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ABSTRACT	

	 Despite	incredible	advances	in	the	recruitment	and	phenotyping	of	patients	for	

genomewide	association	studies	(GWAS)	in	the	past	decade,	the	ability	to	ascertain	the	causes	

of	complex	disease	remains	a	significant	challenge.	Recent	research	implies	that	instead	of	

single	variants	of	large	effect,	many	variants	of	extremely	small	effect	represent	the	majority	of	

signal	associated	with	genetic	disease.	To	approximate	these	broad	effects,	enormous	sample	

sizes	are	required.	However,	such	recruitment	is	often	impossible	in	rare	diseases.	To	this	end,	

we	introduce	a	modified	model	of	polygenic	risk	score	(PRS)	formulation	incorporating	protein-

protein	interaction	network	topology.	This	method	allows	the	investigation	of	the	degree	to	

which	network	effects	can	augment	existing	risk	scores	and	provides	a	complementing	

framework	within	which	to	assess	the	composition	of	existing	polygenic	risk	measures.		

Secondly,	we	assess	the	ability	to	discern	the	degree	to	which	coexisting	conditions	are	due	to	

similar	genetic	causes	using	the	framework	described	above.	We	assess	the	degree	to	which	

genetic	effects	are	detectable	in	a	small	population	enriched	for	prematurity.	We	evaluate	the	

overlap	between	signal	for	preterm	birth	with	that	of	and	retinopathy	of	prematurity	(ROP),	a	

coincident	condition	believed	to	have	independent	genetic	causes.	We	believe	this	work	is	an	

important	step	toward	increasing	the	predictive	power	and	interpretability	of	genetic	risk	score	

methods,	and	that	the	evolution	of	such	score	will	help	inform	and	direct	research	in	genetic	

disease	to	the	benefit	of	patients	and	clinicians.	
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CHAPTER	1:	INTRODUCTION	AND	BACKGROUND	

1.1	INTRODUCTION	

Retinopathy	of	prematurity	(ROP)	is	a	disorder	of	the	retinal	vasculature	affecting	

premature	infants.	Estimated	to	lead	to	blindness	in	more	than	50,000	infants	annually,	it	is	

a	leading	cause	of	lifelong	blindness	both	in	the	United	States	and	worldwide	and	

represents	an	enormous	social	and	economic	burden.	While	treatments	for	ROP	are	

advancing,	the	ability	of	care	facilities	to	better	treat	the	complications	of	preterm	birth	has	

led	to	an	increasing	incidence	of	ROP	over	time.		

Surgical	interventions	for	ROP	exist,	but	long-term	outcomes	for	patients	often	do	not	

approach	full	visual	acuity.	Early	treatments	focused	on	cryotherapy,	inducing	scarring	of	

the	retina	in	order	to	halt	disease	progress.	These	surgical	interventions	have	since	been	

unseated	by	laser	ablation	therapies,	which	serve	the	same	function	but	result	in	more	

predictable	outcomes	with	reduced	tissue	damage	to	patients.	Drug	interventions	such	as	

bevacizumab	have	also	proven	effective,	but	concerns	about	nervous	system	exposure	to	

anti-angiogenic	compounds	remains	a	concern.	Due	to	these	shortcomings,	new	treatments	

and	therapies	are	high	in	demand.		

ROP	has	long	been	hypothesized	to	have	a	genetic	basis	of	disease.	Identification	of	

such	a	causal	link	would	be	useful	for	scheduling	and	prioritization	of	high-risk	patients.	

Despite	numerous	single-gene	studies,	a	strong	genetic	predictor	of	disease	has	to	date	not	

been	found.	While	studies	focusing	on	single	genes	or	small	subsets	of	genes	have	been	
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successful	at	identifying	genetic	variants	with	significant	effect,	these	studies	have	also	

been	troubled	by	challenges	with	replicability	and	interpretation.	

An	additional	challenge	in	genetic	studies	are	cases	where	the	definition	of	a	disease	

phenotype	is	not	easily	specified.	While	certain	disease	phenotypes	such	as	Huntington’s	

disease,	Down	syndrome,	and	cystic	fibrosis	carry	definitive	phenotypes	with	discrete	

genetic	causes,	many	if	not	the	vast	array	of	complex	disease	phenotypes	like	autism,	

diabetes,	and	cardiovascular	disease	exist	with	definitions	that	contain	several	modes	of	

progression	with	many	potentially	participating	biological	systems.	

ROP	is	a	rare	and	complex	disease	with	several	axes	of	severity	and	differing	

manifestation	between	populations,	and	as	such,	phenotyping	presents	a	significant	

challenge.	Approximation	of	disease	severity	has	been	shown	to	vary	a	great	deal,	even	

when	limited	to	expert	clinicians	specializing	in	ROP	diagnosis.(1)	Due	to	these	concerns,	

larger	studies	of	individuals	are	required,	but	the	rarity	of	the	disease	makes	recruitment	of	

large	study	cohorts	to	facilitate	large-scale	genetic	testing	a	difficult	task.	

Additional	complication	is	introduced	due	to	ROP’s	coincident	occurrence	with	preterm	

birth.	Preterm	birth	is	implicated	in	a	host	of	infant	disease	phenotypes	including	chronic	

lung	disease,	periventricular	leukomalacia,	and	death.	Preterm	birth	has	also	been	

hypothesized	to	have	a	genetic	component	of	disease,	and	this	genetic	component	may	

become	a	surrogate	trait	for	ROP	as	well.	As	such,	methods	separating	such	potential	risks	

would	be	of	particular	use.	

One	method	by	which	the	causes	of	complex	genetic	disease	has	been	investigated	is	

polygenic	risk	scoring	(PRS).	PRS	involves	exhaustive	calculation	of	all	documented	genetic	
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variant	effects	from	genome-wide	association	study	(GWAS)	summary	statistics,	which	are	

then	summed	to	produce	an	aggregated	genetic	scoring	metric.	As	the	cost	of	large-scale	

genomic	studies	has	decreased,	PRS	has	increased	in	adoption,	finding	applications	in	a	

variety	of	traits	ranging	from	cardiovascular	disease,	to	schizophrenia,	to	educational	

attainment.(2–4)	

Despite	the	popularity	of	such	measures,	PRS	has	yet	to	achieve	clinical	utility.	(5)	

Historically,	such	measures	are	only	able	to	capture	a	fraction	of	known	heritable	variability.	

PRS	also	do	not	provide	context	regarding	the	biological	cause	of	disease,	instead	serving	as	

a	broad	summary	measure	calculated	for	each	individual.		While	scores	are	able	to	identify	

individuals	at	heightened	risk	for	negative	outcomes,	often	in	the	extremes	of	the	PRS	

distribution,	the	degree	of	specificity	and	sensitivity	of	such	scores	has	so	far	failed	to	reach	

a	level	that	would	allow	prescription	of	lifestyle	changes	or	medications	which	may	carry	a	

competing	burden	on	patients.	

In	order	to	address	these	concerns	and	provide	an	analysis	of	the	genetic	determinants	

of	ROP,	we	evaluate	a	modification	of	PRS	incorporating	network	topology	measures	from	

protein-protein	interaction	databases	and	currently	available	annotation	resources.	We	

interrogate	the	ability	of	such	additional	contextual	information	to	augment	the	power	of	

PRS	and	to	elucidate	the	factors	that	contribute	to	the	predictive	ability	of	PRS.	 	
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1.2	STATEMENT	OF	AIMS	

Specific	Aim	1.	Develop	network-based	polygenic	risk	model	approaches	with	early	and	late	

incorporation	of	network	context	from	the	Michigan	Health	and	Retirement	Study	(HRS)	

genome-wide	association	data.	Evaluate	these	scores	against	traditional	polygenic	risk	scores	

to	determine	if	there	is	additional	information	provided	by	the	network	approach.		

We	formulate	two	novel	models	of	polygenic	risk	score	construction	using	network	information	

derived	from	protein-protein	interaction	database	resources.	These	models	are	evaluated	with	

respect	to	traditional	PRS.	Their	contributions	to	phenotype	prediction	and	their	ability	to	

elucidate	the	sources	of	heritable	variability	are	evaluated.	We	propose	guidelines	for	the	use	

of	PRS	in	future	studies	and	the	role	that	network	context	can	play	in	constructing	new	scores	

going	forward.	

Specific	Aim	2.	Assess	genetic	factors	contributing	to	preterm	birth	utilizing	both	the	

traditional	and	network	approaches	from	Aim	1	in	the	GENEVA	study	(Genome-Wide	

Association	Studies	of	Prematurity	And	Its	Complications).	Assess	the	impact	of	inclusion	of	

ROP	candidate	genes	in	early	network	approach	as	well	as	contribution	of	ROP	candidates	to	

late	network	PRS	to	determine	the	role	of	related	trait	genes	in	prematurity	disease	network.	

Using	a	dataset	created	for	the	investigation	of	the	causes	of	preterm	birth,	we	evaluate	the	

performance	of	the	described	network	PRS	model	on	datasets	of	limited	size.	We	incorporate	

previous	studies	of	ROP	genetics	to	curate	a	list	of	candidate	genes,	and	using	network-

modified	PRS	incorporating	additional	context,	we	evaluate	a	novel	method	of	quantifying	the	

amount	of	overlap	between	preterm	birth	and	ROP.	
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1.3	ORGANIZATION	OF	THIS	DISSERTATION	

To	provide	background,	in	the	remainder	of	this	section	we	will	consider	a	detailed	

treatment	of	the	phenotypes	of	ROP	(Section	1.4)	and	preterm	birth	(Section	1.5)	with	

special	emphasis	on	existing	research	into	each	condition’s	genetic	basis	for	disease.	

We	will	then	discuss	methods	of	analyzing	genomic	data,	beginning	with	PRS	(Section	

1.6)	and	then	continuing	on	to	a	short	treatment	of	methods	of	Gene-Set	Analysis	(GSA)	

(Section	1.7)	and	protein-protein	interaction	data	(Section	1.8)	which	form	the	basis	of	

network-topology-based	approaches	(Section	1.9).		

Following	these	introductory	reviews,	in	Chapter	2	we	will	proceed	to	describe	the	

support	for	a	genetic	basis	for	ROP	rooted	in	previous	studies	investigating	specific	

biochemical	and	protein	components	theorized	to	contribute	to	the	development	of	

advanced	ROP.	These	investigations	form	the	underpinnings	for	a	candidate-gene	approach	

which	will	be	presented	in	Chapter	3	elucidating	the	degree	to	which	ROP	and	preterm	birth	

exist	simultaneously	as	heritable	predispositions	toward	disease.	

In	Chapter	3	we	address	Aim	1	by	presenting	network-based	methods	of	constructing	

and	evaluating	PRS.	We	first	consider	the	degree	of	general	support	that	the	inclusion	of	

network	context	represents,	and	whether	that	additional	information	that	can	be	exploited	

by	PRS	methods.	We	evaluate	both	an	early	network	context	approach	using	network	

information	to	shape	the	construction	of	PRS,	which	attempts	to	increase	the	predictive	

power	of	PRS	over	previously	proposed	methods,	and	a	late	network	context	approach	

taking	network	context	into	account	after	the	construction	of	PRS,	which	seeks	to	provide	

biological	context	to	existing	formulations	of	PRS.		



14	

We	will	also	address	Aim	2	by	applying	these	methods	to	a	dataset	including	individuals	

enriched	for	preterm	birth.	We	will	attempt	to	discern	the	degree	to	which	ROP	candidate	

genes	identified	in	Chapter	2	function	as	drivers	of	preterm	birth,	and	we	will	introduce	a	

novel	approach	to	assess	the	ability	of	the	developed	network	PRS	methods	to	detect	and	

describe	this	overlap	of	effect.	

Chapter	4	will	serve	as	a	recapitulation	of	findings,	as	well	as	a	discussion	of	new	

directions	and	a	broad	look	at	the	implications	of	the	dissertation	work	presented	herein.	
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1.4	RETINOPATHY	OF	PREMATURITY	

Retinopathy	of	prematurity	(ROP)	is	a	disorder	of	the	retinal	vasculature	affecting	

premature	infants.	Estimated	to	lead	to	blindness	in	more	than	50,000	infants	annually,	it	is	a	

leading	cause	of	lifelong	blindness	both	in	the	United	States	and	worldwide	and	represents	an	

enormous	social	and	economic	burden.(6–10)	While	treatments	for	ROP	are	advancing,	the	

ability	of	care	facilities	to	better	treat	the	complications	of	preterm	birth	has	led	to	an	

increasing	incidence	of	ROP	over	time.(6,11–13)	

	 ROP	has	been	suggested	as	a	model	for	study	not	only	because	of	its	extreme	burden	

posed	to	patients,	but	also	due	to	features	of	the	disease	that	make	it	uniquely	suited	to	

genetic	studies	of	high	impact.	The	course	of	disease	completes	in	under	a	year	in	the	first	year	

of	life,	making	it	more	tractable	to	follow	the	full	course	of	disease	in	a	short	span	of	time.	In	

addition,	the	manifestation	of	ROP	involves	dysfunction	in	angiogenic	systems	that	have	broad	

impact	on	diseases	such	as	tumor	progression	in	cancer,	but	offers	a	cleaner	model	of	

progression	that	can	be	tracked	more	quickly.	

1.4.1	PRESENTATION	OF	ROP	

	 ROP	is	a	complex	phenotype	described	by	several	axes	of	disease.	The	most	

longstanding	measures	of	ROP	are	those	of	disease	progression	(stage)	and	the	physical	extent	

of	the	retinal	area	affected	by	the	disease	(zone	and	clock-face	hours).	Later	revisions	of	the	

standard	for	diagnosis	added	metrics	describing	venous	tortuosity	and	dilation	(Plus/Pre-Plus	

disease)	and	also	added	a	designation	of	a	faster	progressing	subtype	of	disease	referred	to	as	

aggressive	posterior	ROP	(AP-ROP).(14–17)	Threshold	disease	is	defined	as	ROP	with	a	50%	or	
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greater	likelihood	of	progressing	to	retinal	detachment,	and	is	described	by	any	of	the	following	

conditions:	

Zone	I	ROP,	any	stage,	with	plus	disease	

Zone	I	ROP,	stage	3,	no	plus	disease	

Zone	II	ROP,	stage	2	or	3,	with	plus	disease	

	 However,	despite	these	guidelines,	diagnosis	of	ROP	ultimately	relies	on	clinician	

judgment.	The	degree	of	training	and	expertise	necessary	for	the	diagnosis	of	ROP	is	

considerable,	and	only	a	small	subset	of	clinicians	with	substantial	experience	are	able	to	

effectively	identify	high-risk	cases.	Even	among	clinicians	who	are	experts	in	ROP	diagnosis,	

clinicians	have	been	shown	to	differ	in	diagnosis	of	individual	features	of	ROP,	as	well	as	overall	

disease	severity.(1,16)	While	the	ranking	of	disease	severity	cases	by	expert	clinicians	appears	

robust,	the	definition	of	a	case	that	requires	treatment	may	be	substantially	different.	These	

differences	have	led	to	demand	for	quantitative	measures	of	disease	risk	to	supplement	

clinician	diagnoses	and	serve	as	a	quantitative	baseline	around	which	training	can	be	

structured.	

1.4.2	GENETIC	CONTRIBUTIONS	TO	DISEASE	

	 Initially	described	as	retrolental	fibroplasia,	early	investigations	into	ROP	were	focused	

on	the	role	played	by	oxygen	exposure	in	premature	infants	as	a	contributor	to	development	of	

disease.(18)	These	studies	were	successful	in	preventing	progression	in	many	infants	by	

attenuating	and	monitoring	oxygen	levels	shortly	after	birth.(19)	But	despite	these	advances,	a	

subset	of	patients	exists	in	which	ROP	develops	despite	these	measures.(20)	
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Epidemiological	studies	into	ROP	progression	suggest	that	genetic	differences	in	

predisposition	to	ROP	progression	exist	between	patients.(21–23)	In	a	study	of	409	premature	

infants	under	1,251g	of	weight,	the	incidence	in	white	infants	was	found	to	be	roughly	twice	

that	of	black	infants.(23)	Genetic	heritability	estimated	from	monozygotic	and	dizygotic	twin	

studies	was	0.70	and	0.73	respectively.(24,25)	

Model	organism	studies	have	also	provided	supporting	evidence	that	ROP	progression	

involves	a	genetic	component.	Differences	have	been	described	between	strains	of	rats	in	both	

the	avascular	area	of	disease	and	expression	of	RNA	related	to	angiogenic	factors.(26–28)	

Individual	inquiries	have	been	made	into	many	disparate	genetic	systems,	primarily	focused	

on	a	small	subset	of	genes	related	to	angiogenic	function.	Special	attention	has	been	made	to	

describe	the	action	of	vascular	endothelial	growth	factor	(VEGF)	and	associated	signaling	

proteins	on	progression.(29–37)	Other	studies	have	focused	on	the	Wnt	signaling	pathway,	

which	is	known	to	be	involved	in	Familial	Exudative	Vitreoretinopathy	(FEVR),	a	disease	with	

similar	symptoms	to	ROP.(38–61)	Insulin-like	growth	factor	1	(IGF-1)	has	also	been	proposed	as	

a	contributing	factor	to	ROP	progression.(60,62–71)	

1.5	SPONTANEOUS	PRETERM	BIRTH	

Worldwide,	preterm	birth	has	risen	from	the	second	largest	direct	cause	of	death	in	

children	under	five	years	of	age	after	pneumonia	in	2012,	and	is	now	the	leading	cause	of	death	

in	children	under	five	worldwide.(72,73)	An	estimated	14.9	million	infants	are	born	under	28	

weeks	of	gestational	age	each	year,(74)	though	evidence	indicates	that	these	rates	have	a	

slightly	declining	trend	as	a	percentage	of	all	births	due	to	increased	capability	for	intervention	
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worldwide.(75)	However,	as	the	raw	number	of	births	worldwide	rises	each	year,	it	is	likely	that	

the	number	of	preterm	births	will	also	increase.	

1.5.1	RISK	MEASURES	OF	PRETERM	BIRTH	

	 Many	of	the	current	predictive	measures	for	PTB	focus	on	physical	maternal	traits	

known	to	be	associated	with	preterm	birth.	Cervicovaginal	fFN,	fetal	breathing	movements,	and	

transvaginal	sonographic	cervical	length	measurements	are	all	physical	attributes	shown	to	be	

associated	to	varying	degrees	with	preterm	labor.(76–79)	Higher	BMI	also	seems	to	provide	a	

protective	effect.(80)		

	 In	addition	to	these	morphological	attributes,	several	other	conditions	are	related	to	

spontaneous	preterm	birth	that	may	indicate	a	degree	of	genetic	involvement	with	substantial	

error	contributed	by	environmental	factors.	A	woman	with	a	sister	who	has	given	preterm	birth	

is	at	80%	higher	risk	of	delivering	preterm	herself.(81)	Mothers	who	experience	one	early	

spontaneous	preterm	birth	tend	to	repeat	in	later	pregnancies.(82)	A	woman	who	has	had	a	

preterm	birth	is	also	more	likely	to	have	a	grandmother	who	was	born	preterm	than	a	woman	

who	has	not	given	birth	preterm.(83)	

	 Differences	between	racial	backgrounds	and	preterm	birth	rates	also	exist.	African-

American	and	Afro-Caribbean	individuals	report	a	preterm	birth	rate	of	16-18%	compared	to	5-

9%	for	Caucasian	mothers.(84)	African-American	mothers	are	also	more	than	three	times	more	

likely	to	have	a	very	early	preterm	birth	than	Caucasian	mothers.(85)	

	 Despite	these	observations,	there	are	significant	confounding	effects	from	environment	

in	each	case,	and	it	is	difficult	to	discern	whether	environmental	or	genetic	causes	
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predominate.	More	targeted	studies	performed	with	the	intent	of	separating	these	effects	by	

focusing	on	wholly	genetic	determinants	have	met	with	mixed	results.(86)	

1.5.2	GENETIC	RISK	OF	PRETERM	BIRTH	

Cohort	studies	of	the	genetic	contribution	to	gestational	age	have	estimated	the	narrow	

sense	heritability	of	preterm	birth	at	13.3%	and	the	broad-sense	heritability	at	24.5%.(87)	More	

recent	estimates	are	that	as	much	as	40%	of	preterm	birth	outcomes	are	due	to	maternal	

genetic	factors.(88)	

	 Several	studies	have	identified	biomarkers	of	varying	strength	that	indicate	increased	

risk	of	preterm	birth.	Inflammatory	agents	in	particular	appear	to	have	a	relationship	to	PTB	

incidence.	Serum	metalloproteinase-9	levels	display	a	rise	in	the	hours	before	labor,(89)	and	

levels	of	fetal	fibronectin	at	24	weeks	gestation	is	also	associated	with	increased	risk	of	preterm	

labor.(90)	

	 Candidate	gene	investigations	have	focused	on	inflammatory	factors	with	putative	

function	in	PTB.	A	specific	variant	of	TNF-alpha	was	found	to	interact	with	bacterial	vaginosis	to	

produce	an	elevated	risk	of	spontaneous	preterm	birth.(91)	IL6	was	also	investigated	as	a	

possible	contributor	and	was	found	to	impart	a	greater	risk	of	PTB	in	black	women.(92)	

Maternal	smoking	has	also	been	implicated	to	interact	with	specific	metabolic	gene	

polymorphisms.(93)	

	 Several	genome-wide	association	studies	have	been	conducted	with	the	aim	of	

identifying	single	nucleotide	polymorphism	(SNP)	events	associated	with	preterm	birth	

outcomes.	While	these	studies	were	able	to	detect	weak	associations	between	SNPs	and	

preterm	birth,	they	have	generally	been	unable	to	detect	single	variants	of	strong	effect,	
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though	this	is	likely	in	part	due	to	small	sample	size	and	the	assumptions	associated	with	the	

proposed	model	of	disease.(94–98)	

	 The	most	successful	of	these	GWAS	studies	used	a	group	of	979	cases	and	985	controls	

and	was	able	to	identify	a	handful	of	SNPs	with	significance	levels	below	1.4E-10,	approaching	

genome-wide	significance.(97)	However	the	results	of	the	replication	cohort	were	unclear,	and	

no	gene	achieved	an	OR	of	greater	than	1.4,	indicating	that	it	is	unlikely	there	are	genes	of	large	

effect	predisposing	mothers	to	preterm	birth.	

	 Additional	studies	seeking	to	extend	genome-wide	association	studies	and	incorporate	

additional	data	modalities	using	network	and	pathway	models	have	met	with	some	success.	A	

pathway	analysis	of	data	acquired	from	a	literature	review	of	candidate	gene	studies	was	able	

to	identify	evidence	of	an	autoimmune/hormonal	regulation	component	contributing	to	

preterm	birth	risk.(99)	Combination	of	protein-protein	interaction	network	data	with	tissue	

specific	gene	expression	data	has	been	used	to	identify	candidate	genes	that	may	have	

functional	importance.(100)	

	 Studies	investigating	an	epigenetic	component	of	disease	have	also	attempted	to	link	

environmental	and	genetic	disease	risk.	Studies	of	cord	blood	in	preterm	and	full	term	infants	

show	different	DNA	methylation	profiles.(101,102)	Preliminary	studies	have	also	shown	

evidence	that	microRNA	expression	is	associated	with	preterm	birth.(103,104)	

	 Taken	together,	these	studies	provide	evidence	that	PTB	is	potentially	based	in	genetic	

mechanisms	of	disease,	though	no	single	genetic	factor	has	emerged	as	a	strong	candidate	for	

involvement	in	the	majority	of	PTB	cases.	
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1.5.3	OUTLOOK	FOR	GENETIC	STUDY	

	 Significant	challenges	exist	when	evaluating	genetic	contributions	to	preterm	birth	risk.	

There	are	large	effects	from	confounding	due	to	possible	contribution	from	maternal	and	

neonate	genetic	systems.	This	is	further	complicated	by	extensive	documented	environmental	

effects,	and	the	fact	that	many	of	these	environmental	factors	correlate	strongly	with	

socioeconomic	background	and	educational	background.(105,106)	

	 Despite	these	challenges,	there	are	indications	that	detection	of	genetic	effects	should	

be	tractable	with	current	data	sets.	While	no	single	strong	genetic	determinant	of	preterm	birth	

risk	has	been	found	to	date,	it	seems	likely	that	a	sizeable	genetic	component	is	determined	by	

genetic	and	epigenetic	factors.	The	aforementioned	early	successes	of	integrating	existing	

GWAS	and	candidate	gene	data	using	network	and	pathway	approaches	is	also	encouraging,	

showing	that	it	is	possible	to	find	additional	context	using	such	methods.	As	price	for	genetic	

assays	decreases,	increased	investigation	into	genetic	and	epigenetic	factors	over	time	is	also	

likely	to	create	new	datasets	that	can	provide	additional	context,	making	methods	of	

integrating	different	modalities	important.	The	study	of	preterm	birth	in	particular	is	also	likely	

to	benefit	from	models	that	are	able	to	quantify	coincident	genetic	effects,	as	many	other	

infant	disorders	are	strongly	correlated	with	gestational	age.	

1.6	POLYGENIC	RISK	SCORING		

Despite	the	widespread	use	of	GWAS	techniques,	it	has	thus	far	proved	difficult	to	find	

common	causative	genetic	variants	associated	with	large	portions	of	genetic	risk,	especially	in	

complex	traits.	This	problem,	known	as	the	missing	heritability	problem,	poses	a	major	
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challenge	to	large-scale	genetic	studies	that	may	assay	thousands	or	millions	of	individual	

single-nucleotide	polymorphisms.(107)	This	problem	has	forced	development	of	new	

techniques	meant	to	interrogate	larger	subsets	of	variants	in	combination	in	order	to	capture	a	

larger	percentage	of	the	genetic	variance	associated	with	a	given	phenotype	in	hopes	of	

providing	a	more	comprehensive	analysis	of	complex	traits.	

Polygenic	risk	scores	(PRS)	are	one	proposed	method	of	addressing	the	missing	heritability	

problem.	Originally	developed	for	studies	of	complex	traits	like	schizophrenia	and	bipolar	

disorder,	the	canonical	PRS	estimates	the	odds	ratios	associated	with	each	SNP	in	a	GWAS	study	

using	a	logistic	or	linear	regression	model.	A	significance	threshold	is	value	is	set,	below	which	

all	SNPs	with	a	more	extreme	significance	are	included.	These	SNPs	are	then	summed	either	on	

their	binary	presence	or	as	a	weighted	quantity	using	the	calculated	odds	ratios.	The	resulting	

score	can	be	evaluated	for	significance	between	case	and	control	groups,	or	used	as	a	variable	

for	regression	in	the	case	of	quantitative	traits.(108)	While	many	PRS	computation	methods	

exist,	the	predominant	method	of	calculating	scores	involves	weighted	sums	due	to	ease	of	

interpretation	and	model	parsimony.(109)	

Investigation	of	PRS	in	schizophrenia	found	that	scores	calculated	in	a	male	discovery	group	

were	correlated	with	presence	of	schizophrenia	in	a	target	female	group.	Score	alleles	were	

also	found	to	be	significantly	more	abundant	in	target	cases	than	controls,	a	trend	which	

increased	when	more	score	alleles	were	added.	Specificity	was	also	evaluated	against	a	number	

of	other	diseases	with	varying	heritability	and	similarity	to	schizophrenia,	and	scores	were	

found	to	reflect	these	differences.(108)	
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Further	characterization	of	PRS	performance	demonstrated	that	ideal	power	could	be	

achieved	in	cases	where	95%	of	genes	surveyed	had	no	role	in	phenotype	outcome,	heritability	

was	high,	and	roughly	equally	sized	discovery	and	target	groups	were	used.	It	was	also	

demonstrated	that	while	useful	power	is	achievable	for	association	testing	between	phenotypic	

groups,	it	is	much	more	difficult	to	achieve	the	specificity	and	sensitivity	necessary	to	create	

predictive	measures	without	prohibitively	high	sample	sizes.(110)	

With	the	adoption	of	calculation	tools	into	the	popular	genomic	analysis	package	PLINK,	PRS	

analysis	has	been	applied	to	a	variety	of	complex	trait	analyses	including	schizophrenia,	BMI,	

height,	and	bipolar	disorder.(108,111–113)	The	PRSice	software	package,	dedicated	specifically	

to	PRS	calculation,	has	also	achieved	substantial	adoption	and	can	be	used	to	calculate	scores	

and	additional	contextual	information.(114)	

Despite	their	relative	popularity,	the	small	amount	of	contextual	information	provided	by	

PRS	analysis	limits	their	ability	to	elucidate	the	underlying	mechanisms	of	disease.	In	addition,	

the	global	scope	of	an	analysis	makes	identification	of	related	subgroups	of	genetic	elements	

difficult.	These	limitations	provide	opportunities	for	new	methods	with	the	ability	to	produce	

more	nuanced	results	that	describe	the	mechanisms	of	these	interactions.	

