minutes of aerobic exercise consisting of 

running on a treadmill at 60% of VO2max. Plasma glucose decreased significantly 

during both resistance and aerobic exercise, and mean glucose level was significantly 

lower from 4.5 to 6 hours after the resistance exercise. This demonstrated that the 

resistance exercise caused prolonged reduction of glucose levels in comparison to the 

aerobic exercise.  

The order of exercise also affects the glycemic control in people with T1D. In 

another study by Yardley et al. [85], 12 people with T1D were recruited to perform 

either 45 minutes of aerobic exercise followed by a 45 minute of resistance exercise 

(called AR) or vice versa (called RA). They found no significant difference in the 

frequency of post-exercise hypoglycemic episodes; however, the duration of 

hypoglycemia was greater after RA compared with AR. Despite the above studies 
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showing the impact of different exercise intensities and types, Tonoli et al. [86] 

conducted a meta-analysis to determine the effect of exercise on acute and chronic 

glycemic control across people with T1D. They found that HbA1c was only 

improved by regular aerobic exercise. In addition, time spent in hypoglycemia was 

minimized with the aerobic exercise incorporated with short bouts of high-intensity 

intermittent exercise. In general, ADA does not have a comprehensive guideline for 

exercise across T1D. However, it suggests that people with T1D consume a snack if 

their pre-exercise glucose level is less than 100 mg/dl [79].  

As mentioned earlier, exercise can instigate serious complications for T1D. Selecting 

the most appropriate insulin therapy method (MDI, CSII, and AP) and providing 

systematic approaches to prevent exercise-induced complications have been the 

attention of different studies. Yardley et al. [87] examined the effect of exercise on 

glycemic control governed by MDI and CSII therapies. Nine subjects were recruited 

for the MDI and ten subjects were recruited for the CSII therapy. Both groups 

underwent 45 minutes of aerobic exercise (either cycling or running) at 60% of 

VO2max. To prevent exercise-induced hypoglycemia, fast-acting glucose tablets were 

given to five out of nine MDI subjects and three out of 10 CSII subjects. Results 

showed that post-exercise time spent in hyperglycemia was more significantly 

reduced with the CSII therapy than the MDI therapy, while no significant difference 
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for the glucose drop and time spent in hypoglycemia was observed during the 

exercise periods. 

 Elleri et al. [88] investigated the efficacy of AP and CSII on glucose control during 

meals and unannounced exercise and sleep across 12 adolescents with T1D. Subjects 

underwent moderate-intensity exercise for 40 minutes in the morning and 20 minutes 

in the afternoon. Elleri et al. [88] found better glycemic control with the AP. Time 

spent in euglycemia and hyperglycemia was significantly higher during night-time 

and day-time without effecting the time spent in hypoglycemia. In another similar 

study, Breton et al. [89] investigated the effect of exercise on glucose levels 

controlled by either CSII or AP across 11 adolescents and 27 adults with T1D. 

Subjects underwent a 30-minute moderate-intensity exercise at 50% VO2max 

followed by a dinner 2.5 hours afterwards. They found significant improvement for 

time in euglycemia and hypoglycemia with the AP during day- and nighttime.  

Russell et al. [90] tested a dual-hormone AP with high-carb meals and a moderate-

intensity exercise bout across 6 subjects with T1D. The testing scenario, which lasted  

51 hours for each subject, consisted of six meals (mean ± std = 78 ± 12 grams) and a 

30-minute exercise on a stationary bicycle at a target heart rate of 120-140 bpm. A 

model predictive controller and a customized proportional derivative controller were 

used to calculate insulin and glucagon delivery rates, respectively. They found that 
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the average time in hypoglycemia and euglycemia were 0.6% and 69%, respectively. 

In another study by Russel et al. [91], the effectiveness of a randomized 5-day 

outpatient study controlled by either a dual-hormone artificial pancreas or SAP 

therapy across 20 adults and 32 adolescents was examined. Time in hypoglycemia, 

hyperglycemia and euglycemia across the adults were significantly improved with 

the CL therapy compared to the SAP therapy. Time in euglycemia and 

hyperglycemia were only improved across the adolescents with the dual-hormone 

CL therapy.  

Based on the above studies, selecting the most desirable type of exercise (aerobic vs. 

anaerobic) is a disputable concept for people with T1D, and it may relate to each 

patient’s physiological behavior. Nevertheless, any type of exercise can still cause 

hypoglycemia. The following studies have developed algorithms to mitigate 

exercise-induced hypoglycemia independent of the type of exercise. Jacobs et al. 

[28], [20] incorporated an exercise detection and grading algorithm for people with 

T1D. They adjusted insulin and glucagon delivery rates more appropriately during 

and after exercise. Accelerometry and heart rate data were used to estimate energy 

expenditure (EE). When EE exceeded 4 kcal/min, exercise was detected and 

announced to the controller. The controller turned off insulin for 30 minutes and 
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reduced post-exercise insulin by 50% for 60 minutes. Meanwhile, the amount of 

glucagon was increased by 2 folds during this 90-minute window. 

 In addition, the glucose target for delivering glucagon was increased from 95 to 110 

mg/dl. This feature increased the safety mechanism of the system by which the 

glucagon was delivered earlier once glucose dropped below 110 mg/dl. They 

evaluated the algorithm across 21 subjects with T1D [20] in a randomized crossover 

study. Eight subjects underwent the SAP therapy. Six subjects underwent the CL 

control without exercise dosing adjustments (APN). And, nine subjects underwent 

the CL control with exercise dosing adjustments (APX). They found significantly 

less time spent in hypoglycemia with APX compared to APN and SAP. However, 

there were no significant differences between the APN and SAP therapy methods. 

In addition to the above algorithms for reducing exercise-induced hypoglycemia, the 

following studies were done to assess the exercise effects with mathematical models. 

These assessments can be incorporated with the current treatment plans to provide 

insights about hypoglycemia during and after exercise. Roy et al. [92] were among 

the first developers of an exercise model. They incorporated the exercise model into 

the Bergman’s minimal glucoregulatory model [93]. They added the following 

compartments to the Bergman’s minimal model: exercise-induced rate of 

glycogenolysis, increased rate of glucose uptake and glucose production, and 
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increased rate of insulin removal from plasma. Each of the added compartments 

changed with respect to the exercise intensity, PVO2max, which was assumed constant 

5 minutes after the start of exercise. In that exercise model, PVO2max changed from 

8% (average PVO2max in the basal state) to 92%. However, they only showed the 

results of mild and moderate exercise bouts. Although the results showed good fits 

between the actual and the simulated data during mild exercise for subjects without 

diabetes, they did not fit properly for people with T1D.  

Later, Balakrishnan et al. [94] modified the Roy and Parker model among 34 

children and adolescents with T1D. They first fitted the Roy and Parker model 

consisting of 16 free parameters to the clinical dataset of two adolescents and found 

out that 6 of the parameters were the most sensitive parameters across people with 

T1D. Then, these 6 parameters were estimated for each of the 34 patients using the 

actual clinical CGM data. To identify the intensity of the exercise, they used Rate of 

Perceived Exertion (RPE) method. In the RPE, users reported their feelings about the 

physical activity and allocated a number to them ranging from 6 (no physical 

exertion) to 20 (maximally hard exertion) [95]. They linearly scaled the percent of 

the reported RPE values to PVO2max, which was used to calculate the exercise level 

and intensity. Exercise intensity was then used to determine the declining rate of 
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glycogenolysis. Exercise level was used to determine the incremental rate of hepatic 

glucose production and declining rate of glucose uptake. 

 In this dissertation, we did not use the exercise models developed by Roy and 

Balakrishnan. The glucoregulatory model used in my study is more complex than the 

minimal glucoregulatory model. The exercise model used in this dissertation was 

developed by Hernandez-Ordonez et al. [73] and was integrated into the more 

complex glucoregulatory model. Hernandez-Ordonez quantified the incremental 

effects of exercise on periphery glucose and insulin uptakes and hepatic glucose 

production using the percent of active muscular mass (PAMM) and percentage of 

maximum oxygen consumption (PVO2max). They verified the model with 

experimental data for light and moderate exercise.  

1.7.3 Stress 

Stress is another source of perturbation for people with T1D. Stress releases two 

hormones: catecholamine and glucocorticoids. They not only make the body more 

resistance to insulin but also increase endogenous glucose production, leading to 

hyperglycemia [70].   

1.7.4 Summary 
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Eating a meal is a major challenge for people with T1D. It increases glucose 

concentration which leads to high glucose levels and hyperglycemia. To reduce time 

in hyperglycemia: 

Hovorka et al. [76] recommended using closed loop control therapy (i.e. artificial 

pancreas) along with smaller meal sizes.  

Woerle et al. [77] and Weinzimer et al. [78] recommended using a 30 µg of 

Pramlintide following meals. Pramlintide is an anti-diabetic medication used to 

slower the gastric emptying rate. 

In this dissertation, I incorporated a meal model, developed by Hovorka et al. [36], 

into the MPC algorithm. The MPC can adjust postprandial basal delivery, 

accordingly. Our preliminary study showed that time in hyperglycemia was reduced 

substantially by incorporating the meal model. 

Exercising is another major challenge for people with T1D. It increases glucose 

utilization, which reduces time in hyperglycemia [81]. However, it may also lead to 

hypoglycemia [82, 83]. To reduce time in hypoglycemia: 

 Yardley et al. [87] suggested people with T1D under the MDI therapy to 

switch to the CSII therapy. He also recommended having fast-acting glucose 

tablets.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Weinzimer%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=18252903
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 Maran et al. [82] recommend having moderate-intensity aerobic exercise 

rather than high intensity intermittent intervals. Similarly, Iscoe et al. [83] 

recommended having continuous moderate-intensity exercise rather than 

continuous moderate-intensity exercise followed by an intermittent high-

intensity exercise.  

 Jacobs et al. [28] proposed an algorithm to modify insulin delivery during 

and after exercise. 

  Balakrishnan et al. [94] used an exercise model to compute glucose drops 

during exercise. However, the study was only validated across two 

adolescents with T1D. 

In this dissertation, I show in chapters 4 and 5 how we incorporate a better-

validated exercise model into the MPC. The MPC automatically adjusts the 

insulin rates once exercise is announced. 

1.8 Thesis Contributions 

Meals and exercise are major sources of disturbances for people with T1D and must 

be handled appropriately by an AP algorithm. In this dissertation, I developed AP 

algorithms to manage meals and exercise more appropriately for people with T1D. 

These algorithms were embedded in the MPC algorithms. Moreover, I created a 

validated virtual population for enabling pre-clinical trial studies in-silico on single-
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hormone and dual-hormone control studies. This section outlines my contributions to 

the field. 

Chapter 2: The AP control algorithm should be first evaluated in-silico by using 

simulators (plants, shown in Figure 1.2), before being used in-vivo. Plants are virtual 

populations created using glucoregulatory models. Accurate modeling of insulin and 

glucagon kinetics and dynamics is critical for doing single-hormone and dual-

hormone simulation studies. In the field of diabetes, other virtual patient populations 

have been created, but they did not include good models for glucagon or models for 

exercise [31]. The goal of this chapter is to present two new open source virtual 

patient populations (VPP) for T1D that use statistical sampling to create an unlimited 

number of virtual patients. We present the mathematical model of both the dual-

hormone VPP and the single-hormone VPP, and we validate the VPP with clinical 

data. 

Chapter 3: Postprandial hypoglycemia can be observed across many people with 

T1D, caused by inappropriate insulin delivery. Postprandial hypoglycemia can even 

be a problem in people using an AP because the controller may not have been 

designed to handle all physiologies appropriated. The goal of this chapter is to 

describe an adaptive algorithm that adjusts the postprandial basal and bolus insulin 

individually, based on the glucose measurements. I present two approaches to 
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prevent postprandial hypoglycemia using a new Adaptive Learning Postprandial 

Hypoglycemia-prevention Algorithm (ALPHA), designed to be used in hybrid AP 

insulin therapy. 

Chapter 4: The importance of using dual-hormone AP systems to reduce time in 

hypoglycemia has been the core part of many dual-hormone AP studies. As there is 

no published dual-hormone AP with the MPC algorithm, a dual-hormone MPC is 

developed in this chapter. The goal of this chapter is to introduce a dual-hormone 

MPC algorithm that can switch between dual hormone and single hormone operation 

based on the sensed glucose level of the patient. The dual-hormone MPC algorithm 

also includes a model for exercise, such that if exercise is detected or if a user 

announces an exercise event to the controller, the algorithm can respond 

appropriately. 

Chapter 5: In this chapter, we evaluate the feasibility of the MPC algorithm for the 

in-vivo study. In clinical studies, the plant (human body) is always more complex 

than the MPC’s mathematical control model. We investigate less complex MPC’s 

mathematical models against a more complex plant structure. We assess models 

within the MPC controller that are of lower complexity than the plant and evaluate 

these models of order 4, 5, and 6 with respect to control and clinical metrics. Lastly, 
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we consider whether the added complexity of an exercise model within the controller 

adds benefit, specifically in preventing exercise-induced hypoglycemia. 

Chapter 6: Creating personalized, adaptive control algorithms for people with type 1 

diabetes is currently an important topic whereby the design and structure of AP 

systems for each patient are adapted over time to match each patient’s physiology. In 

my MPC design, the insulin sensitivity factor is updated adaptively based on the 

glucose data from the plant. Insulin sensitivity is the most important parameter in the 

MPC algorithm that describes the body’s response to insulin. The goal of this chapter 

is to reduce the model-plant mismatch existing in the MPC design via a model 

identification approach. The MPC’s model is fit to the plant’s output at each non-

meal period and the most sensitive parameter of the model (i.e. insulin sensitivity 

factor) is updated and used for the following day. We show in this chapter that the 

time in hyperglycemia can be reduced significantly.    

Chapter 7: this chapter summarizes the entire dissertation and explains future 

directions of the MPC design. We will be talking about how the state-of-the art 

techniques of integrating exercise and meals should be to receive the optimum 

performance from the MPC. In addition, we will challenge the MPC’s structure 

toward calculating more accurate insulin deliveries by including the estimates of the 

future glucose levels for current insulin delivery.  
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2 A statistical virtual patient population for the glucoregulatory 

system in type 1 diabetes with integrated exercise model  

In this chapter, two open-source virtual patient populations compatible with the 

characteristics of type 1 diabetes are introduced. The virtual populations are used in-

silico to evaluate control algorithms before the clinical studies. The virtual 

populations are validated with real-world clinical datasets.  

Chapter Summary: 

 Virtual populations have to be developed to evaluate control algorithms. 

 Two virtual populations are created, one for single-hormone AP and one for 

dual-hormone AP analysis. 

 Both populations are validated with real-world scenarios. 

 Results show consistency with the real-world data, showing the feasibility of 

the virtual populations to be used in-silico. 

This work was originally published in 2019: 

Navid Resalat, Joseph El Youssef, Nichole Tyler, Jessica Castle and Peter G. Jacobs, “A 

statistical virtual patient population for the glucoregulatory system in type 1 diabetes with 

integrated exercise model”, PLOS ONE, volume 14, Issue 7, e0217301, July 2019 [96], 

Reprinted with permission from PLOS ONE. 
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2.1 Abstract 

Purpose: We introduce two validated single (SH) and dual hormone (DH) 

mathematical models that represent an in-silico virtual patient population (VPP) for 

type 1 diabetes (T1D). The VPP can be used to evaluate automated insulin and 

glucagon delivery algorithms, so-called artificial pancreas (AP) algorithms that are 

currently being used to help people with T1D better manage their glucose levels. We 

present validation results comparing these virtual patients with true clinical patients 

undergoing AP control and demonstrate that the virtual patients behave similarly to 

people with T1D. Methods: A single hormone virtual patient population (SH-VPP) 

was created that is comprised of eight differential equations that describe insulin 

kinetics, insulin dynamics and carbohydrate absorption. The parameters in this 

model that represent insulin sensitivity were statistically sampled from a normal 

distribution to create a population of virtual patients with different levels of insulin 

sensitivity. A dual hormone virtual patient population (DH-VPP) extended this SH-

VPP by incorporating additional equations to represent glucagon kinetics and 

glucagon dynamics.  The DH-VPP is comprised of thirteen differential equations and 

a parameter representing glucagon sensitivity, which was statistically sampled from a 

normal distribution to create virtual patients with different levels of glucagon 

sensitivity. We evaluated the SH-VPP and DH-VPP on a clinical data set of 20 
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people with T1D who participated in a 3.5-day outpatient AP study.  Twenty virtual 

patients were matched with the 20 clinical patients by total daily insulin 

requirements and body weight. The identical meals given during the AP study were 

given to the virtual patients and the identical AP control algorithm that was used to 

control the glucose of the virtual patients was used on the clinical patients. We 

compared percent time in target range (70-180 mg/dL), time in hypoglycemia (<70 

mg/dL) and time in hyperglycemia (>180 mg/dL) for both the virtual patients and the 

actual patients. Results: The subjects in the SH-VPP performed similarly vs. the 

actual patients (time in range: 78.1 ± 5.1% vs. 74.3 ± 8.1%, p = 0.11; time in 

hypoglycemia: 3.4 ± 1.3% vs. 2.8 ± 1.7%, p = 0.23). The subjects in the DH-VPP 

also performed similarly vs. the actual patients (time in range: 75.6 ± 5.5% vs. 71.9 ± 

10.9%, p = 0.13; time in hypoglycemia: 0.9 ± 0.8% vs. 1.3 ± 1%, p = 0.19). While 

the VPPs tended to over-estimate the time in range relative to actual patients, the 

difference was not statistically significant. Conclusions: We have verified that a SH-

VPP and a DH-VPP performed comparably with actual patients undergoing AP 

control using an identical control algorithm. The SH-VPP and DH-VPP may be used 

as a simulator for pre-evaluation of T1D control algorithms. 

2.2 Introduction 



 

53 

 

Mathematical models of the glucoregulatory system have been used within in-silico 

virtual patient simulations for many years [97, 98]. The FDA-approved UVA/Padova 

simulator, which was developed in 2008 (known as S2008 simulator), was one of the 

first simulators to model glucose-insulin metabolism. In the S2008 simulator, 100 

virtual adults, 100 virtual adolescents, and 100 virtual children were generated by 

randomly drawing samples from the joint distribution of the parameters of the model 

[31]. At first, the 100 virtual adults were produced from a given nominal insulin 

sensitivity value and then the virtual children and adolescents were generated with 

higher and lower insulin sensitivity values. Since 2008, many studies have used the 

2008 version of the UVA/Padova simulator for open loop [97, 99] and AP [100, 101] 

computer analyses. In 2013, due to hypoglycemia underestimation of the S2008 

simulator, three new features were integrated. Dalla Man et al. [31] incorporated the 

non-linear effect of insulin action for glucose levels below a threshold. In addition, 

they added the glucagon kinetics and dynamics models to simulate the counter-

regulatory behavior of glucagon for glucose levels below a threshold. They also 

modified the insulin-to-carb ratio as well as the correction factor for better 

representation of postprandial glucose excursions. The new simulator was named the 

S2013 simulator. Visentin et al. [102] validated the S2013 simulator with a database 

consisting of two sets of 24 glucose profiles recorded during one open loop study 

and one AP study across type 1 diabetes. Each glucose profile was controlled for 22 
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hours with two meal intakes. In both control trials, the variations of the meal intakes 

were negligible at each meal event across the patients. To validate the S2013 

simulator, actual insulin profiles were given to the 100 virtual adults and the closest 

virtual adults were selected whose clinical outcomes were similar to the patients. 

Finally, the performance of the selected virtual adults were compared with the 

patients in terms of percent time spent in hyper- and hypoglycemia along with low 

and high blood glucose indices. They found better clinical consistency with the 

S2013, however unlike the S2008 simulator, the S2013 simulator overestimated the 

percent time spent in hypoglycemia significantly [102]. Later in 2016, to validate the 

S2013 simulator across type 1 diabetes and to better model time spent in 

hypoglycemia, Visentin et al. [103] fit the simulator to the actual dataset recorded 

from 47 people with T1D using a Bayesian approach. They found that the insulin 

sensitivity was around 30% less than the nominal values, showing that the insulin 

sensitivity of the S2013 simulator should be further modified to represent people 

with type 1 diabetes. While the S2013 simulator has been used by various research 

institutions to validate AP algorithms prior to running clinical studies, it is no longer 

commercially available and there is a need in the field for alternative VPPs to 

validate AP control algorithms. The Cambridge single-hormone simulator is another 

simulator developed for type 1 diabetes, which consists of 18 virtual patients [104]. 

The simulator was validated with a clinical dataset during overnight periods. In 
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2013, Haidar et al. [105] used the Cambridge simulator and developed a single-

hormone virtual patient population by fitting the glucoregulatory model to glucose 

data of 12 young people with type 1 diabetes using a Markov chain Monte Carlo 

sampling method. In this paper, the glucoregulatory model used is similar to the 

Cambridge glucoregulatory model, except the insulin kinetics model is different. Our 

preliminary testing on the virtual populations showed that the insulin kinetics model 

published in Hovorka et al. [36] better reflects the physiological characteristics of 

adults with T1D. 

The goal of this paper is to present two new open source VPPs that use statistical 

sampling to create an unlimited number of virtual patients. We present the 

mathematical model of both the dual-hormone VPP (DH-VPP) and the single-

hormone VPP (SH-VPP). In the models, the most sensitive inter-subject parameters 

were statistically sampled to create the VPPs. The parameters associated with the 

insulin and glucagon sensitivity factors within the models were the parameters that 

were statistically sampled within the mathematical models. We describe how we 

validated the VPPs using glucose data, insulin data, and meal data collected from 

adults with type 1 diabetes during  3.5-day outpatient AP studies that involved self-

selected meals, typical activities of daily living, and in-clinic aerobic exercise at 60% 

of the participant’s maximal VO2. We matched each virtual patient with one of the 
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true patients from the AP study, matching them by their nearest TDIR and their 

weight. We then used the same control algorithm that was used in the AP outpatient 

studies [22, 28, 64] to control the glucose of the virtual patients under the identical 

meal scenarios that were given during the outpatient studies. We compared the 

clinical outcome measures from the outpatient study with those done on the VPP in-

silico studies to validate the VPP.  The SH-VPP and DH-VPP that are presented in 

this paper are made available through source code in Matlab as online supplementary 

material or by downloading from the Artificial Intelligence for Medical Systems 

(AIMS) lab GIT repository.  

