
A STUDY OF THE FUNCTIONAL PROGRAMMING LANGUAGE FP

Beverly P. Rollins
B.Mus., Indiana University, 1973
M.Mus ., Indiana University, 1977

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfilhnent of the
requirements for the degree

Master of Sclence
in

Computer Science

August, 1983

The thesis ''A Study of the Funtional Programming Language FP" by

Beverly P. Rollins has been examined and approved by the following

Examination Committee:

- - - -
Richard B. Kieburtz, Thesis R ear& Advisor
Professor,
Dept. of Computer Science and Engineering

Robert G. Babb
Assistant Proiessor,
Dept. of Computer Science and Engineering

David Biaier
Associate Professor,
Dept. of Computer Science and Engineering

James Hein
Associate Professor,
D e p t . o f Computer Science, Portland State University

DEDICATION

I d e d i c a t e t h i s t h e s i s t o my husband Gene, my b e s t f r i e n d

and t e a c h e r ,

ACKNOWLEDGEMENTS

I would l i k e t o thank my a d v i s o r , Dr. Richard Kiebur tz , for

h i s p a t i e n c e , guidance, and enthusiasm. I would a l s o l i k e t o

thank Jon S h u l t i s f o r in t roduc ing me t o f u n c t i o n a l programming,

and John Giv le r f o r always being a v a i l a b l e t o answer my

q u e s t i o n s .
Thank you, a l s o , f e l l o w s t u d e n t s , f o r s h a r i n g i d e a s , and

thanks t o t h e s t a f f a t t h e Oregon Graduate Center f o r providing a

good environment f o r u s t o work in . S p e c i a l thanks go t o Car la

Rathbun and Bruce J e r r i c k , who do a wonderful job o f managing o u r

department and computer 'system.

P would l i k e t o thank most o f a l l my p a r e n t s f o r t h e i r

guppor t when I most needed it, and f o r t h e i r encouragement f o r me

t o always do my b e s t .

iii

TABLE OF CONTENTS

OF TABLES .. vii

... . 2 DESCRIPTION OF FP 6

2.1 The Difference between Functionals. Functions. and Objects

.. 7

... 2.2 The Domains of FP 9

3 . THE I m m T E R .. 12

4 . THE INTEFWREiTER-LEXEL SOURCE LANGUAGE 15

4.1 Abstract Syntax Trees .. 15

4.2 Abstract Grammar .. 15

.. 5 . LAZY EVALUATION

... 5.1 Lazy Interpretation of FP

5.1.1 Paradigm ...

... 5.1.2 Suspensions

5.1.3 Value Sharing and the FP Application Data Structure

5.2 Correctness of Transformations ..

... 5.3 Process Networks

5.4 Lazy Evaluation vs . Strict Evaluation

... 5.4.1 Matrix Multiply

... 5.4.2 A Straight-Selection Sort

5.5 Lazy FP vs . Lazy LISP .. 43

5.5.1 The Applicative Apndl Suspension .. 44

.. 5.5.2 The Transformations 45

5.5.3 An Example .. 46

6 . AFP AND YFP. EXIXNSIONS OF FP .. 47

6.1 Apply .. 49

6.1.1 The Apply Function and the Algebra of Programs 50

6.1.2 The Power of Apply ... 51

... 6.1.3 Is apply a Functional? 57

6.2 The Least Fixpoint Functional ... 58

6.2.1 Domainstructure ... 61

6.2.2 Y and the Algebra of Programs ... 62

6.3 A Comparison of AFP and the Lambda Calculus 62

7 . CONCLUSION ... 66

APPENDICES .. 70

APPENDIX A Formal Definition of the Interpreter 70

APPENDlX B Semantic Definition of FP 80

APPENDIX C Correctness of Transformations 85

APPENDIX D Proofs that the important laws of the Alge-

bra of FP programs still hold when a p l y

.................................... andYareaddedtoFP 94

APPENDIX E Proof that 7 preserves the meaning of its

domain .. 98

APPENDIX F The Syntax of FP ... 104

APPENDIX G Abstract Syntax Grammar for FP 108

BIOGRAPHICAL NOTE .. 110

OF TABUS

TABW Page

5.1 Data Flow Primitives

5.2 Data Flow Modelling of FP Programs

5.3 Running times of Matrix Multiply (MIM) with strict 38

and lazy evaluation

5.4 Running times of Modified Matrix Multiply 39

(newMM) with strict and lazy evaluation

5.5 Running tirnes of Straight-Selection Sort using 4 1

system-defined d i s f l , with strict and lazy evalua-

tion

5.6 Running times of Modified Straight-Selection

Sort using user-defined n e w d i s f l , with strict and

lazy evaluation

vii

LIST OF FIGURES

FIGURE

3.1 The Interpreter

4.1 AST representation of add: < 1,2>

4.2 AST representation of add0 [i,2]:'a1

Page

14

18

18

A STUDY OF THE FUNCTIONAL PROGRAMMING LANGUAGE FP

Beverly P. Rollins, M.S.

Oregon Graduate Center, 1983

Supervising Professor: Richard B.Keburtz

FP has been proposed as an alternative to Von Neurnann and applica-

tive languages, in which word-at-a-time thinking, and abstraction on vari-

ables obscure the problem that the programmer is attempting to solve.

Lazy, or delayed evaluation, allows the evaluator to avoid unneces-

sary evaluation, and allows the programmer to work with infinite objects.

The benefits and detriments of lazy evaluation are discussed.

FP is also extended with a fixpoint functional and an apply function,

and the affects of these additions to the language are discussed.

1. INTRODUCTION

John Backus f 1] stated that conventional programming languages

have become "fat and flabby", and that the many new features added to

the languages add little to their power and obscure their semantics. For-

mal descriptions of these languages tend to be too bulky to be

comprehensible, and hence are of little use. Since the languages are

modelled after the von Neumann machine, they encourage the program-

mer to "word-at-a-time" thinking, instead of thinking in large conceptual

units.

Backus' suggested solution to these problems is the concept of a

f inct ional Programming System (FP System). A function-level pro-

gram is a constructive presentation of a mathematical function. One

builds new programs by combining existing programs, using functional

forms such as composition and construction. A program is more easily

understood if it is built from parts that are easily understood. Such a

program is also more easily modified and verified.

Von Neurnann and applicative programming, on the other hand,

involve the programmer in lower-level details that can obscure the prob-

lem. In von Neurnann-style programming one builds programs with

assignments and control flow constructs, that operate on objects closely

resembling the computer's storage cells. In applicative programming

one builds a function by first building an expression that denotes an

object, and then abstracting on one or more variables within that expres-

sion. Both applicative and Von Neumann programming involve more com-

plicated naming systems and substitution rules than does function-level

programming.

Each of the following three examples is a program that takes as

input two integer lists of equal length, and returns a list of integers, each

member of which is the product of the corresponding members of the

input lists. One can see in the Pascal program that the programmer had

to deal with a counter variable and explicit iteration through arrays,

details which have little to do with the basic solution to the problem. The

Lisp example illustrates the kind of recursive program structure typical

of Lisp programs. The FP program exhibits the use of composition to link

two independent programs to create a new program. This method of con-

structing programs allows the programmer to think on' a very high level,

and also allows him to reason about and prove things about his programs.

Backus [1] presents an algebra of programs that allows one to algebrai-

cally manipulate FP programs and prove theorems about them.

m p l e 1.1: A Pascal program that multiplies the members of two lists

type list = array[l..MAX] of integer;
function listrnul(L1,U : list) : list;
var temp : list;

i : integer;
begin
for i := 1 to MAX do

temp[i] := Ll[i] ?& L2[i];
listmd : = temp
end;

Jkample 1.2: A LISP program that multiplies the members of two lists

(def listmul
(lambda (Ll L2)

(cond ((null L1) nil)
(t (cons (times (car L1) (car L2)) (Iistmul (cdr L1) (cdr h2)))))))

Egamp1e 1.3: An FP program that multiplies the members of two lists

def listrnul = amul 0 trans

FP systems are still a t the experimental stage, and much

to be done before they are useful for substantial programming I

The intent of this thesis is to study the FP language first prop

Backus [I] as an example of programming a t the function level

interpreter was implemented with two major changes made

language:

emains

rojects.

)sed by

An FP

to the

1) The interpreter follows a lazy (i.e., delayed) evaluation strategy.

Lazy evaluation allows one to avoid unnecessary evaluation and to

model infinite objects, but an efficiency penalty is paid.

2) The language is extended with a fixpoint operator and an apply

function.

Running times of the lazy interpreter are compared with those of a

strict interpreter, and a rationale for the results is given.

We show that the addition of apply makes FP significantly more

expressive, but that, even with apply added, FP is still not as expressive

as the lambda calculus.

Notation

There is some FP terminology which is used a great deal in exam-

ples, and also in expressions which do not belong to FP:

< ... > - sequence brackets

1 ... 1 - construction brackets (e.g. [f,g]:x = <f:x,g:x>)

O - function composition (e.g. f 0 g:x = f:(g:x))

- application

el + ez ; e3 - if el then e2 else e3 (conditional)

- the empty sequence (<>)

- the function that always returns a

other notation:

J - evaluates to, in one step

% - evaluates to, in one or more steps

The FP functions and functionals that are used in this paper are

defined in Appendix B. A good overview of FP can be found in [I].

The FP that we are studying is actually a member of the set of FP
\

languages, or FP systems. An FP language consists of a set of objects, a

' set of functions, and a fixed set of functionals (or functional forms). Each

version of FP is identifled by the contents of the above domains. We have

chosen to use the FP that Backus describes [I] with several

modifications. Whenever we refer to "FP" we will be referring to our ver-

sion of FP.

FP differs from Backus' system in the following points:

1) Real numbers are not included in the domain of atoms.

2) The empty sequence is not an atom.

3) Evaluation of some functions is lazy, allowing for

infinite objects to have meaning. This means that

"lazy" functions are not bottom-preserving.

The syntax of our FP is the same as Backus', except that the selec-

tors 1,2,. . .,n are 1 & , 2 ~ ~ , . . . ,nth, and literals (i.e., character strings) are sur-

rounded by single quotes. The purpose of these changes is to eliminate

tiny confusion that might exist between function names and literals (f vs.

'f'). These changes in syntax become necessary later on when we make

extensions to FP that allow us to treat functions as objects, requiring that

functions and objects be syntactically distinct. A concrete grammar for

FP is given in Appendix G.

2 1. The Difference between Functionals, Functions, and Objects

There are two algebras in FP: the algebra of objects, whose opera-

tors are functions that take objects to objects, and the algebra of func-

tions whose operators are functional forms that take functions to func-

tions. Unless otherwise specified, "function" will refer to an entity of type

"object -+ object", and "functional" will refer to an entity of type

"(object -B object) -, (object -+ object)", or "function -, function".

An FP program is a function. In order to construct a program one

either gives a primitive FP function, or one builds a new function by

applying a predefined functional to already existing functions. The pro-

grammer is then working in the algebra of functions and functionals. I t is

important to note that

1) The only available functionals are those that are predefined

in FP. There is no way to create new functionals, i.e., a func-

tion can not be construed as a functional.

2) A functional can not stand by itself as an FP program.

In order to obtain the result of executing a program p, one applies

it to an object as follows: p : x , where x is an FP object. The application

operator (:) appears only once in the applicative expression. Functions

can occur only on the left side of the colon, and an expression denoting

an object occurs on the right side. This convention is different from the

lambda calculus where any number of applications can occur within an

applicative expression and in which functions and primitive objects are

not distinguished.