1.7	GENE	SET	ANALYSIS	

	 In	the	evaluation	of	GWAS	data	it	is	often	advantageous	to	consider	genomic	regions	as	

representative	of	larger	entities	with	known	or	hypothesized	function.	Gene	Set	Analysis	(GSA)	

methods	incorporate	context	derived	from	annotation	sources	in	order	to	provide	additional	
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context	to	genomic	data	by	grouping	genomic	regions	as	genes	or	other	biologically	significant	

elements	and	then	jointly	considering	these	elements	as	groups.	

	 In	general,	gene	sets	exist	as	sets	of	prespecified	gene	entities.	GSA	data	sources	can	be	

derived	from	various	existing	resources.	Gene	sets	can	be	taken	from	experimentally	validated	

data	organized	into	biological	pathways	as	in	the	case	of	Pathway	Commons.(115)	Gene	sets	

may	also	be	derived	from	network	curated	sets	as	in	HPRD,	or	from	hierarchically	grouped	

ontological	information	as	in	the	case	of	the	Gene	Ontology	Database.(116,117)	In	other	cases,	

gene	sets	may	represent	specific	disease	biomarkers	known	to	be	associated	with	a	given	

condition.	

	 Each	of	these	approaches	carries	unique	considerations.	One	example	of	a	difficulty	

introduced	by	GSA	is	that	while	many	gene	sets	may	be	catalogued,	they	are	not	necessarily	

mutually	exclusive,	and	the	quantification	of	such	overlap	can	lead	to	difficulties	in	

interpretation	of	results.		

	 Also,	unlike	network	analysis,	gene	sets	must	be	curated	before	association	testing.	Due	

to	this	consideration,	they	are	limited	in	their	ability	to	detect	undocumented	novel	

interactions	that	may	be	of	interest	to	investigators.	

	 GSA	methods	for	GWAS	analysis	can	be	grouped	into	two-step	and	one-step	methods.	

In	two-step	methods,	gene-level	statistics	are	first	calculated	and	then	those	gene-level	

statistics	are	aggregated	at	the	level	of	all	genes.(118)	In	the	one-step	case,	all	SNPs	in	a	gene	

set	are	used	to	calculate	a	summary	statistic	without	consideration	of	individual	gene-level	

effects.	
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	 In	one	sense,	PRS	can	be	considered	a	one-step	GSA	method,	incorporating	all	SNPs	in	a	

single	gene-set	that	encompasses	the	full	genome	without	regard	for	gene-level	groupings.	In	

the	methods	provided	in	this	dissertation,	we	make	use	of	two-step	methods	in	the	grouping	of	

SNPs,	but	also	introduce	pure	network	context	and	pruning	methods	that	go	beyond	the	

traditional	application	of	GSA.		

The	insulated	heat	diffusion	treatment	of	late	context	make	use	of	a	two-step	approach	

using	minimum	p-values,	but	this	method	should	be	compatible	with	most	two-step	

approaches	that	provide	gene-level	summary	statistics.	

In	addition,	though	the	PRS	methods	presented	in	this	dissertation	make	use	of	GSA	

techniques,	we	present	an	application	of	these	techniques	specific	to	PRS	construction	with	

significant	consideration	for	the	needs	of	that	particular	use	case.	

1.8	PROTEIN-PROTEIN	INTERACTION	DATABASES	

Protein-Protein	Interaction	(PPI)	data	attempts	to	capture	the	relationship	between	

proteins	interacting	in	a	biological	system.	These	interactions	can	represent	a	wide	array	of	

phenomena,	including	coupling,	degradation,	or	post-translational	modification,	with	evidence	

derived	from	a	wide	variety	of	sources	including	immunoprecipitation	assays,	western-blot	

analysis,	and	genetic	experimental	evidence.	

A	variety	of	database	resources	has	developed	over	time	attempting	to	catalogue	and	

consolidate	the	large	amount	of	disparate	PPI	evidence.	These	resources	run	the	gamut	from	

strict	experimental	evidence	to	predicted	interactions	based	on	algorithmic	inference,	while	
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applying	a	variety	of	unique	methods	to	prioritize	and	grade	the	degree	of	confidence	placed	in	

these	interactions.	

Databases	may	also	be	narrowly	focused	on	one	organism,	as	in	the	case	of	the	Human	

Protein	Reference	Database,(119)	which	contains	experimentally	derived	human-specific	

interaction	data,	or	they	may	be	extremely	broad	as	in	the	case	of	GeneMANIA,	which	contains	

algorithmically	predicted	relationships	across	several	model	organisms	in	addition	to	

humans.(120)	

In	this	study	we	focus	on	the	Search	Tool	for	Retrieval	of	Interacting	Genes/Proteins	

(STRING).(121)	The	STRING	database	provides	both	experimentally	validated	and	

algorithmically	predicted	protein	interactions	with	a	focus	on	providing	a	confidence	score	

representative	of	the	strength	of	evidence	supporting	that	interaction.	

Recent	studies	into	the	distribution	of	association	signals	from	genetic	variants	have	

indicated	that	signal	is	scattered	across	the	genome,	with	a	large	number	of	SNPs	possessing	a	

miniscule	association	potentially	as	the	result	of	far-acting	trans	effects	which	are	difficult	to	

detect	using	traditional	GWAS	methods.(122,123)	With	this	in	mind,	selection	of	a	database	

resource	with	maximal	coverage	is	a	strong	concern.	STRING	manages	to	provide	that	level	of	

coverage	while	also	providing	a	parameter	for	exclusion	of	spurious	interactions,	making	it	a	

well	suited	resource	for	investigations	of	polygenic	risk.	

1.9	NETWORK-BASED	MODELING	

While	polygenic	risk	scores	provide	a	means	of	testing	for	the	presence	of	a	genetic	effect,	

they	provide	little	context	for	the	underlying	mechanism	of	disease.	Network	models	provide	
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means	of	representing	high-dimensional	or	complex	data	and	allow	for	a	variety	of	additional	

measures	to	be	computed	describing	higher-order	interactions.	

	 Network-based	approaches	have	been	used	as	a	flexible	system	for	modeling	a	variety	

of	biological	processes	from	experimental	data.	Cell	function	has	been	modeled	from	protein-

protein	interaction,	coexpression	and	transcriptome	data.(124–126)	Metabolic	changes	

resulting	from	mutation	have	been	modeled	from	differences	in	genetics	between	tumor	

subtypes.(127)	Complex	behavioral	differences	in	animal	strains	have	been	mapped	to	

networks	of	genetic	data.(128)	Networks	serve	as	a	flexible	contextual	tool	for	the	analysis	of	

naturaal	systems.	

Weighted	networks	model	nodes	as	features	and	edges	as	weights	denoting	the	

strength	of	various	interactions	between	those	features,	with	a	subset	of	highly	connected	

nodes	denoted	as	hubs	and	description	of	membership	in	various	highly	connected	areas	of	the	

network	known	as	modules.	This	convention	has	proven	to	have		a	great	deal	of	flexibility	in	

general	modeling,	and	has	proven	applicability	to	various	biological	systems	including	

interactions	between	genetic	variants,	cellular	components,	and	expressed	proteins.(129–131)	

	 Many	biological	systems	have	been	observed	to	adhere	to	a	scale-free	topology	where	

the	number	of	out	edges	from	one	node	to	others	decreases	exponentially	at	each	degree.(132)	

This	conceptualization	is	useful	as	it	indicates	a	relatively	small	subset	of	network	hubs	exist	

with	many	connections	to	other	nodes.	Analysis	of	which	nodes	connect	with	one	another,	and	

their	relative	overlap	with	various	hubs,	allows	for	added	context	to	be	inferred	about	the	role	

of	these	nodes	assuming	that	membership	in	a	module	indicates	a	similar	functional	role.		
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A	number	of	statistics	have	been	developed	in	order	to	describe	differences	between	

networks.(131)	Modules	in	genetic	networks	where	nodes	may	represent	individual	alleles	or	

genomic	regions	can	be	investigated	for	enrichment	of	many	different	functional	relationships,	

including	genes	with	similar	ontology	or	pathway	membership.	These	summary	measures	can	

be	used	to	infer	cellular	or	functional	groups	that	may	be	disrupted	by	a	given	condition.	

Overall	network	structure	may	also	be	compared	between	different	samples.	One	

measure	of	differences	in	network	structure	is	to	capture	topological	overlap	of	members	of	

each	module	between	groups.	More	advanced	network	operations	may	also	be	employed	in	

order	to	find	eigenvectors	indicating	centrality	or	importance	of	specific	nodes	between	

samples.	

The	treatment	of	networks	considered	in	this	dissertation	is	primarily	interested	in	

methods	of	community	detection	applied	to	large	unweighted	graph	constructs.	We	make	

particular	use	of	two	methods	of	dividing	the	protein-protein	interaction	graph	into	smaller	

units	in	the	late	network	context	model	of	analysis.	

The	first	of	these	methods	is	the	Louvain	algorithm	described	by	Blondel	et.	al.(133)	This	

method	operates	by	first	assigning	every	node	to	its	own	community,	then	iteratively	

considering	the	effect	of	adding	each	node	from	its	community	to	the	community	of	one	of	its	

neighbors.	After	each	assignment,	the	gain	in	modularity	is	assessed	and	the	node	is	placed	into	

the	community	that	maximizes	that	node’s	contribution	to	modularity.	

The	second	specific	method	made	use	of	in	the	late	network	context	approach	is	

HotNet2,	an	insulated	heat	diffusion	approach	for	finding	subnetworks	enriched	for	high	signal	

within	biological	networks.(134)	HotNet2	operates	by	using	a	random	walk	with	random	restart	
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process.	Nodes	are	first	assigned	heat	values.	Each	time	step,	these	heat	values	are	then	

allowed	to	spread	to	neighboring	nodes	via	a	random	walker	in	a	proportion	governed	by	the	

number	of	neighbors.	Nodes	then	retain	a	fraction	of	their	total	heat	β	which	can	vary	

depending	on	graph	topology	or	the	specific	analysis.	A	two-stage	statistical	test	using	a	null	

derived	from	Monte-Carlo	simulation	is	then	performed	to	assess	whether	the	number	of	

detected	subnetworks	is	greater	than	that	expected	by	chance.	
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CHAPTER	2:	THE	GENETICS	OF	RETINOPATHY	OF	
PREMATURITY	

ABSTRACT	

TOPIC:	Retinopathy	of	prematurity	(ROP)	is	a	proliferative	retinal	vascular	disease	in	premature	

infants,	and	is	a	major	cause	of	childhood	blindness	worldwide.	In	addition	to	known	clinical	

risk	factors	such	as	low	birth	weight	and	gestational	age,	there	is	a	growing	body	of	evidence	

supporting	a	genetic	basis	for	ROP.	

		

CLINICAL	RELEVANCE:	While	comorbidities	and	environmental	factors	have	been	identified	as	

contributing	to	ROP	outcomes	in	premature	infants,	most	notably	gestational	age	and	oxygen,	

respectively,	a	subset	of	infants	progresses	to	severe	disease	despite	an	absence	of	these	

factors.	The	contribution	of	genetic	factors	may	explain	these	differences	and	allow	better	early	

detection	and	treatment	of	premature	infants	at	risk	of	severe	ROP.	

		

METHODS:	To	comprehensively	review	genetic	factors	that	potentially	contribute	to	the	

development	and	severity	of	ROP,	we	conducted	a	literature	search	focusing	on	the	genetic	

basis	for	ROP.	Terms	related	to	other	heritable	retinal	vascular	diseases	like	“familial	exudative	

vitreoretinopathy”,	as	well	as	to	genes	implicated	in	animal	models	of	ROP,	were	also	used	to	

capture	research	in	diseases	with	similar	pathogenesis	to	ROP	in	humans	with	known	genetic	

components.	
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RESULTS:	Contributions	across	several	genetic	domains	are	described	including	vascular	

endothelial	growth	factor,	the	Wnt	signaling	pathway,	insulin-like	growth	factor	1,	

inflammatory	mediators,	and	brain-derived	neurotrophic	factor.	

		

CONCLUSIONS:	Most	candidate	gene	studies	of	ROP	have	limitations	such	as	inability	to	

replicate	results,	conflicting	results	from	various	studies,	small	sample	size,	and	differences	in	

clinical	characterization.	Additional	difficulty	arises	in	separating	the	contribution	of	genetic	

factors	like	Wnt	signaling	to	ROP	and	prematurity.	Although	studies	have	implicated	

involvement	of	multiple	signaling	pathways	in	ROP,	the	genetics	of	ROP	have	not	been	clearly	

elucidated.	Next-generation	sequencing	and	genome-wide	association	studies	have	potential	to	

expand	future	understanding	of	underlying	genetic	risk	factors	and	pathophysiology	of	ROP.	
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2.1	INTRODUCTION	

Retinopathy	of	prematurity	(ROP)	is	a	retinal	vascular	disorder	affecting	premature	low	

birth	 weight	 infants,	 and	 is	 a	 major	 cause	 of	 childhood	 blindness	 in	 the	 United	 States	 and	

internationally.	Beyond	the	clinical	impact,	infancy-acquired	visual	loss	from	ROP	represents	an	

enormous	 social	 and	 economic	 burden.(7–10)	 Furthermore,	 as	 the	 incidence	 of	 premature	

births	 worldwide	 increases	 and	 as	 medical	 technology	 becomes	 better	 able	 to	 treat	 the	

complications	 of	 premature	 birth,	 the	 number	 of	 infants	 at	 risk	 for	 ROP	 is	 increasing	

rapidly.(6,11–13)	

Oxygen	 plays	 a	 central	 role	 in	 ROP.(135–139)	 Oxygen	 environment	 and	 a	 key	

transcription	 factor	 that	oxygen	 regulates	 (e.g.	Hypoxia	 inducible	 factor	 [HIF])	 are	 thought	 to	

modulate	ROP.	In	terms	of	ROP	pathogenesis,	a	two-phase	hypothesis	has	been	proposed	and	

has	become	widely	accepted.(140,141)	In	phase	1,	there	is	delayed	physiologic	retinal	vascular	

development	and	vasoattenuation,	which	is	aggravated	by	hyperoxia	and	loss	of	nutrients	and	

growth	 factors.	 In	 phase	 2,	 vasoproliferation	 occurs	 at	 the	 junction	 of	 vascularized	 and	

avascular	retina.	Mouse	oxygen-induced	retinopathy	(OIR)	model	(exposure	to	75%	oxygen	for	

5	 days	 followed	by	 room	air),	 a	widely	 used	 animal	model	 of	 ROP,	 best	 represents	 the	 two-

phase	 hypothesis.(142,143)	 During	 the	 vasoproliferative	 phase,	 the	 avascular	 retina	 releases	

pro-angiogenic	 growth	 factors	 such	 as	 vascular	 endothelial	 growth	 factor	 (VEGF),	 which	 are	

induced	 by	 hypoxia	 and	 may	 cause	 aberrant	 vessel	 growth	 and	 neovascularization.	 Oxygen	

fluctuations	 with	 intermittent	 hypoxia	 is	 also	 implicated	 in	 development	 of	 ROP	 in	 clinical	

studies(144–146)	and	OIR	animal	model	studies	especially	in	rats	(e.g.	cycling	between	50	and	

10%	oxygen).(147,148)	Growing	neovascular	vessels	lead	to	fibrovascular	membranes	that	may	
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pull	on	the	retina,	causing	tractional	retinal	detachment	and	eventual	blindness.	The	phenotype	

of	ROP	 is	 classified	based	on	 location,	extent,	 and	 severity	of	 these	pathologic	 changes.(149)	

Some	 infants	 show	a	 rapidly	progressing,	 severe	 form	of	ROP,	 known	as	aggressive	posterior	

ROP	(AP-ROP).(15,149–152)	

Early	investigations	into	ROP	risk	factors	focused	primarily	on	prematurity	itself,	as	well	

as	 environmental	 factors	 including	 oxygen	 exposure	 after	 birth.(136,137)	 Various	 studies	

focusing	 on	 oxygen	 exposure	 have	 proven	 its	 importance	 as	 a	 primary	 predictor	 of	 ROP	

outcomes.(135–137)	However,	some	high-risk	infants	with	extremely	low	birth	weight	(BW)	and	

gestational	 age	 (GA)	 do	 not	 develop	 ROP,	whereas	 some	 low-risk	 infants	 do	 develop	 severe	

ROP.	 In	these	 infants	at	phenotypic	extremes,	a	study	showed	that	known	clinical	risk	 factors	

were	not	significantly	associated	with	development	of	ROP.(20)	In	addition,	it	is	not	understood	

why	 certain	 infants	 are	 predisposed	 to	 AP-ROP	 with	 very	 high	 likelihood	 of	 blindness.	 This	

heterogeneity	 of	 ROP	 risk	 suggests	 that	 other	 factors,	 such	 as	 genetics	 may	 be	 involved	 in	

creating	a	predisposition	 to	ROP.	Before	 specific	 genetic	 variations	were	 investigated	 in	ROP,	

epidemiologic	 studies	 suggested	 racial	 and	 ethnic	 differences	 in	 ROP	 incidence.(21–23)	 The	

Cryotherapy	for	ROP	(CRYO-ROP)	study	of	4,099	premature	infants	found	7.4%	of	white	infants	

reached	 threshold	 disease,	 while	 only	 3.2%	 of	 black	 infants	 achieved	 a	 similar	 level	 of	

disease.(23)	 Also,	 twin	 and	 sibling	 studies	 have	 supported	 the	 involvement	 of	 a	 genetic	

component	 of	 disease.	 Two	 studies	 of	 monozygotic	 and	 dizygotic	 twins	 found	 that	 the	

heritability	 of	 ROP	was	 0.70	 and	 0.73,	 respectively.(24,25)	 Evidence	 of	 genetic	 effects	 is	 also	

supported	by	data	from	the	oxygen-induced	retinopathy	(OIR)	phenotype	in	rodent	models,	in	

which	studies	of	different	 rat	 strains	have	 found	differences	 in	 the	retinal	avascular	area	and	
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VEGF	expression	between	strains.(26–28)	Investigations	into	this	genetic	component	in	humans	

and	animal	models	have	implicated	the	involvement	of	multiple	genes,	but	have	not	discovered	

a	genetic	 component	of	 large	effect.	 It	 is	 likely	 that	 knowledge	of	 such	a	genetic	 component	

could	be	used	to	identify	possible	targets	to	improve	outcomes	of	screening	and	treatment.	

Many	 signaling	 molecules	 and	 related	 pathways	 have	 been	 suspected	 in	 the	

pathogenesis	 of	 ROP	 due	 to	 known	 biochemical	 and	 clinical	 associations:	 VEGF,	 insulin-like	

growth	factor-1	(IGF-1),	erythropoietin	(EPO),	and	inflammatory	mediators.	In	addition	to	ROP,	

the	 growth	 of	 abnormal,	 leaky	 blood	 vessels	 is	 a	 common	 pathologic	 component	 of	 other	

blinding	 neovascular	 eye	 diseases,	 such	 as	 diabetic	 retinopathy	 (DR)	 and	 neovascular	 age-

related	 macular	 degeneration	 (AMD),	 both	 of	 which	 have	 strong	 evidence	 of	 a	 genetic	

predisposition	 to	 disease.(153–155)	 Moreover,	 because	 ROP	 progresses	 more	 rapidly	 and	

presents	with	relatively	homogeneous	clinical	characteristics,	 the	correlation	of	genotype	and	

phenotype	is	easier	than	with	a	chronic	disease	such	as	DR	or	AMD.(141)	Thus,	the	study	of	ROP	

genetics	may	give	us	important	insights	into	the	pathophysiology	of	other	more	prevalent	adult	

and	pediatric	neovascular	retinal	diseases.	

This	review	summarizes	current	research	into	genetic	factors	contributing	to	ROP	risk	in	

both	 human	 and	 animal	 models	 and	 recommends	 future	 directions	 for	 research	 into	 the	

underlying	genetics	of	pathways	that	contribute	to	disease.	
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2.2	METHODS	

Pubmed	was	queried	from	January	1980	to	June	2017.		The	following	search	terms	were	

used:	 retinopathy	 of	 prematurity	 AND	 genetics,	 retinopathy	 of	 prematurity	 AND	 gene,	

retinopathy	 of	 prematurity	 AND	 single	 nucleotide	 polymorphism	 (SNP),	 retinopathy	 of	

prematurity	 AND	 variant,	 and	 retinopathy	 of	 prematurity	 AND	 polymorphism.	 	 Criteria	 for	

inclusion	included	the	relevance,	clinical	importance,	level	of	statistical	evidence	provided,	and	

scientific	importance	of	articles	to	the	subject	of	this	paper.		Articles	cited	in	the	reference	lists	

of	 other	 articles	were	 reviewed	and	 included	when	 considered	appropriate.	 	 All	 articles	with	

English	abstracts	were	reviewed.		

		

2.3	CANDIDATE	GENES	IN	ROP	

2.3.1	VEGF	AND	ASSOCIATED	RECEPTORS	

VEGF	 plays	 a	 crucial	 role	 in	 ROP.	 Increased	 VEGF	 in	 avascular	 retina	 stimulates	

pathological	 retinal	 neovascularization,	 which	 may	 result	 in	 blinding	 complications	 like	

tractional	 retinal	 detachment.	Moreover,	 VEGF	 is	 a	 proven	 therapeutic	 target,	 as	 intravitreal	

anti-VEGF	therapy	has	shown	efficacy	in	promoting	regression	of	severe	ROP.(156)	There	have	

been	many	genetic	studies	on	associations	between	the	VEGF	gene	and	incidence	or	severity	of	

ROP.	

Table	 1	 summarizes	 results	 of	 SNP	 studies	 in	 human	 VEGF	 gene	 (VEGFA).	 rs2010963	

(also	known	as	-634G>C	and	+405	G>C)	is	the	most	extensively	studied	SNP.	In	a	British	study	of	
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188	preterm	 infants	 on	 rs2010963	 in	 2004,	 the	G	 allele	was	 found	 to	have	higher	 frequency	

among	infants	with	ROP.(29)	This	result	was	supported	by	a	2015	study	in	102	preterm	infants	

from	Egyptian	hospitals	showing	that	G	allele	was	significantly	higher	 in	 infants	with	ROP.(30)	

However,	one	study	in	Hungary	reported	the	opposite	results	–	higher	frequency	of	C	allele	in	

severe	ROP	–	and	5	other	studies	found	no	significant	association	between	rs2010963	and	ROP.	

In	 addition,	 rs833061	 (-460C>T)	 and	VEGFA	 +13553C>T	have	 been	 reported	 to	 be	 associated	

with	ROP.	However,	replication	has	not	been	attempted	for	+13553C>T	and	the	association	of	

rs833061	and	ROP	has	not	been	replicated	in	3	other	studies.	VEGFA	haplotypes	have	also	been	

reported	to	be	associated	with	ROP.	A	study	performed	in	an	Italian	population	of	342	infants	

focused	on	the	distribution	of	polymorphisms	in	a	handful	of	genes	implicated	in	ROP	showed	

evidence	that	VEGFA	haplotype	(TCCT)	decreases	risk	of	ROP.(31)	

VEGF	promotes	angiogenesis	and	hyper-permeability	by	binding	to	the	VEGF	receptor	2	

(VEGFR-2)	on	vascular	endothelium,	whereas	VEGFR-1	acts	as	a	decoy	receptor.(157)	However,	

studies	on	VEGFR-1	(FLT1)	and	-2	(KDR)	genes	found	no	associations	with	ROP	(Table	2).	
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Table	1.	Studies	Investigating	the	Association	Between	VEGFA	Genes	and	Retinopathy	of	Prematurity	(ROP)		
Table	lists	investigated	polymorphism	and	presence	of	statistical	significance.	Where	noted	in	the	original	study,	
information	is	provided	in	parentheses	regarding	the	birth	weight	(BW)	and	gestational	age	(GA)	of	patients.	
Brackets	denote	range	of	patient	values	and	±	denotes	one	standard	deviation	of	range	of	each	variable.	

