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Introduction

Cancer is now the biggest single cause of mortality worldwide, incidence has increased

by 11% in four years and cases are forecast to rise by 75% over the next 20 years [1].

Despite the huge amount of resources devoted to combating this terrible disease, progress

has been slow. Most patients are still treated with painful blunt instruments like radiation

and chemotherapy while new targeted treatments addressing specific genetic causes often

only help a small portion of the population. Why haven’t scientists and doctors been

able to do more? Because each patient is different, each cancer is unique and we lack the

framework for collecting, processing and understanding the mountain of information that

we can generate on cancers, treatments and responses.

Since the discovery of the first proto-onco gene by Varmus and Bishop in 1975, [2] our

knowledge of the genetic underpinnings of oncogenesis has expanded at a phenomenal rate.

We now know of thousands of genetic mutations that can play a role in cancer formation

and have hundreds of drugs targeting specific proteins or cellular processes. In addition,

we’ve discovered that every cancer has a distinct complement of mutations, arises from

a unique genetic background and exists in its own personalized environment. As this

has become clear, the focus in oncology research has largely moved from searching for a

panacea cure toward personalized or precision therapies. Precision oncology is based on

the idea that the optimal treatment for any patient is one that is custom tailored to his/her

genetic background and the cancer’s unique complement of mutations. But how can such

a treatment regimen be decided when the number of possible interactions between genetics

and pharmacology is easily in the millions?

The answer may lie in machine learning, an emerging field of computer science where

1
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machines use carefully constructed algorithms and data to build representations of prob-

lems that allow them to identify patterns and make predictions. These models can synthe-

size of millions of responses influenced by tens of thousands of factors to predict outcomes

for a wide variety of possible conditions. Often beginning with random guesses, such al-

gorithms ‘learn’ to improve predictions by adjusting internal parameters to match desired

outputs. Once trained with sufficient data, predictions for new examples can be made and

the learned weights between the variables in these models can reveal underlying biological

relationships that govern the response of the system. Training such models requires an

explicitly defined problem with a set of inputs and outputs. For the problem of predicting

treatment response in cancer, large-scale cancer cell line screening panels provide exactly

this type of combinatorial information and the resulting data have yet to be fully exploited.

Cancer cell line drug screen panels consist of a large number of patient-derived cancer

cell lines which can be simultaneously treated by broad range of compounds at varying

doses, grown for several days and imaged to assess the effect of the drug treatment. The

resulting data is inherently multi-dimensional with one measurement for each combination

of cell line, compound and dose. Until now, studies that have attempted to synthesize the

information produced by these experiments have largely ignored one of these dimensions

by reducing the dose response data to summary measures such as the dose required to

effect 50% growth inhibition (GI50) or the area under a fitted dose-response curve (AUC).

These studies have shown poor reproducibility with respect to predicted responses and

the mechanisms identified, which is perhaps not surprising since they often follow different

experimental procedures and compute summary measures differently [3].

The work presented here avoids some of these issues by developing the first model

to predict the full dose-response curves for cell line/drug combinations using genomic

measurements of cell lines and structural features of drugs as inputs. The traditional

measures of response (e.g. GI50, AUC, etc.) can then be calculated from these curves

to compare with current methods. By incorporating all of the available data, we hope to

improve predictive performance of traditional response outcomes, elucidate mechanisms

underlying response, and reconcile findings across studies. Moreover, the model developed

here is applicable to any situation where prediction of responses that vary along three
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independent dimensions is desired. For example, the responses may be measurements of

cell lines treated with combinations of drugs, or grown in different micro-environments

during treatment.

The model utilizes recently developed Bayesian statistical methods to perform a tensor

factorization coupled with matrix projections. An n-dimensional tensor is simply a set of

values organized into rectangular array where each entry can be specified by n indices. An

ordered list of numbers (a vector) is a one-dimensional tensor, a matrix is a two-dimensional

tensor and a three-dimensional tensor can be imagined as a box with numbers spaced evenly

throughout. Decomposing a tensor into factor matrices gives a representation of each value

in the tensor as a linear combination of latent factors along each dimension. In our model,

these factors capture salient differences between drugs, cell-lines and dosage.

By combining this type of factorization with a Bayesian approach to dimensionality

reduction we can link the latent factors to predictive features for each of the dimensions

(i.e. genomic characteristics of the cell lines and structural features of the compounds)

while controlling for model complexity. Specifically, we model the latent factors matrices

as products of feature matrices and projection matrices with priors encouraging sparsity in

the projection. Thus these latent matrices serve a dual purpose acting as both a reduced

representations of the genomic data and factors of the response tensor. The proposed model

can use genomic profiling data from cell lines such as genetic mutations, gene expression

and copy number variation as well as structural and target information on the compounds

to simultaneously predict the growth of each cell line when treated with each drug at each

dose. By holding all of the data together in one model, similarities among cell lines and

among drugs can inform predictions across all conditions, effectively leveraging all available

data for the prediction of each response.

Framing the model as in a probabilistic Bayesian way allows it to handle missing re-

sponse data and to encourage parsimony in the use of input features while maintaining

measures of uncertainty. Predictions for new cell lines and drugs can be obtained by mul-

tiplying vectors of input data through the learned projection and latent matrices. Perhaps

most impressively, a prediction can be made for both a new cell line and new drug si-

multaneously, pointing the way toward true precision medicine where we hope to predict
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responses for patients to a suite of drugs when none of them have yet been prescribed.

This novel approach we call BaTFLED (Bayesian Tensor Factorization Linked to Ex-

ternal Data) enables the structured synthesis of large dose-response datasets produced by

cell line drug screen experiments in order to make predictions and identify mechanisms of

response.

In the following chapter we review background material on the problem domain, theo-

retical underpinnings of the model and discuss similar approaches. In chapter 2 we intro-

duce our model, giving full details on the mathematical derivations and implementation.

Chapter 3 shows results on simulated data that highlight the strengths of the method.

Chapter 4 shows results on three real dose-response datasets compared with other state-

of-the-art methods. Chapter 5 shows results predicting cellular counts of cancer cell lines

grown in varying micro-environments and chapter 6 summarizes the work and discusses

extensions and future directions.



Chapter 1

Background

Recent years have seen many studies using screening panels to predict the response of cell

lines to drug treatment and a renewed interest both in tensor factorization methods and

Bayesian modeling. We highlight some of this work to motivate this project and to place

it in context.

1.1 Tumor derived cell lines

Though early cancer researchers sought a single cure, it has become increasingly clear that

successful treatment of this incredibly heterogeneous the disease will require many cures

each tailored to the individual patient. Both broadly cytotoxic compounds and carefully

tailored therapies show a wide range of efficacy across patients. To understand the factors

that lead to this heterogeneity of response it is essential to have a method by which a

range of therapeutics can be systematically tested in diverse set of genomic backgrounds

and outcomes can be assessed quantitatively. Tumor-derived cell lines have provided the

opportunity to quickly test drugs in human cells and directly quantify their effects. These

cells are taken directly from the patient and transformed via viral infection to prevent the

cells from becoming quiescent. Thus the genome of these cells is initially almost identical

to the patient’s cancer and although mutations can occur over time, genetic profiling has

shown that they recapitulate the genetics of patients very closely [4]. Perhaps surprisingly,

despite the transformation process, the artificial growth conditions and the isolation of

these cells from the in vivo signaling environment, many genomic indications of response

found using these systems have been shown to be relevant in patients [5, 6].

5
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1.1.1 Cancer cell line screening panels

The first large-scale cancer cell line screening panel was designed by the National Cancer

Institute in 1986 and contains 60 cell lines from blood, skin, lung, colon, brain, ovary,

breast, prostate, and kidney cancers [7]. To date, the so-called NCI60 have been tested

with thousands of compounds and profiled genetically, epigenetically and transcriptionally

by dozens of platforms. However, this panel was developed at a time when the majority

of cancer therapeutics were nonspecific cytotoxic agents to which most cell lines would

respond, so a complement of 6-9 cell lines per tissue type seemed sufficient to determine

efficacy [4]. The broad overview provided by the NCI60 is insufficient, however, when

testing targeted therapies where responses can be dramatic but rare. For example, the

EGFR inhibitors getfitinib and erlotinib are effective in only about 10% of patients with

non-small-cell lung cancer [8, 9]. While targeted drugs generally have many fewer side

effects and good efficacy in patients that do respond, identifying factors that determine

response requires that the set of cell lines being tested cover a larger segment of the possible

genetic search space. Hence more recent studies have moved toward either larger screening

panels or panels specific to one tissue type.

The large screening studies include the Cancer Cell Line Encyclopedia (CCLE) [10],

the Genomics of Drug sensitivity in Cancer (GDSC) [11] and the Cancer Target Discovery

and Development (CTD2) effort [12]. Each of these projects contains hundreds of cell lines

and compounds treated at a number of doses in replicates. While these studies share some

cell lines and drugs, they are each conducted in a unique manner and have discovered

different relationships between genomics and drug response.

There are many smaller tissue-specific studies studying drug response in the most

common cancer types. One notable study that will be used for this work is a breast

cancer panel containing 70 cell lines, 90 drugs, responses replicated in triplicate and the

full datasets have been made public (Heiser et al., 2012). Other similar studies include a

panel of 500 epithelial cell lines [13] and a panel of 84 non-small cell lung cancer cell lines

[14].

While there is some overlap in cell lines and drugs between these studies and the
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genomic profiling is largely consistent between studies, the drug response findings do not

easily fit into a unified framework. An analysis of the concordance between the CCLE and

CGP data finds very poor correlation of summary response measures for the 471 cell lines

and 15 drugs shared by both studies [3]. This discrepancy may be due to differences in

the growth media, cell count measurements or the ways in which the summary response

measures were calculated.

1.1.2 Response measures

Analysis of these data begins with cellular abundance measurements from each well in

which cells are grown, typically at different doses and with replicates. Readouts used

include the optical density of Cell Titer-Glo (the most common output measuring ATP),

Syto60 stain measuring nucleic acids or resazurin dye measuring oxidation-reduction. Mea-

surements at each dose are often normalized by subtracting readings taken simultaneously

on background wells with no cells. This accounts for the variation due to illumination and

other technical aspects of the measurement process. A second normalization to account

for variations in the number of cells initially loaded into the well can also be done if optical

density readings are taken at time zero. Some studies also attempt to normalize by the

growth rate of the cell line. In this case the measurements at each dose are divided by the

optical density with no drug treatment. Thus a value of one shows no effect of the drug

and a value of zero indicates total cell killing.

Additionally, differences between studies in how the data is cleaned and pre-processed

can be difficult to understand and reproduce. For example, the methods for obtaining drug

response measures in Daemen et al. [15] cites Heiser et al. [16], which in turn cites Kuo et

al. [17]. Here 20% of the drug-response data is filtered out requiring that “(i) the median

SD across the nine triplicate-treated data points was <0.20; (ii) the DT [doubling time]

was within 2 SD of the median DT for each cell line; (iii) the slope of the fitted curve was

>0.25; (iv) we identified assays with no response by requiring inhibition at the maximum

concentration <50%”.

The most commonly used response metric is the half maximal growth inhibition or GI50.

This is often used interchangeably with the half maximal inhibitory concentration (IC50)
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assuming that the response that is being inhibited is cell growth. This is the dosage at

which a drug inhibits the response of the abundance measure (and presumably the viability

of the cell line) by 50%. GI50 is typically calculated by first fitting a curve to the normalized

dose-response data and then finding the dose at which this curve crosses the mid-line

between the maximal and minimal possible effect (0.5 if the data have been normalized

to growth with no drug treatment). There are many variations on this calculation as the

curve used for the fit can be a simple line, a symmetric logistic curve or a non-symmetric

Gompertz curve. Moreover the minimal effect can be determined by measurements of cell

counts in controls with no drug treatment or with the minimal dose. The maximal effect

can be determined by the maximal amount of growth inhibition observed at tested doses (in

this case the GI50 should be referred to as EC50, the half-maximal effective concentration)

or by measurements of cell counts at time zero. To complicate this further some studies

choose among curves for each cell line-drug pair based on the fit to raw data and use

different conventions to decide when the GI50 is uninformative. Finally, when training

predictive models, the GI50 for cell lines that are unresponsive may be missing, set to the

maximal dose (as in CCLE data) or inferred by extending the curve beyond measured data

(as in the CGP data).

Other measures of response derived from fitted curves include Emax (the dose at which

maximal effect is observed), Einf (the theoretical lower asymptote deduced from a fitted

logistic curve), total growth inhibition (TGI), the hill slope coefficient (HS: a measure of the

steepness of response in a logistic curve) and AUC (area under the calculated dose response

curve or under the median observed response values), figure 1.1. Each of these measures

has a different interpretation with respect to the expected behavior of drug treatments

in patients. GI50/IC50 is used as a general measure of potency, Einf, Emax and TGI are

measures of efficacy and AUC combines aspects of both [18].

A recent study comparing several of these measures on the same raw dataset found

a worrisome lack of correlation between them across cell lines and drugs [18]. This indi-

cates that by relying on only one measure, studies are oversimplifying the true response

mechanics and possibly missing important elements regulating response. For example, the

slope of the response curve is not captured by the IC50 or AUC value. This information
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Figure 1.1: Common measures of drug response. The red dotted line shows the case where
the drug is completely effective at maximal dose. Here Emax=Einf=0 and IC50=EC50.
The pink area represents the AUC. [18]

may be valuable for patient responses where giving the minimal effective dose while avoid-

ing toxicity is important. Moreover, certain sub-populations may not exhibit the typical

logistic response curves at all. By routinely fitting the same class of curves to the data

and extrapolating measures, the variation in response across replicates is often ignored and

unexpected types of responses are missed. If genetic factors influence whether a given cell

line responds to varying doses of a drug according to a logistic curve, relationships with

these confounding predictive factors are also missed.

The trouble with these summary response measures becomes even more apparent when

comparing results across studies. Two papers by Dr. John Quackenbush’s group finds very

little correlation in predicted responses for cell line-drug pairs profiled in both the CCLE

and CGP projects and subsequently different genomic predictors of response [3, 19]. Specif-

ically, Spearman rank correlation of drug-sensitivity measurements for 13 out of 15 shared

drugs was less than 0.5 across the 471 shared cell lines. They suggest that the discrepancies

may be due to differences in the experimental setup, normalization procedures or calcula-

tion of the outcome measures, but were unable to dig deeper because the raw response data

for the CGP study was not available at the time. The groups involved in the initial studies

attempt to address these issues in [20] and find better agreement when taking into account
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more biological knowledge of the drugs and cell lines, but this issue is still contentious [21]

and clearly there is room for improvement.

One large confounding factor may be the differing growth rates of cell lines given the

cell culture conditions. Hafner et al. [22] normalize responses for growth rate at each dose

in a new way introducing a new set of response measures. The normalized growth rate at

time t in the presence of drug at concentration c is taken to be

GR(c, t) = 2k(c,t)/k(0) − 1 (1.1)

where k(c, t) is the growth rate of the treated cells and k(0) the growth rate of untreated

cells. In this paper, switching to these GR measures (GR50, GRinf, etc.) reduces correla-

tion with the number of cells seeded and dependencies on growth media.

The work presented here aims to avoid the inconsistencies caused by different curve-

fitting procedures and methods of summarizing response by directly predicting the optical

density or normalized growth measures at each dose. With these predictions in hand the

summary response measures detailed above can be calculated and compared to current

studies to assess performance. This will eliminate any bias introduced by using specific

measures and allow systematic comparisons between studies. This is the first model to

attempt prediction at each dose, and can be seen as an extension of previous work into a

higher dimensional setting.

1.2 Current models in response prediction

While many different computational approaches have been used to predict the responses

of cell lines to drug treatments with some success, recent large-scale review efforts have

shown that the most successful approaches follow several clear principals.

Jang et al. [23] performed a systematic assessment of over 11, 000 different models

predicting responses in both CCLE and CGP datasets. Each of these models predict

responses to a single drug for 20% of the cell lines after training the models with known

responses for 80% of cell lines. The researchers varied the type of input molecular feature

data, the prediction algorithm, the compound being predicted, the outcome being predicted

and whether the outcome data was discretized or continuous. The first principal that they
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discovered is that using more input molecular profiling data improved performance more

than any of the other factors, including which algorithm was used. Among input data types,

expression profiles had the largest effect. Second, they found that dimension reduction

algorithms favoring regularized solutions like elastic net or ridge regression performed best.

Third, they found that predictions of AUC were generally more accurate than IC50 or EC50

and hypothesize that this is because the AUC measure captures more of the information

contained in response curves.

Another approach attempting to find the best computational methods to solve this

problem was implemented by a collaboration between the National Cancer Institute (NCI)

and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project

[24]. This DREAM challenge released data publicly so that teams from around the world

could compete in the task of predicting responses in a panel of 53 cell lines treated with

28 compounds. The best performing algorithm out of the 44 submissions used a Bayesian

multitask multiple kernel learning (MKL) approach. This method combines genetic pro-

filing data for all cell lines through kernels which measure similarities between cell lines

and reduce the dimensionality of the genetic input data. The kernels are combined using

weights shared across drugs and these linear combinations of kernels are given weights for

each cell line that are specific to each compound. In this way, predictions for all drugs

are made simultaneously so information about a cell line’s response to one drug can be

leveraged in the prediction of other drugs. This study supported the findings of Jang et

al. [23], in that incorporation of more data and dimension reduction methods both im-

proved prediction. Additionally it showed the benefit of combining the tasks of predicting

outcomes for each drug into one model.

An extension from the same group that won the DREAM challenge expands the MKL

idea to incorporate known structures and targets of drugs to improve prediction [25]. This

Kernelized Bayesian Matrix Factorization (KBMF) method marries the field of Quantita-

tive Structure-Activity Relationship (QSAR) discovery to drug response prediction. The

goal of QSAR studies is to use the structural features of drugs to predict their chemical

activity. By extending this to predicting the result of that activity (namely inhibiting cell

growth) across cell lines, this approach moves toward true precision medicine. The central
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idea of this method is to factor the matrix of response values (with rows corresponding to

cell lines and columns to drugs) into latent factors encoding information about similarities

between cell lines or drugs respectively. These factor matrices are constrained by kernel

representations of the input data (now both drug and cell line features) and the opti-

mal factorization is learned through an efficient search of parameter space using Bayesian

methods (Figure 1.2).

Figure 1.2: Kernelized Bayesian matrix factorization model. Input data are in shaded
boxes, learned parameters are in green and latent representations in blue. The central
matrix of IC50 response values is denoted by Y. Input kernels for cell lines are on the left
and input kernels for drugs are on the right. Each side is multiplied by a shared projection
matrix to form the latent kernel-specific components. These are then combined via the
kernel weights to form composite components which multiply to form the central response
matrix [25]

The method presented here is an extension of the above work into higher dimensional

spaces. We expand the central matrix object into a tensor of three dimensions to capture

the response of each cell line when treated with each drug at each dose. This removes

the reliance on any one measure of response (IC50, EC50, Emax, TGI or AUC) avoid-

ing issues due to curve fitting and choice of summary measure and will incorporate all of

the available response information. Also, our method does not project the feature data

through kernels feeding cell line and drug characterization data directly to the projection

matrices (although we do experiment some with using kernels). This will allow for greater

interpretability of both the values in the model and the learned weights placed on cell line

and drug features. Additionally, as the above studies show that incorporating more pre-

dictive data sets improves model performance we incorporate extensive genomic profiling
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data on cell lines and structural and target data on drugs as predictors. Lastly, the use

of Bayesian methods will allow for sparsity inducing priors analogous to the elastic net

regression method suggested by Jang et al. [23].

Since, only a small number of studies use factorization methods for drug-response

prediction, a broader view of these techniques can help to elucidate their usefulness. In

the following sections we explore the use of matrix and tensor factorization techniques in

fields tangentially related to the prediction task presented above.

1.3 Matrix factorization

The motivation to use tensor factorization methods stems from their capacity to organize

large datasets with several independent axes of variation and from the great utility that

matrix factorization methods have shown in somewhat simpler problems. For example

principal component analysis (PCA) [26, 27] is often the first tool used to gain insight into

relationships in data with a large number of variables. This method is based on the singular

value decomposition (SVD, a type of matrix factorization) of a data matrix with rows

representing each repetition of an experiment and columns each measurement. Although

SVD dates to the late 19th century, it is still bearing fruit in algorithm development

for data analysis as evidenced by the surrogate variable analysis (SVA) [28] which seeks

to eliminate unwanted âĂĲsurrogate variablesâĂİ in gene expression data or other large

matrices.

Many matrix factorization problems can be thought of in the framework of factor

analysis which seeks to find a set of latent factors that explain observed relationships in

data. For example a study with I individuals responding to J survey questions may seek

a set of underlying factors and weights for these factors specific to each individual so that

each answer can be expressed as a linear combination of the factors. Mathematically, this

amounts to finding a matrix of factors F (with N rows and J columns) and a matrix of

weights A (with I rows and N columns) so that the observed response matrix Y (with I

rows of individuals and J columns of questions) is a product of A and F plus some minimal
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error matrix E.

Y = A× F + E

component wise

yij = ai1f1j + ai2f2j + + ainfnj + eij

In the above example the responses of an individual to a survey about their job may

be decomposable into factors that capture elements of age, general happiness, etc. and

each person would have a different weight on how these factors affect their answer to each

question. Finding this decomposition requires specifying how many factors should exist

(N) as well as identifying each of the elements in A and F .

Since there are a large number of parameters in these model, a unique solution typically

does not exist and there are various assumptions made to find the ‘best’ solution. We may

prefer a solution with the smallest number of factors, least error, or one with factors that

best correlate with known properties of the individuals (e.g. age, sex, etc.). Mathemat-

ically, this can be interpreted as a change of basis vectors for the space of observations

(encoded by F ) and is often referred to as a ‘rotation’. Machine learning algorithms that

employ matrix factorization (sometimes implicitly) essentially search the space of possi-

ble rotations looking for one that optimizes an objective function formulated to satisfy

requirements set by the problem.

Since matrices hold values for relationships between pairs of variables and we are inter-

ested in outcomes that result from the interaction of three or more dimensions of variation,

it is natural to look for higher order analogs of matrix factorization. Tensor factorization

methods provide this generalization and when combined with probabilistic Bayesian esti-

mation allow for the flexibility necessary to handle missing data and make predictions for

situations that were not encountered in training data. Finding an optimal tensor factor-

ization for a given problem similarly amounts to searching the space of possible rotations

in order to optimize an objective function.

Although these approaches are young, successes in other fields combined with a good

performance of probabilistic Bayesian matrix factorization methods on problems similar

to the one presented here [25, 29, 30, 31] indicate that this line of research is likely to be
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very productive.

1.4 Tensor factorization

A tensor in this setting is simply a multidimensional array or matrix. These are not to be

confused with tensors or tensor fields used in physics (such as stress tensor) which have

more structure. The order (or mode) of a tensor is the number of dimensions of data. A

first-order tensor is just a vector, a second-order tensor is a matrix and a third-order tensor

is a rectangular prism of values. Although higher order tensors can be difficult to picture,

much of the math used in third-order tensors extends naturally to any N-order tensor.

The notation throughout this paper mostly follows the conventions of the excellent

review by Kolda and Bader [32]. I will use boldface capital letters to refer to tensors

(e.g. X) , capital letters (e.g. X) to refer to matrices (and index upper limits), boldface

lower case letters to refer to vectors (e.g. x) and normal letters to refer to scalars (e.g.

x). Indices will typically range from 1 to their capital version so that the three modes

of the third-order tensor X might have indices i,j and k where i = 1 . . . I, j = 1 . . . J

and k = 1 . . .K. A particular element of the tensor X will be represented by the lower

case version of the tensor name subscripted by i,j and k (e.g. xijk). A one dimensional

subset of a tensor obtained by fixing all other dimensions will be referred to as a fiber and

represented as a vector replacing the non-fixed index with a colon (e.g. x:jk, xi:k or xij:).

Similarly a two dimensional slice is a matrix and is represented with a capital letter with

two dimensions replaced with colons (e.g. Xi::, X:j: and X::k) Examples of these subsets

for a three mode-tensor are pictured in (Figure 1.3) [32].

In order to talk about tensor factorization we must first define tensor multiplication.

Beginning with first-order tensors (vectors) we can construct a higher-order tensor with

the outer product (denoted by
⊗

). The outer product is obtained by multiplying every

element of each of the N vectors by every element of the other vectors. The order of the

operation determines where the products get placed in the resulting tensor. For example

the product of the third element of the first vector, the second element of the second vector

and the first element of the third vector will be in the third row, second column, first frontal
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Figure 1.3: Lower dimensional subsets of a third-order tensor (Kolda and Bader, 2007)
[32]

slice of the resulting tensor (examples below).
1

2

3

⊗


4

5

6

⊗
1

2

 = X

where X::1 =


4 5 6

8 10 12

12 15 18

 and X::2 =


8 10 12

16 20 24

24 30 36


The n-mode product (denoted by ×n) of a tensor X with a matrix U is defined for

matrices with the same number of columns as the nth mode of X and is obtained by

multiplying each n-mode fiber with the matrix U . For example, given the above tensor X
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and the matrix

U =

1 3 5

2 4 6


X×1 U = Y where

Y::1 =

 88 110 132

112 140 168

 and Y::2 =

176 220 264

224 280 336



A tensor with n modes that can be constructed from an outer product of n vectors is, in

a sense, simple and is known as a rank-one tensor. The above, X is an example of a third

order rank-one tensor. Any N-order tensor can be constructed from a sum of rank-one

N-order tensors and finding this set of rank-one tensors is equivalent to the simplest type

of tensor factorization.

1.4.1 CANDECOMP/PARAFAC decomposition

The CANDECOMP/PARAFAC (CP) tensor decomposition was first proposed by Hitch-

cock in 1927 [33], but the idea didn’t gain popularity in data analysis until the early 1970s

when it was used in the field of psychometrics [34] and phonetics [35]. This method breaks

a given N -order tensor into a finite sum of R rank-one N -order tensors whose vector com-

ponents can be rearranged to form N factor matrices (Figure 1.4). For example, given a

three-mode tensor Y indexed by i,j and k, the CP decomposition gives R rank-one three-

mode tensors. Each of these can be represented as a product of three vectors ar, br and

cr of lengths I, J and K respectively. By assembling the vectors for each dimension into

matrices with R columns, the original tensor can be represented as an n-mode product of

a core tensor D and three factor matrices A, B and C with dimensions I ×R, J ×R and

K ×R respectively.

Y = D×1 A×2 B ×3 C
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In this case the core tensor D is a cube with dimensions R × R × R with ones along the

diagonal (i.e. dijk = 1 if i = j = k and 0 otherwise). Component-wise we have

yijk =
R∑
r=1

airbjrckr (1.2)

Often an exact factorization isn’t needed (or desired), so less rank-one components are used,

the factor matrices contain less columns, and an error tensor (E) accounts for differences

between the initial tensor and the reconstruction.

Figure 1.4: CANDECOMP/PARAFAC decomposition of a third-order tensor (adapted
from http://www.bsp.brain.riken.jp/∼zhougx/tensor.html)

While matrix factorizations are often not unique (in fact much of current cryptology

relies on this fact) the CP tensor decomposition is unique (aside from scaling and per-

mutation of the dimensions) provided the true rank of the tensor is small compared to

its dimensions. This is not true of other tensor factorization methods and may be too

restrictive to allow the training of models that are linked to predictor variables in an in-

terpretable framework. Additionally, the requirement that the core tensor be square and

diagonal means that each of the input data types must be reduced to projection matrices

with the same number of columns and that interactions between modes can only occur

between columns in the same location in each of the factor matrices.



19

This decomposition has been used in many fields including psychometrics [34], phonet-

ics [35], chemometrics [36, 37, 38, 37, 39, 40], signal processing [41, 42], telecommunications

[43, 44, 45] and independent component analysis [41, 46].

1.4.2 Tucker decomposition

The more general Tucker decomposition is an extension to principal component analysis

[47, 48, 49] and is also known as higher-order SVD [50] and N -mode principal component

analysis [51]. This factorization also breaks an N -order tensor into a core tensor and N

factor matrices, but allows for a different number of columns for each factor matrix (Figure

1.5). In this case, the dimensions of the core tensor are not all the same, it is not necessarily

diagonal and it encodes interactions between the different columns of the factor matrices.

Again the original tensor Y can be expressed as a series of n-mode products between the

core tensor G and the factor matrices A, B and C but the core G now has dimensions

R1 × R2 × R3 and the factor matrices A, B and C have dimensions I × R1, J × R2, and

K ×R3 respectively.

Y = G×1 A×2 B ×3 C

yijk =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3air1bjr2ckr3

Figure 1.5: Tucker decomposition (adapted from http://www.bsp.brain.riken.jp/
∼zhougx/tensor.html)

This structure allows for much more flexibility, so while CP decompositions are of-

ten unique, infinitely many Tucker decompositions can be constructed for a given tensor.
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There are several methods for choosing between these ‘rotations’, but since the core tensor

encodes dependencies between the factor matrices, an obvious choice of rotation is one that

maximizes the simplicity of the core. Some measures of simplicity that can be used are

super-diagonality, slice-wise diagonality or minimum of variance-of-squares [52, 53]. These

models have been applied in many of the same fields as CP decompositions [54, 55] as well

as in facial recognition [56], the semiconductor industry [40] and to identify batch effects

in experiments [57].

1.4.3 Algorithms for finding decompositions

Several algorithms have been developed to find the best factorization for a tensor derived

from experimental data. In most cases the tensor will be ‘noisy’ meaning that an ex-

act factorization is infeasible or undesirable. In a typical application the users seeks a

decomposition that approximates the given data tensor within some error bounds i.e.

X = D×1 A1 ×2 A2 ×3 . . . ×N AN + E.

where E is an error tensor of the same size as X with a small Frobenious norm (square

root of the sum of squared entries). There is a trade off here between the size of the factor

matrices and the size of the norm of the error tensor. Given a certain error tolerance, one

can try increasing the number of columns in the factor matrices (i.e. rank-one components

in the CP model) until the desired fit is achieved. There is, however, a problem with this

method as it has been shown that some tensors have arbitrarily close low-rank approxi-

mations. These can cause approximation methods to get stuck in ‘swamps’ of undesirable

solutions [58] and several methods have attempted to overcome this setback [59, 60, 61].

Given a fixed number of components, the simplest and most used approach for finding

a decomposition is known as alternating least squares (ALS) [34, 35]. This method begins

with a random guess at the factor matrices and proceeds by fixing all but one factor

matrix and solving the resulting linear least squares problem on the free matrix. Each

factor matrix is solved in turn while keeping the others fixed. This method is simple

to implement but lacks a real mathematical basis, has been seen to converge slowly and

depends highly on the initial guess [62]. Many improvements have been proposed, some
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of which improve calculation times, but the solutions found are generally not better than

those obtained through ALS (for comparisons see [63] and [64]).

Alternatives to the ALS method include Markov chain Monte Carlo (MCMC) and vari-

ational approximation. These methods treat the values in model as random variables and

approximate the most likely joint probability distribution across these variables given the

observed data. MCMC approaches sample solutions from the distribution while attempting

to cover the full range of values for each variable. If this search space is sufficiently explored

then the distribution of values obtained from the sampling will approximate the desired

probability distribution. Although often slow to converge, this method allows one to place

any type of distribution on the variables. For an example of a tensor factorization method

using MCMC sampling to predict different types of links in a graph see [65]. Variational

approximation is a similar technique that can be much more efficient but requires more

theoretical work, can restrict the distributions in the model and only approximates a sim-

plified version of the true probability model. Distributions for variables in the model must

be conjugate and complex update equations must be derived analytically. This method

was employed by Ammad-ud-din et al. for matrix factorization [25], Zhao et al. for CP

decomposition with missing data [66], and Xu et al. for Tucker factorization [67]. See

section 1.5 for a more detailed discussion of these methods.

1.4.4 Previous usage of tensor factorization methods

Although the basic tensors factorization methods were first mathematically defined in the

1920s [33], applications didn’t begin to be designed until the 1970s [34, 35] and widespread

use has only come with the advancement of Bayesian methods and computational power

in the last 15 years. There are many sources detailing recent methods including Kolda

and Bader [68] and the exhaustive “Three-Mode bibliography” compiled by Kroonenberg

(http://three-mode.leidenuniv.nl).