2.3 Materials and Methods 

The SH-VPP and DH-VPP were generated based on glucoregulatory models 

consisting of insulin and glucagon kinetics and dynamics models and a glucose 

kinetics model. The SH-VPP was generated by statistically sampling the most 

sensitive inter-subject parameters of the insulin dynamics model. To generate the 

DH-VPP, the parameters of the insulin and glucagon dynamics models as well as one 

parameter in the glucose kinetics model were statistically sampled. Both VPPs were 

validated with experimental data. 

2.3.1 Glucoregulatory Model 
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The glucoregulatory models presented in this section have been previously 

published. The block diagram of the glucoregulatory model used in this study is 

shown in Figure  2.1. The single-hormone glucoregulatory model used in the SH-VPP 

is comprised of three main compartments: an insulin kinetics model, an insulin 

dynamics model and a glucose kinetics model. The DH-VPP is identical to the SH-

VPP except that for the DH-VPP, two additional compartments were included: a 

glucagon kinetics and a glucagon dynamics model. Aerobic exercise can cause 

hypoglycemia in people with T1D [106] and it may be important for AP control 

algorithms to incorporate exercise detection and modified dosing to help avoid 

exercise-induced hypoglycemia [20, 107].  We have integrated an aerobic exercise 

model [73] into both the SH and DH-VPPs.  Lastly, we have incorporated a meal 

absorption model into both VPPs. 

 

Figure 2.1 Block Diagram of the glucoregulatory model 

The insulin kinetics model demonstrates the relationship between the subcutaneously 

administered insulin and plasma insulin concentration. In this study, we employed an 
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insulin kinetics model developed by Hovorka et al. [108]. This model is outlined 

below: 

S1̇ = uI −
S1

tmax
 

S2̇ =
S1

tmax
−

S2

tmax
             (1) 

İ =
S2

tmaxVI
− keI   

where, S1 and S2 represent the masses of insulin in two subcutaneous compartments 

[mU/kg], uI represents the rate of insulin infusion [mU/kg/min], I represents the 

plasma insulin concentration [mU/L], and tmax, VI and ke are the time-to-maximum 

absorption [min], distribution volume [L/kg] and elimination rate [min
-1

] of insulin. 

The insulin dynamics model, which describes the action of plasma insulin on 

glucose, was presented by Hovorka et al. [108]: 

X1̇ = −ka1X1 + Sf1ka1I   

X2̇ = −ka2X2 + Sf2ka2I         (2) 

X3̇ = −ka3X3 + Sf3ka3I  

where x1 [min
-1

], x2 [min
-1

] and x3 [unitless] represent the effect of insulin on glucose 

distribution, disposal and suppression of Endogenous Glucose Production (EGP). Sf1 

[min
-1

 per mU/L], Sf2 [min
-1

 per mU/L] and Sf3 [per mU/L] are the insulin sensitivity 

factors and are the most sensitive inter-subject variables for describing variability in 

the glucoregulatory system of people with T1D.  Selection of new insulin sensitivity 
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factors enables us to generate new subjects within the VPPs. The variables ka1, ka2 

and ka3 [min
-1

] are used as both appearance rates of insulin into the action 

compartments as well as the elimination rates of the insulin effects. The glucagon 

kinetics model, which represents the absorption rate of subcutaneously injected 

glucagon into plasma, was designed by Lv et al. [109]: 

X1g
̇ = −(k1g + kge1)X1g + ug 

X2g
̇ = k1gX1g − k2gX2g         (3) 

X3g
̇ = k2gX2g − kge2X3g 

where X1g and X2g represent subcutaneous glucagon mass compartments and X3g is 

plasma glucagon mass, all measured in mg/kg. ug is the glucagon basal rate 

[mg/kg/min] infused from the glucagon pump. k1g and k2g are constant transfer rates 

[min-1]. kge1 and kge2 are elimination rates of glucagon from the inaccessible and 

accessible (plasma) compartments, respectively [min-1]. The glucagon dynamics 

model which describes the interaction between the plasma glucagon concentration 

and the EGP was previously described by Jacobs et al. [28]: 

�̇� =  
106 × 𝑘𝑐 × 𝑆𝑓𝐺𝐺

𝑉𝑑𝐺𝐺
𝑋3𝑔 − 𝑘𝑐𝑌 = 𝑘𝑔𝑋3𝑔 − 𝑘𝑐𝑌 

Ẏ = Z                         (4) 

Ż = kgk2gX2g − kgkge2X3g − kcZ 
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Y represents the effect of glucagon on EGP. Because the rate of change of Y had an 

effect on EGP, we introduced the variable Z in our equations. kc is the clearance rate 

of glucagon from the remote compartment [min-1], SfGG is the glucagon sensitivity 

factor [(ng/L)-1.min-1] and VdGG is the glucagon volume of distribution [L/kg]. 

Similar to the insulin sensitivity factors, SfGG is another sensitive inter-subject 

parameter and is used to generate the dual-hormone VPP. The glucose kinetics 

model, which estimates blood glucose with respect to insulin and glucagon actions 

and non-insulin mediated glucose uptake, was presented in Hovorka et al. [108] and 

Jacobs et al. [28]: 

Q1̇ = −X1Q1 − F01
c − FR + k12Q2 + UG + EGP0(1 − X3 + Y + kg3Z) 

Q2̇ = X1Q1 − k12Q2 − X2Q2                     (5) 

where Q1 and Q2 are the masses of glucose in the accessible (plasma) and non-

accessible (rapidly-equilibrating interstitial) compartments, respectively [mmol/kg]. 

EGP0 is the basal endogenous glucose production at a theoretical zero insulin 

concentration [mmol/kg/min]. F01
c  and FR are the non-insulin mediated glucose 

uptake and the renal glucose clearance rate, respectively [mmol/kg/min]. For the SH-

VPP, the Y and Z variables in Equation 5 are zero since no exogenous glucagon is 

considered to be given to the single-hormone virtual patient. UG represents the 

glucose absorption rate from meals [mmol/kg/min]: 
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UG =
DGAG(t−t0)e

−
t−t0

tmax,G

tmax,G
2         (6) 

where, tmax,G is the time-to-maximum appearance rate of glucose in Q1 [min], AG is 

the carbohydrate bioavailability [unitless], t0 is the meal announcement time [min] 

and DG is the estimated carbohydrate intake [mmol/kg]. Note that, for the in-silico 

simulations, DG is converted from grams to mmol/kg to be compatible with the 

variables of the glucose kinetics model. 

2.3.2 Integration of exercise into the glucoregulatory model  

Previously, we showed how an exercise model described by Hernandez-Ordonez et 

al. [73] could be incorporated into a VPP [28, 49, 52]. In the current paper, we 

include this exercise model in both the SH-VPP and DH-VPP and validate these 

populations relative to clinical data sets. We used the Hernandez et al. model to 

enable exercise to impact the peripheral insulin uptake, the peripheral glucose 

uptake, and the hepatic glucose production components of the model. Specifically, in 

the insulin dynamics model in Equation 2, the three insulin sensitivity factors (Sf1, 

Sf2 and Sf3) are increased during the exercise bout as shown below in Equation 7. 

Sf1−EX = MPGUMPIUSf1 

Sf2−EX = MPGUMPIUSf2                   (7) 

Sf3−EX = MHGPSf3 
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where, MPGU represents a percentage increment with respect to the basal peripheral 

glucose uptake (35 mg/min); MPIU represents an increment of peripheral insulin 

uptake and MHGP represents a percentage increment with respect to the basal hepatic 

glucose production (155 mg/min). These parameters are defined below: 

MPGU = 1 +
ΓPGUA × PAMM

35
 

MPIU = 1 + 2.4 × PAMM                  (8) 

MHGP = 1 +
ΓHGPA × PAMM

155
 

where, PAMM represents the percentage of active muscular mass. In the testing 

described further below, the value of PAMM was set to 50% because the study 

participants were running on a treadmill with moderate intensity. Smaller values of 

PAMM (≈ 25%) were reported in [72, 73] for two-legged exercises. ΓPGUA and ΓHGPA 

are the glucose uptake and production from the active tissues respectively, and are 

assumed to have identical values during short-duration exercise according to 

equation (9). 

ΓPGUA
̇ = −

1

30
ΓPGUA +

1

30
ΓPGUA̅̅ ̅̅ ̅̅ ̅̅        (9) 

    ΓPGUA̅̅ ̅̅ ̅̅ ̅̅  represents the peripheral glucose uptake by active tissue in steady state and 

is a function of PVO2max according to the following equation: 

ΓPGUA̅̅ ̅̅ ̅̅ ̅̅ = 0.006(PVO2max)2 + 1.2264(PVO2max) − 10.1958                       (10) 
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where, PVO2max is the percentage of the maximum oxygen consumption during 

exercise. It was calculated using the metabolic equivalents (MET) as shown below: 

PVO2max =
MET

METmax
                  (11) 

where METmax is the maximum energy expenditure estimated during a VO2max test. 

The values of MET and METmax were estimated in the clinical evaluations described 

further below with the heart rate and accelerometry data recorded by a Zephyrlife 

BioPatch. The MET estimation was further personalized by incorporating 

anthropometric characteristics of each individual [110]. During non-exercise periods, 

MPGU, MPIU and MHGP are close to one, and insulin sensitivity factors do not change. 

2.3.3 Clinical Data 

Real-world meal scenarios were used from 20 patients with T1D who underwent two 

separate 3.5-day randomized outpatient AP trials. In one trial, glucose levels were 

controlled with insulin and in the other, glucose levels were controlled with both 

insulin and glucagon. Subjects were enrolled at the Oregon Health and Science 

University and the control algorithm used was the OHSU-FMPD controller [20, 22]. 

Participants in the study spent the first and fourth day of the study at the hospital 

eating known meals and participating in formal aerobic exercise at 60% of their 

maximal VO2. The formal in-clinic exercise bouts lasted for 45 minutes and were 
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performed 2 hours after lunch. Table III summarizes the characteristics of the 

participants of the study. For more information about the study and participants, refer 

to Castle et al.  [64] and the study listed on clinicaltrials.gov (Clinical trial reg.  no. 

NCT02862730) 

Table III Baseline characteristics of the participants in the AP study 

 Value Range 

Age                                      (years) 35 ± 4.7 27 – 45 

      Sex 

Female 14 (70%) 

 

Male 6 (30%) 

Weight                                     (kg) 76.3 ±  14.6 55.6 -- 104.7 

Height                                     (cm) 172 ±  10.1 156 – 189 

HbA1c                                       (%) 7.6 ±  0.8 6 -- 9.1 

TDIR                                   (units) 42.3 ±  16 18 – 93 

Duration of Diabetes           (year) 20.2 ±  8 8 – 37 

Maximum HREx                  (bpm) 182.4 ±  9 170 – 199 

               Maximum METEx 11.7 ±  2.5 6.5 -- 16.5 

HREx: heart rate during exercise; METEx: metabolic equivalent during exercise. Data is reported as 
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mean ± standard deviation. 

2.3.4 Single-Hormone VPP 

A Single-hormone VPP was generated for running single-hormone simulations. The 

nominal values given for Sf1, Sf2, and Sf3 from equation (2) were derived for people 

without T1D [108]. We updated Sf1, Sf2 and Sf3 to represent the sensitivity of insulin 

for people with T1D. TDIR was used to personalize insulin sensitivity for each 

virtual patient.  TDIR is the amount of insulin required by a person with diabetes 

during 24 hours. Insulin sensitivity is inversely proportional to TDIR. Insulin 

sensitivity is a measure of how sensitive the body is to insulin. Generally, subjects 

with higher weight have higher TDIR because a larger body oftentimes requires 

more insulin. To consider a range of TDIR values that relate to different insulin 

sensitivities, we created a sensitivity composite (Sc) that ranged from 0.1 to 2; this 

sensitivity composite was multiplied by the nominal values of Sf1, Sf2 and Sf3 in 

equation (2) to generate a range of basal insulin values. Basal insulin (𝐼𝑏𝑎𝑠𝑎𝑙) for 

each sensitivity composite was determined through simulations where the basal 

insulin rates at each value of Sc yielded a steady state glucose level of 115 mg/dl. 

The units of 𝐼𝑏𝑎𝑠𝑎𝑙 is mU/kg/min, which is also shown in Equation 1.  To convert the 

units of  𝐼𝑏𝑎𝑠𝑎𝑙 to U/hr.,  we multiplied 𝐼𝑏𝑎𝑠𝑎𝑙 by a fixed weight of 76.3 kg obtained 

from the average weight across a clinical dataset of people with T1D, shown in Table 
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III. The daily basal requirement was then computed as 𝐼𝑏𝑎𝑠𝑎𝑙 × 24. This total daily 

basal insulin requirement (basal-TDIR) did not include insulin given for meals. The 

TDIR, which includes meals and basal insulin, was estimated by multiplying the 

TDIR by a factor of 1.8 which was empirically validated on an OHSU clinical 

dataset across people with T1D, implying that our VPP obtained 44.4% of their daily 

insulin from meals and 55.6% of their daily insulin from basal. Walsh et al. [111] 

introduced a similar impact of basal-TDIR on TDIR. They showed that the basal-

TDIR is  approximately 48% of the TDIR.  

Figure  2.2 shows the relationship between the Sc value and the TDIR. Based on the 

mean TDIR from a clinical dataset of approximately 45 units/day, an Sc of 0.4 was 

chosen as the insulin sensitivity modifier across subjects with T1D. Selection of an 

Sc of 0.4, results in a corresponding reduction of insulin sensitivity of people in our 

VPP such that they have a 60% lower insulin sensitivity than people without T1D. A 

similar relationship between the insulin sensitivity of people with and without T1D 

was investigated by Rickels et al. [112] in a euglycemic clamp study. It is important 

to note that this Sc of 0.4 for generating a large VPP was determined using an 

average weight of 76.3 kg obtained from a clinical data set of people with T1D.  

Under the section “Validating VPPs under real-world meal scenarios” we will show 

how to generate Sc values for individual patients with specific weights. 
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Figure 2.2. Estimated TDIR across Sc values.   

Next, virtual patients with T1D were created by statistically sampling from the 

distributions of the updated insulin sensitivity factors given an ad-hoc 75% 

correlation between Sf1 and Sf2, and 25% correlation between Sf2 and Sf3. In addition, 

the weight of the virtual patients was sampled from a normal distribution, with mean 

of 76.3 kg and standard deviation of 14.6 kg that was obtained based on the clinical 

data described further above. 

After sampling the parameters of each virtual patient, the physiologic feasibility of 

each virtual patient was evaluated through two tests: 

A) Steady-state glucose levels of each virtual patient in the absence of insulin should 

exceed 300 mg/dl. 
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B) Delivery of high-dose insulin (15 unit/hr) to each virtual patient should result in a 

low steady-state glucose level (typically less than 100 mg/dl from the baseline 

steady-state glucose) 

A total of 99 virtual individuals out of 100 passed the above criteria. Figure  2.3 

shows the histogram of the TDIR values of the single-hormone VPP. 

2.3.5 Dual-hormone VPP 

For generating DH-VPP, we first followed the instructions of generating single-

hormone VPP and reduced insulin sensitivity factors (Sf1, Sf2 and Sf3) by 60%. Then, 

we changed the most sensitive inter-subject parameters (EGP0, Sf1, Sf2 and Sf3, SfGG, 

kc and kg3) of the glucoregulatory model across each subject. Similar to the single-

hormone VPP, we assumed a normal distribution of these parameters and we 

randomly sampled from these distributions to create a new virtual patient. To 

determine the physiologic feasibility of the randomly drawn parameters, each 

parameter set was required to pass four clinically-relevant criteria, listed below. 

A) Steady-state glucose levels in each virtual patient in the absence of insulin should 

exceeds 300 mg/dl.  
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B) Delivery of high-dose insulin (15 U/hr) to each virtual patient should result in a 

low steady-state glucose level (typically less than 100 mg/dl from the baseline 

steady-state glucose).  

C) Delivery of high-dose glucagon (20 mcg/kg) to each virtual patient should result 

in a significant rise in glucose within 2 hours of the dose, greater than 50 mg/dl 

above the baseline steady-state glucose.  

D) Delivery of a small dose of glucagon (0.2 mcg/kg) to each virtual patient should 

not result in a response greater than 100 mg/dl above baseline steady-state glucose. 

A total of 90 out of 100 virtual patients passed the below criteria and were selected 

for the dual-hormone VPP. Figure  2.3 shows the histogram of the TDIR values of the 

DH-VPP. Table IV shows all the numerical values of the parameters of the 

glucoregulatory models. The parameters that were statistically sampled to create the 

virtual patient populations are shown along with their standard deviation.  
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Table IV The numerical values of the parameters of the glucoregulatory models 

 

2.3.6 Validating VPPs under real-world meal scenarios 

To validate the VPPs, we matched clinical patients with T1D with their virtual twin 

from the virtual patient population. In this section, we describe how we matched 

real-world patients with T1D with their virtual twin.  The 99 single-hormone virtual 

patients and 90 dual-hormone virtual patients described above are the patients that 

should be used typically to run simulations on a glucose control algorithm. For the 

purpose of validation, we generated 20 new virtual patients that were created to 

match actual patients with T1D by weight and TDIR.  The only difference between 

the methods described above and those used to match the clinical patients with their 
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virtual twin was the determination of Sc values. Unlike the methods described above 

whereby the Sc vs. TDIR relationship (Figure 2.2) was generated using the average 

weight of patients (76.3 kg from Table III), the Sc vs. TDIR for the validation data 

was generated individually for each clinical patient using their actual weight. Meal 

scenarios describing daily meal content and pattern of consumption were acquired 

from a previous clinical study assessing single hormone and dual hormone artificial 

pancreas technologies [64]. Twenty 3.5-day meal scenarios from the single-hormone 

clinical trial and twenty 3.5-day meal scenarios from the dual-hormone clinical trial 

were collected and used to deliver to the virtual patient population. Virtual patients 

were matched to clinical study participants by closest match of TDIR and weight. 

Matching a virtual patient to a study participant was done by first creating a TDIR 

vs. sensitivity component (Sc) graph like the one shown in Figure 2 using the 

participant’s actual weight. The Sc that most closely corresponded to a given 

participant’s TDIR was determined and a temporary set of 100 virtual patients was 

generated using the methods described above under the sections Single-hormone 

VPP and Dual-hormone VPP. Then, the TDIR of each of the temporary virtual 

patients was compared to the participant’s TDIR and finally the desired virtual 

patient whose TDIR was the closest was identified. By using this approach, we 

ensured that both weight and TDIR of each actual patient were used to identify the 

closest virtual patient. This approach was repeated for all 20 actual patients from 
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each clinical study trial and the 20 closest virtual twins were identified. We then used 

the same OHSU-FMPD control algorithm that was used in the outpatient AP studies 

to control the glucose levels of each of the 20 virtual patients under the dual-

hormone and single-hormone meal scenarios. The control algorithm was 

implemented in Java and has been previously described [22, 28]. The glucose 

profiles of the virtual patients were compared with the related actual glucose profiles 

controlled by the same controller during the in-vivo trial. For the in-silico 

simulations, the system was further challenged by introducing a randomly selected -

30% to 30% meal uncertainty applied to each carbohydrate intake at each meal 

scenario. Since insulin is known to vary during the day [113], circadian variability of 

insulin sensitivity was introduced to the insulin sensitivity parameters (Sf1, Sf2 and 

Sf3) within each virtual patient by varying these parameters with respect to time of 

day using equation (12): 

*

fi fi

2π
S (t)=S ×(1 + 0.3sin( t + 2π×RND),  i = 1, 2, 3

24×60/Ts


               (12) 

where, RND is a random variable generated from a uniform distribution between 0 

and 1; Ts is the sampling interval (5 minutes). Sfi* denotes the nominal value of each 

of the insulin sensitivity factors. Notice that the phase of the circadian insulin 

sensitivity was randomly initialized at the start of the study using the RND 

command, and this phase was fixed for all virtual patients. This approach helped us 
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to compare the performance of all virtual patients similarly as the phase shift 

remained constant. We additionally modeled glucose sensor noise using the glucose 

sensor noise model described by Facchinetti et al. [30, 114]. During this study, meal 

scenarios and exercise sessions were imposed on the virtual subjects as determined 

by the existing study data. And as described under the section ‘Integration of 

exercise into the glucoregulatory model’, the nominal insulin sensitivity (Sf*) in 

Equation 12 is changed during exercise according to Equation 7. It is increased 

during the exercise period and returned to the original value at the end of exercise. 

2.3.7 Evaluation metrics and statistical analysis 

We assessed accuracy of the VPP by comparing the primary outcome measures of 

the VPP with primary outcome measures acquired during the clinical study. The 

primary outcome measures for the validation of VPPs included the percent time in 

hypoglycemia (<70mg/dl) and the percent time in target range (70-180 mg/dl).  The 

secondary outcome measures for validation of the VPPs included the percent time in 

hyperglycemia (>180mg/dl) and the low and high blood glucose indices [25]. We 

report errors in the clinical outcome metrics (e.g. time in range, time in 

hypoglycemia, time in hyperglycemia) as mean absolute error (MAE) whereby error 

in the VPP outcome metrics are calculated relative to the outcome metrics obtained 

from the clinical study. To assess the statistical difference between the simulated and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Facchinetti%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24108706
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the actual glucose profiles, the student t-test was used, with significance level set to 

5%. 

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|𝑀

𝑖=1                                      (13) 

Where M is the number of meal scenarios used in the validation step of the 

VPPs. The MAE was computed for each of the outcome metrics 

2.4 Results 

Figure  2.3 show the histogram of the patients, SH-VPP and DH-VPP. The range of 

the TDIR values of SH-VPP started at 20 units and ended at 120 units. The peak of 

the histogram was around 40-45 units showing that the TDIR values of the SH-VPP 

were well-scaled regarding the average TDIR value shown in Table III. A similar 

range is also observable in DH-VPP. The peak of the histogram occurred for TDIR 

values between 40-45 units, however the minimum TDIR spanned to smaller levels 

for several virtual patients simulating the situations where certain individuals with 

T1D may require less insulin. 

Figure  2.4 and Figure 2.5 show the comparison between the simulated and the actual 

glucose profile for one representative subject in SH and DH trials. Overall, the 

dynamic responses of the simulated glucose profiles during meal events and exercise 

bouts were similar to the actual one. 
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Figure 2.3 Histogram of the TDIR values of the clinical patients (left), SH-VPP (middle) and 

DH-VPP (right). 

 

Figure 2.4 Simulated vs. actual glucose and insulin profiles of one representative subject in 

single-hormone trial. Both experiments were initialized at 8:00 am. Carbs are shown with 



 

76 

 

circles. Filled circles show the start of exercise. Higher resolution data from this study is shown 

in Supplemental Figure 2.6. 