Polymorphism		 Study	
country		

Subjects	 Results	 Reference	

rs2010963	
(-634G>C,	
+405G>C)	
	

United	
Kingdom	

91	treatment-requiring	ROP	(BW	
779g	[440-1185g],	GA	25	wk	[23-32	
wk]),	97	non-treatment-requiring	
preterm	infants	(BW	920	g	[448-
2302g],	GA	26	wk	±	2.9	wk)	

Higher	frequency	G	allele	among	
infants	with	threshold	ROP	

(29)	

Hungary	

115	treatment-requiring	ROP	(BW	
1160g	±	270g,	GA	28.5	wk	±	2.0	wk),	
86	mild	or	no	ROP	(BW	1200g	
±270g,	GA	29.2	wk	±	2.9	wk)	

Higher	frequency	C	allele	among	
treated	infants	 (34)	

Turkey	

42	treatment-requiring	ROP	(BW	
1097.5g	±	264.3g,	GA	28.2	wk	±	2.4	
wk),	50	regressed	ROP	(BW	1253.0g	
±	212.2g,	GA	29.7	wk	±	2.0	wk),	31	
no	ROP	(BW	1345.6g	±	225.9g)	

No	significant	association		 (32)	

United	
States	

61	stage	4/5	ROP	(BW	882g	[600-
1300g],	GA	26	wk	[23-30	wk]),	61	
normal	controls	(BW	2430-3960g,	
GA	34-40	wk)	

No	significant	association		 (158)	

Japan	

127	ROP	(944g	[3778-2168g],	GA	27	
wk	[22-33	wk]),	77	no	ROP	(BW	
1596g	[692-2400g],	GA	32	wk	[22-
33	wk])	

No	significant	association		 (33)	

Egypt	

62	ROP	(BW	1400g	[1000-2110g],	
GA	32	wk	[28-34	wk]),	40	no	ROP	
(BW	1640g	[1009-2800g],	GA	33	wk	
[29-35	wk])	

High	frequency	of	G	allele	in	ROP	 (30)	

Poland	

60	treatment-requiring	ROP	(BW	
900g	±	225g,	GA	26.7	wk	±	2.3	wk),	
20	regressed	ROP	(BW	1029g	
±231g,	GA	27.5	wk	±	1.6	wk),	101	
no	ROP	(BW	1153g	±225g,	GA	29.2	
wk	±	2.05	wk)	

No	significant	association	 (35)	

Iran	

15	treatment-requiring	ROP	(BW	
879g	±	81g,	GA	27	wk	±	13	wk),	30	
regressed	ROP	(BW	884g	±	63g,	GA	
27	wk	±	12	wk),	66	no	ROP	(BW	
980g	±	81g,	GA	27	wk	±	10	wk)	

No	significant	association	 (37)	

rs1547651	 Caucasian	 43	ROP,	299	no	ROP	(all	subjects	GA	
≤	28	weeks)	

No	significant	association		 (31)	

rs3025039	
(+936C>T)	

Caucasian	 43	ROP,	299	no	ROP	(all	subjects	GA	
≤	28	weeks)	

No	significant	association		 (31)	

Iran	

15	treatment-requiring	ROP	(BW	
879g	±	81g,	GA	27	wk	±	13	wk),	30	
regressed	ROP	(BW	884g	±	63g,	GA	
27	wk	±	12	wk),	66	no	ROP	(BW	

No	significant	association	 (37)	
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980g	±	81g,	GA	27	wk	±	10	wk)	
United	
States	

33	stage	4/5	ROP,	49	normal	
controls	 No	significant	association	 (36)	

Egypt	

62	ROP	(BW	1400g	[1000-2110g],	
GA	32	wk	[28-34	wk]),	40	no	ROP	
(BW	1640g	[1009-2800g],	GA	33	wk	
[29-35	wk])	

No	significant	association	 (30)	

rs833058	 Italy	 43	ROP,	299	no	ROP	(all	subjects	GA	
≤	28	weeks)	

No	significant	association		 (31)	

rs833061	
(-460C>T)	

Italy	 43	ROP,	299	no	ROP	(all	subjects	GA	
≤	28	weeks)	 No	significant	association		 (31)	

Hungary	

115	treatment-requiring	ROP	(BW	
1160g	±	270g,	GA	28.5	wk	±	2.0	wk),	
86	mild	or	no	ROP	(BW	1200g	±	
270g,	GA	29.2	wk	±	2.9	wk)	

High	frequency	of	460TT/405CC	
haplotype	in	treatment-requiring	
ROP	

(34)	

Turkey	

42	treatment-requiring	ROP	(BW	
1097.5g	±	270g,	GA	28.2	wk	±	2.4	
wk),	50	regressed	ROP	(BW	1253.0g	
±	212.2g,	GA	29.7	wk	±	2.0	wk),	31	
no	ROP	(BW	1345.6g	±	225.9g)	

No	significant	association		 (32)	

United	
States	

61	stage	4/	5	ROP	(BW	882g	[600-
1300g],	GA	26	wk	[23-30	wk]),	61	
normal	controls	(BW	2430-3960g,	
GA	34-40	wk)	

No	significant	association		 (158)	

+13553C>T	 Japanese	

127	ROP	(BW	944g	[378-2168g],	GA	
27	wk	[22-33	wk]),	77	no	ROP	(BW	
1596g	[692-2400g],	GA	32	wk	[22-
33	wk])	

A	significant	association	between	
the	TT	genotype	and	non-severe	
ROP	for	gestational	age		

(33)	

+702C>T	
United	
States	

33	stage	4/5	ROP,	49	normal	
controls	 No	significant	association	 (36)	

+1612G>A	
United	
States	

33	stage	4/5	ROP,	49	normal	
controls	 No	significant	association	 (36)	

-2578C>A	

United	
States	

ROP	(BW	2430-3960g,	GA	34-40	
wk),	no	ROP	(BW	600-1300g,	GA	23-
30	wk)	(number	of	patients	not	
reported)	

No	significant	association	 (159)	

Hungary	

90	treatment-requiring	ROP	(BW	
1160g	±	300g,	GA	28.5	wk	±	2.4	wk),	
110	mild	(stage	1	or	2)	or	no	ROP	
(BW	1200g	±	280g,	GA	28.5	wk	±	2.4	
wk)	

No	significant	association	 (160)	
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Table	2.	Summary	of	candidate	gene	studies	of	retinopathy	of	prematurity	other	than	VEGFA	
	

Gene	 Variant		
Study	
country		 Subjects	 Results	 Reference	

ACE	

rs1799752	
Italy	 299	ROP,	43	no	ROP	 No	significant	association	 (31)	

rs4291		

287-bp	
insertion	in	
intron	16	

Kuwait		 74	ROP	(53	regressed,	21	
stage	4/5	ROP),	107	no	ROP	

	The	incidence	of	the	II	
genotype	was	higher	in	ROP	
cases,	while	the	incidence	of	
the	DD	genotype	was	
significantly	higher	in	
advanced	stage	ROP	cases	
compared	to	spontaneously	
regressing	ROP	cases.	(I,	
insertion,	D,	deletion)	

(161)	

AGT	 rs699	 Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

AGTR1	

rs5186	 Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

rs427832	
United	
States	 102	ROP,	228	no	ROP	

Significant	association	with	
ROP	at	p	<	0.01	level	of	
significance	

(162)	

ANGPT2	 -35G>C	

United	
States	 Not	specified	 No	significant	association	 (159)	

Hungary		
90	treatment-requiring	
ROP,	110	no	or	mild	(stage	
1	or	2)	ROP	

No	significant	association	 (160)	

BDNF	

rs7934165	
rs2049046	

United	
States	

126	treatment-requiring	
ROP,	467	stage	1/2	ROP	

Two	intronic	SNPs	found	to	be	
associated	with	difference	
between	mild	and	threshold	
ROP	

(163)	

rs7934165	
United	
States	

140	treatment-requiring	
ROP,	1257	no	or	mild	(stage	
1	or	2)	ROP	

Meta-analysis	of	two	studies	
provided	evidence	of	
association	of	variant	with	
severe	ROP	

(163)	

CETP	 rs289747	
United	
States	 102	ROP,	228	no	ROP	

Significant	association	with	
ROP	at	p	<	0.01	level	 (162)	

CFH	

rs52985	
United	
States	 102	ROP,	228	no	ROP	

Increased	protection	against	
ROP	as	number	of	T	alleles	
increased	(p	=	0.01)	

(162)	

rs800292	
United	
States	 102	ROP,	228	no	ROP	

Increased	protection	against	
ROP	as	number	of	T	alleles	
increased	(p	=	0.01)	

(162)	

EPAS1	 rs1867785	
United	
States	 102	ROP,	228	no	ROP	 Significantly	higher	incidence	

of	A	allele	in	ROP	
(162)	
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GP1BA	 rs2243093	
United	
States	 102	ROP,	228	no	ROP	 Significant	association	with	

ROP	at	p	<	0.01	level	
(162)	

LRP5	

rs143924910	
(c.3656G>A),	
c.4148A>C,	
rs141407040	
(c.4619C>T)	

Japan	 53	advanced	ROP	

Direct	sequencing	of	coding	
regions	of	LRP5	revealed	3	
nonsynonymous	DNA	variants	
in	3	patients.		

(60)	

3-bp	
insertion	in	
exon	1	

Japan	 17	advanced	ROP,	51	no	
ROP	

Single	patient	with	advanced	
ROP	shown	to	have	3	bp	
insertion	in	exon	1	CTG	repeat	
area	not	observed	in	28	
unaffected	patients.	

(47)	

NOS3	

rs2070744		
(-786T>C)	

Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

Hungary	 105	treatment-requiring	
ROP,	127	stage	1	or	2	ROP	 No	significant	association	 (164)	

United	
States	 15	ROP,	131	no	ROP	

significantly	higher	frequency	
of	C	allele	in	ROP	 (165)	

United	
States	

19	stage	4/5	ROP,	34	
normal	

significantly	higher	frequency	
of	C	allele	in	ROP	 (70)	

rs1799983		
(894G>T)	

United	
States	

14	stage	4/5	ROP,	32	
normal	

No	significant	association	 (70)	

United	
States	 15	ROP,	131	no	ROP	 significantly	higher	frequency	

of	T	allele	in	ROP	
(165)	

Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

27-bp	VNTR		
in	intron	4	
(b/a)	

United	
States	

15	stage	4/5,	32	normal	
controls	 No	significant	association	 (70)	

Hungary	 105	treatment-requiring	
ROP,	127	stage	1	or	2	ROP	

The	aa	genotype	presented	an	
independent	risk	factor	for	
ROP	requiring	treatment.		

(164)	

rs61722009	 Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

FLT1	

c.+6724(TG)	
13-23	
dinucleotide	
repeat	

Japan	 127	ROP,	77	no	ROP	 No	significant	association		 (33)	

FZD4	

c.97	C>T;	
c.502	C>T		
(double	
missense	
mutation)	

United	
States	 93	ROP,	98	normal	controls	

Seven	of	93	(7.5%)	patients	
with	ROP	showed	c.97	C>T;	
c.502	C>T	double	missense	
mutation.	

(61)	
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rs80358282	
(c.205C>T),	
rs184709254	
(c.380G>A),	
c.631T>C	

Japan	 53	advanced	ROP	

Direct	sequencing	of	coding	
regions	of	FZD4	revealed	3	
nonsynonymous	DNA	variants	
in	4	patients.		

(60)	

c.766A>G	 Unspecified	 10	sporadic	FEVR	cases	
20	advanced	ROP	cases	

PCR	amplification	of	a	large	
DNA	fragment	revealed	one	
severe	ROP	case	with	
c.766A>G.	Significance	not	
investigated.	

(42)	

	c.1109C>G,	
	c.609G>T	

Canada	 71	severe	ROP,	33	mild	or	
no	ROP	

Direct	sequencing	of	coding	
regions	of	FZD4	revealed	2	
nonsynonymous	DNA	variants	
in	2	patients.	

(43)	

HMOX1	 rs3074372	 Italy	 43	ROP,	299	no	ROP	 No	significant	association	 (31)	

IGF1R	 c.3174G>A	

United	
States	

52	stage	4/5	ROP,	33	
normal	controls	 No	significant	association	 (166)	

Hungary	
108	treatment-requiring	
ROP,	120	stage	1	or	2	ROP,	
164	normal	controls	

No	significant	association	 (69)	

IHH	 rs3099	
United	
States	 102	ROP,	228	no	ROP	

Significant	association	with	
ROP	at	p	<	0.01	level	 (162)	

IL10	 -1082G>A	 Germany	 31	stage	1	or	2	ROP,	13	
stage	3	ROP,	29	no	ROP	 No	significant	association	 (71)	

IL1B	 +3953C>T	 Germany	 31	stage	1	or	2	ROP,	13	
stage	3	ROP,	29	no	ROP	 No	significant	association	 (71)	

KDR	

32G>A	 Turkey	
42	treatment-requiring	
ROP,	50	regressed	ROP,	31	
normal	controls	

No	significant	association	 (32)	

g.+4422(AC)1
1-14	
dinucleotide	
repeat	

Japan	 127	ROP,	77	no	ROP	 No	significant	association		 (33)	

NDP	

Sequencing	
of	all	3	exons	
and	UTRs	

United	
States	

54	severe	ROP,	36	mild	or	
no	ROP,	22	normal	controls,	
31	normal	parents	

Six	of	54	(11%)	infants	with	
severe	ROP	had	
polymorphisms	in	the	NDP.	

(53)	

Direct	
sequencing	
of	coding	
regions	and	
noncoding	
exon	1	

Japan	 53	advanced	ROP	
No	meaningful	sequence	
changes	 (60)	
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237A>G	 Japan	 17	advanced	ROP,	51	no	
ROP	

Single	patient	with	AP-ROP	
found	to	have	heterozygous	
substitution	not	observed	in	
51	unaffected	cases	

(47)	

14	bp	
deletion	in	
exon	1	

Australia	 31	ROP	(Stage	2	or	greater),	
90	no	ROP	

Two	twins	with	stage	3	
regressed	ROP	and	one	
unrelated	patient	with	
regressed	stage	2	ROP	
displayed	14	bp	deletion	in	CT	
repeat	reagion.	Also	observed	
in	a	control	patient.	No	
statistical	analysis.	

(48)	

5	bp	deletion	
in	exon	1	
26C>G	
71	bp	
deletion	in	
exon	1	

UK	 31	ROP	stage	3	or	more,	16	
regressed	ROP,	2	no	ROP	

One	patient	had	5	bp	deletion	
and	C>G	transersion	at	+26,	
one	patient	had	71	bp	deletion	
in	same	exon	1	region.	No	
statistical	analysis.	

(51)	

12	bp	
insertion	in	
exon	1	
14	bp	
deletion	in	
exon	1	

Japan	

100	advanced	ROP	(stage	
4/5),	6	regressed	stage	3	
ROP,	
130	no	ROP	

Two	advanced	ROP	patients	
found	to	have	disruptions	in	
exon	1	of	ND	gene.	No	
statistical	analysis.	

(50)	

597C>A	
110C>G	

Kuwait	 95	ROP,	115	no	ROP	

Significant	association	was	
found	between	ROP	and	
597C>A	polymorphism.	No	
significance	found	between	
110C>G	polymorphism	and	
ROP.	

(52)	

121C>T	
R121W	
L108P	

United	
States	

16	ROP,	50	normal	controls	

One	patient	with	a	
heterozygous	base	
substitution,	one	pair	of	twins	
with	novel	R121W	mutation,	
and	one	pair	of	twins	with	
L108P	missense	mutation	
observed.	No	statistical	
analysis.	

(49)	

TBX5	 rs1895602	
United	
States	 102	ROP,	228	no	ROP	 Significant	association	with	

ROP	at	p	<	0.01	level	
(162)	

TGFB1	 -509C>T	
United	
Kingdom	

91	treatment-requiring	
ROP,	97	stage	1/2	or	no	
ROP		

No	significant	association	 (29)	

TLR4	 rs4986790	
(c.896A>G)	

Germany	 31	stage	1	or	2	ROP,	13	
stage	3	ROP,	29	no	ROP	 No	significant	association	 (71)	

TNF	 -308G>A	

United	
Kingdom	

91	treatment-requiring	ROP	
and	97	stage	1/2	or	no	ROP	 No	significant	association	 (29)	

Germany	 31	stage	1	or	2	ROP,	13	
stage	3	ROP,	29	no	ROP	 No	significant	association	 (71)	
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TSPAN12	

Direct	
sequencing	
of	coding	
regions	of	
TSPAN12	

Japan	 53	advanced	ROP	
No	meaningful	sequence	
changes	 (60)	
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2.3.2	FEVR,	NORRIE	DISEASE	AND	THE	WNT	PATHWAY	

									 Familial	 Exudative	 Vitreoretinopathy	 (FEVR)	 and	 Norrie	 disease	 are	 developmental	

diseases	 of	 the	 retina	 with	 known	 genetic	 causes	 with	 similar	 pathology	 to	 ROP.	 FEVR	 and	

Norrie	 disease	 are	 both	 hereditary	 disorders	 occurring	 in	 full-term	 infants,	 characterized	 by	

failure	of	peripheral	retinal	vascularization	leading	to	retinal	detachment.(40,167)	While	Norrie	

disease	progresses	quickly	in	early	childhood	and	is	accompanied	by	additional	pathologies	like	

deafness	and	irregular	mental	development,	FEVR	may	not	progress	to	retinal	detachment	until	

patients	reach	adulthood	and	is	restricted	to	abnormalities	in	ocular	development.(168)	FEVR	is	

known	to	be	caused	by	mutations	 in	FZD4,	LRP5,	TSPAN12,	NDP,	etc.(41,45,46,55)	and	Norrie	

disease	 is	 caused	 by	 mutations	 in	 NDP	 gene.(167)	 These	 genes	 encode	 proteins	 which	 are	

components	 of	 the	 Wnt/beta-catenin	 signaling	 pathway	 –	 a	 group	 of	 signal	 transduction	

pathways	that	play	roles	in	cell	survival,	proliferation,	and	migration	throughout	the	body.	

The	 canonical	 (beta-catenin	dependent)	Wnt	pathway	has	 known	 roles	 in	 a	 variety	of	

diseases	with	angiogenic	properties	 including	DR	and	AMD.(38,39)	Frizzled-4	and	 low-density-

lipoprotein	receptor	related	protein	5	(LRP-5)	are	receptors	for	Wnt	ligands,	and	tetraspanin-12	

is	an	auxillary	membrane	protein.	Norrin,	a	product	of	NDP	gene,	binds	to	the	Frizzled-4,	LRP-5,	

and	 tetraspanin-12	 receptor	 complex	 and	 activates	 signals	 on	 endothelial	 cells.	Mutations	 of	

these	genes	have	been	investigated	in	ROP	(Table	2).	

Mutations	 in	 the	 FZD4	 gene	 were	 found	 in	 up	 to	 7.5%	 of	 patients	 with	 severe	 ROP	

(Table	 2).(42,43,60,61)	 A	 2015	 study	 of	 421	 patients	 displaying	 various	 vitreoretinopathies	

found	a	significant	association	between	the	FZD4	double	missense	mutation	[P33S(;)P168S]	and	

both	ROP	and	FEVR.(61)	A	 study	of	53	 Japanese	patients	with	advanced	ROP	was	performed	
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using	 direct	 sequencing	 of	 FZD4,	 TSPAN12,	 NDP,	 and	 LRP5.	 Investigators	 identified	 six	

nonsynonymous	DNA	variants	in	the	coding	regions	of	FZD4	and	LRP5,	but	detected	no	changes	

in	NDP	or	TSPAN12,	demonstrating	involvement	of	Wnt	with	ROP.(60)	

Mutations	 in	 the	 NDP	 gene	 have	 also	 been	 found	 in	 ROP	 patients	 with	 variable	

frequencies	(Table	2).(49,50,52)	SNP	studies	in	Kuwaiti	populations	have	supported	evidence	of	

a	 link	 between	 NDP	 and	 ROP,(52)	 while	 other	 studies	 have	 implied	 that	 mutations	 in	 the	

regulatory	 region	 of	 NDP	 are	 also	 a	 contributor	 to	 the	 development	 of	 ROP.(51)	 The	

relationship	 between	 SNPs	 residing	 in	 the	 UTR	 of	NDP	 and	 progression	 of	 ROP	 to	 advanced	

disease	has	also	been	investigated.	The	Kuwaiti	study	by	Haider	found	that	83%	of	patients	with	

severe	disease	possessed	NDP	597C>A	polymorphisms	in	their	UTR,	while	none	of	those	whose	

disease	resolved	spontaneously	possessed	this	polymorphism.(52)	

									 Taken	 together,	 these	 findings	 intriguingly	 suggest	 involvement	 for	 the	Wnt	 pathway	

and	 associated	 genes	 in	 ROP	 development,	 and	 serve	 as	 strong	 candidates	 for	 further	

sequencing	 research.	 It	 should	 be	 noted	 that	 it	 may	 be	 difficult	 or	 nearly	 impossible	 to	

differentiate	ROP	from	FEVR	in	premature	infants	(which	has	recently	been	proposed	as	a	new	

classification,	ROPER	[ROP	vs.	FEVR])	due	to	the	clinical	similarity	of	the	two	conditions.(169)	In	

future	 studies,	 in-depth	 analysis	 of	 clinical	 features,	 retinal	 imaging	 with	 fluorescein	

angiography,	 genetic	 and	 phenotypic	 analysis	 of	 relatives,	 and	 functional	 analysis	 of	 genetic	

variants	may	be	helpful	for	better	understanding	of	genetics	in	ROP	as	well	as	FEVR.	
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2.3.3	IGF-1	

Insulin-like	growth	 factor	1	 (IGF-1),	a	growth	hormone	promoting	somatic	growth	and	

maturation,	 has	 also	 been	 proposed	 as	 a	 contributing	 factor	 to	 ROP	 progression.(62)	 IGF-1-

deficient	 mice	 showed	 a	 decrease	 in	 vascular	 development(51)	 and	 lower	 birth	 weight(170)	

than	those	of	controls.	 In	human	babies,	 low	IGF-1	 levels	were	also	associated	with	 low	birth	

weight,(171)	 and	 persistent	 low	 serum	 IGF-1	 levels	 were	 associated	 with	 severity	 of	

ROP.(62,172)	 Based	 on	 these	 findings,	 IGF-1	 replacement	 therapy	 has	 recently	 been	

investigated.(173)	A	phase	2	trial	of	administering	a	complex	of	recombinant	human	IGF-1	and	

IGFBP-3	 to	prevent	ROP	was	undertaken,	but	 the	study	did	not	meet	 its	primary	endpoint	of	

reducing	severity	of	ROP.(174)	

Investigations	of	specific	polymorphisms	of	IGF-1	gene	have	been	unsuccessful	finding	a	

significant	 association.	A	 study	 linked	 a	 c.3174G>A	polymorphism	 in	 the	 IGF-1	 receptor	 gene	

(IGF1R)	to	low	levels	of	plasma	IGF-1.(68)	A	2006	study	of	392	infants	in	Hungary	was	unable	to	

detect	a	difference	in	the	prevalence	of	the	IGF1R	c.3174G>A	among	severe	ROP,	mild	ROP	and	

full-term	groups	(Table	2).(69)	A	2007	study	in	an	American	population	was	also	unable	to	find	

a	link	between	advanced	ROP	and	IGF1R	c.3174G>A	polymorphism	(Table	2).(166)	

2.3.4	eNOS	

Endothelial	 nitric	 oxide	 synthase	 (eNOS)	 is	 one	 of	 the	 constitutive	 enzymes	 that	

synthesize	 NO,	 which	 is	 known	 to	 play	 a	 regulatory	 role	 in	 retinal	 and	 choroidal	 blood	

flow.(175,176)	In	an	eNOS-deficient	mouse	OIR	model,	neovascularization	and	vaso-obliteration	

were	 both	 reduced.(177)	 Moreover,	 eNOS	 gene	 polymorphisms	 have	 shown	 reduced	 NO	
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levels.(178)	 Thus,	 the	 association	 between	 ROP	 and	 eNOS	 gene	 (NOS3)	 polymorphisms	 have	

been	 investigated.	 A	 literature	 search	 showed	 that	 3	 SNPs	 (rs2070744,	 rs1799983	 and	

rs61722009)	and	one	variable	number	tandem	repeat	(VNTR),	27-bp	VNTR	in	intron	4,	had	been	

observed	 in	 ROP	 patients	 (Table	 2).	 Although	 some	 studies	 reported	 positive	 associations	

between	rs2070744,	rs1799983,	or	the	27-bp	VNTR	and	ROP,	others	found	contradictory	results	

(Table	2).	

2.3.5	INFLAMMATORY	MEDIATORS	

Growing	evidence	suggests	that	perinatal	 inflammation	and	infection	may	increase	the	

risk	 for	ROP	by	direct	proangiogenic	effects	 and/or	modifying	known	 risk	 factors.(71)	 Studies	

have	reported	higher	plasma	levels	of	inflammatory	cytokines	including	IL-6,	Il-8,	and	TNF(179)	

and	higher	vitreous	levels	of	inflammatory	cytokines	including	IL-6,	IL-7,	IL-10,	IL-15,	etc.	in	eyes	

with	advanced	ROP.(180)	

Dammann	et	al	 investigated	4	SNPs	of	 inflammation-associated	genes	(IL1B,	TNF,	 IL10,	

TLR4)	in	preterm	patients,	but	none	showed	significant	association,	although	there	were	trends	

towards	 higher	 stage	 of	 ROP	 with	 the	 presence	 of	 TNF	 and	 IL1B	 SNPs	 (Table	 2).(71)	 TNF	 -

308G>A	polymorphism	also	showed	no	significant	associations	with	ROP	(Table	2).	

A	recent	study	has	also	shown	an	angiogenic	role	for	mast	cells	and	associated	factors	

including	 mast	 cell	 tryptase	 and	 monocyte	 chemotactic	 protein-1,	 making	 them	 a	 potential	

target	for	ROP	research.(181)	
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2.3.6	BRAIN-DERIVED	NEUROTROPHIC	FACTOR	

Brain-derived	neurotrophic	factor	(BDNF),	a	neuronal	trophic	factor	in	brain	and	retina,	

may	promote	survival	of	several	types	of	retinal	neurons.(182–185)	Although	the	exact	role	of	

BDNF	 in	 retinal	 angiogenesis	 is	 unknown,	 reduced	 BDNF	 levels	 have	 been	 demonstrated	 in	

patients	 with	 severe	 ROP,	 suggesting	 a	 possible	 role	 of	 BDNF	 in	 development	 of	 severe	

ROP.(186–188)	In	an	animal	model	study,	the	retinal	level	of	BDNF	was	lower	in	the	OIR	mouse	

model	compared	to	that	in	normal	controls.(188)	

In	 a	 large-scale	 candidate	 gene	 study,	 which	 analyzed	 1614	 Tag	 SNPs	 of	 the	 145	

candidate	genes	in	817	infants	in	the	discovery	cohort	and	543	in	the	US	replication	cohort,	it	

was	 found	 that	 two	 SNPs	 (rs7934165	 and	 rs2049046)	 in	 the	 intronic	 region	 of	 BDNF	 were	

associated	with	severe	ROP.	Although	these	results	were	not	 independently	confirmed	 in	 the	

replication	cohort,	the	association	with	rs7934165	did	increase	in	significance	with	severe	ROP	

in	their	meta-analysis	of	the	combined	data.	 Interestingly,	reduced	serum	BDNF	in	the	severe	

ROP	group	was	also	found	in	the	same	discovery	cohort.(189)	Further	studies	on	the	functional	

effects	 of	 intronic	 variants	 of	 BDNF	 and	 replication	 studies	 in	 different	 populations	 are	

warranted.	

2.3.7	RENIN-ANGIOTENSIN	SYSTEM	

The	 Renin	 Angiotensin	 system	 (RAS)	 has	 been	 linked	 to	 retinal	 vascular	 development	

and	 pathological	 angiogenesis.	 Blockade	 of	 RAS	 with	 inhibitors	 of	 angiotensin-converting	

enzyme	 (ACE)	 and	 angiotensin	 receptor	 blockers	 ameliorated	 OIR,	 suggesting	 that	 inhibiting	

RAS	may	be	beneficial	in	ROP.(190)	A	SNP	study	of	ACE	gene	showed	association	with	DR.(189)	
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However,	results	from	genetic	studies	on	RAS	component	genes	in	ROP	are	inconclusive	(Table	

2).	 A	 study	 in	 Italy	 showed	 no	 associations	 between	 ROP	 and	 SNPs	 of	 ACE	 gene	 (ACE),	

angiotensinogen	gene	(AGT)	and	angiotensinogen	type	1	receptor	gene	(AGTR1).	 In	a	study	of	

181	premature	Kuwaiti	infants	on	287-bp	insertion(I)/deletion(D)	in	intron	16,	the	frequency	of	

II	genotype	was	higher	in	ROP	patients	compared	to	normal	controls,	but	the	frequency	of	DD	

genotype	was	higher	in	advanced	ROP	patients	compared	to	regressed	ROP.(161)	A	candidate	

gene	 study	 of	 228	 infants	with	 ROP	 and	 102	 controls	 found	 a	 SNP	 in	 the	AGTR1	 gene	 to	 be	

associated	 with	 ROP,	 though	 this	 association	 was	 not	 significant	 after	 Bonferroni	

correction.(162)	

2.3.8	ANGIOPOIETINS	

Angiopoietin(Ang)-1	 and	 -2	 are	 growth	 factors	 that	 are	 essential	 for	 retinal	 vascular	

development.	Ang-1	binds	tyrosine	kinase	receptor	Tie2	and	promotes	vascular	maturation	and	

stabilization.(191)	 In	an	OIR	model,	 intravitreal	Ang-1	promoted	normal	vascular	regeneration	

while	 inhibiting	 pathological	 angiogenesis	 and	 vascular	 leakage.(192)	 In	 contrast,	 Ang-2,	 a	

competitive	 antagonist	 of	 Ang-1/Tie-2,	 promotes	 neovascularization	 in	 animal	

models.(193,194)	Vitreous	 levels	of	Ang-1	and	Ang-2	 in	eyes	of	stage	4	ROP	were	higher	than	

those	 of	 control	 eyes.(195)	 However,	 in	 two	 studies	 of	 Ang-2	 gene	 promoter	 polymorphism	

(ANGPT2	-35G>C),	no	association	was	found	with	ROP	(Table	2).	