Some interesting highlights from imaging include the following. A method for facial

recognition dubbed ‘Tensor Faces’ that decomposes an image into factors representing the

identity of the person, the angle at which they are being viewed and the illumination present

(Figure 1.6) [56]. Once trained, the decomposition can be used to identify the subject of
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a new image by placing it in the tensor and summarizing over the view and illumination

dimensions. A related method by Vlasic et al. [69] that uses a tensor representation of

facial expression to map expressions from one face onto the background of another person is

able to separate latent factors representing facial expressions from the individual’s identity

(Figure 1.7). Tensor factorization has also been used for video separation as in [70] where

a low-rank tensor captures background elements of video while a sparse tensor captures

elements that change between frames (Figure 1.8).

Figure 1.6: Tensor Faces. The three dimensions of the tensor capture information on the
identity of the image, the angle from which he is viewed and the lighting conditions [56])

Tensor methods also tend to deal well with large amounts of missing data. Examples

include two papers that predict movie preferences with up to 98% of the possible ratings

missing [71, 31]. Also, Acar et al. develop a CP decomposition method to reconstruct

tensors of EEG data and computer network traffic that perform well with up to 99.5% of

the data missing [72]. There are also a number of methods for reconstructing video with
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Figure 1.7: Mapping expressions from one face to another. The face of the woman in
the first image is used a background on which the expression from the second image is
super-imposed [69]).

Figure 1.8: Using tensor factorization for video separation. A set of images over time
possibly missing pixels is separated into low-rank, sparse and noise tensors. The low-rank
approximates background while the sparse tensor reconstructs the parts of the image that
change over time [70]).

many missing pixels or three-dimensional imaging stacks with missing voxels [73, 74, 75].

Other recent work involving tensor factorizations has involved incorporating tensors

into machine learning techniques like neural networks. Researchers in these areas have

tried adding layers of tensor factorization into neural networks [76, 77, 78] and using

tensor factorization in place of the standard back-propagation algorithms to train neural

networks [79]. Tensors may even help to explain how deep neural networks are able to

perform so well, and indicate possible paths for improving these tools. Recent theoretical

work by Drs. Shashua and Cohen shows that certain types of deep convolutional networks
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are equivalent to tensor factorizations and that this may explain why deeper nets perform

better than shallow ones [80, 81, 82].

Finally, tensors have been used to some extent in bioinformatics. Engelen et al. use

a CP decomposition to analyze fluorescence data [83] and Omberg et al. build a Tucker

model to decompose a tensor of yeast gene expression microarray data from different stud-

ies across three modes: genes, time, and treatment [84]. The factorization learns reduced

representations of expression (eigengenes) that correlate with known mechanisms of re-

sponse. Ponnapalli et al. build on this idea to look for patterns of gene expression across

multiple species [85]. Recently, Hore et al. use a CP decomposition of gene expression data

from different patients and tissues to identify latent expression components [86]. Also, ten-

sors are used quite frequently in studies of the brain since MRI and other such data are

inherently three-dimensional. For example Onken et al. explore the utility of tensor factor-

ization methods to understand spatially correlated neuron firing events [87]. Finally, Kim

et al. use a CP factorization for phenotyping patient data from electronic health records

[88].

1.5 Probabilistic modeling and Bayesian methods

Our method frames tensor decomposition as a statistical model where we place distribu-

tions on the unknown values of the model and look for parameters for those distributions

that have the highest probability given the data and model assumptions. This is essentially

a Bayesian approach since we are reversing a typical statistical question. Suppose that we

have an observed tensor of responses and we know exactly how these data were generated,

i.e. we have the true factorization matrices and core tensor, but we expect there to be

some random component to the process of generating the responses and our observations

are just representatives from a distribution of all possible responses. In this case, the values

in the factor matrices and core tensor also have to come from some distribution since the

multiplication process is completely deterministic. If we know the parameters (e.g. mean,

variance) of these distributions we can calculate how likely our observations are given this

model p(data|model). The use of Bayes’ rule allows us to reverse this question. Now we
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imagine that we have a set of responses, but we don’t know how they were generated. We

assume some random process (statistical model) that generates our data with unknown

parameters. For any given set of parameters, we can determine the probability of our data

given the model, but we now want to know the probability distribution of the model pa-

rameters given the data p(model|data). This posterior distribution allows us to ask what

parameter settings would give the highest probability to the data that we observe and get

estimates as to how certain we are of these values. Moreover, a probabilistic framework

allows us to handle missing values in the responses.

p(model|data) =
p(data|model)p(model)

p(data)
(1.3)

In larger models like those used here, it is impossible to compute the posterior proba-

bility analytically and we must use approximate methods instead. We briefly present two

types of approximate methods: sampling methods use random draws from the distribu-

tion to approximate its parameters and variational inference finds an optimal solution to

a simpler distribution that is, in some sense, close to the true posterior.

1.5.1 Sampling methods

The most common sampling methods for this type of problem are known as Markov chain

Monte Carlo or MCMC methods. The ‘Monte Carlo’ part refers to the random aspect

of iteratively choosing samples from distributions and ‘Markov chain’ indicates that each

sampled state depends only on the previous state and that given enough iterations, the

system will converge to some equilibrium. In this case our posterior probability can be

written out as a set of interlocking conditional distributions each of which we know how to

sample from. We start at some random initial state and sample the next state according

to some sampling schema. The Gibbs sampler is one such schema that is widely used

[89]. Here, we draw a sample from the conditional distribution for each variable while

holding the others fixed. After some initial ‘burn in’ period, the samples can be used to

estimate the true posterior but with larger models with a lot of interlocking conditional

distributions, it can take a long time for the samples to sufficiently explore the space. The

sampling may get stuck in certain regions of high probability and not find other solutions
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especially if there is a region of low probability in between. This is is often the case with

distributions that encourage sparsity in some aspect of the model.

Sampling approaches are used in a large number of fields and there are many good

resources describing these ideas. For starters, Andreieu et al. explain sampling approaches

in general, MCMC, Gibbs sampling and give a some nice historical background [90]. Other

more detailed sources include books by Robert and Casella, Gelman, and Bishop. [91, 92,

93]. Several software packages have been developed to perform Gibbs sampling given a set

of dependent probability distributions. These differ slightly in their implementation, with

the newer tools (JAGS and Stan) being more efficient, but the specification of models is

fairly standard and documentation for these packages are quite good [94, 95, 96].

MCMC approaches have been used in a few papers for tensor factorization, but most

applications seem to prefer variational inference. Porteous et al. develop a probabilistic

model for matrix and tensor factorization that is trained using Gibbs sampling [97]. Xiong

et al. introduce “Bayesian Probabilistic Tensor Factorization (BPTF)” model which learns

a CP decomposition using MCMC sampling and evaluate its performance on sales predic-

tion and movie recommendation tasks [31]. More recently, Khan and Ammad-ud-din have

released an R package that uses Gibbs sampling to perform a CP tensor decomposition of

a three-mode tensor [98].

1.5.2 Variational inference

For our model, a sampling approach would be computationally intractable, so instead we

use variational inference (VI) (see [93] for a more complete discussion). With this method,

the goal is still to find the posterior distribution of the model parameters given then data,

but instead of sampling from the this distribution, we approximate the posterior with a

simpler distribution and optimize parameters of this new distribution. The optimization

seeks to minimize the distance between the true posterior and this simpler version in

terms of the Kullback-Leibler divergence [99]. More specifically, if we denote the set of

observed variables and set parameters by Ξ and the set of all random variables by Θ,

then the posterior distribution p(Θ|Ξ) can be approximated by a simpler ‘q’ distribution

q(Θ). Typically, the posterior distribution can be written as a product of conditionally
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independent distributions with known forms. For example, in a CP tensor factorization

model I may say that a value yijk in the tensor has a Gaussian distribution where the mean

is equal to the product given in equation 1.2 and the variance is fixed at σ2.

p(yijk) = N (yijk;
R∑
r

airbjrckr, σ
2).

Thus yijk is independent of the other values in the model given that we known the vectors

ai:, bj: and ck:.

With variational inference we remove the dependency between the parameters by in-

troducing a distribution q(yijk) in the same family as p(yijk) (i.e. Gaussian) but with

unknown mean and variance parameters.

q(yijk) = N (yijk|µ(yijk), σ
2(yijk))

The new variational parameters (µ(yijk) and σ2(yijk)) now implicitly depend on the struc-

ture and data in the original model and formulas for their optimal values can be found

analytically. Optimal here means that they minimize the KL-divergence between q and

p, a pseudo-distance between distributions (Eq representing the expected value over the q

distribution).

KL(q||p) = Eq
[
log

q(Θ)

p(Θ|Ξ)

]
(1.4)

In particular the logarithm of the optimal values in the q distribution for each variational

parameter θ can be obtained by finding the expectation of log p(Θ|Ξ) with respect to the

q distributions over all other variables (denoted Θ\θ). This gives expressions for each of

the q distributions that depend only on expected values of the other variables (and fixed

parameters).

log q(θ) = Eq(Θ\θ) [log p(Θ|Ξ)] (1.5)

Unfortunately, the expected values of the q distributions are not known a-priori, in

fact these are our estimates for the unknown values in the original model, but an expec-

tation maximization approach works here. We begin with a random initialization of the

variational parameters and then iteratively update each variational parameter given the

expectations of the other parameters in the model. At each step we find the optimal value
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for the chosen parameter so, other than the initialization, the process is completely deter-

ministic and will converge to a solution. Since we are not sampling from the distributions,

but updating the parameters directly, VI is often much more computationally efficient than

sampling methods.

The downside is that we obtain an optimal solution to an approximate distribution as

opposed to MCMC approaches that find an approximate solution to the true distribution.

Also, derivation of the update equations can be tedious, and coding these complex update

equations may introduce errors. One way to mitigate these is to monitor the evidence-

based lower bound (ELBO, written L) which is maximized when KL-divergence between

the q and p distributions is minimized. This quantity can be computed during training

both to check for convergence and to help identify errors.

log p(Θ|Ξ) = L(q) +KL(q||p) (1.6)

and

L = E[log p(Θ,Ξ)]− E[log q(Θ)] (1.7)

Do to the improved computational efficiency of these methods, variational inference

has been used to train large matrix and tensor factorizations. Salakhutdinov and Mnih

use VI to factor a matrix of Netflix movie ratings containing 17, 770 movies, 480, 189 users

and over 100 million ratings [100]. Chu and Ghahramani implement a three-mode Tucker

tensor factorization and test on a number of different datasets of varying sizes [101]. Several

groups have developed methods using VI to simultaneously factor combinations of tensors

and matrices where one mode is shared [102, 103, 104]. Also, VI is used to train the

matrix factorization that is used to predict drug response mentioned in figure 1.2 [25] and

the recent gene expression CP decomposition published by Hore et al. [86].

Our model is also trained using variational approximation but expands upon the pre-

vious work by linking the tensor factorization to predictive features for each mode.
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The BaTFLED model

Figure 2.1: Schematic of the model. Input features are mapped through projection matrices
to form latent matrices. These are then multiplied with the core tensor to form the response
tensor. Parameters for the distributions on the projection matrices and core tensor can be
used to encourage sparsity in these elements. Columns of ones added to the latent matrices
allow BaTFLED to model lower-order interactions between the latent factors.

In this chapter we present BaTFLED (Bayesian Tensor Factorization Linked to Ex-

ternal Data), a new machine learning model capable of predicting responses that vary

across three independent dimensions. BaTFLED is formulated as a probabilistic graphic

29
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model where distributions are placed on all unknown values (figure 2.2). Estimates for

the unknown values are found efficiently using variational Bayesian approximation. This

is implemented in an R package which is freely available on CRAN (https://cran.

r-project.org/web/packages/BaTFLED3D/index.html) and GitHub (https://github.

com/nathanlazar/BaTFLED3D). There are options to implement both CP and Tucker de-

compositions, to use predictor features for any or none of the three modes, to encourage

sparsity in the projection matrices and core tensor and to model lower-order interactions

in the data by adding constant columns to the latent matrices.

λpr1
c λqr2

d
λtr3
s

xip
c xjq

d
xkt
s

cr1r2r3

apr1
c

hir1
c

hjr2
d hkr3

s

aqr2
d

atr3
s

yijk

λr1r2r3
r

αc

βc
αd

βd
αs

βs

αr

βr
σc

2

σd
2 σs

2

σ2

Figure 2.2: The probabilistic graphical model for the BaTFLED. Observed values are in
gray, set parameters shown without circles. Plates are omitted for clarity, but can be
deduced by subscripts.

2.1 Model structure

The BaTFLED model has four main levels of parameters with parallel elements for each

of thee three modes. The first level consists of the input feature data for each mode and is

represented by matrices Xc, Xd an Xs (the superscripts are meant to suggest cell lines c,

drugs d and doses s). These matrices have one row for each sample (cell line, drug or dose)
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and one column for each feature associated the samples. For example, in the case of dose-

response prediction, the cell lines may be characterized by binary indicator features for

different subtypes or expression values for a set of genes while the drugs may have features

indicating different classes of drugs, known targets or structural features. Alternatively,

the input feature columns may also represent similarity between samples. In this case

the columns of the X matrices would also represent samples and the X matrix would be

filled with some similarity measure for the pair of samples represented by the row and

column. We refer to this as ‘kernelizing’ the input data and, depending on the use case,

this may improve performance as non-linear interactions between features can be captured

and this greatly reduces the number of features. Also, in the current implementation of

the algorithm, the user can optionally add a column of ones to the input data. This

allows the model to learn an intercept for each mode analogous to the intercept in a linear

regression. These input matrices are set before training and hence they are not represented

by distributions in the model and must be fully observed.

The second level of parameters consists of the projection matrices Ac, Ad and As. Each

row of the A matrices represents one of the input features for that mode and each column

represents a latent feature. The number of latent features for each mode is set by the

user. For CP decompositions, this value is the same for all three modes and for Tucker

decompositions it can differ between modes. These values are unknown and are estimated

by the inference procedure.

The third level of parameters consists of latent matrices Hc, Hd and Hs and a core

tensor C in the case of a Tucker decomposition. The H matrices serve a dual purpose both

as low-dimensional representations of the input feature data and as factor matrices for the

response tensor. There are rows for each sample and columns for each latent feature. If

input feature data (X matrices) are provided, the values in the H matrices are modeled as

tight distributions centered at the product of the X and A matrices, otherwise the values

are modeled by looser distributions with mean zero. With Tucker decompositions, a core

tensor stores values weighting the interactions between the latent features for the different

modes. For example, if the dimensions of Hc, Hd and Hs matrices are I × R1, J × R2

and K ×R3 respectively, then the core tensor will have dimensions R1 ×R2 ×R3 and the
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(r1, r2, r3) element will weight the interaction between the r1 column of Hc, the r2 column

of Hd and the r3 column of Hs. In the case of a CP decomposition, R1 = R2 = R3 and

only interactions between corresponding columns of each mode are allowed (i.e. column 1

of Hc, Hd and Hs). The core tensor does not need to be modeled explicitly as these values

can be absorbed by the H matrices.

The final layer consists of the response values stored in a three-dimensional tensor.

These values are modeled by distributions centered at the three-way product of the H

matrices and core tensor. By using distributions and not just fixed values here, BaTFLED

is able to handle datasets with missing responses. In the case of a CP decomposition the

mean response values are the sum of the outer product of each of the columns of the H

matrices.

µ(Y) =

R∑
r=1

hci ◦ hdj ◦ hsj

component-wise

µ(yijk) =
R∑
r=1

hcirh
d
jrh

s
kr

For Tucker models, the sum is over all combinations of columns of the H matrices weighted

by the core values.

µ(Y) =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

cr1r2r3h
c
i ◦ hdj ◦ hsj

component-wise

µ(yijk) =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

cr1r2r3h
c
ir1h

d
jr2h

s
kr3

In order to model the effect of lower-order interactions, the user can optionally add columns

of ones to the H matrices. The corresponding elements of the core tensor serve as marginal

intercepts for the responses. For example, if all threeH matrices have a constant, we extend

the ranges of r1, r2 and r3 to include a zero index and the corresponding element of the

core matrix (c000) can learn the a global intercept for the response tensor; a value that

is added to all responses. Similarly the c100 element is a coefficient for the first latent

factor for the first mode and encodes the one-dimensional effects that this latent factor

will have on response regardless of the values in the H matrices for modes two and three.
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The coefficient c110 encodes interactions between the first latent factors of modes one and

two (cell lines and drugs) that occur regardless of mode three (dose).

2.1.1 Distributional assumptions

In this section we give details for the distributions used in the BaTFLED model. These

are chosen to maintain conjugacy and to allow the user to set hyper-parameters to en-

courage sparsity in the projection A matrices and the core tensor. The prior parameters

for the variances of the A matrices and core tensor are represented by Λc, Λd, Λs and λr

respectively. These have hyper-parameters α and β. Also, we use a binary indicator tensor

∆ to indicate whether each response has been observed. For simplicity we denote all the

observed values and set parameters (except the responses) by Ξ.

Ξ = {Xc, Xd, Xs, σ2, σ2
c , σ

2
d, σ

2
s , α

c, αd, αs, αr, βc, βd, βs, βr,∆} (2.1)

and all random variables by Θ

Θ = {Hc, Hd, Hs, Ac, Ad, As,Λc,Λd,Λs,C,Λr} (2.2)

Thus the full joint distribution of the the prior parameters Λc,Λd,Λs,Λr, projection

matrices Ac, Ad, As, latent factor matrices Hc, Hd, Hs, core tensor C, and the responses

Y given the observed data Xc, Xd, Xs and the set parameters σ2, σ2
c , σ2

d, σ
2
s , αc, αd, αs,

αr, βc, βd, βs, βr, ∆ is p(Θ,Y|Ξ). This distribution factors as follows (dependencies on

set parameters are omitted for clarity).

p(Θ,Y|Ξ) = p(Y, Hc, Hd, Hs, Ac, Ad, As,Λc,Λd,Λs,C,Λr|Xc, Xd, Xs)

= p(Y|C, Hc, Hd, Hs)p(Hc|Ac, Xc)p(Hd|Ad, Xd)p(Hs|As, Xs)

p(C|Λr)p(Ac|Λc)p(Ad|Λd)p(As|Λs)p(Λc)p(Λd)p(Λs)p(Λr) (2.3)

The distributional assumptions for each of the factors are
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p(Y|C, Hc, Hd, Hs) =

I∏
i=1

J∏
j=1

K∏
k=1

N (yijk;

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

cr1r2r3h
c
ir1h

d
jr2h

s
kr3 , σ

2)δijk (2.4)

p(Hc|Ac, Xc) =
I∏
i=1

R1∏
r1=1

N (hcir1 ; xcia
c
r1 , σ

2
c ) (2.5)

p(Hd|Ad, Xd) =

J∏
j=1

R2∏
r2=1

N (hdjr2 ; xdja
d
r2 , σ

2
d) (2.6)

p(Hs|As, Xs) =
K∏
k=1

R3∏
r3=1

N (hskr3 ; xska
s
r3 , σ

2
s) (2.7)

p(C|Λr) =

R1∏
r1=1

R2∏
r2=1

R3∏
r3=1

N (cr1r2r3 ; 0, (λrr1r2r3)−1) (2.8)

p(Ac|Λc) =

P∏
p=1

R1∏
r1=1

N (acpr1 ; 0, (λcpr1)−1) (2.9)

p(Ad|Λd) =

Q∏
q=1

R2∏
r2=1

N (adqr2 ; 0, (λdqr2)−1) (2.10)

p(As|Λs) =
T∏
t=1

R3∏
r3=1

N (astr3 ; 0, (λstr3)−1) (2.11)

p(Λr) =

R1∏
r1=1

R2∏
r2=1

R3∏
r3=1

G(λrr1r2r3 ;αr, βr) (2.12)

p(Λc) =

P∏
p=1

R1∏
r1=1

G(λcpr1 ;αc, βc) (2.13)

p(Λd) =

Q∏
q=1

R2∏
r2=1

G(λdqr2 ;αd, βd) (2.14)

p(Λs) =

T∏
t=1

R3∏
r3=1

G(λstr3 ;αs, βs) (2.15)

δijk =


1 if yijk is observed

0 otherwise

(2.16)

Where N (x;µ, σ2) is a normal distribution with mean µ and variance σ2 and G(x; a, b)
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is a gamma distribution with shape a and scale b. We use a shared variance σ2 for the

response tensor and shared variances σ2
c , σ2

d and σ2
s for the elements of the latent matrices

Hc, Hd and Hs respectively. The gamma distributions on the inverse variance (precision)

λ parameters for the projection matrices Ac, Ad and As and the core C allows the user

to encourage sparsity in these parts of the model. By setting the prior shape and scale

parameters to extreme values (ex. α = 10−10 and β = 1010) the majority of these precision

λ values move toward zero as the model is trained. Since the mean of these distributions is

set at zero, pushing the precision to zero for a particular feature minimizes the contribution

of that feature to the model. The λ values in the projection A matrices can optionally be

shared across rows which encourages the use of the same predictor variables for all latent

factors.

2.2 Inference

With the model established above, our goal is to find the posterior distribution of variables

in the model given the observations p(Θ|Ξ,Y) as well as the marginal likelihood or model

evidence p(Y|Ξ). Exact inference of the posterior is not analytically solvable and sampling

based approaches like Markov chain Monte Carlo (MCMC) would be computationally pro-

hibitive for a model of this size. Instead we use a variational approximation (or variational

Bayes) approach that maximizes a lower bound on the log of the posterior. This ELBO

(evidence based lower bound) is found by minimizing the Kullback-Leibler divergence [99]

between the true posterior distribution and an approximating q distribution. See section

1.5.2 for more details.

L = Eq(Θ)[log p(Y,Θ|Ξ)]− Eq(Θ)[log q(Θ)] (2.17)

The new q distribution is a joint distribution of the same variables as the p distribution

that we assume to be fully factorable. This is known as the ‘mean field’ approximation.

q(Θ) = q(C)q(Hc)q(Hd)q(Hs)q(Ac)q(Ad)q(As)q(Λc)q(Λd)q(Λs)q(Λr) (2.18)

Closed forms for the q distribution can be derived analytically according to equation 1.5,
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but they depend on expectations under the q distribution of other variables in the model.

log q(θ) = Eq(Θ\θ) [log p(Θ|Ξ)] (1.5)

In order to find the q distribution that best approximates the p distribution, an iterative

expectation maximization process is employed.

2.2.1 Update equations

As mentioned in section 1.5.2, the logarithm of the optimal q distribution for a given

variable θ can be obtained by finding the expectation of log p(Θ|Ξ) with respect to the q

distributions over all other variables. Applying this process to the distributions in BaT-

FLED gives the update equations shown below. Equations for other modes are identical to

those shown here for the first mode. All expectations are with respect to the q distributions.

Prior Λ matrices:

q(λcpr1) = G

(
λcpr1 ;αc +

1

2
,

(
1

2
E[acpr1 ]2 +

1

2
var(acpr1) +

1

βc

)−1
)

(2.19)

q(λrr1r2r3) = G

(
λrr1r2r3 ;αr +

1

2
,

(
1

2
E[cr1r2r3 ]2 +

1

2
var(cr1r2r3) +

1

βr

)−1
)

(2.20)

Projection A matrices

q(acr1) = N
(
acr1 ;µ(acr1),Σ(acr1)

)
(2.21)

with

µ(acr1) =

(
1

σ2
c

E[hcr1 ]TXc

)
Σ(acr1)

Σ(acr1) =

(
1

σ2
c

(Xc)TXc + E[λcr1 ]I

)−1

Latent H matrices:

q(hcir) = N (hcir;µ(hcir),Σ(hcir)) (2.22)
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with

µ(hcir1) = Σ(hcir1)

 1

σ2

J∑
j=1

K∑
k=1

δijk

[
yijk

R2∑
r2=1

R3∑
r3=1

E[cr1r2r3 ]E[hdjr2 ]E[hskr3 ]

−
∑
r∗1 6=r1

R2∑
r2

R3∑
r3

E[cr1r2r3 ]E[hcir∗1 ]

 ∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr∗1r∗2r∗3 ]E[hdjr2 ]E[hdjr∗2 ]E[hskr3 ]E[hskr∗3 ]

+
∑
r∗2 6=r2

E[cr∗1r∗2r3 ]E[hdjr2 ]E[hdjr∗2 ]
(
E[hskr3 ]2 + V ar(hskr3)

)
+
∑
r∗3 6=r3

E[cr∗1r2r∗3 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]E[hskr∗3 ]

+ E[cr∗1r2r3 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

) (
E[hskr3 ]2 + V ar(hskr3)

) ]]

+
1

σ2
c

xcia
c
r1

)

and

Σ(hcir) =

(
1

σ2

J∑
j=1

K∑
k=1

δijk

R2∑
r2=1

R3∑
r3

[
∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr1r2r3 ]E[cr1r∗2r∗3 ]E[hdjr2 ]E[hdjr∗2 ]E[hskr3 ]E[hskr∗3 ]

+
∑
r∗2 6=r2

E[cr1r2r3 ]E[cr1r∗2r3 ]E[hdjr2 ]E[hdjr∗2 ]
(
E[hskr3 ]2 + V ar(hskr3)

)
+
∑
r∗3 6=r3

E[cr1r2r3 ]E[cr1r2r∗3 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]E[hskr∗3 ]

+
(
E[cr1r2r3 ]2 + V ar(cr1r2r3)

) (
E[hdjr2 ]2 + V ar(hdjr2)

) (
E[hskr3 ]2 + V ar(hskr3)

) ]

+
1

σ2
c

)−1

Core C tensor

q(cr1r2r3) = N (cr1r2r3 ;µ(cr1r2r3),Σ(cr1r2r3)) (2.23)
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with

µ(cr1r2r3) =
1

σ2

I∑
i=1

J∑
j=1

K∑
k=1

[
δijkyijkE[hcir1 ]E[hdjr2 ]E[hskr3 ]

+ E[hcir1 ]E[hdjr2 ]E[hskr3 ]
∑
r∗1 6=r1

∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr∗1r∗2r∗3 ]E[hcir∗1 ]E[hdjr∗2 ]E[hskr∗3 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

)
E[hdjr2 ]E[hskr3 ]

∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr1r∗2r∗3 ]E[hdjr∗2 ]E[hskr∗3 ]

+ E[hcir1 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]

∑
r∗1 6=r1

∑
r∗3 6=r3

E[cr∗1r2r∗3 ]E[hcir∗1 ]E[hskr∗3 ]

+ E[hcir1 ]E[hdjr2 ]
(
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗1 6=r1

∑
r∗2 6=r2

E[cr∗1r∗2r3 ]E[hcir∗1 ]E[hdjr∗2 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

) (
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]

∑
r∗3 6=r3

E[cr1r2r∗3 ]E[hskr∗3 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

)
E[hdjr2 ]

(
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗2 6=r2

E[cr1r∗2r3 ]E[hdjr∗2 ]

+ E[hcir1 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

) (
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗1 6=r1

E[cr∗1r2r3 ]E[hcir∗1 ]

]

and

Σ(cr1r2r3) =

(
1

σ2

I∑
i=1

J∑
j=1

K∑
k=1

δijk
(
E[hcir1 ]2 + V ar(hcir1)

) (
E[hdjr2 ]2 + V ar(hdjr2)

)
(
E[hskr3 ]2 + V ar(hskr3)

)
+ E[λrr1r2r3 ]

)−1

2.2.2 The ELBO

Using equations 2.3 and 2.18, the evidence-based lower-bound (ELBO) can be written in

the form below. Expectations are over all variables within each expression with respect to

the q distributions.
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L = E[log p(Y|C, Hc, Hd, Hs)] + E[log p(C|Λr)]

+ E[log p(Hc|Ac, Xc)] + E[log p(Hd|Ad, Xd)] + E[log p(Hs|As, Xs)]

+ E[log p(Ac|Λc)] + E[log p(Ad|Λd)] + E[log p(As|Λs)]

+ E[log p(Λr)] + E[log p(Λc)] + E[log p(Λd)] + E[log p(Λs)]

− E[log q(C)]− E[log q(Hc)]− E[log q(Hd)]− E[log q(Hs)]

− E[log q(Ac)]− E[log q(Ad)]− E[log q(As)]

− E[log q(Λr)]− E[log q(Λc)]− E[log q(Λd)]− E[log q(Λs)]

(2.24)

The expectations of the p distributions over the q distributions are given below for each

term.

E[log p(Λc)] =

P∑
p=1

R1∑
r1=1

[
(αc − 1)E[log(λcpr1)]− 1

βc
E[λcpr1 ]− αc log(βc)− log(Γ(αc))

]

E[log p(Ac|Λc)] = −PR1

2
log(2π) +

1

2

P∑
p=1

R1∑
r1=1

E[log(λcpr1)]

− 1

2

P∑
p=1

R1∑
r1=1

E[λcpr1 ](E[acpr1 ]2 + var(acpr1))

E[log p(Hc|Ac, Xc)] = −IR1

2
log(2πσ2

c )−
1

2σ2
c

I∑
i=1

R1∑
r1=1

(
E[hcir1 ]2 + var(hcir1)

)
+

1

σ2
c

I∑
i=1

R1∑
r1=1

E[hcir1 ]xciE[acr1 ]

− 1

2σ2
c

I∑
i=1

R1∑
r1=1

P∑
p1=1

P∑
p2=1

xcip1x
c
ip2 (E[ap1r1 ]E[ap2r1 ] + Cov(ar1)p1p2)



40

E[log p(Λr)] =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

[
(αr − 1)E[log(λrr1r2r3)]

− 1

βr
E[λrr1r2r3 ]− αr log(βr)− log(Γ(αr))

]

E[log p(C|Λc)] = −R1R2R3

2
log(2π) +

1

2

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

E[log(λrr1r2r3)]

− 1

2

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

E[λrr1r2r3 ](E[cr1r2r3 ]2 + var(cr1r2r3))

E[logp(Y|C, Hc, Hd, Hs)] = −1

2
log(2πσ2)

I∑
i=1

J∑
j=1

K∑
k=1

δijk

− 1

2σ2

I∑
i=1

J∑
j=1

K∑
k=1

δijk

[
y2
ijk − 2yijk

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

E[cr1r2r3 ]E[hcir1 ]E[hdjr2 ]E[hskr3 ]

]

− 1

2σ2

I∑
i=1

J∑
j=1

K∑
k=1

δijk

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

E[cr1r2r3 ]

[

E[hcir1 ]E[hdjr2 ]E[hskr3 ]
∑
r∗1 6=r1

∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr∗1r∗2r∗3 ]E[hcir∗1 ]E[hdjr∗2 ]E[hskr∗3 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

)
E[hdjr2 ]E[hskr3 ]

∑
r∗2 6=r2

∑
r∗3 6=r3

E[cr1r∗2r∗3 ]E[hdjr∗2 ]E[hskr∗3 ]

+ E[hcir1 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]

∑
r∗1 6=r1

∑
r∗3 6=r3

E[cr∗1r2r∗3 ]E[hcir∗1 ]E[hskr∗3 ]

+ E[hcir1 ]E[hdjr2 ]
(
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗1 6=r1

∑
r∗2 6=r2

E[cr∗1r∗2r3 ]E[hcir∗1 ]E[hdjr∗2 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

) (
E[hdjr2 ]2 + V ar(hdjr2)

)
E[hskr3 ]

∑
r∗3 6=r3

E[cr1r2r∗3 ]E[hskr∗3 ]

+
(
E[hcir1 ]2 + V ar(hcir1)

)
E[hdjr2 ]

(
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗2 6=r2

E[cr1r∗2r3 ]E[hdjr∗2 ]

+ E[hcir1 ]
(
E[hdjr2 ]2 + V ar(hdjr2)

) (
E[hskr3 ]2 + V ar(hskr3)

) ∑
r∗1 6=r1

E[cr∗1r2r3 ]E[hcir∗1 ]

]

The terms in the lower bound coming from Eq(Θ)[log q(Θ)] are negative entropies.
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Eq(Λc)[log q(Λc)] =

I∑
i=1

R1∑
r1=1

[
− a(λcir1)− log(b(λcir1))

− log(Γ(a(λcir1)))− (1− a(λcir1))ψ(a(λcir1))

]

Eq(Λr)[log q(Λr)] =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

[
− a(λr1r2r3)− log(b(λr1r2r3))

− log(Γ(a(λr1r2r3)))− (1− a(λr1r2r3))ψ(a(λr1r2r3))

]

Eq(Ac)[log q(Ac)] =

P∑
p=1

R1∑
r1=1

[
−1

2
(log(2π) + 1)− 1

2
log σ2(acpr1)

]

Eq(Hc)[log q(Hc)] =

I∑
i=1

R1∑
r1=1

[
−1

2
(log(2π) + 1)− 1

2
log σ2(hcir1)

]

Eq(C)[log q(C)] =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

[
−1

2
(log(2π) + 1)− 1

2
log σ2(cr1r2r3)

]
(2.25)

Where Γ(z) is the gamma function, ψ is the digamma function, a(λ) and b(λ) are the

shape and scale parameters for the gamma distributions and σ2(θ) is the variance for the

parameter θ.