 

Figure 2.5 Simulated vs. actual glucose and insulin profiles of one representative subject in 

dual-hormone trial. Both experiments were initialized at 8:00 am. Carbs are shown with circles. 

Filled circles show the start of exercise. Higher resolution data from this study is shown in 

Supplemental Figure 2.7. 

Table V and Table VI show the clinical study outcomes in comparison with the in-

silico control simulation outcomes of the VPPs. Table V shows results from the 

single-hormone study and Table VI shows results from the dual-hormone study. The 

tables also show the statistical analysis of each outcome and a p-value indicating 

whether the VPP outcome was statistically different than the clinical outcome using 

a two-tailed t-test analysis. For all outcome measures, the SH-VPP was not 

statistically different than the true population. The time spent in hyperglycemia was 

slightly underestimated by the SH-VPP, which was not significant but was trending 
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towards significant (p=.08). The MARE of time spent in hyperglycemia was high for 

SH-VPP showing that the meal model should be further improved to better represent 

glucose levels above 180 mg/dl. The outcome measures for the DH-VPP during the 

in-silico AP simulation are not statistically different than the outcome measures for 

the actual patients during the AP clinical study as shown in Table VI, however the 

HBGI is trending towards being significant (p=.06). 

Table V Outcome metrics of the single-hormone VPP across the selected virtual patients 

Single Hormone VPP Clinical Results Simulated Results p-value MAE (%) 

Time in hypoglycemia (%) 2.8 ± 1.7 3.4 ± 1.3 0.23 2 

Time in hyperglycemia (%) 22.9 ± 8.8 18.4 ± 5.3 0.08 9.6 

Time in range (%) 74.3 ± 8.1 78.1 ± 5.1 0.11 8.4 

LBGI 3.1 ± 1 3.5 ± 0.9 0.24 1.2 

HBGI 6.2 ± 1.7 5.9 ± 1.2 0.47 1.9 

 

Table VI Outcome metrics of the dual-hormone VPP across the selected virtual patients 

Dual Hormone VPP Clinical Results Simulated Results p-value MAE (%) 

Time in hypoglycemia (%) 1.3 ± 1 0.9 ± 0.8 0.19 1.1 
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Time in hyperglycemia (%) 26.7 ± 11.4 23.5 ± 5.7 0.21 8.8 

Time in range (%) 71.9 ± 10.9 75.6 ± 5.5 0.13 8.3 

LBGI 2.3 ± 1.3 1.9 ± 0.8 0.3 1.3 

HBGI 7.2 ± 2.3 6.2 ± 1.1 0.06 1.9 

2.5 Discussion and Conclusion 

In this paper, we described the design of two T1D virtual patient populations that can 

be used to evaluate single-hormone and dual-hormone control algorithms within 

automated drug delivery systems for helping people with T1D better manage their 

glucose levels. These virtual populations were validated against clinical data 

acquired from real-world patients with T1D [64]. The results showed no significant 

difference between the performance outcome measures of the VPPs and the true 

patients when treated with an automated control algorithm intervention and when 

given identical meals.  In this study, we were able to validate the VPP on a clinical 

data set whereby patients with T1D were matched with their in-silico virtual twin by 

TDIR and weight.  Both real patients and virtual patients were given the same meals 

and exercise regimen while their glucose was controlled using the same control 

algorithm. It is important to emphasize that, while we used just one control algorithm 

to validate the VPPs, this does not mean that these VPPs are compatible with just a 
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single control algorithm.  Any control algorithm can now be used with the VPPs.  

We have simply used a single control algorithm to validate that when virtual patients 

and actual patients are given comparable amounts of insulin, glucagon, meals, and 

exercise, the glycemic outcome metrics between the virtual and actual patients are 

not statistically different.  

For further evaluating the VPPs, we compared the performance of the SH-VPP with 

the free version of the single-hormone UVA/Padova simulator. In this comparison, 

we only used 10 of the real-world meal scenarios because the UVA/Padova 

simulator deletes meal events that occur within 30 minutes of a prior meal. For the 

purpose of comparison, we eliminated 10 of the 20 meals, which had meal events 

occurring within 30 minutes of each other. For each of the 10 selected meal 

scenarios, a relevant UVA/Padova virtual subject was identified based on weight and 

TDIR, similar to the selected virtual patients descried above. Because the single-

hormone UVA/Padova simulator does not have an exercise model, we could only 

compare the performance of the UVA simulator with the VPP population at the 

second day, when no exercise took place in the study. Table VII shows the 

comparison between the single-hormone VPP, the single-hormone UVA/Padova 

simulator and the clinical data across the 10 selected meal scenarios. Both simulators 

agreed closely on average with the clinical data for the time in range outcome 
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measure and time in hyperglycemia. However, they misestimated the time in 

hypoglycemia compared to the clinical data. The MAE of the UVA simulator 

relative to the clinical data for time in range was 33.4%, which was significantly 

higher than the MAE of the SH-VPP, which was 15.8%. The MAE for the percent 

time in hypoglycemia of the UVA/Padova simulator relative to the clinical data was 

comparable with the SH-VPP showing slightly higher error (0.76% for UVA/Padova 

vs. 1.7% for SH-VPP). 

Table VII Comparison between the simulators and the clinical data across the 10 selected meal 

scenarios 

Simulators/outcomes Time in hypoglycemia (%) Time in hyperglycemia (%) Time in range (%) 

Clinical data 0.77 24.72 74.51 

SH-VPP 2 (0.01) 15.4 (0.11) 82.6 (0.16) 

UVA/Padova 0 (0.02) 30.4 (0.62) 69.6 (0.67) 

Data is shown as the mean, and the p-value in parenthesis for the comparison. 

While the SH-VPP and the DH-VPP on average resulted in a good match with the 

clinical data, the MAE was higher than we would prefer for the percent time in range 

and the percent time in hyperglycemia.  This indicates that for certain individuals, 

there was not always a good match between the in-silico model and the weight/TDIR 

matched clinical participant. There are several reasons why this was the case. First, 
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for the clinical study we did not know the true meal amount consumed by the patient 

and instead could only estimate based on their input during the clinical study. This is 

why we imposed a +/- 30% variability in the carbohydrate consumed by the virtual 

patients at each meal.  This meal estimation uncertainty will inevitably cause error 

between the participant and the in-silico matched patient. Second, there was 

uncertainty of the time when clinical study participants delivered their rescue carbs 

for times when their glucose dropped below 70 mg/dl. In our simulations, the virtual 

patient was given a rescue carbohydrate 10 minutes after glucose dropped below 70 

mg/dl.  For the clinical participant, the rescue carbohydrate delivery could have been 

given at a different time, which would contribute to error. Third, it is known that 

insulin sensitivity can vary throughout the day. We modeled this insulin sensitivity 

variability by varying each virtual patient’s insulin sensitivity by +/- 30% throughout 

the day.  This potentially inaccurate estimation of circadian insulin sensitivity 

variability could further explain the error observed.  Fourth, the exercise model that 

we used in the VPP was validated on continuous and non-intermittent aerobic 

exercise with constant PVO2 [73]. We further assumed in the exercise model that the 

PAMM was 50% for all subjects.  However, we know that there was some variability 

in the exertion of the subjects throughout the exercise sessions and it is probable  that 

the PAMM for all of the subjects was not exactly 50%. This would have been a 

cause for further error observed. Palumbo et al. [115] describe how PVO2max can be 
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adapted to a patients’ specific physiology and adapt based on duration and intensity 

of exercise.  In the future, we will need to do a similar type of adaptation to better 

model the impact of exercise duration, type, and intensity on glycemic control.    A 

further reason for differences between the VPPs and the clinical subjects was that the 

VPP used a model of the CGM noise that was derived using the Dexcom G4 glucose 

sensor, whereas the data collected from the clinical study was done using the 

Dexcom G5 sensor. Despite these various factors that contributed to individual 

differences between the virtual patients and the clinical study participants, we remain 

confident that on average the SH-VPP and DH-VPP are sufficiently accurate for use 

in designing and evaluating AP control algorithms prior to an actual clinical study. 

The average outcome measures from the clinical study were not statistically 

significantly different than those of the in-silico study. And the MAE was lower than 

other stimulators that have been used in the past to evaluate AP control algorithms 

prior to in-vivo studies.  In the future, we plan to leverage the clinical data set to try 

to improve our models by using system identification approaches such as Markov 

Chain Monte Carlo (MCMC) approaches.  While the goal of the current work was to 

use the clinical data to estimate the accuracy of the VPP, we can certainly try to 

achieve a closer match to the clinical data by identifying each individual’s insulin 

sensitivity, carbohydrate sensitivity, and exercise model parameters. 
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In conclusion,  two new single and dual-hormone VPPs were presented and validated 

against a clinical data set. On average, there was not a significant difference in 

outcome measures between the clinical data and the in-silico data, indicating that 

both VPPs may be used for pre-clinical evaluation of AP algorithms. 

2.6 Supplementary Materials 

 

Figure 2.6 Simulated vs. actual glucose and insulin profiles of the representative subject shown 

in Figure 2.4 for one-day simulation. Both experiments were initialized at 8:00 am. Carbs are 

shown with circles. 
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Figure 2.7 Simulated vs. actual glucose, insulin and glucagon profiles of the representative 

subject shown in Figure 2.5 for one-day simulation. Both experiments were initialized at 8:00 

am. Carbs are shown with circle. 

 

Table VIII Information of the meal scenarios 

Meal Scenario Mean carbs and std 

1 40.2 ± 9.9 

2 72.8 ± 36.6 

3 45.1 ± 8.7 

4 42.6 ± 30.1 
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5 42.8 ± 28.7 

6 47.4 ± 21.9 

7 46.4 ± 15.5 

8 32.6 ± 18.9 

9 40.2 ± 34.7 

10 38.9 ± 20 

11 45.1 ± 25.4 

12 31.6 ± 16.9 

13 40.4 ± 30.4 

14 55.8 ± 35.2 

15 57.2 ± 15.9 

16 33.9 ± 21.6 

17 48.4 ± 24.8 

18 32.2 ± 11.1 

19 40.9 ± 21.7 

20 38.9 ± 2.6 

Average 43.7 ± 9.7 
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3 Adaptive Tuning of Basal and Bolus Insulin to Reduce 

Postprandial Hypoglycemia in a Hybrid Artificial Pancreas 

Patients sometimes experience postprandial hypoglycemia. Inappropriate pre-meal 

insulin bolus and postprandial basal insulin may cause postprandial hypoglycemia. In 

this chapter, two adaptive algorithms are developed based on postprandial glucose 

levels to better adjust insulin delivery rates. 

Chapter Summary: 

 Two adaptive learning postprandial hypoglycemia prevention algorithms 

(ALPHA) are implemented. 

 In one implementation, only postprandial basal insulin (ALPHA-BR) is 

adaptively modified. In the other implementation, only insulin to carb ratio 

(ALPHA-ICR) is changed without changing the basal insulin. 

 Both implementations are evaluated with real-world scenarios. They 

successfully reduce time in hypoglycemia.  

 ALPHA-BR reduces time in hypoglycemia more than ALPHA-ICR and is 

selected to be used for in-vivo studies. 

This work was originally published in 2019: 
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Navid Resalat, Joseph El Youssef, Ravi Reddy, Jessica Castle and Peter G. Jacobs, 

“Adaptive Tuning of Basal and Bolus Insulin to Reduce Postprandial Hypoglycemia in a 

Hybrid Artificial Pancreas”, Journal of Process Control, vol. 80, August 2019, pp. 247-

254 [116], Reprinted with permission from Elsevier. 

3.1 Abstract 

Objective: We introduce an adaptive learning algorithm to better adjust postprandial 

basal and pre-meal bolus insulin for reducing postprandial hypoglycemia in a hybrid 

artificial pancreas (AP). An AP uses a control algorithm and sensed glucose to 

automate the delivery of insulin to people with type 1 diabetes (T1D).  A hybrid AP 

requires the person to dose insulin in advance of a meal. Insulin sensitivity is 

dynamic in people with T1D, making it challenging for an AP to maintain 

euglycemia. Adaptive approaches to meal dosing can help prevent postprandial 

hypoglycemia. Methods: An adaptive learning postprandial hypoglycemia-

prevention algorithm (ALPHA) is introduced. One implementation of ALPHA 

adjusts the rate of postprandial insulin (ALPHA-BR) proportionally in response to 

prior postprandial episodes. This is achieved by an adaptive aggressiveness factor 

applied to postprandial basal insulin. The second implementation adaptively updates 

the pre-meal bolus insulin by changing the insulin-to-carbohydrate ratio (ALPHA-

ICR), also proportionally in response to prior postprandial hypoglycemia. Both 
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implementations were evaluated within an AP on an in-silico T1D virtual population 

of 99 subjects with circadian insulin sensitivity variations and 30% errors on meal 

estimations. Twenty real-world 4-day meal scenarios were given and glycemic 

outcomes were compared with an AP with no adaptation. Results: Out of the 99 in-

silico subjects, 23 of them experienced postprandial hypoglycemia leading to greater 

than 1% overall time in hypoglycemia.  Of these 23 subjects, we evaluated the 

benefit of using ALPHA-BR and ALPHA-ICR to prevent postprandial 

hypoglycemia. ALPHA-BR yielded substantially fewer percent time in 

hypoglycemia compared to AP (0.54% vs 1.92%, p < 0.001) and fewer rescue carbs 

per day (0.36 vs. 1.29, p<0.001). For the control algorithm evaluated, it yielded an 

average aggressiveness factor of 0.72 for reducing postprandial basal insulin. 

ALPHA-ICR slightly reduced time in hypoglycemia compared to AP (1.77% vs. 

1.92%, p=0.09). Conclusion: Incorporating adaptive meal dosing into an AP can help 

reduce postprandial hypoglycemia, and the reduction is primarily due to changes in 

postprandial insulin delivery rather than pre-meal bolus. Significance: Adapting 

postprandial insulin can lead to substantial reduction in postprandial hypoglycemia 

and the adaptive algorithm presented can be used both to tune an algorithm prior to a 

study and to adapt to individuals during real-time usage. 

3.2 Introduction 
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People with type 1 diabetes produce little or no insulin and therefore require insulin 

for survival. Different insulin therapy methods are used by people with T1D to 

control glucose levels. Multiple daily injection (MDI) is where long-acting basal 

insulin is administered once or twice per day, and rapid-acting insulin is 

administered for meals. Continuous subcutaneous insulin infusion (CSII) therapy is 

another type of open-loop therapy where rapid-acting insulin is delivered via an 

insulin pump. MDI and CSII therapies require multiple adjustments by the user 

throughout the day. Closed-loop therapies have been developed to reduce patient 

burden by automating delivery of insulin and optionally glucagon to enable better 

glucose control with less patient interaction. The artificial pancreas (AP) is a closed-

loop therapy where the delivery rate of rapid-acting insulin is calculated based on 

continuous glucose measurements (CGM) and delivered by an insulin pump. 

Many AP systems are hybrid, meaning that patients are still required to announce 

meals and in certain systems estimate the amount of carbohydrates consumed so that 

a pre-meal bolus can be delivered. Dosing of insulin for meals is a challenging aspect 

of T1D glucose management. Pre-meal insulin boluses help to reduce postprandial 

excursions, though the delayed pharmacokinetics of subcutaneously delivered insulin 

limits this effect resulting in some hyperglycemia. Over-estimation of the amount of 

pre-meal insulin, on the other hand, leads to postprandial hypoglycemia, a common 
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and dangerous situation. Severe hypoglycemia (< 54 mg/dl) if left untreated can lead 

to coma and can be life threatening. In a recent hybrid insulin-only AP study by our 

group [64], we observed that some of the participants experienced postprandial 

hypoglycemia. A number of factors can lead to postprandial hypoglycemia in hybrid 

AP systems. First, there is variability in insulin kinetics of people with T1D making 

it challenging for a single control algorithm to work well for all patients. Second, 

insulin sensitivity tends to vary throughout the day making the estimation of the 

optimal dose of insulin a challenge. Third, people commonly misestimate the amount 

of carbohydrates consumed for a given meal, which can lead to over or under-

delivery of pre-meal insulin. An adaptive system would be helpful to respond to 

meal-based insulin deliveries within a hybrid AP system. An adaptive system can 

modify the insulin-to-carbohydrate (ICR) or the post-prandial basal insulin in 

response to postprandial hypoglycemia. 

Adaptive AP systems have been presented by a number of research groups. Palerm et 

al. [117]-[118] presented a run-to-run control algorithm to adjust pre-meal bolus 

insulin each day based on glucose readings of the previous day with similar meal 

amounts. They showed higher rates for both time in range and hypoglycemia. Dassau 

et al. [119]-[120] tested a 12-week adaptive artificial pancreas where the ICR and the 

basal delivery were adapted every 4 weeks and one week, respectively. They 
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demonstrated a decrease in time in hypoglycemia (from 2% to 1.9%) and time in 

range (76.7% to 72.6%) after the 12th week. Toffanin et al. [121] proposed an 

adaptive run-to-run approach in which the basal rate was adjusted based on the 

patient’s clinical performance during the last 24 hours. If time in hypoglycemia was 

observed, their algorithm reduced the basal rate. If time in hyperglycemia was 

observed, their algorithm increased basal rate accordingly. They tested their 

algorithm on 100 virtual patients using the UVA/Padova simulator. They showed 

that time in hypoglycemia was reduced from 8.3% to 1.5% after 8 days. Their 

algorithm treated non-meal and meal hypo/hyper events equivalently. In a recent 

paper by the same group, Toffanin et al. [122] adapted basal rates based on 

performance during non-meal/ overnight periods and they adjusted pre-meal boluses 

using the same run-to-run structure. While time in range improved, there was not a 

change in hypoglycemia based on this approach to adaptation. Ruiz et al. [66] 

integrated an insulin feedback method in a proportional-integral-derivative 

controller, preventing possible hypoglycemic events induced by the delay between 

the infused insulin and glucose level. They found no postprandial hypoglycemia 

across four participants. Turksoy et al. [123] developed a hypoglycemia early alert 

system, embedded in an AP, enabling the prediction of hypoglycemia 25 minutes in 

the future. For each hypoglycemia alert, a 15-gram carbohydrate (CHO) was 

delivered. They tested their algorithm across three AP experiments with random 
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meal size and found 13 hypoglycemic events occurred. Time in hypoglycemia 

reduced to zero and time in hyperglycemia increased to 47% from 38% when the 

hypoglycemia alert system was not enabled. In a different study, Galati et al. [124] 

developed a hierarchical diagram to diagnose and prevent postprandial 

hypoglycemia. Their method required measuring C-peptide, insulin, β-

hydroxybutyrate, insulin antibodies and sulfonylurea screen to prevent 

hypoglycemia. Herrero et al. [113] described an adaptive algorithm to modify ICR 

for a meal bolus calculator in a hybrid AP. This algorithm improved time in range 

and did not change postprandial hypoglycemia. Like Toffanin et al. [122], they did 

not focus on adapting postprandial basal insulin, which may be necessary for 

avoiding hypoglycemia as we show in the current paper. 

The current paper presents two approaches to postprandial hypoglycemia prevention 

using a new Adaptive Learning Postprandial Hypoglycemia-prevention Algorithm 

(ALPHA), designed to be used in hybrid AP insulin therapy. In one implementation, 

ALPHA modifies the aggressiveness of the basal rate of postprandial insulin 

(ALPHA-BR) and in the second implementation, ALPHA adjusts the aggressiveness 

of the pre-meal bolus insulin by modifying the ICR which is a similar approach to 

Toffanin et al. [122] and Herrero et al. 2017 [113]. The objective of the comparison 

was to determine whether adapting pre-meal vs. postprandial basal insulin was 
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optimal in preventing postprandial hypoglycemia. In addition, we demonstrate how 

the ALPHA algorithm can be used to tune the post-prandial insulin delivery 

aggressiveness factor for any AP control algorithm using an in-silico virtual patient 

population. 

ALPHA-BR and ALPHA-ICR were evaluated by a series of in-silico simulations 

conducted under closed loop control across four days on 99 virtual patients that are 

further described below. Each virtual patient was given 20 real-world meal scenarios 

acquired during real-world AP studies. Performance of ALPHA-BR and ALPHA-

ICR was compared while using the current version of the OHSU Fading Memory 

Proportional Derivative controller (FMPD), described further in [20, 22], which does 

not have postprandial meal adaptation. We also evaluated the ALPHA algorithm 

using a model predictive control (MPC) algorithm [49, 125] to demonstrate that 

ALPHA is algorithm agnostic and can work on various types of AP control 

methodologies. 

The primary contributions of the paper are as follows.  First, we introduce a method 

for adapting aggressiveness of insulin dosing after meals.  Second, we introduce a 

method for adapting aggressiveness of carbohydrate ratios for dosing insulin prior to 

meals.  Third, we show that adapting postprandial insulin is significantly more 

effective than adapting carbohydrate ratios when it is necessary to address problems 
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of postprandial hypoglycemia in patients. 

3.3 Material and Methods 

A virtual T1D patient population was generated based on a glucoregulatory model 

consisting of insulin kinetics and dynamics models and a glucose kinetics model. 

The parameters of insulin dynamics model were statistically sampled to build a 

virtual population with different insulin sensitivities as described further in the 

Supplementary Material. 

3.3.1 ALPHA-BR Description 

ALPHA-BR is an algorithm that adapts postprandial insulin delivery to achieve a 

certain target range. In other words, it adjusts postprandial basal insulin delivery if 

postprandial glucose following prior meals is outside of a target range. If post-

prandial hypoglycemia occurs, ALPHA-BR will reduce postprandial insulin for the 

next meal. The factor by which postprandial insulin is decreased is determined by an 

aggressiveness factor (Af). The initial postprandial insulin infusion rate calculated by 

the AP, called IIRorig (i.e. before aggressiveness factor is applied). Smooth adaptation 

was realized by averaging Af values from prior meals to give Af
Avg

. The value of 

Af
Avg

 is between 0 and 1 and is re-calculated after each meal. 
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                             (1) 

where, the variable k denotes the meal event and t is the time of day. The new 

postprandial insulin infusion rate (IIRadapt) is calculated according to equation 2. The 

aggressiveness factor is applied from the time that the meal starts (tmeal) through a 

window of time (tagg-win). 