2.3.9	ERYTHROPOIETIN	

									 Erythropoietin	 (EPO),	a	hormone	known	to	stimulate	red	blood	cell	 formation	 in	bone	

marrow,	and	EPO	receptors	are	expressed	in	retina,	and	their	expression	is	regulated	by	oxygen	
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status.(196,197)	Mouse	models	 of	 ROP	have	 shown	 that	 vascular	 stability	 is	 affected	by	 EPO	

levels,	with	exogenous	restoration	of	EPO	leading	to	a	reduction	in	blood	vessel	dropout	during	

the	first	phase	of	ROP.(195)	Conversely,	elevated	levels	of	EPO	during	the	second	stage	of	ROP	

exacerbated	 vasoproliferation,	 and	 the	 vitreous	 level	 of	 EPO	 is	 elevated	 in	 eyes	with	 stage	4	

ROP.	Increased	erythropoietin	receptor	signaling	has	also	been	shown	to	influence	severe	OIR	

models	of	disease	 through	VEGFR2-mediated	angiogenesis,	making	 it	 an	 important	 target	 for	

clinical	research	in	human	patients.(198,199)	

									 While	a	variant	of	EPO	was	investigated	in	a	candidate-gene	study	by	Mohamed	et.	al.,	

significance	for	this	variant	was	not	reported	in	the	study	results.(162)	

2.3.10	HYPOXIA	INDUCIBLE	FACTOR	

									 HIF-1	 plays	 a	 central	 role	 in	 oxygen	 homeostasis.(200)	 According	 to	 the	 oxygen	

environment,	HIF-1	 regulates	 transcription	of	 genes	 such	as	VEGF,	VEGFR1,	 PDGF,	 SDF-1	 and	

Ang2,	 which	 have	 been	 suggested	 to	 play	 important	 roles	 in	 retinal	 angiogenesis.(193)	 In	 a	

study	of	Hif1α	knockout	mice	in	an	OIR	model	of	disease,	disruption	of	HIF-1	was	shown	to	lead	

to	 decreased	 VEGF	 abundance,	 indicating	 a	 possible	 role	 in	 neovascularization.(201)	

Additionally,	 organ	 system	 pharmacology	 studies	 in	 mouse	 models	 have	 indicated	 that	

stabilization	 of	 HIF-1	 may	 be	 important	 for	 protection	 against	 oxygen	 toxicity	 in	 premature	

infants.(202)	

									 Likewise,	homologous	 recombination	models	 in	mice	 studying	HIF-1a-like	 factor	 (HLG)	

and	HIF2α	 found	decreasing	 expression	of	 these	 genes	 led	 to	decreased	EPO	expression	 and	

resistance	 to	 hyperoxia	 treatments	 meant	 to	 induce	 ROP.(203)	 HIF1α	 was	 also	 shown	 to	
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upregulate	 annexin	 A2	 expression	 in	 OIR	 mice	 during	 hypoxia,	 supporting	 a	 role	 in	 OIR	

models.(204)	

									 HIF2α’s	closest	human	analogue,	known	as	Endothelial	PAS	Domain	Protein	1	(EPAS1),	

serves	as	the	main	regulator	of	EPO	induction	and	has	also	been	shown	to	have	a	connection	to	

ROP.(205)	A	candidate	gene	study	of	153	genes	in	347	infants	under	32	weeks	gestational	age	

found	an	association	between	EPAS1	with	development	of	severe	ROP.(162)	

2.3.11	HEME-OXYGENASE-1	

Heme	 oxygenase-1	 plays	 important	 roles	 in	 inflammatory	 responses,	 oxidative	 stress,	

iron-metabolism,	 and	 vascular	 physiology.	However,	 in	 a	 candidate	 gene	 study,	 rs3074372	 in	

HMOX1	showed	no	significant	association	with	ROP	(Table	2).	
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2.4	OTHER	CANDIDATE	FACTORS	

In	addition	to	 the	above	described	 factors	and	pathways,	a	number	of	other	potential	

targets	 and	mechanisms	 have	 been	 identified	 that	 lack	 genetic	 studies	 in	 patients	with	 ROP.	

The	 ‘a’	 disintegrin	 and	 metalloproteinase	 (ADAM)	 family	 of	 proteases	 are	 involved	 in	 the	

degradation	 of	 extracellular	 matrix	 components	 as	 well	 as	 interactions	 mediated	 by	

integrin.(206)	 Several	 subtypes	 of	 ADAM	 family	 are	 implicated	 in	 the	 pathogenesis	 of	 ROP.	

ADAM17	knockout	mice	showed	less	neovascularization	in	OIR	models	without	affecting	normal	

vascular	 development.(207)	 Moreover,	 ADAM	 8,	 9,	 and	 10	 was	 found	 to	 play	 a	 role	 in	

development	 of	 plus	 disease	 in	OIR	mouse	models.	 	 Adam8-/-	 and	 Adam9-/-	mice	 and	mice	

lacking	ADAM10	in	endothelial	cells	showed	less	severe	tortuosity	and	dilation	mimicking	 less	

plus	 disease	 in	 ROP.(208)	 Further	 evaluations	 in	 humans	 including	 genetic	 analysis	 are	

warranted.	

In	conjunction	with	ADAM17,	studies	have	also	considered	the	family	of	tissue	inhibitor	

of	 metalloproteinases	 (TIMP)	 family	 of	 proteins.	 The	 TIMP-3	 protein	 specifically	 is	 a	 known	

physiological	ADAM17	 inhibitor.(209)	Mouse	model	 investigations	 into	 the	application	of	 this	

protein	 as	 a	 potential	 treatment	 showed	 that	 TIMP-3	 application	 was	 linked	 to	 decreased	

neovascular	tuft	formation.(208)	

In	addition	to	these	studies,	 large	candidate	gene	studies	of	ROP	have	been	successful	

identifying	targets	with	undiscovered	connections	to	ROP.	The	previously	mentioned	study	by	

Mohamed	et	al.	implicated	genes	with	function	in	embryonic	development	(IHH),	transcription	

(TBX5),	 and	protein	 localization	 (GP1BA,	CETP)	 (Table	 2).(162)	 The	 same	 study	 also	 found	 an	
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association	 between	 ROP	 and	 complement	 factor	 H	 (CFH),	 known	 to	 be	 associated	 with	

development	of	AMD.(154)	
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2.5	DISCUSSION	

2.5.1	SUMMARY	OF	PREVIOUS	STUDIES	

Most	 genetic	 studies	 in	 ROP	have	 used	 the	 candidate	 gene	 approach	 and	 focused	 on	

genes	 related	 to	 angiogenesis,	 inflammation,	 and	 retinal	 (neuro)development.	 Among	 them,	

VEGFA	polymorphisms	and	FEVR-related	genes	have	been	most	extensively	studied	in	different	

populations.	However,	no	VEGFA	polymorphisms	have	been	proven	to	be	associated	with	ROP,	

because	most	positive	studies	have	not	been	replicated	in	other	populations	(Table	1).	Variants	

of	Wnt	pathway	genes,	which	are	known	to	cause	FEVR	or	Norrie	disease,	have	been	also	found	

in	ROP	patients,	suggesting	possible	associations	of	these	variants	in	at	least	a	small	proportion	

of	severe	ROP	patients	(Table	2).	However,	these	results	also	have	limitations	 in	that	we	may	

not	 confidently	 distinguish	 between	 premature	 infants	 with	 severe	 ROP	 and	 FEVR-related	

genetic	variants	and	prematurely-born	infants	with	FEVR,	as	Hartnett	et	al.	pointed	out.(152)	In	

addition	 the	 polygenic	 nature	 of	 many	 diseases	 makes	 identification	 of	 causative	 variants	

difficult	in	small	sample	sizes	focused	on	a	small	number	of	variants.(107)	Recently,	results	of	a	

large-scale	 candidate	 gene	 study	 using	 Tag	 SNPs	 of	 the	 145	 candidate	 genes	 in	 a	multiracial	

cohort	were	reported.(189)	Although	no	SNPs	were	significantly	associated	with	the	presence	

versus	absence	of	ROP	 in	 this	 study,	one	SNP	of	BDNF	 gene	was	 significantly	associated	with	

severe	 ROP	 in	 their	 meta-analysis	 combining	 the	 discovery	 and	 replication	 cohorts,	 which	

warrants	further	genetic	and	biological	studies.	
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2.5.2	LIMITATIONS	OF	PREVIOUS	STUDIES	

It	 is	difficult	 to	draw	meaningful	 conclusions	 from	most	of	 the	candidate	gene	studies	

reviewed	here	due	to	the	following	limitations:	(1)	the	sample	sizes	of	most	individual	studies	

were	 small;	 (2)	 no	 replication	 study	 has	 been	 performed	 for	 many	 variants;	 (3)	 there	 are	

conflicting	results	among	studies	of	the	same	variants;	(4)	most	studies	were	conducted	using	

only	 one	 or	 a	 few	 clinical	 sites;	 (5)	 ocular	 phenotype	was	 not	 standardized;	 (6)	 confounding	

variables	were	not	reported	or	standardized;	(7)	meta-analysis	is	not	possible	for	most	variants	

due	 to	 different	 study	 protocols	 between	 studies;	 (8)	 there	 are	 variabilities	 in	 neonatal	 care	

such	 as	 oxygen	 treatment	 protocol(135),	 incidence	 of	 (severe)	 ROP,	 and	 diagnosis	 and	

management	 of	 ROP	 between	 physicians,	 study	 hospitals,	 study	 countries	 and	 study	

periods.(6,210–213)	Differences	in	neonatal	care	may	affect	survival	rate,	systemic	morbidities	

of	prematurity,	 incidence	of	ROP	and	severity	of	ROP,	making	 it	difficult	to	find	exact	roles	of	

genetic	variants.	Moreover,	 there	are	unexplained	differences	 in	outcome	of	premature	birth	

such	 as	mortality.	 Also,	 differences	 in	 diagnosis	 and	management	 of	 ROP	may	 cause	 bias	 in	

phenotypic	categorization	of	subjects,	which	is	a	huge	problem	in	genetic	studies.	It	should	be	

noted	 that	genetic	 risk	 factors	 for	 stage	1-3	ROP	and	stage	4	or	5	ROP	could	be	different,	as	

different	 biochemical	 processes	may	 be	 involved	 and	management	 protocols	 and	 treatment	

outcomes	of	study	centers	are	also	important	factors	for	stage	4	or	5	ROP.	

Most	importantly,	candidate	gene	studies	have	inherent	limitations	of	not	being	able	to	

find	novel	genetic	factors.	Other	approaches	to	detect	novel	variants	or	genes	associated	with	

ROP	are	necessary.	
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2.5.3	FUTURE	DIRECTIONS	OF	STUDYING	ROP	GENETICS	

It	 is	 very	 challenging	 to	 study	 the	 genetics	 of	multifactorial	 diseases	 such	 as	 ROP.	 To	

overcome	 the	current	 limitations	mentioned	above	and	 to	 study	 the	contribution	of	genetics	

efficiently,	 it	 is	necessary	 to	 improve	 the	methodology	 for	 studying	 the	genetics	of	ROP.	 It	 is	

essential	that	investigators	leverage	new	methods	that	interrogate	genetic	factors	agnostically	

and	 at	 high	 sample	 sizes,	 in	 order	 to	 maximize	 study	 power	 and	 facilitate	 simultaneous	

investigation	of	many,	rather	than	single,	genetic	elements.	Genome-wide	Association	Studies	

(GWAS)	test	for	association	across	hundreds	of	thousands	of	SNPs	simultaneously	using	array-

based	 technology.	 	 GWAS	 can	 be	 helpful	 to	 find	 genes	 or	 pathways	 associated	with	 ROP.	 In	

other	ophthalmological	diseases	such	as	AMD(154,214–216),	DR(217,218),	glaucoma(219–221)	

and	 myopia(222–224),	 GWAS	 has	 been	 successful	 in	 finding	 susceptibility	 loci.	 However,	 a	

large-scale	GWAS	 has	 not	 been	 conducted	 in	 ROP.	Massively	 parallel	 sequencing,	 also	 called	

next-generation	 sequencing	 (NGS),	 enables	 sequencing	 of	 specific	 regions,	 whole	 exome,	 or	

whole	 genome	 in	 a	 short	 period	 of	 time	 at	 high	 depth	 and	 affordable	 cost.	 Whole	 exome	

sequencing	 or	 targeted	 exome	 sequencing	 can	 be	 helpful	 for	 finding	 novel	 variants	 with	

possible	 functional	 consequences.	 Exome	 genotyping	 arrays	 may	 also	 provide	 a	 method	 of	

interrogating	for	SNPs	involved	in	ROP.	

In	 addition	 to	 these	 genetic	 evaluations,	 integration	 of	 sequence	 data	 with	 data	

regarding	 post-transcriptional	 and	 post-translational	 modification,	 including	 transcriptomics,	

metabolomics,	and	proteomics,	will	be	important	to	identify	biomarkers	that	may	be	useful	for	

early	detection,	diagnosis,	and	prediction	of	 treatment	response.	Studies	of	epigenetics	 in	DR	

have	also	shown	promise,	with	epigenetic	changes	associated	with	processes	of	microvascular	
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complications(225),	 mitochondrial	 dysfunction(226),	 microRNA	 expression(227),	 and	 capillary	

cell	apoptosis.(228,229)	These	findings	suggest	that	interrogation	of	epigenetic	factors	may	be	

an	important	method	of	discovering	new	treatments	in	ROP.	

Second,	large-scale	multi-center	collaboration	of	the	type	offered	by	consortium	studies	

can	 help	 provide	 structure	 to	 such	 studies.	 Consortium	 approaches	 facilitate	 recruitment	 of	

larger	 cohorts	 and	 make	 available	 more	 sophisticated	 computational	 approaches	 allowing	

investigators	to	control	for	more	complicated	confounding	effects.	Previous	large	international	

consortium	attempts	at	examining	the	role	of	genetics	in	multifactorial	disease	have	met	with	

success(154,219,230–232),	and	two	consortium	studies	investigating	the	genetic	causes	of	ROP	

are	currently	ongoing	at	centers	in	North	America.(233,234)	

Third,	standardization	of	ocular	phenotypes	and	confounding	factors	is	crucial.	For	this,	

ocular	and	systemic	factors	should	be	acquired	systematically,	and	known	risk	factors	including	

GA	 and	 BW	 should	 be	 assessed	 in	 a	 standardized	 fashion	 and	 strictly	 controlled	 for.	

Additionally,	the	importance	of	environmental	effects	should	be	noted,	as	differences	between	

study	 populations	 and	 sites	 has	 the	 ability	 to	 have	 a	 profound	 effect	 on	 phenotype.	

Heterogeneity	of	study	subjects	in	race,	ethnicity,	and	physical	covariates,	as	well	as	differences	

between	treatment	sites	and	attending	clinicians	can	affect	study	outcomes.	This	 is	especially	

important	 to	 distinguish	 genetic	 variants	 associated	 with	 ROP	 from	 those	 associated	 with	

prematurity	 itself.	 Also,	 objective	 phenotyping	 such	 as	 image-based	 diagnosis	 should	 be	

considered.	Compared	to	clinical	ophthalmoscopic	diagnosis,	consensus	image-based	diagnosis	

may	enable	reduction	of	intra-	and	inter-grader	discrepancy	in	ROP	diagnosis.	
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It	 is	also	 important	 to	note	 that	additional	basic	 research	studies	using	 representative	

animal	models	such	as	mouse	or	rat	OIR	model	are	required	to	test	hypotheses.	While	animal	

models	 face	many	 limitations	 including	 differences	 in	 biology,	most	 notably	 their	 use	 of	 full-

term	 rather	 than	 premature	 animals,	 these	 models’	 ability	 to	 control	 for	 phenotypic,	

environmental,	 and	 genetic	 stratification	 factors	 distinguishes	 them	 as	 a	 valuable	method	 of	

testing	hypotheses	and	adding	insight	to	human	observational	studies.	

2.5.4	EXPECTED	BENEFITS	OF	GENETIC	STUDIES	OF	ROP	

Finding	genetic	variants	affecting	ROP	will	be	useful	in	at	least	three	ways.	First,	genetic	

risk	factors	may	be	incorporated	into	risk	modelling	to	predict	development	and	progression	of	

ROP.	A	refined	risk	analysis	system	with	clinical	and	genetic	risk	factors	may	help	clinicians	to	

identify	 both	 high-	 and	 low-risk	 patients.	 Second,	 identifying	 specific	 genes	 or	 biological	

pathways	that	contribute	to	the	pathogenesis	of	ROP	may	be	helpful	for	development	of	new	

therapeutics.	In	AMD,	genetic	studies	have	revealed	the	importance	of	complement	pathway	in	

the	pathogenesis	of	AMD,	which	has	 led	to	development	of	new	investigational	agents	under	

clinical	 trials	such	as	 lampalizumab,	an	 inhibitor	of	complement	 factor	D.	Third,	studying	ROP	

genetics	can	also	contribute	to	the	understanding	of	pathophysiologies	of	other	ocular	vascular	

diseases	 such	 as	AMD	or	DR	 and	 other	 angiogenesis-related	 diseases	 like	 cancer.15	 Fourth,	 a	

better	 understanding	 of	 the	 genetics	 of	 retinopathy	 of	 prematurity	 may	 lead	 to	 better	

understanding	 of	 the	 pathophysiologic	 mechanisms	 of	 common	 neonatal	 diseases	 of	

prematurity	such	as	chronic	lung	disease.	
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2.5.5	CONCLUSIONS	

Evidence	suggests	a	genetic	contribution	to	ROP,	including	epidemiologic	studies,	twin	studies	

and	risk	analysis	studies.	To	date,	a	number	of	candidate	gene	studies	have	been	performed.	

However,	it	is	still	unclear	which	genes	or	variants	are	significantly	and	strongly	associated	with	

development	 and	 progression	 of	 ROP.	 Large-scale	 studies	 using	 NGS	 and	 GWAS	 with	

standardized	phenotyping	have	potential	to	expand	understanding	of	genetic	contributions	and	

pathophysiology	of	ROP.		 	
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CHAPTER	3:	A	NETWORK	MODEL	OF	POLYGENIC	RISK	

3.1	ABSTRACT	

TOPIC: Polygenic risk scoring (PRS) is a proven method of genetic disease prediction but faces 

difficulties due to sample size requirements and difficulty of interpretation. We investigate the 

utility of incorporating network context into the construction and interpretation of PRS.  

  

CLINICAL RELEVANCE: While PRS has found success in large cohorts with annotation of 

common phenotypes, rare disease represents a case in which recruitment of large sample sizes is 

difficult or impossible. In this paper we consider the specific case of preterm birth (PTB) and 

retinopathy of prematurity (ROP), two coincident conditions which would benefit from enhanced 

risk detection and contextual information regarding the degree to which genetic causes of these 

conditions are the same. 

  

METHODS: To investigate the degree to which network context can supplement the 

information provided by traditional PRS, we propose novel methods of integrating network 

context into PRS construction before and after score construction, as well as evaluation of an 

existing method (HotNet2). These new methods are first developed and evaluated using data 

from the Michigan Health and Retirement Study (HRS), and then validated using a small study 

of PTB using data from the Danish National Birth Cohort (DNBC). The degree to which ROP 

candidate study targets overlap with those for PTB is also considered. 
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3.2	INTRODUCTION	

	 Recent	advances	in	genetic	testing	have	led	to	a	boom	in	the	number	of	studies	

completed	investigating	various	traits.	As	genetic	assay	development	becomes	more	robust,	

cost	of	testing	has	decreased	exponentially.	Despite	the	advent	of	whole-genome	sequencing	

techniques,	due	to	low	cost	and	adequate	genomic	coverage	the	majority	of	studies	at	scale	are	

still	performed	using	microarrays	targeted	to	a	subset	of	genomic	loci	in	the	genome	at	

increased	likelihood	of	single	nucleotide	polymorphisms	(SNPs).		

	 Although	studies	have	become	larger	in	sample	size,	allowing	increased	statistical	power	

to	detect	differences	between	case	and	control	groups,	studies	have	been	unable	to	uncover	

single	SNPs	of	large	effect	in	most	cases.	This	problem	has	been	referred	to	as	the	case	of	

missing	heritability,	as	studies	have	failed	to	capture	a	majority	of	the	theorized	heritable	

variability	in	complex	phenotypes.(107)	

	 One	theorized	reason	for	this	missing	heritability	is	that	instead	of	single	SNPs	

conferring	large	proportions	of	the	heritable	variability,	it	may	be	that	many	or	all	SNPs	

contribute	a	miniscule	amount	of	effect.(122,123)	Polygenic	Risk	Scores	(PRS)	are	one	proposed	

solution	to	these	difficulties.	Instead	of	focusing	on	single	variants	or	a	small	subset	of	curated	

SNPs,	PRS	instead	create	a	measure	of	the	aggregate	of	genetic	signal	represented	by	many	

SNPs	in	a	study.	

	 PRS	have	quickly	become	a	popular	tool	for	investigation	of	genetic	disease,	finding	

application	in	traits	such	as	height,	obesity,	cancer,	and	risk	of	cardiovascular	disease.	While	

single	SNPs	may	account	for	small	percentages	of	the	total	heritable	variability,	PRS	have	been	
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able	to	capture	a	significant	percent	and	in	some	cases	the	majority	of	theorized	heritable	

variability.	

	 Despite	these	early	successes,	criticism	of	PRS	exists.	While	PRS	is	able	to	capture	a	large	

proportion	of	heritable	variability,	scores	offer	no	biological	context	for	interpretation	and	exist	

in	most	cases	as	a	simple	additive	sum	of	individual	SNP	effect.	This	limits	the	ability	of	

researchers	to	translate	PRS	results	into	hypotheses	that	may	inform	future	research,	and	also	

limits	the	ability	to	develop	more	effective	methods	of	constructing	scores	that	leverage	such	

context	to	achieve	increased	predictive	power.	

Additionally,	PRS	to	date	have	required	enormous	cohorts	to	achieve	meaningful	

predictive	power.	While	common	phenotypes	like	biometric	data	and	the	most	commonly	

occurring	diseases	documented	in	population-scale	studies	are	well	suited	to	such	approaches,	

many	complex	phenotypes	occur	only	in	a	limited	subset	of	the	population,	which	will	never	be	

able	to	achieve	massive	recruitment.	As	such,	studies	have	so	far	been	limited	in	the	

phenotypes	PRS	are	able	to	interrogate.	

An	added	challenge	arises	when	considering	genetic	conditions	which	may	have	

coincident	presentation.	PRS	exist	solely	as	a	summation	of	individual	SNP	effects,	and	this	

decreases	the	ability	to	compare	between	interlinked	disorders	or	distinguish	the	degree	to	

which	such	signals	can	be	separated	from	one	another.	

In	light	of	these	challenges,	we	attempt	in	this	aim	to	evaluate	the	utility	of	

incorporating	additional	biological	features	into	the	construction	and	presentation	of	polygenic	

risk	scores.	Biological	network	data	incorporating	protein-protein	interaction	(PPI)	information	

represents	one	avenue	by	which	to	increase	the	information	content	of	such	scores,	and	these	
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network-based	approaches	have	shown	promise	in	genetic	studies	of	cancer	phenotypes	as	

well	as	other	complex	disease	traits.(130,134)	

We	propose	two	complementary	methods	of	incorporating	network	context	into	PRS.	

The	first	is	an	early	network	context	integration	approach,	which	leverages	network	features	in	

the	construction	of	a	PRS.	We	evaluate	the	role	of	connectivity	in	the	distribution	of	genetic	

risk,	and	give	evidence	that	such	network	context	provides	additional	information	to	PRS	

construction.	(Figure	1)	

	

Figure	1.	The	proposed	model	of	ROP	score	analysis	involves	an	early	and	a	late	context	
integration	model.	The	early	context	integration	considers	network	context	before	PRS	
construction	as	a	pruning	step,	while	the	late	network	context	model	first	performs	PRS	
construction	then	maps	the	PRS	to	a	graph	and	attempts	to	explain	the	network	context	of	
that	construct.	

	

Two	early	network	context	integration	methods	are	discussed.	The	first	relies	solely	on	

PPI	data,	leveraging	connectivity	as	the	primary	thresholding	method	in	order	to	assess	
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whether	focus	on	high	connectivity	nodes	increases	the	ability	to	predict	disease	outcome.	The	

second	takes	into	account	additional	information	in	the	form	of	pre-existing	candidate	gene	

data	resulting	from	biological	studies,	then	augments	that	information	using	PPI	information	

relevant	to	the	provided	gene	products	in	order	to	test	if	focus	on	clinically	validated	targets	

and	their	partners	outperforms	an	indiscriminate	model	of	SNP	inclusion.	

We	also	propose	a	late	network	context	approach,	which	seeks	to	provide	additional	

context	information	after	PRS	construction.	We	first	propose	a	method	leveraging	community	

detection	after	network	thresholding	derived	from	PRS	model	fitting	to	evaluate	whether	

network	submodules	constructed	from	genes	participating	in	the	final	PRS	are	enriched	for	

specific	gene	ontology	function.	A	second	proposed	method	of	late	network	context	applies	an	

existing	insulated	heat	diffusion	approach	to	detect	small	modules	significantly	enriched	for	

genetic	association	signal.		

We	also	investigate	enrichment	of	these	resulting	scores	for	biologically	relevant	gene	

sets,	attempting	to	provide	a	representation	of	which	biological	features	serve	as	drivers	in	a	

fully	specified	PRS.	

As	phenotypes	for	consideration	of	these	methods	we	consider	first	the	case	of	height	

data.	This	hallmark	trait	is	well	investigated	in	many	studies	and	as	such	serves	as	a	benchmark	

to	compare	our	method	with	other	existing	methods	of	PRS	construction.	In	order	to	validate	

on	a	use	case	representing	a	dataset	of	limited	size,	we	consider	the	case	of	preterm	birth.	We	

in	turn	consider	the	retinopathy	of	prematurity	phenotype	as	a	trait	occurring	coincident	with	

preterm	birth,	and	assess	the	degree	to	which	the	genetic	causes	of	these	disorders	can	be	

separated	using	a	network	augmented	candidate	gene	approach.	
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Using	this	framework	we	introduce	a	novel	method	by	which	to	expand	the	information	

included	in	PRS	construction	and	evaluate	its	contribution	to	the	predictive	utility	of	such	

scores.	We	also	provide	a	novel	framework	by	which	to	evaluate	PRS	after	construction	and	

inform	the	development	of	new	scoring	metrics	using	network	context	which	may	increase	the	

reach	and	applicability	of	such	scores	in	the	detection	and	interrogation	of	complex	disease.	
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3.3	METHODS	

3.3.1	GWAS	DATA	

Health	and	Retirement	Study	

The	University	of	Michigan	Health	and	Retirement	Study	(HRS)	is	a	biennial	longitudinal	

health	survey	of	a	cohort	of	adults	age	50	and	older	in	the	United	States	with	a	focus	on	

monitoring	health	and	demographic	features	in	participants	over	an	extended	time	period.	The	

HRS	is	sponsored	by	the	Institute	for	Social	Research	at	the	University	of	Michigan	and	the	

United	States	Social	Security	Administration.(235)		

In	addition	to	biometric	and	disease	related	phenotypes,	the	HRS	also	includes	genomic	

data	for	participants	made	available	through	the	database	of	Genotypes	and	Phenotypes	

(dbGaP)	which	is	operated	as	a	service	of	the	National	Center	for	Biotechnology	Information.	

This	genetic	data	represents	12,507	participants	with	phenotypes	including	height.		

Height	data	represents	a	well	studied	and	easily	measured	example	of	a	complex	

physical	trait.	Previous	studies	have	assessed	the	narrow	sense	heritability	of	height	at	80%,	

and	the	contribution	of	common	variants	to	phenotypic	variation	in	height	are	estimated	at	

roughly	50%	of	this	heritability.	(236,237)	

For	these	reasons,	height	data	has	proven	popular	as	a	phenotype	in	studies	of	

polygenic	risk	methods,	making	it	a	well	documented	and	easily	comparable	trait	of	study.	