We must note here that in the evaluation sequence

[fl,. . . ,f,]:x * <fl:x, . . . ,fn:x>
.

the application fi: x actually means "the result of computing fi: x", for

each 1s;iln. The evaluation of the same expression when performed by

the lazy interpreter would be:

[fl,. . . ,fn]:x * Uf1:x,. . . ,fn:xP

4 f l : x, . . . , f, : xP denotes a suspension in which fi: x for lc i sn is left

unevaluated. (Suspensions will be discussed in chapter 6, however we

bring this up now to hopefully dispel1 some confusion that could arise

concerning the placement of the application operator.) The suspension

seems to contradict the rule of (:) placement because the application

operator occurs more than once, however i t is a result given only by the

lazy interpreter, and can not be input legally by the user. Although the

suspension contains functions and applications, it still denotes an object,

and may occur on the right side of an application.

A clarification should also be made concerning the number of argu-

ments given to a function. All FP functions (programs) have the type

"object -, object". When a function conceptually takes more than one

argument as its input, we put all of its arguments into a sequence, and so

it will map a single object argument (i.e., the sequence) into its result.

Sometimes for convenience it is implied that a function takes more than

one argument, or its nth argument is referred to. For example, when one

states that add takes two numbers as its arguments, one actually means

that add takes a single argument that is a sequence of two numbers.

2.2. The Domains of FP

A n FP object is either a primitive object, i.e., an integer, character

string (e-g., 'a','OX+'), or Boolean (T or I?), or it is a sequence of objects

(e.g., <I>, <<'a','b'>,'c'>). The empty sequence is denoted by <> or $.

There is one more object, 1 (read as "bottom"), which denotes

"undefined".

L e t a p a i r be a sequence of two objects that are of the same type.

The predefined functions of FP can be roughly divided into two groups:

the arithmetic-logical functions and the functions that operate on

sequences. The arithmetic-logical functions include such functions as

add, sub, m d , which operate on integer pairs, and the logical functions

a d , o r , not, which operate on Booleans and Boolean pairs. The sequence

functions can be divided into those that build sequences (apncU (append

on the left), q n d r (append on the right)), and those that manipulate

them (e-g., distl (distribute left); trans (transpose); the selectors ld, 2nd

,...; tl (tail)). There remain polymorphic functions such as id (the iden-

tity function) that operate on arbitrary argument types.

The user can define new functions by combining previously defined

functions using the functionals (or combining forms) that are provided by

FP. The set of functionals is fixed; no new functionals may be defined by

the user. The most cornrnonly used functionals are:

construction - [f 1 ,..., fn]:x 3 <f l:x, ..., fn:x>

conditional - (f -, g ; h):x if f:x = T then g:x
else if f:x = F then h:x
else 1

composition - f 0 g : x f : (g : x)

The only structured object in FP is the sequence. Therefore the

functions that would usually operate only on tuples (e.g., the selectors)

and the functions that would usually operate only on lists (e.g., t l) all

operate on the same type of object: sequences. This loose typing allows

such expressions to occur:

3rd 0 apndl : < 1,<2,3>>

tl o [f,g,h] : x

This freedom makes static type checking in FP extremely difficult. For

example, in order to compute the type of 3rd 0 apndl o f 0 g : x one must

a t least partially evaluate f g : x to obtain the type of the third element

When FP is extended by adding the function apply (see section 6.1)

it becomes necessary to include functions in the domain of objects. Here

is an example evaluation sequence:

We see that a function has occurred on the right side of the application,

and so the syntactic distinction between functions and objects has

become blurred. Apply violates the premise that all FP functions have

the type "object + object", and thus FP with apply added no longer

belongs to the set of FP languages. We will call our extended language

AFP, a member of the set of AFP languages. Later on we will show that,

although apply is a higher-order function, it is neither an FP function nor

an FP functional, but lies somewhere between the two.

' A solution to the problem of typing FP is proposed by Guttag, Horning, and Willi-
ams [5j. Another solution which has been proposed is simply to modify FP so that it is
strongly typed.

3. THE INlXRPRE;TER

The principle function of the interpreter, Inteqoret, is written in

Franz Lisp. It takes as input a list of Abstract Syntax Trees (ASTs) and a

state, and outputs a list of reduced ASTs, an environment, and a state:

The List of ASTs is the output of submitting the user's FP expres-

sions to a syntax analyzer. The environment used by Interpret is only

needed to map user-defined function names to their definitions, and is

therefore static. In order to avoid evaluating the same expression more

than once, Interpret replaces an expression with the result of its evalua-

tion. The state, which maps locations to AST's, is needed in order to

express that replacement. The formal definition of the interpreter is in

Appendix A.

The meaning of a list of FP ASTs is given by the function Meaning.

Meaning maps a list of ASTs into a list of s-objects (semantic-objects) and

s-functions (semantic-functions). The domains s-object and s-function

are basically the objects and functions denoted by FP objects and func-

tions. They are defined formally in Appendix B, along with the definition

of Meaning.

The input that the user gives to the interpreter is a list of FP

expressions, each of which is either a definition or an application. The

Syntax Analyzer outputs a list of ASTs that denote the FP expressions.

Interpret will take that list and return a list of reduced ASTs and an

environment. To obtain the meaning of a list of ASTs and their environ-

ment one binds all user-defined identifiers to their definitions and passes

the resulting list to Meaning. (This is done so that Meaning will not have

to use the environment that is defined within In t e rpre t .) Meaning then

returns a list of s-objects and s-functions. It.is claimed that if one were

to by-pass In t e rpre t and send the AST-list directly t o Meaning, the result

would be the same as if Meaning 3 input was first sent through I n t e r p r e t

and bind, providing that the input is well-typed. In other words, I n t e v r e t

preserves the meaning of its input. Figure 3.1 gives an over-all picture of

the operation of the interpreter.

4. THE INTEZW-R-LEVEL SOURCE LANGUAGE

The actual input given to the interpreter is in the form of abstract

syntax trees. This representation is convenient to use as an intermediate

language because it includes only semantically significant details. The

translation from parse trees to abstract syntax trees has been formalized

[9] , where the abstract syntax grammar is developed as a way of for-

mally defining the structure of an abstract syntax tree language. A brief

description of abstract syntax trees (ASTs) and abstract grammars fol-

low. For a formal description see [9].

4.1. Abstract Syntax Trees

The abstract syntax of a program gives the operators and operands

necessary to express its semantics. A convenient way to represent the

abstract syntax is through abstract syntax trees (ASTs). The root of an

AST represents an operator, and the subtrees represent its operands.

Example FP ASTs and the FP programs from which they are derived are

provided in Figures 4.1 and 4.2.

4.2. Abstract Syntax Grammar

An abstract syntax grammar is very similar to a context-free gram-

mar, and gives us a way to formally define an abstract (AST) language. It

consists of a set of equations and a set of productions.

Each equation defines a class of ASTs. Given equation

S = al, . . . ,an, S is the name of a class of ASTs, and a,, . . . , a, are names

of terminal or non-terminal nodes. Class S contains all ASTs whose root

belongs to fa l ,..., anf .

Each production defines the structure of all ASTs whose root name .

is the name on the left side of the production. The production

X -+ S1, . . . , S, tells us that an AST whose root node is X must have sub-

trees that belong to the classes S1, . . . , s,, in that order. The right-hand

side of a production may be a r e g u l a r e x p r e s s i o n over class names. The

regular expression is a shorthand for a (possibly infinite) series of pro-

due tions.

L e t a,@, and y be regular expressions over class names in:

• "A + a(/??)*7" represents the infinite number of produc-

tions: "A -, ay", "A -+ apy", "A -, apPy" ... (a and y may

be empty)

• "A -, a I@" represents the two productions "A -, a" and

+ @ I r

The abstract syntax grammar for FP follows, after which follow two

examples of FP ASTs.

Abstract Syntax Grammar

Syntactic Domain Equations:

atom =aNurneral,Literalj

definition = ldeff

application = lapply]

object =latom,sequence,l f

f-expr = !condition, compose, select, Rselec t , construct, constant,
insertl, applyAll, bu, while, tl, id, atom, eq, gt, ge, It, le, ne,
null, reverse, distl, distr, length, add, sub, mul, div, trans, and,
or, not, apndl, apndr, Identifier1

Productions :

program -9 (definition + application) *
def -, Identifier f-expr

apply -, %-expr (object + suspension + apply)

condition -, f-expr f-expr f-expr

compose -, f-expr f-expr

select -+ Numeral

Rselect -, Numeral

construct -, f-expr *
constant -, object

insertL -, f-expr

applyAll --, f-expr

bu -, f-expr object

while -, f-expr f-expr

sequence -+ object *

apply
/ \

add sequence

/ \
1 2

Figure 4.1 AST representation of add:< 1,2>

apply
/ \

compose 'a*

/ \
add construct

/ \
constant constant

I I
1 2

Fjgure 4.2 AST representation of add 0 [i,Z]:'at

5. LAZY ENALUATION

Lazy evaluation, or delayed evaluation, has been compared to the

call-by-name parameter passing of Algol [6] in that an expression is

evaluated only when its value is needed. It differs from call-by-name in

that once an expression has been evaluated it will never be re-evaluated

(unless the same expression appears in two, unrelated places). Peter

Henderson and James Morris [6,7] have presented lazy evaluation stra-

tegies for pure LISP in which arguments to functions are not evaluated

until needed, and in which cons expressions are suspended until the parts

of the expressions are demanded by another evaluation, or until the

entire cons expression is explicitly forced. Arguments of a function are

referenced by pointers so that any evaluation of the arguments is easily

preserved. Because of the dynamic environments and bound variables of

LISP, each suspension of an expression must preserve the environment in

which the expression is to be evaluated.

Lazy evaluation in FP is like that of LISP with two exceptions:

1) Since there is only a single, static environment in FP, the environ-

ment does not need to be saved along with every suspension.

2) Since FP is not applicative, arguments to functions do not need to

be suspended.

Lazy evaluation in FP requires that all list constructors be

suspended. This allows the use of infinite lists, as in the following

example:

def integers = apndl 0 [id,integers 0 succ]

It also allows unnecessary evaluation to be avoided; the reduction

l"o[f,g,h]:x % f:x

does not require evaluation of g : x or h: x. Suspensions will be discussed

later.

5.1. Lazy Interpretation of FP

5.1.1. Paradigm

Evaluation occurs on two levels: the functional level and the appli-

cative level. All FP applications consist of one or more functions that are

composed with each other and then applied to an object. Evaluation at

the applicative level is carried out in strict, applicative (right-to-left)

order, and occurs when a simple application, f : x, is being evaluated. (In

a simple application the function contains no func tionals .) The functional

level refers to evaluation that does not need to know about the object at

the end of an applicative expression, but instead manipulates the expres-

sion on the basis of the functions in that expression. Consider the appli-

cation f l 0 fz 0 . . . 0 fn: x . The interpreter first operates on the functional

2 1

level. Evaluation on this level occurs left-to-right. Function f l is con-

sidered first. According to the value of f l , one of six things can happen:

1) A value may be returned and further evaluation of the application

will terminate. This only happens when f l is a constant function.

Example: loadd: 'a' * 1

2) Evaluation of the rest of the application will be forced and evalua-

tion will proceed at the applicative level. This happens when f , is

an arithmetic-logic function which demands that its argument be

completely evaluated (i.e. forced) to an object (i.e. when f is st r ic t) .

Example: add 0 [i,2] : 'a' * add : < 1,2>

3) The rest of the application (f z o . . . of,:x) will be evaluated (evalua-

tion always returns an object or a suspension) and evaluation will

proceed on cases of that result. This occurs when f l is not a strict

function, but needs to know something about its argument in order

to proceed.