( ) | ( ) ( ) |
adapt orig
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IIR t A k IIR t tt f mealmeal

  
                             (2) 

Af(k) is adjusted using a piece-wise linear adjustment that is a function of the 

minimum glucose measured within an observation time-window after the last meal 

(Gmin) whereby the window begins at tstart and ends at tstop relative to tmeal(k-1). 

Figure  3.1 and equation 3 show how Af(k) is modified based on Gmin and Af
Avg

. 
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If Gmin is within a euglycemic range of Geug-lower = 90 to Geug-upper=140 mg/dl, then 

the aggressiveness factor does not change and Af = Af
Avg

. However, if Gmin drops 
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below Geug-lower, the aggressiveness factor, Af, is reduced proportionally down to a 

hypoglycemic threshold of Ghypo (70 mg/dl in Figure 3.1). Below the hypo threshold 

(Ghypo), Af = 0 meaning that insulin being delivered during tagg-win for the next meal is 

the least aggressive since Af is zero in Equation 1. The aggressiveness factor is 

likewise increased if Gmin is above the upper limit of euglycemia (Geug-upper). Again, 

the aggressiveness factor is increased proportionally with respect to Gmin until Gmin 

exceeds the hyperglycemic threshold (Ghyper). Above Ghyper, the value of IIRadapt is 

closer to the original AP-calculated postprandial basal rate insulin (IIRorig) since Af is 

set to one in equation 1. 

Figure 3.2 shows graphically every example from the piecewise linear function to 

demonstrate how Af adapts with respect to prior postprandial glycemic responses. 

Prior to adaptation, Af(1) is 1 for the first meal. For the second meal, Af(2) was 

reduced since glucose dropped below Geug-lower after the first meal. For the third 

meal, Af(3)=Af(2) as the glucose fell within the euglycemic range after the second 

meal. After the third meal, glucose never dropped into/below the euglycemic range, 

so Af(4) was increased. After the fourth meal, hypoglycemia occurred so Af(5)=0. 

After the fifth meal, glucose never fell below the hyperglycemic limit, and so 

Af(6)=1. 
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Figure 3.1 Af(k) as a function of minimum postprandial glucose excursion 

 

Figure 3.2 Changes of Af(k) with respect to Gmin values over meal events for the ALPHA-BR 

A special exception to the above rules is if a subsequent meal, snack or exercise 

event occurs during the postprandial observation time window (i.e. between tstart and 
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ends at tstop). If this occurs, the observation end time (tstop), is the time of the 

subsequent meal, snack, or exercise event. Adaptation of Af proceeds as described 

above using the shorter observation window, but Af is only changed if it is 

determined that hypoglycemia has occurred and Af needs to be decreased. This is to 

avoid adaptively increasing Af in response to observation periods that are too soon 

after a meal has occurred when postprandial hyperglycemia is still likely and 

acceptable. 

3.3.2 ALPHA-ICR 

ALPHA-ICR, like ALPHA-BR, is also an adaptive algorithm that adapts to a target 

range. However, rather than adjusting the postprandial basal insulin, ALPHA-ICR 

adjusts the ICR if postprandial glucose from a prior meal is outside of a target range. 

The pre-meal bolus prior to adaptation is a function of CHO, ICR, and the 

percentage of the insulin bolus given prior to the meal (Ip). The ICR is defined as 

ICR =  
1

3
×

1700

TDIR
  [111]. 

)( ( )
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The ALPHA-ICR works similarly to ALPHA-BR except that it is the Ip which adapts 

based on postprandial hypoglycemia rather than the postprandial Af. IP is computed 

according to a similar piecewise linear equation given in equation 6. The same 

relationship can be shown as is given in Figure 3.1 except that the y-axis is for IP, 

which has an upper and lower range of pre-meal insulin (IP) on the y-axis set to 40% 

to 100%. 
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3.3.3 Tuning parameters 

ALPHA-BR has seven parameters to be determined. These parameters are Ghypo, 

Geug-lower, Geug-upper, Ghyper, tstart, tstop and tagg-win. ALPHA-ICR has the same parameters 

as ALPHA-BR except tagg-win is unnecessary since only the pre-meal bolus is 

adjusted and there is no window of postprandial adjustment. Changing Ghypo affects 

how gradually the adaptation occurs when postprandial hypoglycemia is observed. 

Changing Geug-lower affects the euglycemic range over which adaptation does not 

occur. Likewise, changing the Ghyper parameter will affect how rapidly adaptation 
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occurs when postprandial hyperglycemia is observed and Geug-upper affects the upper 

range of euglycemia when no adaptation occurs. 

We determined ad-hoc that three parameters were most sensitive for preventing 

hypoglycemia and optimizing time in euglycemia: Ghypo, Geug-upper and tagg-win. Other 

parameters were fixed based on ad-hoc experimentation. The beginning of the 

postprandial observation window, tstart was fixed at 60 min to provide adequate time 

for glucose to peak following a meal [117]. The end of the postprandial observation 

window, tstop, was fixed at 240 min. Geug-lower, was fixed at 90 mg/dl and Ghyper was 

fixed to 160 mg/dl. To tune the parameters we compared performance outcome 

metrics (percent time less than 70 mg/dl, percent time between 70 and 180 mg/dl, 

and percent time greater than 180 mg/dl) as we varied the parameters. We varied 

Ghypo between 40 and 80 mg/dl, tagg-win between 0.5 hr to 3 hr, and Geug-upper between 

110 and 140 mg/dl. Under the results section, we show how performance varied with 

respect to the different combinations of these tuned parameters. 

3.3.4 Testing under real-world meal scenario 

A. Background on FMPD control algorithm used in testing 

For the evaluation of the ALPHA algorithm, we used a control algorithm on which 

we have previously reported.  The OHSU FMPD controller is a classical fading 

memory proportional derivative controller that considers both the proportional error 
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(i.e. distance from a glucose target) as well as the derivative error (i.e. how rapidly 

the glucose is changing with respect to time).  The glucose target was set to 130 

mg/dL and the derivative error was calculated using the slope of the glucose curve 

measured over the prior 15 minutes in time.  The fading memory aspect of the 

controller is implemented by including exponentially weighted prior proportional 

and derivative error components in the control estimation of insulin. In addition to 

utilizing the proportional error and derivative error, there is a steady-state basal 

insulin delivered to the patient that is calculated using the patient’s total daily insulin 

requirement. We have published extensively on the FMPD algorithm both on in-

silico evaluations and in human clinical trials [20, 22, 28]. 

B. Background on MPC control algorithm used in testing 

While ALPHA was tuned and evaluated primarily on the FMPD control algorithm, 

we did additional preliminary analysis of the ALPHA algorithm using the OHSU 

model predictive control algorithm (MPC) described under [49]. The OHSU MPC 

uses a physical model of the glucoregulatory system including a model of insulin 

kinetics, insulin dynamics, carbohydrate absorption kinetics, and a model for 

exercise to predict future glucose trajectories across a prediction horizon and selects 

an optimal dosing schedule for insulin [36, 52]. It then delivers the current insulin 

dose.  The optimization is carried out every 5 minutes when new CGM data arrives 
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at the controller.  The analysis on the MPC algorithm was not as extensive as the 

analysis and tuning done on the FMPD algorithm.  The purpose of doing additional 

analysis on the MPC algorithm was do demonstrate that ALPHA can be used on 

different control algorithms. 

C. Evaluation of ALPHA using FMPD and real-world meal scenarios 

Twenty real-world meal scenarios were acquired from a 4-day outpatient AP study 

[64]. Each virtual patient was given each of the 20 meal scenarios while the patients’ 

glucose was controlled using (1) the OHSU FMPD controller [20, 22, 28] (called 

AP), (2) the OHSU FMPD + ALPHA-BR (called ALPHA-BR), and (3) the OHSU 

FMPD + ALPHA-ICR (called ALPHA- ICR). The system was further challenged by 

introducing a randomly selected -30% to 30% meal uncertainty that was applied to 

each carbohydrate intake in each meal scenario as has been done in other in-silico 

trials of postprandial meal adaptation [113]. Circadian variability of insulin 

sensitivity was introduced to the insulin parameter Sf1, Sf2 and Sf3 by varying these 

parameters with respect to time of day using equation 7 [113]: 

*

fi fi

2π
S (t)=S ×(1 + 0.3sin( t + 2π×RND),  i = 1, 2, 3

24×60/Ts
                             (7) 

where, RND is a random variable generated from a uniform distribution between 0 

and 1; Ts is the sampling interval (5 minutes). Sfi* in equation 7 denotes the nominal 
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value of each of the insulin sensitivity factors. Notice that, in this paper, we have not 

changed ICR throughout a day. The AP system is designed to compensate for the 

intra-day variability of the ICR value. Our AP delivers 80% of the meal insulin at the 

time of the meal and then allows the controller to deliver the additional meal insulin 

during the hours following the meal. This approach has also been implemented and 

described in [113]. Notice also that the AP algorithms used in this work and the in-

silico virtual patient population models are designed to work with rapid-acting 

insulin; the AP systems presented in this paper are not designed to be used with long-

acting insulin. 

3.3.5 Evaluation metrics and statistical analysis 

We evaluated the performance of ALPHA-BR and ALPHA-ICR on the 23 patients 

from the in-silico population who experienced greater than 1% time in 

hypoglycemia.  The primary outcome measure for the experiment was percent time 

in hypoglycemia (<70mg/dl). Secondary outcome measures were percent time in 

hyperglycemia (>180mg/dl), percent time in range (70-180 mg/dl), number of times 

rescue carbs were required, low blood glucose index (LBGI) and high blood glucose 

index (HBGI). The Wilcoxon rank-sum test was used to test statistical difference 

between AP, AP+ALPHA-BR and AP+ALPHA-ICR with significance level set to 

0.05. In addition to showing adaption results on the 23 patients who experienced 
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greater than 1% time in hypoglycemia (Table X), we also show results on all 99 of 

the virtual patients (Table XI). 

3.4 Results 

3.4.1 Determining Gmin-lower and tagg-win 

Figure  3.3 and Figure  3.4 show how the performance comparisons between AP and 

ALPHA-BR across different parameters that were tuned for the subjects with greater 

than 1% time in hypoglycemia. Figure  3.3 shows a substantial reduction in percent 

time in hypoglycemia when comparing AP with the ALPHA-BR and the 

improvement is greater for larger tagg-win sizes. This makes sense since if tagg-win is 

larger, it means that the postprandial insulin dosing is changed over a longer period 

of time. The optimal time for applying the aggressiveness factor is for tagg-win = 1.5 

hr, after which there is not a significant improvement. There is also a reduction in 

percent time in hypoglycemia by increasing Ghypo with minimal hypoglycemia 

observed when Ghypo = 80 mg/dl. Figure  3.4 shows how adjusting tagg-win and Ghypo 

affected percent time in hyperglycemia and time in range for Geug-upper fixed to 140 

mg/dl. We selected a Ghypo of 70 mg/dl based on the consideration that there was not 

a significant difference in time in hypoglycemia between 70 and 80 mg/dl (p = .46), 

but there was less time in hyperglycemia when Ghypo was set to 70 mg/dl as shown in 

Figure  3.4. When we varied Geug-upper between 90 and 140 mg/dl with Ghypo=70 mg/dl 
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and tagg-win=1.5 hr, we observed marginally increased time in range for smaller values 

of Geug-upper. However, to maintain a stable target glycemic range during which the 

system did not adapt (see Figure  3.1), we set Geug-upper to 140 mg/dl. Time in 

hypoglycemia was lowest (0.54%) with the ALPHA-BR for the optimized tagg-win = 

1.5 hr and Ghypo=70 mg/dl, compared to AP (1.92%). However, time in 

hyperglycemia increased slightly from 13.5% to 15.6%. 

The ALPHA parameters were also tuned for ALPHA-ICR. The ALPHA-ICR 

implementation was far less sensitive to the parameters than ALPHA-BR. For 

example, when we varied Ghypo from 40 to 80 mg/dl with Geug-upper=140 mg/dl, it 

only changed the percent time in hypoglycemia from 1.92% to 1.77% and the 

difference was not significant (p=.72). Similarly, when we varied the Geug-upper from 

90 to 140 mg/dl with Ghypo=80 mg/dl, we saw no change in percent time in range and 

hypoglycemia (p=.73). Therefore, we used the same Geug-upper and Ghypo parameters in 

the ALPHA-ICR implementation that we used in the ALPHA-BR implementation. 

Table IX shows the final values of the ALPHA-BR and ALPHA-ICR parameters. 

Table X shows improvement in glycemic control for subjects who experienced high 

hypoglycemia under the AP condition (>1%).  Comparable glycemic outcomes were 

observed across all the in-silico subjects as shown in Table XI. 
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Figure 3.3 Percent time in hypoglycemia across different tagg-win and Ghypo, for Geug-upper fixed at 

140 mg/dl. 

 

Figure 3.4 Percent time in hyperglycemia (left) and euglycemia (right) across different 

parameter settings 

 

Table IX The optimal parameters of ALPHA-BR and ALPHA-ICR 

Ghypo   

[mg/dl] 

Geug-lower 

[mg/dl] 

Geug-upper 

[mg/dl] 

Ghyper    

[mg/dl] 

tstart             

[min] 

tstop               

[min] 

tagg-win     

[hr]          

70 90 140 160 60 240 1.5 
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3.4.2 Comparison of adaptive AP vs. non-adaptive AP 

Overall, the ALPHA-BR implementation was successful in reducing post-prandial 

hypoglycemia while ALPHA-ICR reduced hypoglycemia, but not as significantly. 

The comparison between the performance of ALPHA-BR, ALPHA-ICR and AP 

across all meal scenarios for subjects with higher hypoglycemia (>1%) is shown in 

Table X. ALPHA-BR significantly reduced time in hypoglycemia compared with AP 

(0.54% vs. 1.92%, p<0.001) whereas ALPHA-ICR reduced time in hypoglycemia 

slightly and the difference was not significant (1.77%, p=.41). ALPHA-BR also 

reduced average rescue carbs per day (0.36 vs. 1.29, p<0.001). However, ALPHA-

BR resulted in modest increase in time in hyperglycemia (15.6% vs. 13.5%, p=.06) 

and an increased average glucose level (147.3 vs. 142.1 mg/dl, p<0.001) compared 

with AP. 

Table XI shows the outcome measures for all virtual subjects. Time in hypoglycemia 

was significantly reduced with ALPHA-BR compared to AP whereas this reduction 

was not significant with ALPHA-ICR. ALPHA-BR resulted in increased time in 

hyperglycemia and HBGI compared with AP, but these differences were not 

significant. ALPHA-BR did result in a small increase in average glucose compared 

to AP (153.5 vs. 150.9 mg/dl, p=0.04). 
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Table X Comparison between AP, ALPHA-BR, ALPHA-ICR across the meal scenarios for 

subjects with hypoglycemia greater than 1% 

µ ±  AP ALPHA-BR ALPHA-ICR 

Time in  Hypoglycemia [%] 1.92 ± 0.74 0.54 ± 0.3* 1.77 ± 0.8 

rescue carbs [event/day/patient] 1.29 ± 0.47 0.36 ± 0.19* 1.19 ± 0.52 

Time in Euglycemia [%] 84.6 ± 4.4 83.9 ± 4.6 83 ± 4.4 

Time in Hyperglycemia [%] 13.5 ± 4.2 15.6 ± 4.4 15.3 ± 4.1 

Average glucose [mg/dl] 142.1 ± 5.2 147.3 ± 5.47* 144.6 ± 5.2* 

HBGI 4.6 ± 0.9 4.8 ± 1.1 5 ± 1 

LBGI 2.73 ± 0.44 1.74 ± 0.28* 2.7 ± 0.5 

*) shows significance compared to AP (p-value < 0.05) 

Table XI Comparison between AP, ALPHA-BR, ALPHA-ICR across the meal scenarios for all 

virtual patients 

µ ±  AP ALPHA-BR ALPHA-ICR 

Time in  Hypoglycemia [%] 0.57 ± 0.86 0.17 ± 0.27* 0.53 ± 0.83 

rescue carbs [event/day/patient] 0.38 ± 0.57 0.11 ± 0.18* 0.35 ± 0.55 

Time in Euglycemia [%] 80.9 ± 6.9 80.1 ± 6.9 80.3 ± 6.7 

Time in Hyperglycemia [%] 18.5 ± 7.2 19.7 ± 6.9 19.2 ± 6.8 

Average glucose [mg/dl] 150.9 ± 11 153.5 ± 11* 151.8 ± 10.7 

HBGI 5.3 ± 1.9 5.5 ± 1.9 5.4 ± 1.9 

LBGI 1.46 ± 0.94 1.09 ± 0.56* 1.45 ± 0.93 

*) shows significance compared to AP  (p-value < 0.05) 
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Table XII Convergence at each meal scenario in ALPHA-BR 

Meal Scenario Mean carbs and std # meals to converge Final Af
Avg

 

1 40.2 ± 9.9 2 0.77 ± 0.08 

2 72.8 ± 36.6 5 0.65 ± 0.09 

3 45.1 ± 8.7 7 0.6 ± 0.09 

4 42.6 ± 30.1 2 0.74 ± 0.11 

5 42.8 ± 28.7 8 0.67 ± 0.05 

6 47.4 ± 21.9 1 0.79 ± 0.13 

7 46.4 ± 15.5 2 0.73 ± 0.11 

8 32.6 ± 18.9 2 0.79 ± 0.11 

9 40.2 ± 34.7 3 0.75 ± 0.09 

10 38.9 ± 20 2 0.75 ± 0.1 

11 45.1 ± 25.4 3 0.67 ± 0.12 

12 31.6 ± 16.9 2 0.75 ± 0.1 

13 40.4 ± 30.4 5 0.63 ± 0.07 

14 55.8 ± 35.2 2 0.79 ± 0.1 

15 57.2 ± 15.9 7 0.62 ± 0.09 

16 33.9 ± 21.6 2 0.75 ± 0.09 

17 48.4 ± 24.8 2 0.74 ± 0.11 

18 32.2 ± 11.1 2 0.75 ± 0.08 

19 40.9 ± 21.7 5 0.65 ± 0.12 

20 38.9 ± 2.6 2 0.71 ± 0.1 
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Average 43.7 ± 9.7 3.3 ± 2.1 0.72 ± 0.06 

 

 

Figure 3.5 Interquartile range of the glucose profile and the box-plot of the changes of the 𝐴𝑓
𝐴𝑣𝑔 

over the meal events across the virtual patients for the 5th meal scenario 

Figure 3.5 compares the performance of AP and ALPHA-BR with the optimized 

ALPHA-BR parameters for the 5
th

 meal scenario. The adaptation of the Af
Avg

 over 

the meal events is shown in the lower subplot. The aggressiveness factor started at a 

value of 1 and then converged over time to a final value. ALPHA-BR gradually 

began reducing hypoglycemia after the first day. We defined convergence of Af to be 
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the meal number when Af changed less than 5% from the median of the next three Af 

values. Notice that for this example scenario in Figure  3.5, Af converged after 8 

meals. Table XII shows the convergence number for each of the meal scenarios 

across the subjects with hypoglycemia greater than 1%. 

A natural alternative to the ALPHA algorithm could be to simply increase the 

glucose target of the control algorithm. The performance of ALPHA-BR was 

compared with the FMPD algorithm when the target for the FMPD algorithm was 

increased from 115 mg/dl to 130 mg/dl. By increasing the target value to 130 mg/dl, 

time in hypoglycemia was reduced; however, this reduction was not as significant 

compared to ALPHA-BR, which used a target of 115 mg/dL. In addition, by 

increasing the target value, the time in hyperglycemia increased more than ALPHA-

BR.  And the time in hyperglycemia significantly increased with the higher target 

value.  Table XII summarizes these results.  From this analysis, we concluded that 

using ALPHA was more effective at reducing postprandial hypoglycemia than 

simply raising the glucose target of the control algorithm. 

Table XIII Comparison between AP with higher target value and ALPHA-BR across the meal 

scenarios for all virtual subjects 

µ ±  AP (TGT = 115 mg/dl) AP (TGT = 130 mg/dl) ALPHA-BR 

Time in  Hypoglycemia [%] 0.57 ± 0.86 0.38 ± 0.67 0.17 ± 0.27* 
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rescue carbs [event/day/patient] 0.38 ± 0.57 0.26 ± 0.45 0.11 ± 0.18* 

Time in Euglycemia [%] 80.9 ± 6.9 78.1 ± 7.2* 80.1 ± 6.9 

Time in Hyperglycemia [%] 18.5 ± 7.2 21.5 ± 7.4* 19.7 ± 6.9 

Average glucose [mg/dl] 150.9 ± 11 156.4 ± 11.4* 153.5 ± 11* 

HBGI 5.3 ± 1.9 5.9 ± 2* 5.5 ± 1.9 

LBGI 1.46 ± 0.94 1.31 ± 0.95 1.09 ± 0.56* 

*) shows significance compared to AP.  (p-value < 0.05) 

3.5 Discussion and Conclusion 

We describe here an adaptive AP algorithm to reduce postprandial hypoglycemia by 

adjusting either postprandial basal insulin (ALPHA-BR) or pre-meal bolus insulin 

(ALPHA-ICR). Both implementations reduced time in hypoglycemia; however, 

ALPHA-BR reduced hypoglycemia further and was selected as the better 

implementation. For the 23 subjects with hypoglycemia greater than 1%, ALPHA-

BR was able to significantly reduce time in hypoglycemia from 1.92% to 0.54% 

while ALPHA-ICR only reduced hypoglycemia to 1.77% (Table X). 

To demonstrate whether ALPHA-BR is effective on an algorithm different than the 

OHSU FMPD algorithm, we evaluated ALPHA-BR on the OHSU single-hormone 
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MPC algorithm [49]. ALPHA-BR significantly reduced percent time in 

hypoglycemia compared with MPC from 0.55% to 0.19% (p < 0.001) in the same 

virtual patient population and same meal scenarios. ALPHA-BR also significantly 

reduced average rescue carbohydrates needed per day from 0.42 [S.D. 0.41] to 0.16 

[S.D. 0.21] (p < 0.001).  For the MPC algorithm without ALPHA-BR, the percent 

time in range (70-180 mg/dL) was 84.39% while time in range was lower at 81.27% 

with MPC plus ALPHA-BR (p<0.001).  The percent time in hyperglycemia for MPC 

was 15.08% while the MPC plus ALPHA-BR had time in hyperglycemia of 18.54% 

(p < 0.001). These results are summarized in a Supplemental Table XV in the 

supplementary section. 

To further evaluate across alternative in-silico simulators, we tested the ALPHA-BR 

across 10 virtual adults of the single hormone UVa/Padova simulator [31] using the 

OHSU-FMPD controller. However, we did not observe any postprandial 

hypoglycemia using this simulator with the non-adaptive OHSU-FMPD algorithm.  

