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ABSTRACT

Background: Evaluating surveillance data —such as notifiable disease reports and vital statistics
records — over time using direct or indirect rates is a common public health tool for discerning
and predicting disease trends. In turn, these assessments may help explain the etiology of health
outcome and inform prevention and planning efforts. While rates by time period and age are
easily calculated, they may obscure factors that influence disease or mortality risk. Age, period,
and cohort (APC) analyses seek to uncover these influences by partitioning trends into
components associated with changes over time within a given age group (age effects), time
period (period effects), and birth cohort (cohort effects). Because available surveillance data for
viral hepatitis predominantly represent prevalent disease, it is difficult to track changes in
incidence over time or anticipate the magnitude of the disease burden. Recent studies of viral
hepatitis infection in the United States have proposed that generational differences exist in
morbidity and mortality of this disease.’ Consequently, an APC analysis of viral hepatitis
mortality may contribute information about factors perpetuating infection, suggest whether

current trends are likely to be sustained, and guide public health planning efforts.

Objective: To evaluate Oregon viral hepatitis mortality for the presence of cohort effects in the
baby boomer generation —individuals born between 1950 and 1965 — by applying the

multiphase method, a novel method of APC analysis™®

Methods: Deaths related to viral hepatitis were abstracted from multiple-cause mortality
variables from Oregon death certificates for 1995 to 2010 using International Classification of
Diseases 9th and 10th revision codes (ICD-9: 070; ICD-10: B15-19, B94.2). These data were

evaluated for the presence of cohort effects using the three stage multiphase method: (1) data



were assessed using pairwise graphical inspection; (2) log-additive components of age and
period were removed using a median polish;® (3) the remaining cohort effect was separated

from error using a linear regression model and its relative magnitude estimated.

Results: Qualitative evidence from the first two steps of the multiphase method suggested the
presence of age and cohort effects in viral hepatitis deaths. After removal of the log-additive
effects of age and period, estimated viral hepatitis mortality rates remained significantly higher
for individuals born 1950-1965 than preceding birth cohorts for 1910—1949 (p=0.03) or
subsequent birth cohorts for 1966—1985 (p=0.003). No significant period effects occurred at the

population level.

Conclusion: We demonstrate a computationally straightforward method for assessing temporal
trends using aggregate data. By applying this method to mortality rates for viral hepatitis, a clear
pattern of increase in deaths is discernible between 1950 and1965 compared with the cohorts
before and after. These findings may contribute to public health surveillance and planning

efforts.

xi



INTRODUCTION

Evaluating disease and mortality patterns over time are common tools in public health.
Trend assessments are valuable because they can help predict future increases of disease,
understand disease etiology, and inform prevention efforts. Summarizing mortality by rates
based on calendar year of death is a frequently employed method of assessing mortality trends.
Trend analyses using mortality rates is especially popular among local or state health
departments that seek to plan for and address population-level needs, but may lack the
resources to conduct more complex analyses. While rates are easily calculated and can provide
public health practitioners with information about disease behavior over time, crucial details
about the trends may be lost in the averaging process inherent to rates.® Because rates are
population-level summary measures, factors that may help explain observed patterns over time
are often omitted. For instance, mortality rates analyzed over time do not take into account that
decedents were born at different times. Generational differences, for instance, may arise when
individuals born at the same time are exposed to different levels of a particular risk factor than
those born at other times. These generational differences based on differential exposure to a
risk factor are known as cohort effects. Understanding whether such cohort effects exist and the
extent of their influence using age-period cohort (APC) analysis may provide insight for certain

diseases, helping to inform surveillance and program planning.

Historically, analyses that assessed the influence of cohort effects relied on qualitative,
graphical approaches.”™ Beginning in the second half of the 20" century, more quantitative
approaches were developed. These analyses, however, have been criticized for making a priori,
possibly invalid assumptions about the relationship between age, period, and cohort as well as

8,14,15

difficult to interpret. In this thesis, | propose to explore the multiphase method of cohort



analysis. This approach, recently developed by Keyes and colleagues in 2010, provides a
straightforward and computational simple method to both assess and quantify cohort effects in
trend data.® In reviewing and critically examining conceptual and statistical details of the
multiphase method, this thesis makes both theoretical and applied contributions to analytic
tools used in public health. To accomplish this, | detail the steps of the multiphase method and
apply it to 1995—-2010 viral hepatitis mortality data for Oregon residents. To facilitate use of this
approach in an applied public health setting, | also present resources to support local and state

public health departments seeking to employ this method.

Viral hepatitis is a disease for which an age-period-cohort analysis may provide
information that could benefit public health efforts not available through traditional analyses of
rates. The Centers for Disease Control and Prevention (CDC) estimates that nationally 3.5-5.3
million persons are chronically infected with viral hepatitis and 15,000 persons die annually as a
result of chronic liver disease associated with these infections.”’ In Oregon, the extent of new
reports of chronic infection — over 6,000 reports annually for the last 5 years — persists despite
declines in reports of acute infection (unpublished Oregon surveillance data from ORPHEUS
database, Oregon Health Division). Public health efforts to address this large burden of disease
are compounded by poor estimates of incidence. True incidence of viral hepatitis is difficult to
determine because both acute and chronic infections are asymptomatic. Chronic infections are
of particular interest because they lead to serious complications such as chronic liver disease,
cirrhosis, and liver cancer — if left untreated. However, most chronically infected individuals
typically do not know they are ill and remain undiagnosed for decades post-exposure until
sequelae manifest. By the time these individuals are diagnosed, they have been asymptomatic
for a long time and, thus, represent prevalent disease. Incidence estimates, however, are

needed to determine the risk of contracting the disease, how rapidly that risk is changing, and

2



whether observed trends are likely to be sustained. While an APC analysis of Oregon viral
hepatitis mortality will not yield incidence rates, it may contribute information about factors
perpetuating the persistence of chronic infection, suggest whether this trend is likely to
continue, and provide information to public health programs to guide planning efforts. Basing
this analysis on mortality data rather than disease reports will help minimize underreporting of
subclinical infection and decrease bias in diagnosis due to access to healthcare. Further, the
multiphase method requires many years of data for analysis, which is not available for notifiable

disease reports of viral hepatitis in Oregon.

In my evaluation of the multiphase method, | anticipate finding an approach to APC
analysis that has limitations, but provides an accessible alternative method to analyze temporal
trends. Previous studies in the United States have found that both viral hepatitis infection and
mortality disproportionately affect persons aged 45 to 64 year and implicate the baby boomer
generation, individuals born around 1946 to 1965." Yet these studies have not conducted a
formal cohort analysis to assess the cohort effects, their contribution relative to age and period
effects, or magnitude. Thus, cohort effects may be present and the baby boomer generation
more impacted by viral hepatitis mortality than other birth cohorts. Since surveillance studies
have demonstrated that viral hepatitis infections occur most among young adults 20—39 years
old and health outcomes tend to develop during middle-age after a long subclinical phase,® age
effects are also possible. In particular, mortality rates are expected to increase with age and
peak around 60 years old. Whether period effects are detectable in the data is less clear. |
suspect there may be a slight rise in rates after 1998 due to changes in clinical practices. Secular
changes due to risk prevention strategies (e.g., screening the national blood supply, policies to
prevent healthcare exposures) and improvements in screening tests may also impact period

effects.



Following this introduction, section 2 provides a framework to understand the
multiphase method in context with other APC approaches. It reviews the historical development
of APC models and supplies an overview of how the multiphase method compares to other
analytic techniques. Section 2 also provides background for viral hepatitis morbidity and
mortality in the United States by describing acute and chronic hepatitis, related sequelae and
the ensuing burden of disease, and limitations of the surveillance. In this section, | discuss why |
anticipate finding cohort effects in the baby boomer generation and summarize what previous
studies have found. The third section specifies each step of the multiphase method and teases
out its methodological details. Additionally, this section describes the mortality data | use for my
illustration of the multiphase method including the source of the datasets, data elements used,
preparations for conducting the analysis, and statistical tests applied. Section 4 focuses on the
results of applying the multiphase method to Oregon viral hepatitis mortality data. The final
section concludes by assessing findings from the analysis and performance of the multiphase

method.



BACKGROUND

Framework for Age-Period-Cohort Analysis

Concepts and Definitions

Age-period-cohort analysis is used in epidemiology to analyze temporal trends in

disease incidence and mortality. Before giving further detail, it is necessary to describe the

components integral to this type of analysis: age, period and cohort effects.

Age effects. Individuals’ risk of a health outcome often varies through the aging process.

Age effects are differences in risk associated with different age groups regardless of the time

period or generation to which an individual belongs. These differences may result from

accumulated exposure and/or physiologic changes that are experienced differentially at stages

in an individuals’ life course. For
example, bedwetting is highest in
children 54-36 months old and its
incidence decreases with age.™
Figure 1 depicts a hypothetical
disease rate in which only age
effects are present. In this
diagram, the disease rate
increases linearly across age for

each birth cohort.

Disease Rate

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
Time Period

Figure 1. Hypothetical rate of disease in three birth cohorts over time
with only age effects operative.
(Reproduced from Keyes and Li, 2011)



Period effects. Period effects result from changes in population-wide exposures to a
health outcome that begin at a specific point in time and affect all age groups simultaneously.
Increase in cancer incidence among survivors of the nuclear bombing of Japanese cities
Hiroshima and Nagasaki in 1945 is an example of a period effect.® These effects may also arise

artificially — particularly in

surveillance and other forms of Cohort 1 - age 30 in Year 3
Cohort 2 - age 20 in Year 3

Cohort 3 - age 10in Year 3
aggregated data — due to changes &

in medical technology; data

collection; and disease screening,

Disease Rate

definition, or classification.

Figure 2 shows a hypothetical - - - - . .
Yearl Year2 Year3 Year4 Year5 Year6

disease rate influenced only by Time Period

. . Figure 2. Hypothetical rate of disease in three birth cohorts over time
period effects. As depicted, the & P

with only period effects operative.

. . . (Reproduced from Keyes and Li, 2011)
entire population experiences an

increase in disease incidence in year 2 regardless of cohort or age.

Cohort effects. Individuals born at the same time may be exposed to different levels of a
particular risk factor than those born at other times. Cohort effects represent changes in the risk
of a health outcome based on birth year. For example, the risk of paralysis from poliomyelitis
was higher in cohorts born between 1916 and 1955 than those born after 1972 when wild polio
was eliminated in the United States following widespread vaccination.?® If cohort effects exist, it
is likely that they will show up when analyzing trends by period (as indirect effects).® Figure 3
demonstrates a hypothetical disease rate where only cohort effects exist. In this diagram, each
cohort has a disease rate that is constant over age and period; however, the rate for Cohort 1 is

lower than either Cohort 2 or 3.



While age, period, and
cohort effects are distinct
concepts, they are difficult to
formally separate because of the
relationship between terms. That
is, an individual’s birth cohort is
determined by age within a fixed
period. Once a time period has
been defined, every age

corresponds to a specific birth

Cohort 3
I
Age 20
2
o] Cohort 2
< |
[}
@ Age 20
[}
2
[a]
Cohort 1
I
Age 20

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Time Period

Figure 3. Hypothetical rate of disease in three birth cohorts over time
with only cohort effects operative.
(Reproduced from Keyes and Li, 2011)

cohort. For example, say the time period is 2000—2004. Then individuals that are 25—29 years

old are born in the 1975—1979 birth cohort, individuals that are 30—34 are born in the 1970—

1974 birth cohort, individuals that are 35—39 are born in the 1965—1969 birth cohort, and so

forth. Thus, subtracting age from period yields cohort (Cohort = Period — Age). Consequently,

period and age will be perfectly correlated for any cohort (i.e., knowing an individual’s birth

cohort and age completely determines the value of period). Any analysis that seeks to estimate

these effects separately must contend with the collinearity of these variables.



Historical Use and Statistical Approaches

Age-period-cohort analysis began as a descriptive tool to assess temporal trends in
health outcomes and mortality. Early epidemiologic approaches used graphs to follow patterns

91112 Especially influential among this early work was

of disease and mortality over generations.
the posthumously published paper by Frost (1939) that studied tuberculosis mortality in

Massachusetts from 1880—1930. Frost found differences in mortality rates by age with

successive birth cohorts, a pattern that was masked when data were examined by age and
period. Other seminal epidemiologic studies of the 20™ century have identified cohort effects in
all-cause mortality,'® cancer,®® and peptic ulcer mortality** using two-dimensional graphical
approaches. While graphs are a useful first step to identify the presence of age, period, and
cohort effects, they remain qualitative and limited in their ability to distinguish and quantify the
magnitude of each effect. Moreover, only two of the three variables can be examined
simultaneously with graphs due to the interdependence of the variables; one effect will always

remain uncontrolled.>**

Due to limitations in graphical approaches and the desire to estimate
the relative contribution of each effect, researchers have sought quantitative approaches to

cohort analysis.