Example :

reverse 0 2ndo [lSt,apndlo [1 ~ , 2 ~ ~]] : <1,<2>>
3 reverse 0 2 " ~ : ~lst:<1,<2>>,a~ndl~[1~,2~~]:<1,<2>>~ (3,6) * rever~e~a~ndl~[1~,2~~]:<1,<2>> (4)
* apndru[reverseo tl,ld] 0 : < 1,<2>> (5)

In the above example, reverse requires that the rest of the expression be

evaluated, which it eventually is, to apndl 0 [1 ~ , 2 ~ ~] : < 1 ,<2>> . Then

reverse 0 apndl is transformed into apndr 0 [reverse 0 tl,ld] according

to the definition of reverse in Appendix A.

4) Part of the rest of the application will be requested and evaluation

will proceed at either level. This happens when f l is a selector, tl

(tail), or tlr (right tail).

Example: znd0 [T,Z] : 'a' % 2 : 'a'

5) The composition f l 0 . . - 0 fi, i 5 n, is transformed into a new func-

tional expression, and evaluation will proceed a t the functional

level. This happens for many of the non-strict functions. In Sec-

tion 5.2 we show that the transformations employed by the inter-

preter preserve the meanings of the programs they operate on.

Example: lSt0apndl0[i,(2>]:'a: lSto[T,<2>]:'a'

6) The entire expression is suspended. Ths happens when f l is one of

the list constructors: apnd, apndr, or [...I .

Example: apndl 0 g : x 3 apndl g : x

Example: apndr 0 g : x 3 apndr 0 g : x

Example: [g,, . . . , g,] : x =3 4 g l : x , . . . , g,:xb (The applications

withn the suspended construction are unevaluated.)

Evaluation of expressions containing functionals such as condi-

tional, depend on the evaluation strategy for that functional. For exam-

ple:

(null + id ; tl) 0 apndl 0 [lSt,id] : < 1,2,3>
null0 apndlo [lSt,id] : < 1,2,3>
3 F

(eval. of condition)

(eval. of "false arm")

(5)
(6)
(4)

5.1.2 Suspensions

There are three kinds of suspensions, one for each of the sequence

constructors: apncU, a p n d ~ , and [...] . Applications whose leftmost func-

tions are apndl or apndr evaluate to themselves. This allows us to use

infinite objects. For example, we can talk about the infinite list of

integers and can extract part of that list without having to evaluate it

completely:

def integers = apndlo [id,integers 0 succ]

lgt 0 integers : 1
=3 l S t 0 apndlo [id,integers 0 succj : 1
3 l & o [id,integers 0 succ] : 1

3 id : 1

(integers)
(Theorem TI 2')

([...I)
(1st: 4 . . - b)

* The transformation lSt apndl = 19' is proven correct in Appendix C.

A construction such as [fl, . . . , f,] o g : x evaluates to

6fl o g: x, . . . , fn 0 g: xb . This is done in order to implement value shar-

ing. Each member of the construction is made to point to the expression

to the right of the construction, so we actually have:

which is written as

4fl 0 g : x , . . . , f n 0 g:x> .

We suspend constructions so that unnecessary work may be avoided.

Each application within the suspended construction is unevaluated until

its value is requested. For example:

The function force will evaluate its argument to an object, but will

first evaluate' its argument so that a n expression such as

force 0 l S t o [i , ~] : 'a' will be defined.

force 0 ldo [TIT] : 'a'
force 0 ld : 47 : 'a',i : 'a'P
force 0 T : 'a'

-4 force: 1
* 1

* Evaluation always results in an object or a suspension.

Note that the function I , the function that returns bottom for every

argument, is not a legal input by the user (neither is 1, the object bot-

tom). It was used in this example to give an obvious instance of a

bottom-producing function, and might have been realized a t the source

level by a user-defined function whose evaluation would fail to terminate

if it were applied to any argument.

5-1.3. Value Sharing and the l?P Application Data Structure

In order to avoid re-evaluating an expression once it has been

evaluated we employ the following procedure: whenever an expression e is

evaluated to e ', replace e with e " This can be done very easily in LISP

using a simple list and the LISP replace function. The FP expression

f l 0 . . - 0 f, : x is represented in LISP as (f l - . . f, x) , the LISP implementa-

tion of which actually looks like:

The LISP list structure lends itself well to the strategy of looking a t

the first i tem and replacing a rightmost section of the list with the result

of its evaluation. Suppose that we are evaluating the expression f 0 g : x.

Suppose that function f demands that the rest of the expression, i.e., g : x,

be evaluated. The LISP representation of f o g : x is:

If g : x evaluates to h, then g : x will be replaced by h and we will have

In order to implement value sharing in constructions we make each

member of the suspended construction point to the part of the expres-

sion that follows the construction. Then when one member of the con-

struction causes complete or partial evaluation of the rest of the expres-

sion, the result of the evaluation is reflected in all of the members of the

suspension. W e use the special brackets 4 and P to surround a

suspended construction. The suspended construction has the type of a

sequence object, however it still contains unevaluated applications.

Therefore we have chosen the special brackets to distinguish it from both

objects and functions. When the application of a construction is

evaluated, the resulting suspension will be the object of a further applica-

tion in the consequent expression. For example:

5.2- Correctness of Transformations

The principal evaluator function of the interpreter is:

eval : (object+application) -+ state -+ env -+ (object+application) x state.

If, in the definition of the interpreter, eval ie]qcr = eval [e']qa, we say that

e i s transformed into e'. Lazy evaluation is only permitted under a

scheme where e' has the same meaning as e wherever e is defined. e'

may be defined on arguments where e is not defined. Therefore, when we

are performing lazy evaluation, we only need to show that the meaning of

e alcrproximates the meaning of e'. The function

M : (object+application+definition+f-expr) -, s-env -,

(s-functioni-s-object) x s-env

gives the meaning of FP expressions, and is defined in Appendix B. We

will ignore the environment (s-env), since it will not affect our discussion.

For each transformation made by the interpreter we would like to show

that

eval lfe jqu = eval [e' jqa implies M(e) E M(el).

Definition of E :

M(f) E M(g) M(f:x) = M(g:x) V x such tha t M(f:x) # J.

Theorem 5.1: if M(f) E M(g), then M(h 0 f 0 j) C_ M(h 0 g 0 j)

Proof:

Assumption: M(f) E M(g)

Show: M(h0f.j) rT M(h0g.j)

1) M(f 0 j:x) = M(f):(M(j):M(x))
2) if M(f):(M(j):M(x)) ;.f 1

then M(b):(M(j):M(x)) = M(g): (M(j) :M(x))

3) and M (f 0 j:x) = M(g0 j:x)
4) M(f 0 j) L M(gaj)

5) if f:x # I then M(f:x) = M(g:x)

6) and M(h):M(f:x) = M(h):M(g:x)
7) and M(h 0 f:x) = M(h0g:x)
8) :. M(h0f) c M(h0g)

(composition)

(9
(composition)

(1,2,3)

(9
(application)

(composition)

(9

(assumption, 4 & 8)
(associativity of 0)

Corollary: if M(f) E M(g) , and the FP function

e = hl 0 0 h , ~ f 0 h,. . . . o h p is transformed into

According to the above corollary, we can make such transforma-

tionsin any order and be assured that the resulting expression preserves

the meaning of the expression we started with.

We demonstrate the correctness of the transformation

tloajmdr 3 pd below. The remainder of the transformations are pro-

ven mrrect in Appendix C. The environment and state arguments to e v d

and II have no effect on the proof, so we have taken the liberty of ornit-

ting them. For the sake of clarity we have also omitted some steps which

shouEd be obvious to the reader. For example:

M (t l : < ~) = M(tl):M(<a>) = (A<O1, . . . , On> .<02, . . . , O,>):<a> =

has been abbreviated t o M(tl.<a>) = <>. All FP objects are allowed to

denoYe their meaning.

Theapesll5.2: M(tl0 apndl) L ~ (2 ~ ~)

M(tl0 apnd1:x) # 1 V x suchthat apnd1:x # 1 and tl: (apnd1:x) f 1 . It

suffices for us to show that V x such that apnd1:x # 1 ,

M(tl0apndl:x) = ~ (2 ~ ~ : x) .

F ' r e

Case 1: x = <a,<>>

(composition)
(M(apnd1))

(M(t1))
(M(2nd 1)

Case 2: x = <a,<bl, . . . , bn>>

(composition)

(Mbpndl))
(M(t1))

(~ (2 " ~))

5.3. Process Networks

FP programs can model networks of communicating processes. In

order to show this we use data-flow graphs to describe the programs.

Data flow primitives are described in Table 5.1, and some examples of

correlations between FP programs arid data-flow diagrams are given in

Table 5.2.

Table 5.1 Data Flow Primitives

A A is appended
onto stream B.

f : A,x . . . X A ,

+ B , X . . - X B ,

If p then q
else r.

Table 5.2 Data Flow Modelling of FP Programs

FP PROGRAM DATA FLOW DIAGR-4x3

The composition j 0 g describes a function which first sends its

input t o g, and then sends the output of g to f . It is very natural to model

that function as:

If g sends a (possibly infinite) list, or stream, to f , then it is conceivable

that g and f could operate in parallel. The transfer of information from g

to f could operate in one of two ways:

1) Function g sends its output (or pieces of it) to f whenever g is

ready, and J processes its input as soon as it is available from g .

This is a data dr iven operation and corresponds to standard appli-

cative evaluation. When f and g work in data driven mode, they can

each operate in parallel, depending only on the availability of their

inputs.

2) Function g sends its output to f only when f makes a request for it.

This is a d e m a n d driven operation, and corresponds to lazy evalua-

tion. The overhead involved in this communication can be quite

costly, as is demonstrated later in section 5.4.

A commonly used example of an infinite object defined in FP is the

definition of the function in tegers .

def integers = apndlo [id,integers 0 succ]

When we try to describe in t egers using a data flow graph, we

encounter the problem of showing recursion in the graph. Henderson

expresses recursion in a graph by using a special box to indicate the

recursive call:

There is another definition of in t egers , however, in which the recur-

sion can be diagrammed as iteration:

integers

int-
stream

int

- - - - - - - - -
int succ integers

- - - - - - - - -

y
A . - w

def integers = apndl 0 [id,asucc 0 integers]

int-stream int-stream

The latter example demonstrates a style of constructing programs

in which the recursive call occurs as the right-most te rm in the composi-

tion. The applyall functional (a) tends to be very useful in this style.

Notice the difference between the types of the arcs in each graph.

The arcs in the first graph hold single integers, and the recursive call

causes the graph to iterate continually, thus producing an integer

stream. The arcs in the second graph however hold streams of integers.

Research is currently being done on this topic by Richard Kieburtz [8j.

A data flow graph of a more complicated program follows. Rotr is

the primitive FP function "rotate-right". a is the FP functional "apply-

to-all", which is similar to the LISP mapcar function.

def revstream = arotr 0 apndlo [id~evstream]

def revers = a lSt 0 revstream

revers

revs t ream

finite stream of /stream I

i ten- item-sequence item-seque nce
sequence

The function revers takes as input a finite sequence of items and

returns as output an infinite stream of the same items in reverse order,

repeating cyclically. For example, revers : <1,2,3> =3

<3,2,1,3,2,1,3,2 ,... >.

5.4. Lazy Evaluation vs. Strict Evaluation

One of the "benefits" of lazy evaluation is that unnecessary work is

avoided. Therefore it would be reasonable to assume that a lazy evalua-

tor can perform calculations in less time than its strict counterpart

takes to do the same calculations. This is not necessarily the case,

however, because the lazy evaluator may have to work very hard at being

lazy.

We have run programs with both a lazy FP interpreter and a strict

FP interpreter in order to compare running times. Both interpreters use

the same data types, and have similar program structures, so that a rea-

sonable comparison may be made.

