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Abstract 

Background: Genomic screening is an increasingly important part of cancer care. 

Screening often detects somatic variants in the tumor sample of varied clinical significance: 

some are well understood, some are connected to only loose evidence, and some are 

unknown altogether.   

Purpose: The purpose of this project was to construct a tool that could present state-

of-the-art pathway information to genomics experts evaluating the clinical significance of 

variants.  

Solution: A web service was created that runs queries against the Reactome 

pathway database in search of common pathway activity between variants of a clinical case 

that are known to be pathogenic and those that are of unknown significance. It was 

integrated into the software infrastructure of a high-volume genomics lab at Providence St. 

Joseph’s Health. A very different approach to the same problem was attempted via the 

cloud database product Google BigQuery.  

Conclusions: The project so far has failed to be of clinical utility.  Two areas of 

improvement could remedy that situation in future iterations: a more stable network 

visualization technique, and higher resolution mapping of novel variants to pathway 

databases via accounting for the effect of alterations on particular protein subdomains.  In 

its current form the project was not able to reap the benefits of a graph database in 

particular.  A simpler focus on a small number of “canonical pathways” looks like a quicker 

path to a value-added user interface.  
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Chapter 1: Introduction 

Genomic sequencing of somatic mutations in tumor and blood malignancies is 

becoming an increasingly important part of cancer care (1).  As the cost of sequencing 

declines and clinically actionable information that can be learned from sequencing 

increases, it is more and more relevant.  Clinical genomics labs must not only assess what 

variants are present in a patient’s cancerous cells but filter down to those that are most 

clinically significant.  “Clinical significance” might entail that there are known therapies 

that have been found to be successful in treating similar cancers, or that there is a reason 

to infer from the presence of that variant information about mechanism, prognosis, or 

resistance.  Myriad efforts exist around the world to curate data from a variety of cancer 

datasets to aid in efforts to predict the functional role of variants (2,3,4).  

It is common in clinical practice to find multiple somatic variants in a malignancy, 

and for some of them to be linked to known pathogenicity across databases and for some 

of them not to be (2,3).  In other words, in the general field of personalized oncology, we 

have more data than we know what to do with.  Clinical genomics labs all over the world 

are finding variants in tumors that may one day be actionable, while the current state of 

knowledge does not link them to known therapies.  There is an “urgency”(3) to this problem 

and anything that can be done to help the discovery of the clinical significance of a novel 

unknown variant could potentially be of huge importance to a patient.  

One way of assessing the clinical significance of variants is to look at what 

pathways are affected.  Many large efforts are on-going to aggregate all known biochemical 

pathways into shareable datasets.   This project aimed to make some of that knowledge in 
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pathways databases promptly accessible to genomics experts issuing clinical case reports.  

The focus of this work was to create an annotation and visualization pipeline to 

enhance clinicians’ abilities to assess the clinical significance of poorly characterized 

variants.  The focus for this stage was on the Reactome database which is freely available 

on the internet as a Neo4j database.  The aim was to add a pathway-based visualization 

component to an existing annotation and interpretation pipeline in a high-volume 

Molecular Genomics lab at a major medical center.  

An application was constructed called VarGraph (for “Variant Graph”). VarGraph 

is web-application that queries the graph database from Reactome based on the set of 

variants found in a particular case and shows pathway information to the clinical interpreter 

in graphical form.  I will also discuss some further analysis of historical cases that was 

done using a combination of VarGraph and the BigQuery engine component of the Google 

Cloud Platform.  

 

Genesis of the Project 

I have been working in the Providence St.-Joseph’s Health Molecular Genomics 

Lab (PSJH-MGL) in Portland, OR for the last year on a suite of in-house software that is 

used for the review, annotation, and interpretation of genomics data results for oncology 

patients.  I had some experience with Reactome in my studies at OHSU and was interested 

in exploring how data in Reactome could be used to enhance the information that our in-

house users have available in making their decisions on clinical significance.  We depend 

on third-party analysis for our pathway information and get it back in text format, rather 

than a more refined data structure that could be used for custom visualizations.  Our 
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Medical Director, Dr. Bifulco, expressed an interest in seeing more pathway analysis in our 

clinical review process and even incorporating it into our reports if it met a quality 

threshold.  My advisor Dr. Wu advised me early on that the level of resolution that I could 

get from Reactome was not likely to be relevant enough as it did not have 3-D structure 

information.  I persisted with the idea to use Reactome in hopes that it would help me to 

create a good initial framework of pathway visibility in our software that could be further 

enhanced down the line with more precisely targeted analyses.  
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Chapter 2: Background 