2.3 Implementation

BaTFLED is implemented in R and the package (‘BaTFLED3D’) is freely available on

GitHub and CRAN. Running the algorithm consists of thee major steps. First, the user

must form the response and predictor data into a tensor and input matrices which are

stored in one training object. Additional objects of this type can be used to store test input

matrices and response tensors. Next, the user creates a training data object consisting of

the projection matrices, the latent matrices, and the core tensor. Parameters are provided

to specify the type of factorization to be used (CP or Tucker), the dimensions of the latent

space, the meta-parameters for the sparsity priors, the variances for the latent matrices

and response tensor and other options. This object is then initialized is with random
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values. Finally the model is trained for some number of iterations. During training,

the user can monitor the ELBO, plot predictions and display images of the projection

and latent matrices. Once trained the user can examine the performance in terms of the

normalized root mean squared error, explained variance, Pearson correlation and Spearman

correlation.

2.3.1 Package design

The main elements of the BaTFLED3D package are the objects for storing training and test

data (input_data), the training model objects created with mk_model(), and the training

and test functions (train() and test()). There are separate versions of the training model

objects, training functions and test functions for CP and Tucker decompositions which are

used internally. The data and model objects are stored as ‘R6’ objects which allows them

to be updated in place. This greatly reduces the memory requirements and increases the

speed of training. These objects are treated like environments and components are accessed

using the $ operator. All objects and functions are packaged with full documentation and

test examples which can be accessed though the package manual or on the command line

with the ? operator.

2.3.2 Parameters

As BaTFLED3D is meant to be a general use package, there are a number of parameters

that the user can change depending on the use case. The functions get_data_params

and get_model_params allow the user to specify options which are used in generating test

data or training models respectively. This is accomplished by passing a character vector

of parameter names followed by =<value> to these functions, or by assigning values to the

parameter object after generating it with default options. Some essential options are:

• decomp: Use either a CP or Tucker decomposition.

• R: Specify the size of the latent space in CP models.

• R1, R2 and R3: Specify the size of the core for Tucker models.

• A1.intercept, A2.intercept and A3.intercept: Add a column of ones to the input

matrices.
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• H1.intercept, H2.intercept and H3.intercept: Add a column of ones to the latent

matrices.

• m1.alpha, m2.alpha, m3.alpha, m1.beta, m2.beta and m3.beta: Prior parameters

for the projection matrices.

• core.3D.alpha, core.3D.beta: Prior parameters for the core (with Tucker decom-

positions).

• m1.sigma2, m2.sigma2 and m3.sigma2: Variance parameters for the latent matrices.

• sigma2: Variance parameter for the responses.

2.3.3 Example usage

This section walks through the use of BaTFLED on a small simulated dataset.

First we check for installation of necessary packages, install them if necessary and load

them.

library(BaTFLED3D)

# Set up backend for parallel execution}

cores <- 1

if(.Platform$OS.type == "windows") {

clust <- parallel::makeCluster(cores)

doParallel::registerDoParallel(clust)

} else doMC::registerDoMC(cores)

Generating a simulated dataset

Next we generate simulated data according to the assumed generative model which we will

try to reconstruct using BaTFLED. Many aspects of model building can be adjusted (use

?get_data_params to see them).



44

args <- list(’decomp=Tucker’, # Either CP or Tucker factorization

’m1.rows=20’, ’m1.cols=80’, # Dimensions of input matrices

’m2.rows=25’, ’m2.cols=100’,

’m3.rows=5’, ’m3.cols=0’,

’A1.intercept=T’, # Add intercepts to projection matrices

’A2.intercept=T’,

’A3.intercept=F’,

’H1.intercept=T’, # Add intercepts to latent matrices

’H2.intercept=T’,

’H3.intercept=T’,

’m1.true=8’, # Number of predictors affecting output

’m2.true=10’,

’m3.true=0’,

’R1=4’, ’R2=4’, ’R3=4’, # Core dimension

’core.spar=0.1’, # Amount of sparsity in the core [0-1]

# 1 = no sparsity

’noise.sd=0.2’ # Gaussian noise added to responses

)

data.params <- get_data_params(args)

toy <- mk_toy(data.params)

The toy list contains the input matrices (mode1.X, mode2.X and mode3.X), the sparse

projection matrices (mode1.A, mode2.A and mode3.A), the latent matrices (mode1.H, mode2

.H and mode3.H), the core tensor (core if a Tucker decomposition is used) and the response

tensor (resp). The matrices and slices of the tensors can be view using im_mat(). Note

that there are normally some patterns visible in the response tensor.
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par(mfrow=c(2,2), mar=c(2,2,2,2), mgp=c(1,1,1))

im_mat(toy$mode1.X, main=’Mode 1 X’, ylab=’Samples’,

xlab=’Predictors’)

im_mat(toy$mode1.A, main=’Mode 1 A’, ylab=’Predictors’,

xlab=’Latent factors’)

im_mat(toy$mode1.H, main=’Mode 1 H’, ylab=’Samples’,

xlab=’Constant + latent factors’)

im_mat(toy$resp[,,1], main=’Slice of response tensor’,

xlab=’Mode 2 samples’, ylab=’Mode 1 samples’)

Training a BaTFLED model

Now that we’ve built a model, we use BaTFLED to learn the values in the projection and

latent matrices and the core tensor given just the input data and responses. We separate

two of the ‘samples’ from modes 1 and 2 to be used as test data and form input_data

objects. We also set a percentage of training responses to ‘NA’ to be used for ‘warm start’

testing. If the X matrices contain constants they are removed since these is optionally

added during training.
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train.data <- input_data$new(

mode1.X=toy$mode1.X[-c(1,2),!grepl(’const’, colnames(toy$mode1.X))],

mode2.X=toy$mode2.X[-c(1,2),!grepl(’const’, colnames(toy$mode2.X))],

mode3.X=toy$mode3.X[,!grepl(’const’, colnames(toy$mode3.X))],

resp=toy$resp[-c(1,2),-c(1,2),])

# Remove ’warm.per’ percent of responses to use as ’warm’ test data

warm.per <- 0.05

warm.idx <- sample(1:prod(dim(train.data$resp)),

prod(dim(train.data$resp))*warm.per)

warm.resp <- train.data$resp[sort(warm.idx)]

train.data$resp[warm.idx] <- NA

train.data$delta[warm.idx] <- 0

m1.test.data <- input_data$new(

mode1.X=toy$mode1.X[c(1,2), !grepl(’const’, colnames(toy$mode1.X))],

mode2.X=toy$mode2.X[-c(1,2), !grepl(’const’, colnames(toy$mode2.X))],

mode3.X=toy$mode3.X[, !grepl(’const’, colnames(toy$mode3.X))],

resp=toy$resp[c(1,2),-c(1,2),])

m2.test.data <- input_data$new(

mode1.X=toy$mode1.X[-c(1,2), !grepl(’const’, colnames(toy$mode1.X))],

mode2.X=toy$mode2.X[c(1,2), !grepl(’const’, colnames(toy$mode2.X))],

mode3.X=toy$mode3.X[, !grepl(’const’, colnames(toy$mode3.X))],

resp=toy$resp[-c(1,2),c(1,2),])

m1m2.test.data <- input_data$new(

mode1.X=toy$mode1.X[c(1,2), !grepl(’const’, colnames(toy$mode1.X))],

mode2.X=toy$mode2.X[c(1,2), !grepl(’const’, colnames(toy$mode2.X))],

mode3.X=toy$mode3.X[, !grepl(’const’, colnames(toy$mode3.X))],

resp=toy$resp[c(1,2),c(1,2),])

To train BaTFLED we create and initialize a model object. Again there are a lot of pa-

rameters to specify, a subset of which are indicated below. To see all available parameters,

their descriptions and defaults run ?get_model_params.
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args <- list(’decomp=Tucker’, ’row.share=T’,

’A1.intercept=T’, ’A2.intercept=T’, ’A3.intercept=F’,

’H1.intercept=T’, ’H2.intercept=T’, ’H3.intercept=T’,

’plot=F’, ’verbose=F’,

’R1=4’, ’R2=4’, ’R3=4’,

’sigma2=auto’,

’m1.alpha=1e-10’, ’m2.alpha=1e-10’, ’m3.alpha=1’,

’m1.beta=1e10’, ’m2.beta=1e10’, ’m3.beta=1’,

’core.0D.alpha=1’, ’core.0D.beta=1’,

’core.1D.alpha=1e-4’, ’core.1D.beta=1e4’,

’core.2D.alpha=1e-8’, ’core.2D.beta=1e8’,

’core.3D.alpha=1e-12’, ’core.3D.beta=1e12’,

’parallel=T’, ’cores=1’, ’lower.bnd=T’,

’update.order=c(3,1,2)’, ’show.mode=c(1,2,3)’)

model.params <- get_model_params(args)

model <- mk_model(train.data, model.params)

model$rand_init(model.params)

The model is an R6 object containing A mean matrices (ex.model$mode1.A.mean

), A covariance arrays (ex. model$mode1.A.cov), H mean and variance matrices (ex.

model$mode1.H.mean and model$mode1.H.var), arrays for the core mean and variance

(model$core.mean and model$core.var), an array of predicted responses (model$resp)

and parameters for the prior distributions. Initially these are random values sampled from

Gaussian distributions.
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par(mfrow=c(2,2), mar=c(2,2,2,2), mgp=c(1,0,5))

im_mat(model$mode1.A.mean, main=’Mode 1 A mean’,

xlab=’Latent factors’, ylab=’Predictors’)

im_mat(mode$mode2.A.mean, main=’Mode 2 A mean’,

xlab=’Latent factors’, ylab=’Predictors’)

im_mat(model$mode3.H.mean, main=’Mode 3 H mean’,

xlab=’Latent factors’, ylab=’Samples’)

if(model.params$decomp==’Tucker’)

im_mat(model$core.mean[,,1], main=’Core mean’,

xlab=’mode 2 latent’, ylab=’Mode 1 latent’)

Now we are ready to train the BaTFLED model. If params$plot=TRUE the predictions

and some of the learned matrices will be displayed during training. You can adjust which

A and H matrices are displayed by changing params$show.mode. The observed response

values for the ‘warm’ data are set to zero, so they appear along a vertical line in the first

plot. The number of cores can be adjusted depending on how many processors are available

and the number of iterations can also be adjusted by changing reps. With 50 iterations a

Tucker decomposition of this size can take 10− 15 minutes.
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reps <- 50

test.results <- numeric(0)

trained <- model$clone()

train(d=train.data, m=trained, new.iter=reps, params=model.params)

# Get cold results

test.results <- test_results(m=trained, d=train.data,

test.results=test.results, warm.resp=warm.resp,

test.m1=m1.test.data, test.m2=m2.test.data,

test.m1m2=m1m2.test.data)

if(.Platform$OS.type == "windows") parallel::stopCluster(clust)

Exploring the resulting model

Now that the model has been trained, we can compare the learned matrices to the gen-

erating toy model. Since the latent factors (columns of the A and H matrices) can be

permuted or scaled without changing predictions, the function im_2_mat() scales and re-

orders columns of the two matrices and tries to match the latent factors. The new ordering

for the second matrix is returned (with negatives indicating negative scaling) so that it

can be used to order the core.
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par(mfrow=c(3,4), mar=c(2,2,2,2))

im_2_mat(toy$mode1.A, trained$mode1.A.mean,

main1=’Mode 1 A true’, main2=’Mode 1 A learned’)

m1.H.order <- im_2_mat(toy$mode1.H[-(1:2),], trained$mode1.H.mean,

main1=’Mode 1 H true’, main2=’Mode 1 H learned’)

im_2_mat(toy$mode2.A, trained$mode2.A.mean,

main1=’Mode 2 A true’, main2=’Mode 2 A learned’)

m2.H.order <- im_2_mat(toy$mode2.H[-(1:2),], trained$mode2.H.mean,

main1=’Mode 2 H true’, main2=’Mode 2 H learned’)

m3.H.order <- im_2_mat(toy$mode3.H, trained$mode3.H.mean,

main1=’Mode 3 H true’, main2=’Mode 3 H learned’)

if(model.params$decomp==’Tucker’) {

core.reorder <- trained$core.mean[abs(m1.H.order),

abs(m2.H.order), abs(m3.H.order)]

core.reorder <- core.reorder * outer(sign(m1.H.order),

outer(sign(m2.H.order), sign(m3.H.order)))

im_2_mat(toy$core[,,1], core.reorder[,,1], sort=F,

center=T, scale=’all’, main1=’Core slice true’,

main2=’Core slice learned’)
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To quantify how well BaTFLED has chosen predictors we can generate receiver oper-

ating characteristic (ROC) curves for each of the modes with predictors. Predictors are

‘chosen’ if the sum of squared values in the corresponding row of the scaled A matrix is

large.

par(mfrow=c(1,2), mar=c(3,3,2,2), mgp=c(2,1,0))

plot_roc(toy$mode1.A, trained$mode1.A.mean, main=’Mode 1’)

plot_roc(toy$mode2.A, trained$mode2.A.mean, main=’Mode 2’)

BaTFLED optionally stores values of the lower bound (lower.bnd), normalized root

mean squared error (RMSE), explained variation (exp.var), Pearson correlation (p.cor)

and Spearman correlation (s.cor) for training data.
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par(mfrow=c(2,2), mar=c(3,3,2,2), mgp=c(2,1,0))

if(model.params$lower.bnd)

plot(trained$lower.bnd, main=’Lower bound’)

if(model.params$RMSE)

plot(trained$RMSE, main=’Training RMSE’)

if(model.params$exp.var)

plot(trained$exp.var, main=’Training explained variation’)

if(model.params$cor)

plot(trained$s.cor, main=’Spearman correlation’)

Also the test.results object in the training loop has stored results for the test data

which can be plotted with the functions below.

par(mfrow=c(2,2))

plot_test_RMSE(test.results, main="Test RMSEs")

plot_test_exp_var(test.results, main="Test explained variances")

plot_test_cor(test.results, main="Pearson correlation")

plot_test_cor(test.results, main="Spearman correlation",

method=’spearman’)}
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2.3.4 Computational performance

Due to training with variational inference, fairly large models can be trained in a reasonable

amount of time. Run times depend, of course, on the size of the input data, the type of

decomposition, the number of iterations, and crucially, the size of the latent space. CP

models run in series and are generally faster than Tucker models when run with the same

number of cores, but some update operations in Tucker models can be done in parallel,

so with more processors, Tucker models can be run faster. Additionally, for CP models,

the latent dimension R may need to be much larger to model the same data. Finally,

computing the ELBO is somewhat expensive, so the user can save some run time by

setting the parameter lower.bnd=FALSE. Run-time performance for specific models will

be given in the next two sections.



Chapter 3

Experiments with simulated data

In this chapter we explore the performance of the BaTFLED model on simulated datasets

where the true predictive features and interactions are known. This gives insights into how

the algorithm performs compared to baseline methods under various sub-optimal condi-

tions. First we explain the performance measures used for assessment and the baseline

methods used for comparison. Then we explain the different prediction and variable selec-

tion tasks and finally we show results for several different experiments. In particular, we

explore the algorithm’s performance when the data does or does not contain higher-order

relationships, when the responses have increasing degrees of noise, when the core is not

optimally sized, and when the method is underpowered.

3.1 Response measures

The performance of an predictive algorithm in can be measured using a number of different

metrics each of which highlight some aspect of similarity between the known responses and

the predicted responses. For this work we look at four different metrics: normalized root

mean squared error, explained variance, Pearson correlation and Spearman correlation. In

the equations below yijk represents the observed responses, ŷijk represents the predicted

responses, while y and ŷ represent the means of the observed and predicted responses

respectively.

The normalized root mean squared error (NRMSE), given in equation 3.1, measures the

average distance between predicted and observed values relative to the standard deviation

of the observed values. Smaller values represent better performance with one representing

54
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a performance no better than simply guessing the global mean for all responses and zero

indicating perfect prediction. This measure is sensitive to outliers, so a few very wrong

predictions can have a large effect. Similarly, explained variance (given by 1−NRMSE2)

gives the proportion that the variance is reduced by using the predicted responses compared

with just predicting the mean response. Here larger values are better with zero representing

no improvement over guessing the mean and one representing a perfect prediction.

NRMSE =

√∑
ijk(yijk − ŷijk)2∑
ijk(yijk − y)2

(3.1)

Pearson correlation (PCC), given by equation 3.2, is a measure of how well a plot of

the observed vs. predicted data fit a line. The correlation ranges between negative one

and one with −1 and 1 representing a perfect linear relationship with negative or positive

slope respectively and 0 representing no linear relationship. The correlation is unaffected

by scaling the predictions, so if the algorithm consistently under- or over-estimates values,

this correlation can still be high.

PCC =

∑
ijk(yijk − y)(ŷijk − ŷ)√∑

ijk(yijk − y)2
√∑

ijk(ŷijk − ŷ)2
(3.2)

To compute the Spearman correlation (SCC), each yijk and ŷijk value is replaced by

its rank in the list of all observed or predicted values respectively and then the Pearson

correlation is computed between these lists of integers. Thus this value has the same range

as the PCC, but a SCC value of 1 means that the two sets have the same ordering, not

necessarily a linear relationship. This measure is less sensitive to outliers than any of the

methods above, but if there are many repeated values, or close similar values then the

rankings may be less meaningful.

All of these measures can be computed for any prediction algorithm and task and allow

for comparisons to be made across methods. As some methods tend to perform better with

respect to different measures, we report all relevant measures when possible and discuss

reasons for differing performances.
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3.1.1 Baseline methods

In order to asses the the utility of the BaTFLED algorithm, we compare its performance

to a simple baseline prediction and three classes of machine learning methods which have

been shown to be optimal for different prediction tasks. The simple baseline consists of

predicting the mean response across one or more of the modes. For example, if we are

predicting responses for a new cell line across different drugs and doses, then we would

take the mean across all training cell lines for each drug and dose combination. This

baseline can actually perform quite well for cell lines that have behavior similar to the

mean response. Note that this is not the global mean response that is used for calculating

the NRMSE and other response measures since it varies across both drugs and doses and

can therefore contain a reasonable amount of information about response behaviors.

The three classes of machine learning methods are elastic net models [105], multi-

layered neural networks and random forests. These methods are designed to predict a

single value given a vector of features, so in order to compare to BaTFLED models, we

concatenate vectors of inputs for the different modes into one feature vector. If the task

involves simultaneously predicting several values, as in the case of predicting response at

each dose, then we run separate models for each task.

Elastic net models extend linear regression by adding two penalty terms to the loss

function. The optimal regression coefficients β̂ are given by equation 3.3 below. Here

y is a vector of the observed responses, X is a matrix of input features with a row for

each sample and a column for each feature, the vector β weights each input feature, ||

is the Euclidean norm and ||1 is the L1 norm (||β||1 =
∑P

p=1 |βp|). The coefficient α is

set by the user and controls the degree of sparsity that the model will implement. With

α = 0 this is known as ridge regression and the model which will place non-zero weights on

all features. With α = 1 this implements LASSO (least absolute shrinkage and selection

operator) regression and a small number of features will be given non-zero weights. In our

experiments we typically test four values for α (α = 0, .5, .9, 1) and run models using the

R package glmnet [106].
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β̂ = argminβ(||y−Xβ||2 + (1− α)||β||2 + α||β||1) (3.3)

Neural network models are something like a stack of linear regression models where the

outputs from one layer serve as the inputs for the next layer after a non-linear activation

function is applied. There is a large literature on these types of models and a lot of

ongoing research into their application. For this work, we use the R H2O package [107]

to implement neural nets with one hidden layer of 1, 500 nodes, two hidden layers of 750

nodes each and three hidden layers with 500 nodes each. The non-linear activations are

rectified linear units (ReLU) with a dropout fraction of 0.2 on the input layer and 0.5 on

hidden layers. These values were chosen using suggestions from literature and to keep the

models similarly sized to the BaTFLED models.

Random forest regression models use a collection of binary decision trees to split the

response data given feature values. Typically a large number of small trees are generated

and then combined to make predictions. Again we used the R H2O package [107] to

implement these models with 1, 000 and 5, 000 trees of depth 5, and 1, 000 trees of depth

10.

3.1.2 Prediction tasks

Given a set of responses that varies along three modes, there are four different prediction

tasks of varying difficulty that can be performed (figure 3.1). The simplest task consists

of making predictions for the three-dimensional responses where responses for each of the

given sample for each mode are known, but the response for the given combination of

samples has not been observed. For example, in the cell line, drug, dose example this

would entail predicting a response for a cell line, drug, dose combination where responses

are known for that cell line when treated with different drugs and doses, that drug applied

to different cell lines and doses and that dose for different cell lines and drugs. With

the responses stored in a tensor, this amounts to filling in missing values and it can be

accomplished without the use of the feature data by factoring the tensor and multiplying

the factors back together. Since some responses are given for all of the samples, this is

known as a ‘warm-start’ prediction task.
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Figure 3.1: Different prediction tasks. The tensor of observed responses is represented by
the central gray cube. Missing values in this cube represent warm-start prediction tasks.
Lighter orange trapezoids represent prediction for one of the three modes, darker rectangles
represent two-mode prediction, and the dark orange cube represents cold-start prediction
for all three modes.

The other types of prediction are considered ‘cold-start’ tasks because predictions are

made directly from the feature data without having seen responses for the sample from one

or more of the modes. The one-mode prediction task entails making a set of predictions

for a sample that is not in the training set across the training samples for the other two

modes. This can be visualized as adding a slice to the response tensor corresponding to

the mode being predicted. For example, in the cell line, drug, dose example, given a vector

of feature values for a new cell line, response predictions would be made for that cell line

when treated with each drug and dose in the training set. The two-mode prediction task

adds a new fiber to the response tensor and requires feature data for a new sample from

two of the modes. For example, for a new cell line and drug combination, predictions

would be made at each dose. Finally, the three-mode prediction task would use features

from each of the modes to predict a single value.

In addition to making predictions the BaTFLED model is also designed to perform

feature selection for each of the modes. For the simulated data, the true predictors are a

known a priori so it is also possible to assess the performance in recovering these variables.

For a trained BaTFLED model, the weight for each features is taken to be the average
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across the rows of the projection matrices. Since this is a continuous measure of feature

importance, we use the area under the receiver operator characteristic (AUROC) measure

to assess the performance. This value gives the probability that a feature that is a true

predictor will be ranked ahead of a feature that is not a true predictor.

3.2 Experiments

In the following subsections, we detail the setup and results for six experiments varying

different aspects of the BaTFLED model. In each case the performance is compared to

the methods detailed above and relevant response measures are reported.

3.2.1 One, two and three mode interactions

As BaTFLED is designed to model interactions between different modes, we first sought to

assess its performance in discovering higher order interactions. To this end we generated

responses from the three-mode structure shown in figure 2.1 with the three types of core

tensors shown in figure 3.2. The first core tensor (referred to as 1D) only has non-zero

values along fibers that correspond to the columns of ones in two of the latent matrices

(i.e. ci00, c0j0 and c00k) and thus responses are governed by effects coming from each mode

separately. The second core tensor (1 & 2D) has non-zero values in the faces corresponding

to the columns of ones in one of the latent matrices (i.e. cij0, ci0k and c0jk) and so allows

for interactions between at most two modes. The third core tensor (1, 2 & 3D) has values

in any of the positions, but is sparse so that only 1
2 of the possible interactions have a

non-zero weight.

In all cases, response data is generated with 30 samples per mode and 100 features

for each mode, 10 of which have non-zero weights in the projection matrices. Each mode

has four latent factors, so with the added columns of ones, the core tensor is 5 × 5 × 5.

Zero-centered Gaussian noise with a standard deviation of 1
10 of the response standard de-

viation is added to responses to simulate random measurement error. Before training, two

examples for each mode are removed and used for cold-start testing and 1% of interactions

removed for warm-start testing. Details on run parameters for the baseline methods are
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Figure 3.2: Three cores used when simulating data allowing one-mone, two-mode and
three-mode interactions respectively.

given in section 3.1.1. BaTFLED models are run for 100 iterations with prior parameters

α = 10−5 and β = 105. The CP models have a latent dimension of 64 to compare with

the 4× 4× 4 core of the Tucker models. Note that for CP models there is no advantage to

adding columns of ones to the latent matrices since these would only be able to interact

with each other. All models are run in 10 replicates with mean performance measures

reported below.

From figures 3.3 and 3.4 and tables 3.2.1 and 3.2.1 we see that BaTFLED Tucker models

perform as well as the best baseline models on tasks when the data is generated without

higher order interactions (1D), but when these interactions are present, BaTFLED Tucker

models far outperform other methods. It is interesting to note that BaTFLED CP models

outperform elastic net models for the 1 & 2D warm-start task but do not perform as well as

neural network and some random forest models which allow non-linear interactions between

predictors. Moreover, CP models may slightly outperform other methods for the multi-

mode cold-start 1 & 2D tasks. Since the majority of tensor factorizations published to date

have used CP decompositions and focused on warm-start prediction, these results indicate

that there is much to be gained by switching to the more flexible Tucker decomposition

especially when attempting cold-start prediction for multiple modes.

When generating the data, only 10 of 100 features for each mode are ‘real’ (i.e. have

non-zero weights in the projection matrices) and can influence the responses. A secondary

goal of the BaTFLED model is to identify which predictors are real. We use area under the

receiver operator characteristic curves (AUROC) to assess the performance of the above
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Figure 3.3: Normalized root mean squared error measures for BaTFLED and baseline
methods when predicting responses with one, two and three mode interactions (means of
10 replicates). Columns represents different prediction tasks and rows show performance
on data generated with no interactions between modes, interactions between at most two
modes and interactions between any of the three modes. Results for cold predictions of
modes 2 and 3 are similar.

models in identifying the true predictors. This requires a weight on the importance for

each feature which is supplied by all of the baseline methods. For BaTFLED models, we

tested several methods of weighting the predictors all of which had similar results, so we

report here the simplest method of just summing the squared values across rows in the

projection matrices. From the results shown in figure 3.5 and table 3.2.1, we see that

BaTFLED Tucker models are able to recover the true predictors as well or better than

other methods in all cases while BaTFLED CP models cannot. The advantage that Tucker

models provide is especially clear when higher-order interactions are present in the data.

In the next sections we examine how this performance degrades if the simulated data

have more missing values, an increasing proportion of noise, a smaller core tensor or have

less samples to use for training.
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Figure 3.4: Pearson correlation measures for BaTFLED and baseline methods when pre-
dicting responses with one, two and three mode interactions (means of 10 replicates).
Columns represents different prediction task and rows show performance on data gener-
ated with no interactions between modes, interactions between at most two modes and
interactions between any of the three modes. Results for cold predictions of modes 2 and
3 are similar.
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Cold start prediction:

Train Warm Mode 1 Mode 2 Mode 3 Mode 1&2 Mode 1&3 Mode 2&3 Mode 1,2&3

Data generated with only 1D interactions

Mean 0.56(0.14) 0.59(0.15) 0.57(0.44) 0.36(0.15) 0.52(0.28) 1.19(0.50) 1.29(0.56) 1.16(0.30) 0.81(0.20)
LASSO α = 1 0.10(0.00) 0.10(0.01) 0.14(0.04) 0.18(0.10) 0.27(0.19) 0.18(0.07) 0.31(0.18) 0.30(0.16) 0.30(0.16)
E. Net α = 0.9 0.10(0.00) 0.10(0.01) 0.15(0.04) 0.18(0.10) 0.28(0.21) 0.19(0.06) 0.32(0.19) 0.31(0.17) 0.31(0.17)
E. Net α = 0.5 0.10(0.00) 0.10(0.01) 0.19(0.04) 0.20(0.11) 0.32(0.28) 0.20(0.06) 0.39(0.25) 0.37(0.25) 0.37(0.25)
Ridge α = 0 0.10(0.00) 0.10(0.01) 0.45(0.31) 0.29(0.12) 0.55(0.28) 0.46(0.18) 0.75(0.29) 0.65(0.30) 0.76(0.23)
R. Forest 1Kx5 0.42(0.04) 0.42(0.04) 0.70(0.34) 0.47(0.13) 0.73(0.29) 0.63(0.22) 0.83(0.20) 0.65(0.20) 0.78(0.14)
R. Forest 5Kx5 0.42(0.05) 0.42(0.05) 0.67(0.30) 0.48(0.14) 0.70(0.27) 0.62(0.17) 0.79(0.20) 0.66(0.25) 0.77(0.20)
R. Forest 1Kx10 0.16(0.01) 0.18(0.01) 0.59(0.35) 0.40(0.16) 0.58(0.30) 0.63(0.22) 0.76(0.22) 0.62(0.21) 0.77(0.18)
Neural net 1L. 0.43(0.05) 0.42(0.06) 0.54(0.31) 0.50(0.08) 0.58(0.25) 0.52(0.20) 0.74(0.24) 0.71(0.27) 0.74(0.19)
Neural net 2L. 0.52(0.02) 0.53(0.03) 0.67(0.31) 0.62(0.10) 0.59(0.24) 0.68(0.18) 0.78(0.25) 0.77(0.28) 0.81(0.22)
Neural net 3L. 0.63(0.03) 0.65(0.04) 0.77(0.28) 0.68(0.07) 0.72(0.21) 0.73(0.16) 0.85(0.22) 0.82(0.23) 0.84(0.18)
BaTFLED CP. 0.37(0.04) 0.38(0.04) 0.46(0.15) 0.42(0.11) 0.46(0.13) 0.45(0.20) 0.52(0.15) 0.45(0.11) 0.46(0.18)
BaTFLED Tucker 0.11(0.00) 0.11(0.01) 0.16(0.05) 0.20(0.16) 0.15(0.03) 0.22(0.13) 0.18(0.05) 0.22(0.14) 0.23(0.12)

Data generated with 1D & 2D interactions

Mean 0.83(0.05) 0.88(0.07) 0.74(0.26) 0.78(0.22) 0.84(0.39) 0.94(0.30) 1.09(0.31) 1.37(0.34) 0.89(0.39)
LASSO α = 1 0.92(0.04) 0.95(0.08) 0.86(0.19) 0.93(0.15) 1.05(0.27) 0.81(0.23) 0.86(0.24) 1.13(0.36) 0.88(0.37)
E. Net α = 0.9 0.92(0.04) 0.96(0.08) 0.86(0.19) 0.93(0.15) 1.05(0.27) 0.80(0.23) 0.86(0.23) 1.13(0.36) 0.88(0.36)
E. Net α = 0.5 0.92(0.04) 0.95(0.08) 0.87(0.19) 0.93(0.15) 1.05(0.28) 0.81(0.23) 0.86(0.23) 1.14(0.36) 0.89(0.36)
Ridge α = 0 0.92(0.04) 0.95(0.08) 0.87(0.19) 0.95(0.15) 1.06(0.28) 0.82(0.26) 0.85(0.20) 1.18(0.38) 0.92(0.40)
R. Forest 1Kx5 0.71(0.08) 0.73(0.09) 0.79(0.18) 0.84(0.17) 1.01(0.35) 0.77(0.22) 0.86(0.21) 1.11(0.33) 0.88(0.34)
R. Forest 5Kx5 0.71(0.08) 0.72(0.09) 0.78(0.18) 0.83(0.17) 1.01(0.36) 0.77(0.23) 0.83(0.22) 1.08(0.30) 0.88(0.33)
R. Forest 1Kx10 0.38(0.04) 0.42(0.05) 0.69(0.20) 0.73(0.18) 0.93(0.41) 0.75(0.21) 0.82(0.22) 1.05(0.31) 0.90(0.35)
Neural net 1L. 0.44(0.03) 0.44(0.04) 0.81(0.25) 0.77(0.23) 0.97(0.35) 0.84(0.28) 0.90(0.21) 1.09(0.35) 0.91(0.42)
Neural net 2L. 0.29(0.02) 0.30(0.02) 0.74(0.27) 0.71(0.22) 0.87(0.38) 0.80(0.30) 0.86(0.22) 1.09(0.33) 0.91(0.45)
Neural net 3L. 0.37(0.04) 0.37(0.04) 0.73(0.27) 0.72(0.22) 0.84(0.35) 0.81(0.32) 0.86(0.23) 1.05(0.31) 0.96(0.50)
BaTFLED CP. 0.66(0.18) 0.68(0.18) 0.70(0.17) 0.67(0.19) 0.77(0.29) 0.66(0.24) 0.71(0.15) 0.81(0.36) 0.64(0.27)
BaTFLED Tucker 0.11(0.01) 0.11(0.01) 0.11(0.01) 0.11(0.01) 0.11(0.01) 0.11(0.01) 0.12(0.02) 0.12(0.02) 0.11(0.04)

Data generated with 1D, 2D & 3D interactions

Mean 0.94(0.04) 0.98(0.05) 1.02(0.30) 0.80(0.37) 1.05(0.32) 0.85(0.43) 1.13(0.47) 0.89(0.49) 0.81(0.58)
LASSO α = 1* 0.99(0.01) 0.96(0.04) 0.95(0.29) 0.82(0.36) 1.08(0.35) 0.79(0.44) 1.06(0.49) 0.83(0.51) 0.82(0.58)
E. Net α = 0.9* 1.00(0.01) 0.96(0.04) 0.95(0.29) 0.82(0.36) 1.08(0.35) 0.79(0.44) 1.06(0.49) 0.83(0.51) 0.82(0.58)
E. Net α = 0.5* 0.99(0.01) 0.96(0.04) 0.95(0.29) 0.82(0.36) 1.08(0.35) 0.79(0.43) 1.06(0.49) 0.83(0.51) 0.82(0.58)
Ridge α = 0 1.00(0.01) 0.96(0.04) 0.95(0.29) 0.82(0.36) 1.08(0.35) 0.79(0.44) 1.06(0.49) 0.83(0.51) 0.81(0.58)
R. Forest 1Kx5 0.86(0.03) 0.85(0.04) 0.96(0.30) 0.78(0.34) 1.07(0.34) 0.81(0.40) 1.08(0.48) 0.82(0.49) 0.83(0.55)
R. Forest 5Kx5 0.86(0.02) 0.86(0.04) 0.95(0.27) 0.80(0.34) 1.07(0.33) 0.81(0.39) 1.06(0.47) 0.83(0.49) 0.81(0.56)
R. Forest 1Kx10 0.55(0.05) 0.61(0.07) 0.92(0.25) 0.78(0.32) 1.05(0.31) 0.81(0.39) 1.06(0.44) 0.84(0.46) 0.85(0.55)
Neural net 1L. 0.46(0.04) 0.43(0.03) 0.92(0.27) 0.92(0.25) 1.07(0.28) 0.83(0.42) 1.03(0.45) 0.87(0.48) 0.81(0.56)
Neural net 2L. 0.24(0.01) 0.26(0.02) 0.89(0.25) 0.81(0.32) 1.10(0.26) 0.81(0.43) 1.04(0.45) 0.86(0.47) 0.83(0.56)
Neural net 3L. 0.30(0.04) 0.33(0.03) 0.92(0.28) 0.82(0.32) 1.10(0.28) 0.89(0.44) 1.03(0.43) 0.88(0.45) 0.92(0.56)
BaTFLED CP. 1.00(0.00) 0.96(0.04) 0.95(0.29) 0.83(0.35) 1.08(0.35) 0.78(0.45) 1.05(0.50) 0.83(0.51) 0.81(0.59)
BaTFLED Tucker 0.12(0.03) 0.12(0.02) 0.12(0.03) 0.13(0.04) 0.12(0.02) 0.13(0.04) 0.12(0.02) 0.13(0.04) 0.12(0.04)
* Elastic net set all weights to zero in 4-5 of 10 runs.