The lazy interpreter evaluates the functions dist l , distr , and t rans ,

by doing source language substitution. (See Appendix A.) This is done so

that expressions containing these functions may be transformed into

expressions containing FP sequence constructors, and thus may be

suspended. In the strict evaluator, however, these functions are primi-

t ives , i.e ; they are directly interpreted in the host language, LISP. This

makes a significant difference between the running times of the two

interpreters. Therefore when we run programs using distl, distr , and

t rans , we also examine programs in which these functions are defined by

the user. The first set of timings will show us what the strict evaluator

can do when it can take advantage of the fact that d l FP functions may

be primitive because all arguments to the functions are objects and not

suspensions. The second set of timings will give us a more equitable com-

parison.

5.4.1. Matrix Multiply

Matrix Multiply with System-Defined dis tl, dis tr, and trans

def IP = /add 0 amul 0 trans
def MM = aaIP 0 adistl 0 distr 0 [lst,trans 0 pd]

Table 5.3 Running Times of Matrix Multiply (MM) with Strict and Lazy
Evaluation

*
where x = <<<1,0,1>,<1,2,3>,<1,0,1>>,

<<1,1,1>,<0,1,1>,<1,0,1>>>
1 unit is s e c .
6 0

Matrix Multiply with User-Defined newdistl, n e wdistr, and newtrans

def newdistl = (null 0 znd -, $
; apndl 0 [[I", ld 0 2nd],newdistl 0 [lst , tl 0 2ndj])

def newdistr = (null 0 lst -, $
; apndl 0 [[lSt 0 1 ~ ~ , 2 ~ ~] , n e w d i s t r 0 [tl 0 1 ~ , 2 ~ ~]])

def newtrans = (/and 0 anull + @ ; apndl 0 [alst,newtrans atl])
def newIP -= / add 0 amul 0 newtrans
def newMM - aanewIP 0 anewdistl 0 newdistr 0 [lst,newtrans 0 2nd]

Table 5.4 Running Times of Modified Matrix Multiply (newMM) with
Strict and Lazy Evaluation

*
where x = <<<1,0,1>,<1,2,3>,<1,0,1>>,

<<1,1,1>,<0,1,1>,<1,0,1>>>
1 unit is s e c .

60

We see that the strict interpreter runs much faster than the lazy

interpreter, except when part of MM:< ... > is requested. When

lSt 0 MM: < - - . > is requested, the lazy evaluator "beats" the strict evalua-

tor. When I& 0 MM:< - . - > is forced, however, the lazy evaluator takes

longer. In evaluating lat 0 lSt 0 MM : .< . . . >, however, the lazy evaluator's

times dramatically improve, and are even less than those of the strict

evaluator when using newdistl, etc. This is because the lazy interpreter

has limited itself to evaluating only lSt 0 ld 0 MM: < - . . >, a single inner

product calculation, which requires very little work to evaluate. The

strict interpreter fist completely evaluates M M : < , . . > before taking

lgt 0 ld of it.

5.4.2. A Straight-Selection Sort

Straight-Selection Sort with System-Defined distl

def 1s = null 0 2nd -, T ; / and 0 alt a distl
def least = null -, 8 ; Is 0 [lSt,tl] -+ lSt ; least tl
def delete = eq 0 [le11" 0 2"] -+ t l 0 2nd

; apndl 0 [I" 0 2nd,delete 0 [le,tl 0 2nd]]
def sort = (null 0 2nd + $

; apndl 0 [lstlsort 0 delete 0 [ld,2nd]]) 0 [leastbid]

Table 5.5 Running Times of Straight-Selection Sort Using System-
Defined distl, with Strict and Lazy Evaluation

Input to Evaluator

' unit is L s e c ,
60

42

Strai~ht-Selection Sort with User-Defined distl

def newls = null 0 2nd -, T ; /and 0 al t 0 newdistl
def newleast - null + 0 ; newls 0 [lSt1tl] + lSt ; newleast t l
def newsort = (nu11 0 2nd -, iJj

; spndl 0 [ld,newsort 0 delete 0 [1d12nd]]) 0 [newleastlid]

Table 5.6 Running Times of Modifled Straight-Selection Sort Using User-
Defined newdistl, with Strict and Lazy Evaluation

' unit is L s e c
60

Input to ealuator

When using dist l , and forcing the whole sorted list, the strict inter-

preter takes roughly '/a as long as the lazy interpreter. When evaluating

the same programs using newdistl in place of rtistl, the strict evaluator

takes roughly l/2 as long. When evaluating lSt 0 sort : < . . . > or

lSt 0 newsort: <39,38, ..., 1,0>

5* 0 newsort : <39,38,.. ., 1,0>

loth 0 newsort : <39,38 ,... ,1,0>

18,928

18,869

19,248

2,625

13,359

23,216

dst 0 newsort: < . . . > the lazy interpreter always takes less time than the

strict interpreter, and displays the most dramatic speed-up for

lst 0 newsort: < - . . >. When asked to return an item farther to the right

in the sorted list, the lazy evaluator slows dowm. From evaluating

sth 0 sor t . . - and loth 0 sor t . - . i t is evident that a great deal more

work is required for the lazy interpreter to extract more deeply nested

items (i.e., items farther to the right) of the list. We propose an explana-

tion for this in the next section.

5-5. Lazy FP vs. Lazy LISP

Friedman and Wise present a lazy implementation of LISP [4] in

which evaluation of every cons expression is suspended as follows: (We

will ignore the environment since it does not directly affect this discus-

sion.)

A "suspension node" is created whose fields each point to the

(unevaluated) arguments of cons . Extracting part of a suspended c o n s is

iairly straightforward.

FP suspensions are more complicated because there are three

sequence constructors instead of one, and thus there must be three

kinds of suspensions. The major problem, however, with FP suspensions,

is that arguments are not readily available to the sequence constructors.

This is because FP programs are built by composing functions, not by

applying functions to their arguments. In order to suspend the expres-

sion apndl 0 f : x in the same way that cons is suspended in LISP, we

rnus t evaluate f : x until we obtain a pair.

One solution, which we have used in our interpreter, is to suspend

all sequence constructor expressions, and to use transformations to

extract parts of the suspensions. For example:

Another solution could be to transform an FP expression into an

equivalent applicative expression, in which suspensions could be imple-

mented as they are for LISP. We will present a technique for transforrn-

ing a small subset of FP into an applicative form, and then will give an

example evaluation sequence.

5.5.1. The Applicative Apndl Suspension

We will only consider a single sequence constructor, apndl. When

we evaluate apndl 0 f : x we want to return a suspension which we will

We will need functions to return the quantities pointed to by each of the

fields of the suspension. We will call them LEFT and RIGHT. Finally, the

selector functions (we will only need lSt for our example) will need to test

their argument to see if it is a s u s p e n s i o n or a sequence . If it is a

sequence, a primitive selector function is called to operate on the

sequence. If it is a suspension, LEFT and RIGHT and other selectors are

used to delve into the suspension. For example:

znd: 7% J ld: (RIGHT: 47%)

a P cx P

5.5.2. The Transformations

(11) Let LEFT be a function that takes a suspension and returns what is

pointed to by its first field.

(fl) Let FUN be a function that t a k a an FP functional expression and

returns an equivalent function.

(f4) FUN(lSt) = Ax. x is a suspension + LEFT:x

; x is a sequence -+ FIRST:x

; 1

(el) Let EVRL be a function that takes an FP application and returns

either a suspension or an FP object. EVAL(f:x) = FIJN(f):x

5.5.3. An Example

EVAL(~~' 0 apndl: <1,<2>>)

= FUN(^& 0 apndl) : < 1,<2>>

= LEFT: f i
15': <1,<2>> 2nd: <1,<2>::

= 1% <1,<2>>

= FIRST: <1,<2>>

= 1

(e 1)

(f2, beta red)

(f3, beta red)

(f4, beta red)

(11)

(f4, beta red)

If it turns out that lazy evaluation is more efficient on applicative

languages, then this solution would allow one to program on the function

level of FP, and then the implementation would be carried out on the

applicative level. Note that the strict FP interpreter is implicitly applica-

tive, since composition is defined in terms of application:

f 0 g :x =3 f:(g:x)

6- AF'P AND YFP, EXTENSIONS OF FP

FP programs denote mathematical objects. They obey a set of laws

that allow one to manipulate them and to reason about them in the very

language that they are written in. These laws have a simple algebraic .

interpretation that allows them to be modelled easily, without recourse

to a complicated denotational semantics. Ordinary reasoning by substi-

tution of equals for equals provides a satisfactory logical framework for

deducing properties of FP programs, without knowledge of sophisticated

topics such as denotational semantics, logic, or axiomatic semantics.

One of the inadequacies of FP is that recursive functions can not be

expressed without the aid of an environment. Therefore we propose the

addition of a least fixpoint functional, Y. The functional)' expects its

argument to be a function that takes a function and an object to an

object. We will call this type of function a scheme. A scheme, written in

FP, must denote the application of its first argument to its second.

Therefore we will need to add an explicit apply function to FP when we

add Y. Let AFP be FP with the addition of apply, and let YFP be AFP with

the addition of Y. The definitions of apply and Y are included below. In

the sections that follow we will compare FP to AFP, and in so doing will

dermnstrate the expressive power that is added to FP by apply. Then we

will compare AFP to the lambda calculus, in order to show that, even with

the proposed extensions, FP-languages are still less expressive than the

lambda calculus. Before we do that, however, we need to clarify the

notion of e q r e s s i v e n e s s .

FP can clearly simulate a Turing machine, and so FP has the com-

puting power of a Universal Machine. There are, however, some expres-

sions that are directly representable in other Universal Languages that

can not be d i rec t l y represented in F P , but must be simulated. In t h s

sense, F'P is not as equressive as a language in which such expressions

can be directly represented.

An expression direc t ly represen t s another expression if their

meanings are equivalent when computed in the same "computation

environment", and when the in terpre ta t ion, or decoding, of each object is

always the same for the same object. The "computation environment"

refers to all of the domains, such as environments or states, that are

needed by the function that computes the meaning of an expression.

Now we give a definition of direct representation that is specific to

the languages with which we are concerned. W e use the function Mu to

give meaning to expressions in AFP and APP.

Mu : AFP u APP u A + A

Mu(e) = if e E A then e
else if e E AFP u APP then u(e)
else 1

The domains AFP and APP are defined later. A is the domain of lambda

calculus expressions. The function p is a (meaning) function that maps

AFP u APP into A, and is also defined below. We will assume that the

interpretation of an object never changes.

Definition: Let el be an expression of language Ll and let e2 be an

expression of language Lz in

e directly represents ez iff Mu(el) AMu(e2).

We have used the function Mu in order to show that an expression

in the lambda calculus denotes its own meaning. Later on we will simply

employ p to show a direct relationship between languages when we know

we will never have to compute the meaning of an expression in the

lambda calculus, but are only interested in mapping AFP or APP to the

lambda calculus. Similarly, on domains for which p will only apply the

function F, we will rely on F to give us the mapping.

6.1. Apply

apply = A < f , O > . f : 0

The function a . l y takes a vector of two objects and returns the result of

applying the first object to the second. Thus the first object is expected

to be a function.

In order to add apply to FP then, we must include functions in the

domain of objects. Formally, in the definition of the FP semantic func-

tion, we must include "s-function" in the domain of "s-object", i.e.,

s-object = s-atom + s-sequence + 1 + s-function

In the Abstract Grammar definition of the input to the interpreter, we

must change the definition of "object" to:

object = [atom,sequence,l,f-expr j

The apply function allows us to write the sort of function schemes

that, when given to Y, can be used t o express a recursive function without

explicit recursion.

6.1.1. The Amly Function and the Algebra of Programs

When apply is added to FP, the axioms for the algebra of FP pro-

grams remain consistent. This is demonstrated by substituting apply for

function variables in the important distributive laws and showing that

those laws are still consistent. We have included one example of this

below, and the remainder of the proofs are in Appendix D.