Variant Classification 

The landscape of cancer genomics has changed so rapidly that it is reasonable to 

expect that many of the final consumers of clinical genomics reports will not have been 

formally trained in the field (5).  They will rely on the reporting of the genomics analysis 

to connect them with the best possible treatment options for their patients.  There are many 

avenues to predicting the functional consequences of novel variants, and quite a variety of 

projects and databases that aim to curate and organize some of these.  Private companies 

combine the use of databases and expert researchers to provide annotation services, such 

as N-Of-One, with whom we have a working relationship in the PSJH-MGL.  Recent 

efforts include crowdsourcing the functional annotations of molecular pathologists world-

wide and making the resulting dataset available, such as CivicDB (6).  Any given 

uncharacterized mutation could be an important driver of the tumor process, or an 

incidental artifact along for the ride, a so-called passenger mutation (7).  In the end, variant 

classification by clinical significance comes down to: does the presence of this variant tell 

us something about the mechanism of disease, the availability of FDA approved therapies, 

available clinical trials, drug resistance risks, and/or prognosis.  Often associations are 

filtered by “Levels of Evidence” criteria.  The goal is to give the physician closest to the 

patient the most actionable information possible without drowning them in a deluge of low-

probability signals.  Overby et al. (5) defined a taxonomy of stages of variant analysis 

consisting of preanalytic, analytic, and postanalytic phases.  The work of my capstone was 

to create a tool to aide users in the postanalytic phase, the “reporting and interpreting of 
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genetic test results.”  

Pathway Analysis 

Each cancer is not only unique in its exact genomic makeup but itself changes over 

time.  Many cancers evolve resistance to the therapies which are initially helpful against 

them and become increasingly difficult to treat.  When multiple therapeutic targets can be 

found in the same pathway, it can sometimes not only improve outcomes but lower side 

effects (8).  It is therefore vital to find any valid inferential information about novel 

variants, while not overburdening the oncologist with low-probability and low-quality 

information.  A study of 10,000 tumors from The Cancer Genome Atlas (TCGA) focused 

on 10 key pathways and found that “Eighty-nine percent of tumors had at least one driver 

alteration in these pathways, and 57% percent of tumors had at least one alteration 

potentially targetable by currently available drugs.” (9)  As I learned this during the course 

of this work it both inspired me to persevere with bringing pathway analysis into the PSJH-

MGL pipeline but also led to some questions about my approach.  That analysis (9) brings 

some interesting nuance to the question of “driver” and “passenger” mutations, in that they 

find that there are some cases where the presence of a damaged pathway by one variant 

makes it less likely to find another mutation in the same pathway. They mapped the patterns 

of “co-occurence and mutual exclusivity” in the TCGA dataset. I became interested in 

performing a similar analysis on our dataset at the PSJH-MGL.  Such correlations could be 

used, perhaps, as part of a chain of inference of predicting if an unknown variant is related 

to a pathway that another known variant in a given tumor affects. An important concern in 

any assessment of significance is the “level of evidence” available behind any assertion.  

Blucher et al. created a comprehensive set of drug-target information categorized by levels 
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of evidence (10).  Applying evidence-level-based filtering to Reactome pathways, they 

found that the portion of Reactome pathways targeted by approved antineoplastic drugs 

ranges from 39%-60% as level of evidence filtering moves from “strong evidence” to “any 

type of supporting evidence.” (10).  In a clinical setting, such as PSJH-MJL, there is a need 

to employ only strong levels of evidence in making assessments.  

Database Technologies 

As this project entailed usage of two different non-traditional database 

technologies, a few words of background about them might be helpful.  

