
VarGraph: A Decision Support Tool
for Variant Classification Using

Pathway Databases

By

David Ball

Presented to the Department of Medical Informatics and Clinical
Epidemiology and the Oregon Health & Science University

School of Medicine
in partial fulfillment of

the requirements for the degree of
Master of Science, Bioinformatics and Computational Biomedicine

August 2019

ii

School of Medicine
Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Master’s Capstone Project of

David Ball

Has been approved

Capstone Advisor

Guanming Wu, Ph.D.

iii

Table of Contents
Chapter 1: Introduction 1

Genesis of Project 2
Chapter 2: Background 4

Variant Classification 4
Pathway Analysis 5
Database Technologies 6
Molecular Genomics Lab at Providence-St. Joseph’s Health 7
Aims 9

Chapter 3: Materials and Methods 10
Datasets 10
Data Exploration and Reactome Query Design 11
The VarGraph Application 14
Analysis Using VarGraph 23
BigQuery based pathway analysis 24

Chapter 4: Results 25
VarGraph Usability 25
VarGraph Analysis 25
BigQuery Pathway Queries 27

Chapter 5: Discussion 29
Chapter 6: Summary and Conclusions 31

Summary 31
References 32

iv

Acknowledgements
I would like to thank my advisor Dr. Guanming Wu for many lessons

on networks and biology both in class and during this project. Many
thanks as well to Diane Doctor for much guidance during this project.

 I would like to thank Dr. Carlo Bifulco at the Providence St. Joseph’s
Healthcare Molecular Genomics lab for his vision and creation of the
software paradigm in which I was able to add this component. And thank
you to Dr. Brady Bernard and Dr. Christopher Dubay for many interesting
insights.

Thank you to Robert Citek for help with docker and networking issues
and with provisioning a powerful development environment.

v

Abstract

Background: Genomic screening is an increasingly important part of cancer care.

Screening often detects somatic variants in the tumor sample of varied clinical significance:

some are well understood, some are connected to only loose evidence, and some are

unknown altogether.

Purpose: The purpose of this project was to construct a tool that could present state-

of-the-art pathway information to genomics experts evaluating the clinical significance of

variants.

Solution: A web service was created that runs queries against the Reactome

pathway database in search of common pathway activity between variants of a clinical case

that are known to be pathogenic and those that are of unknown significance. It was

integrated into the software infrastructure of a high-volume genomics lab at Providence St.

Joseph’s Health. A very different approach to the same problem was attempted via the

cloud database product Google BigQuery.

Conclusions: The project so far has failed to be of clinical utility. Two areas of

improvement could remedy that situation in future iterations: a more stable network

visualization technique, and higher resolution mapping of novel variants to pathway

databases via accounting for the effect of alterations on particular protein subdomains. In

its current form the project was not able to reap the benefits of a graph database in

particular. A simpler focus on a small number of “canonical pathways” looks like a quicker

path to a value-added user interface.

1

Chapter 1: Introduction

Genomic sequencing of somatic mutations in tumor and blood malignancies is

becoming an increasingly important part of cancer care (1). As the cost of sequencing

declines and clinically actionable information that can be learned from sequencing

increases, it is more and more relevant. Clinical genomics labs must not only assess what

variants are present in a patient’s cancerous cells but filter down to those that are most

clinically significant. “Clinical significance” might entail that there are known therapies

that have been found to be successful in treating similar cancers, or that there is a reason

to infer from the presence of that variant information about mechanism, prognosis, or

resistance. Myriad efforts exist around the world to curate data from a variety of cancer

datasets to aid in efforts to predict the functional role of variants (2,3,4).

It is common in clinical practice to find multiple somatic variants in a malignancy,

and for some of them to be linked to known pathogenicity across databases and for some

of them not to be (2,3). In other words, in the general field of personalized oncology, we

have more data than we know what to do with. Clinical genomics labs all over the world

are finding variants in tumors that may one day be actionable, while the current state of

knowledge does not link them to known therapies. There is an “urgency”(3) to this problem

and anything that can be done to help the discovery of the clinical significance of a novel

unknown variant could potentially be of huge importance to a patient.

One way of assessing the clinical significance of variants is to look at what

pathways are affected. Many large efforts are on-going to aggregate all known biochemical

pathways into shareable datasets. This project aimed to make some of that knowledge in

2

pathways databases promptly accessible to genomics experts issuing clinical case reports.

The focus of this work was to create an annotation and visualization pipeline to

enhance clinicians’ abilities to assess the clinical significance of poorly characterized

variants. The focus for this stage was on the Reactome database which is freely available

on the internet as a Neo4j database. The aim was to add a pathway-based visualization

component to an existing annotation and interpretation pipeline in a high-volume

Molecular Genomics lab at a major medical center.