Therefore, we were unable to evaluate the ALPHA-BR and ALPHA-ICR algorithms 

using this simulator. 

A major finding of this paper is that adapting post-prandial basal insulin is more 

effective at influencing post-prandial hypoglycemia than adaptively changing pre-

meal insulin. In addition, ALPHA-BR demonstrates that the average aggressiveness 
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factor should be reduced after each meal for 1.5 hours to gain substantial reduction in 

time in hypoglycemia. The ALPHA-BR algorithm can be used to initialize the 

postprandial insulin dosing based on in-silico testing.  For example, for the FMPD 

algorithm evaluated here, we determined that the postprandial insulin should be 

reduced by 28 percent from the typical insulin dosing (i.e. not after a meal).  

ALPHA-BR can also be used to adapt to each individual during usage as that 

patient’s insulin sensitivity, diet and behavior change with time. 

The ALPHA-BR adaptation converged on average after approximately 3 meals 

(Table XII), showing the feasibility of the ALPHA-BR in real-time applications. 

Other papers have also presented adaptive algorithms to improve glycemic control in 

people with T1D and these algorithms typically require about a week to converge. 

Toffanin et al. (2017) [122] developed a run-to-run algorithm for use within an AP 

study with fixed amount of meals at specific times (40,  80 and 60 grams for 

breakfast, lunch and dinner, respectively). They adjusted nighttime basal insulin and 

daytime bolus insulin adaptively to reduce time in hypoglycemia and increase time 

in range. The algorithm was tested in two different scenarios across 100 virtual 

patients of the UVA/Padova simulator using a model predictive control algorithm. In 

one scenario, a random ±30% variation was added to the nominal insulin sensitivity 

for 8 weeks and in the other, the random variation was added gradually from ±10% 
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to ±30% during 4 weeks. In the 1
st
 scenario, time in range improved from 86% after 

week 1 to 90.86% and 91.35% after week 4 and 8. Time in hypoglycemia was 

reported as 0.66%, 0.17%, 0.91% for week 1, 4 and 8 respectively. In the 2
nd

 

scenario, time in hypoglycemia was reported as 0.52% and 0.65% after week 1 and 

4, respectively. The convergence rate of their algorithm exceeded one week. In 

another run-to-run study by Herrero et al. (2017) [113], only meal bolus insulin was 

adaptively changed to improve glycemic controls. They also used fixed pattern of 

carbs dose intake (60, 100 and 80 grams for breakfast, lunch, dinner, respectively) 

and incorporated inter-day and intra-day insulin sensitivity and meal variabilities to 

their simulations. They evaluated their algorithm across 11 adolescences and 11 

adults within the UVA/Padova simulator using their developed controller, Imperial 

College Artificial Pancreas. After a 3-month simulation, time in range was improved 

from 82% to 89.5% whereas time in hypoglycemia did not change (0.21%) among 

11 adults. A major difference between these studies and the current study is that the 

meal scenarios presented to our virtual patients were taken from real-world meals 

consumed by patients in an AP study. The meal times and amounts were sporadic 

both in times and amounts. ALPHA can robustly manage this variability and 

convergence still occurred rapidly across all 20 real-world meal scenarios. 



 

116 

 

A limitation of the ALPHA algorithm is that it treats all meals equivalently, which 

may not be appropriate if insulin sensitivities change throughout the day. We 

considered using a case-based-reasoning approach similar to Herrero et al.’s 

approach [113], to handle difference in meal times. However, we found that even 

with insulin sensitivity varying +/- 30% throughout the day and incorporating real-

world sporadic meals into our simulations, convergence of the adaptation was rapid 

without the need for separately accounting for time-of-day or case-based meals. 

Another limitation of this study is that it was only done on an in-silico virtual patient 

population. While real-world meals were used from real-world AP studies, the 

results are still based on a glucoregulatory model. In the future, we plan to evaluate 

ALPHA-BR within a clinical hybrid AP study. The preliminary analyses of ALPHA-

BR across study participants demonstrated that the initial aggressiveness factor of 

0.7 (also shown in table XI) could reduce time in hypoglycemia substantially. For 

our new clinical studies, we start all subjects with an aggressiveness factor of 0.7, 

and then allowing the aggressiveness factor to range from 0 to 1. In this way, the 

ALPHA algorithm can be used to increase or decrease the postprandial insulin from 

a starting value. 

3.6 Conclusion 
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This paper has shown that adaptation is important within an AP as the physiology 

differences amongst people with T1D can be challenging for an AP to handle.  If 

post-prandial hypoglycemia is observed, the best way to handle this is through post-

prandial basal adjustments. Adjustments of pre-meal bolus on postprandial 

hypoglycemia had minimal benefit. 
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3.8 Supplementary Materials: In-silico patient population description 

3.8.1 Glucoregulatory Model 

The insulin kinetic model, which represents the pathway of absorption for short-

acting insulin, was introduced as outlined in [36, 49]: 
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S1̇ = uI −
S1

tmax
 

S2̇ =
S1

tmax
−

S2

tmax
             (8) 

İ =
S2

tmaxVI
− keI          

where S1 and S2 represent the masses of insulin [mU/kg] in two subcutaneous 

compartments, uI represents the rate of insulin infusion [mU/kg/min], I represents the 

plasma insulin concentration [mU/L], and tmax, VI and ke are the time to maximum 

absorption [min], distribution volume [L/kg] and elimination rate [min
-1

] of insulin. 

The insulin dynamic model, which describes the action of plasma insulin on glucose, 

was presented as described in [36] and [125]: 

X1̇ = −ka1X1 + Sf1ka1I   

X2̇ = −ka2X2 + Sf2ka2I         (9) 

X3̇ = −ka3X3 + Sf3ka3I  

where x1 [min
-1

], x2 [min
-1

] and x3 [unitless] represent the effect of insulin on glucose 

distribution, disposal and suppression of endogenous glucose production. Sf1 [min
-1

 

per mU/L], Sf2 [min
-1

 per mU/L] and Sf3 [per mU/L] are the insulin sensitivity 

factors. These factors vary significantly between individuals with T1D and are 

therefore of importance during the creation of the virtual population. ka1, ka2 and ka3 

[min
-1

] are used as both entry rates of insulin into the action compartments as well as 

clearance rates of the insulin effect. The glucose kinetic model, which estimates the 
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glucose levels with respect to insulin and non-insulin mediated effects, was 

presented as in [36]: 

Q1̇ = −X1Q1 − F01
c − FR + k12Q2 + UG + EGP0(1 − X3) 

Q2̇ = X1Q1 − k12Q2 − X2Q2                   (10) 

where Q1 and Q2 are the masses of glucose in the accessible (plasma) and non-

accessible (rapidly-equilibrating interstitial) compartments, respectively [mmol/kg]. 

EGP0 is the basal endogenous glucose production at a theoretical zero insulin 

concentration [mmol/kg/min].  F01
c  and FR are the non-insulin mediated glucose 

uptake and the renal glucose clearance rate, respectively [mmol/kg/min]. UG 

represents the glucose absorption rate from meals [mmol/kg/min] [36]: 

0

max,G

t t

t

G G 0
G 2

max,G

D A (t t )e
U

t





                   (11) 

where, tmax,G is the time to maximum appearance rate of glucose in Q1 [min], AG is 

the carbohydrate bioavailability [unitless], t0 is the meal announcement time [min] 

and DG is the estimated carbohydrate intake (mmol/kg). Note that, in the in-silico 

simulations, DG is converted from grams to mmol/kg to be compatible with the 

variables of the glucose kinetic model.  

3.8.2 Virtual Patient Population 
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A virtual patient population, compatible with the characteristics of people with T1D, 

was generated for the in-silico simulations. Since the original glucoregulatory model 

was developed for people without diabetes [36] and [126], Sf1, Sf2 and Sf3 were 

modified to represent the sensitivity of insulin for people with T1D. A series of 

sensitivity composite (Sc) ranging from 0.1 to 2 was multiplied to the nominal values 

of Sf1, Sf2 and Sf3 in equation 9. The basal insulin rate at each Sc was computed at the 

steady state for a target level of 115 mg/dl. And, the total daily insulin requirement 

(TDIR) was estimated. Finally, the best Sc that the estimated TDIR was the closest 

to the mean clinical TDIR was selected. Based on the mean clinical TDIR of 

approximately 45 units/day, an Sc of 0.4 was chosen as the insulin sensitivity 

modifier across T1Ds. Then, the nominal insulin sensitivity factors were reduced by 

60% for this T1D virtual population relative to people without diabetes. A similar 

relationship between the insulin sensitivity of people with and without T1D was 

investigated by Rickels et al. [112] in a euglycemic clamp study. 

Next, virtual T1D individuals were created by statistically sampling from the 

distributions of the updated insulin sensitivity factors given an ad-hoc 75% 

correlation between Sf1 and Sf2, and 25% correlation between Sf2 and Sf3. After 

sampling the parameters of each virtual patient, the physiologic feasibility of each 

virtual patient was evaluated through two tests:  
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A) Steady-state glucose levels – in the absence of insulin, glucose should exceed 300 

mg/dl.  

B) Delivery of high-dose insulin (15 units/hr) should result in a low steady-state 

glucose level (typically less than 100 mg/dl from the baseline steady-state glucose).  

Ninety-nine virtual individuals out of 100 passed the above criteria. Figure 3.6 shows 

the histogram of the TDIR values of the virtual population. 

 

Figure 3.6 Histogram of the TDIR values of the virtual patients 

The virtual patient population was evaluated with the above clinical dataset. Virtual 

patients were matched to clinical study participants by closest match of TDIR and 

weight. This approach was repeated for all 20 actual patients from each clinical study 

trial and the 20 closest virtual patients were identified.  The same AP algorithm was 

used to control the glucose levels of each of the 20 virtual patients. The glucose 

profiles of the virtual patients were compared with the related actual glucose profiles 
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controlled by the same algorithm during the in-vivo trial (Table XIV). For all 

outcome measures, the virtual population was not statistically different from the true 

population. The time spent in hyperglycemia was slightly underestimated by the 

virtual population, which was not significant but was trending towards significant. 

Table XIV Outcome metrics of the virtual population across the selected virtual patients 

Outcome Metrics Clinical Results Simulated Results p-value 

Time in hypoglycemia (%) 2.8 ± 1.7 3.4 ± 1.3 0.23 

Time in hyperglycemia (%) 22.9 ± 8.8 18.4 ± 5.3 0.08 

Time in range (%) 74.3 ± 8.1 78.1 ± 5.1 0.11 

LBGI 3.1 ± 1 3.5 ± 0.9 0.24 

HBGI 6.2 ± 1.7 5.9 ± 1.2 0.47 
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Figure 3.7 Cumulative distribution plots showing impact of ALPHA-BR on outcome measures 

Table XV Performance of ALPHA on OHSU-MPC algorithm 

µ ±  AP  ALPHA-BR 

Time in  Hypoglycemia [%] 0.55 0.19* 

rescue carbs [event/day/patient] 0.42 0.16* 

Time in Euglycemia [%] 84.39 81.27* 

Time in Hyperglycemia [%] 15.08 18.54* 

 *) shows significance compared to AP.  (p-value < 0.05) 
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3.8.3 ALPHA-BR evaluation using the UVA/Padova simulator 

The performance of the ALPHA-BR was further evaluated using another virtual 

patient population, the UVA/Padova simulator. The UVA/Padova simulator consists 

of 100 T1D virtual adults, 100 T1D virtual adolescents and 100 T1D virtual children. 

In this section, we have tested the ALPHA-BR across the adult patients. Each of the 

20 meal scenarios described above was given to the patients, and the clinical metrics 

were computed across all the patients and are shown in Table XVI. The results 

showed 40% reduction of time spent in hypoglycemia with the ALPHA-BR (p = 

.063) and small increase in time in hyperglycemia (p = .66). 

Table XVI Comparison between AP and ALPHA-BR across the meal scenarios for all the 

UVA/Padova virtual subjects 

µ ±  AP ALPHA-BR 

Time in  Hypoglycemia [%] 1.48 ± 1.66 0.88 ± 1.1 

rescue carbs [event/day/patient] 0.43 ± 0.5 0.25 ± 0.3 

Time in Euglycemia [%] 86 ±  9.4 85.5 ± 9.6 

Time in Hyperglycemia [%] 12.5 ± 8.9 13.6 ± 9.1 

Average glucose [mg/dl] 141 ± 9 8 144.3 ± 7.8* 

HBGI 4.1 ± 1.8 4.3 ± 1.8 

LBGI 2.1 ± 1.7 1.7 ± 1.3 

*) shows significance compared to AP  (p-value < 0.05) 
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4 Design of a Dual-Hormone Model Predictive Control for 

Artificial Pancreas with Exercise Model 

Many studies have shown the importance of using a dual-hormone artificial pancreas 

to further reduce time in hypoglycemia. In dual-hormone APs, glucagon is injected 

when glucose is low, preventing severe glucose drops by increasing glucose 

production in liver. As there is no published dual-hormone AP with the MPC 

algorithm, a dual-hormone MPC is developed in this chapter.  

Chapter Summary: 

 A dual-hormone (DH) MPC is developed for dual-hormone AP analysis. 

 A single-hormone (SH) MPC is developed to compare and evaluate the 

performance of the dual-hormone MPC. 

 Both MPC algorithms are less complex, linearized, and compatible with 

subcutaneous insulin delivery and validated with meal events.  

 We further extended both MPCs by integrating an exercise model. 

 Results show that time in hypoglycemia is less with DH-MPC. Also, both 

MPC designs with an integrated exercise model reduced exercise-induced 

hypoglycemia more significantly compared to no exercise integration. 
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This work was originally published in 2016:  

N. Resalat, R. Reddy, J. El Youssef, and P. G. Jacobs, “Design of a Dual-Hormone Model 

Predictive Control for Artificial Pancreas with Exercise Model” in 38
th
 Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, 2016, 

pp. 2270-2273, Reprinted with Permission from IEEE. 

4.1 Abstract 

The Artificial Pancreas (AP) is a new technology for helping people with type 1 

diabetes to better control their glucose levels through automated delivery of insulin 

and optionally glucagon in response to sensed glucose levels. In a dual hormone AP, 

insulin and glucagon are delivered automatically to the body based on glucose sensor 

measurements using a control algorithm that calculates the amount of hormones to 

be infused. A dual-hormone MPC may deliver insulin continuously; however, it must 

avoid continuous delivery of glucagon because nausea can occur from too much 

glucagon. In this section, we propose a novel dual-hormone (SH) switching model 

predictive control and compare it with a single-hormone (SH) MPC. We extended 

both MPCs by integrating an exercise model and compared performance with and 

without the exercise model included. Results were obtained on a virtual patient 

population undergoing a simulated exercise event using a mathematical 

glucoregulatory model that includes exercise. Time spent in hypoglycemia is 
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significantly less with the DH-MPC than the SH-MPC (p= 0.0022). Additionally, 

including the exercise model in the DH-MPC can help prevent hypoglycemia (p < 

0.001). 

4.2 Introduction 

Diabetes mellitus is a physiological disorder where the body either is resistant to or 

does not sufficiently secrete insulin. Type 1 diabetes is the less prevalent but more 

challenging type of diabetes mellitus in which the pancreas fails to produce insulin 

for glucose regulation. Without insulin, glucose cannot be absorbed into tissues, and 

blood glucose (BG) levels increase, resulting in hyperglycemia (BG > 180 mg/dl). 

Difficulty controlling glucose is compounded by meals which require additional 

insulin. On the contrary, when glucose utilization is high, for example during 

physical activity, tissues absorb glucose more rapidly, and the BG can fall very 

steeply. The American Diabetes Association identifies a lower boundary of 70 mg/dl 

for the BG, below which is defined hypoglycemia, where severe symptoms may 

occur if untreated for even short periods [127]. The replacement of insulin in type 1 

diabetes requires both basal insulin delivery, either with long-acting insulin or by 

continuous infusion of fast-acting insulin, and bolus insulin doses for meals with 

fast-acting insulin. 
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Insulin pump therapy (open-loop therapy) is a common method for people with type 

1 diabetes to maintain euglycemia; the patient can use the insulin pump to infuse 

basal insulin and can also deliver boluses prior to meals [16]. For closed-loop insulin 

delivery, also known as the artificial pancreas (AP), insulin delivery is automatically 

adjusted based on sensed glucose levels and a control algorithm. In single hormone 

AP systems, only insulin is dosed whereas in dual hormone APs, glucagon is also 

dosed [19]. A number of closed loop algorithms utilize a proportional integral 

derivative controller [128], [129]. Our group has previously described variations of 

PID or PD AP control algorithm [22]. We also have described an exercise detection 

and dosing adjustment algorithm that can be incorporated [28]. Other groups have 

described single-hormone MPC including Hovorka et al. [108], Magni et al. [42] 

used a SH-MPC in the presence of three daily meals. Although they got good results, 

they did not account for low blood glucose especially during exercise. It may be 

necessary to include glucagon within a DH-MPC in order to prevent hypoglycemia, 

especially during exercise periods. Boiroux et al. [130] used a DH-MPC for blood 

glucose regulations during a day with three meals. They used a switching algorithm 

for each hormone’s delivery. Although glucagon was mainly used to correct for 

postprandial hypoglycemia due to the injected insulin boluses, there was no glucagon 

delivery due to increased insulin sensitivity during exercise. 
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In this chapter, we introduce a DH-MPC approach that can switch between dual 

hormone and single hormone operation based on the sensed glucose level of the 

patient. Our DH-MPC algorithm includes a model for exercise, such that if exercise 

is detected or if a user announces an exercise event to the controller, the algorithm 

can respond appropriately. We test the feasibility of the algorithm in the presence of 

moderate exercise. We also compared the effect of including versus not including the 

exercise model in the MPC. We linearize the non-linear equations within the process 

model to reduce the processing time in the controller. 

4.3 Material and Method 

4.3.1  Process Model 

The prediction of BG in our MPC algorithm is achieved using a glucoregulatory 

model, consisting of a glucose kinetics model, insulin kinetics and dynamics models, 

and glucagon kinetics and dynamics models. The model describes the relationship 

between subcutaneously delivered insulin and glucagon and blood glucose 

concentration. The glucose kinetics model defines the effect of the insulin and 

glucagon actions on the blood glucose, as follows [36]: 

Q1̇ = −X1Q1 − F01
c − FR + k12Q2 + UG + EGP0(1 − X3 + Y + kg3Y)̇ 

Q2̇ = X1Q1 − k12Q2 − X2Q2          (1) 
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where Q1 and Q2 are the masses of glucose in the accessible and non-accessible 

compartments respectively, in mmol/L. F01
c  and FR represent non-insulin mediated 

glucose uptake and renal glucose clearance respectively, in mmol/L/min. UG 

represents gut absorption rate in mmol/L/min, which is considered zero in this study. 

EGP0 is the basal endogenous glucose production in mmol/L/min at a theoretical 

zero insulin concentration [36]. The source of non-linearity in these equations comes 

from the interactions between the effect of the insulin on EGP, distribution and 

disposal within the measurable and non-measurable glucose compartments. These 

nonlinear equations are linearized based on a Taylor series expansion at each time 

point, where the higher order terms are excluded. The insulin kinetics model, which 

represents the insulin absorption rate from the short-acting insulin administration, as 

shown below [131]: 

Q1a
̇ = kuI − ka1Q1a −

VmaxQ1a

km + Q1a
 

Q1b
̇ = (1 − k)uI − ka2Q1b −

VmaxQ1b

km + Q1b
 

Q2̇ = ka1Q1a − ka1Q2                                         (2) 

Q3̇ = ka1Q2 + ka2Q1b − keQ3 

I =
Q3

VI
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where Q1a and Q2 represent the insulin mass through the slow absorption pathway, 

and Q1b represents a faster channel for insulin absorption. Q3 represents plasma 

insulin mass [131]. All insulin masses are in mU/kg. The sources of nonlinearity in 

these equations come from the local degradation of insulin at the injection site. These 

non-linear equations are linearized using a Taylor series. The insulin dynamics 

model is based on a study from [36]. 

X1̇ = −ka1X1 + kb1
Q3

Vd_IN
   

X2̇ = −ka2X2 + kb2
Q3

Vd_IN
        (3) 

X3̇ = −ka3X3 + kb3

Q3

Vd_IN
 

where x1 (min
-1

), x2 (min
-1

) and x3 (unitless) represent the effect of insulin on glucose 

distribution, glucose disposal and suppression of endogenous glucose production, 

respectively [36]. The glucagon kinetics model, which represents the absorption rate 

of subcutaneously injected glucagon, is reported based on a study from Lv et al. 

[109]. 

X1g
̇ = −(k1g + kge1)X1g + ug 

X2g
̇ = k1gX1g − k2gX2g         (4) 

X3g
̇ = k2gX2g − kge2X3g 
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where x1g and x2g represent subcutaneous glucagon mass compartments and x3g is 

plasma glucagon mass, all measured in mg/kg. The nominal values of the parameters 

for the glucagon kinetics model used in this chapter have been provided from Lv et 

al. [109]. The glucagon dynamic model, which describes the interaction between the 

glucagon and the glucose concentration, was developed from our published study 

[28]. 

Ẏ =  
106 × kc × SfGG

VdGG

̇
X3g − kcY = kg − kcY 

Ẏ = Z                         (5) 

Ż = kgk2gX2g − kgkge2X3g − kcZ 

Y represents the effect of glucagon on endogenous glucose production. Since the 

change on Y has an effect on EGP, we introduce a new variable Z as another state, 

which is used in the MPC algorithm. The values of the parameters of the glucagon 

kinetics are described previously [28]. These values change per subject and make a 

virtual patient population. 

4.3.2 Model Predictive Controller 

Model predictive control is an optimization based control algorithm, which considers 

the dynamic model of the plant. Unlike PID controllers, MPC is able to predict the 

future outputs and optimize the inputs to the plant accordingly. 
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Figure 4.1 MPC Schematic 

Figure 4.1 shows the structure of the MPC algorithm. The glucoregulatory model is 

the MPC process model. Typically, the plant would be the patient using the device. 

In our simulations, the structure of the plant is the same as the glucoregulatory model 

for the in-silico simulation; however, while the process model parameters are kept 

constant, the plant model parameters vary based on each individual virtual subject 

tested during simulation. 