GIANT	Consortium	Data	

The	Genetic	Investigation	of	Anthropometric	Traits	(GIANT)	consortium	is	an	

international	collaboration	investigating	the	role	of	genetics	in	variability	in	human	body	size	
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and	shape.	GIANT	represents	a	large-scale	collaboration	spanning	several	iterations	over	a	ten	

year	timespan.	GWAS	meta-analysis	summary	statistics	provided	by	GIANT	incorporate	

hundreds	of	thousands	of	individuals,	and	the	large	sample	size	of	these	data	make	them	well	

positioned	for	the	construction	of	polygenic	risk	scores.	

Two	meta-analyses	included	in	the	GIANT	consortium’s	studies	are	used	for	the	basis	of	

this	experiment.	A	large	meta-analysis	of	253,288	individuals	across	79	GWAS	by	Wood	et.	al.	

serves	as	a	means	of	constructing	a	polygenic	risk	score	for	the	interrogation	of	GWAS	data	

from	HRS.(238)		

In	order	to	simulate	a	candidate	gene	study,	a	GIANT	meta-analysis	by	Yang,	et.	al.	

incorporating	133,154	individuals	across	38	studies	is	used.(239)	This	simulated	candidate	gene	

list	is	then	expanded	using	network	context,	and	the	resulting	gene	set	is	used	to	filter	the	

variants	provided	by	the	Wood	study	previously	described.	

Danish	National	Birth	Cohort	

The	Danish	National	Birth	Cohort	(DNBC)	is	a	large	cohort	of	pregnant	women	and	their	

infants	with	the	intended	purpose	of	providing	data	regarding	pregnancy	and	childhood	as	well	

as	the	role	that	exposure	in	early	life	to	environmental	stimuli	has	on	later	disease.(240)	The	

genetic	homogeneity	of	this	population	makes	it	a	useful	study	group	for	the	evaluation	of	

genetic	scoring.	

A	subset	of	the	DNBC	representing	1000	preterm	mother	child	pairs	with	spontaneous	

onset	of	labor	prior	to	37	weeks	of	gestation	was	made	publicly	available	as	part	of	a	study	

included	in	the	Gene	Environment	Association	Studies	initiative	(GENEVA).(241)	Infants	from	
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this	cohort	form	the	basis	of	our	investigation	into	preterm	birth,	and	also	serves	as	a	trial	case	

investigating	the	ability	of	network-based	PRS	methods	to	detect	signal	in	small	sample	sizes.	

Imputation	

DNBC	and	HRS	data	was	imputed	to	reference	build	hg37	using	the	IMPUTE2	utility	with	

use	of	SHAPEIT2	for	pre-phasing	of	genotype	data.(242,243)	PLINK	and	GTOOL	were	used	for	

variant	file	conversions	and	manipulations.(244,245)	

In	order	to	assure	concordance	between	imputation	methods,	an	evaluation	of	

differences	between	the	supplied	BEAGLE	(246)	and	IMPUTE2	methods	was	performed.		

Reference	Genome	

All	data	was	updated	to	hg38	reference	genome	coordinates	in	order	to	coincide	with	

gene	regions	represented	in	Ensembl	Homo	Sapiens	gene	database	build	92.	The	LiftOver	utility	

maintained	by	UCSC	Genome	Browser	was	used	to	perform	conversion	across	reference	builds	

for	DNBC	and	HRS	data.(247)	

GIANT	data	was	updated	to	hg38	coordinates	in	Python	using	SNP	coordinates	made	

available	through	the	Single	Nucleotide	Polymorphism	Database	(dbSNP).(248)	

Phenotypic	Data	

	 In	order	to	assess	replicability	of	PRS	generation,	phenotype	data	for	height	from	the	

HRS	was	transformed	to	age-adjusted	sex-standardized	values	using	a	linear	model	in	the	R	

software	package.	Resulting	PRS	values	were	compared	to	those	provided	by	the	HRS.	
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Preterm	birth	phenotypes	are	binary	representing	a	case/control	study	design	with	

cases	represented	as	infants	born	before	37	weeks	gestation	and	infants	born	after	40	weeks	

gestation	considered	controls.	

3.3.2	NETWORK	DATA	

Ensembl	

The	Ensembl	database	is	a	project	of	the	European	Bioinformatics	Institute	and	the	

Wellcome	Trust	Sanger	Institute	attempting	to	provide	annotated	genomic	information	in	a	

centralized	comprehensive	resource.(249)	Ensembl	provides	153	annotated	assemblies	

including	those	for	homo	sapiens,	with	notable	information	including	gene	and	regulatory	

region	genomic	position	information.	For	mapping	of	SNP	positions	to	gene	products,	gene	

regions	from	the	Ensembl	Genes	92	build	using	hg38	was	used.		

STRING	

The	Search	Tool	for	Retrieval	of	Interacting	Genes/Proteins	(STRING)	is	a	protein-protein	

interaction	(PPI)	database	maintained	by	the	Swiss	Institute	of	Bioinformatics,	CPR-NNF	Center	

for	Protein	Research,	and	the	European	Molecular	Biology	Laboratory	representing	

experimental	evidence	of	interaction	and	predicted	interaction	between	24.6	million	protein	

entities	across	5,090	organisms	including	homo	sapiens.(121)	

STRING	attempts	to	provide	maximal	coverage	of	all	documented	interactions.	Due	to	

the	highly	connected	nature	of	biological	systems	as	well	as	the	dispersion	of	genetic	signal	

throughout	the	genome	in	complex	traits,	STRING	is	a	well	positioned	database	for	

genomewide	studies	as	it	provides	maximal	genomic	coverage.(118)	
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STRING	also	provides	a	reasoned	scoring	system	ranking	the	evidence	of	these	

interactions.	This	system	allows	a	simple	parameter	by	which	to	adjust	the	density	of	the	PPI	

graph	to	prevent	excessive	sparsity	or	over-connectedness.	In	order	to	incorporate	a	large	

number	of	protein	interactions	while	assuring	strong	evidence	of	those	interactions,	a	high	

confidence	segment	of	the	STRING	database	was	specified	(score	>	700).		

Assessing	Genomic	Coverage	

In	order	to	increase	the	coverage	of	gene	regions	and	thereby	account	for	upstream	and	

downstream	regulatory	features,	gene	regions	were	extended	to	incorporate	additional	area.	

An	assessment	of	the	GIANT	data	set	indicated	maximal	STRING	network	coverage	at	a	window	

of	80,000	base	pairs.	(Figure	6a)	A	second	analysis	was	performed	to	assess	genomic	coverage,	

and	it	was	found	that	a	larger	window	of	200,000	bp	was	necessary	for	each	mapped	SNP	to	be	

represented	at	least	once,	however	this	resulted	in	significant	multimapping	of	SNPs	between	

genes	with	the	average	SNP	participating	in	approximately	9.5	proximal	gene	regions.	An	

extension	of	of	80,000	bp	was	sufficient	to	capture	75%	of	represented	SNPs	while	participating	

in	an	average	of	4.6	gene	regions.	(Figure	6b)	

	 In	the	interest	of	maximizing	graph	coverage	while	minimizing	overlap	between	gene	

regions,	a	window	size	of	80,000	bp	was	selected	for	mapping	of	SNPs	to	the	Ensembl	

reference.	

Mapping	From	GWAS	To	STRING	

	 Using	summary	association	statistics	produced	by	PLINK,	SNP	coordinates	were	assigned	

to	all	gene	regions	with	a	boundary	falling	within	80,000	bp.	After	assignment	to	Ensembl	gene	
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regions,	these	were	mapped	to	analogous	Ensembl	protein	stable	IDs	using	linking	tables	

acquired	through	the	Ensembl	BioMart	utility.	

	 The	STRING	database	was	loaded	into	Python	using	the	iGraph	network	analysis	

tool.(250)	SNPs	were	then	assigned	to	STRING	entities	by	matching	Ensembl	protein	stable	IDs.	

The	resulting	graph	incorporates	19,586	protein	entities	with	360,341	edges.		

3.3.3	POLYGENIC	RISK	MODEL	

	 Two	alternative	methods	of	network	PRS	construction	were	used	to	incorporate	

network	context	into	PRS.	The	first	method,	which	we	will	refer	to	as	early	context,	

incorporates	network	information	before	SNPs	are	assigned	to	the	STRING	graph.	In	the	early	

context	method	the	organization	of	network	nodes	and	edges	guides	pruning	of	the	graph,	and	

SNPs	assigned	to	the	retained	nodes	are	used	to	construct	the	final	PRS	for	evaluation.	

Early	Network	Context	Integration	

	 Two	alternate	methods	of	performing	early	context	integration	are	described.	The	first	

method	of	early	network	context	integration,	which	we	will	refer	to	as	the	early	network	

connectivity	model,	uses	measures	of	centrality	in	order	to	select	the	most	highly	connected	

nodes	represented	by	the	STRING	database.	Evaluation	of	the	GIANT	data	found	that	when	

looking	at	minimum	and	maximum	values	assigned	to	gene	regions,	highly	connected	nodes	

displayed	a	trend	toward	higher	median	values	for	beta	and	p-values.	(Figure	2)	In	order	to	

assess	the	broad	implications	of	this	trend,	the	subset	of	nodes	with	degree	greater	than	the	

median	value	in	the	graph	are	selected,	and	SNPs	associated	with	these	nodes	are	then	used	in	

further	score	construction	
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	 A	second	method	of	early	network	context	integration	makes	use	of	curated	candidate	

gene	lists	specific	to	the	phenotype	of	interest.	Curated	candidate	genes	from	clinician	review	

or	previous	genetic	studies	are	matched	with	their	STRING	entity	counterparts.	The	coverage	of	

the	graph	is	then	extended	to	direct	neighbors	of	these	candidate	genes.	SNPs	associated	with	

the	resulting	subgraph	are	then	isolated	and	used	in	further	score	construction.	

Late	Network	Context	Integration	

	 A	second	method	of	network	context	integration	is	proposed	in	order	to	add	

information	to	interpretation	after	the	construction	of	polygenic	risk	scores.	In	this	method,	

PRS	construction	is	first	performed	using	all	available	SNPs	or	a	subset	of	SNPs	as	described	in	

the	early	context	methods.	The	resulting	p-value	and	beta	values	are	then	assigned	to	a	STRING	

graph	object.		

	 The	resulting	graph	object	is	then	assessed	for	modularity	and	clustering	of	signal	which	

has	been	incorporated	into	the	PRS.	Two	alternate	methods	of	deriving	context	from	this	

information	are	proposed,	as	well	as	an	integrated	approach	for	combining	the	output	of	these	

two	methods.	

The	first	method	of	performing	late	network	context	analysis	of	PRS	is	proposed	using	

the	modularity	of	the	nodes	represented	in	the	final	set	of	beta	values.	In	this	proposed	

method	SNPs	are	first	pruned	by	a	permissive	significance	threshold	(generally	~1e-4),	and	

these	SNPs	are	assigned	to	the	STRING	graph	object.	The	resulting	graph	is	pruned	to	include	

only	those	nodes	that	are	matched	with	at	least	one	SNP	object.		

This	pruned	graph	is	then	analyzed	using	a	community	modularity	maximization	

algorithm.(133)	The	resulting	communities	are	used	to	create	a	maximum	possible	community	



74	

beta	value,	representing	the	sum	of	all	beta	values	within	the	community.	The	resulting	

community	beta	values	are	evaluated	against	a	null	distribution	created	through	permutation	in	

order	to	assess	if	they	are	significantly	enriched	for	effect.	Plots	of	hierarchical	gene	ontology	

terms	are	created	from	those	available	through	the	AmiGO2	ontology	annotation	

database.(251)	

	 A	second	method	incorporates	all	SNP	association	data	as	well	as	all	graph	nodes	in	the	

STRING	graph	object.	In	this	method,	SNPs	resulting	from	the	GWAS	are	loaded	onto	the	

STRING	graph.	The	minimum	SNP	p-value	assigned	to	each	node	is	first	isolated.	This	value	is	

transformed	to	its	-log10	equivalent	heat	value.		

The	list	of	nodes	and	heats	is	then	analyzed	by	the	HotNet2	insulated	heat	diffusion	

algorithm,(134)	which	outputs	a	list	of	subnetworks	significantly	enriched	for	signal.	These	

subnetworks	can	then	be	analyzed	for	enrichment	for	biological	context	with	the	goal	of	

identifying	novel	targets	or	interactions.	

Calculation	of	PRS	from	SNP	Values	

Output	of	early	context	methods	are	reduced	to	unique	SNP	IDs.	The	resulting	list	of	

SNP	IDs	is	isolated	from	the	full	SNP	set	using	PLINK.	Filtered	or	unfiltered	output	is	then	used	

as	input	to	PRSice,	which	performs	clumping,	threshold	selection,	and	scoring	of	the	test	group	

assuming	an	additive	model	of	disease.	

Statistical	analysis	is	performed	in	R	and	Python.	
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3.4	Results	

3.4.1	IMPUTATION	ANALYSIS	

	 In	order	to	harmonize	data	from	the	HRS	and	DNBC	studies,	data	was	re-imputed	from	

base	data	using	the	IMPUTE2	platform.	DNBC	data	was	reannoted	with	hg37	coordinates	using	

the	LiftOver	utility	from	UCSC.	Haplotype	estimation	was	performed	in	SHAPEIT2	using	an	

effective	population	size	of	15000.	Imputation	was	then	performed	using	IMPUTE2	in	5	Mb	

chunks	to	the	1000	Genomes	Phase	3	reference.	The	resulting	imputed	reference	was	filtered	

to	include	only	SNPs	meeting	a	quality	score	threshold	of	0.8.	

	

Figure	3.	Concordance	between	the	original	BEAGLE	imputed	set	of	DNBC	SNPs	was	
assessed	relative	to	the	SHAPEIT/IMPUTE2	imputed	SNPs	in	order	to	ensure	that	the	
imputation	pipeline	did	not	significantly	alter	the	most	significant	variants.	The	resulting	
check	showed	good	agreement	with	Pearson	and	Spearman	correlations	of	0.97	on	the	
full	set,	and	a	Spearman	correlation	of	0.94	(Pearson	0.81)	on	the	top	200	highest	
significance	SNPs	by	p-value.	
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	 After	imputation,	concordance	was	assessed	against	the	originally	provided	BEAGLE	

imputed	values.	The	resulting	SNPs	showed	a	Spearman	correlation	of	0.97	for	the	full	set	of	

SNPs,	while	the	200	most	significant	SNPs	were	correlated	with	a	Spearman	correlation	of	0.94.	

	 As	the	only	available	1000	Genomes	hg38	reference	is	the	product	of	using	Lift	Over	to	

transfer	the	hg37	dataset	to	hg38	and	thus	no	native	imputation	to	hg38	exists,	the	imputed	

data	sets	were	then	reannoted	with	hg38	coordinates	using	LiftOver	in	order	to	achieve	

concordance	with	gene	boundary	data	provided	by	the	Ensembl	database	of	human	genes.		

3.4.2	EDA	OF	STRING	NETWORK	

	 Initial	analysis	of	the	STRING	network	showed	that	most	edges	were	assigned	low	

confidence	scores	for	association.(Figure	4)	The	STRING	network	advises	that	edges	above	a	

score	of	700	are	considered	high	confidence,	while	edges	between	400-700	represent	medium	

confidence,	and	scores	below	400	represent	low	confidence.	The	distribution	of	edges	is	

bimodal,	with	a	peak	occurring	at	roughly	a	score	of	900.	(Figure	4)	In	order	to	include	as	many	

high	confidence	edges	as	possible	without	leading	to	an	overconnected	graph	which	would	

create	problems	for	community	detection	algorithms,	a	threshold	of	700	was	applied	to	STRING	

for	the	formation	of	the	template	graph	object.	

	 The	resulting	graph	represents	19,576	entities	with	360,341	edges.	Graph	connectivity	is	

roughly	scale	free,	with	a	median	node	degree	of	seven	and	a	maximum	node	degree	of	the	

graph	at	1,249.	The	largest	component	of	the	graph	represents	15,154	entities	connected	with	

360,341	edges.	
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	 In	order	to	map	from	ENSP	identifiers	in	STRING	to	ENSG	identifiers	in	the	Ensembl	

genomic	position	data,	a	conversion	table	obtained	from	the	Ensembl	BioMart	service	was	

used.	Of	the	15,154	protein	entities	represented	in	the	STRING	graph,	14,381	matched	at	least	

one	ENSG	identifier	in	the	Ensembl	database.	Of	all	STRING	identifiers,	14,214	mapped	to	a	

HGNC	identifier.	
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Figure	4.	STRING	edges	were	shown	to	be	roughly	bimodal	by	confidence	of	association	(top).	
A	second	peak	occurs	at	a	confidence	score	of	roughly	900	(zoomed	detail,	lower).	Score	are	
percent	values	multiplied	by	a	factor	of	100,	thus	a	score	of	700	represents	a	0.70	relative	
proportion	of	strength	of	evidence	for	association	compared	to	the	full	set	of	protein	entities.	
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3.4.3	SNP	MAPPING	MODEL	

SNP	Mapping	Process	
	

	

Figure	5.	An	example	mapping	of	SNPs	to	gene	entities.	In	this	configuration	SNP1	would	map	
to	both	GENE1	and	GENE2,	SNP2	would	map	to	GENE2,	and	SNP3	and	4	would	be	discarded	
from	the	model	construction.	GENE3	would	be	represented	by	a	node	with	no	mapped	SNPs	
and	can	be	discarded	or	retained	at	network	construction	depending	on	the	aim	of	the	
intended	analysis.	

	
	 SNPs	were	assigned	to	genes	by	beginning	with	coordinates	from	the	Ensembl	Homo	

Sapiens	build	92	GRCh38	annotated	as	gene	regions.	Borders	of	gene	regions	were	expanded	to	

account	for	regulatory	regions	and	maximize	genomic	coverage.	SNP	coordinates	were	assessed	

and	assigned	to	all	matching	gene	regions	and	written	to	a	reference	file	for	graph	analysis.	

(Figure	5)	

Investigation	of	Network	Coverage	

	 In	order	to	determine	the	best	threshold	to	achieve	maximal	network	coverage	while	

also	minimizing	overlap	between	genes,	a	parameter	sweep	of	gene	window	size	was	

performed.	

	 The	first	criteria	investigated	was	the	effect	of	window	expansion	on	genomic	coverage.	

Genomic	coverage	was	found	to	increase	rapidly	until	a	window	size	of	approximately	100	kb,	
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at	which	point	roughly	80%	of	SNPs	are	included	in	at	least	one		gene	region.	At	200	kb	

approximately	95%	of	SNPs	are	included	in	a	gene	region.		

	 This	analysis	was	balanced	against	an	analysis	of	SNP	participation	in	gene	regions.	In	

order	to	attempt	to	ensure	that	SNPs	are	as	informative	as	possible,	it	is	advantageous	that	

SNPs	participate	in	as	few	distinct	gene	regions	as	is	possible	while	maintaining	high	overall	

genomic	coverage.	Gene	region	participation	was	found	to	increase	roughly	linearly	with	

window	size,	indicating	that	the	smallest	gene	region	attainable	would	be	advantageous	to	

maximize	this	criteria.	(Figure	6)	

	 An	additional	analysis	of	network	coverage	with	expanding	window	size	was	also	

evaluated.	At	80	kb,	roughly	95%	of	available	genes	are	represented	by	at	least	one	

participating	SNP.	

	 In	order	to	maximize	these	competing	criteria,	a	window	size	of	80	kb	was	chosen	in	

order	to	minimize	cross	gene	participation	while	ensuring	maximal	network	coverage.	 	
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a) 	

b) 	
	

Figure	6.	SNP	mapping	to	gene	regions	was	investigated	as	a	function	of	coverage	and	
multimapping	using	both	an	Ensembl	and	Uniprot	bridge	onto	a	STRING	network	construct.	
The	majority	of	SNPs	could	be	found	to	map	to	a	gene	region	with	a	gene	region	expansion	of	
200	kb	(a)	while	most	genes	were	found	to	contain	at	least	one	SNP	at	a	window	size	of	under	
100	kb	(b).		
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a) 	

b) 	

Figure	7.	The	number	of	SNPs	per	gene	region	scaled	linearly	with	window	size	(a)	as	did	the	
number	of	genes	that	SNPs	were	mapped	(b).		
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Traditional	PRS	Formulation	

	 To	serve	as	a	control,	a	traditional	PRS	was	constructed	using	the	HRS	dataset	as	a	test	

set.	As	the	basis	for	this	study,	GWAS	summary	statistics	from	the	GIANT	study	representing	

height	data	of	253,288	individuals	was	used.	After	assignment	to	hg38	coordinates	in	order	to	

match	ENSG	entity	positions,	a	PRS	was	generated	using	the	PRSice	software	package.		

	 The	resulting	score	reached	a	best-fit	significance	threshold	for	SNP	inclusion	at	0.0002	

and	obtained	an	R2	of	0.1773,	representing	a	capture	of	roughly	18%	of	heritable	variability	in	

height.	The	model	was	validated	using	a	test	set	of	9,915	individuals	from	the	HRS	using	logistic	

regression,	and	the	resulting	fit	of	the	model	is	highly	significant	(p	<	1E-300).		

3.4.4	EARLY	NETWORK	CONTEXT	METHODS	

	 In	order	to	evaluate	the	utility	of	inclusion	of	network	context	during	PRS	construction,	

two	different	methods	were	employed:	One	attempting	to	utilize	network	connectivity	to	

enhance	study	power,	and	a	second	method	to	assess	the	impact	of	integrating	candidate	gene	

lists	gleaned	from	literature	during	the	construction	of	the	PRS.	

Inclusion	of	All	Gene	Regions	

	 In	order	to	test	the	hypothesis	of	whether	a	score	constructed	from	annotated	gene	

regions	would	outperform	a	model	including	all	SNPs,	a	score	was	created	using	all	SNPs	

mapping	to	annotated	gene	regions.	This	model	assumes	that	a	basis	of	regions	more	densely	

populated	with	high	significance	SNPs	may	decrease	noise	contributed	my	low-significance	

SNPs	from	intergenic	regions.		
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To	evaluate	the	degree	to	which	the	assumption	that	gene	regions	are	enriched	for	

high-significance	SNPs	holds	true,	an	evaluation	of	the	number	and	quality	of	SNPs	assigned	to	

intergenic	regions	was	performed.	Gating	of	SNPs	without	gene	region	expansion	resulted	in	

inclusion	of	1.47	million	SNPs	comprising	56%	of	the	total	set	of	2.55	million	SNPs	in	the	GIANT	

meta-analysis	summary	statistics.	

Number	of	Significant	SNPs	in	Intergenic	vs.	Gene	Regions	

	
	

Figure	8.	In	the	GIANT	data	the	number	of	highly	significant	SNPs	falling	in	gene	regions	can	
be	seen	to	deviate	from	those	falling	within	intergenic	regions.	Gene	regions	were	found	to	
contain	70,462	SNPs	with	significance	below	1e-4,	while	intergenic	regions	contained	53,523.	
Of	262	SNPs	with	significance	below	1e-60,	219	of	these	fall	within	gene	regions	(84%)	

	

	 Evaluation	of	intragenic	SNPs	showed	evidence	of	enrichment	for	highly	significant	SNPs	

with	significance	values	less	than	0.0001	when	compared	to	the	original	set	of	SNPs.	These	
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results	indicate	evidence	that	gene-regions	do	in	fact	contain	a	higher	density	of	significant	

SNPs.	(Figure	8)	

	 The	PRS	built	on	all	gene	regions	after	expansion	by	80	kb	including	2,766	SNPs	

significant	beyond	the	0.00025	best-fit	threshold	achieved	an	R2	of	0.1639	and	was	highly	

significant	with	a	p-value	less	than	1E-300.	While	this	score	does	not	achieve	predictive	ability	

exceeding	that	of	the	score	including	all	SNPs,	the	removal	of	43%	of	SNPs	results	in	a	modest	

decrease	in	R2	of	7.6%	indicating	that	intergenic	regions	may	contribute	only	a	small	percentage	

of	predictive	SNPs.	(Figure	11)	

Connectivity	Gated	Score	

	 As	genes	code	for	biological	products	that	interact	with	one	another,	it	stands	to	reason	

that	dysfunction	in	entities	interacting	with	many	other	partners	represent	a	likelihood	of	

greater	disruption	in	biological	function.	Operating	under	this	assumption,	it	can	be	

hypothesized	that	a	score	composed	of	high	connectivity	partners	will	outperform	a	score	

composed	of	all	genes.	In	order	to	investigate	whether	this	assumption	is	reflected	in	the	

STRING	network	mapping	of	protein	interactions,	we	performed	several	analyses	before	

arriving	at	a	method	for	creating	a	connectivity-gated	early	network	context	score.	

Network	Connectivity	Analysis	

	 In	order	to	evaluate	the	role	of	connectivity	on	network	nodes,	an	analysis	of	the	effect	

size	and	significance	of	gene	regions	was	performed.	Three	measures	of	connectivity	were	

considered	in	order	to	perform	this	analysis:	the	degree	centrality	of	nodes,	representing	the	

number	of	outgoing	and	incoming	edges;	the	betweenness	of	nodes,	representing	the	
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importance	of	specific	edges	as	choke	points	in	the	graph;	and	the	eigenvector	centrality	of	

nodes,	a	measure	taking	into	account	the	degree	of	nodes	as	well	as	those	nodes’	neighbors,	

with	the	assumption	that	nodes	interfacing	with	many	high	degree	nodes	have	increased	effect	

size.	

	 The	overlap	of	these	three	connectivity	measures	was	assessed	in	order	to	determine	if	

a	subset	of	nodes	existed	representing	high	centrality	across	all	three	measures.	The	degree	of	

overlap	between	all	three	measures	was	found	to	be	quite	high.	Degree	and	eigenvector	

centrality	were	the	most	similar	of	the	three	measures,	while	betweenness	and	eigenvector	

centrality	were	the	most	dissimilar.	(Figure	9)	

	 When	considering	the	median	p-value	and	effect	size	of	SNPs	assigned	to	gene	regions,	

a	slight	but	significant	trend	toward	higher	effect	sizes	and	smaller	significance	values	can	be	

observed	as	the	connectivity	of	nodes	increases,	especially	toward	the	extremes	of	the	

distribution.	(Figure	10)	

	 When	considering	nodes	falling	in	the	top	five	percent	of	each	measure,	12%	of	nodes	

fell	in	the	top	of	all	three	measures.	This	subset	of	267	nodes	was	compared	to	a	random	

background	representing	a	sample	of	1,000	similarly	sized	nodes.	The	increases	were	found	to	

be	significant	when	considering	the	median	p-value	(p	<<	0.01),	the	minimum	p-value	(p	<	

0.05),	and	the	median	beta	values	(p	<	0.05).	Maximum	beta	value	was	found	not	to	be	

significant	at	a	threshold	of	p	<	0.05.	

	 Inspection	of	these	genes	showed	an	enrichment	for	annotation	regarding	RNA	

polymerase	function,	histone	function,	and	other	cellular	function	proteins.	(Appendix	Figure	9)	
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a) 	

b) 	

Figure	9.	Considering	three	measures	of	connectivity	and	their	relationship	with	each	other	in	
the	STRING	network,	as	the	threshold	for	inclusion	becomes	more	strict	to	each	figure’s	right	
the	proportion		of	total	nodes	similar	between	the	three	measures	becomes	smaller.(a,b)		
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Figure	10.	The	relationship	between	eigenvector	centrality	and	degree	centrality	can	be	
observed	to	be	the	most	closely	related,	while	betweenness	and	eigenvector	centrality	
diverge	the	most.	Focusing	on	the	subset	of	nodes	which	fall	into	all	three	groups,	a	trend	in	
median	values	toward	more	extreme	effect	sizes	and	p-values	can	be	observed.	

Connectivity	Score	Performance	

	 Taking	into	account	the	similarity	of	the	connectivity	measures	assayed	and	the	

evidence	of	increasing	effect	with	connectivity,	a	PRS	encompassing	the	top	50%	of	nodes	by	

degree	centrality	was	constructed.	Nodes	having	greater	degree	centrality	values	than	the	

median	of	7	were	selected.	SNPs	falling	in	those	gene	regions	were	incorporated	into	a	PRS.		