Graph Databases 

In graph databases, data is represented as a collection of nodes and edges rather 

than the structured tables of rows and strictly defined columns that are employed in 

traditional relational databases.  A particular database engine called Neo4J has become 

popular in recent years and implements a data structure called a property graph.  This 

property graph contains nodes and edges and each node and edge can contain a user-defined 

set of key-value pairs to indicate properties.  Neo4j provides a query language called 

Cypher, which has SQL-like syntax but many differences. Graph databases, including 

Neo4j, particularly distinguish themselves from relational database in queries involving 

path searches across sequences of nodes.  This proved to be highly useful to the Reactome 

team and they reported that, in some circumstances, it reduced their average query time by 

93% (11, 14).  I was eager to explore the query possibilities in such a graph database for 

this project in hopes that it could allow the asking of questions that are not tractable to state 

in traditional relational databases. 
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Cloud Databases 

Another non-traditional database technology that was used in this project is a 

Google service known as BigQuery.  It is a columnar database (12) that, to their users, is 

“serverless," and “infinitely scalable”. Within the security of your own projects you can 

upload vast datasets but query them much like a traditional SQL database.  BigQuery is 

compatible with SQL and adds a number of additional useful operators.  Data is broadly 

distributed in ways that are not transparent to the end user, but can very efficiently perform 

queries on vast sizes of data.  It has a billing model that is worth consideration for some 

cases: billing is in proportion to how much data each individual query touches.  The 

capability of performing queries on petabyte-sized datasets without having to maintain 

internal hardware capacity for scale can make BigQuery a compelling solution for some 

use cases.  Many datasets, such as The Cancer Genome Atlas data (12), are publicly 

available.  The Health Information Portability and Accountability Act (HIPAA) requires 

that a Business Associate Agreement (BAA) be in place between a healthcare organization 

and a cloud provider before it can be used with any potential Patient Health Information 

(PHI) (13).  Fortunately for this project, such an agreement was already in place at the time 

of initiation and Google Cloud, including BigQuery, was already a vital part of the 

computational infrastructure in our operations in the PSJH-MGL. 

Molecular Genomics Lab at Providence-St. Joseph’s Health 

PSJH-MGL performs genomic sequencing for patients throughout Oregon and 

increasingly throughout the wider 7-state Providence system.  Data is tracked through a 

variety of in-house applications, especially two titled NgsReporter and NgsReviewer.  Over 

the last few years of operation these applications and their databases have accumulated a 
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store of sequencing results from approximately 4,500 solid tumors and hematological 

malignancies.  

The PSJH-MGL dataset contains approximately 4,500 cases of sequenced DNA 

and/or RNA samples from solid tumor and hematological malignancies.  Data goes through 

many internal pipelines and workflow steps during which variants are filtered for quality 

and relevance.  A human reviewer evaluates each high-quality variant call and makes 

further effort to identify sequencing noise.  Common germline polymorphisms are 

excluded, primarily by referencing EXAC and GNOMAD scores (14). After all this review 

a set of “reportable” variants for each case is determined. 

 

Fig. 1. Workflows and Software in the Providence St. Joseph’s Health Molecular 

Genomics Lab (PSJH-MGL) 
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Aims 

The aim of this project was to provide information to help molecular pathologists 

classify variants of unknown significance in clinical reports.  The existing pipeline includes 

an abundance of annotations, including textual descriptions of implicated pathways, but 

did not have any visualization of pathway relationships nor direct links to pathway 

databases.  The aim was to construct a tool that could put knowledge embedded in existing 

pathway databases into a readily reviewable form for the busy molecular pathologist, and 

to build such a tool in a way that it could be easily integrated into the existing human review 

and curation workflow.  In particular the aim was to attempt to find links between the 

variants of unknown significance (VUS) and the clinically significant variants by means of 

using the graph database provided by Reactome.  
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Chapter 3: Materials and Methods 

Datasets 

PSJH-MGL Datasets 

The datasets of the applications NgsReporter and NgsReviewer contain records 

from several years of sequencing of tumors and hematological malignancies for both 

clinical and research purposes.  The genomic sequencing of RNA and DNA libraries 

outputs files in BCL format that are converted into FASTQ files and processed by 

alignment tools provided by the sequencing vendors.  Most of our samples were sequenced 

on the Illumina platform.  The datasets relevant to this project come from the NgsReviewer 

and NgsReporter applications, which consume the output of the alignment pipelines.  