In the second half of the 20" century, the sociologist Norman Ryder (1965) proposed
that birth cohorts might have structural properties which emerge as a result of the conditions,
barriers, and resources that each cohort is born into.”* These circumstances distinctly shape the
patterns and experiences of individuals, potentially impacting health outcomes for that cohort
like race or social class. Ryder’s publication spurred an interest in assessing the unique influence
of cohort membership, independent of age and period effects. In this conceptualization, age and

period are seen as confounders of the cohort effect.* Thus, statistical models were developed



to estimate cohort effects by controlling for age and period effects. In these models, age, period,
and cohort are assumed to have a linear relationship with the outcome of interest and each
slope is calculated taking into account the additive influence of the other two effects.'®
Statistical models attempting to estimate the three effects simultaneously, however, stumble
into an identifiability problem because of the exact linear dependency of the three variables.
Recall, cohort = period — age. This collinearity complicates the regression models which are
generally used to estimate each effect. Explicitly, the design matrix for regression models will
not have full rank, its inverse will not exist, and it will yield a non-invertible estimator when

ordinary least squares estimation is attempted due to the perfect correlation of the variables."

Prominence of Ryder’s conceptualization of cohort effects and interest in age-period-
cohort analysis has engendered a variety of methods to address the identifiability problem. One
of the first approaches to be developed as well as the most common is constraint-based
regression. This method places one or more restrictions on the regression model to concurrently
estimate the effects of age, period, and cohort.?* A simple constraint may consider only two of
the three variables.? For instance, a model might assume that there are no changes over time
that affect the model and exclude the period term. An alternative constraint to exclusion of an

1523 |n this scenario, still using period effects

effect altogether is to assume that its slope is zero.
as the constrained term, it is assumed that no linear changes occur in observed rates vis-a-vis
time period. As a result, any operative trends are forced to be related to cohort or age terms."
Another possible constraint is to equate two of the effects in the model or explicitly define slope

parameters.” For example, if it is believed that there is no change over a specific interval of

time, the slope parameters for two adjacent periods may be set equal to each other.



Constraint-based approaches have been criticized, however, because parameter

8,14

estimates are sensitive to constraint choice, which is difficult to validate.™ Another widely used

approach characterizes trends by their linear components and deviations from linearity.>
These methods are widely used in epidemiology, particularly in cancer research, but have been
critiqued as having limited interpretative value. While these two approaches are the most
popular, others have been developed. These methods share the conceptualization of cohort
effects as obscured by the influences of period and age.® In this conceptualization, most
common in sociology, cohort membership itself represents an exposure as the experiences of a
particular cohort shape its members’ patterns of health.' Thus, cohort effects represent the
totality of environmental influences unique to individuals born during a particular time.* Such

analyses conceive of the interdependency variables as confounding. That is, age and period

effects need to be controlled to assess cohort effects, the real exposure of interest.

An alternate interpretation of the relationship of these variables — one popular in
epidemiology — is that age and period interact to produce unique generational experiences.®
The conceptualization of cohort effects as an interaction of age and period effects was first
proposed by Greenberg et al. (1950) in their analysis of syphilis rates of the 1940s.”’ Although
this conceptualization still defines the effects to have an exact dependency — that is,
cohort = period — age, exposures are not intrinsic to birth cohorts. Rather, a cohort effect
“occurs when different distributions of disease arise from a changing or new environmental
cause affecting age groups differently. A cohort effect, therefore, is conceptualized as a period
effect that is differentially experienced through age-specific exposure or susceptibility to that
event or cause (i.e., interaction or effect modification).”® In this interpretation, there is no need

to address the identifiability problem because cohort effects are not conceived as independent

10



from age and period. The median polish is a statistical method that has been used to explicitly

estimate cohort effects using this interpretation.*’

Tukey (1977) developed the median polish to describe data in a two-way contingency
table and remove the additive influence of both the row and column variables.® This technique
makes no assumptions about the distribution or structure of the data in the table.
Consequently, it can be used for any data type contained in a table including rates, logarithms of
rates, proportions and counts. The method works by alternately subtracting column and row
medians from each cell of the table. After several iterations, the cell values stabilize near zero
leaving residual values that contain the non-additive components. The residual values measure
the deviation of each cell from an additive model. Thus, cells with large residual values indicate

potentially important “joint” effects of row and column variables.

This method was first applied to age-period-cohort analysis by Selvin.” Looking at
mortality data, he conceptualized age and period effects as additive increases to a background

mortality rate. That is, the death rate (R;) for the ith age category and jth year is modeled as

Ri=u+a+T (1)

where u is the underlying mortality rate, which occurs at some constant level in the population
regardless of other model variables; a; is the age effects; and t; is the period effects. In this
model, both age and period independently influence R;. Age is the only factor that influences
mortality when period effects are constant and vice versa. For most scenarios in which both
time and age influence mortality, each effect would be added to the background rate. Equation
(1) does not account for cohort effects. Because the influence of age is not the same for all time

periods and the influence of time is not the same for all ages when a cohort effect exists, Selvin

11



regards this effect as a time/age interaction. Consequently, he modifies the original equation to
Rij=uU+a+Ti+yj (2)

where y; is a cohort effect, an interaction between age and period effects. Then, a cohort effect
does not exist independently of age and period effects. With this conceptual model, Selvin
applies the median polish to two-way contingency tables for age and calendar year. The polish
removes the additive influences of age and time; any remaining residuals represent the possible

presence of a non-additive cohort effect. In absence of a cohort effect, the residuals should

average to zero.

In his model descriptions and application of the median polish, Selvin does not include

random error. To account for this oversight (g;), equations (1) and (2) are rewritten
Rij=pu+o;+T1+¢ (3)
Ry=p+a+ T+ Vit € (4)

These revised equations indicate that the residuals resulting from the polished contingency
tables actually contain random error in addition to the postulated cohort effect (y; + €;). The
multiphase method proposed by Keyes and Li (2010) extends Selvin’s work by separating the
cohort effect and error terms.™ By applying regression after the median polish, the residuals
from the median polish are partitioned into systematic and non-systematic components. The
systematic element is considered the cohort effect, the remaining variance the random error.

Additionally, the multiphase method parametrically quantifies the relative magnitude of each

cohort effect compared to a referent.

12



Multiphase method of Age-Period-Cohort Analysis

The multiphase method provides a simple, robust, and easily interpretable technique for
estimating cohort effects. Compared to other types of APC analysis, this nonparametric method
makes minimal assumptions about data structure, data distribution, or the relationship between
age, period, and cohort. Because the median polish does not rely on a specific distribution or
structure, it is extremely versatile and can be applied to a wide variety of data including rates,
log rates, proportions, and counts. Although conceptually similar to the linear contrast method
of Holford, the multiphase method provides a quantitative estimate of the age/period
interaction.'® Further, this method explicitly defines cohort effect as an interaction between

period and age which facilitates interpretation of the results.*

The multiphase method does not address limitations — such as overlapping cohorts and
missing data — inherent to all APC analyses that use contingency tables. The problem of
overlapping cohorts arises because the multiphase method follows the convention of labeling
birth cohorts by subtracting the youngest age from the earliest and latest year in the period

interval. For instance, the 1954—1957 birth cohort is formed from the 41—44 age group and
1995-1998 period by subtracting 41 from 1995 and 1998. In this example, some of the
individuals categorized into the 1954—1957 birth cohort will actually be born between
1950-1953. Thus, this convention incorrectly classifies some individuals into erroneous birth

cohorts. Overlapping cohorts are formed due to this misclassification and mutually exclusive
cohort risks cannot be estimated. Missing data is another issue that results from the way
cohorts are constructed in the multiphase method. As with other APC methods that employ
data from contingency tables, fewer data points are available for the youngest and oldest age

categories when cohorts are formed. Because this method calculates cohort effects by averaging
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the outcome of interest over each birth cohort and age, estimates for cohort categories with
sparse data may be more influenced by age effects and, thus, less reliable.” These estimates
should be interpreted with caution. Like other age-period-cohort analyses, the primary objective
of the multiphase method is to assess the component effects of age, period, and cohort that
lead to changes in trends over time rather than test causation. Moreover, these factors are likely
distant proxies for the true constructs that mediate disease and mortality trends. If more
proximal variables can be identified, directly measured, and tested, the resulting analyses may

be more methodologically sound and meaningful for public health applications.’

Despite limitations, the multiphase method may be useful to identify influences on
trends not otherwise apparent in disease or mortality rates. Due to characteristics of the natural
history of viral hepatitis, discussed in the next section, incidence rates are difficult to estimate.
In this circumstance, analyzing data using the multiphase method may aid in understanding
trends. As mentioned, viral hepatitis has been hypothesized to differentially impact the baby
boomer generation more than proceeding or subsequent birth cohorts. If mortality increases
are demonstrated to be primarily limited to the baby boomers, these findings might suggest
that incidence rates are decreasing in other birth cohorts along with the risk of becoming
infected. Such information is not obtainable through traditional analyses of rates from

surveillance data currently available for this disease.
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Motivating Example — Viral Hepatitis Mortality

Hepatitis C is a bloodborne infection caused by an RNA virus and principally transmitted

28,29
d.

through percutaneous but also mucosal exposure to infected bloo The greatest risk factor

for hepatitis C is injection drug use>*° but another common risk is blood transfusion before 1992

2,30

when plasma-derived products began to be screened for the virus. > Other documented routes

of transmission include occupational needle stick exposures,®! * inadequate infection control in

33-35 2,36-38

healthcare settings, and high-risk sexual behavior. Surveillance reports of individuals
living with chronic Hepatitis C infection from 2009 from CDC’s Emerging Infections Program (EIP)
indicate that males and non-Hispanic Whites are disproportionately affected in the United
States — 66.3% and 24.7% of reported cases, respectively.'® The majority of these infections

occur in adults 40-54 years old.™®

Like hepatitis C, hepatitis B virus is transmitted by percutaneous and mucosal exposure.
While blood has the highest concentrations of virus, other body fluids such as semen and saliva
are also infectious.*® The primary routes of transmission for the virus are sexual contact and
percutaneous exposure to body fluids such as through injection drug use, occupational exposure
via needle stick injuries, perinatal exposure to an infected mother, and prolonged close personal
contact with an infected person.'® EIP surveillance of individuals living with chronic hepatitis B
infection from 2009 reports an equal proportion of men and women affected while
Asians/Pacific Islanders and non-Hispanic blacks represent the majority of cases for whom
race/ethnic information was available — 24.8% and 10.3%, respectively.’® Current literature
suggests that most infected Asian/Pacific Islander and non-Hispanic black cases may be

immigrants and refugees from endemic areas who likely acquired infection outside of the United

15



40,41

States. In contrast to hepatitis C, the age of infected individuals tends to be younger with

ages between 25 and 54 years predominating.’®

Hepatitis B and Hepatitis C virus (referred to together as “viral hepatitis”) can cause
both acute and chronic infection. The acute form of viral hepatitis usually occurs within 6
months of exposure and manifests as mild illness that lasts a of couple weeks. Acute infection
may be asymptomatic but may also present with nonspecific symptoms such as anorexia,
nausea, vomiting, fatigue, abdominal pain, and jaundice.42 In some individuals, the initial
infection resolves spontaneously — usually within the first year. Chronic hepatitis occurs in
individuals whose immune system fails to clear the acute infection. The proportion of newly
infected individuals that will develop chronic infection is 75—85% for hepatitis C and differs by
age for hepatitis B (>90% of infants, 25—50% of children ages 1-5 years old, and 6—10% of

adults).”®

Chronic viral hepatitis is the leading cause of cirrhosis and hepatocellular carcinoma
(HCC) in the United States,** producing 78% of HCC cases and 57% of cirrhosis cases.* Chronic
liver disease and cirrhosis have been among the 15 leading causes of death in the United States

%633 HCC accounts for approximately 90% of primary liver cancer and this type

for over 10 years.
of cancer has a 5-year survival rate below 12%.>® Viral hepatitis has been dubbed the “silent
killer” because most chronically infected people are asymptomatic until symptoms of advanced
liver disease appear many years later after exposure.*** An Institute of Medicine report

estimates that 3.5 —5.3 million people in the United States are living with chronic hepatitis B or C

infections.*

Public health interventions in the past 20 years have transformed the epidemiology of

acute viral hepatitis in the United States. Hepatitis B incidence has dropped 82% since 1991
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following implementation of national measures to reduce transmission including universal
vaccination of infants, prevention of perinatal infection through routine screening of pregnant
women and immunoprophylaxis of infants born to infected mothers, routine vaccination of
children and adolescents, and vaccination of adults at risk for infection.”®*° Because no vaccine
exists to prevent hepatitis C, public health measures for this disease have focused primarily on
prevention efforts such as testing blood donors, treating plasma-derived products, providing
risk-reduction counseling and screening to at-risk individuals, and adopting universal infection
control procedures.”® These efforts have led to a 91% decline nationally in the number of
estimated new acute hepatitis C infections between 1990 and 2009.” Acute hepatitis B rates in
Oregon exhibit similar decreases, dropping 94% in the past 20 years (Figure 4A). By contrast,
Oregon rates of acute hepatitis C have fluctuated since reporting began in 1994 (Figure 4B) and
remained above national estimates.”” Despite national declines in the incidence of both acute
HBV and HCV over the last two decades, the size of the population infected with chronic viral
hepatitis persists. Additionally, the prevalence of cirrhosis and HCC continue to grow as do
deaths from viral hepatitis.>*®*° In Oregon, the rate of new reports of chronic hepatitis B
infection has declined only slightly since 2000 from 14.7 to 11.6 per 100,000 (Figure 4A). As for
chronic hepatitis C, mandatory reporting of this infection as a notifiable disease began in Oregon
in July 2005." Due to the recent addition of this disease to routine surveillance, reported cases
may reflect an influx of previously known cases, artificially inflating rates. Consequently, a stable
trend is difficult to gauge. State-level estimates for Oregon were not available for cirrhosis and

HCC prevalence but deaths related to viral hepatitis have climbed since 1995 (Figure 5).