Table 3.1: Mean normalized RMSE performance on simulated three-mode datasets relative
to training set standard deviation across ten replicates (sd)
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Cold start prediction:

Train Warm Mode 1 Mode 2 Mode 3 Mode 1&2 Mode 1&3 Mode 2&3 Mode 1,2&3

Data generated with only 1D interactions

Mean 0.77(0.08) 0.76(0.08) 0.90(0.11) 0.97(0.03) 0.85(0.15) 0.00(0.42) 0.01(0.51) -0.12(0.39) NA
LASSO α = 1 1.00(0.00) 1.00(0.00) 0.99(0.00) 0.99(0.01) 0.94(0.13) 0.97(0.03) 0.90(0.20) 0.92(0.13) 0.88(0.20)
E. Net α = 0.9 1.00(0.00) 1.00(0.00) 0.99(0.01) 0.99(0.01) 0.93(0.13) 0.97(0.03) 0.90(0.20) 0.92(0.13) 0.87(0.21)
E. Net α = 0.5 1.00(0.00) 1.00(0.00) 0.99(0.01) 0.99(0.01) 0.91(0.16) 0.97(0.04) 0.86(0.22) 0.89(0.16) 0.82(0.23)
Ridge α = 0 1.00(0.00) 1.00(0.00) 0.94(0.08) 0.97(0.02) 0.83(0.19) 0.89(0.08) 0.64(0.26) 0.75(0.26) 0.29(0.55)
R. Forest 1Kx5 0.92(0.02) 0.92(0.02) 0.79(0.16) 0.93(0.04) 0.75(0.16) 0.79(0.15) 0.39(0.56) 0.74(0.32) 0.26(0.61)
R. Forest 5Kx5 0.92(0.01) 0.92(0.02) 0.81(0.11) 0.93(0.04) 0.75(0.16) 0.81(0.10) 0.42(0.59) 0.75(0.33) 0.28(0.67)
R. Forest 1Kx10 0.99(0.00) 0.99(0.00) 0.86(0.15) 0.96(0.03) 0.84(0.15) 0.80(0.13) 0.48(0.46) 0.76(0.26) 0.10(0.63)
Neural net 1L. 0.99(0.00) 0.99(0.00) 0.92(0.08) 0.96(0.03) 0.85(0.15) 0.87(0.08) 0.64(0.26) 0.78(0.19) 0.21(0.56)
Neural net 2L. 0.98(0.00) 0.98(0.00) 0.91(0.15) 0.94(0.05) 0.84(0.15) 0.80(0.21) 0.56(0.44) 0.69(0.33) 0.08(0.63)
Neural net 3L. 0.99(0.00) 0.99(0.00) 0.91(0.13) 0.95(0.04) 0.84(0.15) 0.78(0.23) 0.38(0.50) 0.64(0.35) -0.02(0.69)
BaTFLED CP. 0.95(0.01) 0.95(0.01) 0.90(0.09) 0.94(0.03) 0.88(0.09) 0.87(0.13) 0.76(0.26) 0.86(0.11) 0.59(0.55)
BaTFLED Tucker 0.99(0.00) 0.99(0.00) 0.99(0.01) 0.99(0.00) 0.99(0.01) 0.98(0.02) 0.97(0.02) 0.98(0.01) 0.95(0.06)

Data generated with 1D & 2D interactions

Mean 0.55(0.08) 0.51(0.09) 0.53(0.29) 0.62(0.14) 0.63(0.23) 0.08(0.34) 0.00(0.23) -0.08(0.15) NA
LASSO α = 1 0.38(0.09) 0.36(0.13) 0.23(0.29) 0.26(0.35) 0.26(0.25) 0.04(0.31) 0.17(0.44) 0.25(0.35) 0.17(0.56)
E. Net α = 0.9 0.38(0.09) 0.36(0.13) 0.23(0.29) 0.26(0.35) 0.26(0.24) 0.05(0.30) 0.17(0.44) 0.26(0.35) 0.17(0.57)
E. Net α = 0.5 0.38(0.09) 0.36(0.13) 0.22(0.28) 0.26(0.35) 0.26(0.25) 0.04(0.30) 0.17(0.44) 0.25(0.35) 0.18(0.56)
Ridge α = 0 0.39(0.09) 0.37(0.13) 0.20(0.30) 0.26(0.34) 0.25(0.26) 0.01(0.30) 0.23(0.39) 0.21(0.39) 0.11(0.32)
R. Forest 1Kx5 0.74(0.06) 0.75(0.08) 0.46(0.20) 0.46(0.34) 0.40(0.28) 0.19(0.36) 0.24(0.36) 0.33(0.37) 0.22(0.46)
R. Forest 5Kx5 0.75(0.06) 0.75(0.07) 0.51(0.20) 0.44(0.41) 0.38(0.35) 0.16(0.39) 0.35(0.30) 0.34(0.43) 0.12(0.51)
R. Forest 1Kx10 0.94(0.01) 0.93(0.02) 0.65(0.22) 0.64(0.29) 0.53(0.29) 0.24(0.53) 0.34(0.41) 0.47(0.45) -0.06(0.66)
Neural net 1L. 0.98(0.00) 0.98(0.00) 0.60(0.19) 0.69(0.16) 0.62(0.22) 0.13(0.38) 0.28(0.21) 0.40(0.40) 0.11(0.45)
Neural net 2L. 0.98(0.00) 0.98(0.00) 0.57(0.18) 0.71(0.16) 0.63(0.20) 0.17(0.34) 0.22(0.27) 0.51(0.23) 0.07(0.36)
Neural net 3L. 0.97(0.00) 0.97(0.01) 0.57(0.19) 0.70(0.17) 0.64(0.20) 0.19(0.40) 0.24(0.25) 0.54(0.27) 0.16(0.43)
BaTFLED CP. 0.69(0.26) 0.67(0.31) 0.50(0.34) 0.67(0.28) 0.66(0.27) 0.47(0.35) 0.48(0.28) 0.70(0.26) 0.51(0.50)
BaTFLED Tucker 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.96(0.08)

Data generated with 1D, 2D & 3D interactions

Mean 0.31(0.11) 0.08(0.12) -0.11(0.50) 0.22(0.40) 0.23(0.25) -0.02(0.16) -0.05(0.14) 0.03(0.08) NA
LASSO α = 1* 0.15(0.05) 0.08(0.08) 0.02(0.17) 0.20(0.12) 0.01(0.17) 0.12(0.17) -0.19(0.23) 0.16(0.25) -0.07(0.35)
E. Net α = 0.9* 0.16(0.06) 0.09(0.09) 0.01(0.19) 0.17(0.12) 0.00(0.19) 0.12(0.19) -0.23(0.25) 0.12(0.26) -0.11(0.37)
E. Net α = 0.5* 0.17(0.05) 0.10(0.09) 0.00(0.20) 0.18(0.12) 0.01(0.20) 0.13(0.20) -0.29(0.25) 0.18(0.24) -0.21(0.34)
Ridge α = 0 0.20(0.05) 0.11(0.10) -0.01(0.22) 0.11(0.18) 0.01(0.25) -0.02(0.30) -0.20(0.35) 0.03(0.36) -0.11(0.31)
R. Forest 1Kx5 0.59(0.06) 0.53(0.11) 0.01(0.30) 0.27(0.31) 0.13(0.20) 0.05(0.25) -0.04(0.26) 0.18(0.34) -0.07(0.43)
R. Forest 5Kx5 0.59(0.06) 0.51(0.11) 0.11(0.35) 0.23(0.33) 0.14(0.17) 0.03(0.32) 0.04(0.26) 0.16(0.30) 0.05(0.43)
R. Forest 1Kx10 0.88(0.03) 0.81(0.06) 0.22(0.49) 0.33(0.34) 0.24(0.24) 0.09(0.28) 0.04(0.37) 0.17(0.32) -0.02(0.46)
Neural net 1L. 0.97(0.00) 0.96(0.01) 0.25(0.50) 0.39(0.39) 0.21(0.27) 0.07(0.35) 0.12(0.37) 0.05(0.26) -0.06(0.26)
Neural net 2L. 0.97(0.00) 0.97(0.00) 0.30(0.45) 0.38(0.38) 0.22(0.19) 0.19(0.36) 0.14(0.31) 0.09(0.33) 0.06(0.30)
Neural net 3L. 0.97(0.00) 0.96(0.00) 0.27(0.47) 0.35(0.44) 0.21(0.24) 0.09(0.36) 0.19(0.37) 0.12(0.34) -0.09(0.37)
BaTFLED CP. 0.01(0.03) 0.00(0.07) 0.01(0.06) -0.02(0.05) 0.02(0.07) 0.07(0.20) 0.02(0.19) 0.00(0.16) 0.18(0.36)
BaTFLED Tucker 0.99(0.00) 0.99(0.00) 0.99(0.01) 0.98(0.01) 0.99(0.00) 0.97(0.04) 0.99(0.02) 0.98(0.01) 0.98(0.03)
* Elastic net set all weights to zero in 4-5 of 10 runs.

Table 3.2: Mean Pearson correlation performance on simulated three-mode datasets across
ten replicates (sd)
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Figure 3.5: Area under the receiver operator characteristic curves for BaTFLED and base-
line methods when predicting responses with one, two and three mode interactions (means
of 10 replicates, sd shown in error bars). Columns show the three modes and rows show
performance on data generated with no interactions between modes, interactions between
at most two modes and interactions between any of the three modes.
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Data generated with only 1D interactions

Mode 1 0.93(0.07) 0.92(0.08) 0.88(0.08) 0.75(0.09) 0.69(0.08) 0.66(0.09) 0.64(0.08) 0.66(0.07) 0.74(0.10) 0.72(0.10) 0.87(0.06) 0.87(0.09)
Mode 2 0.84(0.06) 0.84(0.06) 0.84(0.05) 0.77(0.05) 0.65(0.05) 0.64(0.03) 0.62(0.08) 0.64(0.06) 0.70(0.07) 0.71(0.08) 0.78(0.08) 0.80(0.11)
Mode 3 0.88(0.09) 0.88(0.09) 0.85(0.09) 0.76(0.07) 0.68(0.06) 0.63(0.09) 0.62(0.08) 0.65(0.05) 0.67(0.08) 0.66(0.09) 0.83(0.07) 0.90(0.05)

Data generated with 1D & 2D interactions

Mode 1 0.74(0.10) 0.73(0.09) 0.73(0.09) 0.74(0.06) 0.68(0.10) 0.75(0.08) 0.73(0.08) 0.79(0.06) 0.85(0.06) 0.88(0.05) 0.90(0.08) 0.99(0.02)
Mode 2 0.80(0.08) 0.80(0.07) 0.80(0.07) 0.75(0.05) 0.70(0.06) 0.72(0.07) 0.72(0.06) 0.81(0.07) 0.85(0.07) 0.88(0.07) 0.92(0.09) 1.00(0.01)
Mode 3 0.79(0.05) 0.78(0.06) 0.79(0.07) 0.79(0.09) 0.72(0.05) 0.72(0.05) 0.76(0.04) 0.86(0.06) 0.90(0.04) 0.91(0.04) 0.84(0.12) 0.99(0.02)

Data generated with 1D, 2D & 3D interactions

Mode 1 0.58(0.04) 0.57(0.05) 0.58(0.07) 0.64(0.12) 0.71(0.09) 0.71(0.04) 0.75(0.08) 0.89(0.04) 0.86(0.04) 0.85(0.04) 0.48(0.13) 1.00(0.00)
Mode 2 0.57(0.05) 0.57(0.05) 0.58(0.05) 0.65(0.12) 0.70(0.09) 0.70(0.08) 0.73(0.05) 0.87(0.05) 0.85(0.06) 0.83(0.08) 0.51(0.10) 1.00(0.00)
Mode 3 0.59(0.08) 0.58(0.08) 0.61(0.11) 0.67(0.14) 0.72(0.06) 0.72(0.09) 0.74(0.06) 0.88(0.04) 0.84(0.05) 0.83(0.06) 0.50(0.10) 1.00(0.00)

Table 3.3: Mean area under the receiver operator characteristic curve (AUROC) for se-
lecting predictors in simulated three-mode data over 10 replicates (sd)
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3.2.2 Missing responses

In real datasets, a large portion of the responses are often missing. In order to ascertain the

resilience of BaTFLED to missing data we repeated the above tests removing 10, 25, 50,

75 and 90 percent of responses and using these as warm-test data. For these tests we only

compared to ridge and LASSO regression and results for RMSE and Pearson’s correlation

are shown in figures 3.6 and 3.7. From these plots it is clear that BaTFLED Tucker models

outperform other methods and that there is little degradation of performance with up to

75% of responses missing in the case of 1 & 2D interactions and up to 50% of responses

missing with 1, 2 & 3D interactions. For the case where the core allows no interactions

between modes (1D), BaTFLED Tucker performs similarly to LASSO models but slightly

better in the case of predicting responses for all modes simultaneously (M123).

Figure 3.6: Normalized root mean squared error for BaTFLED, ridge and LASSO regres-
sion methods when predicting responses with increasing sparsity of responses for one, two
and three mode interactions. We tested removing 10%, 25%, 50%, 75% and 90% of re-
sponses and using these for warm-start testing. Values shown represent means across 10
replicates.
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Figure 3.7: Pearson correlation for BaTFLED, ridge and LASSO regression methods when
predicting responses with increasing sparsity of responses for one, two and three mode
interactions. We tested removing 10%, 25%, 50%, 75% and 90% of responses and using
these for warm-start testing. Values shown represent means across 10 replicates.
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3.2.3 Increasinge response noise

Real datasets often contain a large degree of noise in responses that is not related to the

underlying structure in the data. To ascertain the resilience of BaTFLED to this type of

noise we repeated the above tests with 10% of responses missing while adding an increasing

amount of zero-mean Gaussian noise to responses. We tested noise generated with standard

deviations 0.1, 0.25, 0.5, 0.75 and 0.9 times the standard deviation of the responses. From

figures 3.8 and 3.9 we see again that BaTFLED Tucker models outperform other methods,

but that performance degrades approximately linearly with increasing noise for all tasks.

Figure 3.8: Normalized root mean squared error for BaTFLED, ridge and LASSO regres-
sion methods when making predictions with increasing noise added to responses for one,
two and three mode interactions. We tested adding zero-mean Gaussian noise with stan-
dard deviation 0.1, 0.25, 0.50, 0.75 and 0.90 times the standard deviation of the responses.
Values shown represent means across 10 replicates.



69

Figure 3.9: Pearson correlation for BaTFLED, ridge and LASSO regression methods when
making predictions with increasing noise added to responses for one, two and three mode
interactions. We tested adding zero-mean Gaussian noise with standard deviation 0.1,
0.25, 0.50, 0.75 and 0.90 times the standard deviation of the responses. Values shown
represent means across 10 replicates.
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3.2.4 Decreasing core size

In all of the above simulations the core used during training Tucker models is the same size

as the core used to generate the data (4×4×4). Since the optimal core size is generally not

known a priori we investigated how the performance changes as we decreased the size of

the core used during training. In order to make fair comparisons with CP decompositions,

we also decreased the number of latent features in these models maintaining the same total

number of unknown values. So, for example, if a Tucker model is trained with a 3× 3× 3

core we would train the CP model with a latent dimension of 3 ∗ 3 ∗ 3 = 27. Figures 3.10

and 3.11 show that the performance of BaTFLED Tucker models degrades roughly linearly

as the size of the core decreases while CP models fluctuate. Interestingly, when predicting

responses generated without higher order interactions (1D), CP models seem to improve

slightly as the core size decreases. One explanation for this may be that there are only 13

values in the true core for these models so CP models with more than 13 latent factors

may either be over-fitting the training data or have less power to learn the larger number

of variables.
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Figure 3.10: Normalized root mean squared error for BaTFLED, ridge and LASSO re-
gression methods when making Tucker model predictions with decreasing core sizes for
one, two and three mode interactions. We tested core sizes ranging from the size used to
generate responses (4× 4× 4) down to 2× 2× 2. For BaTFLED CP models, the number
of latent factors was set to the product of the dimensions of the core in the Tucker models.
Values shown represent means across 10 replicates.
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Figure 3.11: Pearson correlation for BaTFLED, ridge and LASSO regression methods
when making Tucker model predictions with decreasing core sizes for one, two and three
mode interactions. We tested core sizes ranging from the size used to generate responses
(4 × 4 × 4) down to 2 × 2 × 2. For BaTFLED CP models, the number of latent factors
was set to the product of the dimensions of the core in the Tucker models. Values shown
represent means across 10 replicates.
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3.2.5 Insufficient power

Finally we wondered how BaTFLED would perform in a situation where there was insuf-

ficient power to learn the relationships in the data. Thus we generated responses using a

model with 30 samples for each mode and removed two samples from each mode as test

data, but now we trained using only a subset of the remaining 28 samples for each mode.

We test models with 28, 25, 22, 19, 16, 13 and 10 samples for each mode.

From figures 3.12 and 3.13 we see that when predicting responses generated without

higher-order interactions (1D), both BaTFLED models are more resilient to being under-

powered than elastic net models. As may be expected, the improvement of LASSO models

over ridge regression models vanishes when there are not enough samples to identify the

true predictors. When two-dimensional interactions are present (1&2D), BaTFLED Tucker

models outperform other methods with little degradation of performance until using just 13

samples. When interactions between all three modes are present, again BaTFLED Tucker

consistently outperforms other methods, but more degradation is seen as the number of

training samples decreases.

Recall that for this example there were 10 true predictors and 90 nuisance variables.

Figure 3.14 shows the performance of these models in identifying these predictors. It

is encouraging that BaTFLED is able to identify the majority of the correct features

with as few as 16 samples, but generally the number of true features is unknown. While

the increased structure in BaTFLED models allows for an improved performance over

elastic net methods, it seems that in order to robustly identify predictors and make good

predictions, training samples should number at least twice the number of true predictors.
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Figure 3.12: Normalized root mean squared error for BaTFLED, ridge and LASSO re-
gression methods when making predictions with decreasing number of training samples.
Values shown represent means across 10 replicates.

Figure 3.13: Pearson correlation for BaTFLED, ridge and LASSO regression methods when
making predictions with decreasing number of training samples. Values shown represent
means across 10 replicates.
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Figure 3.14: Area under the receiver operator characteristic curve for BaTFLED, ridge and
LASSO regression methods with decreasing number of training samples. The theoretical
value for random guessing of 0.5 is shown for mean prediction. There were 10 true and 90
nuisance variables for each mode. Values shown represent means across 10 replicates.
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3.2.6 Conclusions

Using simulated data, we are able to obtain a clear understanding of the strengths of the

BaTFLED algorithm. First, we see that while other methods are able to perform well

when there are only one-dimensional interactions in the data, for cold-start tasks, allowing

higher order interactions causes these models to perform on par with the baseline of simply

predicting the mean across training samples. Second, on warm-start tasks, the non-linear

models are able to significantly outperform mean prediction and elastic net models, but

BaTFLED Tucker models are the best performing in all cases. Third, BaTFLED CP

models do not show any significant advantages over other methods which is particularly

interesting since most tensor factorization work to date has used CP the decomposition.

Fourth, the performance of Tucker models is very robust to missing responses, added

response noise, sub-optimal core size and insufficient power when compared to elastic net

models. Finally we see that given sufficient training data, BaTFLED models are able to

correctly identify the features influencing response.

However, for a given dataset, it is unclear whether there are higher-order interactions

influencing responses. These experiments give some insight into what performance would

be expected for these different algorithms if higher-order interactions are not present.

Namely, we would expect that elastic net models would perform significantly better than

mean prediction and that BaTFLED Tucker models would perform similarly to elastic

net models and better than BaTFLED CP models. If instead we find that elastic net

models perform no better than mean prediction, and we are not missing more than half

of the responses, we would expect BaTFLED Tucker models to perform better than these

models regardless of the core size provided that the noise is Gaussian and we have sufficient

training data.



Chapter 4

Drug response datasets

In this chapter we explore the performance of the BaTFLFED algorithm on three different

datasets assessing the growth of cancer cell lines when treated with drugs at varying doses.

The first dataset was used in a public competition as part of a dialog for reverse engineering

(DREAM) challenge (specifically the DREAM7 NCI-DREAM Drug Sensitivity Prediction

Challenge [24]). In this competition teams sought to predict the GI50 response measure

for 52 breast cancer cell lines when treated with 26 drugs. Here, we instead predict the

response at each of 9 doses. The second dataset, referred to as the ’Heiser data’ is similar in

that it consists of a panel of breast cancer cell lines, was generated by the same group and

has 9 measured doses. Although this data contains some of the same responses measured

for the DREAM challenge, the data have been cleaned and expanded to include 71 cell

lines and 108 drugs. Also, the responses for this datasets are normalized to control for the

growth rate of the cell lines using a recent algorithm from Hafner et al. [22]. Additionally

on this dataset we show results for predicting summary response measures like GI50. The

third dataset, produced by the Cancer Target Discovery and Development (CTD2) effort,

is the largest publicly available cell line/drug response dataset that has been produced to

date [108] and contains 907 cell lines across 24 cancer types and 545 different compounds

measured at 8 doses.

4.1 Prediction tasks

For each of these datasets we measure performance for four different prediction tasks.

For warm-start prediction we predict the responses for cell line/drug combinations where

77
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responses are known for the given cell line and drug, but not the particular combination.

Like with the simulated data, this is generally the easier than cold-start prediction tasks

since information can be leveraged from known responses rather than relying only on the

input features for cell lines and drugs. However, the setup differs slightly from the warm-

start case shown in chapter 3 since responses are missing at all doses for a given cell

line/drug combination. The three cold-start tasks are: 1) predict a suite of responses for

a new cell line across all training drugs and all doses, 2) predict a suite of responses for a

new drug across all training cell lines and doses and 3) predict the response at each dose

for a cell line/drug combination where no responses for cell line or drug are present in the

training data.

4.2 Passing features through kernel functions

Since BaTFLED cannot model interactions between features of the same mode, the predic-

tive performance can often be improved by using kernel functions. Here instead of feeding

the input features directly into the model, the sample×feature matrix is first transformed

into a matrix of sample×sample similarity scores in the 0− 1 range. If features are binary

then we use the Jaccard similarity coefficient. This measure gives the proportion of posi-

tive indicators shared between two samples out of the total number of positive indicators

in either sample. If x and y are indicator row vectors, then

J(x,y) =
xyT

xxT + yyT − xyT
(4.1)

If the features are continuous measures then we use the the Gaussian kernel which is defined

as

G(x,y) = exp

(
−||x− y||2

2σ2

)
(4.2)

where σ can be adjusted to improve performance. When choosing σ parameters, we begin

with σ equal to the average of the euclidean distances between vectors in the matrices

and scale this value by a parameter s. Larger values of s increase the similarity between

vectors in a distance-dependent fashion. When multiple different types of data are used

as input features, we calculate kernels separately for each data type. These kernels can be

combined by concatenation, averaging or by taking their product.
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4.3 DREAM7 data

The NCI-DREAM Drug Sensitivity Prediction Challenge challenge [24] provided contes-

tants with GI50 response data for 35 cell lines treated with 28 drugs. Models trained on

this data were used to predict GI50 rankings (for each drug) on an additional 18 cell lines.

Rather than predicting this summary measure, we compare the performance of BaTFLED

to baseline methods when predicting normalized responses at each dose. We show results

for 10-fold cross-validation runs on the 35 training cell lines when predicting the four warm

and cold start scenarios listed above. Additionally, we show results for the final 18 cell

lines designated as test data in the original competition. We also report on the importance

of input features for both cell lines and drugs for the various methods. In the subsections

below we give details on how the data were cleaned and processed. Since the task of

predicting at each dose is new, the cell lines were not uniformly characterized, and our

method utilizes features for drugs, we had to make several choices in processing the data

that would likely have effects on the results.

4.3.1 Cell line data

The dream challenge provided information on the subtype for each cell line as well as mu-

tation, expression, methylation, reverse phase protein array (RPPA), and single nucleotide

polymorphism array data. The full DREAM dataset contained 83 cell lines with the fol-

lowing subtype categories: basal (27), claudin low (10), luminal (35), matched normal (2),

normal like (7) and unknown(3) which were encoded as binary indicators. In addition, the

mutational status of ERBB2 was also given and encoded as a binary indicator (19 of cell

lines were positive).

Whole-exome DNA sequencing data assessing 32, 293 mutations in 50 of the cell lines

was provided. We coded these data a a binary matrix indicating whether each of 11, 995

genes were found to be mutated in each of the cell lines. The number of mutated genes per

cell line ranges from 92 in LY2 to 1, 880 in MDAMB361. We removed 12 genes with names

that look like dates (perhaps due to auto-conversions in excel) and 4, 788 genes that are

mutated in only one cell line. The mutation profile for several of the cell lines are highly
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correlated (Pearson correlation for MDAMB175VII and MDAMB157: 0.999, MCF10A and

MCF10F: 0.817).

Expression profiles for 18, 632 genes in 46 cell lines was also provided through the

competition. The expression values range from 1.37 to 13.92 and these values are z-scaled

for each gene before use. Pearson correlations between cell lines range from −0.424 to

0.566.

Additionally the competition provided methylation data ranging from 0 to 1 for 27, 551

CpGs and 41 cell lines. Again a few of the cell lines have high Pearson correlations

(HCC2185 and HCC1187: 0.974, LY2 and MCF7: 0.960, SKBR3 and AU565: 0.904).

To assess protein expression, reverse phase protein array (RPPA) data was provided

for 42 cell lines and 66 proteins. The values range from −4.9 to 8.9 and were z-scaled

across each protein before use. Correlations of the scaled data range from −0.474 to 0.757.

Finally, single nucleotide polymorphism array data (Affymetrix SNP6) was provided

for 27, 234 loci and 47 cell lines in order to assess copy number changes. These values range

from −6.44 to 3.58 and were also z-scaled before use. There were 1, 436 (0.11%) missing

values which were set to zero after scaling. Pearson correlation between cell lines ranged

from −0.344 to 0.748.

All together there is are 80, 690 potential features that could be used for prediction. Of

the 84 total cell lines, only 31 have data from all platforms. Since, the current implementa-

tion BaTFLED algorithm cannot handle missing values in the input matrices and setting

a large portion of the features to mean values for cell lines without data will substantially

increase the similarity of these cell lines for non-biological reasons, we choose to only use

a subset of this data for our tests.

We restrict the input features to use only the subtype, mutation and expression datasets

which leaves us with 52 cell lines and 30, 617 features. Of these, 17 cell lines are in the final

test set as split by the DREAM organizers. Among all cell lines, 7 do not have expression

data (2 of which are in the test set) and 2 do not have mutation data (both are in the

training data). This is still a very large number of features given the small number of cell

lines available, so we further restricted the mutation and expression data to genes known to

be involved in cancer. To this end, we downloaded a list of 572 cancer-related genes from
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the Catalogue Of Somatic Mutations In Cancer (COSMIC) database [109]. By restricting

the above data to just these genes, we reduce the number of of mutation features to 387 and

expression to 554. To obtain our final set of features for cell lines, we add to these features,

indicators of subtype and ERBB2 mutation status, the mean and standard deviation of the

doubling time for untreated cells and the total mutation counts. We remove any indicators

that are not present in at least two samples and, in order to reduce the redundancy of

features, we combined highly correlated features (Pearson correlation > .95) by averaging

their values across cell lines (after z-scaling). This leaves us with a final matrix of 52 cell

lines and 733 features (6 subtype indicators, 177 mutation features and 550 expression

features).