Within NgsReviewer we have approximately 41 million raw records of variant information. 

The majority of this output is noisy and not of immediate relevance, but of those 195,000 

rows were filtered for review by technologists to validate the call and make distinctions 

between somatic variants and common germline polymorphisms.  Of these, approximately 

28,000 variants were flagged as “reportable” and sent to molecular pathologists for clinical 

significance determination.  For this analysis I focused on 2,800 cases that had at least one 

reportable variant, the dataset includes a total of 11,389 reportable variants, of which 5,306 

(46.6%) were classified as clinically significant.  Those that are not found to be significant 

are reported to be “Variants of Unknown Significance” (VUS).   
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Classification Count Average Per Case 

Clinically Significant 5306 1.895 

Variant of Unknown 

Significance (VUS) 
6083 2.1725 

Likely Significant 217 0.0775 

Table 1. Classifications of Reported Variants 

 

After reviewing all the aggregated data, an assessment of clinical significance is 

made into one of two categories: variants with clinical significance, and variants of 

unknown significance (vus).  If a variant has been identified by the prior information 

pipeline as having good diagnostic, prognostic, explanatory role, and/or there is high 

quality evidence to directly link a variant with recommended therapies or trials, then it is 

deemed clinically significant.  But the opposite claim of “insignificant” is not made.  There 

is simply not enough known about the implications of any possible variant to make the 

affirmative negation of significance.  VUS is used when the best available evidence can 

lead to no positive conclusion of significance.  For the purposes of this project, I extracted 

a highly simplified dataset consisting of a case id, diagnosis, and list of variants in each of 

the two categories.  

Data Exploration and Reactome Query Design 

Reactome Queries 

The first query design challenge was how to relate the PSJH-MGL datasets to the 
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Reactome database in order to perform the desired pathway queries. The first stage of the 

project was to create queries of Reactome.  Two aspects of the query construction challenge 

at every step were: (a) how to accurately map to the correct part of the Reactome graph and 

(b) how to make tractable queries that return in a reasonable amount of time.  

Ultimately what is most significant about every variant will be a function of the 

precise three-dimensional structure of the protein produced by it and in the precise way 

that that altered protein interacts with every other molecule that it encounters.  However, 

that level of resolution remained out of scope for what I was able to accomplish in this 

project. The analysis was limited to “gene” level pathways under alteration.  

The Reactome database contains a rich interconnected database of nodes of various 

kinds and how they relate to each other. Though Neo4j is designed for high-performance 

querying of graphs, the large size of the Reactome graph means that caution must still be 

used to avoid computationally expensive queries.  Neo4J queries are composed in a 

language called Cypher, which has been described as a version of the widely known 

Structured Query Language (SQL) for graph structures (15).  Like SQL, the language is 

“declarative,” such that the user is telling the query engine what it wants to see rather than 

explicitly how to retrieve that info. A key to efficient query design in this project was to 

use the WITH clause, which “allows query parts to be chained together, piping the results 

from one to be used as starting points or criteria in the next.” (15) Using the WITH clause 

improved both the readability and execution times of my queries.  Filtering Reactome 

queries by species early in the chain of WITH clauses was another important consideration 

for performance. 

Query 1 
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 Initially my aim was to construct a single query that would find all the pathways 

that involve any of the protein products of any of the reportable variants of a clinical case.  

I encountered problems with this approach both with query performance and with the 

complexity of the Cypher expression.  Furthermore, it became interesting to see a pairwise 

comparison of the common pathways between each pair of variants.  I took the approach 

of making a separate Reactome query for each variant in a case and aggregating the results 

into a matrix of variants by pathway outside of the database query.  Figure 2 illustrates the 

query, which could be loosely summarized in natural language as:  Find all paths of any 

length that begin with nodes representing the gene of a variant, end with a “top level 

pathway” named “Disease”, and are composed of edges that indicate participation in a 

reaction or pathway.  