Theorem 6.1: [f,g] o apply = [f 0 apply,g 0 apply]

Proof:

[f apply,g 0 apply] : <hay>
3 <f 0 apply:<h,y>,g 0 apply:<h,y>>
3 <f:(apply:<h,y>),g:(apply:<h,y>)>

. 3 <f:(h:y),g:(h:y)>

(camp)'
(apply)

(constr)

(constr)
(camp)
(apply)

6.1.2. The Power of apply

For a n applicative expression such as f(g(h(x))) there exists an FP

function whose meaning is equivalent, namely f 0 g 0 h : x. A series of appli-

cations tha t associate t o the right can be expressed in FP by a series of

compositions terminating with an application. There is, however, no way

in FP to directly represent an applicative expression tha t associates to

the left. In AFP, however, there exist expressions tha t can directly

represent applicative expressions tha t associate to the left. For example:

apply [f ,xl:g * apply: <f:g,X:g>
* apply:<f:g,x>
3 (f:g):x

(comp & constr)
(constant)

(apply)

W e will define a set of languages, called APP-languages. Besides all

of the objects, functional expressions, and single, well-typed applications

of an FP-language (without apply), an APP-language contains all well-

typed multiple applications of its members. (f:x) is well-typed if the type

of f is tl + t2, the type of x is t3, and t3 is a sub-type of t l . We will show

that, given an APP-language, there exists an AFP-language that will

directly describe it, whereas it cannot be directly described by an FP-

language.

k t an AFP-language be an FP-language that includes apply, and in

which functions are included in the domain of objects. Given an AFP-

language LAFP, let LAPP be the iaiiguage of expressions "e" such that

1) e E LAFP

2) e = (c : d) and c E LAPP and d E LAPP

3) Nothing else is in LAPP.

There exist two identity mappings Tdf and Ida such that Idf takes all

expressions of LAFP into their syntactically identical counterparts in LAPP,

and Ida = Idf-' .

p is a semantic function that maps all elements of LAFP and LAPP

into expressions of the lambda calculus. p is defined in terms of the FP

semantic function

F : f-expr -, s-env -, (s-object -, s-object)

which is defined in Appendix B and gives the meanings of FP functions.

definition of p :

(ml) p(0) = 0, (0, is the object denoted by 0)

(m2) p(a:b) = ~ (a) : ~ (b)
(m3) p(f O g) = - p(f): (~ (g) : o)
(m4) p([f . . . , fz]) = A 0 . <p(f 1):0, . . . , p(f,): O>
(m5) p(app1y) = h<f,x> . f:x
(m6) p(f) = F(f)$ (f is a functional expression)

Let L F p be the F P language that is identical to Lm, except that the

extensions needed for apply are missing. LFp is a proper subset of LmP.

Claim: There exists a mapping, 7, that takes all of LAPP into LAFP such

that for all "a" in LAPP, p(a) = p(7ja)j. (proof is in Appendix E)

7 uses the function: Const : LAFP + LAFP . Intuitively, Const takes as input

an object and returns a function that will return that object on any input.

In other words, Const behaves like the " K combinator. For simplicity, let

0 be the set of all members of LAPP U LAFP that are objects or functional

expressions, and therefore contain no applications.

definition of 7:

(bl) ~ (a) = a (a E 0)
(b2) 7(a: b) = a:b (a,b E @
(b3) T(a:(b:c)) = ~ (a o b:c) (a,b E 0)
(b4) ~ (a : (b : c)) = ~ (a : ~ (b : c)) (a E 0, b st 0)
(b5) ~ ((a : b) : c) = apply 0 [a, Const (~ (c))] : b) (a E 0)
(b6) ~((a :b) :c) = T(T(a:b):c) (a BI 0)

(c 1) Const(a) = B (a E 0)
(c2) Cons t (a: b) = a 0 Cons t(b) (a E 0)

Example: evaluation of ~((a : (b:c)) : (d:e)) (a,b,c,d,e are functional expres-
sions)

~ ((a : (b: c)): (d:e))
= apply 0 [a,Const(T(d:e))]: (b:c))
= ~(app lyo [a,Const(d:e>]:(b:c))
= apply 0 [a,d 021 : (b:c))
= 7(applyo [a,d o E] 0 b:c)
= apply 0 [a , d o ~] 0 b:c

Claim: 7 preserves the meaning of (a:(b:c)): (d:e).

Proof:

p((a: (b : c)) : (d:e))
=jx(a:(b:c)):y(d:e) (m a

= (P(a):PCb:c)):P(d):~(e) (m2)
= (P (a) : (~ (b) : ~ (c))) : P (d) : ~ (e) (m a

p(amly0 [a , d o ~] 0 b:c)
=@(apply 0 [a,d 0 E] b):p(c)
= P (~ P P ~ Y) : (P ([~ > ~ o~l):(p(b):P(c))) (m2)
=@(apply): (AO. <p(a) :O,p(d 0 E):O>): (p(b):p(c)) (m4)
=P(~PP~Y):<P(~:(P(~):P(~))),P(~ e):(@(b):P(c))> (beta red)
=p(apply): <p(a): (P(b):P(c)), (A 0 4 - 0 : (p(c):O)):(p(b):p(c))> (m3)
=P(~PP~Y): < ~ (a) : (~ (b) : p (c)) , (~ 0 op(d):((AO op(e)):O)):(p(b):p(c))>(m6)
=P(~PP~Y) :<P(~) : (~(b):P(c)),P(d):p(e)> (beta red)
= (~ < f , x > . f:x): <p(a): (p(b) :p(c)) ,p(d) :p(e)> (m5)
=(P(~):P(~):P(c))):(P(~):u(~~) (beta red)
=p((a:(b:c)): (d:e))

Function T is a correspondence between LAPP and LAFP, such that T

takes any member of LAPP to LUP. However, there exist elements of LAPP

that can not be mapped to LFP by 7. In other words, for any applicative

expression that is built from FP functions, objects, and any number of

nested and iterated applications, there exists an equivalent expression in

an FP-language when it is extended by apply. (Recall that applicative

expressions in an FP-language have only a single occurrence of the appli-

cation operator (:).) Therefore apply enables FP (i.e., AFP) t o directly

express multiple applications of arbitrary nesting using a single applica-

tion.

6.1.3. Is apply a Functional?

Recall that an FP functional maps FP functions to FP functions.

&ply operates on functions, but can not be classified as a functional for

the following reasons:

1) Apply can stand by itself as an FP program.

2) Apply maps function and object pairs to objects as well as

functions. Functionals only map functions to functions.

3) Apply conforms to the syntax of FP functions.

&ply is not a functional, but is nevertheless significantly more

powerful than ordinary FP functions. We can almost build new function-

als with apply. &ply gives us the power to model arbitrarily nested

applications, and allows us to build hgher order functions, but does not

allow us to build curried functions. For example, let us define the func-

tion compose-apply. Compose-aply is similar to the functional " 0 ",

except that it takes three arguments instead of two.

def compose-apply = apply 0 [lst,apply 0 [2nd,3rd]]

compose : <f,g,x>
3 apply o [lst,apply o [2nd,3rd]] : <f,g,x> (compose-apply)
3 apply : <lSt:<f,g,x>,apply 0 [2nd,3rd]:<f,g,x>> ([I, O)

3 apply : <f,apply:<2nd:<f,g,x>,3rd:<f,g,~>> (lst,[l,
3 apply : <f,apply:<g,x>> (~ ~ ~ 3 ~ ~)
=3 f : (g : x) (apply)

Apply gives us the ability to create functions such as compose-apply, but

does not add to the program-building power of FP systems in the same

way that the ability to create new functionals would. However, we must

recognize that while apply is neither a functional nor an ordinary FP

function, its addition to an FP language increases its expressiveness in a

significant way. Such an extended FP language no longer falls into the

category of "FP languages", and we have invented the category of "AFP

languages" in which to place our "orphan" FP. Questions that should be

answered concerning AFP languages are:

1) Are AFP languages significantly more u s e f d than FP

languages?

2) Are programs written in AFP languages easy to understand

and manipulate?

6.2. The bast Fixpoint Functional

In an applicative language in which functions can be curried, a

definition of the fixpoint function x p p could be:

Intuitively, (yppf):~ , for a scheme f and an object 0 , is equivalent to

(fn: (1)):O for the least integral value of n for which (fn:(l)):O is defined.

Since we cannot curry FP functions however (see section 6.3), f

must take its arguments as a pair.

YQ is a functional in YFP, and therefore does not by itself denote a

program. But coupled with a function f i t has the following meaning:

We will call the applicative fixpoint operator)"app, arid the YFP

fixpoint operator v p . Note that the type of Y* is different from the type of

Y.PP :

y ~ p : schemeapp + functionapp

where schemeapp = functionapp + functionapp

and functionapp = object -, object

ym : schemef, -, functionfp

where schemefp = (functionfp x object) 4 object

and functionfp = object + object

About Yapp we can say:

f (Yn~pf) = Yappf

A law that we can state about Yb is not as intuitive:
-

\pf = f 0 [Y@f,?ld]

When we apply each side of the law to an object we get:

\pf:x = f:<Yipf,x>

which reflects the meaning of the fixpoint perhaps a little more clearly.

Yp is used to define recursive functions without having to explicitly

use recursion. The function (scheme) f is expected to take a vector con-

sisting of a function and an object, to an object. When ypf is applied to an

object 0, f is applied just as many times as is necessary to return an

answer. The evaluation of factorial:3 (see below) requires that

factscheme be called 4 times. The evaluation of factoriak4 would require

5 calls to f actscheme, etc. Let 'f = '& in the following example.

def pred = sub [id,i]

def factscheme = eqO 2nd

; ~ . u l 0 [2nd,applyo[1St,predo2nd]]

def factorial = Y factscheme

An example evaluation sequence:

factorial : 3
)' factscherne : 3
factscheme : <Y factscheme, 3>
mu1 : <3, 'f factscheme : 2>

factscheme : <)" factscheme, 2>
mul: <2, Y factscheme : 1>

factscheme : <)' factscheme, 1>
mu1 : <1, Y factscherne : 0>

factscheme : < T , O>
1

Given a function that never terminates, or a particular input for which it

does not terminate,)'f : 0 computes forever. That would be the case in

the example below if succ (the successor function) were substituted for

p r e d in the definition of factscheme, or if factorial were applied to a nega-

tive number.

6.2.1. Domain. Structure

Note that adding xp as we have done requires that the Cartesian

product domains of YFP be separated rather than coalesced, as is usually

the case. -
I T

i.e., given domains A: I 8: . I

a
I

b
I

I I

separated product A B : (T,T) = T A B B

/ \

(a 4 (1 , b)

\ /
(J- ,l) = J - * B B

coalesced product A x B :
T I r s

?''he choice' of separated product implies that construction is non-

strict. Our definition of Yb requires that f : < i ,a> not always result

in 1 , and this would not be possible in a semantics in which the

product is strict, i.e., where <I ,a> = I.

6.2.2. Y and the Algebra of Programs

As in section 6.1.1 it is easy to show that the addition of)/rp

does not disrupt the algebra of programs. The proof of this is in

appendix D.

6-3. A comparison of AFP and the Lambda Calculus

In the following discussion A will refer to the domain of all

lambda expressions. Let the set of AFP languages contain the set

of FP languages plus apply.

There is a mapping from AFP programs to A. That mapping is

the semantic function

F : f-expr -, environment + lambda-expression

that is defined in the appendix. We will show that the range of F is

a proper subset of A, and we will prove two properties that

characterize this subset. From this we will be able to conclude

that any larnbda expression that does not possess these properties

is outside of this subset, and therefore can not be derived from an

AFP program by F i.e., there exist some functions in the lambda

calculus that cannot be directly represented in AFP.