There are 13 state variables, which includes two state variables from the glucose 

kinetics model, four from the insulin kinetics model, three from the insulin dynamic 

models, three from the glucagon kinetics model and two from the glucagon dynamic 

model. Since the derivative of the glucagon concentration also affects the glucose 

concentration (equation 1), we define the second glucagon dynamic model state 

variable (variable Z in equation 5) for this effect. The final linearized form of the 

MPC equations is as follows: 
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( 1) ( ) ( ) ( );

( ) ( );

m m m m m

m m

x k A x k B u k d k

y k C x k

   


        (6) 

xm(k) is the state vector, u(k) is the 2-dimensional input vector (insulin and 

glucagon) and d(k) includes the constant terms resulting from the linearization. Since 

the controller requires a history of the output for future predictions, it is essential to 

relate the input vector to the output. We define a new vector as follows x(k) =

[∆xm(k)T y(k)]T and the augmented state equations after some computations are re-

arranged for the MPC algorithm as below: 

    (7) 

Therefore, the predicted outputs are calculated using equation 8. 

( )PY Fx k U D            (8) 

where the matrices F, Φ and Ψ are presented in [132] and 
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We chose a 300-minute prediction horizon as the action of insulin is several hours 

[36]. We chose a 20-minute control horizon as the results did not change 

substantially with a longer horizon. The cost function is defined in equation 9, which 

includes the reference trajectory (Rs) and the predicted outputs, and the tuning the 

control parameter (R). 

( ) ( ) ,T T

s P s P WJ R Y R Y U R U            (9) 

We can now compute the output of the optimizer (future inputs) by setting the 

derivative of the cost function with respect to ΔU zero and; after some calculations, 

the optimal ΔU is defined in equation 10. 

1( ) ( ( ) )T T

w sU R R Fx k D                   (10) 

At the next step, we impose some constraints on the insulin and glucagon delivery. 

We set the maximum amount of insulin infusion rate (IIR) and glucagon infusion 

rate (GIR) to 15 Unit per hour and 50 microgram per hour, respectively. In this 

chapter, we show the performance of (1) a single hormone MPC algorithm (SH-

MPC) in which the insulin is the only hormone used for blood glucose regulation, 

and (2) a dual hormone algorithm (DH-MPC).  For the dual-hormone, we consider 

different ways of switching between single hormone and dual hormone operation.  

One option (DH-Thr) is to use a SH-MPC when glucose levels are greater than a 
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threshold (85 mg/dl) and then use DH-MPC when glucose levels drop below this 

threshold. A second option (DH-Pred) is to use SH-MPC when glucose levels are 

predicted to be above 70 mg/dl during the prediction horizon, otherwise switch to 

DH-MPC. 

4.3.3 Exercise Model 

Exercise can have profound effects on glucose levels in a person with type 1 

diabetes, causing hypoglycemia if dosing is not adjusted. We incorporated an 

exercise model described by Hernandez et al. [73] into our process model. The 

exercise model affects the influence of insulin on glucose transport and disposal, and 

endogenous glucose production and causes increased insulin sensitivity by 

influencing equations 3 (kb1, kb2 and kb3) as follows: 

*
b1 PGU PIU b1

*
b2 PGU PIU b2

*
b3 HGP b3

k M M k

k M M k

k M k

  

  

 

                 (11) 

The model parameters (kb1, kb2 and kb3) are updated during the exercise period 

according to equation 12. 
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PIU
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HG

PAMM
1 ;

35 mg/min

1 2.4 PAMM;

PAMM
1 ;

155 mg/m

M

in

M

M

 
 

  

 
 

                 (12) 

where ΓPGUA and ΓHGPA, which are related to the percent of maximum oxygen 

consumption (PVO2max), are calculated based on a dynamic model that is explained 

further in [73]. PAMM is the percent of active muscular mass. 

4.3.4 Virtual patient population 

We defined a virtual patient population for our in-silico simulations. We changed the 

most sensitive inter-subject parameters (EGP0, kb1, kb2, kb3, SfGG, kc and kg3) of the 

process model across each subject. First, we produced a normal distribution based on 

the information of each parameter, given prior studies [36], [28], and then randomly 

selected samples, using a random number generator that is weighted by the 

parameter distribution, in order to generate the virtual population. Each parameter set 

was then subjected to a battery of tests to determine the physiologic feasibility. If a 

virtual subject did not pass each of the following 4 criteria, they were excluded from 

further testing. A total of 163 out of 400 virtual subjects passed the below criteria 

and were selected for our in-silico simulations. 
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A) Steady-state glucose levels; in the absence of insulin, glucose should exceeds 300 

mg/dl.  

B) Delivery of high-dose insulin (15 U/hr) should result in a low steady-state glucose 

level (typically less than 100 mg/dl).  

C) Delivery of high-dose glucagon (20 mcg/kg) should result in a significant rise in 

glucose within 2 hours of the dose, greater than 50 mg/dl above the baseline steady-

state glucose.  

D) Delivery of a small dose of glucagon (0.2 mcg/kg) should not result in a response 

greater than 100 mg/dl above baseline steady-state glucose. 

4.3.5 Test scenario and statistical analysis   

All virtual subjects completed the following scenario.  First, their glucose levels 

were brought to a steady state value of 160 mg/dl at time t=0.  Next, subjects 

completed the equivalent of 45 minutes of exercise starting at time t=10 minutes at 

60% PVO2max and 80% PAMM.  We compared the performance of our proposed 

methods in terms of the average time spent in hypo/hyperglycemia and the average 

blood glucose across the virtual subjects. We used the Student’s t-test and the 

Wilcoxon rank-sum test to compare the average blood glucose and the time spent in 
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hypo-/hyperglycemia, respectively, across different process model configurations. 

The significance level was set to 5%. 

4.3.6 Results and Discussion 

Figure 4.2 shows the benefit of using DH compared with SH.  Some subjects within 

the 25%-75% interquartile range using the SH process model crossed the 

hypoglycemia threshold interquartile range, whereas subjects using the DH model 

generally did not go hypoglycemic (only the lower 2.5% of subjects went 

hypoglycemic under DH).  The time the virtual subjects spent in hypoglycemia was 

significantly less for the DH (p-value = 0.0022). In DH, the glucagon delivery not 

only prevented more subjects from becoming hypoglycemic, but also increased the 

median blood glucose across the subjects. Preventing hypoglycemia and reducing 

time spent in hypoglycemia can prevent symptoms related to hypoglycemia 

including nervousness, shakiness, dizziness and nausea.  It is important to note that 

both the SH and DH process models included exercise in these results. 
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Figure 4.2 SH-MPC vs DH-MPC performance. Interquartile range along with the 95% 

intervals of the blood glucose across the virtual subjects are shown for DH-Thr (red line) and 

SH (blue line) methods with the exercise model included 

Figure 4.3 shows the importance of including the exercise model in the process 

model. When the exercise model is not included, hypoglycemia occurs, whereas 

when it is included, hypoglycemia is generally avoided. When the exercise model is 

not included, the algorithm cannot anticipate forthcoming hypoglycemia and thereby 

turn off insulin and increase glucagon dosing as shown in the insulin and glucagon 

delivery panels of Figure 3. The time spent in hypoglycemia was significantly less 

when exercise was included (p-value < 0.001). This makes intuitive sense.  Exercise 

can cause rapid drops in glucose levels because insulin sensitivity increases during 
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exercise.  If the process model is not aware of this sensitivity change, and dosing is 

not adjusted, then hypoglycemia results. 

There was a difference in performance when the process model switched between 

DH and SH based on a fixed glucose threshold (DH-Thr) compared with a predicted 

drop below 70 mg/dl (DH-Pred). DH-Pred resulted in some post-exercise 

hyperglycemia. While time spent in hypoglycemia with the DH-Pred approach did 

not change significantly in comparison to the DH-Thr approach (p-value = 0.011), 

the time spent in hyperglycemia, as well as the median blood glucose, were 

significantly higher for DH-Pred (p-value < 0.001). Results here indicate that DH-

Thr is optimal for controlling glucose during exercise. A limitation of this study is 

that the exercise model only models the effect of aerobic exercise on the 

glucoregulatory system. Furthermore, the exercise model was static for all subjects, 

whereas we know that different people respond differently to exercise.  In the future, 

we plan to integrate anaerobic exercise and high intensity interval training into the 

exercise model. In conclusion, the threshold-based dual-hormone MPC with exercise 

in the process model outperformed the other controlling approaches. It was critical to 

include exercise in the controller process model so that the time spent in 

hypoglycemia would be reduced substantially. Also, we plan to include a meal 
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model to the process model (UG would not be zero in equation 1) and evaluate in 

human subjects. 

 

Figure 4.3 DH-MPC performance with/without exercise model. Interquartile ranges along with 

the 95% intervals of the blood glucose across the virtual subjects are shown for the DH-Thr 

with exercise model (red line) and DH-Thr without exercise model (cyan line)  
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5 Evaluation of model complexity in model predictive control 

within an exercise-enabled artificial pancreas 

In this chapter, we evaluate the feasibility of the MPC algorithm for the in-vivo 

study. In clinical studies, the plant structure is always more complex than the MPC’s 

process model. We investigate less complex MPC’s process models against the more 

complex plant structure. Then, the best MPC design is selected for the in-vivo trials. 

Chapter Summary: 

 Four single-hormone MPC algorithms are designed with different 

complexities.  

 Two insulin kinetics models defined by either 2 or 3 differential equations are 

used. Two glucose kinetics models defined by either 1 or 2 differential 

equations are used. The insulin dynamics model with 1 differential equations 

is identical for all the four MPC designs.  

 Each of the four models, consisting of 4, 5, 5 and 6 differential equations, is 

tested against a more complex plant defined by eight differential equations. 

 Results show that the glucose kinetics model defined by 3 equations works 

better than the other glucose kinetics model, and no significant difference is 

observed regarding the complexity of the insulin kinetics models. 
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 The best less-complex MPC design, consisting of five differential equations, 

is selected and is used to investigate the exercise effect. 

 Results show that time in hypoglycemia is reduced by 40 minutes by 

incorporating the exercise model. 

This work was originally published in 2017:  

 Navid Resalat, Joseph El Youssef, Ravi Reddy, Peter G. Jacobs, “Evaluation of 

model complexity in model predictive control within an exercise-enabled artificial 

pancreas”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 7756-7761, 2017, Reprinted with 

permission from Elsevier. 

5.1 Abstract 

Model predictive control (MPC) algorithms have been used often within artificial 

pancreas control systems both in-silico and in clinical studies. Increasingly complex 

models in the controller can more accurately predict the glycemic response, but they 

introduce increased computational complexity which can be challenging to 

implement especially within an embedded environment where computational 

resources are limited. Less complex models are also preferable in that they can be 

evaluated in silico against more complex plant models. There has not yet been an 

evaluation of how the complexity of models used within an MPC impacts 
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performance within an artificial pancreas. A model within an artificial pancreas MPC 

algorithm should be as complex as necessary to accurately predict a glycemic 

response to meals, exercise, stress, and other disturbances, but not overly complex. 

In this paper, we evaluate four glucoregulatory models used within an MPC, starting 

with a 4-state model and increasing in complexity up to six states. We evaluate the 

complexity using an in-silico population derived from a more complex 

glucoregulatory model (9 state variables). We assess how complexity of the model 

impacts performance both in terms of standard control metrics such as settling time 

and overshoot as well as clinically relevant metrics such as percent time in 

euglycemia (glucose between 70 and 180 mg/dl), percent time in hypoglycemia (<70 

mg/dl) and percent time in hyperglycemia (>180 mg/dl). We find that model 

complexity matters far less than how well the model parameters match the individual 

subjects. When the simplest model is used, but fit to an individual subject’s data, it 

performed comparably with more complex models. We selected a middle-

complexity model and integrated it into our previously published exercise-enabled 

MPC model and evaluated it in a virtual patient population both with and without the 

exercise model present. We found that increasing complexity by modeling exercise 

is critical to help enable early insulin shut-off by the controller to avoid 

hypoglycemia. 
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5.2 Introduction 

Model predictive control (MPC) is a control strategy whereby a model is used to 

predict the response of a system to a receding horizon of inputs. MPC uses the model 

to predict how the system will respond to current and future inputs and selects an 

optimal control output based on how well the predicted output of the system matches 

an optimal control trajectory. MPC uses the model to predict the system’s response 

over a prediction horizon (Np) based on a given set of control outputs (Nc). 

Typically, the control horizon is much less than the prediction horizon (Nc<<Np). 

Other control strategies such as proportional-integrative-derivative controllers (PID) 

choose a control output based on the input including how far the input is from the 

target, how fast the input is moving towards or away from the target, or how long the 

input has been distant from the target. The power of MPC is in its predictive ability 

such that systems, which have a very long response time, can be modelled to avoid 

over or under-delivery of control outputs of the system to the plant which thereby 

lead to instability.  

An artificial pancreas (AP) is a control system that must control a plant with a long 

response time. A dual-hormone AP controls blood glucose in people with type 1 

diabetes (T1D) through the automated delivery of the hormones insulin and 

glucagon. There are also single-hormone AP systems that only deliver insulin. A 
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continuous glucose sensor is a subcutaneous, amperometric device that connects to 

the control algorithm and is used to determine a person’s glucose level. If the glucose 

is too high or rising rapidly, insulin is dosed.  If it is too low or falling rapidly, 

insulin is shut off and glucagon may be dosed in a dual-hormone AP.  The kinetics 

and dynamics of insulin can be very long (90 minutes for peak action of currently 

available “fast-acting” analogs).  This long time constant makes it challenging to 

control insulin and glucagon with a classical PID controller.  Our group has 

implemented a fading memory proportional-derivative controller (FMPD) for use 

within a dual-hormone AP control system which has been evaluated both in-silico 

and in a clinical study [22]. We updated this algorithm to include adjustments of 

dosing during exercise [28] and have shown that this can help prevent hypoglycemia.   

While this algorithm performs well, we are now exploring whether MPC is a better 

alternative. We are specifically interested in whether model-based approaches can 

improve performance during disturbances such as meals and exercise events. 

While there is an ongoing debate regarding the benefits of MPC vs. PID control 

strategies [133, 134], both approaches have been shown to be successful in-silico and 

in clinical studies.  An early paper describing an approach to MPC using a 

glucoregulatory model was Hovorka et al. [108]. This group has gone on to use MPC 

within their single-hormone control system, which has been evaluated clinically 
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[135].  The group at University of Virginia developed an MPC for use within an AP 

[42] and they have published results on this algorithm within a multi-center trial 

[136]. The Padova group has also done work on MPC algorithms within an AP 

including an algorithm that uses an auto-regressive model that adapts over time 

called a run-to-run algorithm [43]. 

Despite the many publications on MPC within an AP, there has not yet been an 

assessment of the impact on model complexity on control performance. In theory, a 

more complex model may be more accurate in predicting how a plant will respond to 

a set of control inputs, thereby improving the optimization of matching an optimal 

control trajectory. However, adding complexity to the model increases the 

opportunity for error if a model is not properly identified. Also, a more complex 

model requires more time to run an MPC algorithm, increasing processing time, 

which may negatively impact implementation on an embedded system. This study 

explores different glucoregulatory models of varying complexity to determine the 

impact on control in a single-hormone MPC. 

Recently, we described a new algorithm that uses a glucoregulatory model within an 

MPC framework to integrate exercise/physical activity directly into the control 

strategy [52]. This model was evaluated within a virtual patient population that was 

derived from a relatively complex glucoregulatory model comprised of 9 states that 
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describe both insulin and glucose homeostasis in type 1 diabetes [36], [131]. A 

model of equal complexity was used within the controller and the plant, making it 

challenging to assess in-silico how well the algorithm would perform within a 

maximally complex plant (e.g. a human). In this chapter, we assess models within 

the controller that are of lower complexity than the plant and evaluate these models 

of order 4, 5, and 6 both for general control performance as well as performance 

based on clinical outcome measures. Lastly, we consider whether the added 

complexity of including a model for exercise within the controller adds benefit, 

specifically in preventing exercise-induced hypoglycemia. 

5.3 Material and Methods 

5.3.1 Model Predictive Control 

The controller contains a glucoregulatory model, as does the plant, but preferably the 

plant’s model of higher complexity than the controller so as to match the physiologic 

test conditions whereby the human body will always be more complex than the 

model used in the controller. In this paper, we will switch the controller 

glucoregulatory model to determine the impact of model complexity on performance.  

Within MPC there is a cost function consisting of 1) the error between the predicted 

glucose output (Yp) and the reference glucose trajectory (Rt) and 2) a tuning 
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parameter, rw (
C CW w N NR r I  , where I is the identity matrix) for input variability 

restricting the size of input changes (1). The reference glucose trajectory is how we 

optimally expect the glucose to reach a target level (Gt = 120 mg/dl) across a period 

defined as the prediction horizon.  Optimization is done by minimizing the derivative 

of the cost function with respect to the changes in the output of the controller, in this 

case insulin (ΔU).  

( ) ( )T T

t P t P wJ R Y R Y U R U             (1) 

The reference trajectory that we used is depicted in Figure 5.1. In this chapter, rw was 

empirically set to 1, and the maximum amount of permissible injected insulin to the 

plant was 15 units/hr due to restrictions on insulin pumps. 
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Figure 5.1 Reference Glucose Trajectory. For blood glucose (BG) greater than 120 mg/dl, the 

predicted values follow a linear moving trajectory during Np. For BG less than 120 mg/dl, the 

trajectory follows an exponential trend with a time constant of approximately 15 minutes. 

5.3.2 Glucoregulatory Models and Virtual Patient Population 

In this paper, we used a 9-compartment model for our plant to generate our in-silico 

virtual patient population. We then considered four less complex compartment 

models and evaluated them within the controller. The plant model along with each of 

the controller models are described below. 

The glucoregulatory model of the plant consists of 9 differential equations. Four 

equations represent the insulin kinetic model reported by [131]. Three equations 

represent the insulin dynamic model, and two equations describe the glucose kinetic 

model, which was introduced by [108]. The results of this study were obtained on a 
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virtual patient population. In Resalat et al. [137] we describe how the virtual patient 

population was generated from the plant by adjusting the insulin sensitivity and 

endogenous glucose production (EGP) of each subject. 

5.3.3 1-Compartment Minimal Model (1CMM) 

This model consists of one glucose kinetics model and one insulin dynamics model. 

It describes the impact of glucose effectiveness and the effect of insulin on blood 

glucose. This model is presented by Bergman et al. [138] as follows:  

1 ( ) ( ) 1

3 2

{ }

( ) ( )

t t bG P X G PG

X P I t P X t





    

  

                                                                                     (2) 

P1 (also known as SG in some studies) is glucose effectiveness [min
-1

]; X(t) is the 

effect of insulin in remote compartment [min
-1

]; G(t) is plasma glucose (mg/dl); Gb is 

basal plasma glucose [mg/dl]; I(t) is plasma insulin concentration [mU/L]. The ratio 

between P3 [min
-2

 per mU/L] and P2 [min
-1

] represents insulin sensitivity [138]. 

5.3.4 2-Compartment Minimal Model (2CMM) 

This model consists of two equations representing the glucose kinetics model, and 

one equation representing the insulin dynamics model. The additional equation 

captures the variations of glucose in the non-accessible compartment [139]. This 

model is presented as follows: 
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                                         (3) 

where, Q1 and Q2 are glucose masses in accessible and non-accessible compartments, 

respectively [mg/kg], and X is the effect of insulin on blood glucose in interstitial 

fluid [min
-1

]. Q1b and Ib are basal plasma glucose and insulin, respectively. 

5.3.5 1-Compartment Insulin Kinetic Model (1CIKM) 

This model represents the relationship between plasma insulin concentration and 

subcutaneously infused insulin with two equations [140]. This insulin kinetic model 

is presented as follows: 

XI
̇ (t) = −kaXI(t) + uI(t − τ) 

İ(t) = −keI(t) +
ka

Vd
XI(t)            (4) 

where, xI(t) is the amount of insulin in the subcutaneous depot [mU/kg], I(t) is 

plasma insulin concentration [mU/L] and uI(t) is subcutaneous injected insulin 

[mU/kg/min]. ke is the elimination rate of insulin (min
-1

), ka is the absorption rate of 

insulin [min
-1

], Vd is the insulin volume of distribution [L/kg] and τ is the time delay 

for injected insulin to be effective in the interstitial fluid [min], which was set to 

zero. 
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5.3.6 2-Compartment Insulin Kinetic Model (2CIKM) 

This model consists of two equations representing the effect of subcutaneously 

injected insulin in interstitial fluid, as well as one equation to show its impact on 

plasma insulin concentration. This model is presented in equation (1) and is re-

shown in equation (21) for better comparison with 1CIKM, where, S1 and S2 

represent the absorption of subcutaneously infused insulin [mU/kg]. uI is the insulin 

infusion rate [mU/kg/min]. ke is the elimination rate of insulin [min
-1

]. tmax is the 

maximal absorption time of insulin [min]. VI is the volume of insulin distribution 

[L/kg] [108]. 

S1̇ = uI −
S1

tmax
 

S2̇ =
S1

tmax
−

S2

tmax
             (5) 

İ =
S2

tmaxVI
− keI 

5.3.7 Evaluation of Models of Varying Complexity 

We combined the above models in various ways to create four glucoregulatory 

models of differing levels of complexity to be used within the controller of our MPC.   

Model 1: The first model is the least complex model with 4 compartments total and 

is comprised of the 1CMM and 1CIKM models (Least Complex Model). 
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Model 2: The second model has 5 compartments total and is comprised of the 

1CMM and 2CIKM models.  

Model 3: The third model also has 5 compartments and is comprised of the 2CMM 

and 1CIKM models. 

Model 4: This model has 6 compartments and is comprised of the 2CMM and 

2CIKM models (most complex).  

These models are ranked based on their differential equations from the least (Model 

1) to the most complex model (Model 4). Moreover, the plant includes 9 differential 

equations and is therefore more complex than each of the controller models. 

5.3.8 Fitting Models to Virtual Patient Population Data to Overcome 

Plant/Controller Model Mismatch 

When examining the impact of model complexity on performance in an MPC 

framework, we must consider that each of the models published and used here were 

developed using different physiologic data. For example, if Model 1 was not able to 

accurately predict the output of the plant compared with Model 2, it may not be 

caused by complexity differences between Models 1 and 2, but may instead be due to 

differences in the physiology of the human data used to fit the model parameters for 

each of these models. 



 

159 

 

To overcome this problem so that we can attempt to understand the impact of 

complexity specifically, we first fit all models to the same virtual patient population 

data set using an insulin step-response scenario. The step response was done such 

that each of the subjects was brought to a steady-state glucose level of 160 mg/dl. 