'Some Oregon counties voluntarily reported hepatitis C cases prior to 2005.
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Simulation models for the United States predict that between 2005 and 2021 the
population living with hepatitis C will decrease by 24% from 3.15 million to 2.47 million in
2021.°° However, the burden of disease is expected to intensify over the same time period.
Studies estimate the latent period between viral hepatitis infection and serious complications as
2-4 decades post-exposure (2—3 decades for cirrhosis and 3—4 decades for HCC).**®! Because
most hepatitis C cases remain asymptomatic until serious complications develop, the population
currently infected with hepatitis C will experience high rates of chronic liver disease, cirrhosis,

8062 Faw prediction models are available for estimating the

liver cancer, and mortality as it ages.
impact of current chronic hepatitis B infections and, existing forecasts are not specific to the
United States. Yet, as with hepatitis C, there remains a reservoir of approximately 800,000
chronically infected individuals that will contribute to the viral hepatitis burden as they age.*"®*
Furthermore, 90% of new case reports are immigrants from areas where hepatitis B infection is
endemic and are likely exposed to the virus prior to immigrating.®* Since the majority of these
individuals are infected before arriving in the United States, the prevalence of individuals living
with chronic hepatitis B infection will probably continue without additional, global public health
interventions. As many of these individuals may not have access to healthcare, controlling
chronic infection through antiviral treatment and mitigation of long-term consequences may not

be possible. As a consequence of these factors, changes in the carcinogenic consequences of

viral hepatitis will not be seen for decades after variations in viral hepatitis prevalence.

Age plays a crucial role in viral hepatitis deaths and the baby boomer generation is
especially impacted. In a study of participants from the National Health and Nutrition
Examination Surveys (NHANES) between 1999 and 2002, the overall prevalence of HCV in the
United States was estimated to be 1.6%. The prevalence nearly tripled for individuals ages

40 -49.2 Armstrong et al. (2000) used mathematical models to estimate the prevalence of
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hepatitis C infection and graphed estimates at age 60 by year of birth.! They found that
individuals born around 1945 and 1964 were at greatest risk for acquiring hepatitis C. National
serum surveys support these estimates’ as do mortality rates for 1999-2007.> While again less
data are available for Hepatitis B, a study of 1999-2008 NHANES data found that prevalence of
chronic hepatitis B infection increased with age, peaking in persons 50-59 years old.%® Other
studies have shown that cases of chronic hepatitis B are predominant in immigrant adults in the

5667 Moreover, hepatitis B vaccine programs are too new to impact the

40-49 age group.
prevalence of chronic hepatitis B in adults.®* While these studies have suggested that a cohort

effect likely exists in the baby boomer generation, efforts to evaluate this effect remain

primarily graphical, do not quantify its magnitude, or assess the role of age and period effects.
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METHODS

Requirements, Set up, and Phases of Multiphase Method

The next section provides a general exposition of the multiphase method. The intent is
to provide public health practitioners with a technical guide for applying this approach in their
work. In the following section, | will apply the methods outlined here to Oregon viral hepatitis

mortality data.

Data Requirements

The multiphase method requires data aggregated into m age groups over n time
periods. The intervals for the age groups and time periods must be of equal width. For example,
if ages are grouped by 5-year intervals, so too are the time periods. Also, a minimum of 3 birth
cohorts each with at least three cells of age-period data is recommended to conduct this
analysis. Figure 6 demonstrates the structure of hypothetical contingency tables with the

minimum dimensions for this condition.

T, T, T3 T; Ts T T, T3 Ty Counts, rates, and proportions of health-
a, a,
b, b, related diseases and conditions are the
o3 o3 .
most common form of this aggregate data
Oy

for applied public health, but this method

Figure 6. Structure of hypothetical contingency
tables with the minimum number of dimensions for does not necessitate a specific type of data
the multiphase method

(as long as it is consistent within the table).
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Set Up

The multiphase method begins by separating aggregated outcome data into m age
groups within n periods using the same width of interval. Data should be then arranged into a
two-way contingency table with m rows and n columns, a row for each age group and a column

for each period (see Figure 7).
Figure 7. Hypothetical two-way contingency table with m rows for

age group and n columns for period Each cell designates a rate

Period
Age group T T, ... . Tha T, corresponding to each
a; V11 V1,2 <.V -« V1n1 Vin
o, Va1 Va2 s V2 e Vana Van i=1,..., mage group and
j=1,..., nperiod.
ai Via Vi Vi - Vina Vin For example, the rate
for the first age group and first
Q-1 Vm-1,1 Vm-1,2 oo Vm1j - Vmina Vm-1,n . . .
o Vns V.2 e Vmi o Vmnd Vaun time period would be placed in

the cell for the first row and column (y;in Figure 7), the rate for the first age group and second
time period would be placed in the cell for the first row and second column (y;,in Figure 7), and
so on. As age and period are grouped using the same time interval, outcomes in the left-to right
diagonals represent individuals of approximately the same birth cohort. There will be a
maximum of m + n — 1 cohort categories for which outcome data exist. Further, the oldest and
youngest cohorts each will have only one data point. Figure 8 demonstrates a hypothetical two-
way contingency table with m = 12 age groups and n = 4 periods. As seen in this example, there
arem+n—-1=12+4-1=15 cohorts. Cohorts are labeled by following the previously

mentioned convention of subtracting the youngest age from the earliest and latest period in the

"While the multiphase method can be applied to many types of outcome data (e.g., counts, rates, proportions), |
anticipate that rates will be the most common and, thus, they will be the focus of this description.
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cohort. Again, the 1954-1957 birth cohort is formed from the 41-44 age group and 1995-1998

period by subtracting 41 from 1995 and 1998.

Figure 8. Hypothetical two-way contingency
table with age group as rows and time period as
columns showing cohorts formed by diagonal

cells
Time Period
Age group T; T, T3 T4
oy Vi1 Viz Vis V14 <—Youngest cohort in table
a; Vz1 Va2 V23 V24
03 Va1 V3.2 V33 V3,4
a, Va1 Va2 Va3 Vasq <&— Youngest cohort with datapoints for every period
Qs Vs,1 ¥s,2 Vs,3 V5,4
O Vs1 Vs.2 Vs3 V6.4
oy V71 V7.2 V7.3 V7.4
Qg Va1 Va2 Va3 Va4
Olg Vo1 Vo2 Vo3 Vo4
Q0 V10,1 V10,2 V10,3 V10,4
1 V11,1 V11,2 Va1 3 V11,4
Q1 Yioa Vizz Vizs Y1248, < Oldest cohort with datapoints for every period

AN

Oldest cohort in table
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Phase I: Graphical Representation

The first step of the multiphase method is to graphically assess data from the m x n

contingency table and determine whether age, period, or cohort effects exist. Because only two

of the three variables can be examined simultaneously using graphs, three plots should be

constructed to gauge the influence of each effect: (1) age by period (age-period), (2) birth year

Disease Rate

Figure 9. Hypothetical rate of disease in three birth cohorts over

/ N\ Cohort 3

Cohort 2

Cohort 1

Yearl Year2 Year3 Year4 Year5 Year6

Time Period

time with period and cohort effects operative.
(Reproduced from Keyes and Li, 2011)

Disease Rate

Figure 10. Hypothetical rate of disease in three birth cohorts over

Year1l Year2 Year3 Year4 Year5 Year6

Time Period

time with age and cohort effects operative.
(Reproduced from Keyes and Li, 2011)
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by period (birth year-period), and (3)
birth year by age (birth year-age).
Using these graphs, it is possible to
qualitatively assess which effects are
operative. The age-period graph, for
instance, allows the influence of
period or cohort effects to be
considered within each age group for
the outcome of interest. Cohort and
period effects are unlikely to exist if
age-specific rates do not vary over
time and it may be futile to proceed
with the multiphase method. If age-
specific estimates change in a
parallel manner during a specific
period (Figure 9), period effects may
be present. Similarly, cohort effects
may be present if age-specific

estimates change for certain age



groups differently than other groups (Figure 10). Analogous interpretations can be made for

cohort-period and cohort-age graphs.

Phase Il: Median Polish

The median polish is applied to an m x n contingency table to remove the additive
effects of age and period. This method works by alternately subtracting row (age) and column

(period) medians from the table. The detailed steps of the algorithm are:

1. Calculate the median of each row" and record the value to the side of that row.

2. Subtract the row median from each cell in the row.

3. Compute the median of each column and record the value beneath that column.

4. Subtract the column median from each cell in the column

5. Repeat steps 1 and 2 until no change occurs in the row or column medians.

To illustrate the simplicity of this technique, Figure 11 shows one iteration of the median polish

for a hypothetical example showing case counts by age and period.

Instead of rows, the algorithm can start with columns but most pre-coded algorithms begin with rows. The result will
be slightly different but similar.
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Figure 11. Hypothetical example of one iteration of the median polish with age
groups as rows and period as columns demonstrating step 1—4 of the algorithm

Step 1. Calculate median of each row (shaded in blue)
and record value to side of the row

Death Year
Age group Period 1 Period 2 Period 3 | Row Median
Age 1 3 4 5 4
Age 2 5 4 6 5
Age 3 5 6 5 5

Step 2. Subtract row median from each cell in the row

Death Year
Age group Period 1 Period 2 Period 3
Agel -1 0 1
Age 2 0 -1 1
Age 3 1 0

Step 3. Compute median of each column (shaded in blue)
and record value beneath the column

Death Year
Age group Period 1 Period 2 Period 3
Age 1 -1 0 1
Age 2 0 -1 1
Age 3 0 1 0
Column Median 0 0 1

Step 4. Subtract column median from each cell in the

column
Death Year
Age group Period 1 Period 2 Period 3
Age 1 -1 0 1
Age 2 0 -1 1
Age 3 0 1 0

Typically, rows and column medians will not converge perfectly to zero. In most cases,
the median polish will stabilize within a few iterations and there will be no appreciable change
in the row and column medians. Consequently, algorithms frequently specify a threshold of
change (e.g., 0.0001) that is essentially zero or some other stopping rule (e.g., a maximum
number of iterations). The values in remaining in the cells after the median polish has

completed are the non-additive residuals. They are the components of the original contingency
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table, which cause it to deviate from a perfectly additive model (as specified in Equation 3).
Large residual values indicate less agreement between an additive model and the observed
data, indicating potentially important joint effects. In the case of analysis with the multiphase
method, these non-additive residuals represent the cohort effects combined with random error.
While the multiphase method utilizes the median polish at this stage to separate the additive
and non-additive elements of the model, alternative techniques such as quantile regression are

possible and will be discussed later.

The rates may be log transformed to evaluate the interaction on the log-additive scale.*
Applying a log transformation to models of rates is routine in epidemiology and, in some ways,
facilitates the analysis. If employed, the log transformation should be applied prior to the
median polish. Note that the results of the polish do not depend on the scale of the interaction,
but log transformations have some useful properties such as reducing positive skewness by
compressing the upper end of the distribution, extending the lower end, and normalizing the
residuals around zero. It is worth remarking, however, that log transformation of data that
contain zero values may complicate the median polish step. The value of log(0) is negative
infinity and, thus, undefined for the purposes of computation. In his explanation of the median
polish, Tukey suggests two possible solutions for addressing this obstacle: set zero cells to be
lower than any other value in the table (the “easy way”) or add a small constant (e.g., 0.1, 0.25.
0.5, etc.) to all values before log transformation (“the careful way”).® Tukey prefers the “careful

way” but states that either way usually works well.

Other data transformations (e.g., taking the square root or reciprocal of the original
value) are possible but this step cannot be prescribed. Each dataset must be individually

assessed for the appropriate transformation. From this point forward, the exposition will
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assume that the data from the original contingency table have been transformed using the
natural logarithm (from this point forward referred to as “log transformed”) as this is a likely
procedure for most applications in public health and produces easily interpretable results
familiar to epidemiologists. To emphasize, other transformations may be valid and the median
polish residuals used for regression in the next step despite the focus on log transformation. In
fact, a linear regression may still be the appropriate model if the residuals have a normal

distribution (as assumed in the alternate transformations suggested above.)

The residuals are then plotted against the birth cohort categories to qualitatively assess
the presence and size of cohort effects. When using log-rates, the residuals will evenly distribute
around zero in the absence of cohort effects. Residuals that deviate from zero indicate that age
and period are not perfectly additive, suggestive of a cohort effect. Moreover, residuals from
the median polish can be subtracted from the cells of the original data to produce a contingency
table that reflects only the additive effects of period and age. This data can then be qualitatively
compared with the original data to see how removing the cohort effect changes rate estimates.
Note that data need to be on the same scale before subtraction is performed. For instance, log

data should be exponentiated prior to being subtracted from the original rates.