	 The	resulting	PRS	using	a	basis	of	905,153	SNPs	comprising	27%	of	all	SNPs	and	3000	

score	SNPs	with	a	best-fit	threshold	of	0.0012	achieved	an	R2	of	0.1506.	The	score	was	again	

highly	significant	with	a	p-value	<	1E-300.	(Figure	11)	
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	 As	with	the	all-gene-region	score,	the	connectivity	gated	PRS	fails	to	outperform	the	

model	incorporating	all	SNPs.	However,	a	decrease	to	36%	of	the	total	number	of	SNPs	included	

in	the	full	model	results	in	only	a	15%	decrease	in	predictive	ability	when	compared	to	the	full	

model,	again	suggesting	that	a	large	percentage	of	signal	may	be	included	in	connected	regions.	

Candidate	Gene	Score	

	 In	order	to	evaluate	the	degree	to	which	clinical	evidence	can	be	used	to	increase	PRS	

predictive	ability	using	automated	techniques,	we	evaluated	a	method	of	forming	scores	using	

curated	lists	of	disease	targets	from	existing	literature.	This	model	assumes	that	curated	lists	of	

candidates	resulting	from	focused	biological	hypotheses	generated	by	subject	experts	describes	

a	core	set	of	genes	with	high	likelihood	of	influencing	disease	progression.	This	method	is	in	

keeping	with	an	omnigenic	model	of	disease	wherein	core	genes	are	influenced	by	many	

partner	genes.(122,123)	

Simulation	of	Height	Candidate	List	

	 As	no	list	of	candidate	genes	for	height	exists,	we	attempted	to	simulate	a	list	of	highly	

significant	genes	using	summary	statistics	from	a	study	performed	by	Lango	Allen	et.	al.	into	the	

genetic	causes	of	height	as	an	earlier	phase	of	the	GIANT	consortium	project.(112)	

	 Using	the	ranked	list	of	SNP	p-values	included	as	summary	statistics,	we	selected	a	

subset	of	SNPs	comprising	the	500	variants	with	the	lowest	p-value	statistic.	The	protein	

entities	including	these	SNPs	were	then	identified	by	using	the	Ensembl	database	of	gene	

regions.	
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Candidate	Gene	Score	Construction	

	 This	list	of	simulated	candidate	genes	was	selected	on	the	STRING	network	graph.	Each	

candidate	gene’s	neighbors	were	then	added	to	the	subset	of	included	genes.	SNPs	falling	in	

these	regions	were	then	used	as	the	basis	of	constructing	a	PRS.	

	 The	resulting	subset	of	SNPs	represents	261,338	SNPs,	or	6%	of	the	total	included	SNPs.	

The	constructed	score	showed	a	fit	R2	of	0.1113	and	was	significant	with	a	p-value	of	2.00E-256.		

	 The	candidate	gene	score	represents	a	94%	reduction	in	the	raw	number	of	SNPs	

included,	and	this	also	represents	a	commensurate	decrease	in	coverage.	However,	fit	of	the	

model	decreases	only	37%.	In	order	to	investigate	whether	the	subset	of	candidate	genes	

represents	a	meaningful	subset	containing	a	large	amount	of	signal,	the	expanded	set	of	

candidate	gene	SNPs	was	subtracted	from	the	full	SNP	set	and	PRS	fit	was	recalculated.	The	

resulting	full	SNP	set	with	candidate	gene	SNPs	removed	resulted	2,270,498	SNPs	(94%	of	total	

SNPs)	and	achieved	an	R2	of	0.1411.	This	may	indicate	that	the	specific	SNPs	involved	in	

construction	account	for	a	greater	percentage	of	total	heritable	variability	in	the	test	sample	

than	a	random	sample	of	SNPs.	(Figure	11)	 	
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Figure	11.	GIANT	constructed	PRS	measures	were	validated	on	the	HRS	participant	genetic	data.	All	
scores	were	highly	significant	in	their	R2	measures.	While	the	number	of	SNPs	used	in	the	candidate	
score	is	less	than	5%	that	of	the	full	set	of	SNPs,	the	HRS	candidate	score	suffers	only	a	33%	reduction	
in	predictive	ability.	
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Permutation	Testing	of	PRS	Fit	

	 In	order	to	assess	the	degree	to	which	performance	differences	in	early	network	context	

PRS	deviated	from	existing	formulations,	a	background	distribution	was	created	by	permuting	

random	sets	of	SNPs	selected	from	the	full	set	at	various	sizes	for	comparison	with	the	various	

PRS	methods.	

	 A	set	of	1,000	random	permutations	were	performed	at	5%	increments	of	the	full	SNP	

population.	Each	method	was	then	compared	to	a	random	set	of	the	same	size	in	order	to	

assess	its	performance	relative	to	random	background.		

	 When	comparing	to	random	background,	the	score	built	from	all	gene	regions	

performed	worse	than	the	mean	random	set	of	SNPs	of	similar	size,	but	was	not	significantly	

different	from	a	random	set	of	SNPs.	Both	the	connectivity	and	candidate	gene	methods	

performed	significantly	worse	than	would	be	expected	for	a	random	set	of	selected	SNPs.	

(Figure	12)	

	 These	results	underscore	the	importance	of	full	genomic	coverage	in	prediction	of	

complex	phenotypes,	and	make	clear	the	difficulties	inherent	with	the	incorporation	of	network	

information	into	score	construction.			
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Figure	12.	When	compared	with	randomly	permuted	sets	of	comparable	size,	network-based	
PRS	measures	performed	significantly	worse.	Dotted	line	represents	simulation	mean	values	
and	outside	lines	represent	1.96	SD	margins	from	the	mean.		

	 	

3.4.5	LATE	NETWORK	CONTEXT	METHODS	

	 As	a	complement	to	methods	meant	to	increase	the	predictive	value	of	PRS,	we	also	

evaluated	methods	of	gleaning	additional	information	from	existing	score	constructions.	While	

PRS	have	shown	promise	in	identifying	individuals	at	high	risk	for	various	conditions,	they	are	

also	difficult	to	interpret.	

	 We	attempt	to	provide	tools	to	provide	additional	interpretability	to	researchers	when	

constructing	and	applying	PRS,	taking	into	account	biological	annotation	that	may	allow	

increased	ability	to	derive	meaning	from	these	scores.	
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Modularity	Assessment	of	HRS	Data	

	 After	construction	of	the	height	PRS	from	GIANT	summary	statistics	in	PRSice,	the	best-

fit	threshold	for	SNPs	was	identified	to	be	p	<	0.0001.	After	loading	the	STRING	graph,	genes	

only	containing	SNPs	that	failed	to	meet	this	threshold	were	subtracted	from	the	set	of	nodes,	

leaving	a	largest	connected	component	containing	4,513	nodes	and	51,694	edges.	

	 Community	detection	was	performed	on	the	reduced	graph	to	determine	if	community	

structure	could	be	derived	implying	regions	of	interacting	genes.	The	community	multilevel	

algorithm	proposed	by	Blondel	et.	al.	was	applied	to	the	pruned	PPI	graph	using	igraph	in	

Python.	The	analysis	resulted	in	21	identified	communities	varying	in	size	from	4	to	647	nodes.			

Permutation	Testing	

	 Absolute	values	of	SNP	effect	sizes	within	clusters	were	summed	as	a	proxy	for	the	

amount	of	potential	signal	each	cluster	contained,	and	these	values	were	converted	to	a	ratio	

of	all	effect	size	values	included	in	the	PRS.	A	null	distribution	was	created	by	permuting	1,000	

subsets	of	nodes	in	sizes	increasing	by	50	node	increments	between	50	and	1,000	nodes	and	

arriving	at	a	distribution	of	PRS	beta	share	expected	within	each	node	size.	Individual	p-values	

are	calculated	by	permuting	1,000	groups	of	nodes	the	same	size	as	the	cluster	and	performing	

a	z-test.	

	 When	compared	to	background,	three	nodes	are	found	to	have	borderline	significance	

at	p	<	0.05,	one	node	showing	low	enrichment	for	effect	size	and	two	significantly	enriched	for	

effect	size.	(Figure	13)	
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Figure	13.	Permutation	of	random	sets	of	SNPs	was	performed	between	group	sizes	of	0	to	1000	
nodes,	summing	the	summed	effect	size	represented	by	the	cluster.	Three	clusters	out	of	21	
clusters	in	the	HRS	data	set	showed	borderline	significant	difference	from	background.	Annotated	
cluster	names	are	arbitrary	and	randomly	assigned	at	cluster	generation.	

	

Module	Enrichment	

	 A	gene-set	enrichment	analysis	(GSEA)	was	run	using	gene	sets	from	the	Molecular	

Signature	Database	(MSigDB).	Clusters	derived	from	the	module	detection	process	were	

individually	analyzed	via	the	GSEA	process.	

	 A	Shiny	utility	in	R	using	the	FastGSEA	package	was	created	to	investigate	data	by	

isolating	clusters	of	nodes	and	investigating	the	gene-set	enrichment	of	those	clusters.(252–

254)		
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Of	the	two	modules	with	statistically	significant	enrichment	for	effect	size,	neither	

showed	significant	enrichment	according	to	p-value	adjusted	for	the	number	of	gene	sets	

investigated.		

Cluster	15	showed	the	highest	statistical	significance	for	enrichment	of	effect	size	

relative	to	cluster	size	with	a	p	<	0.001.	The	cluster	contains	276	nodes	and	accounts	for	9%	of	

all	available	effect	size.	The	most	highly	enriched	gene	sets	were	those	related	to	zinc	and	

calcium	ion	binding	and	cellular	matrix	functions.	Investigation	of	hierarchical	models	of	gene	

ontology	from	AmiGO2	show	enrichment	for	extracellular	matrix	functions,	organ	and	skeletal	

development,	and	metallopeptidase	activity.	(Figure	14)		

	

Figure	14.	Gene	ontology	groups	identified	as	enriched	in	GIANT	Cluster	15.	Cluster	15	was	
significantly	enriched	for	effect	size	when	compared	with	a	random	background.	Ontology	
terms	appearing	in	the	top	20	terms	by	enrichment	are	indicated	with	a	red	asterisk.	Full	list	
of	enriched	terms	is	included	in	Appendix	Figure	10.	
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Cluster	16	was	also	enriched	for	share	of	effect	size	relative	to	cluster	size	with	a	p	<	

0.05.	The	cluster	contains	299		nodes	and	accounts	for	8%	of	total	available	effect	size.	The	

most	highly	enriched	gene	sets	represented	are	those	for	ion	transport	activities.	Hierarchical	

models	from	AmiGO2	show	the	strength	of	enrichment	for	potassium	channel	activities,	with	

eight	ontological	categories	in	the	same	tree	among	the	top	20	hits.	(Figure	15)	

Of	all	measured	clusters,	cluster	2	contains	the	greatest	percentage	of	potential	effect	

size	overall	at	16%	of	total	potential	effect	size.	Enrichments	within	this	cluster	include	various	

chromatin-related	processes	involved	in	silencing,	packaging,	and	expression.	Interestingly,	

several	systems	relating	to	neural	development	also	appear.	Investigation	of	AmiGO2	

hierarchical	models	show	that	these	chromatin	processes	exist	across	many	independent	

systems.	The	described	neural	development	processes	appear	as	upstream	processes	with	

involvement	in	forebrain	development.	(Figure	16)	

Taken	together	these	analyses	show	a	moderate	degree	of	ability	to	distinguish	

involvement	of	various	ontological	descriptions	of	biological	context	when	considering	

communities	found	within	constructed	PRS.	The	enriched	clusters	show	some	evidence	of	

enrichment	for	growth-related	ontologies	as	well	as	ion-transport	phenotypes	that	may	be	

important	for	growth.	This	suggestion	of	new	structure	is	interesting,	but	ultimately	requires	

validation	before	it	can	be	interpreted	as	a	real	relationship.	 	
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Figure	15.	GIANT	cluster	16	showed	enrichment	for	terms	relating	to	ion	transport	processes.	
Red	asterisks	indicate	GO	terms	significantly	enriched	and	appearing	in	the	top	10	most	
enriched	results.	Blue	asterisks	represent	GO	terms	enriched	and	appearing	in	the	top	20	
most	highly	enriched	results.	Full	list	of	top	terms	presented	in	Appendix	Figure	11.	
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Figure	16.	Cluster	2	contained	the	largest	amount	of	effect	size	compared	to	other	clusters,	
though	it	did	not	differ	significantly	from	background	levels	for	a	cluster	of	comparative	size.	
Several	gene	ontology	terms	related	to	brain	development	were	identified	as	significantly	
enriched	(red	asterisk).	Full	list	of	enriched	terms	is	provided	in	Appendix	Figure	12.	

	

	

Insulated	Heat	Diffusion	Method	

	 In	order	to	estimate	small	subnetwork	regions	with	enhanced	significance	values,	the	

HotNet2	method	was	employed.	The	minimum	p-value	of	each	gene	region	was	identified	and	

served	as	the	gene	score	for	that	gene.	The	-log10	transformation	of	these	gene	scores	was	
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taken	and	served	as	the	per-node	heat	input	into	HotNet2.	STRING	network	edges	representing	

high	confidence	in	protein-protein	interaction	(score	>	700)	were	isolated	and	used	as	edge	

input	to	HotNet2.	

	 The	resulting	analysis	using	an	insulation	value	of	0.19	found	evidence	of	enrichment	of	

subnetworks	of	size	4	or	greater	(p=0.005)	and	borderline	significance	of	enrichment	of	hot	

subnetworks	of	5	or	more	nodes	(p=0.038),	but	did	not	identify	strong	significance	for	

subnetworks	of	increasing	size.	

a) b) 	

c) 	

Figure	17.	The	three	most	highly	enriched	subnetworks	identified	by	HotNet2	encompass	a	
variety	of	growth	and	development-related	genes	with	strong	connections	to	the	height	
phenotype.	
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HotNet2	Community	Assessment	

	 Of	networks	HotNet2	identified	as	the	highest	heat,	three	compact	subnetworks	were	

contained	above	a	threshold	heat	value	of	200.	The	highest	signal	of	these	subnetworks	

contained	GDF5,	a	known	contributor	to	osteoarthritis	and	height(255).	This	network	also	

contained	BMP6,	a	protein	known	to	be	involved	in	growth	plate	function,(256)	and	the	NOG	

gene,	known	to	be	involved	in	regulation	of	the	BMP	group	of	genes	(two	of	which	are	also	

included	in	the	hot	subnet),	which	is	involved	in	bone	morphogenesis.(257)	(Figure	17a)

	 The	subnet	showing	the	second	highest	amount	of	signal	was	a	group	of	10	genes	with	

the	highest	contributor	being	EFEMP1,	which	has	known	developmental	function.(258)	This	hot	

gene	cluster	is	organized	around	MFAP2,	a	component	of	connective	tissue	microfibrils.(259)	

The	major	partners	of	MFAP2	in	the	enriched	subcomponent	are	the	LOXL	family	of	genes,	

known	to	be	involved	in	metastatic	processes,	and	the	FBLN	family	of	genes,	which	have	a	

theorized	role	in	Marfan	disease.(260)	(Figure	17b)	

	 The	third	highest	subset	is	a	group	of	six	genes	which	contains	GH1	and	GH2,	both	

growth	hormones.	The	CSH	family	are	highly	signal	enriched	partners	with	known	roles	in	infant	

development.(261)	TEAD3	is	another	partner,	and	has	been	implicated	in	pituitary	

development.(262)	(Figure	17c)	

	 While	the	application	of	HotNet2	to	genomic	data	is	not	a	novel	concept,	this	does	

demonstrate	that	subnetworks	exist	within	the	data	representing	compelling	functional	

context.	The	knowledge	of	this	signal	enriches	the	available	reach	of	PRS	and	its	application,	

and	can	be	considered	an	informative	step	of	score	construction.	
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3.4.6	PRETERM	BIRTH	PRS	ASSESSMENT	

	 In	order	to	evaluate	these	methods	on	a	small	dataset	with	a	phenotype	of	specific	

interest,	we	assess	the	ability	of	our	network	PRS	method	to	capture	signal	in	a	small	GWAS	of	

preterm	birth	(1,793	individuals).	We	attempt	to	evaluate	the	amount	of	information	gain	

possible	in	the	DNBC	preterm	birth	dataset	using	network	models	of	PRS,	both	through	

increases	in	prediction	and	by	providing	additional	context	after	score	construction.	

GWAS	Evaluation	

	 To	create	the	dataset	a	GWAS	was	carried	out	on	the	DNBC	data	representing	592,839	

SNPs	captured	using	the	Illumina	Human660W-Quad	BeadChip	microarray.	SNP	annotation	was	

converted	from	hg36	to	hg37	using	the	LiftOver	utility	from	UCSC	genome	browser	utilities.	

Autosomal	chromosomes	were	isolated	from	the	dataset	and	used	to	perform	association	

analysis.	Patients	identified	during	QC/QA	as	having	major	chromosomal	dysfunction	were	

removed.	

	 Data	was	filtered	before	imputation	using	PLINK.	SNPs	with	minor	allele	frequency	

greater	than	0.05	were	extracted.	Variants	with	missing	call	rate	greater	than	0.1	were	

excluded	and	individuals	with	missing	call	rates	greater	than	0.01	were	filtered	from	the	

dataset.	Duplicate	probe	IDs	were	identified	and	filtered.	(Appendix	Figure	7,	Appendix	Figure	

6)	

	 Pre-imputation	phasing	of	data	was	performed	in	SHAPEIT2	using	an	effective	

population	size	of	15,000	and	a	window	parameter	of	2	Mb.	Imputation	was	performed	in	

IMPUTE2	using	the	1,000	Genomes	Phase	3	reference	panel.	The	resulting	set	of	25,920,975	

imputed	SNPs	were	filtered	for	a	quality	score	greater	than	0.8,	representing	high	quality	SNP	
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calls.	The	resulting	data	was	thresholded	for	a	call	probability	of	0.9	in	PLINK	as	well	as	for	

missingness	and	minor	allele	frequency	yielding	a	set	of	5,405,340	imputed	SNPs	of	high	

quality.	Detailed	GWAS	QA/QC	procedure	descriptions	are	provided	in	the	Appendix.	(Appendix	

Figure	8)	

	 The	filtered	data	set	was	then	lifted	over	from	hg37	to	hg38	in	order	to	ensure	

compatibility	with	Ensembl	gene	coordinates	in	build	92.		

	 Data	was	split	into	a	training	set	of	1,344	patients	(636	cases,	708	controls)	and	a	test	

set	of	449	patients	(213	cases,	236	controls).	Association	was	performed	in	the	test	set	using	

PLINK	assuming	binary	phenotype	representing	patients	born	under	37	weeks	gestational	age	

as	case	and	patients	born	after	40	weeks	gestational	age	as	control.	

Traditional	PRS	Formulation	

	 A	traditional	PRS	was	constructed	in	PRSice	as	detailed	with	the	HRS	data	set.	The	

resulting	score	includes	153,222	SNPs	after	clumping.	A	best-fit	threshold	for	SNP	inclusion	of	

0.00055	was	determined.	Validation	on	the	test	set	showed	the	score	to	be	significant	at	p	<	

0.05	threshold	(p	=	0.0295)	with	a	Nagelkerke	R2	value	of	0.014.	

	 Additional	fit	analysis	was	performed	using	a	pseudo-R2	measure	devised	by	Lee	et.	al.	

taking	into	account	disease	prevalence.(263)	The	Lee	R2	measure	uses	an	estimated	prevalence	

of	preterm	birth	of	10.8%	derived	from	a	2017	study	in	a	population	of	1,911,757	North	

Carolina	residents.(264)	The	Lee	R2	value	for	the	full	SNP	PRS	is	0.012.	(Figure	18)	
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Early	Context	Model	

Inclusion	of	All	Gene	Regions	

	 As	with	the	HRS	data,	a	PRS	using	all	gene	regions	with	SNP	coverage	was	first	created	in	

PRSice	as	a	baseline	for	the	effect	of	network	pruning.	The	subset	represents	3.12	million	SNPs	

or	57.78%	of	the	total	set.	The	full	gene	region	model	showed	a	Nagelkerke	R2	of	0.0192	and	a	

Lee	R2	of	0.156.	The	model	was	borderline	significant	with	a	significance	value	of	p=0.011.	

(Figure	18)	

Connectivity	Gated	Model	

	 A	connectivity-gated	model	taking	into	account	the	top	50%	of	nodes	by	degree	

centrality	was	computed.	The	subset	represents	1.96	million	SNPs	or	36.28%	of	all	SNPs.	The	

PRS	resulted	in	a	Nagelkerke	R2	of	0.0101	and	a	Lee	R2	of	0.0082.	The	model	failed	to	achieve	

significance	with	a	p-value	of	p=0.067.	(Figure	18)	

Candidate	Gated	Model	

A	candidate	gene	list	containing	616	genes	curated	from	the	Database	for	Preterm	Birth	

(dbPTB)	was	created.	Genes	represented	in	this	set	were	selected	from	the	graph	and	this	

selection	was	expanded	to	neighboring	nodes.	SNPs	selected	for	the	score	represent	1.95	

million	SNPs	or	36.02%	of	the	total	set	of	SNPs.	The	resulting	subset	of	SNPs	assigned	to	these	

genes	was	isolated	and	used	to	construct	a	PRS.	

The	resulting	PRS	had	a	Nagelkerke	R2	of	0.0148	and	a	Lee	R2	value	of	0.0120.	The	model	

was	borderline	significant	with	a	value	of	p=0.027.	(Figure	18)	
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ROP	Candidate	Gene	Model	

	 As	a	comparator	to	the	PTB	candidate-gene	model,	a	second	candidate-gene	model	was	

created	using	125	genes	with	implied	involvement	in	ROP	based	on	the	review	conducted	in	

Chapter	2.	As	with	the	PTB	candidate	score,	these	genes	were	selected	on	the	graph,	this	

selection	was	expanded	to	neighbors	of	these	genes,	and	SNPs	assigned	to	these	genes	were	

used	in	the	construction	of	a	score	predicting	PTB	with	the	assumption	that	such	a	score’s	

ability	to	predict	the	PTB	phenotype	would	serve	as	an	indicator	of	the	strength	of	the	

interconnectedness	of	these	two	phenotypes.	

	 The	resulting	PRS	had	a	Nagelkerke	R2	of	0.021	and	a	Lee	R2	of	0.017	and	was	significant	

with	a	p	<	0.01.	(Figure	18)	This	surprising	result	seems	to	indicate	that	although	the	difference	

is	small	in	absolute	terms,	the	ROP	candidate	score	outperforms	all	other	PRS	methods	of	PTB	

prediction	evaluated.	In	section	3.4.7	we	consider	in	greater	detail	the	implications	of	this	

difference	in	predictive	ability.		
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Figure	18.	Fit	values	of	preterm	birth	PRS	reflect	the	much	smaller	sample	size,	recouping	a	
much	smaller	overall	percentage	of	the	heritable	variability	in	the	PTB	trait	compared	to	
scores	constructed	from	the	much	larger	GIANT	study.	Interestingly,	the	PRS	constructed	
from	the	ROP	candidate	list	shows	the	strongest	predictive	ability	for	PTB.	The	ROP	candidate	
gene	score	was	significant	(p	<	0.01)	while	the	score	based	on	all	gene	regions	and	preterm	
birth	candidate	gene	lists	showed	borderline	significance	(p	=	0.050	and	p	=	0.057,	
respectively).	
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Figure	19.	Results	of	permutation	analysis.	A	set	of	20,000	permuted	PRS	using	random	
samples	of	SNPs	were	created	across	a	range	of	5%	increments	of	included	SNP	proportions.	
Guides	represent	1.96	SD	from	the	mean	of	the	distribution.	In	the	DNBC	data,	scores	
generally	performed	worse	than	a	random	background	of	equivalent	size,	though	the	ROP	
candidate-gene	score	was	the	only	score	to	outperform	the	mean	random	PRS.	No	score	was	
significantly	different	than	a	score	generated	from	random	background.	

Permutation	Analysis	

	 In	order	to	assess	the	degree	to	which	the	achieved	R2	values	were	significant	compared	

to	a	random	subset	of	SNPs,	a	set	of	1,000	permuted	PRS	using	a	random	selection	of	SNPs	

from	the	full	set	was	performed	in	5%	increments	of	SNP	inclusion.		

	 The	results	of	permutation	testing	showed	all	scores	were	within	1.96	standard	

deviations	of	the	mean	of	all	permuted	R2	values	indicating	that	none	were	significantly	

different	than	a	random	subset	of	SNPs	at	a	threshold	of	p<0.05.	The	score	incorporating	all	

gene	regions	performed	at	a	roughly	equal	level	to	a	random	subset	of	SNPs	containing	a	55%-
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60%	subset	of	random	SNPs	drawn	from	the	full	set	without	replacement.	While	we	are	able	to	

see	that	the	ROP	score	does	not	significantly	outperform	a	random	subset	of	the	same	size,	we	

are	able	to	assess	that	it	performs	better	than	all	other	scores	with	respect	to	random	

background.	(Figure	19)	

	 This	finding	again	indicates	that	the	role	of	network	context	in	genetic	heritability	may	

be	overshadowed	by	the	need	for	broadly	inclusive	measures	with	full	coverage	of	the	genome.	

Late	Context	Model	

Module	Analysis	

	 As	with	the	HRS	data,	a	p-value	threshold	was	applied	to	the	DNBC	graph.	Due	to	the	

low	significance	values	resulting	from	the	small	size	of	the	study,	the	PRSice	recommended	best	

fit	threshold	of	0.0006	resulted	in	only	111	genes	being	admitted	to	the	model.	In	order	to	

achieve	a	connected	largest	component,	this	threshold	was	raised	to	0.01.	The	resulting	subset	

of	genes	represented	3,557	nodes,	or	24.7%	of	the	total	nodes	in	the	graph.		

	 After	community	detection,	20	communities	were	distinguished,	varying	in	size	from	6	

nodes	to	492	nodes.	Two	clusters	were	significant	at	the	p	<	0.05	level	in	their	enrichment	for	

effect	size	signal.	

	 Cluster	11	includes	153	nodes	accounting	for	7.8%	of	total	effect	size,	significant	for	high	

effect	size	relative	to	its	cluster	size	(p=0.014).	The	cluster	is	most	enriched	for	cellular	

signalling	and	synaptic	function,	though	no	gene	set	achieves	significance	at	an	adjusted	p	<	

0.05.	Evaluation	of	AmiGO2	plots	of	nested	gene	ontology	information	show	aggregation	of	

signal	in	synaptic	transmission		and	muscle	system	process	ontologies.	(Figure	20)	
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Figure	20.	AmiGO2	plots	of	DNBC	Cluster	11	gene	ontology	hierarchies	with	multiple	
members	in	the	top	20	enriched	terms.	Enriched	terms	are	annotated	with	a	red	asterisk.	Full	
list	of	top	enriched	terms	provided	in	Appendix	Figure	13.	

	

	 Cluster	13	includes	366	nodes	accounting	for	13.7%	of	total	effect	size.	It	does	not	

achieve	statistical	significance	for	enrichment	of	effect	size	signal.	No	individual	pathway	

reaches	significance	when	considering	adjusted	p-values,	but	the	top	enriched	gene	sets	

represent	cellular	adhesion	and	catalytic	activity.	Investigation	of	AmiGO2	plots	show	that	

signal	appears	to	be	spread	across	several	discrete	systems.	However,	neuron	projection	and	



110	

ion	transport	show	a	degree	of	ontological	enrichment,	and	the	top	performing	group	

representing	cellular	adhesion	may	represent	a	clinically	interesting	target.	(Figure	21)	

	

Figure	21.	AmiGO2	plots	of	DNBC	Cluster	13	gene	ontology	hierarchies	with	multiple	
members	in	the	top	20	enriched	terms.	Cluster	13	contained	the	largest	share	of	effect	size	
signal.	Enriched	terms	are	annotated	with	a	red	asterisk.	Full	list	of	top	enriched	terms	
provided	in	Appendix	Figure	14.	
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	 Taken	together	these	loose	descriptive	enrichments	give	a	general	picture	of	what	

causes	may	be	contributing	to	preterm	birth,	though	they	ultimately	represent	a	very	small	

percentage	of	the	total	heritable	variability	that	can	be	captured	in	a	study	of	such	small	sample	

size.	In	addition,	the	degree	to	which	information	can	be	gleaned	from	a	small	sample	study	

appears	to	be	commensurately	reduced	when	compared	to	the	GIANT	study,	although	

communities	enriched	for	effect	size	signal	again	appear	to	give	more	focused	results	when	

inspecting	enrichment.	