Then their basal rate was increased to bring them down to 120 mg/dl. The model 

parameters for each of Models 1-4 were adjusted to fit the response of the plant to 

this scenario. 

5.3.9 Selection of Initial Model Parameters and Ranges 

Prior to fitting, we needed to select the initial model parameter values and the range 

of the parameters to search. We could not simply use the published model 

parameters and the published standard deviations. This is because the 

glucoregulatory models referenced in these papers were originally built for people 

who did not have T1D. These models needed to be modified to match insulin 

sensitivities of people with T1D. Furthermore, these models were published many 

years ago and there have since been further studies on these models indicating that 

their model parameters needed to be adjusted to better reflect the true physiology of 

normal healthy subjects.  

Step 1: Update models to fit physiology of people without T1D: We modified the 

1CMM by decreasing glucose effectiveness (SG) by 60% and by increasing insulin 
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sensitivity (SI) by 35% to match recent physiology data on healthy people based on 

the study by Friis-Jenson which demonstrated 60% overestimation of SG and 35% 

underestimation of SI with the Bergman’s minimal model.  

Step 2: Update models to represent people with T1D: We then reduced the modified 

SI by 70% and reduced the modified SG by 38% to make the 1CMM representative 

of people with T1D.  We did this because the SI and SG are different between healthy 

people and people with T1D.  Ward et al. [141] published the difference in insulin 

sensitivity and glucose effectiveness between people with T1D and the healthy 

subjects and showed 70% reduced mean insulin sensitivity for T1D as well as 38% 

reduced mean glucose effectiveness compared with people without diabetes. Other 

groups have also discussed the importance of reducing the insulin sensitivity in 

models to better represent people with T1D [142, 143].  

For the 2CMM, we modified SI and SG to match the 1CMM.  We did this by 

reducing the 2CMM SI by 40% and the SG by 50% to get them to match. We could 

not find any prior publications comparing the insulin sensitivity and the glucose 

effectiveness of people with T1D relative to healthy subjects for the 2CMM. To set 

appropriate modified values for this model, we made the 1CMM and 2CMM similar 

to each other such that the insulin sensitivity and glucose effectiveness for these two 

models were the same 
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The insulin volume of distribution of the 1CIKM also needed to be adjusted. The 

plasma insulin concentration of 1CIKM is 64% less than 2CIKM Model. To make 

the models equivalent, we reduced the insulin volume of distribution of the 1CIKM 

by 36%. In Table XVII, we list the original published parameters as well as the 

parameters that were modified (changes on bold). 

Table XVII Published vs. modified parameters 

 Published model parameters Modified model parameters to match T1D 

Glucose 

Kinetic Model 

1CMM 2CMM 1CMM 2CMM 

P1: 0.049, 

P2: 0.091 

P3:8.96×10
-5

, 

Gb: 80 

P1: 0.024, 

k12: 0.0885, 

k21: 0.058, 

P2: 0.035, 

P3: 2.46×10
-5

, 

Q1b: 103 

P1: 0.012, 

P2: 0.091, 

P3: 3.66×10
-5

, 

Gb: 225 

P1: 0.012, 

k12: 0.0885, 

k21: 0.058, 

P2: 0.035, 

P3:1.45×10
-5

, 

Q1b: 290, 

Ib: 0 

Insulin Kinetic 

Model 

1CIKM 2CIKM 1CIKM 2CIKM 

ka: 0.026, 

ke: 0.013, 

Vd: 1.99 

tmax: 55, 

ke: 0.138, 

VI: 0.12 

ka: 0.026, 

ke: 0.013, 

Vd: 1.27 

tmax: 55, 

ke: 0.138, 

VI: 0.12 

Step 3: Model fitting. The modified model parameters given in the left two columns 

of Table XVII were used as the initial parameters of the models prior to fitting to the 

in-silico virtual patient population. Model fitting was done to match all four models 

to the same physiologic data set - the virtual patient population. During fitting, model 
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parameters were permitted to vary by two standard deviations relative to the mean 

values in Table XVII. Model fitting was done by fitting the models to the virtual 

patients during a step response of insulin. Each subject started at a steady state 

glucose level of 160 mg/dl and was then given additional insulin to bring the glucose 

level down to 120 mg/dl. The mean values of each model’s parameters after fitting 

are shown in Table XVIII. By fitting each of the models to the same virtual patient 

population, we can ensure that each model has been tuned to match the same 

physiologic data. This allows us to look at the impact of model complexity 

independent of model-plant mismatch that may be due to model identification issues. 

Table XVIII Final mean model parameters after fitting 

µ 1CIKM 2CIKM 

1CMM 

Model 1 

P1: 0.0127, 

P3: 2.89×10
-5

, 

Gb: 262.7 

Model 2 

P1: 0.0134, 

P3: 2.89×10
-5

, 

Gb: 255.5 

2CMM 

Model 3 

P1: 0.0122, 

P3: 1.25×10
-5

, 

Q1b: 355.8 

Model 4 

P1: 0.0126, 

P3: 1.25×10
-5

, 

Q1b: 349.8 

5.3.10 Incorporating Exercise Information 

In addition to evaluating the glucoregulatory model complexity, we also consider the 

benefit of adding a model for exercise into one of the controller’s glucoregulatory 
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models to help avoid exercise-induced hypoglycemia.  In this analysis, we evaluated 

one of Models 1-4 (based on the controller and clinical outcome performance 

measures described above) and integrated an exercise model into the controller. As 

described in detail in [52], the exercise information was incorporated into the model 

by increasing the model’s insulin sensitivity factor (SI = P3/P2) in response to 

exercise using an approach described by Hernandez et al. [73]. Two exercise 

coefficients were used to indicate the intensity of exercise: percent of active muscle 

mass (PAMM) and the percent of maximum oxygen consumption (PVO2
max). PAMM 

and PVO2
max were set to 80% and 60%, respectively, for a fixed 45- minute period, 

30 minutes following the second meal. The insulin sensitivity was adjusted during 

exercise by modifying P3, we call this P3Ex as defined in equation (22). 

3Ex PGU PIU 3P M M P ,                                                                                    (6) 

where, MPGU and MPIU are greater than one and represent a percentage increment of 

peripheral insulin uptake and peripheral glucose uptake, respectively. Exercise was 

integrated into the plant model by applying MPGU and MPIU as well as MHGP to the 

plant’s insulin sensitivity factors (equation 8). In both 1CMM and 2CMM, the 

parameter X(t) was the only parameter representing the effect of insulin on glucose 

uptake and insulin utilization. Therefore, we used MPGU and MPIU to adjust X(t)  for 

Models 1-4. 
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5.4 Control Performance 

Here we evaluate settling time (ts), rising (falling) time (tr) and overshoot 

(undershoot) of each of the controllers. To calculate these metrics, we first brought 

the virtual subjects in the plant to the steady state value of 300 mg/dl and then ran a 

24-hour simulation without any meal or exercise disturbances to determine how each 

controller brings the glucose down within the target range of euglycemia. Therefore, 

settling time shows the time required for the system to be settled within the 

euglycemic region (70-180 mg/dl).  Rising time represents how fast the controller 

can reach euglycemia. Undershoot (Us) is the difference between the minimum value 

of a signal and the target value representing a distortion in the signal. These metrics 

should be as small as possible under optimal control. Table XIX shows these 

controllers’ performance metrics. In this table, undershoot values are reported based 

on percentage undershoot relative to the Gt. Notice that generally, the more complex 

models have smaller response times, and undershoot. Model 3 actually outperformed 

Model 4 despite being less complex. However, overall, the performance is 

comparable between the four models. 

Table XIX Control Metrics Across Models 

µ ±  1CIKM 2CIKM 

1CMM 

Model 1 

tr = 246.6 ± 47.5, 

Model 2 

tr = 251.8 ± 47.8, 



 

165 

 

ts = 313.8 ±  111.4, 

% Us = 22.4 ± 6.2 

ts = 318.2 ± 111.5, 

% Us = 22.4 ± 6.1 

2CMM 

Model 3 

tr = 204.1 ± 64.9, 

ts = 243.4 ±  70.8, 

% Us = 7.5 ± 4.6 

Model 4 

tr = 207.5 ± 66.1, 

ts = 246.3 ± 71.8, 

% Us = 7.7 ± 4.5 

5.4.1 Clinical Performance 

All virtual subjects completed the following scenario. Their glucose levels were 

brought to a steady state value of 160 mg/dl at time t = 0. An overnight period of 8 

hours was at the beginning of the simulation.  Following this overnight period, three 

meals of 20, 40 and 60 grams were given to subjects 8, 12 and 18 hours from the 

start of the simulation. The meal information was added as an input into the 

controller models. 

We report the time in euglycemia and time in hypoglycemia for each of the four 

models (Figure 5.2). Percent time in hypoglycemia was comparable across the 

models with the lowest mean time in Model 3 (0.1%). 
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Figure 5.2 Percent time in euglycemia (left) and hyperglycemia (right) for each of the four 

models 

While the percent time in euglycemia was higher and percent time in hyperglycemia 

was lower for models with higher complexity as we expected, the difference was not 

significant, and overall all models performed well. This result indicates that model 

complexity may not be as important as the fitting of the data to the patient. While not 

shown here, using the published model parameters, the percent time in euglycemia 

was significantly lower and the time in hyperglycemia was higher than after the 

models were fit to the virtual patient population. 

5.4.2 Model-Plant mismatch evaluation 

A more complex model should be able to better estimate a maximally complex plant 

model.  Here we evaluated how well each controller model estimated the plat at each 

control step and calculated the root mean square error between the controller model 
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and the plant model when both were given the same inputs (insulin infusion and 

meals). Figure 5.3 shows the RMSE for all the models. As model complexity 

increased, the RMSE was lower. The 6-state model (Model 4) was the best estimate 

of the 9-state plant model.  However, the differences between RMSE for each model 

again were not significant and all models generally performed well in estimating the 

plant. 

5.4.3 Results of incorporating exercise in the process model 

In this section, we show the result of incorporating exercise information in the 

process model and compare it with the situation where exercise is not announced to 

the model. We used Model 3 as the best model because according to Figure 5.2 and 

Figure 5.3, it seemed to be the best balance between performance and complexity. 

Figure 5.4 shows the effect of incorporating exercise information. As a result, the 

insulin rate is shut off to zero during the exercise period, resulting in less 

hypoglycemia (≈ 40 minutes less time below 70 mg/dl). 
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Figure 5.3 RMS between model and plant for each model 

 

 

Figure 5.4 Effect of incorporating exercise on the process model. Glucose profile (top) and 

insulin infusion rate (IIR) (bottom) after the second meal and during exercise (left) with and 

(right) without exercise model integrated into Model 3. Green lines represent 95th percentile 

range for glucose. 
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6 Adaptive Control of an Artificial Pancreas using Model 

Identification and Adaptive Postprandial Insulin Delivery and 

Exercise 

Adaptive control for type 1 diabetes is an emerging control algorithm where the 

design and structure of AP systems are modified based on new glucose 

measurements. In the OHSU-MPC design, the insulin sensitivity factor is updated 

adaptively based on glucose data. Insulin sensitivity is the fundamental parameter in 

the MPC algorithm which describes the body’s reaction to insulin.      

Chapter Summary: 

 A single hormone MPC with the best process model introduced in the 

previous chapter is used.  

 An insulin sensitivity adaptation (ISA) algorithm is designed to update the 

insulin sensitivity factor defined in the process model at each non-meal event.  

 The performance of the ISA was compared with the ALPHA algorithm 

introduced in chapter 3. 

 Results show that the ISA algorithm reduces average glucose and time spent 

in hyperglycemia significantly. ALPHA reduced postprandial hypoglycemia 

significantly. 
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 A combination of ALPHA and ISA (ALPHA-ISA) yields better glycemic 

outcomes. 

Navid Resalat, Joseph El Youssef, Nichole Tyler, Jessica Castle and Peter G. Jacobs, 

“Adaptive Control of an Artificial Pancreas using Model Identification and Adaptive 

Postprandial Insulin Delivery”, Journal of process control, under revisions. 

6.1 Abstract 

Background: People with type 1 diabetes (T1D) have varying sensitivity to insulin 

and also varying responses to meals and exercise.  We introduce an adaptive run-to-

run model predictive control (MPC) algorithm that can be used to help people with 

T1D better manage their glucose levels using an artificial pancreas (AP). The 

algorithm adapts to individuals’ different insulin sensitivity, glycemic response to 

meals, and adjustment during exercise as a continuous input during free-living 

conditions. Methods: An insulin sensitivity adaptation (ISA) algorithm is presented 

that updates during non-meal periods to reduce the error between the actual glucose 

levels and the process model. We further demonstrate how an adaptive learning post-

prandial hypoglycemia-prevention algorithm (ALPHA) presented in previous work 

can complement the ISA algorithm, and the algorithm can adapt in several days. We 

show that if physical activity is incorporated as a continuous input (heart rate and 
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accelerometry) performance is improved. Results: Incorporating ALPHA, ISA and 

physical activity into the MPC improved glycemic outcome measures.  ALPHA 

combined with ISA significantly reduced time spent in hypoglycemia by 55.5% and 

the total number of rescue carbs by 52.3% to 0.2 events/day/patient.  ISA 

significantly reduced model-actual mismatch by 17.5% compared to an AP without 

ISA. Incorporating physical activity as a continuous input modestly improved time in 

range (70-180 mg/dL) during high physical activity days from 80.7% to 81.5% and 

reduced time in hypoglycemia from 0.52% to 0.43%. Conclusion: Adapting 

postprandial insulin delivery, insulin sensitivity, and adapting to physical exercise in 

an MPC-based AP systems can improve glycemic outcomes. 

6.2 Introduction 

Closed loop control for type 1 diabetes also known as the artificial pancreas (AP) is 

an emerging control technology.  The insulin delivery rate at each time-interval is 

calculated using a control algorithm that considers current and past continuous 

glucose measurements (CGM) [22]. A number of studies have shown that model 

predictive controller (MPC) is an effective control strategy because it models 

delayed insulin kinetics [42, 50, 144]. The first MPC algorithm for diabetes 

management was introduced by Parker et al. [34]. MPC was further developed for 

single-hormone and dual-hormone APs with alternative mathematical models and 
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different insulin delivery methods and timing intervals [4, 35, 43, 49, 52]. MPC 

performs optimally if the parameters of the mathematical models are defined 

accurately and are consistent with the characteristics of the person with T1D or plant. 

Model-plant mismatch can be a problem because the model parameters derived and 

used in the MPC are typically obtained from a population model or average across 

many patients. This mismatch can degrade the performance of the controller.  A 

number of factors can cause the model-plant mismatch.  First, the mathematical 

model in an MPC is inherently less complex than a human or a plant model that is 

designed to represent a human’s glucoregulatory system. Second, the MPC’s 

controller model does not have accurate knowledge of the process noise or the 

measurement noise. Boiroux et al. [4, 145] incorporated the measurement noise and a 

time-varying filtered process noise into MPC’s mathematical model for reducing the 

mismatch.  Furthermore, the physiology of each patient changes over time whereas 

the model in an MPC is fixed, thereby creating further mismatch between the model 

and the plant.  

In this paper, we extended the MPC developed by Resalat et al. [49, 52] to make it 

adaptive and patient-specific to minimize the model-plant mismatch. We show how 

the algorithm can respond to free-living changes in physical activity by incorporating 

heart rate and accelerometry data into the control algorithm.  We introduce the 
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Insulin Sensitivity Adaption (ISA) algorithm, which updates the insulin sensitivity 

factor (ISF) within the MPC controller model at each non-meal period. The ISF 

defined in the mathematical model of the MPC is used to calculate insulin amounts. 

If the ISF is initialized to a value that is too high for a patient, the MPC will presume 

that the patient needs less insulin and hyperglycemia can occur.  Conversely, if the 

ISF is initialized to be lower than the patient’s ISF, then too much insulin will be 

dosed to the patient and hypoglycemia can occur. Enabling the ISF within the MPC 

to adapt based on the patient’s response to insulin is hypothesized to reduce the 

model-plant mismatch and optimize the performance of MPC. 

Laguna Sanz et al. [146] defined a trust index that indicated how closely the MPC 

model was able to predict prior glucose values based on the residuals across a 

prediction horizon.  They updated the cost function of the MPC by adaptively 

changing an aggressiveness factor to change insulin dosing. They found that when 

implemented in a zone MPC, there was not a significant change in time in target 

range, but there was decreased time in hypoglycemia when using the adaptive 

algorithm. Toffanin et al. [147] also introduced a run-to-run adaptive algorithm. 

They adaptively changed the bolus insulin and overnight basal insulin in a run-to-run 

design with MPC. They modified overnight basal insulin and daytime bolus insulin 

at each run showing increased time in range of 11.39%. Toffanin et al. adapted the 
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insulin-to-carbohydrate ratio in response to postprandial glucose excursions. We 

have shown previously [116] that adapting postprandial insulin is more effective than 

adapting carbohydrate ratios when using an algorithm called adaptive learning 

postprandial hypoglycemia-prevention algorithm (ALPHA). 

Other work has been done to adapt the AP to exercise. Turksoy and Cinar showed 

that using an autoregressive model-based controller with exercise could be included 

as an input to the controller [71, 148]. Breton et al. showed that incorporating heart 

rate into an AP, the rate of decline of glucose during exercise could be reduced 

[149]. Our group has also shown that incorporating automated exercise detection into 

both a single-hormone and dual-hormone AP can help reduce time in hypoglycemia 

[20, 64]. For these prior studies, however, exercise levels above 4 METs was 

detected and an exercise adjustment algorithm was executed that turned off insulin 

and increased glucagon, but only during and shortly after the detected exercise event 

[28]. In the current paper, we show the benefit of including exercise as a continuous 

input into an AP system during free-living conditions as well as during scheduled 

exercise. And we show the benefit of using both ISA and ALPHA to adapt to 

patient-specific physiologies and improve time in target glucose ranges. 

6.3 Material and Methods 

6.3.1 Controller Design 
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The schematic of the MPC used in this study is shown in Figure 6.1. The MPC 

consists of a process model (i.e. mathematical model), a reference trajectory and an 

optimization tool to calculate the next insulin delivery rate. The process model is a 

mathematical description of glucose and insulin metabolism. It is defined by five 

differential equations in this study and is further described in [49]. The ISA 

algorithm updates the insulin sensitivity factor of the process model in the MPC 

during non-meal periods. The ALPHA algorithm adapts postprandial insulin to help 

prevent meal-based excursions. The ALPHA algorithm can be used with any type of 

control algorithm, not just MPC.  It only uses glycemic excursion information from 

prior meal events to adjust the postprandial insulin delivery using an adaptive 

aggressiveness factor. We used the OHSU virtual patient population to represent 

patients with T1D (i.e. the plant) [36, 52]. In general, the complexity of the process 

model should be less than the plant for better representing real-world control 

scenarios whereby the human is substantially more complex than the MPC process 

model. The plant in the OHSU virtual patient population is represented by 8 

differential equations, making it more complex than the MPC process model. 
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Figure 6.1 The schematic of the MPC. ALPHA modifies basal insulin during meal periods. ISA 

modifies basal insulin by updating insulin sensitivity factor of the process model during non-

meal periods. 

The process model of the MPC consists of an insulin kinetics model [140], an insulin 

dynamics model and a glucose kinetics model [139], described in Resalat et al. [49]. 

It is presented with the following equations: 

1 1 21 1 12 2 1 1b

2 21 1 12 2

2 3 b

Q (t) (P k X(t))Q (t) k Q P Q

Q (t) k Q (t) k Q (t) 

X (t)= P X(t)+P (I(t) I )







     

 

 

 

XI
̇ (t) = −kaXI(t) + uI(t − τ)         (1) 

İ(t) = −keI(t) +
ka

Vd
XI(t) 

where, Q1 and Q2 are glucose masses in accessible and non-accessible compartments, 

respectively (mg/kg), and X is the effect of insulin on blood glucose in interstitial 

fluid (min
-1

). Q1b and Ib are basal plasma glucose and insulin, respectively. xI(t) is the 

amount of insulin in the subcutaneous depot (mU/kg), I(t) is plasma insulin 

concentration (mU/L) and u(t) is subcutaneous infused insulin (mU/kg/min). ke is the 
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elimination rate of insulin (min
-1

), ka is the absorption rate of insulin (min
-1

), Vd is 

the insulin volume of distribution (L/kg) and τ is the time delay for injected insulin 

to be effective in the interstitial fluid (min), which was set to zero [49]. 

The process model determines the predicted glucose levels over the prediction 

horizon (NP) which are compared with the reference trajectory. For glucose levels 

greater than the target value (Gt = 115 mg/dl), reference glucose trajectory linearly 

approach the target wile for glucose levels less than the target, they exponentially 

approach the target as shown in [49]. The time constant of the exponential term is 

comparably low to shut off insulin faster for low glucose levels. The constraint of 

basal delivery was set to 80 unit/hr, enabling more aggressive basal control for high 

glucose levels. 

6.3.2 Incorporating exercise into the model 

We have previously described how we incorporate an exercise model into the MPC 

[49, 52, 116]. This is briefly described in the Supplemental Material. 

6.3.3 Adapting insulin sensitivity 

The insulin sensitivity factor (ISF = 
𝑃3

𝑃2
, in (1)) was updated at each non-meal period 

as follows. A polynomial function (P(k)) of order 6 was fit to the insulin levels 

during the non-meal periods using the least-square method and was set as the input 
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(u(t)) in (1). A function (@Fun_G) describing the relationship between the u(t) and 

Q1(t) in (1) was determined (Q1(t) = Fun_G(u(t))) and was set as the fit-function. 

The ISF was updated using glucose data (G(k)), P(k) and  Fun_G. This approach was 

also performed using the least square method. Finally, the new ISF was calculated as 

the average of the last three updated insulin sensitivity factors (𝐼𝑆𝐹𝐴𝑣𝑔(𝑘)). 

6.3.4 Adapting postprandial insulin 

We have previously developed an adaptive learning postprandial hypoglycemia-

prevention algorithm (ALPHA) that can be used to adapt postprandial insulin dosing 

to improve glycemic control. ALPHA modifies the aggressiveness of the 

postprandial insulin delivery as follows. If postprandial glucose levels fall below 90 

mg/dl, postprandial insulin delivery after the subsequent meal is reduced 

proportional to the difference between the minimum glucose level and 70 mg/dl. If 

glucose levels drop below 70 mg/dl, ALPHA shuts off postprandial insulin delivery. 