An application was constructed called VarGraph (for “Variant Graph”). VarGraph

is web-application that queries the graph database from Reactome based on the set of

variants found in a particular case and shows pathway information to the clinical interpreter

in graphical form. I will also discuss some further analysis of historical cases that was

done using a combination of VarGraph and the BigQuery engine component of the Google

Cloud Platform.

Genesis of the Project

I have been working in the Providence St.-Joseph’s Health Molecular Genomics

Lab (PSJH-MGL) in Portland, OR for the last year on a suite of in-house software that is

used for the review, annotation, and interpretation of genomics data results for oncology

patients. I had some experience with Reactome in my studies at OHSU and was interested

in exploring how data in Reactome could be used to enhance the information that our in-

house users have available in making their decisions on clinical significance. We depend

on third-party analysis for our pathway information and get it back in text format, rather

than a more refined data structure that could be used for custom visualizations. Our

3

Medical Director, Dr. Bifulco, expressed an interest in seeing more pathway analysis in our

clinical review process and even incorporating it into our reports if it met a quality

threshold. My advisor Dr. Wu advised me early on that the level of resolution that I could

get from Reactome was not likely to be relevant enough as it did not have 3-D structure

information. I persisted with the idea to use Reactome in hopes that it would help me to

create a good initial framework of pathway visibility in our software that could be further

enhanced down the line with more precisely targeted analyses.

4

Chapter 2: Background

Variant Classification

The landscape of cancer genomics has changed so rapidly that it is reasonable to

expect that many of the final consumers of clinical genomics reports will not have been

formally trained in the field (5). They will rely on the reporting of the genomics analysis

to connect them with the best possible treatment options for their patients. There are many

avenues to predicting the functional consequences of novel variants, and quite a variety of

projects and databases that aim to curate and organize some of these. Private companies

combine the use of databases and expert researchers to provide annotation services, such

as N-Of-One, with whom we have a working relationship in the PSJH-MGL. Recent

efforts include crowdsourcing the functional annotations of molecular pathologists world-

wide and making the resulting dataset available, such as CivicDB (6). Any given

uncharacterized mutation could be an important driver of the tumor process, or an

incidental artifact along for the ride, a so-called passenger mutation (7). In the end, variant

classification by clinical significance comes down to: does the presence of this variant tell

us something about the mechanism of disease, the availability of FDA approved therapies,

available clinical trials, drug resistance risks, and/or prognosis. Often associations are

filtered by “Levels of Evidence” criteria. The goal is to give the physician closest to the

patient the most actionable information possible without drowning them in a deluge of low-

probability signals. Overby et al. (5) defined a taxonomy of stages of variant analysis

consisting of preanalytic, analytic, and postanalytic phases. The work of my capstone was

to create a tool to aide users in the postanalytic phase, the “reporting and interpreting of

5

genetic test results.”

Pathway Analysis

Each cancer is not only unique in its exact genomic makeup but itself changes over

time. Many cancers evolve resistance to the therapies which are initially helpful against

them and become increasingly difficult to treat. When multiple therapeutic targets can be

found in the same pathway, it can sometimes not only improve outcomes but lower side

effects (8). It is therefore vital to find any valid inferential information about novel

variants, while not overburdening the oncologist with low-probability and low-quality

information. A study of 10,000 tumors from The Cancer Genome Atlas (TCGA) focused

on 10 key pathways and found that “Eighty-nine percent of tumors had at least one driver

alteration in these pathways, and 57% percent of tumors had at least one alteration

potentially targetable by currently available drugs.” (9) As I learned this during the course

of this work it both inspired me to persevere with bringing pathway analysis into the PSJH-

MGL pipeline but also led to some questions about my approach. That analysis (9) brings

some interesting nuance to the question of “driver” and “passenger” mutations, in that they

find that there are some cases where the presence of a damaged pathway by one variant

makes it less likely to find another mutation in the same pathway. They mapped the patterns

of “co-occurence and mutual exclusivity” in the TCGA dataset. I became interested in

performing a similar analysis on our dataset at the PSJH-MGL. Such correlations could be

used, perhaps, as part of a chain of inference of predicting if an unknown variant is related

to a pathway that another known variant in a given tumor affects. An important concern in

any assessment of significance is the “level of evidence” available behind any assertion.

Blucher et al. created a comprehensive set of drug-target information categorized by levels

6

of evidence (10). Applying evidence-level-based filtering to Reactome pathways, they

found that the portion of Reactome pathways targeted by approved antineoplastic drugs

ranges from 39%-60% as level of evidence filtering moves from “strong evidence” to “any

type of supporting evidence.” (10). In a clinical setting, such as PSJH-MJL, there is a need

to employ only strong levels of evidence in making assessments.