HotNet2	Analysis	

	 HotNet	analysis	of	the	DNBC	data	found	no	subnetworks	significantly	enriched	for	

signal.	Due	to	low	significance	in	the	general	GWAS,	the	top	identified	enriched	subnetworks	

were	extremely	large,	with	the	top	enriched	subnetwork	containing	111	nodes	and	the	smallest	

of	the	top	10	identified	subnetworks	was	composed	of	24	nodes.	

3.4.7	PRETERM	BIRTH	AND	ROP	OVERLAP	ASSESSMENT	

	 In	order	to	assess	the	degree	to	which	ROP	and	PTB	were	genetically	convolved,	an	

assessment	of	the	overlap	between	network	topologies	was	considered.	As	the	number	of	

cases	of	ROP	in	the	DNBC	data	set	is	quite	small,	the	analysis	makes	use	of	candidate	gene	lists	

as	a	basis	of	inspecting	network	overlap	by	way	of	the	PTB	candidate	gene	score.	

	 Of	the	125	genes	identified	as	candidates	for	ROP	disease,	27	appear	on	the	list	of	PTB	

genes	curated	by	dbPtB.	In	order	to	assess	better	the	degree	to	which	these	two	gene	sets	are	

related,	the	selection	of	genes	is	expanded	to	include	neighbors	of	both	gene	sets.	The	two	

gene	sets	are	then	inspected	for	the	degree	of	overlap	between	the	sets.	
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Figure	22.	The	overlap	between	the	ROP	and	PTB	candidate	gene	regions	encompasses	91%	
of	the	genes	in	the	ROP	candidate	gene	score.	Despite	the	small	difference	between	the	
genes	encompassed	by	these	network	topologies,	the	ROP	score	performs	much	more	
effectively	than	the	PTB	score.		

	

	 The	expanded	ROP	cover	set	includes	2,657	genes	(17%	of	the	total	graph)	while	the	

network	cover	for	the	PTB	gene	set	includes	7,425	genes	(49%	of	the	total	graph).		The	

intersection	of	these	two	sets	contains	2,425	genes	(24%	of	all	genes	in	the	union	of	both	

candidate	gene	sets).	(Figure	22)	

	 In	order	to	determine	if	the	number	of	overlapping	nodes	was	significantly	different	

than	would	be	expected	by	chance,	a	permutation	analysis	of	the	graph	was	performed	with	

sets	of	randomly	selected	nodes	of	the	same	size	as	the	two	candidate	gene	sets	and	this	



113	

background	was	compared	to	the	observed	overlap.	The	analysis	determined	that	the	overlap	

between	the	two	candidate	gene	groups	was	smaller	than	expected	by	chance	(p	<	0.01).		

One	possibility	for	this	result	is	that	the	clustering	of	genes	on	the	graph	is	more	

compact	than	would	be	expected	from	a	random	set	of	SNPs	is	that	curated	gene	sets	may	

cluster	in	the	graph,	leading	to	the	number	of	nodes	included	being	smaller,	and	therefore	the	

number	of	overlapping	nodes	would	be	expected	to	be	smaller.	In	order	to	assess	whether	this	

significant	result	was	due	to	statistically	more	compact	regions	than	would	be	expected	from	a	

random	sample	due	to	curation	of	the	gene	sets	reflecting	a	pattern	of	investigating	the	

partners	of	known	proteins,	permutations	of	random	gene	sets	the	same	size	as	the	candidate	

gene	lists	were	generated	and	the	size	of	their	cover	was	compared	to	the	observed	candidate	

gene	lists.	The	result	of	this	analysis	found	that	the	graph	cover	represented	by	the	ROP	

candidate	list	was	significantly	smaller	than	would	be	expected	from	a	random	subset	of	SNPs	

(p	<	0.01),	as	is	the	cover	of	the	dbPtB	candidate	graph	(p	=	0.01118).	

	 With	the	understanding	that	both	subgraphs	are	significantly	more	compact	than	could	

be	expected	from	a	random	graph,	a	further	permuted	analysis	was	undertaken	to	attempt	to	

investigate	whether	the	ratio	of	overlap	between	these	two	compact	groups	was	significant,	

noting	that	most	random	gene	sets	would	tend	toward	a	larger	size,	making	this	analysis	

conservative	compared	to	a	random	graph.	The	ratio	of	overlapping	genes	between	the	two	

candidate	scores	was	shown	to	be	higher	than	expected	by	chance	by	permutation	testing	(p	<	

0.01)	indicating	a	large	degree	of	overlap	between	these	two	expanded	candidate	scores	after	

taking	into	account	the	size	of	the	sets	and	their	compact	size.	
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Performance	of	ROP	Candidate	Gene	Score	vs	Preterm	Birth	Score	

	 To	assess	the	degree	to	which	the	candidate	gene	list	of	ROP	was	predictive	of	PTB,	a	

candidate	gene	PRS	was	constructed	using	the	ROP	gene	list,	and	this	score	was	evaluated	with	

respect	to	the	preterm	birth	trait.	Surprisingly,	the	ROP	gene-set	score	achieved	an	R2	of	

0.02141	(p	<	0.01)	outperformed	all	other	PRS	built	to	investigate	PTB,	including	the	score	

incorporating	all	captured	SNPs.	

	 As	the	PRSice	model	sets	a	dynamic	threshold	for	inclusion	of	SNPs	based	on	the	best	fit	

for	a	specific	model,	this	threshold	was	investigated	to	determine	if	using	a	fixed	p-value	

threshold	would	decrease	the	predictive	value	of	the	ROP	score	relative	to	the	other	PRS.	The	

results	of	this	analysis	showed	that	a	more	lenient	threshold	significantly	penalized	the	scores	

incorporating	all	SNPs	and	gene	SNPs	due	to	increased	SNP	inclusion	while	the	PTB	candidate	

gene	score	remained	relatively	stable.	The	ROP	score	suffered	a	drop	in	predictive	ability	and	

showed	marginally	worse	performance	than	the	candidate	gene	score	at	a	threshold	of	p	<	

0.01,	though	it	still	outperformed	the	all-SNP	and	gene-SNP	scores.	(Appendix	Figure	16)	

	 Investigation	of	the	SNP	set	used	to	construct	the	ROP	score	included	61,327	SNPs	

mapping	to	232	genes	not	included	in	the	PTB	candidate	gene	PRS.	Of	these	61,327	SNPs,	

36,196	assigned	to	161	genes	are	not	SNPs	that	appear	in	the	PTB	score	due	to	multimapping.	

After	filtering	these	SNPs	for	a	significance	value	of	0.249	(the	same	value	used	for	the	ROP	PRS	

best	fit),	1,225	SNPs	mapped	to	72	genes	remain.	

	 This	list	of	genes	was	analyzed	according	to	the	percentage	of	total	effect	size	and	the	

minimum	significance	value	included	in	the	gene	region.	(Appendix	Figure	15)	Top	results	

included	genes	with	known	developmental	function.	USP6NL	is	the	largest	contributor	of	effect,	
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containing	198	SNPs	responsible	for	19%	of	the	total	effect	in	the	ROP	specific	group.	USP6NL	is	

potentially	interesting	as	it	has	previously	been	identified	as	having	decreased	methylation	in	

studies	of	infant	rat	lung.(265)	USP6NL	has	also	been	shown	to	play	a	role	in	developmental	

competence	in	oocytes.(266)		

	 RBMS1	is	the	second	highest	contributor	of	effect,	with	7%	of	total	effect	across	99	SNPs	

represented	in	the	ROP	specific	gene	group.	RBMS1	is	a	previously	known	participant	in	

estradiol	release.(267)	It	has	also	been	described	to	display	differential	methylation	and	RNA	

expression	in	human	placenta.(268)	FLRT2	is	the	fourth	highest	contributor	of	effect,	with	4.7%	

of	total	effect	across	53	SNPs	represented	in	the	ROP	specific	gene	group.	FLRT2	is	a	previously	

patented	biomarker	for	preeclampsia.(269)	FLRT2	has	also	been	implied	to	have	a	role	in	

placental	development	in	mouse	models.(270)	

Adding	biological	context	to	a	group	of	genes	implied	to	be	the	most	highly	predictive	

subset	of	the	data	investigated	strongly	implies	that	this	network	subset	has	substantial	

involvement	with	the	preterm	birth	phenotype.	Further,	the	identification	of	this	group	of	

genes	associated	with	ROP	candidate	genes	but	distinct	from	the	group	of	curated	dbPtB	

candidates	suggests	a	strong	interdependence	between	network	topologies	associated	with	

ROP	and	those	associated	with	preterm	birth.	

Enrichment	of	Preterm	Birth	for	ROP	Genes	

	 In	order	to	further	characterize	the	degree	to	which	ROP	and	PTB	candidate	gene	covers	

are	related,	the	PTB	candidate	gene	score	was	analyzed	for	enrichment	for	ROP	signal	using	

GSEA	methods.		
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	 The	PTB	candidate	gene	PRS	gene	set	was	used	as	a	ranked	list	with	-log10(p)	as	the	

ranking	statistic.	When	performing	GSEA	on	the	PTB	score	genes	using	the	MSigDb	gene	

ontology	gene	set	of	1,736	gene	sets,	the	ROP	candidate	gene	set	of	127	genes	ranks	1,497	with	

a	normalized	enrichment	score	of	1.427	and	a	p-value	of	0.1069	(adjusted	p-value	0.5694).	

	 The	top	enriched	gene	sets	are	those	for	the	GO_MEMBRANE_PROTEIN_COMPLEX	

(p=3.2e-4)	and	GO_REGULATION_OF_MEMBRANE_POTENTIAL	sets	(p=7.7e-04).	Though	these	

are	the	top	performing	gene	sets,	neither	significance	score	survives	adjustment	(both	p=0.19).	

(Appendix	Figure	17)	 	



117	

3.5	DISCUSSION	

	 The	analysis	and	prediction	of	rare	and	complex	diseases	using	GWAS	faces	significant	

challenges	due	to	the	inherent	limitations	of	such	conditions.	Limited	potential	for	recruitment	

is	likely	to	remain	the	largest	obstacle	to	overcome	as	researchers	attempt	to	arrive	at	better	

methods	to	identify	at-risk	individuals	for	these	severe	disease	phenotypes.	While	the	

attainment	of	large	cohort	sizes	may	be	possible	for	diseases	like	preterm	birth,	which	are	

estimated	to	affect	more	than	10%	of	the	population,	diseases	with	rare	presentation	like	ROP	

will	remain	difficult	to	achieve	recruitment	sizes	in	the	tens	or	hundreds	of	thousands,	leading	

to	an	open	question	of	the	degree	to	which	genetic	studies	will	be	able	to	predict	the	

occurrence	of	such	conditions.	

	 Several	limitations	of	the	current	study	exist,	and	indeed	the	foremost	among	these	is	

the	small	size	of	the	study	cohort	for	preterm	birth.	The	Danish	National	Birth	Cohort	GENEVA	

data	set	represents	one	of	the	most	well	curated	preterm	birth	GWAS	publicly	available	to	

researchers.	However,	in	order	to	adequately	create	predictive	measures	for	PTB,	it	is	possible	

that	a	cohort	ten	to	one-hundred	times	the	size	of	the	DNBC	is	necessary.	

	 Additionally,	the	importance	of	strong	phenotyping	and	tracking	of	environmental	

effects	is	of	the	utmost	importance.	While	the	classification	of	preterm	infants	as	those	under	

the	age	of	37	weeks	is	a	valid	distinction,	more	extreme	preterm	infants	may	represent	a	group	

more	likely	to	possess	genetic	variants	of	high	risk.	Studies	of	ROP	have	found	that	gestational	

age	represents	a	significant	risk	factor	in	regards	to	disease	progression,	and	as	such	extreme	

phenotypic	groups	may	present	one	avenue	by	which	to	increase	signal	in	genetic	studies	of	
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these	disorders.	(271)	However,	such	techniques	necessarily	decrease	sample	sizes	and	the	

tradeoffs	of	such	an	approach	would	need	to	be	considered	carefully.	

It	is	also	worth	considering	the	fact	that	only	infant	genetics	are	considered	in	this	study.	

Effects	relating	to	PTB	originating	from	the	mother’s	genetic	code	are	only	able	to	be	detected	

from	their	existence	in	the	infant	genome.	Further	complicating	this	analysis	is	the	fact	that	X-

chromosome	signal	is	not	represented	in	this	study,	as	it	is	removed	in	accordance	with	

accepted	methods	of	PRS	construction	in	order	to	avoid	complications	due	to	the	silencing	of	X-

chromosomes	in	females.	As	PTB	by	definition	affects	one	sex	of	parent	more	than	another,	it	is	

of	interest	to	include	as	much	sex-specific	signal	as	possible.	With	these	limitations	in	mind,	it	

may	be	prudent	to	replicate	the	results	of	this	study	in	the	DNBC	cohort	of	mothers	matched	

with	the	infant	sample.	

Difficulties	persist	in	the	integration	of	additional	contextual	information	with	

traditional	PRS	construction.	While	some	evidence	exists	that	scores	including	gene	regions	and	

specific	gene	sets	may	be	able	to	perform	at	similar	levels	to	traditional	PRS,	the	inability	of	any	

score	to	significantly	outperform	a	random	set	of	SNPs	speaks	to	the	importance	of	genomic	

coverage	over	a	more	focused	approach.	Evidence	remains	strong	that	many	complex	traits	are	

driven	by	infinitesimal	contributions	from	many	if	not	the	majority	of	SNPs	in	the	genome.		

The	difficulties	faced	by	network	methods	are	underscored	by	the	continued	validation	

of	an	omnigenic	perspective	toward	complex	disease.	Such	a	model	places	importance	on	the	

idea	of	numerous	weak	trans-acting	genetic	elements	influencing	disease	through	a	subset	of	

clinically	relevant	core	genes,	and	these	relationships	are	difficult	to	detect	and	

categorize.(122,123)	As	such,	network	databases	of	PPI	data	may	have	meaningful	omissions	
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which	make	the	construction	of	network-based	scores	difficult.	Recent	efforts	have	been	made	

for	so-called	TWAS	studies	in	order	to	exhaustively	interrogate	transcriptomic	events	with	the	

goal	of	supplementing	such	annotation,	but	these	resources	remain	in	a	nascent	state.(272)	

There	remain	many	ways	by	which	a	network-based	PRS	may	be	improved.	For	example,	

it	may	be	possible	to	create	a	weighted	measure	of	genomic	regions,	while	retaining	the	

majority	of	intergenic	SNPs	and	boosting	the	signal	of	SNPs	more	likely	to	have	high	effect.	

Several	preexisting	gene	scoring	methods	exist	that	may	be	useful	to	this	end,	including	VEGAS	

and	MAGMA.	

It	may	also	be	possible	to	improve	the	performance	of	network-based	PRS	methods	by	

incorporating	more	advanced	methods	of	network-based	pruning.	While	the	early	approaches	

in	this	paper	relied	on	pruning	based	on	connectivity-based	manipulation	of	the	graph,	this	

excludes	valuable	context	regarding	the	degree	to	which	regions	of	the	network	may	possess	

elevated	significance	or	effect	values.	The	strong	performance	of	HotNet2	on	the	GIANT	dataset	

indicates	that	such	subnetworks	exist	and	can	be	linked	to	biological	functions,	and	methods	

that	are	computationally	efficient	and	able	to	identify	such	regions	should	remain	an	important	

focus.	

Candidate	score	treatment	may	also	be	able	to	be	improved	by	the	use	of	more	fitting	

network	modeling.	In	this	investigation,	expansion	of	nodes	to	neighboring	nodes	was	used	as	a	

starting	point.	It	is	possible	that	other	network	methods	of	creating	connected	components	

may	be	more	effective.	For	example,	use	of	shortest	path	methods	or	random-walk	network	

metrics	may	better	represent	candidate	gene	regions	with	larger	genomic	coverage	by	retaining	

more	genomic	information.	
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The	degree	to	which	linkage	disequilibrium	is	considered	in	network	methods	of	PRS	is	

also	likely	to	remain	an	important	concern.	In	this	analysis,	LD	was	largely	dealt	with	after	the	

network	pruning	of	the	graph.	It	may	prove	more	prudent	to	perform	this	step	either	before	

network	construction	or,	as	is	the	case	in	the	PRSet	method,	as	a	joint	step	in	the	gene-scoring	

step.	(273)	

Late	network	context	methods	of	interrogating	PRS	constructions	may	be	the	most	

interesting	future	path	for	development.	In	large	sample	sizes,	there	appears	to	be	appreciable	

value	in	leveraging	existing	methods	for	the	dissection	of	network	data.	The	ability	of	HotNet2	

to	identify	subnetworks	of	interest	to	the	height	phenotype	is	impressive,	and	similar	methods	

could	be	leveraged	in	not	only	the	interpretation	of	data	but	possibly	the	creation	of	scores.	

While	the	application	of	the	Louvain	algorithm	to	detect	communities	is	a	somewhat	

simplistic	approach,	it	does	yield	interesting	summary	information	that	may	be	of	use	to	

researchers	who	have	a	strong	grasp	of	gene	ontology	and	gene	set	analysis.	With	more	

complex	clustering	methods,	it	is	possible	that	such	investigations	would	achieve	more	

informative	results.	For	example,	the	current	treatment	of	network	pruning	in	the	late	context	

modularity	method	ignores	removed	paths	between	nodes.	A	possible	future	direction	would	

be	to	impose	a	weighting	scheme	on	the	graph	to	preserve	these	connections	instead	of	

removing	them	outright,	with	the	goal	of	preserving	additional	network	structure.	

The	investigation	of	overlap	in	ROP	and	PTB	is	interesting	for	several	reasons.	While	no	

score	significantly	outperformed	the	random	background	model,	the	strong	performance	of	the	

ROP	candidate	gene	score	in	predicting	PTB	relative	to	other	score	formulations	was	

unexpected.	The	ability	to	compare	dissimilar	candidate	gene	sets	and	assess	the	difference	in	
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information	content	between	them	is	an	interesting	direction	to	consider	and	there	is	a	

suggestion	that	such	investigations	could	help	detect	biological	systems	previously	unexplored	

for	disease	effects.	

It	is	necessary	to	temper	interpretation	of	this	result	with	several	caveats.	Again,	the	

sample	size	of	the	DNBC	data	set	is	quite	small	by	PRS	standards,	and	the	PRS	evaluation	

underscores	the	small	amount	of	genetically	heritable	variability	that	can	be	detected	with	such	

a	population	(roughly	2%	of	PTB	outcomes).	Additionally,	as	explained	in	detail	in	Chapter	2,	the	

genetic	effects	of	both	ROP	and	PTB	are	unsettled.	It	is	possible	that	the	large	increase	in	

predictive	power	of	the	ROP	candidate	gene	score	is	due	to	random	variability	in	the	dataset	or	

is	a	function	of	overfit	to	the	small	test	set.	The	inability	of	the	HotNet2	evaluation	to	come	to	

useful	conclusions	on	the	DNBC	data	set	also	supports	this	concern.	It	remains	difficult	to	

isolate	systems	that	are	strongly	indicative	of	PTB	pathology	from	the	current	data.	

With	those	warnings	in	mind,	these	results	cannot	be	interpreted	as	favorable	to	the	

idea	that	the	genetic	causes	of	ROP	can	easily	be	separated	from	those	causing	PTB.	Based	on	

the	candidate-gene	analysis,	there	is	a	suggestion	that	the	areas	of	the	PPI	network	which	have	

been	the	most	closely	scrutinized	for	ROP	signal	are	the	same	that	contain	some	of	the	

strongest	predictors	of	PTB.	Taking	into	account	this	information,	it	is	possible	that	the	cohort	

sizes	for	detection	of	ROP-specific	signal	may	be	prohibitively	large	given	the	relative	rarity	of	

the	disease	and	the	lack	of	well	annotated	cases	in	large	consortium	studies.	
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3.6	CONCLUSIONS	

	 In	this	study	we	have	evaluated	two	methods	by	which	to	integrate	network	context	

into	the	construction	and	analysis	of	PRS.	This	study	is	to	our	knowledge	the	first	attempt	to	

leverage	PPI	network	topology	to	augment	the	construction	of	PRS.	We	present	three	novel	

strategies	for	performing	pruning	of	SNPs	prior	to	score	construction,	each	testing	unique	

hypotheses	regarding	the	information	content	of	each	score.	While	methods	of	integrating	

network	context	into	filtering	and	weighting	steps	of	construction	of	PRS	did	not	outperform	a	

random	background	sample,	there	is	some	evidence	that	such	measures	may	have	applications	

in	the	comparison	and	construction	of	candidate	gene	studies,	as	evidenced	by	the	ability	of	

candidate	scores	to	find	interesting	subnetworks	with	significant	contribution	to	disease	

outcome.	Integration	of	network	context	after	score	construction	as	a	method	of	elucidating	

the	biological	motivators	of	such	scores	shows	promise,	with	HotNet2	showing	an	ability	to	

identify	networks	with	previously	described	biological	function.	The	late	context	modularity	

approach	also	shows	some	promise	for	the	description	of	which	biological	systems	provide	the	

most	potential	discriminatory	ability	in	a	constructed	PRS.	A	novel	method	used	to	separate	

two	coincident	phenotypes	using	the	example	of	ROP	and	DNBC	shows	some	promise	as	a	

means	of	quantifying	the	feasibility	of	distinguishing	two	simultaneously	occurring	conditions	

with	theorized	genetic	causes	and	may	have	a	role	in	the	estimation	of	power	calculations	for	

such	studies.	Though	concerns	about	sample	size	and	phenotyping	represent	real	obstacles	to	

the	development	of	predicting	the	onset	of	rare	and	complex	disease	conditions,	the	

importance	of	addressing	them	remains	just	as	pressing.	 	
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CHAPTER	4:	DISCUSSION	AND	CONCLUSIONS	

	 Despite	the	recent	success	of	genetic	risk	scoring	in	analyzing	common	disease	and	

biometric	phenotypes,	it	is	clear	that	these	methods	face	considerable	challenges	when	applied	

to	increasingly	rare	and	complex	conditions.	There	is	rising	awareness	of	the	challenges	of	a	

described	omnigenic	model	of	disease,	where	instead	of	a	subset	of	genetic	elements	

contributing	substantial	disruption	driving	disease,	every	genetic	marker	in	the	genome	

contributes	an	infinitesimal	fraction	of	signal	by	acting	weakly	through	a	subset	of	core	

genes.(122,123)	In	such	a	model,	the	ability	to	pinpoint	the	biological	causes	of	a	condition	

from	genetic	data	becomes	more	difficult	despite	increasing	resources	for	recruitment	of	

individuals	predisposed	to	such	conditions.	

	 In	this	manuscript	we	have	considered	in	depth	the	complex	traits	of	preterm	birth	and	

retinopathy	of	prematurity,	two	conditions	which	are	interdependent	and	occur	simultaneously	

but	are	theorized	to	have	distinct	pathology	and	root	biological	causes.	The	concerns	specific	to	

these	conditions	make	improved	methods	of	early	detection	an	important	focus	of	current	

research.	

In	an	attempt	to	create	a	novel	evidence-based	list	of	candidate	genes	to	serve	as	a	tool	

for	the	investigation	of	ROP,	we	have	conducted	an	extensive	review	of	existing	literature.	In	

doing	so	we	have	documented	strong	clinician	interest	in	angiogenic	factors	in	the	form	of	

many	focused	single-variant	studies.	The	success	of	treatments	for	ROP	using	anti-angiogenic	

agents	like	bevacizumab	has	strengthened	the	perceived	role	of	VEGF	and	the	gene	products	
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with	which	it	associates,	although	definitive	evidence	of	genetic	involvement	has	remained	

elusive.	

Implication	of	other	systems	including	those	related	to	Norrie	disease	and	FEVR,	red	

blood	cell	production	systems	involving	Erythropoietin,	and	broad	inflammatory	mediator	

systems,	among	other	varied	causes,	none	of	which	show	evidence	of	a	single	strong	signal,	

implies	a	complex	disease	etiology	consistent	with	other	investigated	complex	traits	with	varied	

causes	like	height	and	cardiovascular	risk.	It	is	also	worth	noting	that	many	of	the	candidate	

genes	identified	from	previous	studies	are	the	result	of	single-variant	tests	of	questionable	

power,	often	taking	into	account	only	a	small	sample	of	individuals.	Taking	this	information	into	

account,	we	suggest	the	need	for	approaches	leveraging	increased	power	and	propose	the	

integration	of	additional	context	with	genomic	data	in	order	to	arrive	at	the	root	causes	of	this	

disease.	

The	literature	on	ROP	also	supports	the	view	that	its	genetic	causes	are	similar	to	those	

of	PTB.	IGF-I	and	its	involvement	in	preterm	birth	as	a	factor	correlated	with	birth	weight	serves	

as	one	example.(274,275)	Similar	support	is	found	for	the	involvement	of	inflammatory	agents	

like	the	interleukin	family	of	proteins	and	broad	cardiovascular	factors	like	eNOS.	However,	the	

same	factors	have	theorized	roles	in	PTB	as	well.(276)	The	phenotype	of	extreme	low	birth	

weight	in	preterm	infants	is	thus	to	some	degree	a	chicken-and-egg	situation,	and	one	that	

exposes	infants	to	a	host	of	potential	disease	conditions	including	retinopathy	of	prematurity.		

These	findings	point	to	the	need	for	assessment	of	the	degree	of	interdependence	

between	similar	but	distinct	disorders	at	a	genetic	level	before	recruitment	in	order	to	

understand	the	sample	sizes	necessary	for	meaningful	findings	while	maximizing	the	potential	
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for	predictive	power.	In	order	to	form	a	basis	for	answering	such	questions	and	investigate	

ways	in	which	PRS	may	be	improved,	we	consider	network	methods	of	supplementing	both	the	

construction	and	interpretation	of	polygenic	risk	scores.	

Our	initial	attempt	to	discern	whether	additional	signal	can	be	recouped	by	the	use	of	

network	methods	yielded	modest	evidence	that	it	was	possible	to	identify	network	features	

with	heightened	influence.	Intergenic	regions	can	be	shown	to	include	fewer	SNPs	of	strong	

significance,	and	highly	connected	gene	regions	can	be	shown	to	contribute	higher	amounts	of	

effect	size	and	more	extreme	average	significance	than	other	regions	selected	at	random.	

	 However,	these	gains	seem	to	disappear	when	placed	in	the	larger	genome-wide	

context	of	a	polygenic	risk	score.	Ultimately,	our	investigation	into	the	use	of	networks	to	

increase	the	power	of	PRS	signal	underscores	the	importance	of	global	network	coverage	over	

subset	or	focused	approaches.	We	find	that	decreasing	SNP	coverage	even	in	a	focused	manner	

underperforms	relative	to	inclusion	of	all	SNPs	in	most	cases.	Indeed,	we	find	that	such	

methods	underperform	random	subsets	of	SNPs	of	similar	size.	Additional	care	is	required	not	

only	to	focus	on	variants	with	high	contribution	to	disease,	but	also	to	retain	the	maximum	

amount	of	signal	available	in	a	complete	dataset.	Methods	of	weighting	while	retaining	a	large	

subset	of	SNPs	may	be	a	fruitful	area	of	investigation	going	forward.	In	particular,	dynamic	

weighting	approaches	which	take	into	account	complex	collections	of	traits	represented	by	

machine	learning	methods	like	neural	networks	may	represent	one	possible	avenue	of	

improvement.	