ALPHA modifies insulin delivery for 90 minutes after the meal announcement. 

ALPHA is further described in [116]. 

6.3.5 Evaluating ISA and Alpha under real-world meal scenarios 

We used twenty meal scenarios from a 4-day outpatient AP study [64]. Each meal 

scenario was extended to 28 days by duplicating the original meal scenarios. This 
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was done to investigate the convergence rate of the insulin sensitivity factor in the 

ISA. Then, each meal scenario was given to the virtual patients who were then 

subjected to the following conditions: (1) the OHSU MPC controller (called AP), (2) 

the AP + ISA (called ISA), (3) the AP + ALPHA (called ALPHA) and (4) ALPHA + 

ISA (called ALPHA-ISA). We challenged the simulations by introducing a randomly 

selected -30% to 30% meal uncertainty that was applied to each carbohydrate intake 

as done by other groups [113]. We introduced 30% circadian variability of insulin 

sensitivity factors for each virtual patient to represent intra-day variability of the 

insulin sensitivity [113]. 

6.3.6 Evaluating physical activity as a continuous input using real-world 

exercise data 

We used the same 4-day real-world meal and exercise scenarios acquired from a 

prior AP study as described above [64] to evaluate physical activity as a continuous 

input to the AP system.  During this study, participants continuously wore a Zephyr 

patch that acquired heart rate and accelerometry data.  We converted this data to 

METs using a method previously described by Zakeri et al. [110]. And METs was 

used as an input to the AP as described above under the Supplemental Materials.  

Using the physical activity and meal data acquired from these study participants with 

T1D, we evaluated the performance of the exercise-enabled MPC algorithm 
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compared with the non-exercise-enabled MPC algorithm during the entire study 

duration that included free-living, non-structured exercise periods of time and also 

during structured exercise periods of time (i.e. start of exercise until 4 hours after the 

exercise or until first meal).  

6.3.7 Evaluation metrics and statistical analysis 

We evaluated percent time in target range (70-180 mg/dL) and percent time in 

hypoglycemia (<70 mg/dL) as the primary outcome measures.   Secondary outcome 

measures were percent time in hyperglycemia (>180mg/dl), root mean square error 

(RMSE) of the MPC model predicted output relative to the plant output, total 

number of rescue carbohydrates required per day, low blood glucose index (LBGI) 

and high blood glucose index (HBGI). The statistical two-sample t-test was used to 

test statistical difference between AP, ISA, ALPHA and ALPHA-ISA with 

significance level set to 0.05. 

6.4 Results 

6.4.1 Adapting postprandial insulin and insulin sensitivity factor 

We found overall that the ALPHA algorithm was effective at reducing time in 

hypoglycemia by 55.5% relative to the AP without ALPHA as shown in Table XX.  

However, this was at the expense of also reducing time in range from 84.4% to 
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81.3%.  By including the ISA algorithm in combination with ALPHA, we were able 

to both reduce the time in hypoglycemia with less impact on time in range.  As 

shown in Table XX, the number of rescue carbohydrates per day was reduced by 

52% when using ALPHA-ISA (0.24 / day) compared with AP (0.54 / day). Time in 

range changed from 84.4% (AP) to 82.2% (ALPHA-ISA). 

The ISA algorithm was effective at reducing the model-plant mismatch, specifically 

during the overnight periods when the insulin sensitivity was adapted to each patient. 

Figure 6.2 shows how the ISA algorithm reduces model-plant mismatch during non-

meal periods. ALPHA-ISA reduces the RMSE for the non-meal periods overnight 

from 12.7 to 4.9 mg/dl, compared to AP. The RMSE values across all the meal 

scenarios and subjects are shown in Table XX. It also shows the comparison between 

AP, ISA, ALPHA and ALPHA-ISA over the virtual patients and meal scenarios for 

the entire experiment including meal and non-meal periods. ISA+ALPHA 

significantly reduced the RMSE during meal and non-meal periods from 19.4 mg/dL 

(AP) to 17.3 mg/dL (ALPHA + ISA) as shown in Table XX. 
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Figure 6.2 Performance of AP(top), ISA(middle) and ALPHA-ISA(bottom) for a representative 

subject in a representative meal scenario. Start time (NM start) and end time (NM End) of the 

non-meal periods are shown with hexagon and pentagon symbols, respectively. 

Table XX Comparison between AP, ISA, ALPHA AND ALPHA-ISA over the meal scenarios 

µ ±  AP ISA ALPHA ALPHA-ISA 

Time in  Hypoglycemia   [%] 0.54 ± 0.56 0.73 ± 0.5* 0.19 ± 0.25* 0.24 ± 0.25* 

Rescue Carbs [event/day/patient] 0.42 ± 0.42 0.56 ± 0.38* 0.16 ± 0.21* 0.2 ± 0.21* 

Time in range  [%] 84.4 ± 5.9 86 ± 4.5* 81.3 ± 5.7* 82.2 ± 4.9* 

Time in Hyperglycemia     [%] 15.1 ± 5.9 13.3 ± 4.4* 18.54 ± 5.6* 17.5 ± 4.7* 

Average glucose         [mg/dl] 140.2 ± 9.7 136.5 ± 6.9* 146.1 ± 8.1* 143.8 ± 6.3*
#
 

HBGI 4 ± 1.5 3.8 ± 1.2 4.7 ± 1.6* 4.5 ± 1.5* 
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LBGI 1.5 ± 0.43 1.8 ± 0.27* 1.18 ± 0.32* 1.35 ± 0.28*
#
 

RMSE 19.4 ± 0.7 16 ± 0.4* 20.7 ± 1* 17.3 ± 0.6*
#
 

*) shows significance compared to AP (p-value < .05)  

#
) shows significance compared to ALPHA (p-value < .05) 

Figure 6.3 compares the performance of AP with ALPHA-ISA over the virtual 

patients for one representative meal scenario. The lower panel shows the adaptation 

of ISf
Avg

 over the non-meal events. The glucose control was tighter during the non-

meal periods, specifically during nighttime after the first 4 days, showing that the 

model-plant mismatch was reduced with the ISA. Table XXI shows the convergence 

rate at each meal scenario for ALPHA-ISA. The average convergence rate over the 

meal scenarios was 3.4. 
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Figure 6.3 Interquartile range of the glucose profile and the boxplot of the changes of 𝐈𝐒𝐟
𝐀𝐯𝐠

 over 

the non-meal periods across the virtual patients for one representative meal scenario. ‘o’

denotes the amount of CHO. Dashed lines represent hypoglycemia and hyperglycemia 

thresholds. 

Table XXI Convergence at each meal scenario 

Meal Scenario Mean carbs and std 

# Non-meal periods to converge 

ALPHA-ISA 
Final ISf

Avg
 (×10

-4
) 

min
-1

 per (mU/L) 

1 40.2 ± 9.9 2 9.36 ± 3.1 

2 72.8 ± 36.6 5 9.63 ± 3.3 

3 45.1 ± 8.7 4 9.26 ± 3 

4 42.6 ± 30.1 4 8.93 ± 3.1 

5 42.8 ± 28.7 1 10 ± 3.4 
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6 47.4 ± 21.9 1 10 ± 3.1 

7 46.4 ± 15.5 1 10 ± 3.51 

8 32.6 ± 18.9 2 9.41 ± 2.9 

9 40.2 ± 34.7 4 9.96 ± 4.1 

10 38.9 ± 20 4 9.7 ± 3.4 

11 45.1 ± 25.4 4 9.6 ± 3.3 

12 31.6 ± 16.9 1 9.82 ± 3.4 

13 40.4 ± 30.4 4 9.6 ± 3.6 

14 55.8 ± 35.2 4 9.12 ± 3.2 

15 57.2 ± 15.9 5 8.87 ± 2.9 

16 33.9 ± 21.6 5 9.1 ± 3 

17 48.4 ± 24.8 4 9.88 ± 3.3 

18 32.2 ± 11.1 4 9.43 ± 3.4 

19 40.9 ± 21.7 5 9.05 ± 3.1 

20 38.9 ± 2.6 4 8.95 ± 2.9 

Average 43.7 ± 9.7 3.4 ± 1.5 9.48 ± 0.39 

6.4.2 Results of adapting to exercise 

Including exercise as a continuous input to the AP controller led to a 17% reduction 

in time in hypoglycemia and 17% reduction of number of rescue carbohydrates and 

led to a small but statistically significant increase of time in target range (80.7% to 
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81.5%) as shown in Table XXII. These results indicate that including exercise as a 

continuous input to the AP system results in better glycemic outcome measures. 

Table XXII Comparison between an exercise-enabled (AP-Ex) with non-exercise enabled (AP) 

µ ±  AP AP-Ex 

Time in  Hypoglycemia   [%] 0.52   0.43 * 

Rescue Carbs [event/day/patient] 0.47   0.39 * 

Time in range  [%] 80.70 81.50 * 

Time in Hyperglycemia     [%] 18.80  18.10 * 

Average glucose         [mg/dl] 149.10  147.80 * 

HBGI 5.47 5.26   

LBGI 1.36 1.20 * 

*) shows significance compared to AP (p-value < .05) 

**) shows significance compared to AP (p-value < .001) 

6.5 Discussion 

In this paper, we have demonstrated how adaptation of postprandial insulin, adaption 

of insulin sensitivity, and adaptation to physical activity and exercise as an input into 

an AP can yield improvements in glycemic outcomes in automated insulin delivery.  

As shown in a prior publication [116], we have shown that incorporating adaptive 
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postprandial insulin delivery using ALPHA can reduce hypoglycemia and the need 

for rescue carbohydrates, but at the cost of reducing time in target range. By 

simultaneously incorporating an adaptive insulin sensitivity measure that adapts to 

each patient during non-meal periods, we can still observe a substantial reduction in 

time in hypoglycemia while minimizing the reduction of time in target range. 

While prior studies have shown a benefit of incorporating physical activity measures 

as an input to AP systems [20, 52, 64, 71, 148, 149], there has not yet been a study 

showing how physical activity incorporated as a metric during free-living (i.e. non-

scheduled exercise) can yield improvements in glycemic outcomes compared with 

not including physical activity.  These prior studies have shown that if insulin can be 

shut off early and also that optionally glucagon can be given in response to or in 

anticipation of exercise, exercise-induced hypoglycemia can be avoided.  We were 

able to show that physical activity metrics (heart rate and accelerometry) may be 

incorporated as an additional input under free-living as well as scheduled exercise 

periods of time to yield improvements in glycemic control including moderate but 

statistically significant reduction of time in hypoglycemia, number of rescue 

carbohydrates, increased time in target range, reduction of time in hyperglycemia, 

and improvements in LBGI and HBGI.  In the future, we plan to evaluate these 
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adaptive control algorithms in a clinical study on people with type 1 diabetes over 

longer-term in-home studies to demonstrate the benefit of adaptation over time.   

The primary limitation of this study is that it was done in-silico.  We purposely 

designed the MPC control model to be less complex than the plant model in the 

virtual patient population, making it more challenging for the MPC to adapt over 

time to match the plant.  However, the human body is substantially more complex 

than the plant model in our virtual patient population.  When adaptation is done in 

actual humans, the insulin sensitivity parameter in the MPC will adapt to account for 

all discrepancies between the human physiology and the MPC model. The model for 

exercise in the plant model is similar to the model for exercise in the MPC controller, 

and the model was designed for aerobic exercise.  In the future, we will need to 

incorporate models for other types of exercise including resistance training and 

moderate/high intensity interval training. 

6.6 Conclusions 

This paper showed that incorporating exercise as a continuous input as well as 

adapting insulin sensitivity and postprandial insulin delivery in a MPC design can be 

helpful for improving glycemic outcomes. 
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6.7 Supplemental Material 

6.7.1 Integrating exercise into the glucoregulatory model 

We used a model presented by Hernandez-Ordonez et al. [73]. The insulin sensitivity 

factor in Equation 1 is represented by the factors P3/P2.  We model the impact of 

exercise as an increase in insulin sensitivity according to Equation 2 whereby P3 in 

Equation 1 is replaced by P3Ex.  

𝑃3𝐸𝑥 = 𝑀𝑃𝐺𝑈 × 𝑀𝑃𝐼𝑈 × 𝑃3                                             (2) 
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MPGU represents a gain factor related to peripheral glucose uptake while MPIU 

represents a gain factor related to peripheral insulin uptake. These parameters are a 

function of both percent active muscle mass (PAMM) during exercise as well as the 

percent of maximal VO2 (PVO2max) during exercise which is a function of metabolic 

expenditure (MET). 

𝑀𝑃𝐺𝑈 = 1 +
𝛤𝑃𝐺𝑈𝐴×𝑃𝐴𝑀𝑀

35
        (3) 

𝑀𝑃𝐼𝑈 = 1 + 2.4 × 𝑃𝐴𝑀𝑀                                                                                                                                                                 

The ΓPGUA represents the percent glucose uptake by active muscle mass and is 

represented by a differential equation. 

𝛤𝑃𝐺𝑈𝐴
̇ = −

1

30
𝛤𝑃𝐺𝑈𝐴 +

1

30
𝛤𝑃𝐺𝑈𝐴̅̅ ̅̅ ̅̅ ̅̅        (4) 

The ΓPGUA̅̅ ̅̅ ̅̅ ̅̅  is a function of PVO2max, is a function of MET which is given in Equation 

5.   

𝛤𝑃𝐺𝑈𝐴̅̅ ̅̅ ̅̅ ̅̅ = 0.006(𝑃𝑉𝑂2𝑚𝑎𝑥)2 + 1.2264(𝑃𝑉𝑂2𝑚𝑎𝑥) − 10.1958      

𝑃𝑉𝑂2𝑚𝑎𝑥 =
𝑀𝐸𝑇

𝑀𝐸𝑇𝑚𝑎𝑥
           (5) 

MET can be derived using heart rate and accelerometry data as given in [110]. In our 

studies, we collect this data using a Zephyr biopatch. 

6.7.2 Mathematical representation of the MPC 
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The mathematical representation of the MPC is shown in the supplemental materials. 

Design of the MPC 

The state space representation of the MPC process model is represented in equation 

6.  

( 1) ( ) ( ) ( )

( ) ( )

m m m m m

m m

x k A x k B u k d k

y k C x k

   


          (6) 

xm(k) is the state vector, u(k) is the input vector (insulin) and d(k) is the constant 

terms resulted after the linearization. Because MPC predicts future glucose levels 

(y(k)) during NP by varying future insulin levels (u(k) in (6)) during the control 

horizon (Nc), The changes of insulin are first linked to glucose levels. We defined a 

new vector, ( ) [ ( ) ( )]T T

mx k x k y k  , and re-arranged the state equations shown 

below.  

[
∆xm(k + 1)

y(k + 1)
] = [

Am 0m
T

CmAm 1
] [

∆xm(k)

y(k)
] + [

Bm

CmBm
] ∆u(k) + [

1
Cm

] ∆dm(k) 

y(k) =  [0m 1] [
∆xm(k)

y(k)
] 

( 1) ( ) ( ) ( )

( ) ( )

mx k Ax k B u k D d k

y k Cx k

     
 


     (7) 



 

192 

 

where, 0m denotes a vector of zeros whose dimension is the number of the states. The 

predicted outputs (Yp) are then calculated in equation 8. 

( )PY Fx k U D          (8) 

where ΔU and ΔD denote the changes of the input vector, and the constant terms, 

respectively. The matrices F, Φ and Ψ, which are related to A, B, C and D matrices 

in equation 3, are presented in appendix and 

 

The prediction horizon was set to 300 minutes (NP =
300

Ts
= 60 samples; Ts = 5min 

was the sampling interval) because the peak effect of the short-acting insulin is 

several hours [36] and the control horizon was set to 20 minutes (Nc =
20

Ts
=

4 samples) [52]. We empirically found that longer control horizons did not impact 

the glycemic outcomes and we chose 20 minutes to have less computational burden 

and faster MPC control. The cost function, defined in (9), consists of an error term 

and an input-controllable term. The error term measures the discrepancy between the 

predicted glucose output (YP) and the reference glucose trajectory (Rs). The input-
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controllable term restricts the size of the input changes by a tuning parameter 

(Rw = rw × INc×Nc
, where I is the identity matrix). 

( ) ( )T T

s P s P WJ R Y R Y U R U         (9) 

The MPC optimization’s step was done by minimizing the derivative of the cost 

function with respect to the input changes shown in (10). 

10 ( ) ( ( ) )

0 80 units/hr

T T

w s

I

J
U R R Fx k D

U

u


        


  

            (10) 

The optimal ΔU vector contains Δu(k), Δu(k + 1),…, Δu(k + Nc – 1) however only 

the first element (i.e. Δu(k)), according to the receding horizon control principle, is 

given to the plant. Therefore, next insulin delivery, is calculated below: 

               (11) 

In the MPC implementation of this study, we employed an observer using a Kalman 

filter. It compensates the difference between the plant’s and the model’s output 

during the entire simulation time including meal and non-meal periods. The meal 

period was defined as a 4-hour period following a meal event and the non-meal 

period was defined as a period starting 4 hours after the meal event up to the next 
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one. The non-meal period covered both overnight periods and the periods between 

meals excluding the meal periods. The observer is shown in (12). 

( 1) ( ) ( ) ( ) ( ( ) ( ))

( ) ( )

m m m m m ob m m

m m

x k A x k B u k d k K G k C x k

y k C x k

     


            (12) 

where, G is the glucose level and Kob is the Kalman gain. For calculating Kob, we 

assumed that the mean and the covariance of the discrepancy between the plant’s and 

model’s outputs (model-plant mismatch) were 0 mg/dl and 100
2
 (mg/dl)

2
, 

respectively. In addition, we set the mean and the covariance of the process noise to 

0 mg/dl and 1 (mg/dl)
2
. We also assumed that there was no correlation between the 

process noise and the model-plant mismatch. To quantify the model-plant mismatch, 

average root mean square error over non-meal periods was used. 

2

1 1

1 1
( ( ) ( )) , 1,2,...

P N

i k

RMSE G k y k i
P N 

                   (13) 

where, N is the number of samples in a non-meal period and P is the total number of 

non-meal periods in a glucose signal for one virtual patient. 

The mathematical representation of the predicted glucose levels (YP) at each time-

interval is shown below.  

( 1) ( ) ( ) ( )mx k Ax k B u k D d k       
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2

( 2) ( 1) ( 1) ( 1)

                 ( ( ) ( ) ( )) ( 1) ( 1)

                 ( ) ( ) ( ) ( 1) ( 1)

m

m m

m m

x k Ax k B u k D d k

A Ax k B u k D d k B u k D d k

A x k AB u k AD d k B u k D d k

         

          

         
1 1 2

2 3 3

1 1

( ) ( ) ( ) ( ) ( 1)

                    ( 1) ( 2) ( 2)

                    ( 2) ( 2)

                  

p p p p

p p p

p c p c

N N N N

p m

N N N

m m

N N N N

c m c

x k N A x k A B u k A D d k A B u k

A D d k A B u k A D d k

A B u k N A D d k N

  

  

   

         

         

       

  ( 1) ( 1)p c p cN N N N

c m cA B u k N A D d k N
 

      
 

( 1) ( 1) ( ( ) ( ) ( ))

                                  ( ) ( ) ( )

m

m

y k Cx k C Ax k B u k D d k

CAx k CB u k CD d k

        

   
 

2

2

( 2) ( 2)

                ( ( ) ( ) ( ) ( 1) ( 1))

                ( ) ( ) ( ) ( 1) ( 1)

m m

m m

y k Cx k

C A x k AB u k AD d k B u k D d k

CA x k CAB u k CAD d k CB u k CD d k

   

          

         

1 1

2 2

( ) ( )

                   ( ) ( ) ( )

                   ( 1) ( 1)

                   ( 1) ( 1)

p p p

p p

p c p c

p p

N N N

m

N N

m

N N N N

c m c

y k N Cx k N

CA x k CA B u k CA D d k
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[ ( 1) ( 2)  ( )] ;

[ ( ) (k+1)  (k+N -1)] ;

[ ( ) ( +1)  ( +N -1)] ;

T

P p

T

c

T

m m m c

Y y k y k y k N

U u k u u

D d k d k d k

   

    

    

 

( )PY Fx k U D     
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7 Future Directions 

In this thesis, three main contributions to the field of diabetes were drawn. These 

contributions were related to the exercise component, in-silico type 1 diabetes 

simulator, personalized postprandial insulin adjustments, development of linearized 

and fast single and dual hormone controllers. 

The exercise model incorporated in this thesis was based on a study that was 

conducted under aerobic exercise. For each exercise type, in real-time applications, 

the percentage increment of the basal peripheral glucose uptake, as well as peripheral 

insulin uptake and basal hepatic glucose production, were likely to differ. Therefore, 

in future research, a separate exercise model should be designed considering the 

changes of glucose fluxes. 

 In addition to exercise type, exercise intensity must also be considered. Exercise 

intensity can be modeled using accelerometry and heart rate data for modeling the 

PVO2max. The accelerometry data changes substantially at each exercise type. For 

example, in anaerobic exercise, the frequency of acceleration data is less than 

aerobic exercise. The frequency and the amplitude components, as well as the 

exercise bout, can be used to model the PVO2max. In addition, a thorough study 

should be conducted to determine the percentage of active muscular mass (PAMM) 

for different exercise types and intensity levels. Afterwards, the updated PAMM and 
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PVO2max can be used in equation 10 from chapter two to take different exercise 

types and levels into account. Currently, there is no study in the field to address the 

PAMM values at different exercise bouts. 

 The single and dual hormone simulators developed in chapter two showed 

consistency compared to the clinical data. The models still need to be modified with 

respect to the insulin kinetics model, glucose kinetics model and the meal model -- 

all of which are subject-dependent and were treated similarly in this dissertation. For 

example, the insulin absorption rate and glucose effectiveness change differently for 

each subject. In addition, the amount of the meals along with the meals’ composition 

affect the glucose levels differently, as well. Whether the meals consist of 

carbohydrates, protein or fat and whether the amounts are large, medium or small, 

glucose fluxes change substantially across the subjects. 

 Considering the current setting of the MPC controller, the most optimum and 

individualized MPC would first fit the process model of the MPC to the glucose data 

of the subjects, and then calculate the parameters of the model separately. One 

approach could be to start with the Markov Chain Monte Carlo sampling method, 

where the model will be fit to the data using the likelihood function and the priori 

knowledge of the parameters. Then, the individualized model can be used during the 

control and update after each day of glucose data. In the future, to get more advanced 
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and accurate model predictive control, deep neural networks such as recurrent neural 

network can be used as the process model. 
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