The intent of this discussion is to demonstrate in a t least one

way how AFP is less expressive than the lambda calculus, and

specifically to show that the higher order functions "K" and "Curry"

are undefineable in AFP.

Definition: s is an absh-acted sub-ezpression of e if s = hx.i and

either

4) s is an abstracted sub-expression of r, and Xy.r is

an abstracted sub-expression of e

Theorem 6.2: Every AFP program f is mapped by F to 1 in A such

that 1 = Ax.e and:

1) x does not occur free in any abstracted sub-

expression of e

2) no variable occurs free in 1

Proof: This can be shown by induction on the structure of AFP

functions. By the definition of F i n the appendix B and by

the definition of apply, all predefined AFP functions satisfy

the above properties. If the functions f l , . . . , f , satisfy the

properties, then any function built from an FP combining

form and any of the functions f . . . , f, also satisfies the

properties because no combining form introduces any free

variables.

Corollary: AFP is :ess expressive than the lambda calculus, and all

of AFP can be directly described by a proper subset of

the lambda calculus. In particular, it is impossible to

express in AFP' the equivalent of Ax. ... Ay.e(x) ... ,

where Ax. ... Ay.e(x) ... is a lambda expression that con-

tains abstracted sub-expression Ay.e(x).

What if we wish to define the K combinator in AFP? In the

semantic definition for M: K = Ax.Ay.x, x occurs free in the

abstracted sub-expression Ay.x, so K does not satisfy the conditions

stated above, and therefore cannot be directly defined within AFP.

The same is true of the definition Curry f = Ax.Ay, f:<x,yt, . . . ,y,>

where y = <yl, . . . , y,>. This is not to deny the possibility of

"hardwiring" Curry and K into AFP. In fact it might be very desir-

able to increase the expressiveness of AFP by adding; these

functions. But it would then become necessary to insure that such

an expansion of the language does not change the properties that

make it so useful to program and reason in.

7. CONCLUSION

We have defined and implemented a version of FP very similar to

that given by Backus [I]. We have extended FP with)' and apply, and

have shown that these extensions make FP significantly more powerful,

kt still less powerful than the lambda calculus.

We studied lazy evaluation of FP, and showed that while lazy evalua-

bn can take less time than strict evaluation in certain circumstances,

the overhead involved often increases running time greatly. Lazy evalua-

tion of FP is complicated by the existence of tr~ree sequence construc-

tars, and by the fact that composition and not application is the principal

operator of FP.

FP's functional structure allows one t o program a t a higher level

than one would using an applicative language. FP can also model data

fbws and networks very nicely. It's algebraic properties allow the pro-

g a m m e r to manipulate and reason about his programs in a straightfor-

awtrd way.

It is the opinion of the author t h a t FP has some serious problems.

An IT that could be easily statically typed would be easier to program in.

Although not a topic of this thesis, i t is likely that it would be easier to

perform lazy evaluation on a statically typeable FP. Lazy evaluation,

&haugh i t shows promise, can be extremely costly. The addition of

w l y is necessary for a fixpoint functional, but adds just enough

applicative power to make one desire the ability to define curried func-

tions. FP lacks the variety of data types needed for a comprehensive pro-

gramming environment. But its clear, algebraic structure is nonetheless

a very attractive medium in which to build programs.

REFERENCES

Backus, J. "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs", C o m m .
ACM 21,8 (August 19?8), pp. 613-641.

Backus, J. "Function-level computing", IEEE spe ctrmm, August
1982, pp. 22-27.

Backus, J. "Function Level Programs as Mathematical Objects", In
Proc. of 198 1 Conference on Functional Programming Languages
arid Competer Architecture, ACM, New York, 1981, pp. 1-10.

Friedman, D. and Wise, D. CONS should not evaluate its arguments,
In Aut~mata, .?languages and Programming (Michaelson and Milner,
eds.), Edinburgh Univ. Press, 1976, pp. 257-284

Guttag, J., Horning, J., and Williams, J . "FP with Data Abstraction
and Strong Typing", In Proc. of 1981 Confererice on Functional Pro-
gramming Languages and Competer Architecture, ACM, New York,
198 1, pp. P 1-24.

Henderson, P. and Morris, J., A lazy evaluator, In Proc. of 1976 Sym-
pos. on Principals of Programming Languages, ACM, New York,
1976.

Henderson, P. Func tionel Programming A p l i c a t i o n a n d Imp1 e-
mentation, Prentice-Hall International, London, 1980, pp. 231-239.

Kieburtz, R., "Marigold - A functional, flow-graph language", CS/E-
02-08, Oregon Graduate Center, Beaverton, OR (August 1983).

9. Rollins, G., "Abstract Syntax in a n Initial-Algebra Framework for
Compilers", PhD Thesis, State University of New York, Stony Brook
(1983).

APPENDIX A

FORMAL, DEFINITION OF TEE INTERPRJ3'KR

The Domains af Interpret

notation: a.1 means "item a appended onto list 1"

ele'j means "environment e updated by environment e "'

env = Identifier -, f-expr

state = AST -+ AST

The domains application, definition, f-expr, object and identifier, are sub-

sets of the domain of AST's as defined by the Abstract Grammar.

The Interpretation Functions

Interpret : (application + definition)* -, state -, env -, (AST* x env)

I : (application + definition) -, state -, env -, (AST x state x env)

eval : (object + application) -, state -, env

-9 ((object + application) x state)

defineable : (Identifier X f-expr X env) -, boolean

predefined : Identifier -, boolean

Fn : Identifier -+ (object -r object)

FORCE : (object + application) -+ state -+ env -+ (object x state)

Interpret(tl, . . . , k)wq = let (r,ul,ql) = I [tl]uq in
l e t (L , ~ ~) = Interpretn(t2, . . . , tn)]ulql in

n = 0 -) (0177) ; (r.L1771 t772j)

defineable(i,f,q) = ~ (i) = I -) (Vxjdentifier in f) , ~ (x) # 1 or x = j
+ true ;false

; false

Fn(1d) = cases Id is
add 3 ADD
and AND
apndl 2 APNDL
apndr -T. APNDR
atom 3 ATOM
distl ". DISTL
distr 3 DISTR
div DIV
eq * EQ
ge 3 GE
g t GT
id ". ID
le LE
It -5 LT
length LENGTH
It -". LT
mu1 MUL
ne -". NE
not 3 NOT
null -3 NULL
or ". OR
reverse REVERSE
rot1 3 ROTL

rotr ROTR
sub 3 SUB
t l TL
tlr TLR
trans ". TRANS

eval(t)oq = cases t is

"an object" + (t,v)

force:x 3 (x,cr[x/ t])

1d:x + ~redefined(1d) -+ (r,o[r/ t]) where r = (Fn 1d)x
; let (rl,ol) = eval[(q Id):xI]q in

(rl*al[rl/ t l)

(p -+ f ; g):x + let (rl,o,) = eval[p:xT]oq in
rl = T -+ let (r2,02) = eval [f:x i]alq in (r2,02[r2/ t])
; rl = F -, let (r2,%) = eval[g:x]olq in (r2 ,~z[r2 / t])
; (1 ,QI[l/ tl)

af:x 3 (r,a[r/ t])
where r = cases x is

"an atom" 3 1

<01, . . . , On> 3 "f is predefined"
-+ <(Fn f)O1, . . . , (Fn f)On>
; [f0lSt, . . . ,f0nth]:x

/ f:x =3 cases x is
"an atom" 3 (1 ,v[i / t])
* (l , o [l / t I)
<01> * (O~,o[O~/ t l)
<o,, . . . ,on> *

predehed(f)
-+ let (rz,uz) = eval[/f:<02, . . . , O,>I]alq in

let (r3,a3) = eval[f:<Ol,r2> 00277 in
(r3103[r3/ tl)

; l e t (r2,02) = eval [f 0 [lSi,/ f 0 [Znd1 . . . , n ~]] : x 0 0117
in (rz1v2[r2/ tl)

[f . . . f] : 5 let t' = Ufl:x, . . . , fn:xD in (t',o[tf/ t])

a:x (alw[a/ t])

(bu f a):x 5 let (rl.ol) = eval[f:<a,x> lo7 in (rl,ul[rl/ t])

(while p f):x 3 let (rl ,ol) = eval[p:x]oq in
rl = T -+ le t (r2.02) = eval [(while p f) 0 f :x]olq in

(r21oz[rd t l)
; rl = F -+ (x,wI[x/ t])
; (1 1wJ1 / tl)

S ~ : X (r.w[r/ t]) where r = cases x is
"an atom" 3 1
$ * I
(0 l l . . . , O n > 3 s S n - , O s ; l

r s ~ : x (r.w[r/ t]) where r = cases x is
"an atom" =3 1
$ 3 1
<01, . . . On) * s 5 n -r On_,+,

force0f:x let (rl,ol) = eval Ef:xl/q in
let (r2,02) = FORCE(rl)ulv in

(rz,ffz[rz/ t l)

[f,. . . . , f,] 0 g:x => le t tf = [f, 0 g:x, . . . , I, og:x] in (tf,o[t '/ t])

a0 f:x * (a,a[a/ t])

atom. f:x => let (rl.ol) = eval [f : x l q in (rz,ul[rz/ t])
where rz = cases rl is

"an atom" =3 T
"a sequence" 3 F
[g l : ~ , . . . , g,:~] * F
apndl0g:y J ' F
apndr0g:y 3 F

dist10f:x * let (rl,crl) = eval I (n u l l 0 2 ~ ~ + @
; apndlo [[lgt, lgt 0 Znd],

distlo [ln.tlo 2nd]]) 0f:xjoq in
(r l l~ l [r l / t l)

distr 0f:x ".
let (rl ,al) = eval[(nullo lSt -, p

; apndl 0 [[1 st 0 ld, 2nd],
di~tr~[tl~1~,2~~]])of:x]o~in

(rlJul[rl/ t l)

id0f:x * let (rl,ol) = evalIf:xloq in (rl,al[rl/ t])

1ength.f:~ * let (rl,ol) = eval[f:xlaq in
cases r l is

"an atom" * (L , D ~ [L / t])
$ -. (Olol[O/tl)
<01, . . . ,On> * (n,ol[n/t])
[gl:yI - - . 8 g,:yl J (n,a,[n/ t])
apnd12g:y .J

let (rZ,az) = evalllengtho Znd og :Y]o l~ in
(r 3 0 z b d tl)

where r3 = r2 + 1
apndr 0g:y 3

let (r2]oz) = evalilength 0 lS t0 g : y] u l ~
(r sJO~[rd tl)

where rs = r~ + 1

null. f:x 3 let (rl,al) = evalif:x]aq in (r2,al[r2/ t])
where r2 = cases rl is

"an atom" ". F
9 = 3 T
<0,, . . . ,on> * F
[g ~ : y , . . . ,gn:y] -3 F
apndl0g:y + F
apndr0g:y 3 F

reverse 0 f:x let (rl,ol) = eval [f:x]07) in (r2,~1[rZ/ t])
where r2 = cases rl is

"an atom" 1

<ol, . . . ,on> 3 <on, . . . ,o l>
[g l : ~ , - . - 1gn:yl [gn :~ , - . . g1:yl
apndl 0 g:y 5 apndr 0 [reverse 0 pd, lst] 0 g:y
apndr 0 g:y apndlo [rl",reverse 0 l&] 0 g:y

let (rl,ol) = eval [(null + g ; apndr 0 [tl, ld]) 0 f : x J q in
(r l l ~ l [r l / t l)

r o t r o f : ~
let (rl,ol) = eval [(null -. 56 ; apndlo [rln,tlr]) 0 f : x] q in