	 While	connectivity	and	full	gene	set	methods	approximated	the	level	of	fit	imparted	by	

traditional	PRS	methods,	the	methods	used	to	create	genewise	scores	employed	in	this	
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document	represents	only	a	small	subset	of	available	gene	weighting	techniques.	Approaches	

like	VEGAS	and	GSA-SNP	include	additional	context	in	the	formulation	of	gene	scores	beyond	

the	region	represented	or	minimum	p-value	within	the	region.(277,278)	Incorporation	of	more	

sophisticated	scoring	measures	while	retaining	intergenic	SNPs	may	represent	one	possible	

pathway	to	improvement	of	genetic	scoring	metrics.	

	 Gene	set	and	network	context	methods	have	been	another	area	by	which	researchers	

have	sought	to	increase	the	power	of	risk	assessment.	Methods	by	Levine	and	Horvath	

leveraging	weighted	gene	co-expression	networks	and	minibatching	were	shown	to	provide	

advantages	over	traditional	PRS	while	also	providing	information	uncorrelated	with	traditional	

PRS	formulations.(279)	Additional	unpublished	work	by	Choi	is	also	underway	investigating	

methods	of	incorporating	gene	set	analysis	into	PRS	formulation.(273)	With	the	successes	

demonstrated	by	these	methods,	it	seems	likely	that	network	methods	will	have	some	part	to	

play	in	the	expansion	of	PRS	methods	over	time.	

	 We	have	also	provided	evidence	that	secondary	analysis	of	polygenic	risk	scores	may	be	

one	avenue	by	which	additional	information	may	be	gleaned	from	genetic	studies	of	complex	

traits.	HotNet2	analysis	of	summary	GWAS	data	associated	with	height	was	able	to	identify	a	

selection	of	gene	networks	with	existing	support	for	their	biological	involvement	in	trait	

development	despite	not	achieving	strong	significance	across	the	full	analysis.	Though	these	

methods	were	unable	to	generalize	to	the	extremely	small	sample	sizes	of	the	preterm	birth	

dataset,	their	success	in	the	height	data	set	suggests	that	there	may	be	potential	for	future	

development	of	tools	using	a	similar	approach	for	deriving	network	context	from	PRS	
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information	and	their	application	in	midsized	datasets	in	the	tens	of	thousands	of	participants	

range	should	be	evaluated.	

	 We	also	evaluate	a	novel	approach	for	performing	community	detection	in	constructed	

PRS.	Community-based	enrichment	analysis	of	PRS	results	was	less	clear	in	its	ability	to	provide	

additional	context	to	studies	of	complex	traits,	but	was	able	to	yield	interesting	results	

regarding	enrichment	for	gene	ontology	terms	potentially	relevant	to	disease	context.	Unlike	

HotNet,	the	Louvain	community	detection	algorithm	is	able	to	quickly	digest	large	graphs	and	

arrive	at	subnetworks	reflecting	graph	structure.	However,	this	speed	comes	at	the	cost	of	

structural	context	reflecting	the	clustering	of	signal	in	specific	areas	of	the	graph,	which	

HotNet2	provides.	It	is	possible	that	more	complex	community	detection	approaches	are	

necessary	for	the	task	of	enrichment	analysis.	

	 Such	methods	also	rely	on	gene	set	annotations	which	must	be	defined	a	priori,	and	as	

such	a	deep	understanding	of	these	collections	is	necessary	in	order	to	derive	meaningful	

contextual	information.	Interactive	tools	for	broad	exploration	of	complex	gene	sets	are	

compelling,	but	must	be	matched	with	domain	experience	in	order	to	yield	useful	conclusions.	

A	novel	approach	using	network-enriched	candidate-gene	PRS	to	compare	competing	

phenotypes	met	with	qualified	success.	Despite	the	caveat	of	extremely	small	sample	size,	an	

analysis	of	the	differences	between	the	network	area	occupied	by	ROP	candidate	gene	lists	and	

PTB	candidate	gene	lists	highlighted	that	the	area	exclusive	to	ROP	contained	significant	signal	

for	PTB.	This	suggests	that	the	extraction	of	signal	exclusive	to	ROP	from	PTB	may	involve	

recruitment	of	especially	large	cohorts	relative	to	other	complex	trait	studies.	Future	directions	

for	method	development	may	focus	on	the	ability	to	leverage	pilot	studies	of	rare	genetic	
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disorders	to	estimate	their	dissimilarity	from	other	distinct	disorders	in	order	to	supplement	

power	calculations	to	determine	if	adequate	recruitment	is	a	tractable	goal.	

	 In	the	case	of	the	study	at	hand,	it	is	an	important	caveat	to	note	the	small	sample	size	

of	the	discovery	cohort	used	for	the	analysis	of	PTB.	Due	to	the	large	number	of	SNPs	

considered	relative	to	the	sample,	it	is	likely	that	the	resulting	GWAS	is	enriched	for	less	

common	variants	with	spurious	high	significance	in	the	training	set.	This	enrichment	is	likely	to	

explain	to	a	degree	the	decreasing	performance	of	the	PRS	at	predicting	the	test	set	as	a	larger	

proportion	of	SNPs	is	added	to	the	score,	increasing	the	noise	captured	by	the	model.	In	

contrast,	with	adequate	sample	size	(as	with	the	GIANT	dataset),	and	therefore	precise	

estimates	of	effect	size,	it	appears	that	a	significant	amount	of	information	is	lost	as	the	

number	of	SNPs	included	in	the	score	is	reduced.	Likewise,	the	small	size	of	the	test	set	leads	to	

the	possibility	of	overfit,	as	all	predictive	SNPs	may	not	be	represented	in	the	test	data.	

When	considering	the	candidate	gene	score	results	it	is	also	important	to	note	that	the	

correlation	structure	of	SNPs	is	a	meaningful	concern.	When	we	subtract	candidate	SNPs	that	

had	previously	been	identified	as	important	in	a	disorder	of	interest,	this	forms	an	estimate	of	

the	degree	to	which	those	regions	influence	the	overall	score,	allowing	us	to	assess	their	

impact.	However,		correlated	SNPs	within	the	same	LD	block	may	recapitulate	the	same	signal.	

A	refocused	approach	evaluating	clumped	tag	SNPs	before	the	use	of	PRSice	may	better	reflect	

the	degree	of	signal	captured	by	these	regions.	

More	nuanced	general	methods	for	LD	clumping	are	also	an	active	interest	in	the	

improvement	of	PRS	development.	Methods	by	Shing	Wan	Choi	for	PRSet	focus	on	gene-set-

based	clumping	methods	in	order	to	ensure	coverage	across	all	gene	sets.(273)	A	similar	
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approach	to	network-based	SNPs	may	involve	clumping	based	on	single	genes	or	network	

neighborhoods	in	order	to	ensure	the	best	clumped	representation	of	the	graph	object.	

Also	related	to	the	candidate	gene	PRS,	It	is	a	central	assumption	of	the	omnigenic	

model	of	disease	that	trans-acting	genetic	elements	asserting	effect	on	a	subset	of	core	genes	

of	high	importance	to	the	phenotype.(123)	It	is	possible	to	consider	a	study	model	in	which	

curated	candidate	genes	or	high-performing	GWAS	candidates	or	rare	variants	identify	core	

genes	in	an	omnigenic	model	of	disease,	or	one	in	which	genes	with	many	high	significance	

partners	may	represent	core	genes.	However,	definitive	identification	of	such	relationships	is	

reliant	on	underlying	annotation,	and	trans-acting	effects	that	to	date	are	still	notoriously	

difficult	to	discern	in	GWAS	studies,	especially	those	of	limited	size.	In	order	to	better	capture	

such	effects,	large	Transcriptome	Wide	Association	(TWAS)	studies	may	be	necessary	to	better	

describe	the	network	architecture	that	gives	rise	to	trans	effects	as	well	as	secondary	and	

tertiary	cis	effects,	which	are	also	of	interest.	Several	recent	studies	have	been	attempted	to	

further	describe	these	relationships,	though	the	area	is	still	actively	developing.(272,280)		

	 A	variety	of	general	concerns	also	impact	the	development	of	meaningful	risk	scores	in	

small	populations.	As	with	gene	set	methods,	the	context	derived	from	network	methods	is	

only	as	good	as	the	underlying	annotation.	While	network	annotation	of	protein	interactions	is	

substantial	and	PPI	resources	continue	to	grow	quickly	year	after	year,(121)	there	is	reason	to	

believe	that	the	overall	number	of	protein	interactions	captured	remains	relatively	low.	Protein	

folding	is	a	complex	process.	Proteins	can	be	composed	of	many	different	subunit	components,	

and	experimental	evaluation	of	such	products	can	prove	difficult	to	replicate	by	high-
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throughput	screening	methods.(281)	For	these	reasons,	continued	expansion	of	such	resources	

is	an	important	focus	as	time	continues.	

	 It	is	also	important	to	acknowledge	the	role	of	phenotyping	in	genetic	studies.	While	

preterm	birth	is	a	well	specified	disorder	with	a	clear	threshold	of	birth	prior	to	37	weeks	

delineating	its	formal	phenotype,	coding	such	a	disorder	in	binary	terms	likely	leads	to	a	loss	of	

significant	information.	It	is	fair	to	theorize	that	extreme	preterm	patients	may	have	different	

genetic	contributors	to	disease	than	mild	or	borderline	cases.	Likewise,	presentation	of	

retinopathy	of	prematurity	varies	substantially	between	mild	and	severe	cases,	and	such	

differences	may	represent	the	involvement	of	unique	or	varied	biological	systems.	The	

recruitment	of	large	cohorts	with	exhaustive	phenotyping	will	be	an	imperative	concern	as	

investigations	into	complex	disease	continue.	While	growing	resources	like	the	UK	Biobank	

partially	address	the	problems	of	recruitment,	phenotyping	continues	to	lag	behind	due	to	the	

burden	of	expert	involvement	in	phenotyping	at	scale.	Going	forward,	it	is	possible	that	

automated	imaging	and	analysis	systems	may	play	a	role	in	decreasing	this	phenotyping	load	on	

clinicians,	though	curation	of	information	dense	resources	designed	with	these	goals	in	mind	

from	the	beginning	are	necessary	for	such	progress.(118)	

	 While	PRS	methods	are	a	promising	tool	for	the	detection	and	prediction	of	common	

complex	traits,	their	utility	in	small	datasets	remains	limited.	The	decrease	in	predictive	power	

between	the	GIANT	dataset,	based	on	hundreds	of	thousands	of	individuals,	to	the	DNBC	data	

set	of	fewer	than	2,000	individuals,	shows	the	gains	in	performance	that	are	possible	as	a	result	

of	modern	consortium	genotyping	projects	like	the	UK	Biobank.		
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In	order	to	expand	the	utility	of	scoring	methods	to	the	large	array	of	rare	diseases,	it	

will	be	necessary	to	incorporate	additional	information	into	these	metrics.	Network	context	

represents	only	one	way	in	which	we	can	incorporate	supplementary	information	into	such	

scores.	Tissue-specific	expression	values	may	be	one	manner	by	which	to	increase	the	

contextual	content	of	PRS.	As	investigations	of	metabolomic	and	microbiomic	involvement	in	

disease	continue	to	become	more	complex,	it	is	likely	that	the	resulting	resources	will	also	

increase	the	reach	of	predictive	methods.	

Massive	consortium	projects	represent	an	invaluable	resource	for	the	construction	of	

risk	scores,	but	the	importance	of	adequate	phenotyping	for	rare	conditions	remains.	In	order	

to	continue	to	serve	patients,	these	large	consortiums	must	be	diligent	about	collection	of	data	

to	allow	exhaustive	phenotyping	of	rare	diseases.	

PRS	studies	must	also	be	aware	of	the	problems	that	population	stratification	poses	to	

results.	While	most	genetic	studies	are	performed	in	Caucasian	populations,	black	women	and	

other	non-white	ethnic	groups	remain	those	at	the	most	risk	of	PTB	and	by	extension	ROP,	with	

potential	increases	in	the	incidence	of	these	conditions	in	developing	nations	as	healthcare	

improves	to	the	point	that	extremely	preterm	infants	are	able	to	survive	after	birth.	In	order	to	

address	these	issues,	recruitment	of	more	diverse	study	populations	from	a	variety	of	

backgrounds	will	continue	to	be	an	important	concern.	

	 Hand-in-hand	with	phenotyping,	environmental	effects	are	likely	to	play	a	significant	

role	in	the	investigation	of	complex	traits.	Environmental	effects	have	been	theorized	to	play	an	

important	role	in	both	ROP	and	preterm	birth.(18,282)	These	complicating	factors	are	likely	to	
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serve	as	a	barrier	to	the	discovery	of	root	genetic	causes	of	disease	unless	well	curated	datasets	

are	created	to	support	such	studies.	

	 In	ROP,	a	variety	of	new	techniques	are	currently	being	developed	using	machine	

learning	methods	in	order	to	perform	automated	analysis	of	infants	shortly	after	birth	and	then	

project	progression.	(1,283,284)	The	difficulty	in	recruitment	of	ROP	cohorts	of	the	size	

necessary	for	genetic	score	construction	likely	remains	intractable,	and	as	machine	learning	

methods	continue	to	rapidly	increase	in	capability	and	adoption,	an	imaging	perspective	on	

disease	prevention	may	come	to	predominate	ROP	prediction	over	future	years.	

	 Despite	these	limitations,	detection	of	at-risk	individuals	for	many	diseases	remains	an	

important	goal,	especially	in	cases	where	the	disease	is	complex	and	outcomes	have	serious	or	

fatal	consequences.	While	imaging	approaches	for	ROP	show	great	promise,	a	host	of	other	

rare	diseases	exists	and	imaging-related	solutions	are	not	adequate	for	all	disease	types.	In	

cases	where	phenotypes	are	primarily	biochemical	or	subtle	in	nature,	genetic	testing	will	

remain	an	important	front	line.	Because	of	these	considerations,	the	demand	for	minimally	

invasive	genetic	screenings	that	provide	maximal	information	will	persist	in	cases	of	complex	

disease.	
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APPENDIX	

HRS	GWAS	Evaluation		

Data	Acquisition	

	 HRS	SNP	data	was	acquired	through	dbGaP	with	Institutional	Review	Board	approval.	

Restricted	phenotypic	data	was	acquired	after	submission	for	protected	access	through	HRS	

internal	review	process.	

Initial	EDA	

	 GWAS	SNP	files	were	provided	in	PLINK	binary	matrix	format.	Variant	capture	was	

performed	using	the	Illumina	HumanOmni2.5-8v1	platform,	encompassing	2.5	million	variants	

mapped	to	the	GRCh37	(hg19)	genome	build.		

	 Phenotypic	data	was	consolidated	from	HRS	response	data	from	prior	to	the	2014	

collection	wave.	As	HRS	members	did	not	have	height	values	in	all	years,	the	median	height	

value	in	inches	across	all	years	was	selected	for	each	participant.	Participant	age	at	the	time	of	

collection	of	that	height	value	and	patient	gender	were	also	captured.	

	 Height	values	were	entered	into	a	linear	regression	controlling	for	age	and	gender.	The	

resulting	residuals	were	scaled	according	to	a	normal	distribution.	The	resulting	phenotypic	

values	were	output	to	FAM	format	for	analysis	by	PLINK.	All	conversions	took	place	in	the	R	

software	package.	
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Data	Cleaning	

	 Patients	were	filtered	for	missing	and	unknown	phenotypic	status	according	to	

reference	codes	provided	by	the	HRS.	Patients	with	height	values	greater	than	84	inches	or	less	

than	24	inches	were	also	filtered.		

	 Genomic	data	was	filtered	according	to	procedures	described	by	Marees	et.	al.(285)	

using	the	PLINK	software	package.	SNPs	were	first	assessed	for	duplicate	ID	values,	and	any	

duplicate	probes	were	removed.	Participants	were	removed	from	the	study	if	individuals	were	

missing	more	than	2%	of	SNP	calls.	Individual	SNPs	missing	more	than	2%	of	calls	were	also	

excluded.	Participants	were	analyzed	for	discrepancies	in	sex	annotation	and	removed	if	any	

discrepency	was	detected.		

	 Autosomal	SNPs	were	isolated	and	analyzed	for	minor	allele	frequency.	SNPs	with	a	

MAF	<	0.05	were	removed	from	the	data	set.	Hardy-Weinberg	equilibrium	(HWE)	was	assessed	

and	SNPs	strongly	deviating	from	HWE	were	removed	(p	<	1e-6).		

	 Heterozygosity	of	SNPs	was	assessed	and	individuals	deviating	by	more	than	three	

standard	deviations	from	the	heterozygosity	rate	mean	were	removed.	

	 Cryptic	relatedness	was	assessed	in	individuals	in	order	to	identify	sibs	or	

offspring/parent	pairs.	Those	with	an	assessed	probability	of	relatedness	greater	than	20%	

were	removed.	

	 Participants	were	analyzed	for	population	stratification	using	multi-dimensional	scaling	

(MDS).	A	panel	of	data	was	downloaded	from	the	1000	Genomes	Project	representing	629	

individuals	of	varying	annotated	ethnic	backgrounds.(286)	Variants	missing	greater	than	2%	of	

calls	were	removed	from	the	set	and	patients	missing	greater	than	2%	of	total	calls	were	
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removed.	As	with	the	HRS	data,	SNPs	with	minor	allele	frequency	greater	than	0.05	were	

filtered	from	the	total	set.	

	 The	intersection	of	SNPs	contained	in	the	HRS	and	1000	Genomes	data	was	taken	and	

those	variants	were	considered	for	stratification	analysis.	Strand	positions	were	analyzed	and	

flipped	if	in	conflict	with	the	reference	build.	SNPs	remaining	in	conflict	after	flipping	were	

removed.	

	 Calculation	of	MDS	coordinates	were	obtained	from	calculation	of	10	dimensions	using	

raw	hamming	distance.	Cluster	values	were	extracted	for	use	in	future	analysis	steps	to	correct	

for	population	stratification.	Participants	were	analyzed	in	relation	to	the	CEU	group	of	1000	

Genomes	participants,	and	those	deviating	from	the	main	cluster	were	removed.	

	 After	QA/QC	9,746	HRS	participants	remained,	with	1,198,351	SNPs	carried	forward	for	

imputation.	
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HRS	GWAS	QA/QC	Figures	

	

	

Appendix	Figure	1.	Plots	detailing	the	likelihood	of	belonging	to	either	gender	reveal	a	small	
number	of	deviating	scores	in	the	Female	plot.	These	individuals	were	removed	from	the	
GWAS	data	set.	
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Appendix	Figure	2.	Plots	of	individual	missingness	and	SNP	missingness	in	HRS	data	set.	A	
small	proportion	of	SNPs	and	individuals	can	be	observed	to	have	high	levels	of	missingness.	
These	were	removed	from	further	analysis	

	

	

Appendix	Figure	3.	Minor	allele	frequency	was	assessed	and	SNPs	with	MAF	<	0.05	were	
removed	from	the	analysis	set	before	imputation.	

Individual Missingness	 SNP Missingness	
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Pre-imputation	Association	

	 For	comparison	to	previously	generated	results	and	to	assess	data	integrity	prior	to	

imputation,	association	analysis	was	performed	on	HRS	individuals	passing	QA/QC.	In	order	to	

prevent	spurious	association	signals,	the	major	histocompatibility	complex	representing	the	

region	from	Chr6:2.5e6-3.5e6	was	removed	before	testing.		

Association	test	was	performed	in	PLINK	using	ordinary	least	squares	regression.	

Adjusted	significance	values	were	obtained	by	permutation	in	order	to	assess	the	impact	of	

multiple	testing	on	the	data	set.	A	second	test	was	performed	using	linear	regression	with	the	

covariates	from	the	preceding	MDS	analysis.	Manhattan	plots	and	QQ-plots	were	created	to	

assess	the	structure	of	the	data.	

	

Appendix	Figure	4.	Association	was	performed	without	(right)	and	with	MDS	covariates	
(right).	A	number	of	SNPs	achieve	borderline	genome-wide	significance,	and	a	small	
proportion	of	SNPs	exceed	the	10e-8	threshold	after	adjustment	for	population	stratification.	
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Imputation	

Following	QA/QC	data	was	imputed	to	include	SNPs	that	may	have	been	missed	by	the	

platform	as	well	as	to	assure	compatibility	with	the	GIANT	study	summary	statistics	by	

increasing	genomic	coverage.		

Prephasing	was	performed	by	chromosome	using	SHAPEIT	using	an	effective	population	

size	of	15000	individuals	by	chromosome	using	a	reference	from	1000	Genomes	Phase	3	data.		

Phased	chromosomes	were	imputed	in	IMPUTE2	in	5	Mb	chunks,	avoiding	centromeric	

regions.	A	1000	Genomes	Phase	3	reference	panel	with	hg19	coordinates	was	used	for	

imputation.	

Secondary	Data	QA/QC	

	 Following	imputation,	SNPs	with	an	info	score	of	less	than	0.8	assigned	to	them	by	

IMPUTE2	were	discarded,	resulting	in	7,485,299	SNPs.	Filtering	from	the	QA/QC	step	was	

repeated,	resulted	in	a	final	set	of	3,400,704	SNPs	across	9,915	individuals.	
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DNBC	GWAS	EVALUATION	
	 Except	where	noted,	DNBC	GWAS	evaluation	and	imputation	followed	the	same	

procedure	as	was	used	for	HRS	data.		

	 DNBC	data	was	acquired	via	submission	to	dbGaP	and	data	files	were	delivered	

electronically	as	PLINK-compatible	matrices.		

	 QA/QC	was	performed	on	DNBC	data	as	stated.	Association	was	performed	using	a	Chi-

squared	test	of	association.	A	logistic	regression	using	covariates	derived	from	MDS	was	

performed	in	substitution	for	linear	regression	due	to	the	binary	phenotype	classification.	

The	DNBC	dataset	contains	infant/mother	pairs,	and	while	analysis	was	focused	on	

infants,	imputation	and	phasing	was	performed	with	the	full	set	of	individuals	in	order	to	

benefit	from	relatedness	as	recommended	by	SHAPEIT	and	IMPUTE2.	

	 Following	imputation	secondary	QA/QC	was	performed	as	stated	above.	Infants	were	

selected	from	the	full	set	prior	to	filtering	and	adults	were	removed.	Association	was	performed	

as	above,	and	adjusted	p-values	were	derived	prior	to	plotting	Manhattan	and	QQ	plots.	
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Appendix	Figure	5.	Gender	checks	of	DNBC	data	showed	no	outliers	for	gender	as	annotated	
in	data.	
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Appendix	Figure	6.	Plots	of	individual	missingness	and	SNP	missingness	in	DNBC	data	set.	No	
individuals	 or	 SNPs	 are	 noted	 to	 have	 high	 missingness	 before	 filtering	 due	 to	 filtration	
performed	by	the	GENEVA	data	team	during	QC/QA/	

	

	 	

Individual Missingness	 SNP Missingness	
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Appendix	Figure	7.	SNPs	with	MAF	less	than	0.05	were	filtered	from	the	data	prior	to	
imputation.	
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Appendix	Figure	8.	Association	analysis	was	performed	without	(left)	and	with	(right)	
covariates	from	population	stratification	included.	While	several	SNPs	exceed	significance	at	
1e-5,	no	SNP	reaches	genome-wide	significance	levels	of	1e-8.	
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TOP	CONNECTIVITY	GENES	

	

Appendix	Figure	9.	Of	the	15,154	nodes	contained	in	the	full	STRING	network	graph,	151	
genes	were	in	the	top	5%	for	eigenvector	centrality,	degree	centrality,	and	betweenness.	
Analysis	of	graph	subsets	found	this	highly	connected	group	of	proteins	to	be	enriched	for	
significance	values	relative	to	less	connected	genes.	The	presence	of	major	histocompatibility	
complex	proteins	should	be	noted,	as	these	will	not	be	carried	through	for	most	PRS	
constructions,	including	our	experiment.	
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FULL	SETS	OF	ENRICHED	GENE	ONTOLOGY	TERMS	

Appendix	Figure	10:	GIANT	Cluster	15	

	

Appendix	Figure	11:	GIANT	Cluster	16	

	

Appendix	Figure	12:	GIANT	Cluster	2	
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Appendix	Figure	13:	DNBC	Cluster	11	

	

Appendix	Figure	14:	DNBC	Cluster	13	

	
	
	 	



148	

FULL	LIST	OF	GENES	EXCLUSIVE	TO	ROP	CANDIDATE	GENE	SCORE	
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Appendix	Figure	15.	Genes	appearing	in	the	ROP	candidate	score	but	not	included	in	the	
preterm	birth	score	were	found	to	have	been	previously	identified	as	having	gestation	and	
development	related	functions.	The	ROP	candidate	gene	score	was	the	most	predictive	of	all	
scores	evaluated,	outperforming	even	the	score	including	all	genomic	SNPs.	
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CANDIDATE	GENE	SCORES	WITH	FIXED	AND	UNFIXED	THRESHOLDS	

	

	

Appendix	Figure	16.	Comparison	of	score	calculations	with	dynamic	thresholding	(above)	and	
fixed	thresholding	(below)	shows	that	enforcing	a	fixed	threshold	across	all	scores	penalizes	
all	values,	but	more	severely	penalizes	network	context	scores	using	PTB	context	than	those	
using	context	from	ROP,	which	remains	the	most	significant	of	the	score	set.	Lee	R2	not	
calculated	for	fixed	results.	
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ROP	ENRICHMENT	FOR	PTB	GENES	

	

PTB	Candidate	Gene	Top	Enriched	Gene	Sets

	
	

Appendix	Figure	17.	The	PTB	candidate	gene	PRS	members	show	low	enrichment	for	ROP	
compared	to	other	curated	pathway	groups.	The	strongest	observed	enrichment	was	that	for	
the	GO_MEMBRANE_PROTEIN_COMPLEX,	though	this	is	likely	partly	due	to	the	large	size	of	
the	second	gene	set.	
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ADDITIONAL	PRS	PLOTS	

	 In	addition	to	the	provided	plots,	PRSice	gives	output	summarizing	the	construction	of	

polygenic	risk	scores.	In	the	interest	of	clarity	and	replicability	we	provide	these	plots	as	an	

appendix.	

GIANT	PRS	Plots	

GIANT	All	SNPs	Included	
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GIANT	All	Gene	Regions	

	
	
GIANT	Connectivity	Gated	Score	

	
	
	 	



154	

	
GIANT	Candidate	Gated	Score	
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DNBC	PRS	Plots	

DNBC	All	SNPs	Included	

	
	
	
DNBC	All	Genes	Included	

	
	
	 	



156	

	
DNBC	Connectivity	Gated	Score	

	
	
DNBC	PTB	Candidate	Gene	Score	
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DNBC	ROP	Gated	Score	
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COMPUTATIONAL	ASSETS	

	 Imputation,	genomic	filtering,	and	graph-based	analysis	were	performed	using	the	

Exacloud	High-Performance	Cluster	at	Oregon	Health	&	Science	University,	administered	by	the	

Advanced	Computing	Center.	Exacloud	runs	the	SLURM	workload	manager	running	on	CentOS	

7.		

Genomic	data	manipulations	were	performed	in	PLINK,	IMPUTE2,	SHAPEIT,	and	PRSice.	

QQ-plots	and	Manhattan	plots	were	produced	using	the	qqman	package	for	R.	Network	

topology	analysis	and	pipelining	was	performed	in	Python,	using	the	igraph	package.		

	 Where	appropriate,	additional	analysis	was	performed	on	a	laptop	computer	using	the	R	

programming	language.	The	fgsea	package	was	used	for	GSEA	analysis	calculations,	and	Shiny	

was	used	for	tool	construction	for	late-context	module	analysis.	
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