Phase lll: Regression

The final step of the multiphase method is to separate the median polish residuals into
the systematic and non-systematic components — the cohort effect and error terms, respectively
— by regressing them from the median polish on the cohort categories. Linear regressionis a
suitable model choice for partitioning residuals from log-transformed rates because they are
assumed to be normally distributed; another model choice may be more appropriate for
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residuals derived from other types of outcome data. Hypothesis testing and contrasts may also
be employed in this step to compare the relative magnitude of the effects and test for
statistically significant differences among cohorts. The equation for the linear regression model

for the residuals of the log-transformed rates is

re=H+ Viat € (5)

where r are the values of the residuals from the median polish forthe k=1, 2,...,m+n-1
cohort categories; the intercept u is the referent birth cohort category; yy.; is the vector of
indicator variables for the k- 1 = m + n -2 cohort categories (note that the vector of indicator
variables is one less than the cohort categories because the referent category is modeled as the
intercept), and € is the vector of random error across i age groups, j periods, and k cohort

categories from the median polish and regression models.

This regression produces k parameter estimates — one for each cohort category
including the referent. These estimates reflect the log-rate for each cohort relative to a referent
for a log-additive model from which age and period effects have been removed."” Thus,
exponentiating these log-transformed estimates produces the rate attributable to each cohort
category in absence of age and period effects. At this point, rate ratios for each cohort category
relative to a referent can be calculated and the size of the cohort effects evaluated. Other
hypothesis tests can be performed at this stage to compare different combinations of cohorts.
Because these assessments are content and context-specific, it is not possible to provide more
direction for conducting them and the details are left to each researcher to determine. All

testing should be planned a priori rather than ad hoc.

™ Note that the overall F-test for the regression is unlikely to be significant. The F-test is used to assess the goodness
of fit of the regression model. In the multiphase method, estimation rather than fit is the goal.
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Finally, the residuals (€;) from the regression model should be examined to verify
parametric assumptions. To this end, data should be plotted to confirm that observed values are
relatively linear and that residuals are roughly normally distributed with equal variance. If
parametric assumptions are violated, a couple corrective options may be possible. First, a
different model may be used for the third step in lieu of a linear regression model such as
parametric or semi-parametric robust regression methods. Another option is to return to the
original contingency table and try a different data transformation — like the square root or
reciprocal — with the hope that it will produce normally distributed residuals when the median

polish is applied.
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Application of Multiphase Method to Viral Hepatitis Mortality

Population-level rates were calculated for 4-year Table 1. Age groups and

periods used for analysis
intervals for age groups and periods (Table 1). Oregon viral

Age groups Periods

hepatitis mortality data for 1995-2010 was used as the 25-28 1995-1998
29-32 1999-2002
numerator and Oregon population estimates as the 33-36 2003-2006
37-40 2007-2010
denominator. 41-44
45-48
49-52
Mortality data were abstracted from 1995-2010 death 53-56
57-60
certificates obtained electronically from the Oregon Health 61-64
65—68
Authority Center for Health Statistics (Portland, Oregon) via 6972
73-76
the Multnomah County Health Department. Deaths were 77-80
81-84
restricted to Oregon residents including those who died out- 85+

of-state. Individuals under 25 years old were excluded due to the small number of viral hepatitis
related deaths in younger ages (less than 10 deaths over the total study period), as were
individuals who died in Oregon but resided elsewhere. National Center for Health Statistics
(NCHS) considers rates based on fewer than 20 deaths statistically unreliable.® While the age
groups 25-28, 29-32, 33-36, 37-40, 77-80, 81-84, and 85+ had fewer than 20 deaths for at
least one time period, no groups were excluded on this basis. Compiled mid-year estimates of
Oregon’s population size were obtained for the rates’ denominator through VistaPHw software,
a web application used by Oregon Health Division and other governmental agencies for
community health assessment.*® Data obtained from VistaPHw included population estimates

for 1995-2010 by age from the Portland State University Population Research Center (PSU).

Deaths in the United States require a death certificate and states use the U.S. Standard

Certificate of Death (1989 revision for 1995-2005, 2003 revision for 2006—2010) to collect
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uniform data on the decedent as well as the circumstances and cause of death. The attending
physician, medical examiner, or coroner completes the medical portion of the death certificate
and often provides identifying information such as name, residence, race, and sex; the funeral
director or other person in charge of interment completes the remainder of the document
which is mostly demographic, usually with the assistance of a family member of the deceased.”
Both revisions of the U.S. Standard death certificate have two sections for obtaining information
on the cause of death.”>”? The first part collects the immediate and underlying causes of death,
the second part significant conditions that contributed to, but did not result in the underlying
cause of death from Part |. The causes listed in these sections are coded according to the
International Classification of Diseases (ICD). Together, they constitute the multiple-cause of
death variables, which encompass up to 20 codes for each year of mortality data. Viral hepatitis
deaths were identified from the multiple-cause of death variables using the ICD revision 9 (ICD-
9) code 070 and revision 10 (ICD-10) codes B15-B19 and B94.2 (Table 2). Viral hepatitis deaths

were categorized into 4-year

Table 2. ICD codes used to identify viral hepatitis deaths
intervals based on decedents’

ICD version ICD code Description

age and year of death, which ICD-9 070 Viral hepatitis
ICD-10 B15-B19  Viral hepatitis

B94.2 Sequelae of viral hepatitis

yielded 16 age groups and 4
periods (generating 19 birth cohorts). Four-year intervals were employed rather than more
typical five year intervals because contributing cause of death variables contributing cause of
death variables were not available for data prior to 1994 and a minimum of four time periods
were required for applying the multiphase method. Further, deaths identified with ICD-9 codes
needed to be grouped separately from those using ICD-10 to allow for the detection of potential
period effects resulting from differences in the revisions. Consequently, 4-year intervals were

necessary.
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To calculate mortality rates, the number of viral hepatitis deaths for each age and
period group was divided by the corresponding age group for the Oregon population. First,
population estimates were formatted for the same 4-year intervals by age group and period.
Because data from VistaPHw were categorized into 5-year age groups, each estimate was
divided by 5 then reallocated into 4-year age groups matching those of the intended numerators
(see Table 1 for a list of the age groups). Subsequently, population estimates for each age group
were averaged into the 4-year period intervals to create denominators for each age and period
category. Once computed, rates were arranged into a two-way contingency table and analyzed

with the multiphase method.

Statistical analysis. Descriptive statistics were calculated to describe demographic
information such as age, sex, race/ethnicity, veteran status, and place of birth as well as the
type of hepatitis for decedents whose deaths were related to viral hepatitis; these individuals
were compared to those whose cause of death was not associated with viral hepatitis. The same
characteristics were also assessed over the four time periods using x> tests to test for
differences in categorical variables (e.g., sex, race, veteran status), one-way ANOVA to test for
differences in the mean of decedents’ age, and Poisson regression to test for a linear increase in

mortality rates.

For the first step of the multiphase method, viral hepatitis mortality rates were graphed
by age and period (age-period), birth year and period (birth year-period), and birth year and age
(birth year-age). The second and third steps of the multiphase method were conducted as
described previously using log-transformed rates prior to the median polish step. Results from

the median polish were qualitatively evaluated using a scatterplot of the residuals by the cohort
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categories. To better assess the distribution of the residuals around zero, a loess curve was fit to
the data using locally weighted regression (smoothing parameter, 1.0).” At this step, viral
hepatitis rates were calculated with the cohort effect removed and these rates were graphed by
age-period, birth year-period, and birth year-age. Another graph comparing the difference in
specific cohorts with and without the cohort effects was also constructed. A linear regression
model was run using residuals from the median polish as the dependent variable and design
variables for the cohort categories as predictors. Each resulting parameter estimate was
exponentiated and compared to the 1922-1925 referent cohort to obtain risk ratio estimates
and 95% confidence intervals using linear contrasts. The 1922-1925 cohort was chosen as the
referent group because it was the first earliest cohort with data for all of the four time points.
Additional hypothesis testing using contrasts was performed to compare the average risk ratio

for the 1950-1965 cohorts with proceeding and subsequent cohorts.

Data management was conducted with SAS (SAS Institute Inc., Cary, NC). The median
polish and regression analyses were generated using R (R Development Core Team, Vienna,
Austria). The following R packages were used for importing SAS datasets, preparing data for
graphing, running regression analyses, and plotting results: sas7bdat,”* reshape,” gmodels, ’®

gplots,77 MASS,”® robustbase,” and hett.®°
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RESULTS

Descriptive Analysis of Viral Hepatitis Mortality Rates

Between 1995 and 2010, a total of 473,615 deaths were registered for Oregon residents
aged 25 years and older. Of these, 4,162 (0.9%) deaths had viral hepatitis listed as one of the
multiple-causes of death. The majority (82.1%) of these deaths were related to hepatitis C. Less
common were deaths due to hepatitis B (3.5%); other non-B, non-C hepatitis (4.9%); and
unspecified hepatitis (9.5%). Over the study period, the viral hepatitis mortality rate for all ages
increased 194% (Poisson test for trend, p<0.0001; Figure 12). Compared with deaths due to

Figure 12. Viral hepatitis mortality rates in Oregon residents 25 years and other causes, viral hepatitis

older, 1995-2010
deaths occurred overall in

70.0

0o individuals that were younger

. s00 (mean 55.7 vs 75.5 years; t-test
;T 100 with Satterthwaite adjustment,
T w0 p<0.001), male (70.4 vs 49.0%,
:

200 p<0.001), non-white (14.7 vs

10.0

4.7%; )(2 test, p<0.001), and
0 19951998 1999-2002 2003-2006 2007-2010 foreign born (6.9 vs 5.7%; Xz test,

p=0.001). No difference was found between rates of mortality rates for hepatitis and other

causes for veterans (29.0 vs 29.1%; x° test, p=0.83).
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The characteristics of decedents whose deaths were related to viral hepatitis by period
are shown in Table 3. In summary, there were no significant changes in sex (x* test, p=0.34),
race/ethnicity (x* test, p=0.28), or country of birth (x* test, p=0.57) over the four periods.
Decedents’ age at death, veteran status, and type of hepatitis, however, did vary significantly (p
<0.001 from one-way ANOVA, p=0.002 from y° test and p<0.001 from ¥ test, respectively) over

this time period.

Table 3. Characteristics of Oregon residents with viral hepatitis-related deaths, 1995-2010

1995-1998 1999-2002 2003—-2006 2007-2010

Characteristic (n=446) (n=867) (n=1240) (n=1611)
Mean age (SD) 55.3 145 543 12.0 55.0 10.1 57.1 9.2
Sex

Male 301 675 623 71.9 863 69.6 1144 71.0

Female 145 325 244 28.1 377 304 467 29.0

Unknown/Missing 0 0.0 0 0.0 0 0.0 0 0.0
Race/Ethnicity

Non-Hispanic White 378 84.8 729 84.1 1050 84.7 1396 86.7

Not White 68 15.3 138 15.9 189 15.2 215 134

Unknown/missing 0 0.0 0 0.0 1 01 0 0.0
Ever in armed services

Yes 130 29.2 269 31.0 364 294 431 26.8

No 314 704 593 684 863 69.6 1157 71.8

Unknown/missing 2 0.5 5 0.6 13 1.0 23 1.4
Birth place

United States 388 87.0 786 90.7 1122 90.5 1486 92.2

Not United States 35 7.9 55 6.3 76 6.1 112 7.0

Unknown/Missing 23 52 26 3.0 42 34 13 0.8
Hepatitis type

Hepatitis B 79 17.7 16 1.9 20 1.6 31 1.9

Hepatitis C 347 77.8 638 73.6 924 745 1509 93.7

Other hepatitis 5 1.1 71 8.2 61 49 68 4.2

Unspecified hepatitis 15 34 142 164 235 19.0 3 0.2
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Cohort Analysis of Viral Hepatitis Mortality with Multiphase Method

Graphical Representation

Table 4 displays the contingency table for age-specific viral hepatitis mortality rates. This

table displays the unadjusted data used for initial graphical assessment. Based on the data from

Table 4. Viral hepatitis mortality by age and year of death*

Death Year

Age group  1995-1998 1999-2002 2003-2006 2007-2010
25-28 1.83 2.72 0.51 0.48
29-32 2.26 2.13 2.02 1.93
33-36 8.75 7.57 6.41 5.85
37-40 16.71 21.82 15.29 8.32
41-44 29.67 35.87 35.82 26.29
45-48 33.52 76.42 69.41 58.31
49-52 28.68 79.47 127.97 119.03
53-56 23.84 70.49 152.21 157.53
57-60 21.45 58.68 89.13 176.04
61-64 28.91 45.46 54.66 111.99
65—68 30.37 41.55 50.29 70.95
69-72 28.39 31.79 50.07 44.46
73-76 35.68 40.26 42.60 51.40
77-80 33.01 26.74 35.55 48.76
81-84 32.15 45.04 31.83 32.85
85+ 15.97 31.52 28.01 27.86
Total 21.46 38.51 51.92 62.99

*Rate per 100,000 population.

the contingency table, the
overall hepatitis mortality
rate increased linearly
between 1995 and 2010
from 21.5 deaths per
100,000 population to 63.0
deaths per 100,000
population. Rates were
highest in ages 49-64,
peaking at 176.0 deaths per
100,000 population in 2007-

2010 among ages 57-60.