Database Technologies

As this project entailed usage of two different non-traditional database

technologies, a few words of background about them might be helpful.

Graph Databases

In graph databases, data is represented as a collection of nodes and edges rather

than the structured tables of rows and strictly defined columns that are employed in

traditional relational databases. A particular database engine called Neo4J has become

popular in recent years and implements a data structure called a property graph. This

property graph contains nodes and edges and each node and edge can contain a user-defined

set of key-value pairs to indicate properties. Neo4j provides a query language called

Cypher, which has SQL-like syntax but many differences. Graph databases, including

Neo4j, particularly distinguish themselves from relational database in queries involving

path searches across sequences of nodes. This proved to be highly useful to the Reactome

team and they reported that, in some circumstances, it reduced their average query time by

93% (11, 14). I was eager to explore the query possibilities in such a graph database for

this project in hopes that it could allow the asking of questions that are not tractable to state

in traditional relational databases.

7

Cloud Databases

Another non-traditional database technology that was used in this project is a

Google service known as BigQuery. It is a columnar database (12) that, to their users, is

“serverless," and “infinitely scalable”. Within the security of your own projects you can

upload vast datasets but query them much like a traditional SQL database. BigQuery is

compatible with SQL and adds a number of additional useful operators. Data is broadly

distributed in ways that are not transparent to the end user, but can very efficiently perform

queries on vast sizes of data. It has a billing model that is worth consideration for some

cases: billing is in proportion to how much data each individual query touches. The

capability of performing queries on petabyte-sized datasets without having to maintain

internal hardware capacity for scale can make BigQuery a compelling solution for some

use cases. Many datasets, such as The Cancer Genome Atlas data (12), are publicly

available. The Health Information Portability and Accountability Act (HIPAA) requires

that a Business Associate Agreement (BAA) be in place between a healthcare organization

and a cloud provider before it can be used with any potential Patient Health Information

(PHI) (13). Fortunately for this project, such an agreement was already in place at the time

of initiation and Google Cloud, including BigQuery, was already a vital part of the

computational infrastructure in our operations in the PSJH-MGL.

Molecular Genomics Lab at Providence-St. Joseph’s Health

PSJH-MGL performs genomic sequencing for patients throughout Oregon and

increasingly throughout the wider 7-state Providence system. Data is tracked through a

variety of in-house applications, especially two titled NgsReporter and NgsReviewer. Over

the last few years of operation these applications and their databases have accumulated a

8

store of sequencing results from approximately 4,500 solid tumors and hematological

malignancies.

The PSJH-MGL dataset contains approximately 4,500 cases of sequenced DNA

and/or RNA samples from solid tumor and hematological malignancies. Data goes through

many internal pipelines and workflow steps during which variants are filtered for quality

and relevance. A human reviewer evaluates each high-quality variant call and makes

further effort to identify sequencing noise. Common germline polymorphisms are

excluded, primarily by referencing EXAC and GNOMAD scores (14). After all this review

a set of “reportable” variants for each case is determined.

Fig. 1. Workflows and Software in the Providence St. Joseph’s Health Molecular

Genomics Lab (PSJH-MGL)

9

Aims

The aim of this project was to provide information to help molecular pathologists

classify variants of unknown significance in clinical reports. The existing pipeline includes

an abundance of annotations, including textual descriptions of implicated pathways, but

did not have any visualization of pathway relationships nor direct links to pathway

databases. The aim was to construct a tool that could put knowledge embedded in existing

pathway databases into a readily reviewable form for the busy molecular pathologist, and

to build such a tool in a way that it could be easily integrated into the existing human review

and curation workflow. In particular the aim was to attempt to find links between the

variants of unknown significance (VUS) and the clinically significant variants by means of

using the graph database provided by Reactome.

10

Chapter 3: Materials and Methods

Datasets

PSJH-MGL Datasets

The datasets of the applications NgsReporter and NgsReviewer contain records

from several years of sequencing of tumors and hematological malignancies for both

clinical and research purposes. The genomic sequencing of RNA and DNA libraries

outputs files in BCL format that are converted into FASTQ files and processed by

alignment tools provided by the sequencing vendors. Most of our samples were sequenced

on the Illumina platform. The datasets relevant to this project come from the NgsReviewer

and NgsReporter applications, which consume the output of the alignment pipelines.

Within NgsReviewer we have approximately 41 million raw records of variant information.