 

 

Fig. 2.  Cypher Query with a diagram of the logic 

 With the precise identify of a ReferenceGeneProduct in mind, it is possible to find 

genetic variants of that gene by finding those nodes of type 

EntityWithAccessionedSequence that both reference the gene of interest and have an edge 

of type :hasModifiedResidue.  

match (braf:ReferenceGeneProduct)-[:referenceEntity]-
(v:EntityWithAccessionedSequence)-[:hasModifiedResidue]-
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(r:GeneticallyModifiedResidue) where id(braf)=238230 return 
v,r 
 

 

Fig. 3. Neo4J’s native visualization of a Reactome query for gene BRAF 

In future work this may allow a greater specificity of matching some of our well-

characterized variants to appropriate nodes in the Reactome database.  However, our VUS 

are, by definition, generally not well characterized in the literature and thus also unlikely 

to be annotated in Reactome. 

The VarGraph Application 

A web application called VarGraph was constructed with the goal of performing 

useful pathway queries in the Reactome database, assembling the results, and presenting 

them in a User Interface.  VarGraph is a web application written in Python and utilizing the 

Flask micro web framework (16).  

VarGraph accepts as input any one of the following:  a list of genes, a list of 

transcript ids, or an order identification number of a clinical case in the PSJH-MGL.  The 

primary output of the user interface is a force-directed layout of a graph structure in which 
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the nodes are Genes and Pathways.  It is important to note that VarGraph is only 

representing pathway interactions of normal products of the gene of the variant, and, in its 

current form, cannot show specific functional differences of the particular variant in these 

pathways.  Genes are color coded by the current PSJH-MGL clinical significance 

classification of the variant.  The core feature set of VarGraph is oriented around a single 

clinical case at a time.  For each clinical case, the purpose of VarGraph is to: 

1. Retrieve the latest data on reportable variants for the case. It is intended to be usable on 

cases that are actively undergoing interpretation, so this data could change frequently.   

Generally, these variants would be in a preliminary state of classification by clinical 

significance already, and the interpreter would be looking to VarGraph to access 

additional information to complete the classification process. 

2. Identify pathways in common between the genes of the clinically significant variants and 

the genes of the variants of unknown significance, or pathways common among the 

variants of unknown significance. 

2.1. Query to a local Reactome Neo4j database. 

2.2. Prepare a matrix of pathways by gene. 

2.3. Use the matrix to identify pathways that are common. 

3. Present the findings to the user 

3.1. Render a network forced-layout visualization in the user interface. 

3.2. Display the matrix of genes by pathway.  

3.3. Provide links to third party sites for additional information.  

VarGraph User Interface 

The VarGraph is a browser-based application. Analysis for a clinical case is 
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accessed via an accession number in the URL.  In the resulting screen rendered in the user’s 

browse, the list of genes to be analyzed is shown at the top of the page.  A link to open the 

same gene list for analysis in PathwayCommon.org is also shown. Next, the primary 

network visualization is displayed (Figure 4), showing nodes for each gene of a reportable 

variant and any associated pathways.  Gene nodes are color coded to indicate the current 

clinical significance classification.  Pathway nodes are color coded to indicate whether the 

pathway was found to be in “common” between the gene of a VUS and the gene of another 

variant.  The purpose of the use of color is to allow a busy reviewer to look quickly at the 

visualization and see if this visualization is offering them information of interest. 

I used the JavasScript-based visualization library D3.js as the foundation of the 

network visualization and made use of the particular technique of Mike Bostock (17) for 

dealing with Disjoint Graphs.  Rendering of the force-directed layout is done within the 

browser using JavaScript that operates on a JSON payload retrieved from the VarGraph 

server.  Pathway nodes and gene nodes are linked by an edge if the Reactome queries above 

found an association with that pathway.  This definition of “edge” is a major area for 

expansion of the VarGraph platform in future work.   The user can hover over to see more 

information about a node.    

 



 

17 

 
Fig. 4. VarGraph network visualization. The Orange color nodes highlight 

pathways found among the VUS 

 

Below the network visualization, a matrix of genes by pathway is displayed (Figure 

5).  A “1” in a matrix cell indicates that the Reactome queries that VarGraph performed 

found an association between the gene and that pathway. The last column shows the count 

of genes that were mapped to a pathway in that row.  
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Fig. 5. A Matrix of Gene By Pathway for a single tumor case as displayed in 

VarGraph.  A 1 indicates the inclusion of some gene product in the given pathway.  