Viral hepatitis mortality rates are graphed by age across each time period in Figure 13.

The most volatility in rates occurs in the 49-68 age groups. Rates for these ages start around

26.7 deaths per 100,000 population then rise. Among these groups, the greatest increase was in

ages 57-60 which experienced a 7.2% increase between the first and last time periods. Less

dramatic changes occurred in the other age groups. The rates for the 25—-36 age groups were
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relatively constant and experienced less than 10 deaths per 100,000 population over the entire

timeframe. Deaths in the remaining age groups increased after 1998 (with the exception of the

77-80 age group) then continued to modestly grew (ages 45-48, 69—72, 73-76, 77-80), decline

slightly (age groups 37—40 and 45-48), or stabilize (age groups 41-44, 81-84, and 85+). Many of

the age-specific trends appear non-parallel since mortality rates increased faster in some age

groups than others, suggestive of cohort effects. Because of less variability in rates in the 1995—

1998 period, which
increases in
subsequent years,
period effects may be
present. However, if
existent, these effects
do not appear to be
consistent for the

entire population.

Figure 13. Viral hepatitis mortality rates by age and period
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Figure 14 demonstrates that patterns observed by age and period do not directly
translate to birth cohorts. In the birth-year-period graph, the most growth is seen in individuals
born between 1946 and 1961 but rates are also rising in the 1942-1945 and 1962-1969 cohorts.
Rates in the remaining

Figure 14. Viral hepatitis mortality rates by birth year and period
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Figure 15 displays trends based on age and birth year. Viral hepatitis mortality reaches its apex

when the 1950-1953 cohort is 57-60 years old. Age-specific rates in the 1950-1953,

1954-1957, 1958-1961, and 1962-1965 cohorts track similarly. Although the 1946—1949 cohort

has a similar shape to the aforementioned groups, the magnitude of rates is much less especially

Rate per 100,000 population

Figure 15. Viral hepatitis mortality rates by birth year and age
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Median Polish

The median polish method was applied to the log transformed rates for overall viral

hepatitis-related mortality (Table 5). The resulting residuals are plotted in Figure 16. From this

scatterplot, the pattern of the residuals across cohorts appears to systematically differ from zero

Table 5. Log transformed viral hepatitis mortality by age group and

period*

Age group  1995-1998 1999-2002 2003-2006 2007-2010
25-28 0.78 0.97 -0.78 -0.91
29-32 0.34 0.07 -0.06 -0.17
33-36 0.48 0.12 -0.11 -0.28
37-40 0.19 0.24 -0.19 -0.87
41-44 0.06 0.04 -0.03 -0.41
45-48 -0.33 0.29 0.12 -0.13
49-52 -0.94 -0.13 0.27 0.13
53-56 -1.20 -0.33 0.37 0.33
57-60 -0.96 -0.17 0.18 0.79
61-64 -0.29 -0.05 0.06 0.71
65—68 -0.16 -0.06 0.06 0.34
69-72 -0.05 -0.15 0.23 0.04
73-76 0.05 -0.04 -0.06 0.06
77-80 0.11 -0.32 -0.11 0.14
81-84 0.15 0.27 -0.15 -0.19
85+ -0.24 0.22 0.03 -0.04

*Rate per 100,000 population.
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for cohorts between 1942
and 1965. The slight but
sustained positive increase of
residuals for 1950-1965
(Figure 16, blue shading)
indicate that the non-additive
component (i.e., cohort effect
plus error) of these rates
appears greater in these
years than anticipated by a

purely additive model.



Additional graphs were created based on rates with the cohort effect removed. These

graphs were made by subtracting the residuals from log-transformed rates and exponentiating

the difference. For instance, the viral hepatitis mortality rate for ages 57-60 in the period

2007-2010 was 176.0 deaths per 100,000 population whereas the log-transformed rate from

Figure 16. Residual values from median polish by birth year for viral
hepatitis mortality rates
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the median polish for the same
cell was 0.79 (compare Tables 4
and 5). Thus, it is possible to
estimate the rate for this cell
with the cohort effect removed
with the following calculation:
exp(log(170.0)-(0.79))=79.88."
Performing this calculation for
each cell of the original
contingency table yields a table
with perfectly additive

estimates of the mortality rates

(that is, in the hypothetical scenario where only age and period effects are operative). Note that

these tables are only valid for assessing observed trends when no cohort effect exists. If the

absence of cohort effects has been established, however, it may be simpler to skip this

additional qualitative step and refer directly to the age-period graph created in the first step of

the multiphase method (e.g., Figure 13).

“Note that the number of significant digits for each element of this calculation especially impacts the precision of the

solution because of the logarithm.
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Figures 17, 18, and 19 show age-period, birth year-period, and birth year-age plots.
These graphs are analogous to those in the previous section (Figures 13-15) except that the non-
additive component consisting of the cohort effect and error has been removed. Comparing
Figure 17 to Figure 13, it appears that a slight period effect may be present in the data as several
of the age-specific mortality rates — for example, in the 45-68 age groups — begin to increase
after 1998. However, not all age groups experience this change — for example, ages 33-40
change little if at all. If an effect exists, it appears not to be differential and does not impact the
entire population. Also, while the 49-68 age groups still have the highest mortality rates, the
rates are now parallel (Figure 17 compared to Figure 13) which is consistent with a purely
additive model in which cohort effects are absent. Mortality rates are attenuated in Figure 18
compared to Figure 14 and differences in birth year correspond with increases seen among age
groups; no clear trend in period effects is discernible. Finally, birth cohort-age graph (Figure 19)

Figure 17. Viral hepatitis mortality rates by age and period with cohort effect demonstrates a peak
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Figure 18. Viral hepatitis mortality rates by birth year and period with
cohort effect removed
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Figure 19. Viral hepatitis mortality rates by birth year and age with cohort effect
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To directly compare rates with and without cohort effects, birth year-specific mortality

rates from the original contingency table and from the same table with the multiplicative

components removed were graphed together. Figure 20 shows viral hepatitis mortality rates for

the 1922-1925 and 1954—-1957 cohorts with and without the cohort effect. Removing the

cohort effect for those born in 1922-1925 has little impact on the mortality rate except for a

small increase for older individuals. Trends in mortality rates for individuals in these birth years

are well described by the age and period effects alone. Comparatively, there is more evidence of

a cohort effect in viral hepatitis mortality for individuals born between 1954 and 1957. When

the cohort effect is subtracted, the rate drops for all but the youngest age group. The graph

Figure 20. Viral hepatitis mortality rates for individuals born in 1954-1957 and 1922-
1925 with and without the cohort effect removed
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Regression

There were no differences in viral hepatitis mortality risk for individual cohort categories
(Table 6 and Figure 21). Although the point estimates for the risk ratio exceeded one for some

birth years, none were statistically significant. However, as hypothesized, the average mortality

Table 6. Estimated risk ratio and 95% confidence risk for the generations born between
interval for the effect of cohort on viral hepatitis

mortality 1950 and 1965 was significantly higher
Birth Year Risk ratio  95% Confidence Interval than preceding birth cohorts for

1910-13 0.98 0.30 3.20

1914-17 151 0.55 4.20 1910-1949 (p=0.03) and subsequent birth
1918-21 1.44 0.55 3.77

1922-25 1.00 Reference cohorts for 1966-1985 (p=0.003). The
192629 1.14 0.45 2.90

1930-33 119 0.47 3.02 relative risk of viral hepatitis mortality in
1934-37 1.24 0.49 3.15

1938-41 1.00 0.39 2.54 the baby boomer generation was 1.3 (95%
1942-45 0.98 0.39 2.50

1946—49 114 0.45 2.90 confidence interval (Cl): 1.0-1.6) times
1950-53 1.50 0.59 3.80

1954-57 1.59 0.63 4.05 greater than older cohorts and1.5 (95% Cl:
1958-61 1.42 0.56 3.59

1962-65 145 0.57 3.67 1.2-2.1) times greater than younger
1966—69 1.21 0.48 3.08

1970-73 1.22 0.48 3.09 cohorts.

1974-77 1.55 0.59 4.06

1978-81 0.78 0.28 2.16

1982-85 0.50 0.16 1.64 The value of R? for the linear

regression model was 0.26, indicating that cohort effects explain approximately 26% of the
variance in the age-period interaction while the remaining variance is unexplained. Note that
this is 26% more variation than explained by a model with age and period alone. The residuals
from the linear regression are plotted by cohort in Figures 21 and 22. These residual plots do not
appear to have major deviations from the parametric assumptions. While some of the residuals

demonstrate more variation, it falls within + 1 standard deviation (Figure 23).
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Figure 21. Estimated risk ratio and 95% confidence intervals for the effect of

cohort on viral hepatitis mortality
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Figure 22. Residual error from linear regression model by birth year

I §8-286l
- 18-8461
F LLPLEL
F €L-0L61
- 69-9961
- §9-2961
I 19-8561
- L5¥S6L
I €5-0561
- 6-9P6L
I Gh-Zr6L
- bP-8E6L
- LEPEEL
I €e-0E61
- 62-9Z61
I SCT-CTEL
- LE8L6L
FLl-FL6L
- €L-01L61

1.0 4

0.5

T
= =
° ?

ysllod UBIpay Wwoly s|enpisay

-1.0 4

Birth Year

48



Figure 23. Residual error by fitted values
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DiscussioN

Application of Multiphase Method to Viral Hepatitis Mortality

Cohort analysis using the multiphase method indicates that differences exist in the risk
of Oregon viral hepatitis mortality by birth year. Specifically, baby boomers born between 1950
and 1965 had increased risk of dying from viral hepatitis — especially hepatitis C which
represents the majority of viral hepatitis deaths” — than other generations. These findings
correspond with other studies that propose that individuals born between 1940 and 1965 have
the greatest risk of infection from hepatitis C."> Armstrong et al. (2000) postulate that baby
boomers were likely infected in their 20s and 30s during 1970-1990, a period of high hepatitis C
incidence.! Given the risk factors for both hepatitis B and C transmission, it is likely that the
majority of these individuals were exposed to the virus when they experimented with injection
drug use or received blood transfusions prior to routine screening of blood products. Although
hepatitis B represents a small proportion of viral hepatitis deaths in Oregon, two additional risk
factors should be considered for this these infections: high-risk sexual behaviors (e.g., multiple

sex partners) and immigration trends from countries where infection is endemic.

Although not quantitatively assessed in the analyses, age effects appear to have a strong
influence on viral hepatitis deaths. Risk was highest in the 49—64 year old age groups and
lowest in both the youngest (25—40) and oldest (280) age groups. This pattern was true
regardless of the inclusion of cohort effects. Because age effects are likely, the birth cohort

following the 1950-1965 cohort may be at increased risk of hepatitis mortality. For instance, the

“'In addition to hepatis C cases representing the majority of cases in each time period, it is likely that the
“unspecified” viral hepatitis deaths listed in Table 3 are primarily attributable to hepatitis C.
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rates for the 1966—1969 cohort are only 9.5 deaths per 100,000 less than the 1962-1965 cohort
for the 41-44 age group. Analysis of adjacent groups is limited by the number of years of period
data that are available. Based on the pattern of increased deaths in the 49—60 age groups, it is
possible that the 1966—-1969 cohort will catch up with the baby boomers as they age. Also, the
findings of this study suggest there might be some heterogeneity among risk of viral hepatitis
deaths within the baby boomer generation. Signs of a cohort effect were weak in the 1946-1949
cohort compared to other baby boomer cohorts even though rates in this group appeared

elevated overall.

If the results of this analysis are reliable, state and local health departments in Oregon
will likely to continue to see high rates of viral hepatitis mortality at least through 2029 (this
calculation is based on cohort 1950-1965 being at greatest risk and the number of deaths
peaking in the 49-64 year old age, thus 1965+64=2029). Epidemiologists should monitor
mortality rates in subsequent cohorts to see whether this increase is likely to be sustained.
Individuals born between 1966 and 1969 are of particular interest as they progress into the high
risk years in middle age. Consequently, it might be worth duplicating this analysis in a few years
when more years of data are available. As for program planning, public health officials should
consider recommendations that encourage providers to screen individuals born in 1942-1969
— the cohorts at highest risk and those adjacent to them — for viral hepatitis, particularly
hepatitis C. This suggestion is supported by other analyses and may prove cost effective.**!
Officials should anticipate a continuing health and economic burden as individuals infected with
chronic viral hepatitis are diagnosed and need additional health services such as antiviral

therapy and liver transplantation.
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A subtle additive effect appeared in qualitative stages of the analyses and differentially
affected age groups. It is unclear whether to consider this influence a period effect because it
does not operate on the population level and, thus deviates from the standard definition of this
concept. Theories about this observed variation must also explain why it impacts some age
groups and birth cohorts more than others. For instance, it is unlikely to have resulted from the
shift between ICD-9 and -10 coding unless coding changes differently impacted hepatitis

ascertainment among age groups.