The majority of this output is noisy and not of immediate relevance, but of those 195,000

rows were filtered for review by technologists to validate the call and make distinctions

between somatic variants and common germline polymorphisms. Of these, approximately

28,000 variants were flagged as “reportable” and sent to molecular pathologists for clinical

significance determination. For this analysis I focused on 2,800 cases that had at least one

reportable variant, the dataset includes a total of 11,389 reportable variants, of which 5,306

(46.6%) were classified as clinically significant. Those that are not found to be significant

are reported to be “Variants of Unknown Significance” (VUS).

11

Classification Count Average Per Case

Clinically Significant 5306 1.895

Variant of Unknown

Significance (VUS)
6083 2.1725

Likely Significant 217 0.0775

Table 1. Classifications of Reported Variants

After reviewing all the aggregated data, an assessment of clinical significance is

made into one of two categories: variants with clinical significance, and variants of

unknown significance (vus). If a variant has been identified by the prior information

pipeline as having good diagnostic, prognostic, explanatory role, and/or there is high

quality evidence to directly link a variant with recommended therapies or trials, then it is

deemed clinically significant. But the opposite claim of “insignificant” is not made. There

is simply not enough known about the implications of any possible variant to make the

affirmative negation of significance. VUS is used when the best available evidence can

lead to no positive conclusion of significance. For the purposes of this project, I extracted

a highly simplified dataset consisting of a case id, diagnosis, and list of variants in each of

the two categories.

Data Exploration and Reactome Query Design

Reactome Queries

The first query design challenge was how to relate the PSJH-MGL datasets to the

12

Reactome database in order to perform the desired pathway queries. The first stage of the

project was to create queries of Reactome. Two aspects of the query construction challenge

at every step were: (a) how to accurately map to the correct part of the Reactome graph and

(b) how to make tractable queries that return in a reasonable amount of time.

Ultimately what is most significant about every variant will be a function of the

precise three-dimensional structure of the protein produced by it and in the precise way

that that altered protein interacts with every other molecule that it encounters. However,

that level of resolution remained out of scope for what I was able to accomplish in this

project. The analysis was limited to “gene” level pathways under alteration.

The Reactome database contains a rich interconnected database of nodes of various

kinds and how they relate to each other. Though Neo4j is designed for high-performance

querying of graphs, the large size of the Reactome graph means that caution must still be

used to avoid computationally expensive queries. Neo4J queries are composed in a

language called Cypher, which has been described as a version of the widely known

Structured Query Language (SQL) for graph structures (15). Like SQL, the language is

“declarative,” such that the user is telling the query engine what it wants to see rather than

explicitly how to retrieve that info. A key to efficient query design in this project was to

use the WITH clause, which “allows query parts to be chained together, piping the results

from one to be used as starting points or criteria in the next.” (15) Using the WITH clause

improved both the readability and execution times of my queries. Filtering Reactome

queries by species early in the chain of WITH clauses was another important consideration

for performance.

Query 1

13

 Initially my aim was to construct a single query that would find all the pathways

that involve any of the protein products of any of the reportable variants of a clinical case.

I encountered problems with this approach both with query performance and with the

complexity of the Cypher expression. Furthermore, it became interesting to see a pairwise

comparison of the common pathways between each pair of variants. I took the approach

of making a separate Reactome query for each variant in a case and aggregating the results

into a matrix of variants by pathway outside of the database query. Figure 2 illustrates the

query, which could be loosely summarized in natural language as: Find all paths of any

length that begin with nodes representing the gene of a variant, end with a “top level

pathway” named “Disease”, and are composed of edges that indicate participation in a

reaction or pathway.

Fig. 2. Cypher Query with a diagram of the logic

 With the precise identify of a ReferenceGeneProduct in mind, it is possible to find

genetic variants of that gene by finding those nodes of type

EntityWithAccessionedSequence that both reference the gene of interest and have an edge

of type :hasModifiedResidue.

match (braf:ReferenceGeneProduct)-[:referenceEntity]-
(v:EntityWithAccessionedSequence)-[:hasModifiedResidue]-

14

(r:GeneticallyModifiedResidue) where id(braf)=238230 return
v,r

Fig. 3. Neo4J’s native visualization of a Reactome query for gene BRAF

In future work this may allow a greater specificity of matching some of our well-

characterized variants to appropriate nodes in the Reactome database. However, our VUS

are, by definition, generally not well characterized in the literature and thus also unlikely

to be annotated in Reactome.

The VarGraph Application

A web application called VarGraph was constructed with the goal of performing

useful pathway queries in the Reactome database, assembling the results, and presenting

them in a User Interface. VarGraph is a web application written in Python and utilizing the

Flask micro web framework (16).