4.3.2 Drug data

In the initial DREAM challenge competition the names of the drugs were not given, so it

was not possible to get features to use for predicting responses to new drugs. After the

contest was complete, the names of the 28 drugs were released along with the publication

[24].

We used known drug targets and structural features computed from the chemical for-

mula as features for these compounds when available. Two of these drugs (Cetuximab

and Trastuzumab) are antibodies, so chemical formulas are not available and we removed

these from our analysis. One additional drug is a combination of two other drugs in the

study (4-HC+Dox), so we could not compute structural features and these were set to

mean values. Target indicators and fingerprint values for this drug were taken to be the

union of the indicators for the two drugs separately. For all drugs, we used the given

CAS drug identifier to look up the CID identifier in PubChem. When there were mul-

tiple CID identifiers for a given CAS number, we use the CID with the most bioassay

records (AIDs). The CID identifiers were used to get PubChem fingerprints and SMILES

(Simplified Molecular-Input Line-Entry system) strings. The fingerprints are vectors of

881 binary values indicating whether specific chemical structures are present in the drug.

Indicators with little discriminatory power (present in 0, 1, 25 or 26 drugs) were removed.

The SMILES string were fed into Padel software [110] to generate a suite of 1, 444 chemical
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features detailing bond counts, angles, aromaticity measures and others. Features with no

variation across drugs (419), those containing ‘Inf’ or ‘NA’ values (349), only one non-zero

value (7) or values over 1010 (4) were removed. Of the remaining 665 features, non-binary

features were z-scaled and highly correlated features (Pearson’s r2 > 0.9) were combined.

Additionally, we built binary indicator features of drug classes, mode of action and gene

targets for the compounds when possible. There were 7 drug classes including regulation,

cell cycle, metabolism, proteasome, signaling/growth, signaling NFkB and signaling RTK

and 22 modes of action primarily listing pathway targets. Gene targets (29 total) were

obtained by searching information in DrugBank, TTD (Therapeutic Targets Database),

and GDSC (Genomics of Drug Sensitivity in Cancer) databases but as the majority of

these are only targeted by one drug, only 6 are useful as features (ABL, KIT, PDGFR,

BCR-ABL, IKK and PTS). Overall, these produced 36 indicators and after removing 1

class and 20 mode of action features due to lack of discriminatory power we are left with

15. Again, we merged together predictors that were highly correlated (Pearson correlation

greater than 0.9 or less than −0.9) and were left with a final set of 433 features for the 26

drugs.

4.3.3 Response data

Although the Costello et al. study did provide the raw response data at each dose, this data

was not in a form that could be directly used in the BaTFLED model. The majority of cell

line/drug combination were tested at 9 doses plus a zero-drug control in three replicates.

But, of the 53×28 = 1, 484 cell line/drug combinations 556 (37.5%) were tested in multiple

times (in up to 6 different runs) and 192 (12.9%) were not tested. The GI50 values that

were used in the competition were geometric mean among repeated experiments that passed

quality control measures or were set to the highest dose if no response was observed. In

order to get data that was treated uniformly across the whole set, we selected raw data for

each cell line/drug combination from one experiment attempting to match the raw data

with the reported GI50 values when possible. To this end, we first normalized the raw

responses to the no-drug control using the formula cited in Costello et al. [24] and given

in the equation below. Ni is the normalized value at dose i, Ti is the raw optical density
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(od) response at dose i and time 72 hours minus the background od at 72 hours, Tz is the

median od at time zero minus the background od at time zero and C is the median od

with no drug at 72 hours.

Ni =


Ti−Tz
C−Tz , if Ti ≥ Tz
Ti−Tz
Tz

, if Ti < Tz
(4.3)

We then fit four-parameter logistic curves to the normalized responses and chose the

data that had the best fit value provided that the median normalized responses across repli-

cates were within the range (−2, 2). About 70% of curves were able to be fit (1, 440/2, 075).

When no curves were could be fit for a given combination, we used the data with the high-

est plate number, assuming these were more recently run. Four drugs were tested with

different doses depending on the cell line. For these, we fit Loess curves to these data

and translated the responses along the curve to the more common set of doses. In all, we

are able to collect raw responses at each of 9 doses for 1, 138 of the 1, 484 combinations

(76.7%). For this dataset, we tested the performance of BaTFLED and other models when

predicting the normalized responses (median across replicates). Box plots of responses at

each dose are shown in figure 4.1.

4.3.4 Cross-validation results

For experiments on the DREAM data, we compare BaTFLED CP and Tucker models to

elastic nets, random forests and neural networks on both warm start and cold start tasks.

For the 10-fold cross-validation runs, each fold contained 31 cell lines, 23 drugs and all 10

doses (including the zero-dose). Cold-start predictions were made for 4 cell lines, 3 drugs

and a random warm-start set of 1% of cell line/drug combinations across all doses. In this

case, all types of testing were performed simultaneously. CP models were run with 200

columns in the latent matrices while Tucker models were given 10× 10× 10 cores.

Separate models are trained for each dose for elastic net, random forest, and neural net

models. The inputs for each method are vectors containing the 733 features for cell lines

and 433 features for drugs concatenated together. Elastic net models were run using the

R package ‘glmnet’ and while the ‘h2o’ package was used for random forest and neural net
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Figure 4.1: Box plots showing raw and normalized responses at each dose for the DREAM
data.

training. The same model parameters that were used on the simulated data were tested

here (see section 3).

Since this data has more input features and fewer total responses than the simulated

data, we believe that it is somewhat underpowered for this prediction task. Experimen-

tation with artificially underpowered simulated datasets suggest that this can be partially

overcome by performing multiple rounds of training to reduce the number of features. For
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the the cross-validation runs we found the best performance by first training BaTFLED

models for 200 iterations with strong sparsity priors (α = 10−10 and β = 1010), keeping the

union top 15% of predictors across folds (278 and 152 cell line features for CP and Tucker

methods and 163 and 105 drug features for CP and Tucker methods), and retraining for

another 200 iterations without encouraging sparsity (α = 1 and β = 1). Since the features

used in the second round of training for a given cross-validation fold are selected based

on folds that include the current test data in the training set, there is some information

leakage in this approach, however, no such leakage occurs in the results for the final test

set shown below. The average performance across folds in terms of normalized root mean

squared error, Pearson correlation and Spearman correlation are given in tables 4.1 and

4.2, and figure 4.2.

While these methods appear mostly comparable with the retrained Tucker model show-

ing some advantages, we are also interested in how the methods perform when predicting

individual cell lines, drugs or combinations of the two. Figure 4.3 shows the performance

measures for each task. Each point represents one cell line, drug or cell line/drug combi-

nation when predicted in a cold-start cross-validation run. Additionally, we show Pearson

correlation results for the best performing method from each group compared to mean

prediction in figures 4.4, 4.5 and 4.6. These plots show that a greater number of individual

cell lines and drugs are predicted better by BaTFLED than by other methods and that for

individual cell lines and drugs, the predictions represent a larger improvement over mean

prediction than other methods. For example, when predicting for cold-start cell lines,

LASSO performs better than mean prediction for 31% of cell lines, but these are only

slightly off the diagonal and represent a minimal improvement. The retrained BaTFLED

Tucker model performs better for 43% of cell lines and these are further from the diago-

nal, showing a larger improvement. This indicates that BaTFLED may be advantageous

in particular settings, likely when higher order interactions are present. Moreover, since

BaTFLED models the data in a fundamentally different way than other methods, it may

also confer an advantage when combined with other methods in a consensus method.
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Table 4.1: Mean normalized RMSE on DREAM dataset over ten cross-validation runs
(sd).

Training Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.72(0.01) 0.86(0.28) 0.83(0.11) 0.78(0.07) 0.97(0.10)
LASSO a=1 0.62(0.01) 0.70(0.19) 0.81(0.09) 0.78(0.09) 0.96(0.13)
E. net a=0.9 0.62(0.01) 0.67(0.15) 0.81(0.09) 0.78(0.09) 0.96(0.13)
E. net a=0.5 0.62(0.01) 0.61(0.12) 0.81(0.09) 0.78(0.09) 0.97(0.13)
Ridge a=0 0.64(0.01) 0.59(0.08) 0.85(0.08) 0.78(0.09) 0.99(0.12)
R.F. 1Kx5 0.55(0.01) 0.57(0.21) 0.85(0.21) 0.76(0.07) 0.89(0.21)
R.F. 5Kx5 0.55(0.01) 0.53(0.20) 0.85(0.21) 0.76(0.07) 0.89(0.21)
R.F. 1Kx10 0.50(0.01) 0.57(0.17) 0.85(0.22) 0.75(0.07) 0.89(0.21)
N.N. 1L 0.38(0.03) 0.69(0.18) 1.04(0.20) 0.86(0.12) 1.14(0.27)
N.N. 2L 0.39(0.02) 0.59(0.15) 0.87(0.20) 0.82(0.07) 0.89(0.23)
N.N. 3L 0.33(0.02) 0.56(0.21) 0.89(0.20) 0.82(0.05) 1.02(0.19)
CP 0.68(0.03) 0.77(0.30) 0.91(0.18) 0.78(0.06) 0.96(0.21)
CP retrain 0.68(0.02) 0.68(0.15) 0.84(0.17) 0.95(0.18) 1.02(0.45)
Tucker 0.29(0.02) 1.24(0.79) 0.83(0.19) 0.97(0.12) 0.99(0.25)
Tucker retrain 0.27(0.02) 0.90(0.56) 0.75(0.16) 0.74(0.07) 0.81(0.24)
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Table 4.2: Mean Pearson correlation on DREAM dataset over ten-fold cross-validation
(sd).

Training Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.69(0.01) 0.66(0.14) 0.63(0.10) 0.66(0.06) 0.43(0.12)
LASSO a=1 0.79(0.01) 0.77(0.12) 0.62(0.09) 0.66(0.09) 0.48(0.14)
E. net a=0.9 0.79(0.01) 0.77(0.13) 0.62(0.09) 0.66(0.09) 0.48(0.13)
E. net a=0.5 0.79(0.01) 0.82(0.11) 0.62(0.09) 0.66(0.09) 0.47(0.14)
Ridge a=0 0.78(0.01) 0.83(0.07) 0.59(0.10) 0.65(0.09) 0.42(0.13)
R.F. 1Kx5 0.84(0.01) 0.78(0.11) 0.58(0.13) 0.65(0.09) 0.42(0.17)
R.F. 5Kx5 0.84(0.01) 0.82(0.10) 0.57(0.12) 0.66(0.07) 0.42(0.16)
R.F. 1Kx10 0.87(0.01) 0.82(0.06) 0.58(0.13) 0.66(0.08) 0.42(0.16)
N.N. 1L 0.93(0.01) 0.78(0.08) 0.49(0.10) 0.62(0.08) 0.33(0.15)
N.N. 2L 0.94(0.01) 0.78(0.05) 0.53(0.10) 0.58(0.08) 0.39(0.20)
N.N. 3L 0.97(0.01) 0.80(0.12) 0.51(0.13) 0.60(0.08) 0.29(0.20)
CP 0.73(0.03) 0.67(0.11) 0.48(0.09) 0.64(0.06) 0.34(0.13)
CP retrain 0.74(0.01) 0.63(0.14) 0.58(0.16) 0.57(0.13) 0.43(0.31)
Tucker 0.96(0.01) 0.62(0.36) 0.58(0.11) 0.56(0.10) 0.40(0.20)
Tucker retrain 0.96(0.00) 0.54(0.46) 0.69(0.08) 0.70(0.07) 0.55(0.24)
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Figure 4.2: Performance measures for cross-validation runs on DREAM data (average
across 10 cv runs). Normalized root mean squared error, Pearson correlation and Spearman
correlation for training data and four prediction tasks are shown.
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Figure 4.3: Performance measures for cross-validation runs on DREAM data. Points and
boxplots show the normalized root mean squared error (NRMSE), Pearson correlation and
Spearman correlation for individual cell lines, drugs and cell line/drug combinations for
cold start prediction tasks. Note: scales differ for each plot and NRMSE values above 3
have been set to 3 for visualization purposes.
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Figure 4.4: Comparison between mean prediction and other methods on the cold-start cell
line task. Each point represents one cell line with its x coordinate showing the Pearson
correlation of mean prediction with the true response and the y coordinate showing the
Pearson correlation between the alternate method and the true response. Red points are
predicted better by the alternate method and the percentage of cell lines on either side of
the diagonal are annotated.
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Pearson correlation performance on cold−test drugs

Figure 4.5: Comparison between mean prediction and other methods on the cold-start
drug task. Each point represents one drug with its x coordinate showing the Pearson
correlation of mean prediction with the true response and the y coordinate showing the
Pearson correlation between the alternate method and the true response. Red points are
predicted better by the alternate method and the percentage of drugs on either side of the
diagonal are annotated.



92

●

●

●●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●●

●
●

●
●

●
●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

● ●

●●

●●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

48.6%

51.4%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

LA
S

S
O

 a
=

1

●

●

●
●

●

●
●

●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●● ●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●
●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

48.6%

51.4%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

E
. n

et
 a

=
0.

9
●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

● ●

●●

●●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

51.4%

48.6%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

E
. n

et
 a

=
0.

5

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●●

●●

●● ●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

● ●
●

●
●

●

●

●

●

● ●

●●
●

●●
●●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

54.2%

45.8%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

R
id

ge
 a

=
0

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

26.2%

73.8%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

N
.N

. 1
L

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
● ●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●

●
●

●

●

●●●
●

●
●●

●

●

●

● ●

●

●

●
●●

●

●

●

●

38.3%

61.7%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

N
.N

. 2
L

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

29.9%

70.1%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

N
.N

. 3
L

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

31.8%

68.2%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

R
.F

. 1
K

x5

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

28.0%

72.0%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

R
.F

. 5
K

x5

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

39.3%

60.7%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

R
.F

. 1
K

x1
0

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●●●

●

●●●

●
●

●●
●●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●
●●

●●
●

●

49.5%

50.5%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

C
P

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●
●

●●●
●

●●
●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

51.4%

48.6%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

C
P

 r
et

ra
in ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

38.3%

61.7%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

Tu
ck

er

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●

●● ●
●

● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

● ●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

52.3%

47.7%
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mean

Tu
ck

er
 r

et
ra

in

Pearson correlation performance on cold−test cell line/drug combinations

Figure 4.6: Comparison between mean prediction and other methods on the cold-start
cell line/drug combination task. Each point represents one cell line/drug combination
with its x coordinate showing the Pearson correlation of mean prediction (across cell lines)
with the true response and the y coordinate showing the Pearson correlation between the
alternate method and the true response. Red points are predicted better by the alternate
method and the percentage of cell line/drug combinations on either side of the diagonal
are annotated.
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4.3.5 Final test set results

As mentioned above, methods in the DREAM competition were judged by their prediction

performance on a final test set of 17 cell lines. For this comparison, we trained BaTFLED

and other models on the full set of 35 cell lines and 26 drugs and measured the cold-start

performance on the test set cell lines. In this case, the two-round scheme for BaTFLED

models consisted of training 10 models for 120 rounds with strong sparsity priors (α =

10−10 and β = 1010), with different random initializations, selecting the union of the top

15% of predictors for the second round (330 and 191 cell line features for CP and Tucker

models and 172 and 102 drug features for CP and Tucker models respectively), and training

again for 120 rounds without encouraging sparsity (α = 1 and β = 1). Figure 4.7 shows

the mean performance across 10 replicates for BaTFLED and other models. Figure 4.8

shows the same data broken down by the predictive performance for the 17 individual cell

lines and acoss these cell lines for each of the 26 drugs in the training data. BaTFLED

models perform slightly better than other models on this very difficult challenge.

Table 4.3: Normalized RMSE on final 17 testing cell lines from DREAM dataset. Means
over ten replicates (sd).

Training Warm Cell lines

Mean 0.79(0.00) 0.81(0.17) 0.83(0.00)
LASSO a=1 0.61(0.00) 0.69(0.17) 0.83(0.00)
E. net a=0.9 0.61(0.00) 0.71(0.22) 0.83(0.00)
E. net a=0.5 0.62(0.00) 0.61(0.15) 0.82(0.00)
Ridge a=0 0.66(0.00) 0.70(0.14) 0.81(0.00)
R.F. 1Kx5 0.57(0.00) 0.69(0.17) 0.82(0.01)
R.F. 5Kx5 0.57(0.00) 0.65(0.17) 0.83(0.01)
R.F. 1Kx10 0.50(0.00) 0.63(0.14) 0.82(0.00)
N.N. 1L 0.40(0.02) 0.66(0.23) 0.83(0.01)
N.N. 2L 0.37(0.02) 0.68(0.08) 0.85(0.00)
N.N. 3L 0.31(0.01) 0.56(0.14) 0.88(0.01)
CP 0.30(0.01) 0.51(0.17) 0.78(0.00)
CP retrain 0.16(0.00) 0.59(0.19) 0.83(0.01)
Tucker 0.29(0.00) 0.79(0.61) 0.80(0.02)
Tucker retrain 0.29(0.00) 0.85(0.57) 0.80(0.02)
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Table 4.4: Pearson correlation on final 17 testing cell lines from DREAM dataset. Means
over ten replicates (sd).

Training Warm Cell lines

Mean 0.61(0.00) 0.62(0.20) 0.57(0.00)
LASSO a=1 0.79(0.00) 0.75(0.14) 0.59(0.00)
E. net a=0.9 0.79(0.00) 0.75(0.18) 0.59(0.00)
E. net a=0.5 0.79(0.00) 0.80(0.14) 0.60(0.00)
Ridge a=0 0.77(0.00) 0.75(0.12) 0.60(0.00)
R.F. 1Kx5 0.83(0.00) 0.75(0.18) 0.57(0.01)
R.F. 5Kx5 0.83(0.00) 0.76(0.14) 0.57(0.01)
R.F. 1Kx10 0.87(0.00) 0.78(0.12) 0.58(0.00)
N.N. 1L 0.93(0.01) 0.77(0.20) 0.60(0.01)
N.N. 2L 0.94(0.01) 0.76(0.08) 0.57(0.00)
N.N. 3L 0.97(0.00) 0.84(0.10) 0.54(0.01)
CP 0.95(0.00) 0.88(0.08) 0.62(0.01)
CP retrain 0.99(0.00) 0.83(0.11) 0.62(0.00)
Tucker 0.96(0.00) 0.76(0.28) 0.61(0.02)
Tucker retrain 0.96(0.00) 0.72(0.30) 0.61(0.02)
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Figure 4.7: Performance measures on the final test cell lines from the DREAM data.
Normalized root mean squared error, Pearson correlation and Spearman correlation for
training data, warm-start and final test cell lines are shown. Bar height represents the
mean over 10 replicates.
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Figure 4.8: Performance measures on the final test cell lines for the DREAM data (mean
across 10 replicates). Normalized root mean squared error, Pearson correlation and Spear-
man correlation for the 17 test cell lines are shown in the first column. The same measures
for the predictive performance on these cell lines for each drug in the training data is shown
in the second column.
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Normalized RMSE performance on final cold−test cell lines

Figure 4.9: Comparison between mean prediction and other methods when predicting for
17 test cell lines. Each point represents one of the final test cell lines with its x coordinate
showing the normalized root mean squared error (NRMSE) for mean prediction and the y
coordinate showing the NRMSE for an alternate method. Red points are predicted better
by the alternate method and the percentage of cell lines on either side of the diagonal are
annotated. Values greater than 1.5 are displayed at 1.5
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Pearson correlation performance on final cold−test cell lines

Figure 4.10: Comparison between mean prediction and other methods when predicting
for 17 test cell lines. Each point represents one cell line with its x coordinate showing
the Pearson correlation of mean prediction with the true response and the y coordinate
showing the Pearson correlation between the alternate method and the true response. Red
points are predicted better by the alternate method and the percentage of combinations
predicted better by either method is shown.



99

●●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

53.8%

46.2%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

LA
S

S
O

 a
=

1

●●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

53.8%

46.2%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

E
. n

et
 a

=
0.

9

●●

●

●

●

●●
●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

42.3%

57.7%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

E
. n

et
 a

=
0.

5

●
●

●

●

●

●●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

34.6%

65.4%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

R
id

ge
 a

=
0

●
●

●

●

●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

53.8%

46.2%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

N
.N

. 1
L

●
●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

57.7%

42.3%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

N
.N

. 2
L

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

65.4%

34.6%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

N
.N

. 3
L

●
●

●

●

●

●●●●

● ●

●
●

●

●●● ●

●

●

●

●●

●

●

●

57.7%

42.3%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

R
.F

. 1
K

x5

●
●

●

●

●

●●●●

● ●

●
●

●

●●● ●

●

●

●

●●

●

●

●

57.7%

42.3%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

R
.F

. 5
K

x5

●●

●

●

●

●●●

●

● ●

●
●

●

●●● ●

●

●

●

●●

●

●

●

57.7%

42.3%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

R
.F

. 1
K

x1
0

●
●

●

●

●

●
●●●

●
●

●●

●
●●● ●

●

●

●

●●
●

●

●

50.0%

50.0%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

C
P

●
●

●
●

●

●

●
●

●

●

●

●●
●●●

●

●
●

●

●

●●●

●

●

61.5%

38.5%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

C
P

 r
et

ra
in

●
●

●

●

●

●
●●●

●

●

●
●

●●
●● ●

●

●

●

●●●
●

●

57.7%

42.3%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

Tu
ck

er

●●

●

●

●

●
●●

●

●

●

●●

●●●
●

●

●

●

●

●●● ●

●

50.0%

50.0%
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

Mean

Tu
ck

er
 r

et
ra

in

Normalized RMSE performance of training drugs across test cell lines

Figure 4.11: Comparison between mean prediction and other methods when predicting for
17 test cell lines. Each point represents one of the training set drugs with its x coordinate
showing the normalized root mean squared error (NRMSE) for mean prediction across the
test cell lines and the y coordinate showing the NRMSE for an alternate method. Red
points are predicted better by the alternate method and the percentage of drugs on either
side of the diagonal are annotated. Values greater than 1.5 are displayed at 1.5
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Figure 4.12: Comparison between mean prediction and other methods when predicting
for 17 test cell lines. Each point represents one of the training set drugs with its x coor-
dinate showing the Pearson correlation of mean prediction with the true response across
the test cell lines and the y coordinate showing the Pearson correlation for the alternate
method. Red points are predicted better by the alternate method and the percentage of
combinations predicted better by either method is shown.
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4.3.6 Feature selection

The majority of the methods tested above perform some features selection while training.

Elastic net models (with the exception of ridge regression) choose features to include in

the model explicitly, while continuous measures of feature importance can be extracted

from neural networks and random forests. We compare which features were selected by

the model from each category that performed best in terms of Pearson correlation on the

final 17 cell lines. Among elastic net models, the run with α = 0.5 performed best. The

random forest model with 1, 000 trees of depth 10 performed best in its group and the

single-layer neural network with 1, 500 nodes performed best in its group. Figures 4.13

and 4.14 show the proportion of features that were selected in the top 15% of features for

each method grouped by the type of feature while figure 4.15 highlights these features on

heatmaps. The elastic net model selected less than 15% of predictors in any run, so all

selected features are shown.

For the cell line features, there are clear differences in which features were used by each

method. The total number of features in the union of the top 15% across runs was highest

for the BaTFLED Tucker and random forest models (329 and 230 respectively), indicating

that these methods were using different features depending on the random initialization.

For comparison, CP models selected 190 features, neural nets 130 and the elastic net

models 59 features. Elastic net and random forest methods used almost no mutation

features, while the neural net, CP and Tucker methods selected almost half of these. All

methods use a relatively large portion of the 6 ‘other’ features (including subtype indicators

and doubling time).

For drug features, all methods except for the Tucker model selected a similar number

of features (103 for elastic net, 129 for random forest, 80 for neural net, 101 for CP and

171 for Tucker models). The types of features chosen differed greatly between methods,

with the Tucker model choosing fairly evenly from the different types of features while the

random forest model entirely excluded the 9 ‘other’ features.
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Figure 4.13: Top row: Number of cell line features selected by different methods for the
DREAM data. Bar height shows the total number of features of the given type, red portion
shows the number of these features in the union of the top 15% of features across replicates.
Note that for the elastic net model, only about 5% of features had non-zero values in each
replicate. Bottom row: Proportion of total features from each category that are chosen.
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4.4 Heiser data

After the DREAM challenge was run, the group that generated the data continued refining

their protocols and testing new drugs and cell lines [16] [15]. In this section we compare

BaTFLED to other methods on an updated version of the breast cancer drug response

data used in the previous section. This dataset contains 71 cell lines 107 drugs and is

normalized using a method that accounts for the growth rate of the cell line [22].

4.4.1 Cell line features

All cell line data was downloaded from JWGray Breast Cancer Cell Line Panel project

on the data sharing cite synapse.org [111]. Seven different data types were examined for

use as features including subytypes, median doubling times across replicates, exon array

expression, binarized expression, copy number, reverse phase protein lysate arrays (RPPA)

and methylation data. Subtypes and the doubling time were annotated for 60 of the cell

lines. Afffymetrix exon array expression data (continuous values for 18, 632 genes and

binary values for 36, 953 genes) was available for 51 of the cell lines. DNA copy number

assessed by the Affymetrix Genome-Wide Human SNP Array 6.0 was available for 63 cell

lines and 27, 234 genes. We removed 752 genes that had ‘NA’ values. RPPA data generated

by the Gordon Mills lab was available for 46 cell lines and 146 genes. Finally, methylation

data (Illumina HumanMethylation27) was available for 47 cell lines, 27, 578 CpGs and

14, 477 genes. When we only consider cell lines that have responses measured for 80%

of drugs, we’re left with subtype annotations for 50 cell lines, continuous expression data

for 48, binary expression data for 40, copy number data for 50, RPPA data for 44, and

methylation data for 44 cell lines. Figure 4.16 shows which data were available for which

cell lines.

To reduce the total size of this input data, we selected features for 609 genes identified

as being related to cancer by the Catalogue of Somatic Mutations in Cancer (COSMIC)

effort (Downloaded Jan 16 2017) [109] for further use. Additionally, for each data type,

we averaged together features that had a Pearson correlation coefficient greater than 0.9

or less than −0.9. This left a total of 583 expression, 486 binary expression, 381 copy
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number, 33 RPPA and 1, 110 methylation features.
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Figure 4.16: Data available for cell lines. Columns show different data types, red indicates
missing data. Colors on the left indicate which cell lines were in the training and test sets
(black and green respectively).

Since only 29 cell lines have all data types and the algorithms tested here cannot

handle missing data in the input features, we tried two approaches to deal with missing

data. First, we ran models using only the 48 cell lines for which subtype annotations,

doubling time and expression data were available. In this case, the final test set contained

12 cell lines. Second, we converted the subtype, expression, copy number, RPPA and

methylation features to similarity matrices between 51 cell lines using kernel functions.

For binary data we used the Jaccard coefficient (equation 4.1) and for continuous data we

used Gaussian kernels (equation 4.2). The width of the Gaussian kernels were set to .75
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times the mean distance between vectors in the training set. This value was chosen based

on visual inspection of heatmaps of kernel matrices. To combine these kernels, we took the

weighted mean of the kernels across 5 datasets where the weights were the reciprocal of

the standard deviation of the feature matrix for that data type. We kept the final training

set of 13 cell lines separate when computing these kernels, so the kernel features consist

of a similarity measure for each of the 38 training cell lines. A heatmap of the kernelized

matrix is show in figure 4.17. While using kernels allows us to utilize all of the available

data, we are not able to do meaningful feature selection.
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Figure 4.17: Heatmap of kernelized cell line features. Row colors indicate training and test
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4.4.2 Drug features

Names and annotations for 107 drugs tested against the above cell lines were downloaded

from the LINCS data portal (experiment 20269) [112]. Three of the drugs are antibodies

and were discarded because structural information could not be obtained. The remaining

drugs had 61 targets and 31 class annotations, but as many of these were unique to

particular drugs or redundant, they would not be useful in a predictive setting. After

removing targets and classes that were annotated for only one drug or were redundant, we

were left with 4 targets and 23 classes (figure 4.18). Next we used the SMILES (simplified

molecular-input line-entry system) strings and PaDEL software (v2.21) [110] to obtain 881

PubChem fingerprints and 1, 875 structure descriptors. Structural descriptors that were

more than 75% ‘NA’ values, had no variance across drugs or only had one non-zero value

were removed leaving 1, 115 features. Also, 116 features with a range larger than 1, 000

were removed and highly correlated features were combined (Pearson correlation greater

than 0.9 or less than −0.9) leaving 428 structural features. The resulting feature matrix

had 470 (1.08%) values that were ‘NA’, these were set to the mean across drugs. Next,

fingerprint features present in only one drug were removed, and correlated features were

combined leaving 271 fingerprint features. After this data cleaning, we were left with a set

of 726 drug features.

As with the cell line features, we explored both using these features directly and using

kernelized versions. We computed Jaccard kernels for the target/class data, and Gaussian

kernels for the fingerprint and PaDEL data. Because we combined correlated fingerprint

features, these were not all binary. Inspecting heatmaps of kernel matrices produced using

different widths for the fingerprint and PaDEL kernels we chose a width of 0.75 times the

average distance between vectors for both of these datasets. As with the cell line data,

we combined these kernels using a weighted average where the weights were equal to the

reciprocal of the standard deviations (figure 4.19).
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Figure 4.19: Heatmap of kernelized features for drug data. Rows colors indicate training
and test set drugs (black and green respectively). Columns show the training set drug sim-
ilarities that are used as features. Dendrogram by heirarchal clustering based on Euclidean
distance.
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4.4.3 Response data

As mentioned in section 1.1.2 studies of cell line drug response may be confounded by the

growth rate of the cell line. To account for this, the data for this section was characterized

using the growth rate 50 (GR50) response metric instead of the common growth inhibition

(GI50) measure. These values, as well as the raw growth response measurements at 9 doses,

were downloaded from the LINCS data portal (experiments 20268 and 20269). GR50 and

raw data was available for 71 cell lines and 110 drugs. Of the total 7, 810 combinations,

4, 864 had these response values (62.3%). Three of the drugs are antibodies and were

removed. Of the remaining 7, 597 combinations 2, 618 (34.5%) had multiple sets of raw

responses and 2, 809 (37.0%) had no raw responses. Since our methods assumes that the

same doses are used for each drug, we chose the 9 most common doses for each drug,

checked that these were evenly spaced and removed results with different doses. Five

drugs had small annotation issues with the drug doses that were corrected manually. One

drug (FR180204) was tested at 18 doses, we chose the upper 9 as the active region after

examining response curves. Six drugs had less than 9 doses and so have missing values

in the response tensor. After these corrections 2, 279 combinations (30.0%) have multiple

sets of raw responses and 3, 014 (39.7%) have no raw responses.

Next we selected one set of raw data for each cell line/drug combination by 1) choosing

the replicate with the GR50 closest to the median across replicates, 2) breaking ties by

using the replicate with the larger GRAOC, 3) breaking further ties (4 combinations) by

using the larger GR50 and 5) breaking a final tie by taking the replicate with more total

cells before treatment. These raw data were then normalized for growth rate using the

GR50 formula given in equation 1.1. Finally cell lines that were missing responses for more

than 80% of drugs and drugs that were missing responses for more than 80% of cell lines

were removed leaving 51 cell lines and 102 drugs in the final set.

4.4.4 Experiments

For this dataset, instead of performing training for all prediction tasks simultaneously

like was done in section 4.3, we remove final training sets for each task separately. For
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the warm-start task, we randomly remove responses for 20% of cell line/drug combinations

that have data (800 of 3, 978 and 818 of 4, 128 for the kernelized data). For cold start tasks,

we split roughly 25% of the cell lines and drugs into a final testing set (12/48 cell lines

with the expression data runs, 13/51 cell lines when using kernelized features and 26/102

drugs). We report results both on these final test sets and on five-fold cross validation

runs on just the training data. When running models to predict for cell lines, we use all

102 drugs and perform 5-fold cross-validation on the 36 (38 for kernelized runs) training

cell lines. When predicting for drugs, we use all 48 cell lines (51 for kernelized runs), and

perform 5-fold cross-validation on the 76 training drugs. When predicting for cell line/drug

combinations, we only use the training set cell lines and training set drugs and perform

cross-validation on both cell lines and drugs.