A number of limitations may influence these results. Chiefly, some of the viral hepatitis
rates were based on less than 20 deaths, making the estimates potentially unreliable.
Unfortunately, there was no way to increase the sample size for these age groups while keeping
the analysis targeted on Oregon. To exclude these age groups would have meant fewer cohorts
containing all time points and potentially compromised the analysis. Further, it is possible that
the analysis contains survival bias for the oldest cohorts. Based on results of the present
analysis, it appears that most viral hepatitis deaths occur between ages 49 and 64. Assuming
this risk has not changed over time, it is likely that the majority of individuals from earlier
cohorts — those born in birth years before 1938 — died during these high risk age groups. Deaths
in these individuals would have occurred prior to the study years and would not be included in

this analysis. If this supposition is true, then risk in the older cohorts may be underestimated.

Where possible, sources of bias have been anticipated and minimized. Misclassification
of variables from death certificates including cause of death may have occurred. While |
anticipate that misclassification due to age or year of death is likely to be negligible and random,
it is possible that ascertainment of viral hepatitis deaths may be incomplete due to

misclassification and/or underreporting on the death certificates. | anticipated the
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underreporting of this condition and sought to reduce the effect as much as possible by
identifying viral hepatitis-related deaths based on multiple rather than single cause of death
variables. However, research that assessed viral hepatitis by multiple cause of death from
mortality records — including a study for Multnomah County, largest county in Oregon with a
large proportion of reported cases — concludes that viral hepatitis mortality was underestimated
nevertheless.?®* Misclassification of deaths associated with viral hepatitis would result in an
underestimate of the true magnitude of death rates. In interpreting the results of the
multiphase method, | also assume that these biases have been relatively constant over time.
This assumption, however, may be optimistic. Although screening for hepatitis C became
available in 1989 and | chose to begin my analysis in 1995 after it had been available for several

years, methods for detecting both hepatitis B and C have improved over the study period.?***

Changes in cause of death coding occurred in 1999, further suggesting that our findings
must be viewed with caution. A revision in mortality coding occurred when death certificates in
the United States switched from ICD-9 to ICD-10 coding. In planning this project, | deliberately
separated time periods between 1998 and 1999. Consequently, any impact related to
differences in coding should show up as a period effect, which was not evident overall in the
data. In addition, | carefully weighed the decision to implement a comparability ratio to bridge
the ICD-9 and ICD-10 data. Comparability studies conducted by the NCHS have shown that the
classification of viral hepatitis was impacted by coding revisions and viral hepatitis was more
likely to be selected as the underlying cause of death in ICD-9 than in ICD-10.% According to the
NCHS study, the decrease in viral hepatitis classification following the revision was mostly
attributable to viral hepatitis being considered a consequence of HIV in ICD-10 but not ICD-9
(i.e., HIV tended to be listed as the cause of death on death certificates rather than viral

hepatitis). The study provided a comparability ratio between ICD-9 and ICD-10 codes to aid
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studies in bridging differences in ICD revisions for assessing trends across years. | opted not to
apply the comparability ratio in my analysis. First, the comparability study was conducted only
with the underlying cause of death variable whereas | planned to use multiple causes of death.
As mentioned previously, | anticipated that multiple cause of death variables would better
capture deaths for which viral hepatitis was the contributory but not primary cause of death.
This decision was bolstered by preliminary analysis of the Oregon mortality data which showed
33.8-52.6% of deaths related to viral hepatitis were classified by multiple cause of death (Table
7). The observed increase in the number of hepatitis-related deaths by using multiple cause of
death is reasonable based on the epidemiology of the disease as individuals infected with
chronic hepatitis are likely to die of sequelae (e.g., cirrhosis, HCC) as opposed to the infection
itself. Secondly, Oregon has a relatively low number of persons living with HIV/AIDS relative to
the rest of the United States.®” As a result, | determined that the comparability correction was

not be appropriate for regional data being assessed.

Table 7. Viral hepatitis deaths identified using single and multiple cause of death variables,
Oregon Residents, 1995-2010

1995-1998 1999-2002 2003-2006 2007-2010 Total
(n=447) (n=870) (n=1244) (n=1611) (n=4172)
Death variable n % n % n % n % n %

Single cause 212 474 528 60.7 824 66.2 905 56.2 2469 59.2
Multiple cause 235 52.6 342 39.3 420 33.8 706 43.8 1703 40.8

Population estimates from PSU were used as the denominator of the mortality rates.
Although other population estimates exist (e.g., from the U.S. Census Bureau), these projections
were preferred as a source of denominator data. Because these estimates are calculated using
both regional and national data,®® these data an attractive source of Oregon and county-level

population estimate as attested by their wide use in local and state governments. However,
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these estimates tend to be slightly lower than the estimates from the U. S. Census Bureau. If

these estimates undercount the population, mortality rates will be overestimated.
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Multiphase Method

The multiphase method is a straightforward and robust way to conduct a cohort analysis
with trend data provided that the premise that cohort effects are an interaction of age and time
period conceptually makes sense. Given this assumption, this approach provides a clever
resolution to the identifiably problem which plagues other APC techniques. To recapitulate the
process, the median polish is used to partition additive (i.e., background rate + age effects +
period effects) and non-additive (i.e., cohort effects + random error) components of the model
for the observed rates. Afterward, regression is used to separate the systematic (i.e., cohort
effect) and non-systematic (i.e., random error) components. This approach is especially
attractive because the median polish step is nonparametric, makes minimal assumptions about
the data being analyzed, and may be applied to diverse types of data. Furthermore, the
multiphase method allows for cohort effects to be detected as well as quantified. When rates
are log-transformed prior to the median polish, estimates of cohort effects are output as rate

ratios, which are relatively easy to interpret and familiar to epidemiologists.

Modifications to the multiphase method are possible. For instance, the median polish is
not the only technique to separate additive and non-additive elements. A mean polish or
guantile regression could also be employed. However, as mentioned previously, its flexibility
and robustness for multiple types of data are an advantage of the median polish. Analyses that
substitute another procedure should consider what assumptions are made, what will be gained,
and what (if anything) will be lost. Similarly, techniques such robust regression can be used in
the final step of the multiphase method instead of a linear model. In fact, such approaches may
be more appropriate for the final step of the multiphase method, depending on the distribution

of the residuals from the previous step.
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While a useful tool for public health practitioners attempting to delve into temporal
trends beyond age and period, the multiphase method is not without limitations. For instance,
as developed by Keyes and Li, this technique does not provide a way to control for predictors or
easily assess subpopulations. With the current approach, stratification is the only means to
conduct an analysis of a subpopulation. The contingency table must be set up for each stratum
individually before the multiphase method can be applied. To conduct an analysis of viral
hepatitis mortality in males, for example, rates for males by age group must be calculated and a
corresponding contingency table constructed prior to the median polish or regression steps.
Further, there are limitations in comparing analyses between subpopulations. While rates
between analyses can be informally compared, it is not possible to directly compare the risk
estimates from different models without additional statistical techniques. Depending on the
number of events for the health outcome of interest in the dataset, the reliability of rates also

may be decreased.

Another shortcoming of the multiphase method is that the precision of rates is lost
when data are evaluated with the median polish. That is, a rate of 2.5 per 1,000 population
based on 5 cases in a population of 2,000 individuals at risk is equivalent to one based on 500
cases in a population of 200,000 individuals at risk. It does not take into account the differences
in the standard error for each measurement of 2.5 per 1,000 population —0.0011 and 0.00011,
respectively. It is possible that future refinements of the multiphase method could address this
drawback. By altering the median polish and regression steps to include precision estimates, the
analysis could be weighted and, thereby, allow rates based on smaller numbers of events to

have less influence in the analysis.
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The multiphase method also requires a long period of data with an ample number of
age groups to obtain a good estimate of the cohort effects. The minimum number of time
periods and age groups to adequately power a cohort analysis using the multiphase method has
not yet been determined, but it appears that the current analysis came close to the minimum.
The addition of additional years of data would probably increase the power of the analysis and

permit comparison of additional cohorts.

APC analyses that use contingency tables to compute birth cohorts require that the
length of age and period intervals be equal. The multiphase method is no different in this
regard. When age and period intervals are uneven, birth cohorts will be indistinct. Table 8
demonstrates a contingency table with unequal age group and period interval widths. In this
table, the age groups are arranged into 5-year intervals and periods into 4-year intervals. The
result is data that cannot be separated into cohorts. Take for example the “cohort” starting with
the age group 25-29 year olds in 1995-1998 and extending downwards to the right. The cells
diagonally read 1970-1973, 1969-1972, 1968-1971, and 1967-1970. Clearly, no distinct cohort

is formed. The same will be true in the reverse scenario, where period is wider than age group.
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Table 8. Contingency table with unequal age and period intervals

Period
Age group 1995-1998 1999-2002 2003-2006 2007-2010
25-29 1970 1973 1974 1977 1978 1981 1982 1985
30-34 1965 1968 1969 1972 1973 1976 1977 1980
35-39 1960 1963 1964 1967 1968 1971 1972 1975
40-44 1955 1958 1959 1962 1963 1966 1967 1970
45-49 1950 1953 1954 1957 1958 1961 1962 1965
50-54 1945 1948 1949 1952 1953 1956 1957 1960
55-59 1940 1943 1944 1947 1948 1951 1952 1955
60-64 1935 1938 1939 1942 1943 1946 1947 1950
65-69 1930 1933 1934 1937 1938 1941 1942 1945
70-74 1925 1928 1929 1932 1933 1936 1937 1940
75-79 1920 1923 1924 1927 1928 1931 1932 1935
80-84 1915 1918 1919 1922 1923 1926 1927 1930
85+ 1910 1913 1914 1917 1918 1921 1922 1925

As described previously, the multiphase method has two additional limitations inherent
to APC analyses that use contingency tables — the problems of overlapping cohorts and missing
data. | will briefly re-describe each and comment on their significance. First, overlapping cohorts
result from the labeling convention for birth cohorts. During this process, some individuals are
misclassified into erroneous birth cohorts. Mutually exclusive cohort risks cannot be estimated
because each cohort has individuals assigned to it who should be properly designated to
preceding or subsequent cohorts. Second, missing data will always impact the youngest and
oldest cohort categories. Fewer data points are available for these groups because they are
formed by the diagonal cells of the contingency table. When the diagonal cells do not span
every age groups and periods on the contingency table, the corresponding cohort category will
have fewer than the maximum number of data points. The sparse data points result in less

reliable estimates for the affected cohort categories.
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SUMMARY AND CONCLUSIONS

Despite the limitations outlined, the multiphase method provides information useful for
understanding disease trends in situations where differences in generations exist as was
hypothesized for viral hepatitis. This technique not only allows for detection of cohort effects
but also for their quantification. Furthermore, such analysis may provide results and insight
distinct from the tools typically used for trend assessment. In the motivating example presented
here, cohort analysis suggests that individuals born around 1950-1965 may be at higher risk of
death related to viral hepatitis, particularly hepatitis C, than those born at other times. Assessing
these results in context with apparent age effects indicates that current levels of morbidity and
mortality due to viral hepatitis will continue for at least a decade. If these findings are accurate,
public health departments have additional information to help guide planning and prevention

efforts.

Refinements of the multiphase method should be explored. First, modifications to the
each step in the two stage modeling process —i.e., the median polish and regression phases —
are possible and may provide desirable characteristics. For instance, robust regression may be
used instead of linear regression and better address issues of heteroskedasticity in heavy-tailed
distributions. Second, methods to incorporate the precision of the underlying rates should be
evaluated. Third, future research should assess whether the revisions to the modeling process —
for example, replacing the median polish with quantile regression — would faciliate analysis of
subpopulations or allow for controlling covariates. Any proposed modifications, however,
should be evaluated and their contributions to improving the method weighed with possible

limitations.
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In conclusion, this thesis was written with the intention of elucidating the multiphase
method in the hope of adding an analytic tool to the field of applied public health. There are
other areas in public health beside viral hepatitis that may benefit from age-period-cohort
analysis and for which the multiphase method may prove both accessible and illuminating. In
maternal and child health, for instance, understanding the relative contributions of maternal
age, time period, and mother’s birth cohort may help identify etiologic factors for the increasing
incidence of low birth weight infants. Public health practitioners should consider the multiphase

method alongside other techniques when devising an analysis to assess trends.
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APPENDIX |: DOCUMENTATION FOR R CODE

The sample R code included in Appendix Il is intended to provide guidance for
individuals interested in applying the multiphase method. The code was written for the specific
purpose of assessing Oregon viral hepatitis mortality data for this thesis project and will need to
be modified for other analyses (e.g., steps explicitly for which cohort categories are explicitly
defined or manipulated will need to be changed). The following section will outline the steps of

the code and point out some specific considerations that need to be made when adapting it.

Installation of R Packages

Prior to running any part of the code, the necessary packages must be installed in R. The
included code requires the following R packages: sas7bdat,”* reshape,” gmodels, ’® gplots,”” and
MASS.”® Additional packages are available for quantile (quantreg®), robust (robustbase’), and
heterogenous t-distribution (hett*®) regressions; however, these analyses are not included with

the provided code.