(rl?ol trl/ tl>

tl0f:x let (rl,al) = eval[f:x]oq in
cases rl is

"an atom" 3 (I , ol [L / t])
9 -. (1 I@I[l/ t l)
(01, . . . , On> * (r2,01[r2/ t])

where rz = <02, . . . ,On>
[BI:Y. . . - , g,:~] 3 (rz.ul[rz/ t])

where r2 = [gz:y, . . . , g,:y]
apndlog:y 3 let (rz,02) = eval [znd og:y]lolq in

(r2, ff2[r2/ tl
apndr0g:y

let (r2, 02) = eval l[(null 0 lSt + ?g
; apndro[tlo 1st,2nd]) og:y]o,q
in (r292[r2/ t l)

tlr0f:x let (rl,al) = eval[f:x]oq in
cases rl is

"an atom" 3 (I ,u~[L/ t])
* (l S c J I [~ / t l)
<01, . . . , On> (r2,al[rz/ t]) where r2 = <01, . . . , On_,>
[gl:yI . . . * g,:yl 3 (r,to,Crz/tl)

where rz = [gl:y, . . . , gn-l:y]
apndl0g:y l e t (r2,0z) =

eval [(null 0 -+ @
; apndl~[1St , t l r~2nd]) 0g:yIJ

in (rz,cJz[rz/ tl)
apndr o g:y 3 l e t (r z , ~ 2) = eval[lSt o g:y nolq in (r2,02[rz/ t])

trans0f:x 3 l e t (rl,ol) = eval[(/andoanull -+ ip

; apndlo [alSt,transo atl]) of:x] (rq
in (r l > q [r l / t])

lStaf:x 3 le t (rl,al) = eval[f:x]o77 in
cases rl is

"an atom1' 3 (I , ol [l / t])
* (1 J J l [l / t l)
to , , . . - , on> * (O,,o,[O,/ t])
[g,:y, . . . ,gn:y] 3 let (r2,02) = evallgl:y]olq in

(rz,%[r2/ t l)
apndl0g:y le t (rZ,az) = eval[l"og:y] olT in

(rz1@2Crz/ tl)
apndr 0g:y + let(r2,0z) =

eval1 (null 0 lSt -, 2nd
; l S t 0 lS') o g : y] ~ ~ 7)

in (rz,oz[rz/ t l)

@ o f 3 let (rl,ol) = evall (s-l)tho t10 f :x~oq in (rl.ol[rl/ t])

rld0f:x let (rl,al) = eval[f:x]oq in
cases rl is

"an atom" * (I ,a l [i / t])
Q, * (l ro , t l / t l)
<01, - . - ,on> 3 (O,,a,[O,/t])
[gl:y> . . . ,g,:yl -c.

let (r2,o~) = evalkn:yllolq in (rz,uz[rz/ t])
apndl 0 g:y

let (r z , ~ ~) = eva l [(nu l l02~~ -r lSt +

; r lSt 0 2nd) 0 g:y]olq in
(r2,0z[r2/ tl)

apndr0g:y *
let(r,v2) '= eval [2nd 0 g :y]olq in (r2, 02[rz/ t J)

r ~ ~ 0 f : x * let (rl,o,) = e ~ a l ~ r (s - l) ~ ~ t l r o f : x] o ~ in
(~ l l ~ l r ~ l ~ t l)

/fog:x * let (rl,vl) = eval[g:xauq in
cases r l is

"an atom" (1 ,al[l / t])
$ * (1 P d J - / ill
<01> (01,q[01/ tl)
<o,, . . . ,on> =3

predefined(f) -+ let (r2,02) = eval[/ f : <02, . . . , On>]olq in
let (r3,u3) =

eval [f:<Ol,r2>]0277 in
(r3103[r3/ tl)

; let (r2,0Z) =
evallf [lSt,/ f 0 [2nd, . . . , nth]]:rl j olq

in (rzla2[rz/ t])
[h:y] =j let (rZ,02) = eval [h:y]olq in (rz,02[rz/ t])
[hl:y, . . 9 , hn:y]

let (rz,uz) = eval[f [hl:y,/ f 0 [h2:y , . . . , h,:y]]]alq in
(r21~~2[r2/ tl)

apnd10h:y
let (r2,u2) =

e ~ a l ~ (n u l l ~ 2 ~ ~ -, lSt ; fo [lS t , / f~2nd])~h :y] u1q
in (rz,az[rz/ tl)

apndr Q h: y 3
let(r2,u2) =

eval [(null 0 tl -+ 15' ; f 0 [I&,/ f 0 tl]) 0 apndr 0 h:y]ulq
in (rz,az[rz/ t])

(af)og:x 3
let (rl,al) = eval [g:x j q in (rz, al[rz/ t j)

where r2 = cases r l is
"an atom" 3 i
9 * #
<01, . . . ,On> 3 predefined(f)

-+ <(Fn f)Ol , . . . , (Fn f)O,>
; [f o I&, . . . , f onth]:rl

[hl:y, . . . ,hh:y] 3 [fohl:y, . . . , f oh,:yj
apndl 0 h:y * apndl 0 [f 0 l",af 0 2nd] 0 h: y
apndr 0 h: y apndr 0 [af 0 1&,f 0 2nd] 0 h:y

(buf a)og:x 3 le t (rl,a,) = eval[fo[~,g]:xoq in (rl,o,[rl/t])

(while p f) 0 g:x 5
let (rl,wl) = eval[pog:x]aq in

rl = T + let (r2,a2) = evaln(whi1e p f) ~fog:x~a177 in
(r2,02Cr2/ tl)

; rl = F -+ let (r2,0z) = eval[g:x]a,q in (r2,a2[rz/t])
; (1 .o1[1/ L])

(p - , f ; g)oh :x
let (rl,ol) = eva![poh:x]oq in

rl = T let (rz,a2) = eval If 0 h:x 1 olq in (rz, a2[rz/ t])
; rl = F -+ let (rz, az) = eval [g 0 h:x]alq in (rz,02[rz/ t])
; (1 , a l r l / tl)

f 0 g:x + let (rl,ul) = eval[g:x]q in
l e t (r2,az) = FORCE(rI)ulq in

(r3,a2[r3/ t]) where r3 = (Fn f)r2
where f E tadd, and, div, eq, ge, g t , le, I t , mul, ne, not, or, sub!

FORCE(t)av = cases t is
an object 3 (t,s)
[fl:x, . . . ,f,:x] 5

let (I,a,) = <FORCE(fl:x)aq, . . . ,FORCE (f,:x)aq>
in (<L>,al[<l>/ t])

apndl0g:x 2
let (rl,al) = eval[g:x]luq in

Irrl is an object" -+ (r2,~1[r2/ t]) where rz = APNDL(rl)
; le t (rz,a2) = FORCE(r,)o,q in

(r3,az[r3/ t]) where r3 = APNDL(r2)
apndr0g:x 3

let (rl,al) = eval[g:xl)aq in
"rl is an object" -, (r2,a1[r2/ t]) where rz = APNDR(rl)

; le t (r2,wz) = FORCE(rl)alq in
(r3,02[r3/ t]) where r3 = APNDR(r2)

APPENDIX B

SEXANTIC DEFINITION OF FT

The Domains of Meaning

s-env = identifier -, s-function
s-function = s-object -, s-object
s-object = s-atom + s-sequence + 1
s-sequence = s-object*
s-atom = integer + literal + boolean

(Where identifier is the primitive domain of identifiers, integer is the
primitive domain of integers, literal is the primitive domain of characters
and character strings, boolean is {true,falsej, and I is "bottom" or
"undefined".)

The Functions of Meaning

Meaning : (object + f-expr + application + definition) * +

(s-function + s-object) * x s-env

Meaning' : (object + f-expr + application + definition)* -, s-env +

(s-function + s-object)* x s-env

M : (object + application + definition + f-expr) -+ s-env -+

(s-function + s-object) x s-env

F : f-expr -+ s-env -+ (s-object -, s-object) + 1

notation: a.1 means "item a appended onto list 1"
e[eWj means "environment e updated by environment e "

Meaning [(t . . . , b) Meaning' (tl, . . . , k)]I#

where q5 is an empty s-env

Meaning' I (t l , &) let (~,.TJIJ = E i t , in
let (L,.72) = Meaning' [(t,, t,jq I,, in

n = 0 -. (017,) ; (0.Lo17?2J

M (0]qu=<OU,qu> (0, is the semantic object represented-by AST 0)

M if]qu=<F [f l/qu,7u> (where f is an f-expr)

F [atornjq, = AO. 0 "is an atom" -, true
;O # 1 -3 false
; 1

Fl[eqiv, = AO. 0 = <Ol,O2>
-, O1 = O2 -, true

;false

F [null]qo = AO. 0 = <> -+ true
;O # 1 -+ false
; 1

Fjadd 17, = hO.0 = <01,02> & 0,,02 are numbers + 0, + O2
; 1

F[sub]qu = hO.0 = <Ol,O2> & 01,02 are nurnbers * 0, - O2
; 1

F~mul]q, = hO.0 = <01,02> & Ol1O2 are numbers + 0, % O2
; 1

Fldivjq, = AO.0 = <01,02> & 0,,02 are numbers -+ 0,/02
; 1

FIgtlqu = A O . 0 = <01,02> & 0,,02 are numbers + 0,>02
; 1

Flgejq, = AO.0 = <01,02> & 01,02 are numbers -, O1 2 O2
; 1

F[lt]qD = AO.0 = <01,02> & 01,02 are numbers + 0,<02
;I

F[le]qg = AO.0 = <01,02> & 01,02 are numbers + 0, 5 O2
; 1

F[ne]lqO AO.0 = <01,02> & 01,02 are numbers -+ O1 # O2

F I a n d] ~ , = XO.0 = <true,true> -, true
;O = <true,false> or 0 = <false,true> or 0 = <false,false>

-, false
; 1

F[or]q, = hO.0 = <true,true> or 0 = <true,false> or 0 = <false,true>
-, true

;O = <false,false> -, false
; 1

FInotjq, = AO.0 = true -, false
;O = false -, true
; 1

F gp -+ f ig 17, - ~ 0 . F l p nqU:0 = true -+ F U f II.rl,:o
;F[p 1]q0:0 = false -, F [g I]vo:O
; 1

Flbu f a] ~ , = AO. F[fnq,:ta,O>

F !while p f lqa = YAW.AO.F [p l ~ , : 0 = true
-, w: (F !f 077,: 0)

;FIp]q,:0 = false + 0

APPENDIX C

CORRECTNESS OF TRANSFORMATIONS

For each transformation eval [e = eval je' 1 performed by the interpreter,
we will show that e is less defined than or equal to e ' ,
i.e. M(e) G M(el). The function

is a semantic function defined in Appendix B.

The following liberties will be taken:

1) Objects will denote their meanings. For example: M(I) = I.,
M(<1,2>) = <1,2>.

2) The environment and state arguments to eval and M have no effect
on the proofs, and ~vill therefore be omitted.

3) I f e v a l ~ [e ~ f ~ = e v a l [e ~ ~ f ~ , t h e n b y t h e t h e o r e m o n p . 2 6 i t w i l l b e
sufficient to show that M(e) L M(el).

4) Obvious steps are left out of the proofs. For example:
M(t1) : M(<a,, . . . ,a,>)

= (A<O1, . . . ,On> . <Oz, . . . ,On>) : <al, . . . ,a,>
= <az, . . . , a,>

will be reduced to a single step.

5) If the proofs of two transformations are very similar, then only one
of the proofs is given.

6) For the transformation evallf 0 g] = eval [h], we want to show that if
M(i0g:x) # 1 then M(f0g:x) = M(h:x). The set of all x s.t.
M(f 0 g:x) # 1 is a subset of the se t of all x s.t . M(g:x) # I. For most
proofs we will show that M(f0g:x) = M(h:x) wherever M(g:x) # 1 ,
which will clearly cover all cases where M(f 0g:x) # I.