As with the DREAM data and the simulated data, we compared performance on each

task to predicting mean responses, four elastic net models, three random forest models

and three neural net models. We used the same settings for these as with previous tests.

BaTFLED CP models were trained with a latent dimension of 200 and Tucker models

given 10× 10× 9 cores. Due to the normalization of responses, we didn’t expect there to

be effects that would apply regardless of dose, so we only added columns of 1s to the cell

line and drug latent matrices. Also, we found that training for 50 iterations was sufficient

for these models to converge. For the cross-validation results, we tested a two-round

training scheme for BaTFLED models, which consisted of training initial models strongly

encouraging sparsity in the features (α = 10−10 and β = 1010), selecting the union of the

top 15% of features across folds for the second round and retraining without encouraging

sparsity (α = β = 1). In Tucker models, sparsity was not encouraged in the core. On

the final test set, we characterized the performance of BaTFLED models using all features

and encouraging sparsity and separately, using just those features selected in two-round

cross-validation testing and not encouraging sparsity. Note that although this two-round

strategy does represent some data leakage for the cross-validation results, the results on

the final test set do not have this contamination.
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4.4.5 Performance

In CV runs, the retrained BaTFLED Tucker model performs the best on all cold-start

tasks in terms of average NRMSE across folds (Tables 4.5, 4.6 and Figure 4.20). While

mean prediction and elastic net models perform comparably on most tasks, random forest

and neural net models perform poorly on the cold-start cell line task. These two methods

show differences on the cold-start drug task and combination cell line/drug task where

Random forest performs better than neural nets. When considering the results from the

runs that use kernelized features, mean prediction and LASSO models generally perform

the best while random forest and neural net models are particularly bad at cold-start cell

line prediction. Interestingly, none of the models using kernelized features outperforms

the models that use the features directly except for elastic net regression for cell line/drug

combination prediction. The best NRMSE performance for this task without kernels is

0.756 for the retrained Tucker model while the kernelized elastic net model has a slightly

better NRMSE of 0.751 (Tables 4.7, 4.8 and Figure 4.21).

While many of these methods appear comparable on average, examining performance

on individual cell lines, drugs and cell line/drug combinations suggests that they methods

have different strengths. Figures 4.22 and 4.23 show box plots for predicting individual

examples and figures 4.24, 4.25, and 4.26 show head-to-head comparisons of Pearson corre-

lation performance for the non-kernelized models. Each panel compares one of the models

with the baseline of mean prediction.
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Table 4.5: Mean normalized RMSE on the Heiser dataset over five cross-validation folds
(sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.46(0.00) 0.47(0.01) 0.49(0.01) 0.77(0.04) 0.78(0.03)
LASSO a=1 0.46(0.00) 0.48(0.01) 0.49(0.01) 0.82(0.06) 0.84(0.07)
E. net a=0.9 0.46(0.00) 0.47(0.01) 0.49(0.01) 0.81(0.06) 0.84(0.06)
E. net a=0.5 0.46(0.00) 0.48(0.01) 0.49(0.01) 0.80(0.05) 0.82(0.06)
Ridge a=0 0.45(0.00) 0.48(0.01) 0.49(0.01) 0.81(0.05) 0.79(0.05)
N.N. 1L 0.32(0.01) 0.54(0.02) 0.80(0.01) 0.93(0.07) 0.92(0.08)
N.N. 2L 0.18(0.00) 0.48(0.01) 0.80(0.01) 0.83(0.04) 0.80(0.05)
N.N. 3L 0.21(0.01) 0.48(0.01) 0.98(0.05) 0.93(0.07) 0.93(0.05)
R.F. 1000x5 0.46(0.00) 0.49(0.01) 0.86(0.01) 0.79(0.04) 0.81(0.04)
R.F. 5000x5 0.46(0.00) 0.50(0.01) 0.85(0.03) 0.80(0.05) 0.81(0.03)
R.F. 1000x10 0.37(0.00) 0.46(0.01) 0.89(0.03) 0.80(0.04) 0.80(0.03)
CP 0.35(0.01) 0.67(0.04) 0.51(0.01) 0.94(0.15) 0.91(0.14)
Tucker 0.43(0.01) 0.47(0.01) 0.49(0.01) 0.88(0.10) 0.89(0.11)
CP retrain 0.36(0.00) 0.59(0.01) 0.51(0.02) 0.94(0.09) 0.95(0.08)
Tucker retrain 0.43(0.01) 0.47(0.01) 0.48(0.01) 0.72(0.03) 0.76(0.06)
*Training results on warm-start task.

Table 4.6: Mean Pearson correlation on the Heiser dataset over five cross-validation folds
(sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.89(0.00) 0.88(0.01) 0.88(0.00) 0.64(0.04) 0.64(0.02)
LASSO a=1 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.60(0.06) 0.59(0.06)
E. net a=0.9 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.61(0.05) 0.59(0.06)
E. net a=0.5 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.62(0.05) 0.61(0.06)
Ridge a=0 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.62(0.05) 0.64(0.03)
N.N. 1L 0.96(0.00) 0.86(0.01) 0.62(0.01) 0.52(0.08) 0.53(0.08)
N.N. 2L 0.99(0.00) 0.88(0.01) 0.62(0.02) 0.59(0.04) 0.62(0.05)
N.N. 3L 0.98(0.00) 0.87(0.00) 0.48(0.06) 0.51(0.08) 0.50(0.07)
R.F. 1000x5 0.89(0.00) 0.87(0.01) 0.61(0.02) 0.63(0.04) 0.61(0.03)
R.F. 5000x5 0.89(0.00) 0.87(0.01) 0.61(0.02) 0.61(0.06) 0.61(0.02)
R.F. 1000x10 0.93(0.00) 0.89(0.01) 0.61(0.02) 0.62(0.05) 0.62(0.03)
CP 0.94(0.00) 0.77(0.02) 0.87(0.00) 0.51(0.11) 0.52(0.11)
Tucker 0.90(0.01) 0.88(0.01) 0.87(0.01) 0.55(0.10) 0.54(0.11)
CP retrain 0.93(0.00) 0.81(0.01) 0.86(0.01) 0.53(0.10) 0.53(0.06)
Tucker retrain 0.90(0.01) 0.89(0.01) 0.88(0.01) 0.70(0.03) 0.68(0.07)
*Training results on warm-start task.
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Table 4.7: Mean normalized RMSE on the Heiser dataset over five cross-validation folds
when using kernelized features (sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.46(0.00) 0.48(0.01) 0.49(0.02) 0.77(0.04) 0.78(0.03)
LASSO a=1 0.46(0.00) 0.48(0.01) 0.49(0.02) 0.79(0.08) 0.80(0.08)
E. net a=0.9 0.46(0.01) 0.48(0.02) 0.49(0.02) 0.79(0.08) 0.80(0.08)
E. net a=0.5 0.46(0.00) 0.47(0.01) 0.49(0.02) 0.79(0.09) 0.79(0.09)
Ridge a=0 0.60(0.00) 0.62(0.01) 0.62(0.01) 0.74(0.05) 0.75(0.05)
N.N. 1L 0.27(0.00) 0.57(0.01) 5.07(0.48) 4.87(0.80) 0.81(0.05)
N.N. 2L 0.28(0.01) 0.51(0.01) 1.00(0.12) 0.78(0.05) 0.85(0.07)
N.N. 3L 0.29(0.01) 0.49(0.01) 0.93(0.06) 0.85(0.04) 0.88(0.09)
R.F. 1000x5 0.46(0.00) 0.49(0.01) 0.88(0.06) 0.81(0.07) 0.82(0.06)
R.F. 5000x5 0.50(0.03) 0.54(0.03) 0.88(0.05) 0.81(0.07) 0.82(0.07)
R.F. 1000x10 0.43(0.00) 0.47(0.01) 0.90(0.05) 0.83(0.08) 0.83(0.07)
CP 0.57(0.00) 0.59(0.01) 0.60(0.01) 1.01(0.09) 1.00(0.11)
Tucker 0.50(0.01) 0.52(0.01) 0.53(0.02) 1.13(0.15) 1.13(0.15)
*Training results on warm-start task.

Table 4.8: Mean Pearson correlation on the Heiser dataset over five cross-validation folds
when using kernelized features (sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.89(0.00) 0.88(0.01) 0.88(0.01) 0.64(0.04) 0.64(0.03)
LASSO a=1 0.89(0.00) 0.88(0.00) 0.87(0.01) 0.65(0.05) 0.64(0.05)
E. net a=0.9 0.89(0.00) 0.88(0.01) 0.87(0.01) 0.65(0.05) 0.64(0.05)
E. net a=0.5 0.89(0.00) 0.88(0.00) 0.87(0.01) 0.65(0.05) 0.65(0.05)
Ridge a=0 0.80(0.00) 0.79(0.01) 0.79(0.01) 0.69(0.04) 0.68(0.04)
N.N. 1L 0.97(0.00) 0.85(0.01) -0.27(0.10) -0.25(0.16) 0.62(0.04)
N.N. 2L 0.96(0.00) 0.86(0.01) 0.62(0.01) 0.64(0.05) 0.59(0.06)
N.N. 3L 0.96(0.00) 0.87(0.00) 0.62(0.01) 0.57(0.04) 0.55(0.09)
R.F. 1000x5 0.89(0.00) 0.88(0.00) 0.63(0.01) 0.60(0.06) 0.60(0.06)
R.F. 5000x5 0.87(0.02) 0.84(0.02) 0.63(0.01) 0.60(0.06) 0.60(0.06)
R.F. 1000x10 0.90(0.00) 0.88(0.00) 0.63(0.01) 0.59(0.07) 0.60(0.06)
CP 0.82(0.00) 0.81(0.01) 0.81(0.01) 0.52(0.08) 0.51(0.09)
Tucker 0.87(0.00) 0.86(0.01) 0.85(0.01) 0.46(0.10) 0.45(0.12)
*Training results on warm-start task.



117

Training Warm start Cell lines Drugs Cell line/Drug
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Heiser data: cross−validation results

Figure 4.20: Performance measures for cross-validation runs on Heiser data (average across
5 cv runs). Normalized root mean squared error, Pearson correlation and Spearman cor-
relation for training data and four prediction tasks are shown.
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Training Warm start Cell lines Drugs Cell line/Drug
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Heiser data: cross−validation results with kernelized inputs

Figure 4.21: Performance measures for cross-validation runs on Heiser data when using
‘kernelized’ features (average across 5 cv runs). Normalized root mean squared error,
Pearson correlation and Spearman correlation for training data and four prediction tasks
are shown.
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Figure 4.22: Performance measures for cross-validation runs on Heiser data. Points and
boxplots show the normalized root mean squared error (NRMSE), Pearson correlation and
Spearman correlation for individual cell lines, drugs and cell line/drug combinations for
cold start prediction tasks. Note: scales differ for each plot and NRMSE values above 3
have been set to 3 for visualization purposes.



120

Spearman cor.

Cell line

Spearman cor.

Drug

Spearman cor.

Cell line/Drug

Pearson cor.

Cell line

Pearson cor.

Drug

Pearson cor.

Cell line/Drug

NRMSE

Cell line

NRMSE

Drug

NRMSE

Cell line/Drug

C
l. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

C
l. 

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

C
l. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

C
l. 

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

C
l. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

C
l. 

D
r. 

m
ea

n

LA
S

S
O

 a
=

1

E
. n

et
 a

=
0.

9

E
. n

et
 a

=
0.

5

R
id

ge
 a

=
0

R
.F

. 1
00

0x
5

R
.F

. 5
00

0x
5

R
.F

. 1
00

0x
10

N
.N

. 1
L

N
.N

. 2
L

N
.N

. 3
L

C
P

Tu
ck

er

0

1

2

3

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

1

2

3

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

0.3

0.6

0.9

1.2

0.0

0.5

1.0

0.0

0.3

0.6

0.9

class

Mean

E. net

R. forest

N. network

BaTFLED CP

BaTFLED Tucker

Figure 4.23: Performance measures for cv runs on Heiser data with kernelized features.
Points and boxplots show the normalized root mean squared error (NRMSE), Pearson
correlation and Spearman correlation for individual cell lines, drugs and cell line/drug
combinations for cold start prediction tasks. Note: scales differ for each plot and NRMSE
values above 3 have been set to 3 for visualization purposes.
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Figure 4.24: Comparison between mean prediction and other methods on the cold-start
cell line task from cross-validation runs. Each point represents one cell line with its x
coordinate showing the Pearson correlation of mean prediction with the true response and
the y coordinate showing the Pearson correlation between the alternate method and the
true response. Red points are predicted better by the alternate method and the percentage
of cell lines on either side of the diagonal are annotated.
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Pearson correlation performance on cold−test drugs

Figure 4.25: Comparison between mean prediction and other methods on the cold-start
drug task from cross-validation runs. Each point represents one drug with its x coordinate
showing the Pearson correlation of mean prediction with the true response and the y
coordinate showing the Pearson correlation between the alternate method and the true
response. Red points are predicted better by the alternate method and the percentage of
drugs on either side of the diagonal are annotated.
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Figure 4.26: Comparison between mean prediction and other methods on the cold-start
cell line/drug combination task from cross-validation runs. Each point represents one
cell line/drug combination with its x coordinate showing the Pearson correlation of mean
prediction (across cell lines) with the true response and the y coordinate showing the
Pearson correlation between the alternate method and the true response. Red points are
predicted better by the alternate method and the percentage of cell line/drug combinations
on either side of the diagonal are annotated.
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For the final test data, the BaTFLED Tucker models are among the best performing

algorithms at warm-start prediction and cold-start cell line prediction (Tables 4.9, 4.10 and

Figure 4.27). However, these models perform similarly to simple mean prediction which

highlights both the difficulty of the problem and the importance of feature engineering

and cleaning for all machine learning algorithms. Runs that use features selected by the

cross-validation runs do not perform significantly better on any tasks and have a worse

performance at the cold-start drug and cell line/drug combination task. This indicates

either that the predictive power of the drug features is diffusely distributed among a large

number of features or that the feature selection performed by the BaTFLED models does

not easily identify strong predictors. Finally, Tucker models outperform the CP models in

almost all cases, which may be due to over-fitting since the NRMSE on the training data

is smaller for CP models than for Tucker models.

Interestingly, by using kernelized features, several methods are able to outperform

mean prediction on the cold-start drug and cell line/drug combination task. BaTFLED

CP is top method in terms of Pearson correlation for both of these tasks (Tables 4.11,

4.12 and Figure 4.28. This highlights the potential of Tensor methods when combined

with non-linear features and indicates that CP models may have advantages in certain

situations, particularly when feature selection is not one of the goals. Additionally, the

observation that feature selection seems to hurt cold-start drug prediction, and that several

methods can outperform mean prediction on this task indicates that non-linear interactions

may be more important in the drug features. We chose kernel widths based on visual

inspection of kernel matrices and attempted to balance the kernels from different data types

equally which is probably not optimal. A thorough exploration of the kernel widths and

combination weighting schemes would likely produce better results. Our preliminary tests

indicate that the kernel parameters, the algorithm used for prediction, and the parameters

of that algorithm can all be inter-related in unpredictable ways suggesting that a larger

Bayesian model incorporating all of these factors may yield prediction improvements.

As with the cross-validation results, different methods have advantages for specific cell

lines, drugs and cell line/drug combinations. Plots of head-to-head comparisons of these

methods with mean prediction on the final test data are shown in figures 4.31, 4.32 and
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4.33.

Table 4.9: Mean normalized RMSE on the final test data for the Heiser dataset (sd. over
five replicates with different random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.46(0.00) 0.48(0.00) 0.48(0.00) 0.80(0.00) 0.82(0.00)
LASSO a=1 0.46(0.00) 0.48(0.00) 0.49(0.00) 1.10(0.00) 1.08(0.00)
E. net a=0.9 0.46(0.00) 0.48(0.00) 0.49(0.00) 1.10(0.00) 1.07(0.01)
E. net a=0.5 0.46(0.00) 0.48(0.00) 0.49(0.00) 1.09(0.00) 1.07(0.00)
Ridge a=0 0.50(0.00) 0.52(0.00) 0.53(0.00) 0.92(0.00) 0.91(0.00)
N.N. 1L 0.34(0.01) 0.53(0.00) 2.20(0.54) 1.43(0.28) 0.85(0.01)
N.N. 2L 0.20(0.01) 0.48(0.00) 0.84(0.05) 0.91(0.10) 0.82(0.00)
N.N. 3L 0.22(0.00) 0.48(0.00) 1.01(0.03) 0.82(0.02) 0.83(0.01)
R.F. 1000x5 0.46(0.00) 0.50(0.00) 0.80(0.01) 0.78(0.01) 0.80(0.00)
R.F. 5000x5 0.46(0.00) 0.50(0.00) 0.80(0.01) 0.78(0.01) 0.80(0.01)
R.F. 1000x10 0.37(0.00) 0.46(0.00) 0.80(0.00) 0.77(0.00) 0.80(0.00)
CP 0.37(0.00) 0.57(0.01) 0.48(0.00) 0.99(0.02) 0.95(0.01)
Tucker 0.44(0.01) 0.47(0.00) 0.48(0.00) 0.95(0.01) 0.92(0.01)
CP selected 0.38(0.00) 0.54(0.00) 0.49(0.00) 3.87(0.06) 3.22(0.22)
Tucker selected 0.43(0.01) 0.47(0.01) 0.48(0.00) 1.01(0.02) 1.25(0.04)
*Training results on warm-start task.
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Table 4.10: Mean Pearson correlation on the final test data for the Heiser dataset (sd. over
five replicates with different random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.89(0.00) 0.88(0.00) 0.88(0.00) 0.65(0.00) 0.63(0.00)
LASSO a=1 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.42(0.00) 0.43(0.00)
E. net a=0.9 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.42(0.00) 0.43(0.00)
E. net a=0.5 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.42(0.00) 0.43(0.00)
Ridge a=0 0.87(0.00) 0.85(0.00) 0.85(0.00) 0.50(0.00) 0.51(0.00)
N.N. 1L 0.95(0.00) 0.86(0.00) 0.53(0.08) 0.33(0.11) 0.59(0.02)
N.N. 2L 0.98(0.00) 0.88(0.00) 0.62(0.01) 0.50(0.12) 0.64(0.00)
N.N. 3L 0.98(0.00) 0.88(0.00) 0.61(0.01) 0.62(0.02) 0.62(0.01)
R.F. 1000x5 0.89(0.00) 0.87(0.00) 0.62(0.00) 0.65(0.01) 0.64(0.01)
R.F. 5000x5 0.89(0.00) 0.87(0.00) 0.62(0.01) 0.64(0.01) 0.63(0.01)
R.F. 1000x10 0.93(0.00) 0.89(0.00) 0.63(0.00) 0.66(0.00) 0.64(0.00)
CP 0.93(0.00) 0.82(0.00) 0.88(0.00) 0.54(0.01) 0.53(0.01)
Tucker 0.90(0.00) 0.88(0.00) 0.88(0.00) 0.56(0.00) 0.55(0.01)
CP selected 0.93(0.00) 0.85(0.00) 0.87(0.00) 0.34(0.00) 0.31(0.01)
Tucker selected 0.90(0.01) 0.89(0.00) 0.88(0.00) 0.47(0.01) 0.26(0.02)
*Training results on warm-start task.

Table 4.11: Mean normalized RMSE on the final test data for the Heiser dataset when
using kernelized features (sd. over five replicates with different random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.46(0.00) 0.48(0.00) 0.48(0.00) 0.80(0.00) 0.82(0.00)
LASSO a=1 0.46(0.00) 0.48(0.00) 0.49(0.00) 0.76(0.00) 0.77(0.00)
E. net a=0.9 0.46(0.00) 0.48(0.00) 0.49(0.00) 0.76(0.00) 0.77(0.00)
E. net a=0.5 0.46(0.00) 0.48(0.00) 0.49(0.00) 0.75(0.00) 0.76(0.00)
Ridge a=0 0.60(0.00) 0.62(0.00) 0.62(0.00) 0.75(0.00) 0.77(0.00)
N.N. 1L 0.29(0.01) 0.55(0.01) 4.04(0.36) 4.22(0.51) 0.76(0.00)
N.N. 2L 0.30(0.00) 0.50(0.00) 1.00(0.04) 0.79(0.02) 0.79(0.00)
N.N. 3L 0.32(0.01) 0.49(0.00) 0.90(0.02) 0.90(0.02) 0.81(0.00)
R.F. 1000x5 0.53(0.00) 0.56(0.00) 0.85(0.01) 0.76(0.00) 0.78(0.01)
R.F. 5000x5 0.53(0.00) 0.56(0.00) 0.86(0.01) 0.76(0.01) 0.78(0.00)
R.F. 1000x10 0.43(0.00) 0.48(0.00) 0.87(0.01) 0.76(0.01) 0.79(0.00)
CP 0.62(0.00) 0.64(0.00) 0.64(0.00) 0.75(0.01) 0.77(0.00)
Tucker 0.69(0.01) 0.69(0.01) 0.69(0.01) 0.77(0.00) 0.79(0.00)
*Training results on warm-start task.



127

Table 4.12: Mean Pearson correlation on the final test data for the Heiser dataset when
using kernelized features (sd. over five replicates with different random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.89(0.00) 0.88(0.00) 0.88(0.00) 0.65(0.00) 0.64(0.00)
LASSO a=1 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.68(0.00) 0.68(0.00)
E. net a=0.9 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.68(0.00) 0.68(0.00)
E. net a=0.5 0.89(0.00) 0.88(0.00) 0.87(0.00) 0.68(0.00) 0.68(0.00)
Ridge a=0 0.80(0.00) 0.79(0.00) 0.79(0.00) 0.70(0.00) 0.69(0.00)
N.N. 1L 0.97(0.00) 0.85(0.00) -0.27(0.06) -0.19(0.04) 0.68(0.00)
N.N. 2L 0.96(0.00) 0.87(0.00) 0.62(0.01) 0.66(0.01) 0.65(0.00)
N.N. 3L 0.95(0.00) 0.87(0.00) 0.61(0.01) 0.52(0.03) 0.62(0.00)
R.F. 1000x5 0.85(0.00) 0.83(0.00) 0.64(0.00) 0.68(0.00) 0.66(0.01)
R.F. 5000x5 0.85(0.00) 0.83(0.00) 0.64(0.00) 0.68(0.01) 0.66(0.00)
R.F. 1000x10 0.90(0.00) 0.88(0.00) 0.64(0.00) 0.67(0.01) 0.66(0.01)
CP 0.79(0.00) 0.77(0.00) 0.78(0.00) 0.71(0.00) 0.70(0.00)
Tucker 0.73(0.01) 0.73(0.01) 0.73(0.01) 0.69(0.00) 0.68(0.00)
*Training results on warm-start task.
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Figure 4.27: Performance measures for final test runs on Heiser data (average across 5
replicates with different random starts). Normalized root mean squared error, Pearson
correlation and Spearman correlation for training data and four prediction tasks are shown.
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Heiser data: final test results with kernelized inputs

Figure 4.28: Performance measures for final test runs on Heiser data when using kernelized
features (average across 5 replicates with different random starts). Normalized root mean
squared error, Pearson correlation and Spearman correlation for training data and four
prediction tasks are shown.
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Figure 4.29: Performance measures for final test runs on Heiser data from one randomly
selected replicate. Points and boxplots show the normalized root mean squared error
(NRMSE), Pearson correlation and Spearman correlation for individual cell lines, drugs
and cell line/drug combinations for cold start prediction tasks. Note: scales differ for each
plot and NRMSE values above 3 have been set to 3 for visualization purposes.
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Figure 4.30: Performance measures for final test runs on Heiser data with kernelized fea-
tures from one randomly selected replicate. Points and boxplots show the normalized root
mean squared error (NRMSE), Pearson correlation and Spearman correlation for individ-
ual cell lines, drugs and cell line/drug combinations for cold start prediction tasks. Note:
scales differ for each plot and NRMSE values above 3 have been set to 3 for visualization
purposes.
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Figure 4.31: Comparison between mean prediction and other methods on the cold-start
cell line task for the final Heiser test data. Each point represents one cell line with its x
coordinate showing the Pearson correlation of mean prediction with the true response and
the y coordinate showing the Pearson correlation between the alternate method and the
true response. Red points are predicted better by the alternate method and the percentage
of cell lines on either side of the diagonal are annotated.
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Figure 4.32: Comparison between mean prediction and other methods on the cold-start
drug task for the final Heiser test data. Each point represents one drug with its x coordinate
showing the Pearson correlation of mean prediction with the true response and the y
coordinate showing the Pearson correlation between the alternate method and the true
response. Red points are predicted better by the alternate method and the percentage of
drugs on either side of the diagonal are annotated.
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Figure 4.33: Comparison between mean prediction and other methods on the cold-start
cell line/drug combination task for the final Heiser test data. Each point represents one
cell line/drug combination with its x coordinate showing the Pearson correlation of mean
prediction (across cell lines) with the true response and the y coordinate showing the
Pearson correlation between the alternate method and the true response. Red points are
predicted better by the alternate method and the percentage of cell line/drug combinations
on either side of the diagonal are annotated.
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4.4.6 GR50 prediction

Since the majority of studies have used the GI50 response response measure to judge

drug sensitivity, we also compared the performance of the above methods in terms of this

response. For both the observed and predicted responses, we fit four-parameter logistic

functions to responses at each dose using the R package ‘drc’ [113]. The responses have

been normalized to the growth rate for this data set, so this is what the authors of [22] refer

to as the GR50. GR50 measures were annotated relative to the doses (1..9) and inferred

GR50 values below 1 were set to ‘NA’ and above the maximum dose were set to 10. We

then measured the NRMSE, Pearson correlation and Spearman correlation between the

observed and predicted GR50 values for each method. Additionally we calculated these

measures for curves fit to the mean response (across cell lines or drugs) at each dose. Tables

4.13 and 4.14 and figure 4.34 show the average performance for these three metrics on the

cross-validation runs while tables 4.15 and 4.16 and figure 4.35 show the same for the final

test set responses.

Table 4.13: Mean normalized root mean squared error for cross-validation runs for the
Heiser dataset when predicting GR50 values extrapolated from fitted curves (sd. over five
cross-validation folds).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.63(0.01) 0.65(0.03) 0.68(0.08) 1.04(0.04) 1.26(0.14)
LASSO a=1 0.63(0.01) 0.66(0.03) 0.70(0.06) 0.97(0.16) 0.99(0.21)
E. net a=0.9 0.63(0.01) 0.64(0.03) 0.70(0.06) 0.97(0.16) 1.02(0.23)
E. net a=0.5 0.63(0.01) 0.66(0.04) 0.70(0.06) 1.03(0.13) 1.03(0.14)
Ridge a=0 0.62(0.01) 0.68(0.04) 0.67(0.06) 1.01(0.11) 0.99(0.11)
R.F. 1000x5 0.61(0.02) 0.64(0.01) 1.02(0.02) 1.03(0.09) 1.06(0.20)
R.F. 5000x5 0.61(0.01) 0.66(0.02) 1.02(0.01) 1.00(0.13) 1.02(0.15)
R.F. 1000x10 0.49(0.00) 0.61(0.05) 1.02(0.02) 1.05(0.13) 1.01(0.15)
N.N. 1L 0.40(0.02) 0.68(0.01) 1.04(0.03) 1.13(0.17) 1.07(0.17)
N.N. 2L 0.26(0.01) 0.62(0.03) 1.06(0.03) 1.04(0.12) 0.98(0.09)
N.N. 3L 0.28(0.01) 0.62(0.03) 1.82(0.55) 1.24(0.25) 1.13(0.19)
CP 0.44(0.03) 0.93(0.08) 0.68(0.05) 1.15(0.19) 1.04(0.12)
CP retrain 0.45(0.02) 0.80(0.05) 0.68(0.06) 1.15(0.12) 1.13(0.15)
Tucker 0.60(0.02) 0.66(0.02) 0.68(0.07) 1.04(0.14) 1.00(0.16)
Tucker retrain 0.60(0.04) 0.66(0.05) 0.67(0.05) 0.94(0.10) 0.89(0.13)
*Training results on warm-start task.
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Table 4.14: Mean Pearson correlation for cross-validation runs for the Heiser dataset when
predicting GR50 values extrapolated from fitted curves (sd. over five cross-validation folds).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.77(0.00) 0.76(0.02) 0.74(0.05) 0.08(0.04) -0.01(0.28)
LASSO a=1 0.77(0.00) 0.75(0.02) 0.72(0.05) 0.37(0.32) 0.34(0.34)
E. net a=0.9 0.77(0.01) 0.76(0.03) 0.72(0.05) 0.37(0.32) 0.31(0.37)
E. net a=0.5 0.77(0.01) 0.75(0.03) 0.72(0.05) 0.33(0.28) 0.29(0.32)
Ridge a=0 0.78(0.00) 0.73(0.03) 0.73(0.05) 0.37(0.16) 0.35(0.21)
R.F. 1000x5 0.79(0.01) 0.76(0.01) 0.01(0.04) 0.31(0.16) 0.32(0.23)
R.F. 5000x5 0.79(0.01) 0.75(0.02) 0.03(0.02) 0.36(0.16) 0.32(0.24)
R.F. 1000x10 0.87(0.00) 0.78(0.04) 0.01(0.04) 0.33(0.12) 0.36(0.20)
N.N. 1L 0.92(0.01) 0.76(0.01) 0.02(0.03) 0.30(0.16) 0.36(0.16)
N.N. 2L 0.97(0.00) 0.78(0.03) 0.05(0.03) 0.29(0.27) 0.37(0.22)
N.N. 3L 0.96(0.00) 0.78(0.02) NA(NA) 0.23(0.30) 0.39(0.19)
CP 0.90(0.01) 0.55(0.07) 0.74(0.04) 0.28(0.19) 0.35(0.18)
CP retrain 0.89(0.01) 0.65(0.03) 0.74(0.04) 0.23(0.17) 0.25(0.20)
Tucker 0.80(0.02) 0.76(0.02) 0.75(0.05) 0.31(0.24) 0.31(0.32)
Tucker retrain 0.80(0.03) 0.76(0.04) 0.76(0.03) 0.42(0.13) 0.43(0.23)
*Training results on warm-start task.
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Figure 4.34: Performance measures for cross-validation runs on Heiser data when predict-
ing GR50 values extracted from curves. Mean normalized root mean squared, Pearson
correlation and Spearman correlation across 5 cross-validation folds for training data and
four prediction tasks. Note: scales differ for each response measure and NRMSE values
above 1.5 are set to 1.5 for visualization purposes.
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Table 4.15: Mean normalized root mean squared error on the final test data for the Heiser
dataset when predicting GR50 values extrapolated from fitted curves (sd. over five repli-
cates with different random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.63(0.00) 0.65(0.00) 0.61(0.00) 1.10(0.00) 1.47(0.00)
LASSO a=1 0.64(0.00) 0.64(0.00) 0.63(0.00) 1.23(0.04) 1.23(0.09)
E. net a=0.9 0.64(0.00) 0.65(0.00) 0.63(0.00) 1.24(0.03) 1.19(0.05)
E. net a=0.5 0.64(0.00) 0.65(0.00) 0.63(0.00) 1.11(0.02) 1.14(0.05)
Ridge a=0 0.67(0.00) 0.70(0.00) 0.67(0.00) 1.56(0.01) 1.52(0.01)
R.F. 1000x5 0.60(0.00) 0.64(0.01) 1.01(0.02) 1.09(0.02) 1.09(0.03)
R.F. 5000x5 0.61(0.01) 0.64(0.01) 1.03(0.02) 1.10(0.04) 1.08(0.02)
R.F. 1000x10 0.49(0.00) 0.62(0.01) 1.01(0.00) 1.06(0.01) 1.07(0.01)
N.N. 1L 0.44(0.03) 0.72(0.03) 1.59(0.10) 2.04(0.20) 1.09(0.10)
N.N. 2L 0.28(0.02) 0.59(0.00) 1.03(0.01) 1.22(0.13) 1.26(0.03)
N.N. 3L 0.29(0.01) 0.61(0.01) 1.08(0.03) 1.07(0.07) 1.18(0.07)
CP 0.47(0.02) 0.80(0.02) 0.61(0.01) 1.25(0.01) 1.29(0.04)
CP selected 0.48(0.01) 0.74(0.01) 0.63(0.02) 1.23(0.03) 1.13(0.06)
Tucker 0.59(0.03) 0.62(0.01) 0.61(0.01) 1.26(0.03) 1.35(0.03)
Tucker selected 0.59(0.04) 0.64(0.02) 0.63(0.02) 1.36(0.02) 1.50(0.05)
*Training results on warm-start task.
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Table 4.16: Mean Pearson correlation on the final test data for the Heiser dataset when pre-
dicting GR50 values extrapolated from fitted curves (sd. over five replicates with different
random starts).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.77(0.00) 0.76(0.00) 0.78(0.00) 0.08(0.00) -0.08(0.00)
LASSO a=1 0.77(0.00) 0.76(0.00) 0.77(0.00) 0.22(0.05) 0.25(0.06)
E. net a=0.9 0.77(0.00) 0.76(0.00) 0.77(0.00) 0.20(0.03) 0.22(0.06)
E. net a=0.5 0.77(0.00) 0.77(0.00) 0.77(0.00) 0.22(0.02) 0.22(0.05)
Ridge a=0 0.73(0.00) 0.71(0.00) 0.73(0.00) -0.11(0.00) -0.06(0.00)
R.F. 1000x5 0.79(0.00) 0.77(0.01) -0.01(0.03) 0.11(0.02) 0.16(0.04)
R.F. 5000x5 0.79(0.00) 0.77(0.01) 0.01(0.03) 0.09(0.05) 0.16(0.02)
R.F. 1000x10 0.87(0.00) 0.78(0.00) 0.03(0.01) 0.12(0.02) 0.20(0.02)
N.N. 1L 0.90(0.01) 0.74(0.01) 0.07(0.01) -0.09(0.12) 0.30(0.10)
N.N. 2L 0.96(0.00) 0.81(0.00) 0.08(0.03) 0.16(0.11) 0.09(0.01)
N.N. 3L 0.96(0.00) 0.79(0.01) 0.06(0.01) 0.13(0.06) 0.27(0.03)
CP 0.88(0.01) 0.64(0.01) 0.79(0.01) 0.18(0.02) 0.14(0.02)
CP selected 0.87(0.01) 0.70(0.01) 0.78(0.01) 0.17(0.03) 0.27(0.05)
Tucker 0.81(0.02) 0.79(0.01) 0.78(0.01) 0.16(0.03) 0.10(0.02)
Tucker selected 0.81(0.03) 0.78(0.01) 0.78(0.01) -0.03(0.03) -0.12(0.03)
*Training results on warm-start task.
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Figure 4.35: Performance measures for final test runs on Heiser data when predicting GR50

values extracted from curves. Mean normalized root mean squared, Pearson correlation
and Spearman correlation across 5 replicates with different random starts for training data
and four prediction tasks. Note: scales differ for each response measure.
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We also measured the performance of the baseline algorithms when predicting the GR50

values directly rather than predicting response at each dose, fitting curves and calculating

GR50 values. In general, we find a worse performance in almost all cases, supporting the

hypothesis that there is some benefit to dealing with responses directly. Figure 4.36 shows

the performance for mean prediction, elastic net, random forest and neural net models on

this task when using the same run parameters as above.