VarGraph accepts as input any one of the following: a list of genes, a list of

transcript ids, or an order identification number of a clinical case in the PSJH-MGL. The

primary output of the user interface is a force-directed layout of a graph structure in which

15

the nodes are Genes and Pathways. It is important to note that VarGraph is only

representing pathway interactions of normal products of the gene of the variant, and, in its

current form, cannot show specific functional differences of the particular variant in these

pathways. Genes are color coded by the current PSJH-MGL clinical significance

classification of the variant. The core feature set of VarGraph is oriented around a single

clinical case at a time. For each clinical case, the purpose of VarGraph is to:

1. Retrieve the latest data on reportable variants for the case. It is intended to be usable on

cases that are actively undergoing interpretation, so this data could change frequently.

Generally, these variants would be in a preliminary state of classification by clinical

significance already, and the interpreter would be looking to VarGraph to access

additional information to complete the classification process.

2. Identify pathways in common between the genes of the clinically significant variants and

the genes of the variants of unknown significance, or pathways common among the

variants of unknown significance.

2.1. Query to a local Reactome Neo4j database.

2.2. Prepare a matrix of pathways by gene.

2.3. Use the matrix to identify pathways that are common.

3. Present the findings to the user

3.1. Render a network forced-layout visualization in the user interface.

3.2. Display the matrix of genes by pathway.

3.3. Provide links to third party sites for additional information.

VarGraph User Interface

The VarGraph is a browser-based application. Analysis for a clinical case is

16

accessed via an accession number in the URL. In the resulting screen rendered in the user’s

browse, the list of genes to be analyzed is shown at the top of the page. A link to open the

same gene list for analysis in PathwayCommon.org is also shown. Next, the primary

network visualization is displayed (Figure 4), showing nodes for each gene of a reportable

variant and any associated pathways. Gene nodes are color coded to indicate the current

clinical significance classification. Pathway nodes are color coded to indicate whether the

pathway was found to be in “common” between the gene of a VUS and the gene of another

variant. The purpose of the use of color is to allow a busy reviewer to look quickly at the

visualization and see if this visualization is offering them information of interest.

I used the JavasScript-based visualization library D3.js as the foundation of the

network visualization and made use of the particular technique of Mike Bostock (17) for

dealing with Disjoint Graphs. Rendering of the force-directed layout is done within the

browser using JavaScript that operates on a JSON payload retrieved from the VarGraph

server. Pathway nodes and gene nodes are linked by an edge if the Reactome queries above

found an association with that pathway. This definition of “edge” is a major area for

expansion of the VarGraph platform in future work. The user can hover over to see more

information about a node.

17

Fig. 4. VarGraph network visualization. The Orange color nodes highlight

pathways found among the VUS

Below the network visualization, a matrix of genes by pathway is displayed (Figure

5). A “1” in a matrix cell indicates that the Reactome queries that VarGraph performed

found an association between the gene and that pathway. The last column shows the count

of genes that were mapped to a pathway in that row.

18

Fig. 5. A Matrix of Gene By Pathway for a single tumor case as displayed in

VarGraph. A 1 indicates the inclusion of some gene product in the given pathway.

 While Neo4J was not previously a part of our operational software infrastructure at

PSJH-MGL, many of the users of our variant review software have a variety of data

manipulation and programming skills. In consideration that some might want to learn

Neo4J’s Cypher query language I provided in VarGraph links directly to the hosted Neo4j

version of Reactome that is running for VarGraph. The VarGraph user interface for an

analysis of a gene set provides the raw Cypher that users could use as a starting point for

refining the particular query that interests them.

Fig. 6. Cypher examples as displayed in the VarGraph User Interface.

19

Integration into Existing PSJH-MGL Software Stack

To be useful, of course, VarGraph needed access to actual sets of variants reported

for a particular case. Some possible ways that data could have been exchanged between

the two applications include:

• Data push from NgsReporter to VarGraph

• Data pull from VarGraph to NgsReporter

• NgsReporter and VarGraph each connect to a common data source

• Periodic synchronization of data from NgsReporter to VarGraph

There are ample tradeoffs involved in each approach. The twin goals of secure

communication, and requiring minimal impact on existing software, argued for keeping

VarGraph separate from any raw clinical data source. Thus, I gave VarGraph the ability to

make secure encrypted API calls to NgsReporter using the existing authentication and

interface mechanisms of NgsReporter, minimizing the need to make changes to

NgsReporter for VarGraph’s needs. Though it could be desirable in some circumstances to

also have VarGraph capable of receiving an HTTP post of variants upon which to do its

analysis, in our present circumstances in the lab it proved to be a lower impact on existing

systems to have VarGraph do the pulling when it needs data.