 While Neo4J was not previously a part of our operational software infrastructure at 

PSJH-MGL, many of the users of our variant review software have a variety of data 

manipulation and programming skills.  In consideration that some might want to learn 

Neo4J’s Cypher query language I provided in VarGraph links directly to the hosted Neo4j 

version of Reactome that is running for VarGraph. The VarGraph user interface for an 

analysis of a gene set provides the raw Cypher that users could use as a starting point for 

refining the particular query that interests them.  

 

 

Fig. 6. Cypher examples as displayed in the VarGraph User Interface.  
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Integration into Existing PSJH-MGL Software Stack 

To be useful, of course, VarGraph needed access to actual sets of variants reported 

for a particular case.  Some possible ways that data could have been exchanged between 

the two applications include: 

• Data push from NgsReporter to VarGraph 

• Data pull from VarGraph to NgsReporter 

• NgsReporter and VarGraph each connect to a common data source 

• Periodic synchronization of data from NgsReporter to VarGraph 

There are ample tradeoffs involved in each approach.  The twin goals of secure 

communication, and requiring minimal impact on existing software, argued for keeping 

VarGraph separate from any raw clinical data source. Thus, I gave VarGraph the ability to 

make secure encrypted API calls to NgsReporter using the existing authentication and 

interface mechanisms of NgsReporter, minimizing the need to make changes to 

NgsReporter for VarGraph’s needs. Though it could be desirable in some circumstances to 

also have VarGraph capable of receiving an HTTP post of variants upon which to do its 

analysis, in our present circumstances in the lab it proved to be a lower impact on existing 

systems to have VarGraph do the pulling when it needs data.  
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Fig. 7. Where VarGraph fits in the PSJH-MGL stack 

 

The user interface of VarGraph could be integrated into clinical operations with 

very minimal change to the core clinical application NgsReporter.  A hyperlink added to 

the HTML page for clinical interpretation takes the user to the VarGraph application 

(“Preview Pathway Search”) (Figure 8). 

 

 

Fig. 8. VarGraph integration in the PSJH-MGL’s in-house Interpretation and 

Reporting software, NgsReporter 

VarGraph needed an authentication system for deployment in a production 

environment, to prevent unauthorized access to the application.  A session-based 

authentication mechanism was built into VarGraph with authentication governed by 
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environment variables. Users must login with a username and password in order to use it.  

VarGraph was deployed to a virtual machine in a development environment.  To 

ease the burden of deploying VarGraph in new environments, a Docker container was 

created that bundles both the Neo4j database engine itself along with the Neo4j database 

from Reactome. Docker is a containerization technology that is in widespread use across 

many domains.  It has been very useful in the life sciences realm, aiding with performance, 

isolation of concerns, reproducibility, and scalability (18).  Reactome generously provides 

a downloadable Neo4j database edition of their data (19).  Instead of requiring the 

downloading of Reactome data and configuration of a Neo4j server to connect to the 

downloaded data with each and every deployment, the reusable Docker container was 

stored in a container registry for easy access from any new deployment environments. 

The entirety of the configuration required to specify the dockerization is shown in 

Figure 9. File Dockerfile_neo4j_Reactome uses a base Docker image provided by Neo4j 

that has their server installed and ready to go. For VarGraph, the only necessary changes 

required to the baseline Neo4j Docker image were the importing of the Reactome data and 

the exposing of appropriate ports (7474, 7473, 7687). The Dockerfile for VarGraph is 

similarly quite simple, beginning with a base Python container and adding the necessary 

code directories from VarGraph and installing Python dependencies.  

Docker Compose is a technology provided by Docker used to orchestrate clusters 

of containers. For VarGraph, a small cluster of two docker containers was created: one 

container was the Neo4j_Reactome service and the other was the VarGraph application 

service (the Python Flask application). The cluster can be brought up with a simple 

command “docker-compose up”, run from within the application’s working directory. 
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Fig. 9.  Docker configuration. 