Training Warm start Cell lines Drugs Cell line/Drug
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Figure 4.36: Performance measures on final test cases for Heiser data when predicting GR50

values directly. Mean normalized root mean squared, Pearson correlation and Spearman
correlation across 5 replicates with different random starts for training data and four
prediction tasks. Note: scales differ for each response measure and NRMSE values above
2 have been set to 2 for visualization purposes.

Taken together, we see from the above tests that the BaTFLED models perform as well

or better than completing methods at most tasks. In particular, on the cross-validation

runs, the retrained Tucker model is the best performing model at all the cold-start tasks,

while for the final test data, BaTFLED models perform best on the cold-start cell line

task without kernelized features and are tied for best on the cold-start drug task with

kernelized features. Interestingly, the feature selection step does not seem to confer much



142

of an advantage in this evaluation suggesting that the predictive value of the input features

may be broadly spread across the input data. Additionally we find that BaTFLEDmethods

perform comparably when predicting GR50 responses extracted from curves and that all

methods do better by first predicting responses at each dose rather than predicting GR50

values directly.
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4.4.7 Selected features

As with the DREAM data we explored which features were selected by the different pre-

diction algorithms that we tested. We consider the union of the top 15% of features across

the five replicate runs on the final test data for LASSO, two layer neural net, and random

forest with 1000 trees at a depth of 10 nodes. For CP and Tucker models, we consider the

same number of top features in the ‘selected’ runs (after the first round of selection by the

cross-validation runs). For cell lines, these features consist of 5 subtype indicators, median

doubling time without treatment and expression values for 583 genes. For drugs, features

include 27 target and class indicators, 271 PubChem fingerprint features and 432 PaDEL

structural indicators. The LASSO model only selected 10−11% of cell line features during

each run and these were fairly consistent so the total number of these features is less than

15%.

The methods differed widely in which features they chose with the LASSO method

selecting the fewest features and the Tucker model selecting the most (Table 4.17). For

cell line features, LASSO, random forest, and Tucker models chose both the subtype and

expression features about equally, while the neural net and CP model preferred subtype fea-

tures (Figure 4.37). For drugs, LASSO and random forest models chose almost exclusively

PaDEL structural features while the neural net model preferred class/target features (Fig-

ure 4.38). BaTFLED models chose almost entirely fingerprint and PaDEL features (about

equally) and were fairly consistent in which features they chose (Figure 4.39). In fact, the

CP and Tucker models share about half of their chosen features (72 of 153 and 154 features

respectively).

Table 4.17: Number of features selected in the union of the top 15% across replicates for
Heiser data (percentage).

LASSO Neural net Random forest CP Tucker

Cell lines 71 (12.1) 98 (16.6) 155 (26.3) 163 (27.7) 201 (34.1)
Drugs 113 (15.5) 116 (15.9) 145 (19.9) 153 (21.0) 154 (21.1)

No cell line features were selected by all methods and 15 features were selected by

four of the methods. These included the median doubling time and expression values for



144

the following genes: AR, BIRC3, CBLB, EGFR, ETV5, FAM22A, FAM46C, FLT4, KIT,

NOTCH1, PPARG, TMPRSS2, TRIM24 and VTI1A. The only method that outperformed

mean prediction for the cold-start cell line task was the BaTFLED Tucker model. For this

model, the cell line features that were in the top 15% of features across all the five repli-

cates were expression values for ARHGAP26, FAM46C, FLT4, HOXC11, KLF4, NFATC2,

SDHA and SPOP.

Looking at the cold-start drug prediction runs, no drug features are selected by all meth-

ods and four PaDEL features were selected by four methods: AATS5m (an autocorrelation

descriptor), maxHBint4 (a hydrogen bond strength measure), MDEC.22 (molecular dis-

tance between secondary carbons), and a combination feature of several values measuring

the coefficient sum of the last eigenvector from Barysz matrix. The best performing method

for cold-start drug prediction was the random forest model which had 76 PaDEL and two

footprint features in the top 15% across all replicates. The best performing BaTFLED run

was the Tucker model using all features. This model had 51 features consistently selected

among replicates, the indicator of the HDAC targeting class, 34 PaDEL and 16 fingerprint

features.
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Figure 4.37: Top row: Number of cell line features selected by different methods. Bar
height shows the total number of features of the given type, red portion shows the number
of these features in the union of the top 15% of features across replicates. Note that for
the LASSO model, only about 10− 11% of features had non-zero values in each replicate.
Bottom row: Proportion of total features from each category that are chosen.
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Figure 4.38: Top row: Number of drug features selected by different methods. Bar height
shows the total number of features of the given type, blue portion shows the number of
these features in the union of the top 15% of features across replicates. Bottom row:
Proportion of total features from each category that are chosen
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4.5 CTD2 data

The Cancer Target Discovery and Development (CTD2) effort is the largest cancer cell

line screening study with publicly available data that has been published to date. There

have been two iterations of this effort, the first, CTRP1 (Cancer Therapeutics Response

Portal) having 242 cell lines, 185 drugs and 8 doses was published in 2013 [108] and a the

second CTRP2 with 860 cell lines and 481 drugs measured at 16 doses published in 2014

[114, 115]. The cell lines are obtained from a broad range of cancers and the compounds

were chosen as an ‘informer set’ of different drug classes.

4.5.1 Response data

Raw and normalized response data for 907 cell lines, 545 drugs was downloaded from

the CTD2 web portal (https://ocg.cancer.gov/programs/ctd2/data-portal). These values

consist of CellTiter-Glo (www.promega.com) luminescence measurements quantifying the

amount of ATP present in wells as a proxy for live cell counts. The responses are normalized

to percent viability relative to DMSO controls as described in [114]. Of these cell lines, 887

have meta-data associated with them describing the experiments in which they were tested

with the vast majority (868) being tested in only one experiment (18 have 2 experiment

ids and 1 has 3). All but one have a unique growth mode (adherent: 794, mixed: 18,

suspension 233 or spheroid 16) and we excluded the results from the less common growth

mode for this cell line (id 1095). Five cell lines were grown in two different media and for

these we only kept results from the more common media. Normalized response data was

provided in a ‘post-qc’ dataset which had only 13 cell lines with replicate experiments. We

keep the replicate with the higher experiment number assuming these were re-run due to

some technical issue. Most cell line/drug combinations (313, 105 of 463, 901) were tested

at 16 doses. We removed two drugs (ids 290356 and 418166) with more than 16 doses

and matched doses where possible when combinations had less than 16. Additionally we

removed cell lines which had been tested with less than 20% of drugs and drugs which

were tested with less than 20% of cell lines and we removed responses for cell lines and

drugs for which we could not obtain features (below). This left a final tensor of normalized
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responses for 783 cell lines 493 drugs and 16 doses with 1, 278, 816 missing values (20.7%).

4.5.2 Cell line features

All feature data for 1, 107 cell lines was downloaded from the CTD2 web portal with the

exception of the mutation data which came from the CCLE effort [10] (downloaded March

1 2016). Overall these data contain, copy number values for 23, 174 genes in 823 cell lines,

gene expression data for 18, 543 genes in 823 cell lines, and mutation data for 1, 638 genes

in 1, 107 cell lines. To reduce the number of features, we again focused on COSMIC genes

(557 copy number features, 542 expression features and 458 mutation features). As with

the other datasets we combined features correlated above 0.9 or below −0.9 which reduced

the copy number features to 475. Additionally, we removed mutation features that were

found in less than three cell lines leaving 387 features. We note that 76 cell lines (9.6%)

had no mutations annotated.

We used the metadata provided with the responses to construct Binary indicators of

growth mode, culture media, primary site, histology and subtype. There were four growth

modes (adherent 673, mixed 17, spheroid 16 and suspension 182) and 72 different culture

media. However, only 13 of these have more than 10 cell lines with the most common

being DMEM001: 81, EMEM001: 54, RPMI001: 408 and RPMI003: 49. There were 24

different primary sites listed including autonomic ganglia (17), biliary tract (8), bone (29),

breast (60), central nervous system (69), endometrium (28), haematopoietic and lymphoid

tissue (181), kidney (36), large intestine (62), liver (27), lung (187), oesophagus (27), ovary

(52), pancreas (46), pleura (11), prostate (8), salivary gland (2), skin (62), small intestine

(1), soft tissue (21), stomach (38), thyroid (12), upper aerodigestive tract (33) and urinary

tract (28). Histology annotation was also provided, with the vast majority (642) being

carcinomas and only five others with more than 10 cell lines (glioma: 62, haematopoietic

neoplasm: 51, malignant melanoma 61, neuroblastoma 17 and mesothelioma 11). Finally

there were 67 subtypes listed, but only 20 that had more than 10 cell lines: acute lym-

phoblastic B cell leukaemia (15), acute lymphoblastic T cell leukaemia (15), acute myeloid

leukaemia (35), adenocarcinoma (152), astrocytoma (11), astrocytoma Grade IV: (38),
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chronic myeloid leukaemia (12) chronic myeloid leukaemia (11), clear cell renal cell car-

cinoma (12), diffuse large B cell lymphoma (18), ductal carcinoma (61), hepatocellular

carcinoma (24), Hodgkin lymphoma (12), large cell carcinoma (14), non small cell carci-

noma (24), plasma cell myeloma (30), renal cell carcinoma (17), small cell carcinoma (54),

squamous cell carcinoma (81), and transitional cell carcinoma (22). In total, we gener-

ated 188 indicators, removed those with less than 10 cell lines (leaving 58 indicators) and

removed 5 more that were highly correlated (greater than 0.9 or lesss than −0.9) consist-

ing of tissue indicators matching subtypes. Additionally, we made a binary indicator of

whether average of log2 DMSO readout in untreated cells was above or below 14.5. This

cutoff was decided based on visual examination of histograms in which there were two clear

populations with 65 cell lines (7.33%) in the upper group. Bar plots of counts for these

indicators are given in figure 4.40 and a heatmap of indicators is shown in figure 4.41.

Removing features with no variation or less than two non-zero values (after removing

the cell lines without one or more datatype) leaves 783 cell lines, 43, 332 total features and

1, 456 COSMIC features (52 annotations, 542 gene expression values, 387 gene mutation

values and 475 gene copy number values).

4.5.3 Drugs features

For the drug data, there were 514 compounds with response data and we used gene targets,

PubChem fingerprints and PaDEL structural descriptors as features. Starting with a total

of 324 gene targets listed in the annotations downloaded from CTD2, we removed all but

77 that were annotated for at least three drugs. Next we used the SMILES string and the

PaDEL software ([110]) to obtain 1, 441 structual features and 881 PubChem fingerprints

for the 493 drugs which were able to be processed. We removed features with no variation

and features where less than 10 drugs were non-zero or non-one (leaving 1, 619). We then

applied a log10 transformation to 325 non-binary features if the transformed version was

closer to a normal distribution (i.e. had a larger Shapiro-Wilk test statistic). We also

z-scaled all features and set values more than 4 standard deviations from the mean to 4

or −4. There were 1, 103 (0.18%) values changed on the low end of the distribution and

3, 228 (0.53%) on the high end. Finally we set 8, 382 (2.25%) ‘NA’ values to zero, combined
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Figure 4.40: Barplots of counts for cell line annotations in 1, 107 cell lines in the CTD2

dataset.

865 highly correlated features (Pearson correlation above 0.9 or below −0.9) and re-scaled.

The final set has 493 drugs and 831 features (77 targets, 161 pubchem indicators and 593

1D and 2D structural features).
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Figure 4.41: Heatmap of 63 binary indicators of 1, 107 cell lines in the CTD2 dataset. Each
row represents one cell line and each column an indicator. Colors show whether the cell
line has a given annotation, red means no, yellow means yes with darker colors indicating
more positive indicators for that cell line.
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4.5.4 Experiments

With the CTD2 data, as with the Heiser data, we perform separate train/test splits for

each task holding out about 20% of the data and ran a 5-fold cross validation to select

hyper-parameters and features. For the final warm start task, we removed 62, 802 cell

line/drug combinations from the 314, 011 combinations that had response data and for

cross-validation runs held out an additional randomly selected 20%. For cold-start cell line

prediction tasks, we held out a final test set of 156 of the 783 cell lines and removed an

additional 126 during each cross-validation fold. For cold-start drug prediction tasks, we

held out 98 drugs of the 493 drugs as the final test set and removed an additional 79 drugs

during each cross-validation run. For testing on the cold-start cell line/drug task, we used

the same training and test splits as above.

Due to size of this dataset and computational costs, we only compared the performance

of BaTFLED models to mean prediction and the four elastic net models used previously.

Although there were a few tasks where neural net and random forest methods outperformed

elastic net models (namely cold-start drug prediction with unkernelized features on the

Heiser data), most of the time the elastic net models were comparable the top performers.

BaTFLED CP models were trained with a latent dimension of 200 and BaTFLED Tucker

models with a 10 × 10 × 10 core. All BaTFLED models were run for 50 iterations with

strong sparsity priors on the projection matrices (α = 10−10, and β = 1010) when using

all features and weak sparsity priors (α = β = 1) when using features selected by the

cross-validation runs.

4.5.5 Performance

In the cross-validation runs, BaTFLED models perform about as well as elastic net mod-

els for warm-start and cold-start cell line prediction. Although BaTFLED models appear

worse than elastic net models in terms of NRMSE and Pearson correlation when predict-

ing for drugs and cell line/drug combinations, they have a slight advantage in terms of

Spearman correlation (tables 4.18, 4.19 and 4.20 and figure 4.42. If we look at the per-

formance for individual cell lines and drug instead of measuring responses in aggregate,



154

we see that the median performance of BaTFLED models is actually better than elastic

net models for these tasks with all three measures (Figure 4.43). This may indicate that

BaTFLED models are more prone to making larger errors than elastic net models since

the average results shown in figure 4.42 are more sensitive to outliers than the medians in

figure 4.43. Alternatively, there may be some Simpson’s paradox effects when considering

all predictions versus considering predictions for each cell line or drug. Ultimately, mean

prediction performs best on all cold-start tasks, indicating that the features are not very

useful in this dataset. This may be due to the way that the feature data was cleaned and

processed or due to the size and heterogeneity of this pan-cancer data.

Table 4.18: Mean normalized root mean squared error NRMSE on the CTD2 dataset over
five cross-validation folds (sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.59(0.00) 0.59(0.00) 0.59(0.01) 0.82(0.02) 0.85(0.02)
LASSO a=1 0.55(0.00) 0.55(0.00) 0.61(0.01) 1.13(0.06) 1.15(0.07)
E. net a=0.9 0.55(0.00) 0.55(0.00) 0.61(0.01) 1.13(0.06) 1.15(0.06)
E. net a=0.5 0.55(0.00) 0.55(0.00) 0.61(0.01) 1.12(0.06) 1.15(0.06)
Ridge a=0 0.58(0.00) 0.58(0.00) 0.62(0.01) 1.00(0.03) 1.03(0.03)
CP 0.56(0.01) 0.56(0.01) 0.62(0.01) 11.47(23.52) 17.09(36.05)
Tucker 0.59(0.02) 0.59(0.02) 0.66(0.01) 5.53(10.09) 13.73(28.46)
*Training results on warm-start task.
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Table 4.19: Mean Pearson correlation on the CTD2 dataset over five cross-validation folds
(sd).

Training Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.81(0.00) 0.81(0.00) 0.81(0.01) 0.57(0.03) 0.53(0.03)
LASSO a=1 0.84(0.00) 0.84(0.00) 0.80(0.01) 0.40(0.03) 0.38(0.04)
E. net a=0.9 0.84(0.00) 0.83(0.00) 0.80(0.01) 0.41(0.03) 0.38(0.04)
E. net a=0.5 0.84(0.00) 0.83(0.00) 0.80(0.01) 0.41(0.03) 0.38(0.04)
Ridge a=0 0.82(0.00) 0.82(0.00) 0.78(0.01) 0.45(0.02) 0.42(0.03)
CP 0.83(0.00) 0.83(0.00) 0.78(0.01) 0.40(0.22) 0.38(0.21)
Tucker 0.81(0.01) 0.81(0.01) 0.75(0.01) 0.36(0.21) 0.35(0.20)
*Training results on warm-start task.

Table 4.20: Mean Spearman correlation on the CTD2 dataset over five cross-validation
folds (sd).

Training Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.64(0.00) 0.64(0.00) 0.64(0.01) 0.49(0.03) 0.45(0.03)
LASSO a=1 0.65(0.00) 0.64(0.00) 0.59(0.01) 0.34(0.03) 0.31(0.03)
E. net a=0.9 0.65(0.00) 0.64(0.00) 0.59(0.01) 0.34(0.03) 0.31(0.03)
E. net a=0.5 0.65(0.00) 0.64(0.00) 0.59(0.01) 0.34(0.03) 0.31(0.03)
Ridge a=0 0.63(0.00) 0.62(0.00) 0.58(0.00) 0.38(0.02) 0.35(0.03)
CP 0.64(0.01) 0.64(0.00) 0.58(0.01) 0.40(0.01) 0.38(0.02)
Tucker 0.62(0.01) 0.62(0.01) 0.57(0.01) 0.38(0.04) 0.37(0.02)
*Training results on warm-start task.
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Figure 4.42: Performance measures for cross-validation runs on CTD2 data (average across
5 runs). Normalized root mean squared error, Pearson correlation and Spearman corre-
lation for training data and four prediction tasks are shown. Note scales differ for each
response measure and NRMSE values above 1.25 have been set to 1.25 for visualization
purposes.
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Figure 4.43: Performance measures for cross-validation runs on CTD2 data. Points and
boxplots show the normalized root mean squared error (NRMSE), Pearson correlation and
Spearman correlation for individual cell lines, drugs and cell line/drug combinations for
cold start prediction tasks. Note: scales differ for each plot and NRMSE values above 3
have been set to 3 for visualization purposes.
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On the final test set, BaTFLED models perform similarly to other methods on the

warm-start task, slightly worse on cold-start cell line prediction and better than elastic

net models on cold-start drug and cell line/drug prediction (Tables 4.21, 4.22 and figures

4.44 and 4.45). As with the cross-validation results, mean prediction performs better

than other methods at all cold-start tasks. Using features selected by the cross-validation

runs for BaTFLED models gives worse performance at all tasks, indicating that, for this

large dataset, many features are useful. In figures 4.46, 4.47 and 4.48 we show head-to-

head comparisons between mean prediction, elastic net models and BaTFLED models for

individual cell lines, drugs and cell line/drug combinations. In particular, the comparison

between BaTFLED CP and ridge regression shows that the CP model performs better for

55.4% of cell lines, 68.6% of drugs and 62.0% of cell line/drug combinations.

Table 4.21: Normalized root mean squared error NRMSE on the final CTD2 test data.
Mean five replicates with different random starts (sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.59(0.00) 0.59(0.00) 0.60(0.00) 0.81(0.00) 0.84(0.00)
LASSO a=1 0.55(0.00) 0.55(0.00) 0.62(0.00) 1.19(0.00) 1.23(0.00)
E. net a=0.9 0.55(0.00) 0.55(0.00) 0.62(0.00) 1.19(0.00) 1.23(0.00)
E. net a=0.5 0.55(0.00) 0.55(0.00) 0.62(0.00) 1.18(0.00) 1.22(0.00)
Ridge a=0 0.58(0.00) 0.58(0.00) 0.63(0.00) 1.00(0.00) 1.04(0.00)
CP 0.54(0.01) 0.55(0.00) 0.62(0.00) 0.90(0.01) 0.93(0.01)
Tucker 0.60(0.01) 0.60(0.01) 0.66(0.01) 0.90(0.06) 0.96(0.05)
CP selected 0.57(0.00) 0.57(0.00) 0.80(0.00) 1.11(0.00) 1.53(0.02)
Tucker selected 0.57(0.01) 0.57(0.01) 0.75(0.01) 1.58(0.04) 1.88(0.05)
*Training results on warm-start task.
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Table 4.22: Pearson correlation on the final CTD2 test data. Mean five replicates with
different random starts (sd).

Training* Warm Cell lines Drugs Cell
lines &
drugs

Mean 0.81(0.00) 0.81(0.00) 0.80(0.00) 0.59(0.00) 0.55(0.00)
LASSO a=1 0.84(0.00) 0.83(0.00) 0.79(0.00) 0.38(0.00) 0.34(0.00)
E. net a=0.9 0.84(0.00) 0.83(0.00) 0.79(0.00) 0.38(0.00) 0.34(0.00)
E. net a=0.5 0.84(0.00) 0.83(0.00) 0.79(0.00) 0.38(0.00) 0.35(0.00)
Ridge a=0 0.82(0.00) 0.82(0.00) 0.78(0.00) 0.45(0.00) 0.41(0.00)
CP 0.84(0.00) 0.84(0.00) 0.78(0.00) 0.54(0.00) 0.50(0.00)
Tucker 0.80(0.01) 0.80(0.01) 0.75(0.01) 0.54(0.04) 0.49(0.02)
CP selected 0.82(0.00) 0.82(0.00) 0.66(0.00) 0.48(0.00) 0.33(0.00)
Tucker selected 0.82(0.00) 0.82(0.00) 0.70(0.00) 0.34(0.01) 0.27(0.01)
*Training results on warm-start task.
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Figure 4.44: Performance measures for final test runs on CTD2 data (average across 5
replicates with different random starts). Normalized root mean squared error, Pearson
correlation and Spearman correlation for training data and four prediction tasks are shown.
Note scales differ for each response measure and NRMSE values above 1.5 have been set
to 1.5 for visualization purposes.
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Figure 4.45: Performance measures for final test runs on CTD2 data from one randomly
selected replicate. Points and boxplots show the normalized root mean squared error
(NRMSE), Pearson correlation and Spearman correlation for individual cell lines, drugs
and cell line/drug combinations for cold start prediction tasks. Note: scales differ for each
plot and NRMSE values above 3 have been set to 3 for visualization purposes.
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Pearson correlation performance on cold−test cell lines

Figure 4.46: Comparison between mean prediction and other methods on the cold-start
cell line task for the final CTD2 test data. Each point represents one cell line with x and y
coordinates showing the Pearson correlation with the true responses for the two different
methods. Red points are predicted better by the method on the y-axis and the percentage
of cell lines on either side of the diagonal are annotated.
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Pearson correlation performance on cold−test drugs

Figure 4.47: Comparison between mean prediction and other methods on the cold-start
drug task for the final CTD2 test data. Each point represents one cell line with x and y
coordinates showing the Pearson correlation with the true responses for the two different
methods. Red points are predicted better by the method on the y-axis and the percentage
of cell lines on either side of the diagonal are annotated.
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Figure 4.48: Comparison between mean prediction and other methods on the cold-start
cell line/drug combination task for the final CTD2 test data. Each point represents one
cell line with x and y coordinates showing the Pearson correlation with the true responses
for the two different methods. Red points are predicted better by the method on the y-axis
and the percentage of cell lines on either side of the diagonal are annotated. Note: mean
predictions are across cell lines as these performed better than taking the mean across
drugs.
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4.5.6 Selected features

For the CTD2 data, we examine which features were selected by LASSO, elastic net with

α = 0.5, ridge regression, BaTFLED CP and BaTFLED Tucker models. We consider

the features selected during cold-start prediction runs for each task, i.e. we look at the

cell line features for runs trained with all drugs predicting for the final test cell lines.

Table 4.23 shows counts of the total number of features in the top 15% of features in at

least one replicate run. Elastic net models are very consistent regardless of the random

initialization, so the features tend to be the same across replicate runs and the total

percentages are around 15%. With the run parameters used here, BaTFLED models are

much more sensitive to the initialization and hence have a greater proportion of features

selected across runs. The number and percentage of each type of feature selected by each

method are shown in figures 4.49 and 4.50. For both the cell line and drug data, all methods

choose about equally from the different data types. Figure 4.51 shows which features were

chosen by each method and the consistency among elastic net methods is apparent.

We find that 70 cell line features and 44 drug features were selected by all methods. For

cell lines, this set includes 4 annotation features (indicators for growth media RPMI003,

malignant melanoma, oesophagus and upper aerodigestive tract), 18 copy number features,

33 expression features and 15 mutation features. The selection of the growth media indi-

cator, which was used for 49 cell lines, suggests that using this media may have an effect

of drug response. For drugs, we find 2 target features (ALK and PLK1), 10 fingerprint

features and 32 PaDEL features 13 of which combine correlated features.

We also looked at which features were selected in the top 15% by all replicate BaTFLED

CP and Tucker runs. For the cell line prediction task, all CP runs chose 5 features including

an indicator of the RPMI001 media (408 cell lines) one copy number feature (for gene

RNF43) and three gene expression features (BCL11A, IKZF1 and P2RY8). In the Tucker

run, no cell line features other than the constant term were selected by all replicates.

Looking at the drug features, the CP runs consistently chose 31 features and the Tucker

runs only 2. The 31 features chosen by CP runs include 5 gene targets (CDK2, MAP2K1,

MAP2K2, PLK1 and SRC), 4 fingerprint indicators and 22 PaDEL descriptors. The
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Tucker runs only consistently choose two PaDEL descriptors (C1SP2: "doubly bound

carbon bound to one other carbon" and a combination feature of 16 correlated features).

Table 4.23: Number of features selected in the union of the top 15% across replicates for
CTD2 data (percentage).

LASSO Neural net Random forest CP Tucker

Cell lines 224 (15.4) 223 (15.3) 219 (15.0) 722 (49.6) 783 (53.8)
Drugs 126 (15.2) 129 (15.5) 125 (15.0) 306 (36.8) 421 (50.7)
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Figure 4.49: Top row: Number of cell line features selected by different methods for the
CTD2 data. Bar height shows the total number of features of the given type, red portion
shows the number of these features in the union of the top 15% of features across replicates.
Bottom row: Proportion of total features from each category that are chosen.
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LASSO a=1 E. net a=0.5 Ridge a=0 CP Tucker

C
ounts

P
roportion

Ta
rg

et
s

Fing
er

pr
int

s

PaD
EL

Ta
rg

et
s

Fing
er

pr
int

s

PaD
EL

Ta
rg

et
s

Fing
er

pr
int

s

PaD
EL

Ta
rg

et
s

Fing
er

pr
int

s

PaD
EL

Ta
rg

et
s

Fing
er

pr
int

s

PaD
EL

0

200

400

600

0.00

0.25

0.50

0.75

1.00

Selected

Not selected

Drug features for CTD2 data

Figure 4.50: Top row: Number of drug features selected by different methods for the CTD2

data. Bar height shows the total number of features of the given type, blue portion shows
the number of these features in the union of the top 15% of features across replicates.
Bottom row: Proportion of total features from each category that are chosen
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Figure 4.51: Features selected by different methods for the CTD2 data. Each row is a
feature, features selected in the top 15% of features for any replicate are colored red. Note
that different methods tend to choose different features and that there are more features
chosen by BaTFLED methods due to a greater variance across runs.
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4.6 Themes across datasets

In this section, we discuss the results between the different datasets and elucidate trends

and differences between them. While each dataset is processed differently and contains

different cell lines and drugs, some patterns can be seen which may be informative both of

the datasets and the algorithms tested.

While the models that were tested were fairly consistent, the three datasets were nor-

malized differently and different features were used. For the DREAM data, we trained for

all of the testing scenarios simultaneously during cross-validation and only performed final

cold-start testing for cell lines while for the Heiser and CTD2 datasets, we split test sets

separately for each task and had final test sets for each task. The DREAM data responses

were normalized according to the formula 4.3 from Costello et al. [24], the Heiser re-

sponses were normalized to account for growth rate according to equation 1.1 from Hafner

et al. [22] and for the CTD2 data we downloaded normalized responses according to [114].

For the DREAM dataset we used subtype, expression and mutation cell line features, for

the Heiser data we used only subtype and expression features and for the CTD2 data we

used annotations, copy number, expression and mutation data. For all datasets we used

target/class indicators, PubChem fingerprints and PaDEL descriptors for the drug data,

but there were differences in which targets were annotated, which features were removed

or combined do to information content and correlation structure. Additionally, we tested

using kernel functions on the Heiser data which allowed us to include cell line features

describing copy number, methylation and protein abundance. Also for the Heiser dataset,

we tested predicting GR50 both directly and calculated from predicted curves. Table 4.24

recaps the size of each of the datasets and what features were used.