20

Fig. 7. Where VarGraph fits in the PSJH-MGL stack

The user interface of VarGraph could be integrated into clinical operations with

very minimal change to the core clinical application NgsReporter. A hyperlink added to

the HTML page for clinical interpretation takes the user to the VarGraph application

(“Preview Pathway Search”) (Figure 8).

Fig. 8. VarGraph integration in the PSJH-MGL’s in-house Interpretation and

Reporting software, NgsReporter

VarGraph needed an authentication system for deployment in a production

environment, to prevent unauthorized access to the application. A session-based

authentication mechanism was built into VarGraph with authentication governed by

21

environment variables. Users must login with a username and password in order to use it.

VarGraph was deployed to a virtual machine in a development environment. To

ease the burden of deploying VarGraph in new environments, a Docker container was

created that bundles both the Neo4j database engine itself along with the Neo4j database

from Reactome. Docker is a containerization technology that is in widespread use across

many domains. It has been very useful in the life sciences realm, aiding with performance,

isolation of concerns, reproducibility, and scalability (18). Reactome generously provides

a downloadable Neo4j database edition of their data (19). Instead of requiring the

downloading of Reactome data and configuration of a Neo4j server to connect to the

downloaded data with each and every deployment, the reusable Docker container was

stored in a container registry for easy access from any new deployment environments.

The entirety of the configuration required to specify the dockerization is shown in

Figure 9. File Dockerfile_neo4j_Reactome uses a base Docker image provided by Neo4j

that has their server installed and ready to go. For VarGraph, the only necessary changes

required to the baseline Neo4j Docker image were the importing of the Reactome data and

the exposing of appropriate ports (7474, 7473, 7687). The Dockerfile for VarGraph is

similarly quite simple, beginning with a base Python container and adding the necessary

code directories from VarGraph and installing Python dependencies.

Docker Compose is a technology provided by Docker used to orchestrate clusters

of containers. For VarGraph, a small cluster of two docker containers was created: one

container was the Neo4j_Reactome service and the other was the VarGraph application

service (the Python Flask application). The cluster can be brought up with a simple

command “docker-compose up”, run from within the application’s working directory.

22

Fig. 9. Docker configuration.

 Execution and rendering times for the preparation of each VarGraph analysis

depend on the number of variants and the particular variants searched but are often in the

range of 10-30 seconds in an early version. This is an unacceptable latency period for a

good user interface. For that reason, a caching mechanism was added. Via the caching

mechanism, the VarGraph application persists its matrix and JSON description to a private

caching directory on its host machine. Upon receiving a new request to analyze a case,

VarGraph first inspects its cache and only commences a fresh analysis if no cached content

is available. In a production clinical system, this workflow would lead to a significant

cache invalidation problem that was not addressed yet at the present time. Subsequent

optimizations made the caching mechanism less necessary for application usage, but the

cached output nonetheless proved useful for aggregating the results of running VarGraph

23

across all available cases.

Fig. 10. VarGraph Deployment topology.

Static Reactome File-based Analysis

 The initial approach of VarGraph was to perform queries of Neo4j in real-time. This

proved to be less efficient and effective than working directly with files provided by

Reactome that map NCBI gene ids to Reactome nodes of type “PhysicalEntity”. An

alternate workflow in VarGraph was created that works directly with these static files and

does not require dynamic querying via Neo4j. Human gene symbols from the MGL records

were mapped to NCBI gene ids and from there to the Reactome Physical entities. This

method both executes much more quickly and has the advantage of being based on a well-

vetted canonical mapping of genes to Reactome pathways.

Analysis Using VarGraph

VarGraph was run offline to process and cache list of 4,597 PSJH-MGL accession

24

numbers. A python script1 read through all the cached JSON to generate a CSV file that

was uploaded into BigQuery. This resulted in 1,611 accession numbers in which more than

one gene was used in the analysis. The cached summary of each case was stored in the file

system in JSON and CSV formats. I parsed these results with a python script and uploaded

them to BigQuery for analysis via SQL queries.

BigQuery based pathway analysis

While it was not an initial aim, at this point in the project I became interested to see

how our dataset would compare to the previously mentioned analysis of TCGA data along

10 canonical oncogenic signaling pathways (9). How would our dataset compare to their

findings of 89% of tumors having at least one driver alteration in one of ten key pathways?

As our datasets were already available in BigQuery, there was a simple solution: I

transcribed the gene lists from the paper (9), uploaded it into BigQuery, and created some

SQL views that tied the relevant data structures together. The query structure and results

will be described in the Results section.