Set Up
Once these R packages have been installed, the code comprising the “Set Up” section
from the included code may be executed. This code removes any prior variables or graphics

from the R system and loads the requisite packages.
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Import Data

The next step is to import data from an age-period contingency table into R. The table
should be formatted with age groups as rows and time periods as columns as shown in Table 4.
Note that age group and period intervals need to be of equal width to form distinct birth cohorts
as mentioned previously. Also, rates are the recommended format of data for the provided
code. Although other data (e.g., cases or proportions) may also be used in the multiphase
method and will be compatible with the median polish step of this code, the regression step, as
written, may not be appropriate for non-rate data. Thus, additional modifications to this code —
not detailed in this thesis — may be necessary for applying the multiphase method to other types
of data.

Management of the viral hepatitis mortality data used in this thesis was done in SAS.
Consequently, the included code is written to import data from a permanent SAS dataset into R.
While R can read data saved as other file types (e.g., .csv, .txt), only code for importing SAS
datasets is provided. Individuals who wish to import other file types should refer to the “R Data
Import/Export” manual®® on the Comprehensive R Archive Network or documentation for

specific R packages designed to import specific file types.

Tables for Graphical Representation

To facilitate the creation of graphs for the first phase of the multiphase method
(graphical representation), birth cohorts from the imported age-period contingency table are
identified and the table reformatted with birth cohorts as rows and periods as columns. A table
for birth cohort by age is also produced from the original contingency table. Both the birth
cohort-period and birth cohort-age tables are output as a .csv file which can be easily

incorporated into Microsoft Excel or equivalent spreadsheet software. Although reformatting
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the contingency table is not strictly necessary to produce birth cohort-period or birth cohort-age
graphs in Excel for the graphical representation, having pre-formatted data to plot greatly

simplifies the process.

Median Polish

Prior to the median polish, rates are log transformed. If rate data are not being used,
the necessity of this transformation should be carefully weighted and this step removed if
appropriate. Next, the median polish is conducted on the log transformed data from the age-
period contingency table with a convergence tolerance set at 0.0001. The convergence
tolerance may be adjusted and other options added to this step. It may be helpful to review
what options are available for the median polish procedure by entering “help(medpolish)” in the
R command line.

After the median polish has been performed, the resulting residuals are extracted and
used for a few different purposes. First, they are subtracted from the log transformed
contingency table created prior to the median polish. The resulting values are exponentiated to
generate age-period, birth cohort-period, and birth cohort-age tables for assessing age and
period effects with cohort effects removed (as in Figures 17—-19). These tables are exported as
.csv files for incorporation in a spreadsheet or graphing program. Second, an age-period table of
the log transformed median polish residuals (like Table 5) is also exported as a .csv file. Third,
the median polish residuals are concatenated into a single column vector. A corresponding
vector is created, which identifies which residual value each birth cohort corresponds with.
Finally, the residuals are plotted against each birth cohort categories and a loess curve fit to the

data using locally weighted regression with a smoothing parameter of 1.0.”
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Linear Regression

Before the linear regression is conducted, two preliminary steps are performed: 1) the
vector of labeling the birth cohorts corresponding to the median polish residuals is assigned as a
categorical variable and 2) a referent cohort is selected from the birth cohorts. Then, the linear
regression is run with the median polish residuals as the dependent variable and the birth
cohort categories as the predictor. Using linear contrasts, risk ratios and corresponding 95%
confidence intervals for each cohort category compared to a referent are constructed from the
predicted values and confidence limits output from the regression. This analysis is repeated for
birth cohorts grouped into the 1950-1965 baby boomer group compared to preceding and
subsequent birth cohorts. Note that the estimates and related hypothesis testing done for risk
of viral hepatitis mortality in baby boomers compared to other groups may not be appropriate
for analyses of other health outcomes. Depending on the project and proposed hypotheses,
similar methods of estimation and hypothesis testing may be appropriate and the provided code
can be modified.

The risk ratio and 95% confidence interval for individual birth cohorts compared to a
referent are graphed as are the standard residual plots for assessing whether parametric
assumptions are met. Finally, risk ratio estimates and confidence intervals are exported as .csv

files.
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APPENDIX II: R CODE

HHHHHHH AR HBH AR

# SET UP #

HHHHHHH AR H B HHEHHHHEHAHEHHH

rm(list = Is()) # Clear all variables

graphics.off() # Close graphics windows
library(sas7bdat) # load sas7bdat package to read sas
code into R

library(reshape) # load reshape package
library(gmodels) # load gmodels package
library(gplots) # load gplots package

library(MASS) # load MASS package

75



HEHAHHH AR R

# IMPORT DATA #

HiHHHTH IR

## read age-period contingency table data from SAS into R ##

cc <- read.sas7bdat(

"C:/Users/elmanm/dropbox/thesis/Data/Cohort_4yrGrp/Total/aprates_4YrGrp.sas7bdat")

HHHHHHH R R

# TABLES FOR GRAPHICAL RESPRESENTATION #

HEHAHHH AR R

# reformat age-period table to birth cohort-period table for export/easy graphing in Excel #

# NOTE 1: birth cohort-period table is not used in analysis beyond graphical representation

# phase
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# NOTE 2: This section will need to be modified for analyses with different numbers of age

# groups and periods #

ad <-cc[,"heprate4d"]

c.ad<-rev(ad)

b4<-append(NA,append(NA,append(NA,c.a4)))

a3 <-cc[,"heprate3"]

c.a3<-rev(a3)

b3<-append(append(NA,append(NA,c.a3)),NA)

a2 <-cc[,"heprate2"]

c.a2<-rev(a2)
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# extract 4th column of contingency

# table

# reverse order of extracted 4th column

# append 3 rows of missing values to

# extracted 4th column (diagonals

# without datapoints)

# extract 3rd column of contingency

# table

# reverse order of extracted 3rd column

# append 3 rows of missing values to

# extracted 3rd column (diagonals

# without all datapoints)

# extract 2nd column of contingency

# table

# reverse order of extracted 2nd

# column



b2<-append(append(append(NA,c.a2),NA),NA)

al <-cc[,"hepratel"]

c.a2<-rev(al)

bl<-append(append(append(c.a2,NA),NA),NA)

¢ <- cbind(b1,b2,b3,b4)

# append 3 rows of missing values to

# extracted 2nd column (diagonals

# without all datapoints)

# extract 1st column of contingency

# table

# reverse order of extracted 1st column

# append 3 rows of missing values to

# extracted 1st column (diagonals

# without all datapoints)

# recombine reformatted columns to

# form birth cohort-period table

# reformat age-period table to birth cohort-age table for export/easy graphing in Excel #

# NOTE 1: birth cohort-period age is not used in analysis beyond graphical representation

# phase #
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# NOTE 2: This section will need to be modified for analyses with different numbers of age

# groups and periods #

gl <-t(cc[1,])

pl <-append(cbind(NA,NA,NA ,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA,NA),q1)

g2 <-t(ccl[2,])

p2 <-append(append(cbind

(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA),q2),NA)

g3 <-t(cc[3,])
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# extract and transpose 1st column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 2nd column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 3rd column of

# contingency table



p3 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA),q3),

cbind(NA,NA)) # append 15 rows of missing values to

# extracted column

q4 <-t(cc[4,]) # extract and transpose 4th column of

# contingency table

p4 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA),q4),

cbind(NA,NA,NA)) # append 15 rows of missing values to

# extracted column

g5 <-t(cc[5,]) # extract and transpose 5th column of

# contingency table

p5 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA),q5),

cbind(NA,NA,NA,NA)) # append 15 rows of missing values to
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g6 <-t(cc[6,])

p6 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA),g6),

cbind(NA,NA,NA,NA,NA))

q7 <-t(cc[7,])

p7 <-append(append(

cbind(NA,NA,NA,NA,NA,

NA,NA,NA,NA),q7),

cbind(NA,NA,NA,NA,NA,NA))

g8 <-t(cc[8,])
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# extracted column

# extract and transpose 6th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 7th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 8th column of

# contingency table



p8 <-append(append(

cbind(NA,NA,NA,NA,NA,

NA,NA,NA),q8),

cbind(NA,NA,NA,NA,NA,NA,NA))

g9 <-t(cc[9,])

p9 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,NA),q9),

cbind(NA,NA,NA,NA,NA,NA,NA,NA))

g10 <-t(cc[10,])

p10 <-append(append(

cbind(NA,NA,NA,NA,NA,NA),q10),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

NA))

# append 15 rows of missing values to

# extracted column

# extract and transpose 9th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 10th column of

#.contingency table

# append 15 rows of missing values to

# extracted column
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g1l <-t(cc[11,])

pl1l <-append(append(

cbind(NA,NA,NA,NA,NA),q11),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA))

12 <-t(cc[12,])

pl2 <-append(append(

cbind(NA,NA,NA,NA),q12),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA))

g13 <-t(cc[13,])
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# extract and transpose 11th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 12th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 13th column of

# contingency table



p13 <-append(append(

cbind(NA,NA,NA),g13),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA))

14 <-t(cc[14,])

pl4 <-append(append(

cbind(NA,NA),q14),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA))

g15 <-t(cc[15,])
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# append 15 rows of missing values to

# extracted column

# extract and transpose 14th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 15th column of

# contingency table



p15 <-append(append(

cbind(NA),q15),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA,NA)) # append 15 rows of missing values to

# extracted column

16 <-t(cc[16,]) # extract and transpose 16th column of

# contingency table

pl6 <-append(ql6,

cbind(NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA,NA,NA,NA)) # append 15 rows of missing values to

# extracted column

p <- cbind(p1,p2,p3,p4,p5,p6,p7,p8,

p9,p10,p11,p12,p13,p14,p15,p16) # recombine reformatted columns to

# form birth cohort-age table

# output birth cohort-period tables as .csv files #

write.csv(c,file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_CP.csv')

write.csv(p,file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_CA.csv')
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HEHAHHH AR R

# MEDIAN POLISH #

HiHHHHH IR

# run median polish on age-period contingency table and extract residuals for regression step #

ct<-log(cc) # log transform age-period contingency
# table
med.ct <- medpolish(ct,eps=0.0001) # run median polish on contingency

# table with convergence tolerance set

#at 0.0001
med.ct # examine dataset
r <-med.ctSresiduals # extract median polish residuals

# make age-period table with cohort effects removed #

ft1 <- exp(ct-r)
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# make birth cohort-period table with median polish residuals removed for qualitative

# assessment of graphs without cohort effects #

# NOTE: This section will need to be modified for analyses with different numbers of age

# groups and periods #

a4 <-ft1[,"heprate4"]

f.ad<-rev(ad)

fa<-append(NA,append(NA,append(NA,f.a4)))

a3 <-ft1[,"heprate3"]

f.a3<-rev(a3)

f3<-append(append(NA,append(NA,f.a3)),NA)

a2 <-ftl[,"heprate2"]

f.a2<-rev(a2)
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# extract 4th column of residual table

# reverse order of extracted 4th column

# append 3 rows of missing values to

# extracted 4th column (diagonals

# without all datapoints)

# extract 3rd column of residual table

# reverse order of extracted 3rd column

# append 3 rows of missing values to

# extracted 3rd column (diagonals

# without all datapoints)

# extract 2nd column of residual table

# reverse order of extracted 2nd

# column



f2<-append(append(append(NA,f.a2),NA),NA) # append 3 rows of missing values to

# extracted 2nd column (diagonals

# without all datapoints)

al <- ft1[,"hepratel"] # extract 1st column of residual table
f.a2<-rev(al) # reverse order of extracted 1st column
fl<-append(append(append(f.a2,NA),NA),NA) # append 3 rows of missing values to

# extracted 1st column (diagonals

# without all datapoints)

ft2 <- cbind(f1,f2,f3,f4) # recombine reformatted columns to

# form birth cohort-period table

# without cohort effects

# make birth cohort-age table with median polish residuals removed for qualitative assessment

# of graphs without cohort effects #

# NOTE: This section will need to be modified for analyses with different numbers of age

# groups and periods #

vl <-t(ft1[1,]) # extract and transpose 1st column of

# contingency table
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wl<-append(cbind(NA,NA,NA NA NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA,NA),v1)

v2 <-t(ft1[2,])

w2 <-append(append(cbind

(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA),v2),NA)

v3 <-t(ft1[3,])

w3 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA),v3),

cbind(NA,NA))

v4 <-t(ft1[4,])

89

# append 15 rows of missing values to

# extracted column

# extract and transpose 2nd column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 3rd column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 4th column of

# contingency table



w4 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA),v4),

cbind(NA,NA,NA))

v5 <-t(ft1[5,])

w5 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA),v5),

cbind(NA,NA,NA,NA))

v6 <-t(ft1[6,])
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# append 15 rows of missing values to

# extracted column

# extract and transpose 5th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 6th column of

# contingency table



w6 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA),v6),

cbind(NA,NA,NA,NA,NA))

v7 <-t(ft1[7,])

w7 <-append(append(

cbind(NA,NA,NA,NA,NA,

NA,NA,NA,NA),v7),

cbind(NA,NA,NA,NA,NA,NA))

v8 <-t(ft1[8,])

w8 <-append(append(

cbind(NA,NA,NA,NA,NA,

NA,NA,NA),v8),
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# append 15 rows of missing values to