 

 Execution and rendering times for the preparation of each VarGraph analysis 

depend on the number of variants and the particular variants searched but are often in the 

range of 10-30 seconds in an early version.  This is an unacceptable latency period for a 

good user interface. For that reason, a caching mechanism was added.  Via the caching 

mechanism, the VarGraph application persists its matrix and JSON description to a private 

caching directory on its host machine.  Upon receiving a new request to analyze a case, 

VarGraph first inspects its cache and only commences a fresh analysis if no cached content 

is available.  In a production clinical system, this workflow would lead to a significant 

cache invalidation problem that was not addressed yet at the present time.  Subsequent 

optimizations made the caching mechanism less necessary for application usage, but the 

cached output nonetheless proved useful for aggregating the results of running VarGraph 
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across all available cases.  

 

Fig. 10. VarGraph Deployment topology. 

Static Reactome File-based Analysis 

 The initial approach of VarGraph was to perform queries of Neo4j in real-time.  This 

proved to be less efficient and effective than working directly with files provided by 

Reactome that map NCBI gene ids to Reactome nodes of type “PhysicalEntity”. An 

alternate workflow in VarGraph was created that works directly with these static files and 

does not require dynamic querying via Neo4j.  Human gene symbols from the MGL records 

were mapped to NCBI gene ids and from there to the Reactome Physical entities.  This 

method both executes much more quickly and has the advantage of being based on a well-

vetted canonical mapping of genes to Reactome pathways. 

Analysis Using VarGraph 

VarGraph was run offline to process and cache list of 4,597 PSJH-MGL accession 
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numbers.  A python script1 read through all the cached JSON to generate a CSV file that 

was uploaded into BigQuery. This resulted in 1,611 accession numbers in which more than 

one gene was used in the analysis.  The cached summary of each case was stored in the file 

system in JSON and CSV formats.  I parsed these results with a python script and uploaded 

them to BigQuery for analysis via SQL queries. 

 

BigQuery based pathway analysis 

While it was not an initial aim, at this point in the project I became interested to see 

how our dataset would compare to the previously mentioned analysis of TCGA data along 

10 canonical oncogenic signaling pathways (9).  How would our dataset compare to their 

findings of 89% of tumors having at least one driver alteration in one of ten key pathways?  

As our datasets were already available in BigQuery, there was a simple solution: I 

transcribed the gene lists from the paper (9), uploaded it into BigQuery, and created some 

SQL views that tied the relevant data structures together. The query structure and results 

will be described in the Results section.  

                                                             
1 accession_json_cache/find_cache_stats.py 
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Chapter 4: Results 

VarGraph Usability 

VarGraph was implemented and deployed in production such that it can optionally 

be used by case interpreters.  I did not deem it useful enough at this stage to subject the 

user base to a significant usability test.  There is a problem of visual noise.  The force-

directed layout is not ideal for highlighting the most important information and the inherent 

inconsistencies in a force-directed layout are not ideal but improved visualization 

techniques could improve the utility.  

VarGraph Analysis 

VarGraph	with	Live	Neo4j	
 

The mean time for processing a case analysis, excluding user interface rendering 

time, was 10.7 seconds though the longest was nearly 6 minutes. The mean number of 

“common pathways” found connecting the VUS to clinically significant variants or other 

VUS was 1.5, with a maximum of 55 “common pathways” found.  

VarGraph	with	Static	Reactome	Files	
  

With the VarGraph analysis based on static files from Reactome, using files pre-

parsed in RAM, the mean time to analyze a case was only 3 milliseconds with the slowest 

completing in only 80 milliseconds. Figure 11 shows the most frequent “common 

pathways” identified by the analysis. 
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Fig. 11. Top 10 Common Pathways identified by VarGraph (Static files 

version).  The context of the pathway in the overall Reactome hierarchy of pathways 

in shown in the right column. 
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Fig. 12. Using BigQuery to analyze VarGraph results. 
 