1 accession_json_cache/find_cache_stats.py

25

Chapter 4: Results

VarGraph Usability

VarGraph was implemented and deployed in production such that it can optionally

be used by case interpreters. I did not deem it useful enough at this stage to subject the

user base to a significant usability test. There is a problem of visual noise. The force-

directed layout is not ideal for highlighting the most important information and the inherent

inconsistencies in a force-directed layout are not ideal but improved visualization

techniques could improve the utility.

VarGraph Analysis

VarGraph	with	Live	Neo4j	

The mean time for processing a case analysis, excluding user interface rendering

time, was 10.7 seconds though the longest was nearly 6 minutes. The mean number of

“common pathways” found connecting the VUS to clinically significant variants or other

VUS was 1.5, with a maximum of 55 “common pathways” found.

VarGraph	with	Static	Reactome	Files	

With the VarGraph analysis based on static files from Reactome, using files pre-

parsed in RAM, the mean time to analyze a case was only 3 milliseconds with the slowest

completing in only 80 milliseconds. Figure 11 shows the most frequent “common

pathways” identified by the analysis.

26

Fig. 11. Top 10 Common Pathways identified by VarGraph (Static files

version). The context of the pathway in the overall Reactome hierarchy of pathways

in shown in the right column.

27

Fig. 12. Using BigQuery to analyze VarGraph results.

BigQuery Pathway Queries

In a side analysis, not directly relevant to VarGraph, but directly relevant to the aim
of VarGraph, I did some analysis of our historical data against the gene lists from the
Oncogenic Signaling Pathways (9) paper. The efficiency with which analysis can be done
in BigQuery is sometimes remarkable. In this case, the analysis can be presented in the
form of a single SQL (Figure 13) that returns in 1.0 second (Figure 14).

proportion_all_casesin_common_pathways
With a single SQL View

with
 accessions_with_common_pathway as (select count(*) as
count_in_common_pathway from (SELECT distinct
accession_number FROM `psjh-
216021.pathways.common_pathways_by_accn`)),
 all_accessions as (select count(*) as
count_all_accessions from (SELECT distinct accession_number
FROM `psjh-216021.pathways.variant_classifications`)),
 all_reportings as (select count(*) as
count_all_reportings from (SELECT distinct accession_number
FROM `psjh-216021.smr_scratch.reportings` where
deleted=false))

select
 a.count_in_common_pathway,
 b.count_all_accessions,
 c.count_all_reportings,
 a.count_in_common_pathway/b.count_all_accessions
proportion_all_with_any_variant,
 a.count_in_common_pathway/c.count_all_reportings as
proportion_all_reportings

28

from
 accessions_with_common_pathway a, all_accessions
b,all_reportings c
Fig. 13. SQL to generate pathway counts.

Fig. 14. Very fast but simple pathway analysis in BigQuery

 As shown in Figure 14, approximately 84% of cases for which we reported at least

one variant were found to have a variant of a gene in at least one of the 10 pathways covered

by (9), using the same gene list for each pathway that the original paper did. This is a

number that is of a similar magnitude to the 93% finding that (9) found in the TCGA

dataset. This is an interesting finding and led to me and some of my colleagues at PSJH-

MGL wanting to explore this further in future work.

29

Chapter 5: Discussion

Future

One possible way to facilitate the queries between clinical data and Reactome

would be to merge it all together. It would be an interesting project to work with a secure

private copy of the Reactome database and ingest clinical data into it. By creating edges

from each variant to the most relevant place in the Reactome network once upon ingest,

that part of the mapping would not need to be repeated with each query. Native cypher

queries could be used to answer a variety of questions.

The analysis conducted so far was primarily focused on the gene level. It is not at

a level of resolution where a difference between 2 mutations that affect different functional

subdomains of a protein could be discerned. Obviously, the latter is what is actually most

biologically relevant. The current system gives a probabilistic signal and a guide for users

on when to look further. It would be good to extend the computational pipeline of

VarGraph itself to account for these subtleties. One such avenue of extension to explore

could be integrating data from dbFNSP, which provides “a list of all potential nsSNVs and

ssSNVs based on the human reference sequence were created and functional predictions

and annotations were curated and compiled for each SNV” (20).

As a user interface modality, the force-directed graph layout can be overly crowded

and the continued moving of nodes adds strain for some users. Visualization via a

hierarchical layout could be explored as a possible means of making a more predictable

and explicit image for users. Viz.js (21) is a tool to render graphs described in the GraphViz

format within a web browser. A library such as Viz.js could be used to render such a

30

hierarchical layout. Such a static layout would give a more consistent layout experience

for users, and may also help render a repeatable static visualization that could be included

in reporting, if the analysis quality of future versions of VarGraph grew to an acceptable

level.