# extracted column

# extract and transpose 7th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 8th column of

# contingency table



cbind(NA,NA,NA,NA,NA,NA,NA))

v9 <-t(ft1[9,])

w9 <-append(append(

cbind(NA,NA,NA,NA,NA,NA,NA),v9),

cbind(NA,NA,NA,NA,NA,NA,NA,NA))

v10 <-t(ft1[10,])

w10 <-append(append(

cbind(NA,NA,NA,NA,NA,NA),v10),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA))

v11 <-t(ft1[11,])
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# append 15 rows of missing values to

# extracted column

# extract and transpose 9th column of

# contingency table

# append 15 rows of missing values to

#. extracted column

# extract and transpose 10th column of

#.contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 11th column of

# contingency table



w1l <-append(append(

cbind(NA,NA,NA,NA,NA),v11),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA))

v12 <-t(ft1[12,])

w12 <-append(append(

cbind(NA,NA,NA,NA),v12),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA))

v13 <-t(ft1[13,])
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# append 15 rows of missing values to

# extracted column

# extract and transpose 12th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 13th column of

# contingency table



w13 <-append(append(

cbind(NA,NA,NA),v13),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA))

v14 <-t(ft1[14,])

w14 <-append(append(

cbind(NA,NA),v14),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA))

v15 <-t(ft1[15,])
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# append 15 rows of missing values to

# extracted column

# extract and transpose 14th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# extract and transpose 15th column of

# contingency table



w15 <-append(append(

cbind(NA),v15),

cbind(NA,NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA,NA))

v16 <-t(ft1[16,])

w16 <-append(v16,

cbind(NA,NA,NA,NA,NA,NA,NA

,NA,NA,NA,NA,NA,NA,NA,NA))

w <- cbind(w1,w2,w3,w4,w5,w6,w7,w8,

w9,wi0,wll,wi2,wi13,wl4,wl5,w16)
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# append 15 rows of missing values to

# extracted column

# extract and transpose 16th column of

# contingency table

# append 15 rows of missing values to

# extracted column

# recombine reformatted columns to

# form birth cohort-age table



d <-melt(c) # concatenates columns of residuals

# (i.e., forms one long vector of the

# values from the median polish with

# numeric indicators corresponding to

# to each birth cohort

# output age-period, birth cohort-period, and birth cohort-age median polish residual tables as

# csv files #

write.csv(r,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_AP_resid.csv')

write.csv(ftl,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_AP_noCEffect.csv')

write.csv(ftl,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_CP_noCEffect.csv')

write.csv(w,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_CP_noCEffect.csv')

# plot residuals from median polish #
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par(mar=c(9,6,3,2)+.01) # set margins w/extra room on bottom

# for axis label

plot(d$SX1, dSvalue,xlab="", ylab="",pch=19,

col="black",ylim=c(-1.5,1.5),xlim=c(1,19)

,Xaxt="n",cex.axis=1.5) # make scatterplot of median polish

# residuals by birth cohort

abline(h=0, col="black") # add reference line at 0

axis(1,at=1:19,lab=c("1910-13","1914-17","1918-21",

"1922-25","1926-29","1930-33","1934-37","1938-41",

"1942-45","1946-49","1950-53","1954-57","1958-61",

"1962-65","1966-69","1970-73","1974-77","1978-81",

"1982-85"),las=2,cex.axis=1.5) # label birth cohorts on x-axis

# NOTE: This step will need to be

# modified in other analyses

par(mar=c(5,4.5,3.5,2)+.01) # adjust margins again for labels

title("Residual values from median polish by

birth cohort", xlab="Birth Year",ylab="Residuals",

cex.lab=2) # add main title and bottom and left
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# axis labels

fit<-loess(dSvalue~dSX1,span=1.0,

data.frame(x=X1,y=value),degree=1) # fit loess curve predicted values and

# standard error (to calculate

# confidence intervals) with smoothing

# parameter of 1.0

pred<-predict(fit,data.frame(x=X1),se=T) # extract predicted values for loess
# curve
pl <-predSfit[1:19] # restrict predicted values of loess curve

# to first 19 values (remaining values

# are repeats of the first 19, their

# inclusion complicates plotting)

# NOTE: This step will need to be

# modified in other analyses
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sel<-predSse[1:19]

lines(p1)

lines(p1+(1.96*sel), Ity=2)

lines(pl-(1.96*sel), lty=2)
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# restrict standard error of loess curve

# to first 19 values (remaining values

# are repeats of the first 19, their

# inclusion complicates plotting)

# NOTE: This step will need to be

# modified in other analyses

# add predicted values for loess curve

# to plot

# add upper 95% confid. interval for

# loess curves to plot

# add lower 95% confid. interval for

# loess curves to plot



HEHAHHHH AR R

# LINEAR REGRESSION #

HiHHHTH IR H

# run linear regression on median polish residuals #

x.f <- factor(d$X1)

x.f <- relevel(x.f,ref="4")

reg <- reg <- Im(dSvalue~(x.f))

# create factor (i.e., categorical)

# variable for cohort categories

# set referent category

# NOTE: This step will need to be

# modified in other analyses

# run linear regression

# calculate exponentiated risk ratios and associated 95% confidence intervals for each cohort

# category vs referent category using linear contrasts for estimation #

# NOTE: This section will need to be modified for analyses with different numbers of age

# groups and periods #

t1 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f1'=1), conf.int=0.95))

t2 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f2'=1), conf.int=0.95))
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t3 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f3'=1), conf.int=0.95))

t5 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f5'=1), conf.int=0.95))

t6 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f6'=1), conf.int=0.95))

t7 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f7'=1), conf.int=0.95))

t8 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f8'=1), conf.int=0.95))

t9 <- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f9'=1), conf.int=0.95))

t10<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f10'=1),conf.int=0.95))

t11<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f11'=1),conf.int=0.95))

t12<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f12'=1),conf.int=0.95))

t13<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f13'=1),conf.int=0.95))

t14<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f14'=1),conf.int=0.95))

t15<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f15'=1),conf.int=0.95))

t16<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f16'=1),conf.int=0.95))

t17<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f17'=1),conf.int=0.95))

t18<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f18'=1),conf.int=0.95))

t19<- exp(estimable(reg,cm=cbind('(Intercept)'=-1,'x.f19'=1),conf.int=0.95))
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# calculate exponentiated average risk ratios and associated 95% confidence intervals for

# preceding cohorts and baby boomers in 1950-1965 cohorts using linear contrasts for

# estimation #

# NOTE: This section may not be appropriate for other analyses applying this method #

ttl <- exp(estimable(reg,cm=cbind('(Intercept)'=-.1,

'x.fl'=-.1,
'w.f2'=-.1,
'x.f3'=-.1,
'w.f5'=-.1,
'x.f6'=-.1,
'%.f7'=-.1,
'x.f8'=-.1,
'x.f9'=-.1,
'x.f10'=-.1,
'x.f11'=.25,
'x.f12'=.25,
'x.f13'=.25,
'x.f14'=.25
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), conf.int=0.95))

# calculate exponentiated average risk ratios and associated 95% confidence intervals for baby

# boomers in 1950-1965 cohorts and subsequent cohorts using linear contrasts for estimation #

# NOTE: This section may not be appropriate for other analyses applying this method #

tt2 <- exp(estimable(reg,cm=cbind('x.f11'=.25,

'x.f12'=.25,
'x.f13'=.25,
'x.f14'=.25,
'x.f15'=-.2,
'x.f16'=-.2,
'x.f17'=-.2,
'x.f18'=-.2,
'x.f19'=-.2

), conf.int=0.95))
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# extract and combine estimated risk ratios and 95% confidence intervals for individual birth

# cohorts #

# NOTE: This section will need to be modified for analyses with different numbers of age

# groups and periods #

t <- cbind(c(1:19),

rbind(t1SEstimate,t2SEstimate,t3SEstimate,1,t5SEstimate,t6SEstimate,

t7SEstimate,t8SEstimate,t9SEstimate,t10SEstimate,t11SEstimate,

t12SEstimate,t13SEstimate,t14SEstimate,t15SEstimate, t16SEstimate,

t17SEstimate,t18SEstimate,t19SEstimate),

rbind(t1SLower.Cl,t2SLower.Cl,t3SLower.Cl,0,t55Lower.Cl,t65Lower.Cl,

t7SLower.Cl,t8SLower.Cl,t9SLower.Cl,t10$Lower.Cl,t11SLower.Cl,

t12SLower.Cl,t13SLower.Cl,t14SLower.Cl,t15SLower.Cl,t16SLower.Cl,

t17SLower.Cl,t18SLower.Cl,t19SLower.Cl),

rbind(t1SUpper.Cl,t2SUpper.Cl,t35Upper.Cl,0,t5SUpper.Cl,t6SUpper.Cl,

t7SUpper.Cl,t8SUpper.Cl,t95Upper.Cl,t10SUpper.Cl,t11SUpper.Cl,

t12SUpper.Cl,t13SUpper.Cl,t14SUpper.Cl,t155Upper.Cl

,t16SUpper.Cl,t17SUpper.Cl,t18SUpper.Cl,

t19SUpper.Cl))
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colnames(t)<-c("Cohort","RR","LCL","UCL") # add column names to combined data

t <- as.data.frame(t) # format t as a data frame

# extract and combine estimated risk ratios and 95% Confidence Intervals for preceding cohorts

# compared to baby boomer cohorts #

# NOTE: This section may not be appropriate for other analyses applying this method #

o_ttl <- cbhind(

rbind(tt1$Estimate),

rbind(tt1SLower.Cl),

rbind(tt1SUpper.Cl))

# extract and combine estimated risk ratios and 95% Confidence Intervals for baby boomer

# cohorts compared to subsequent cohorts #

# NOTE: This section may not be appropriate for other analyses applying this method #

o_tt2 <- cbind(

rbind(tt2SEstimate),

rbind(tt2SLower.Cl),

rbind(tt2SUpper.Cl))
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# output risk ratios and 95% confidence intervals #

write.csv(t,file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_RR.csv')

write.csv(o_tt1,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_RRoldVBBm.csv')

write.csv(o_tt2,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_RRyngVBBm.csv')

# output risk ratio and 95% confidence intervals #

write.csv(t,file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_RR.csv')

write.csv(o_tt1,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_ RRttl.csv')

write.csv(o_tt2,

file='C:/Users/elmanm/Dropbox/thesis/Data/Cohort_4yrGrp/Total/APC_4Yr_ RRtt2.csv')
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# plots for linear regression #

# Plot estimated risk ratios with bars for 95% confidence intervals for individual cohort

# categories #

par(mar=c(9,6,3,2)+.01) # set margins w/extra room on bottom

# for axis label

plotCl(x = tSRR, uiw = se, lty =1,

xaxt ="n", xlim = ¢(1,19), ylim = c(-2,4), gap = 0,

ylab="", xlab="", barcol="dark grey",pch=19,

cex.axis=1.5) # plot risk ratios and confidence
# intervals
# NOTE: This step will need to be
# modified in other analyses

abline(h=1, col="black") # add reference line at 1
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axis(1,at=1:19,lab=c("1910-13","1914-17","1918-21",

"1922-25","1926-29","1930-33","1934-37",

"1938-41","1942-45","1946-49","1950-53",

"1954-57","1958-61","1962-65",

"1966-69","1970-73","1974-77","1978-81",

"1982-85"),las=2,cex.axis=1.5) # label birth cohorts on x-axis

# NOTE: This step will need to be

# modified in other analyses

par(mar=c(5,4.5,4,2)+.01) # adjust margins again for labels

title("Estimated risk ratio and 95% confidence

intervals for the effect of birth cohort on

viral hepatitis mortality", xlab="Birth Year",

ylab="Risk Ratio",cex.lab=2) # add main title and bottom and left

# axis labels

# standard residual plots #

opar <- par(mfrow = c(2,2), oma =¢c(0, 0, 1.1, 0)) # place 4 plots on same page
plot(reg, pch=19, las =1, sub="") # plot residuals
par(opar) # reset plotting preferences
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# plot for residual error from linear regression model by birth cohort

rl <-data.frame(x=c(regSresiduals[1:16],

NA,NA,NA,NA,

regSresiduals[17:32],NA,NA,NA,NA,

regSresiduals[33:48],NA,NA,NA,NA,

regSresiduals[49:64])) # configure output from regression for

# plotting

# NOTE: This step will need to be

# modified in other analyses

par(mar=c(6,4,3,2)+.01) # adjust margins for labels

plot(dSX1, r1Sx, xlab="", ylab="", pch=19,

ylim=c(-1.5,1.5),xlim=c(1,19),xaxt="n",cex.axis=.7) # plot residuals from regression vs

# cohort categories

# NOTE: This step will need to be

# modified in other analyses

abline(h=0, col="black") # add reference line at 0
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axis(1,at=1:19,lab=c("1910-13","1914-17",

"1918-21","1922-25","1926-29","1930-33",

"1934-37","1938-41","1942-45","1946-49",

"1950-53","1954-57","1958-61","1962-65",

"1966-69","1970-73","1974-77","1978-81",

"1982-85"), las=2,cex.axis=.7) # label birth cohorts on x-axis

# NOTE: This step will need to be

# modified in other analyses

par(mar=c(5,4,3.5,2)+.01) # adjust margins again for labels

title("Residual error from linear regression model

by birth cohort",xlab="Birth Cohort",

ylab="Residual") # add main title and bottom and left

# axis labels
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