Pulling together results across these datasets, some general trends are visible (table

4.25). BaTFLED models are among the top performers for all datasets at warm-start pre-

diction. For the cold-start cell line task, BaTFLED models perform well for DREAM and

Heiser datasets. For cold-start drug and cell line/drug combination prediction, BaTFLED

models do well on the Heiser data when using kernelized features and better than any

method that uses the features directly. Our methods are also among the best performers
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Table 4.24: Summary of data sets
Responses Test C.L. Test Dr. C.L. features C.L. types Dr. features Dr. types

DREAM 52×26× 9 17 0 733 annot. (6) 433 class (6)
expression (177) fingerprint (139)
mutation (550) PaDEL (285)

Heiser 48×102× 9 12 26 589 annot. (6) 726 annot. (27)
expression (583) fingerprint (271)

PaDEL (428)

Heiser 51×102× 9 13 26 38 annot. (6) 76 annot. (27)
(kernelized) expression (583) fingerprint (271)

copy num. (381) PaDEL (428)
RPPA (33)

methylation (1,110)

CTD2 783×493× 16 156 98 1,456 anno. (52) 831 anno. (77)
expression (542) fingerprint (161)
mutation (387) PaDEL (593)
copy num. (475)

for the CTD2 data on these tasks, but do not perform as well as simple mean predic-

tion. Looking at the Pearson correlation values we see that these fall in a similar range

(0.95−0.99) for the training data with the exception of the CTD2 dataset. This dataset is

much larger and heterogeneous (pan-cancer), so it may be less prone to over fitting. The

warm start correlation values are also fairly consistent ranging from 0.84 to 0.89 across all

datasets. Larger differences are apparent on the cold-test tasks where, for cell lines, the

methods we tested seem to have a harder time predicting the DREAM responses. This

may be due to the treatment of the cell line features (we set some missing data to zero

for these features) or because the normalization did not take into account the growth rate

and there were not many training cell lines to learn from. On cold start drug tasks, the

CTD2 data has lower correlations than the Heiser data, perhaps due to a greater diversity

of drugs or a feature set with more PaDEL descriptors and target/class annotations. The

results for cold-start cell line/drug combination prediction are similar to those for drug

prediction and only slightly worse, which is perhaps surprising considering that we are

now predicting based entirely on the feature data of both the cell lines and drugs.

Finally, we consider the run time of each of these algorithms when run in parallel

on 5 2.7GHz Intel R©Xeon R©processors. The elastic net algorithms are the fastest, taking

around 12 minutes on the smaller DREAM and Heiser datasets and about 20 − 22 hours

on the CTD2 data. Ridge regression runs are significantly quicker than the other elastic
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Table 4.25: Summary of best performing algorithms on final test data (Pearson correla-
tion).

Train Warm Test C.L. Test Dr. Test C.L/Dr.

1st CP re (0.99) CP (0.88) CP (0.62)
DREAM 2nd NN 3L (0.97) NN 3L. (0.84) CP re (0.62)

3rd Tucker (0.96) CP re (0.83) Tucker (0.61)

1st NN 2L. (0.98) RF 1000x10 (0.89) Tucker sel. (0.88) RF 1000x10 (0.66) RF 1000x10 (0.64)
Heiser 2nd NN 3L. (0.98) Tucker sel. (0.89) Mean (0.88) Mean (0.65) RF 1000x5 (0.64)

3rd NN 1L. (0.95) Tucker (0.88) Tucker (0.88) RF 1000x5 (0.65) NN 2L (0.64)

1st NN 1L (0.97) RF 1000x10 (0.88) Mean (0.88) CP (0.71) CP (0.70)
Heiser 2nd NN 2L (0.96) CL Mean (0.88) LASSO (0.87) Ridge (0.70) Ridge (0.69)
(kernels) 3rd NN 3L (0.95) LASSO (0.88) E.net a=.9 (0.87) Tucker (0.69) Tucker (0.68)

1st CP (0.84) CP (0.84) Mean (0.80) Mean (0.59) Mean (0.55)
CTD2

∗ 2nd LASSO (0.84) LASSO (0.84) LASSO (0.79) Tucker (0.54) CP (0.50)
3rd E.net a=.9 (0.84) E.net a=.9 (0.84) E.net a=.5 (0.79) CP (0.54) Tucker (0.49)

re: second round training, sel: features selected during cross-validation rounds.
* Neural net and random forest models were not run on the CTD2 data.

net models, taking about half of that time. Run time for random forest models depends on

the number of trees and their depth. Smaller models (5, 000 trees at depth 5) take around

15 minutes for the Heiser data, while larger models (1, 000 trees at depth 10) take about

2.5 hours on the Heiser data. Run time for neural net models also varies with their size.

On the Heiser data, the one layer neural net models take about 35 − 40 hours, two layer

nets about 80 hours and three layer nets about 48 hours. For BaTFLED, with the current

implementation, CP models can only be run in serial. On Heiser data with the parameters

tested here, they take around 7 hours and on the CTD2 data take about 6 days. Some of

the updates in the Tucker models can be run in parallel and so can be faster given that

the resources are available. Using 5 cores, Heiser models take around 15 hours and CTD2

models take around 4.5 days.



Chapter 5

BaTFLED performance on

micro-environment microarray data

In this chapter we show results for BaTFLED and comparison methods when predicting

the cell line growth in different environmental settings. There is strong evidence that the

specific cellular milieu in which a tumor develops has a large impact on how these cells

behave and this may help inform treatment in patients. A recently developed technology

dubbed ’micro-environment microarrays’ (MEMA) provides one avenue for interrogating

these relationships [116]. Figure 5.1 shows an overview of this technology. Arrays are

printed with spots containing combinations of extra-cellular matrix proteins and ligands,

cells are added, grown and imaged at high resolution using different staining sets. For this

analysis, we look at cell counts extracted from these images.

5.1 Response data

The current MEMA dataset contains response data for four cell lines, 47 ligands and

41 extra-cellular matrix proteins (ECMPs). Response data were downloaded from the

hosting platform Synapse (www.synapse.org projects: syn9838910 and syn9838911). We

focused on log2 counts of cell nuclei segmented using CellProfiler [117], summarized across

replicates and normalized using a reduction of unwanted variance (RUV) and LOESS

smoothing approach (level 4 data). We used cell counts for each of three staining sets with

response data for ligands and ECMPs measured in at least 3/4 cell lines (47 ligands and

41 ECMPs). In the sections below, we remove 2 ligands and 3 ECMPs because we were

172
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Figure 5.1: An overview and examples of MEMA production and usage. A Protein
libraries are printed into well plates upon which cells are cultured. Ligands are then
added to each well and cells are allowed to grow for 48-72h. B Examples of low reso-
lution scans, phase contrast, and a single high content image from a MEMA. Cells are
stained with DAPI, cell mask and EdU for assessment of proliferation in the example.
http://www.ohsu.edu/xd/education/schools/school-of-medicine/departments/
basic-science-departments/biomedical-engineering/bme-labs/korkola-lab/
research/microenvironment-and-cancer.cfm

unable to obtain features for them so the final response dataset is 4× 45× 38. Normalized

log2 cell counts for one of the three staining sets are shown in figures 5.2, 5.3 and 5.4.

As this technology is still somewhat in the development phase, one of the cell lines

(MCF10A) was grown with a higher density of cells than the other two cell lines. To make

values comparable between cell lines, we simplified the responses to discrete growth levels

using the following steps. First, we z-scaled responses for each cell line and staining set

and quantized responses into three three types of growth. We set the top and bottom

10% of responses to −1 and 1 respectively and the center 80% to zero for each cell line

and staining set. We then took the mean across the three staining sets so the response

values have the discrete values (±1, 2/3, 1/2, 1/3 or 0). Figure 5.5 shows heatmaps of the

resulting values.
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Figure 5.2: Heatmap showing the log2 cell count response values from each cell line after
RUV-Loess normalization before scaling and discritization for the first staining set. Each
row is a ligand and each column an extra cellular matrix protein. Red is high (with a
maximum value of 9.5) and blue low (minimum value of −2.1).



175

Figure 5.3: Boxplots of the log2 cell count response values from each cell line after RUV-
Loess normalization before scaling and discritization for the first staining set. Separate
boxes are shown for each ligand ranging across extra-cellular matrix proteins.

Figure 5.4: Boxplots of the log2 cell count response values from each cell line after RUV-
Loess normalization before scaling and discritization for the first staining set. Separate
boxes are shown for each extra-cellular matrix protein ranging across the different ligands.
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Figure 5.5: Heatmap showing the discritized log2 cell count response values from each cell
line. Each row is a ligand and each column an extra cellular matrix protein. Red is high
(with a maximum value of 1) and blue low (minimum value of −1)
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5.2 Input feature data

We used gene expression data from the L1000 platform [118] as input features for the cell

lines. Level 3 summary data were downloaded from the gene expression omnibus (GEO

accession number GSE70138 from LINCs study LDG-1227). We obtained expression values

for 821 genes from two breast cancer lines (MCF10A and MCF7) one prostate cancer line

(PC3) and one pancreatic cancer line (YAPC). These values were then z-scaled across cell

lines and converted to a 4× 4 similarity kernel matrix using a Gaussian kernel with width

equal to the mean Eucledian distance between cell lines (figure 5.6).

Figure 5.6: Heatmap of L1000 gene expression data and kernel feature matrix for the cell
line data. Hotter colors represent higher values (higher expression or more similar cell
lines). Dendrograms produced using heirachical clustering.

For ligand features, we used a gene-gene interaction network from InnateDB [119]

downloaded with Cytoscape [120]. The idea here is that ligands with similar interactions

in the network may have similar effects on cellular growth, so information in the network

may be used to predict the growth of cells for new ligands. To this end, we coded the the

network as a binary adjacency matrix A with rows and columns for each of 849 genes that

were connected to one or more of the ligand genes. A one in this symmetric matrix means

the genes corresponding to that row and column have an edge in the network. We then

multiplied this matrix by itself to obtain power matrices A2, A3, ..., A6 and binarized the
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results. The matrix An encodes whether two genes are connected by a path of with n edges.

We combined these matrices by taking their weighted sum with weights corresponding to

the geometric series 1, 1/2, 1/4, 1/8, 1/16, 1/32. This way, two genes that are adjacent

have the strongest weights, but information is preserved on which genes are connected

out to paths of length 6. We then restricted the rows to only those ligands in used in

the MEMA studies and two ligands without any interactions in the network were removed

(WNT10A and PDGFAB). Figure 5.7 shows this 45×849 matrix after applying heirachical

clustering to the rows and columns. Finally we again transformed this matrix to a kernel

matrix using a Gaussian kernel with width equal to the mean Euclidean distance between

ligands.

Figure 5.7: InnateDB network, feature matrix and kernel matrix for the ligand data.
Center plot has rows for each of the 45 ligands used in the MEMA study and columns for
all 849 genes connected to ligands in the network. Right plot has rows and columns for
the 45 ligands. Hotter colors represent higher values (stronger connections between genes
or more similarly connected ligands). Dendrograms produced using heirachical clustering.

We treated the extra-cellular matrix proteins (ECMPs) in the same way as the ligands,

except that we started with a gene interaction network from the Agile Protein Interactions

Dataserver APID [121] as this had information for more of the ECMPs. Three ECMPs

(CDH20, COL1 and OMD) were not included in the network and were removed from the

study. Figure ?? shows the feature matrix before applying the Gaussian kernel.
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Figure 5.8: APID network, feature matrix and kernel matrix for the ECMP data. Center
plot has rows for each of the 38 ECMPs used in the MEMA study and columns for all
1, 593 genes connected to ECMPs in the network. Right plot has rows and columns for the
38 ligands. Hotter colors represent higher values (stronger connections between genes or
more similarly connected ECMPs). Dendrograms produced using heirachical clustering.
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5.3 Results

For this dataset we compared to the same methods as with other datasets (elastic net,

random forests and neural networks) with the exception that we only ran ridge regression

from the elastic net family. Since we used kernel matrices as input features, feature selection

was unlikely to improve performance. We used the same parameters as with the Heiser

data with the exception that we did not encourage sparsity in the BaTFLED models, CP

models had a latent dimension of 100 and Tucker models have a core of 4×10×10. When

running comparison methods with the dose-response datasets, we ran separate models to

predict at each dose, but in this case we concatenate features from all three modes and

run a single model to make predictions.

We did not do any parameter tuning for this task and we present results for cross-

validation runs leaving out about 20% of responses for each mode in each fold (1 of 4 cell

lines, 9 of 45 ligands and 8 of 38 ECMPs). For combined predictions tasks (e.g. predicting

for a left-out cell line and left-out ligand simultaneously) we ran models for all possible

combinations of CV-folds. This means we ran 4 folds for left-out cell lines, 5 folds for

left-out ligands and ECMPs, 20 folds for left-out cell line/ligand and cell line/ECMPs,

25 folds for left-out ligand/ECMPs and 100 folds for left-out cell line/ligand/ECMP runs.

Kernel features for test cell lines were removed from the input matrices for each CV fold.

The results shown in tables 5.1 and 5.2 and figure 5.9 indicate that the BaTFLED

Tucker model has an advantage over other models when predicting warm-start responses

and cold-start cell line responses. BaTFLED performs about as well as other methods

at the other tasks and none of these outperform mean prediction. This indicates that

the network-based features used for ligands and ECMPs were not very informative of

cell growth. Also BaTFLED models have some positive correlation for the harder tasks

where most random forest and neural net models do not. Additionally, for this dataset

we differentiate the performance of mean prediction on training and warm data depending

on whether we predict the mean response across cell lines, ligands or ECMPs. In the

dose-response data, the best performing mean was always the mean of the training cell

lines, but for this data, the mean across ligands performs best on the warm start data in
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terms of RMSE and Pearson correlation. For the cold-start tasks, the choice of mean is

determined by the task and we use the most informative mean possible for each task.

Table 5.1: Mean normalized RMSE on MEMA dataset cross-validation runs (sd).
Training Warm Cell lines Ligands ECMPs Cell

lines &
Ligands

Cell
lines &
ECMPs

Ligands
&

ECMPs

All

Cl. mean 0.69(0.00) 0.99(0.02) - - - - - - -
Lig. mean 0.79(0.00) 0.80(0.02) - - - - - - -
ECMP mean 0.88(0.00) 0.91(0.01) - - - - - - -
Mean - - 0.96(0.10) 0.81(0.00) 0.90(0.04) 0.93(0.05) 0.99(0.05) 1.02(0.02) 1.03(0.04)
Ridge a=0 0.88(0.00) 0.92(0.01) 0.92(0.03) 0.96(0.04) 0.99(0.07) 0.98(0.05) 1.01(0.08) 1.07(0.07) 1.08(0.10)
N.N. 1L 0.82(0.04) 0.99(0.04) 0.96(0.07) 0.99(0.02) 1.03(0.08) 0.99(0.09) 1.11(0.15) 1.16(0.08) 1.18(0.17)
N.N. 2L 0.76(0.03) 0.90(0.02) 0.90(0.05) 0.95(0.02) 0.95(0.05) 0.97(0.06) 1.01(0.06) 1.07(0.05) 1.08(0.09)
N.N. 3L 0.82(0.02) 0.92(0.03) 0.94(0.07) 0.95(0.02) 1.00(0.08) 0.97(0.06) 1.02(0.07) 1.09(0.06) 1.10(0.11)
R.F. 1000x5 0.80(0.01) 0.85(0.03) 0.90(0.05) 0.90(0.01) 0.97(0.04) 0.95(0.04) 1.01(0.06) 1.05(0.05) 1.07(0.08)
R.F. 5000x5 0.80(0.01) 0.84(0.02) 0.89(0.04) 0.90(0.02) 0.96(0.04) 0.95(0.04) 1.00(0.06) 1.04(0.03) 1.06(0.07)
R.F. 1000x10 0.70(0.00) 0.82(0.02) 0.90(0.06) 0.89(0.01) 0.94(0.06) 0.95(0.04) 1.01(0.07) 1.07(0.04) 1.08(0.07)
CP 0.81(0.00) 0.86(0.02) 0.91(0.03) 0.93(0.04) 0.99(0.07) 0.96(0.05) 1.02(0.08) 1.08(0.06) 1.07(0.09)
Tucker 0.80(0.01) 0.80(0.01) 0.88(0.05) 0.91(0.04) 1.01(0.07) 0.95(0.05) 1.03(0.09) 1.09(0.07) 1.09(0.10)

Table 5.2: Mean Pearson correlation on MEMA dataset cross-validation runs (sd).
Training Warm Cell lines Ligands ECMPs Cell

lines &
Ligands

Cell
lines &
ECMPs

Ligands
&

ECMPs

All

Cl. mean 0.73(0.00) 0.41(0.02) - - - - - - -
Lig. mean 0.62(0.01) 0.60(0.02) - - - - - - -
ECMP mean 0.48(0.00) 0.41(0.02) - - - - - - -
Mean - - 0.43(0.08) 0.60(0.01) 0.46(0.08) 0.43(0.08) 0.27(0.08) -0.09(0.08) NA(NA)
Ridge a=0 0.51(0.01) 0.40(0.01) 0.41(0.07) 0.31(0.09) 0.27(0.14) 0.28(0.11) 0.23(0.15) 0.04(0.13) 0.06(0.19)
N.N. 1L 0.59(0.06) 0.36(0.08) 0.38(0.11) 0.32(0.07) 0.34(0.09) 0.34(0.11) 0.22(0.11) 0.00(0.11) -0.04(0.22)
N.N. 2L 0.65(0.03) 0.45(0.04) 0.46(0.07) 0.38(0.05) 0.37(0.09) 0.36(0.08) 0.23(0.10) 0.05(0.11) 0.07(0.16)
N.N. 3L 0.58(0.04) 0.43(0.04) 0.38(0.14) 0.38(0.03) 0.30(0.09) 0.31(0.10) 0.22(0.14) 0.01(0.11) 0.05(0.15)
R.F. 1000x5 0.61(0.01) 0.53(0.05) 0.45(0.07) 0.46(0.02) 0.30(0.10) 0.38(0.06) 0.21(0.14) -0.01(0.10) -0.01(0.16)
R.F. 5000x5 0.61(0.01) 0.55(0.02) 0.46(0.07) 0.45(0.04) 0.31(0.09) 0.38(0.06) 0.21(0.14) -0.00(0.10) -0.01(0.16)
R.F. 1000x10 0.73(0.00) 0.57(0.03) 0.47(0.08) 0.48(0.03) 0.38(0.10) 0.38(0.07) 0.24(0.12) -0.03(0.10) -0.01(0.14)
CP 0.63(0.01) 0.53(0.03) 0.42(0.07) 0.38(0.08) 0.26(0.12) 0.31(0.10) 0.21(0.15) -0.01(0.11) 0.05(0.19)
Tucker 0.61(0.01) 0.61(0.01) 0.50(0.09) 0.44(0.06) 0.25(0.12) 0.37(0.09) 0.22(0.14) 0.03(0.11) 0.04(0.16)
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Figure 5.9: Performance measures for cross-validation runs on MEMA data (average across
cv runs). Normalized root mean squared error, Pearson correlation and Spearman corre-
lation for training data and four prediction tasks are shown. Note: y-axis differs between
response measures.



Chapter 6

Conclusions and future directions

In this final chapter we review the BaTFLED model developed and tested here, discuss

other possible applications of the method and propose possible improvements and exten-

sions.

In the first chapter we introduced the problem of predicting drug response in cancer cell

lines and discuss tensor factorization methods as a possible avenue to improve these studies.

Previous studies extrapolate summary measures from dose-response curves which are then

used to make connections with the cell line genetics and drug features. We proposed

modeling the responses at each dose and introduce tensor methods as one framework to

accomplish this goal. Tensor factorization techniques have been used in a broad array of

fields including video separation and completion, image de-noising, predicting consumer

preferences and explaining gene expression patterns.

Next we reviewed work utilizing tensor factorization to understand multi-dimensional

datasets. This work was primarily focused on two tasks 1) using a factorization to fill in

missing values in a tensor and 2) finding a factorization for a given tensor where the factor

matrices can be interpreted relative to the problem domain. Two major types of factor-

ization were highlighted, the simpler CANDECOMP/PARAFAC (CP) decomposition and

the more flexible Tucker decomposition. Most previous methods focused on the CP decom-

position as it is easier to compute and often uniquely determined. These decompositions

can be found using direct algorithms when all of the responses are observed, but require

a probabilistic framework when there are missing values and uncertainty. Probabilistic

methods utilizing Bayesian techniques have been employed for similar tasks in a lower

dimensional settings (matrix factorization) and we expand upon these ideas for this work.
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Due to the size and complexity of tensor models, we propose using approximate variational

inference to train the models and explain how this technique is implemented.

With this background established, we move to introducing the BaTFLEDmodel (Bayesian

Tensor Factorization Linked to External Data). This method is the first algorithm to use

tensor factorization in a predictive framework that allows the user to make predictions for

test examples not seen in the training data using features that characterize new examples.

BaTFLED uses a Bayesian framework to decompose a three-dimensional tensor into three

latent matrices and a smaller core tensor (in the case of a Tucker decomposition). The la-

tent matrices are linked to input feature data through projection matrices that weight the

importance of the input features. This model structure is assumed and the values in the

projection matrices, latent matrices and core tensor are learned using variational inference.

Missing response values can be filled in by multiplying the latent matrices together in a

warm-start prediction task. Cold-start prediction for new examples from one, two or three

of the modes are made by multiplying new feature vectors through the projection matrices

and latent matrices. In addition, the values learned within the model can highlight feature

importance and interactions between latent representations of the input data.

In describing the BaTFLED model, full details are provided on the model structure, the

update equations and implementation in the R programming language. All the code for the

algorithm is collected in a freely available package complete with full help documentation

and a vignette showing an example use case on simulated data. Both the CP and Tucker

decomposition are implemented and many options controlling the size of the factorization,

the amount of sparsity and various run parameters are included.

In chapter 3 we examine the performance of BaTFLED on simulated data. Data is

generated according to the structured assumed in the model and we show how BaTFLED

is able to recover true interactions and make accurate predictions in cases where other

methods do not perform well. Specifically, if there are higher order interactions (between

two or more modes) present in the data, then elastic net, neural net and random forest

models are not able to make good predictions or identify the salient features. In addi-

tion, we test the performance of our algorithm in comparison to these methods in several

common settings: missing response data, random noise added to responses, fewer latent
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dimensions than the generating data and insufficient sample power. In each of these cases,

BaTFLED is shown to be very robust with the performance degrading only in extreme

cases.

In chapter 4 we explore the performance of BaTFLED and other methods on three real

drug-response datasets. We first show results for a relatively small dataset of breast cancer

cell lines that was used in an open challenge hosted by the DREAM (Dialogue on Reverse

Engineering Assessment and Methods) effort. We explore both cross-validation and final

test set results demonstrating that, in the task of predicting response at each dose, BaT-

FLED methods have an advantage over other methods both at the warm-start task and at

predicting for cold-start cell lines. We also explore the features selected by each method

and show performance for individual cell lines and drugs. Next we test BaTFLED on a

similar but larger breast cancer dataset that was normalized to account for the growth rate

of the cell lines. Again we see some advantages for the BaTFLED method at warm-start

and cold-start cell line prediction. We also test a non-linear extension of the method using

kernel functions to encode the input feature data. We find that this extension improves

performance for cold-start drug prediction and cold-start cell line/drug combination pre-

diction for BaTFLED models allowing them to outperform competitors. Next we consider

the performance of these algorithms when predicting the GR50 curve summary measures

extracted from the predictions at each dose. Here we find that BaTFLED outperforms

other methods in the cold-start cell line prediction task and performs comparably to other

methods at other tasks. Moreover we see that there is an advantage for all methods in

predicting responses at each dose and then calculating GR50 values rather than predicting

the GR50 values directly. Finally we test BaTFLED and elastic net methods on the largest

dataset of this type that has been generated to date from the Cancer Target Discovery

and Development (CTD2) effort. Here we find that the BaTFLED CP method has the

best performance at the warm-start task and although no method is able to outperform a

simple baseline at the cold-start prediction tasks, BaTFLED methods outperform elastic

net algorithms.

Finally, chapter 5 shows results for BaTFLED, ridge regression, random forest and

neural network algorithms on a new task, predicting growth response for cell lines in
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varying micro-environments. This dataset measures cell counts for different cell lines grown

in the presence of combinations of protein ligands and extra-cellular matrix proteins. For

this task predictions are made for the warm-start task and for each of the three modes

and combinations thereof using kernelized feature data for each of the three modes. This

demonstrates the versatility and power of the method, showing superior performance for

warm-start and cold-start cell line tasks.

6.1 Algorithmic improvements and extensions

Although the performance of the BaTFLED algorithm presented above is often better than

baseline methods, there are still many areas in which algorithmic advances could improve

its usefulness. We summarize a few ideas that we’ve had for improvements and extensions

below, beginning with the more concrete ideas to improve the current model and moving

toward larger ideas for research that build on this work. This is far from a complete list,

but it demonstrates that the ideas presented here are more of a jumping off point for a

large possible area of research.

Firstly, the algorithm is currently implemented in the statistical language R and most

operations are done in series. Implementing the full package or some sub-routines in a

lower-level language would likely improve run time performance. Also, using a graphical

processing unit (GPU) for the operations that can be done in parallel would likely give a

large boost in speed although this would primarily apply only to Tucker decompositions.

Secondly, the optimal number of iterations for training is often unclear and depends on

the size of the data and the initialization of the variables. We explored several stopping

criteria based on monitoring the lower bound or the training error, but we did not find

a method that consistently avoided over-fitting and so we opted to run models for a set

number of iterations. We did monitor the performance on test data at each iteration

during cross-validation rounds to see which iteration produced the lowest error and this

varied widely with different initialization, data and tasks. With further research on varied

datasets, it may be possible to devise a stopping criterion that would be more optimal and

this would likely improve predictive performance.
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Third, depending on the data and task, the relative magnitude of values in the latent

matrices may vary and this may cause some issues in balancing the tensor decomposition.

For both the CP and Tucker methods, the latent matrices could be scaled relative to each

other while still maintaining the same response values. Although this didn’t seem to be

a large problem in practice, our data were of similar sizes and we always used the same

sparsity criteria for all modes. If this were not the case, the balance between modes may

become a larger issue. One possibility to address this would be to add a step during the

update process that re-scales these values.

Fourth, depending on the problem, it may be advantageous to use different prior struc-

tures when selecting features or interactions in the core tensor. Currently the user can only

specify α and β values to be used for all features in a given mode. We briefly experimented

with customizing these priors based on gene pathways or drug features that are known to

work together. For example, if we wanted to encourage the first latent factor (column) in

the projection matrix for cell line data to capture a specific gene pathway activation, we

would encourage sparsity strongly (α = 10−10, β = 1010) for genes outside of that pathway

(in that column) and not encourage sparsity (α = 1, β = 1) for genes in the pathway.

Similarly for the priors on the core tensor, we could encourage sparsity less strongly for

interactions that we wanted to favor. We experimented with this also, encouraging the

core to prioritize lower-order interactions (between 1 or 2 modes), but did not notice an

improvement in performance.

Fifth, it may be advantageous to combine various BaTFLED models or BaTFLED

models with other models using ensemble methods. From the boxplots in figures 4.8 4.29

and 4.45 and the accompanying head-to-head scatter plots, we see that that different

models have advantages for specific cell lines or drugs. By combining different models in

an ensemble, for example, by averaging the predictions from several runs, performance may

be improved. Since BaTFLED models seem to vary based on the random initialization

and there are many different parameters to tune when running (CP vs Tucker, different

sparsity, core sizes, etc.) these methods may be particularly amenable to using ensemble

methods. Also, from the results on the Heiser dataset, there is an advantage to using

kernelized features for some tasks and runs using kernels with different widths and weights
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could also be combined.

Sixth, since we have seen that using kernelized features can give an advantage, but

since it is not obvious what kernel widths and weights would be best for any given dataset,

a model that could learn these parameters during training would likely perform better.

The probabilistic framework in the BaTFLED model could be extended to include such

parameters which would be updated in the same way as the current model values.

Seventh, different distributions on the projection matrices may capture the latent fac-

tors better in some situations. We use the automatic relevance determination (ARD) prior

for these values, and we explored using spike-and-slab priors and Laplace priors to encour-

age sparsity more strongly. We found that these more complex models were harder to train

and didn’t show much stronger sparsity, but they may be useful in other situations. For

gene expression data, the three parameter beta prior presented by Gao et al. [122] and

other similar factor models may be more useful.

Eighth, when testing BaTFLED models we tried using different number of latent factors

for CP models and different size cores for Tucker models, it was unclear whether there was

an optimal sized model to use. Rather than running separate models for each size, the

Bayesian framework could be expanded to automatically determine the number of latent

factors to use. Several publications have use this type of technique with matrix and tensor

factorizations ([102], [103]), but they have not, to our knowledge, been applied to tensor

factorization in a predictive setting yet.

Ninth, the projection framework the the current model only allows for linear transfor-

mations of the input data. While kernel methods can provide non-linearity, another option

would be to replace the projection part of the model with a structure like a neural network.

Here the input data would be passed through several layers of projection and non-linear

transformations applied at each layer. This could allow for more flexibility in fitting data

and may provide better predictions.

Tenth, an obvious extension to the model presented here is to expand the number of

dimensions in the tensor. One could imagine that this would be useful when looking at

drug combination data with more than two drugs, modeling cellular environments or when

trying to combine data from different studies. In the latter case, we imagine combining
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data from the three studies analyzed here into one four dimensional model. The fourth

mode would have responses for the same cell line and drug in different studies and features

could encode differences in how the experiments were run and processed. This could help to

explain differences between studies and identify the influence of different processing steps.

In order to expand BaTFLED to higher dimensional settings, it would be preferable to

avoid deriving the update equations directly. There have been some recent advancements

in this area including the ‘black-box‘ variational inference developed by Ranganath et al.

[123]

6.2 Other application directions

The BaTFLED algorithm was developed as a general use method and may be applied in any

setting were responses are measured on combinations of different input data. Beginning

with the case of drug responses in cancer cell lines, this method could be applied to

make predictions for combination therapies. In this case, the responses would be some

curve summary measure like GI50, the first mode would correspond to cell lines and the

other two modes would correspond to two different drugs being applied in combination.

Similarly, aspects of the cell line micro-environment could be used in combination with drug

treatments. With extensions to larger dimensional settings, models similar to BaTFLED

could be used to explore and predict responses of cell lines to drug combinations at various

doses, in different microenvironments and across different studies simultaneously.

Other possible areas where BaTFLED models may be useful include predicting protein

or compound binding affinities to different substrates at different concentrations, modeling

the spread of infectious diseases over space and time, modeling animal and plant distribu-

tions while accounting for genetic variations or even predicting stock movements in varying

conditions over time. We are currently exploring some of these ideas and hope to expand

the reach of these methods to many disparate fields.

Finally we hope that models of this type will ultimately be useful in predicting drug

response in patients. Although we cannot test the same patient with different drugs in

different conditions, we could imagine a sparse tensor capturing the responses for a large
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number of patients or groups of patients with varying environmental factors and genetics,

but similar diseases and treatments. This could be used to recommend treatment for new

cases, to predict progression and to identify important factors contributing to disease.

6.3 Conclusion

In this work we have developed a new machine learning algorithm ‘BaTFLED’ which

predicts responses in a three-dimensional tensor given feature data for one or more of

the dimensions. This model uses a probabilistic Bayesian framework and variational ap-

proximation to efficiently learn values in the model and can make predictions for new

samples for one or or more of the modes. We test BaTFLED on simulated data com-

paring to state-of-the-art machine learning techniques and show that it outperforms these

when higher dimensional interactions are present and that it is remarkably robust miss-

ing data, noise and insufficient power. We also test this method on four real datasets.

Three measuring the growth response of cancer cell lines when treated with drugs at dif-

ferent doses and one measuring cell growth in differing micro-environments. We show

that in many cases this method outperforms the other machine learning algorithms. In

addition to performing prediction, the algorithm models interactions between the data

from the three different modes which may be informative of the problem domain. Fi-

nally we discuss many possible improvements, extensions and new applications for this

method. The algorithm is packaged for use by a general audience and freely available

on CRAN (https://cran.r-project.org/web/packages/BaTFLED3D/index.html) and

GitHub (https://github.com/nathanlazar/BaTFLED3D) complete with help documenta-

tion and running instructions. We believe that this work represents a significant advance in

modeling and predicting multi-dimensional data and that it represents a new direction of

research that is likely to play a large role in the future given the explosion in the production

of large multi-dimensional datasets in biology and other fields.
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