BigQuery Pathway Queries 

In a side analysis, not directly relevant to VarGraph, but directly relevant to the aim 
of VarGraph, I did some analysis of our historical data against the gene lists from the 
Oncogenic Signaling Pathways (9) paper.  The efficiency with which analysis can be done 
in BigQuery is sometimes remarkable.  In this case, the analysis can be presented in the 
form of a single SQL (Figure 13) that returns in 1.0 second (Figure 14).  

proportion_all_casesin_common_pathways 
With a single SQL View  

 

with  
  accessions_with_common_pathway as (select count(*) as 
count_in_common_pathway from (SELECT distinct 
accession_number FROM `psjh-
216021.pathways.common_pathways_by_accn`)), 
  all_accessions as (select count(*) as 
count_all_accessions from (SELECT distinct accession_number 
FROM `psjh-216021.pathways.variant_classifications`)), 
  all_reportings as (select count(*) as 
count_all_reportings from (SELECT distinct accession_number 
FROM `psjh-216021.smr_scratch.reportings` where 
deleted=false)) 
 
select  
  a.count_in_common_pathway, 
  b.count_all_accessions, 
  c.count_all_reportings, 
  a.count_in_common_pathway/b.count_all_accessions 
proportion_all_with_any_variant, 
  a.count_in_common_pathway/c.count_all_reportings as 
proportion_all_reportings 
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from  
  accessions_with_common_pathway a, all_accessions 
b,all_reportings c 
Fig. 13. SQL to generate pathway counts.  

 
Fig. 14. Very fast but simple pathway analysis in BigQuery 

 As shown in Figure 14, approximately 84% of cases for which we reported at least 

one variant were found to have a variant of a gene in at least one of the 10 pathways covered 

by (9), using the same gene list for each pathway that the original paper did.  This is a 

number that is of a similar magnitude to the 93% finding that (9) found in the TCGA 

dataset.  This is an interesting finding and led to me and some of my colleagues at PSJH-

MGL wanting to explore this further in future work.  
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Chapter 5: Discussion 

Future  

One possible way to facilitate the queries between clinical data and Reactome 

would be to merge it all together.  It would be an interesting project to work with a secure 

private copy of the Reactome database and ingest clinical data into it.  By creating edges 

from each variant to the most relevant place in the Reactome network once upon ingest, 

that part of the mapping would not need to be repeated with each query.  Native cypher 

queries could be used to answer a variety of questions.  

The analysis conducted so far was primarily focused on the gene level. It is not at 

a level of resolution where a difference between 2 mutations that affect different functional 

subdomains of a protein could be discerned.  Obviously, the latter is what is actually most 

biologically relevant.  The current system gives a probabilistic signal and a guide for users 

on when to look further.  It would be good to extend the computational pipeline of 

VarGraph itself to account for these subtleties.  One such avenue of extension to explore 

could be integrating data from dbFNSP, which provides “a list of all potential nsSNVs and 

ssSNVs based on the human reference sequence were created and functional predictions 

and annotations were curated and compiled for each SNV” (20). 

As a user interface modality, the force-directed graph layout can be overly crowded 

and the continued moving of nodes adds strain for some users.  Visualization via a 

hierarchical layout could be explored as a possible means of making a more predictable 

and explicit image for users.  Viz.js (21) is a tool to render graphs described in the GraphViz 

format within a web browser. A library such as Viz.js could be used to render such a 
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hierarchical layout.  Such a static layout would give a more consistent layout experience 

for users, and may also help render a repeatable static visualization that could be included 

in reporting, if the analysis quality of future versions of VarGraph grew to an acceptable 

level.  
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Chapter 6: Summary and 
Conclusions 

VarGraph is useful as a proof of concept but is not ready for clinical use. I would 

like to build upon it at both ends, improving the underlying computational pathway 

alignment techniques, as well as the visualization techniques.  There is an abundance of 

data available on many variants of unknown significance, but this data is of varying quality.  

I did not here solve the problem of using pathway information to present a fast, responsive 

and clear user interface for interpreters of genomic reports, but there is enough 

infrastructure in place to continue building upon it.  VarGraph would benefit from adding 

additional data resources to its computational pipeline in addition to Reactome. And there 

is much more valuable data in Reactome that VarGraph could still make better use of, from 

laying out more reaction level data to directly presenting references to the reviewer. The 

problem of mapping variants in all their specificity to pathways will likely entail 

incorporation of other data sources.  

 

 

Source code for VarGraph is available at https://github.com/davidball/VarGraph 
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