31

Chapter 6: Summary and
Conclusions

VarGraph is useful as a proof of concept but is not ready for clinical use. I would

like to build upon it at both ends, improving the underlying computational pathway

alignment techniques, as well as the visualization techniques. There is an abundance of

data available on many variants of unknown significance, but this data is of varying quality.

I did not here solve the problem of using pathway information to present a fast, responsive

and clear user interface for interpreters of genomic reports, but there is enough

infrastructure in place to continue building upon it. VarGraph would benefit from adding

additional data resources to its computational pipeline in addition to Reactome. And there

is much more valuable data in Reactome that VarGraph could still make better use of, from

laying out more reaction level data to directly presenting references to the reviewer. The

problem of mapping variants in all their specificity to pathways will likely entail

incorporation of other data sources.

Source code for VarGraph is available at https://github.com/davidball/VarGraph

32

References

1. El-Deiry WS, Goldberg RM, Lenz H-J, Shields AF, Gibney GT, Tan AR, et al. The

current state of molecular testing in the treatment of patients with solid tumors, 2019. CA:

A Cancer Journal for Clinicians. 2019;69(4):305–43.

2. Stockley TL, Oza AM, Berman HK, Leighl NB, Knox JJ, Shepherd FA, et al. Molecular

profiling of advanced solid tumors and patient outcomes with genotype-matched clinical

trials: the Princess Margaret IMPACT/COMPACT trial. Genome Medicine. 2016 Oct

25;8(1):109.

3. Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al.

Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discov. 2018 Feb

1;8(2):174–83.

4. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, et al. The Immune

Landscape of Cancer. Immunity. 2018 Apr 17;48(4):812-830.e14.

5. Overby CL, Kohane I, Kannry JL, Williams MS, Starren J, Bottinger E, et al.

Opportunities for genomic clinical decision support interventions. Genetics in Medicine.

2013 Oct;15(10):817–23.

33

6. Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, et al. CIViC

is a community knowledgebase for expert crowdsourcing the clinical interpretation of

variants in cancer. Nature Genetics. 2017 Jan 31;49:170–4.

7. Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, et al. 3D clusters of

somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome

Medicine. 2017 Jan 23;9(1):4.

8. Smalley KSM, Sondak VK. Skin cancer: Targeted therapy for melanoma: is double

hitting a home run? Nature Reviews Clinical Oncology. 2013 Jan;10(1):5–

9. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic

Signaling Pathways in The Cancer Genome Atlas. Cell. 2018 Apr;173(2):321-337.e10.

10. Blucher AS, Choonoo G, Kulesz-Martin M, Wu G, McWeeney SK. Evidence-Based

Precision Oncology with the Cancer Targetome. Trends in Pharmacological Sciences. 2017

Dec 1;38(12):1085–99.

11. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al.

Reactome graph database: Efficient access to complex pathway data. PLOS Computational

Biology. 2018 Jan 29;14(1):e1005968.

12. Inside Capacitor, BigQuery’s next-generation columnar storage format [Internet].

34

Google Cloud Blog. [cited 2019 Aug 10]. Available from:

https://cloud.google.com/blog/products/gcp/inside-capacitor-bigquerys-next-generation-

columnar-storage-format/

13. Rights (OCR) O for C. Covered Entities and Business Associates [Internet]. HHS.gov.

2015 [cited 2019 Aug 17]. Available from: https://www.hhs.gov/hipaa/for-

professionals/covered-entities/index.html

14. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al.

Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-

function intolerance across human protein-coding genes. bioRxiv. 2019 Jan 30;531210.

15. The Neo4j Cypher Manual v3.5 [Internet]. [cited 2019 Aug 17]. Available from:

https://neo4j.com/docs/cypher-manual/current/introduction/

16. The Python micro framework for building web applications.: pallets/flask [Internet].

The Pallets Projects; 2019 [cited 2019 Aug 12]. Available from:

https://github.com/pallets/flask

17. Disjoint Force-Directed Graph [Internet]. 2018 [cited 2019 Aug 12]. Available from:

https://observablehq.com/@d3/disjoint-force-directed-graph

18. Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, et al. Practical

35

Computational Reproducibility in the Life Sciences. Cell Systems. 2018 Jun 27;6(6):631–

5.

19. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The

Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018 04;46(D1):D649–55.

20. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional

Predictions and Annotations for Human Non-synonymous and Splice Site SNVs. Hum

Mutat. 2016 Mar;37(3):235–41.

21. Daines M. A hack to put Graphviz on the web. Contribute to mdaines/viz.js

development by creating an account on GitHub [Internet]. 2019 [cited 2019 Aug 19].

Available from: https://github.com/mdaines/viz.js