7) Some of the proofs will take advantage of the algebra of programs
[11.

Theorem TI: M(disU) II: M(nu31 2nd + ip

; apndlo [[lB', 1". 2nd]ldistlo [lSt,t10 znd]])

Proof:

case 1: x = <a,<>>

M(distl:<a,<>>) = <>
~ ~ ((n u l l o 2nd + $;...):<a,<>>) = $

case 2: x = <a,<bl, . . . , bn>>

M(distl:<a,<b,, . . . , bn>>) = <<a,bl>,. ..,<a,b,>> (M(dist1))
~ ((n u l l o 2nd -, i#i ;...):<a,<b,, . . . , bn>>)

= ~ (a ~ n d l o [[l~,l*~2nd],distl~~l".tl~2nd]]:<a.<bl. b,>> (cond)
= M(apndl:<<a,bl>,distl:<a,<bz, . . . , bn>>>) (constr,selec tors)
= M(apndl:<<a,bl>,<<a,bz> ,..., <a,b,>>>) (M(dist1)
= <<a,bl> ,..., <ants,>> (M(a~ndl))

Theorem T2: M(distr) E M(null0 lSt -,
; apndr 0 [[lSt0 1St,2nd],distr 0 [tlo 1 ~ , 2 ~ ~]])

Proof: similar to proof of T1

Theorem T3: M(id 0 f) C M(f)

Proof: 111.2 in [I]

Theorem T4: M(reverse 0 apndl) II M(apndr 0 [reverse 0 2nd, 1st J)

Proof:

case 1: x = <a,<>>

M(reverse 0 apndl:<a,< >>)
= M(reverse):M(apndl: <a, <> >)
= M(reverse): <a>
= <a>

M(apndr 0 [reverse 0 pd, lst] :<a,<> >)
= M(apndr):M([reverse 0 2nd11St]: <a,<>>)
= ~(a~nd r) :M(<reve r se : <>,a>)
= M(apndr): <<>,a>

(camp)
(constr)

(M(reverse))

case 2: x = <a,<bl, . . . , bn>>

M(reverse o apndf: <a,<bl, . . . , bn>>)
= M(reverse):M(apndl):<a,<bl, . . . , bn>>) (C O ~ P)
= M(reverse):<a,bl, . . . , bn> (M(a~nd1))
= <b,, . . . , bl,a> (M(reverse))

d st M(apndrO [reverse D2n , I]:<a,<bl, . . . , b,>>)
= M(apndr):w[reverse 0 2 ~ ~ , 1 s t] : < a , < b ~ , . . . , bn>>) (C O ~ P)
= M(apndr):M(<reverse:<bl, . . . , bn>,a>) (selectors,constr)
= M(apndr):<<bl, . . . , bn>,a> (M(reverse))
= <bl, . . . , b a a >

Theorem T5: M(reverse 0 apndr) c M(apndl0 [r lA,reverse 0 lSt])

Proof: similar to proof of T4

Theorem T6: M(rot1) C M(nul1 + ijS ; apndr 0 [tl, lSt])

Proof: I

case 1: x =$

M(rotl:$) = $
M((nul1 -+ ?j ; apndr 0 [tl, lSt]):$) = q5
case 2: x = <al,.. .,an>

M(rot1: <al, . . . , an>) = <X6,a,>
M((nul1 -+ g;apndr 0 [tl, lSt]):<al, . . . , an>)

= M(apndr0 [tl, lSt]:<al, . . . , an>)
= M(apndr: < <a2, . . . , a,>, a]>)

Theorem T7: M(rotr) E M(nul1 -, @ ; apndl [r lA, tlr])

Proof: similar to proof of T6

(cond)
(comp,tl,selectors)

(apndr)

Theorem TO: M(tl0 apndr) E M(null0 lSt -, @ ; apndr 0 [tl 0 1A,2nd])

Proof:

(c ond)
(constr,selectors)

Illemem T9: M(t1r o apndl) E M(null0 2nd -t $; apndl 0 [lst, tlr 0 2nd])

b f : similar to proof of T8

lkeorem TlO: M(t1r 0 apndr) E M(lSt)

Pboof: sirnilar to proof on page 29

Tkeiorem T11: Mftrans) 5 M(/ and o anull -, $; apndl 0 [a lSt, trans 0 d l])

(trans)
(cond)

~ a n s : < < a l l , . . . , aIn>, . . ., <a,,, amn>>)
= <<al1, . . . ,a,,> ,..., tala, . . . ,ank>> (trans)

M/and 0 anull ...) :<<al1, . . . , alll>, . . .,<a,,, . . . , amn>>)
= M(apndl 0 [a ld,trans oatl]:<<all, . . . , aIn>, ..., <aml, . . . , amn>>) (cond)
= M(apndl:<<al,. a,,>,trans:<<al,. . . . , aln>, <amz,anh>>>)

(constr,sel, t1,a)
=Jd(apndl:<<a,,, . . . , a,,>,<<a,,, . . . , am> . . . , <aln, a,>>>) (trans)
= <<al1, . . , ,a,,> ,..., <aln, . . . ,arrh>> (a ~ n d l)

Proof:

case 9: x = <a,$>

M(1*0 apndl: <a,$>)
= M(lSt):M(apndl:<a,Q>)
= Id(lSt):<a>
= a

M(ld:<a,Q> = a

case 2: x = <a,<bl, . . . , bn>>

M(l*o apndl: <a,<bl, . . . , b,>>)
= lH(lSt):M(apndl: <a,<bl, . . . , bn>>)
= ad(lSt):<a,bl, . . . , b,>

Theorem T13: M(lst oapndr) E M(null0 lSt -, 2nd ; lSt 0 lSt)

Proof:

case 1: x = <$,b>

~ (1 ~ ~ 0 apndr: <<al, . . . , a,>,b>)
= B4(lSt):~(apndr:<<al, . . . , an>,b>)
= %4(lst):<a1, . . . , an,b>
= al

M((null0 1" -+ 2nd ; l S t o lst):<<al, . . . ,a,>,b>)
= ~ (1 ~ 0 lSt:<<a1, . . . , a,>,b>)
= &l(lSt:<al, . . . ,a,>)
= a1

(c ond)
(znd>

(cond)
(comp , lSt)

(1")

Theorem T 14: M (sth) C_ M ((s - i)th 0 tl)

Proof:

Theorem T15: M (r lSt 0 apndl) E null 0 Znd + lSt ; rid 0 Znd)

Proof:

case 1: x = <a,$>

case 2: x = <a,<bl, . . . , bn>>

(cond)
(lSt)

(c ond)
(camp)

(pd>
(r 1 st)

Theorem T16: M(rlS"oapndr) E ~ (2 ~ ~)

Proof: similar to proof of TI2

Theorem T17: ~ (r s ~ ~) L ~ (r (s - l) ~ ~ o t l r)

Proof: similar to proof of TI4

Theorem TlB: M(/f) E M(f 0 [lSt,/ f 0 [2nd, . . . , nth]]) where n = length of x
and n > 1

Proof:

Theorem Tl9: M (/ f 0 apndl) E hl(nul1 o znd + 1" ; f [I" ,/ f 0 2ndl)

Proof:

case 1: x = <a,#>

M(/ f 0 apndl: <a,$ >)
= M(/f):M(apndl: <a,$>)
= M(/f):<a>
= a

~ ((n u l 1 . 2 ~ ~ + ld ; f 0 [ld, / f 02"~]):<a,$>)
= ~ (1 ' ~ : <a,$>)
= a

(cond)
(lSt)

case 2: x = <a,$>

M(/f 0 apndl:<a,<b,, . . . , b,>>)
= M(/f):M(apndl: <a,<bl , . . . , b,>>) (c o m ~)
= M(/f): <a,b,, . . . , bn> (apndl)
= M(f):<a,M(/f):<b,, . . . , b,>> (4

~ ((n u l l 0 2 " ~ + 1" ; f o [l " , / f 0 2 ~ ~]) : < a , < b ~ , . . . , bn>>
= M(f 0 [lSt,/ f 0 2nd]:<a,<bl, . . . , b,>>) (cond)
= ~ (f) : ~ ([l ' ~ , / f 0 2nd]:<a,<bl, . . . , bn>>) (c o m ~)
= M(f):<a,M(/f):<bl, . . . , b,>> (constr,comp,selectors)

Theorem T20: M(af 0 apndl) E M(apndl0 [f 0 lst,af 0 Pd])

Proof:

case 1: x = <a,$>

M(af 0 apndl: <a,$>)
.= M(af):M(apndl: <a,$>) (camp)
= M(af):<a> (a ~ n d l)
= <M(f):a> (a)

M(apndl0 [f 0 lSt, af 0 2nd] : < a, q5 >)
= M(apndl):M([f 0 ld,af 0 2nd]: <al$>) (C O ~ P)
= M(apndl):<M(f):a,M(af):$> (constr,selectors,comp)
= M(apnd1): <M(f):a,$> (a)
= <M(f):a> (a ~ n d l)

case 2: x = <a,<bl, . . . , bn>>

M (a f 0 apndl: <a,<b,, . . . , b,>>)
= M(af):M(apndl:<a,<b,, . . . , bn>>) (camp)
= M(af):<a,b,, . . . , b,> (a ~ n d l)
= <M(f):a,M(f):bl, . . . ,M(f):b,> (a)

M(apndl0 [f o ld1af 02*~]:<a,<b,, . . . , bn>>)
= ~(a~nd l) :M([f 0 lst,af 0 2nd]: <a, <bl, . . . , bn>>) (c o m ~)
= M(apndl):<M(f):a,M(af):<b,, . . . , bn>> (constr,selectors,comp)
= M(apndl):<M(f):a,<M(f):b,, . . . , M(f):b,>> ' (a)
= <M(f):a,M(f):bl, . . . , M(f):b,> (a ~ n d l)

Theorem T21: M(af 0 apndr) C M(apndr [af 0 lSt,f 0 pd])

Proof: similar t o proof of T19

Theorem T22: M((bu f a) o g) L M(f 0 [a,g]) where a is a n object

Proof:

case 1: x = <a>

case 2: x = <al, . . . ,a,>

(cond)

(c ond)
(camp)

(constr, lSt, tl,comp)

Proofs tha t the important laws of the Algebra of FP Programs still hold
when apply is added to FP:

apply O (P -+ f ; g):x
--' apply:((p -+ f ; g):x)
* apply:(p:x) -+ (f:x) ; (g:x)

case (p:x) = T
* apply: (f : x)

case (p:x) = F
-.' apply: (g : x)

otherwise
-c. 1

(p + apply 0 f ; apply 0 g):x
--/ (p:x) -+ (apply o f:x) ; (apply 0 g:x)
* (p:x) -+ (apply:(f:x)) ; (apply:(g:x))

case (p:x) = T .

* apply: (f :x)
case (p:x) = F
* apply:(g:x)

otherwise
J 1

(p -' f ; g) apply:<h,y>
(P -+ f ; g):(apply:<h,y>)

* (P -+ f ; g):(h:y)
3 (p:(h:y)) + (f:(h:y)) ; (g:(h:y))

case p:(h:y) = T
f:(h:y)

case p:(h:y) = F

(C Q ~ P)
(cond)

(cond)

(cond)

(c ond)

(c ond)
(camp)

(cond)

(cond)

(c ond)

(camp)
(apply)
(cond)

(cond)

3 g:(h:y)
otherwise

3 1

(p apply -+ f apply ; g o apply):<h,y>
case p apply: <h,y> = p: (h:y) = T
3 f 0 apply:<h,y>
3 f: (apply: <h, y>)
3 f:(h:y)

case p 0 apply:<h,y> = p:(h: y) = F
3 g 0 apply:<h,y>
* g: (apply:<h,y>)
3 g:(h:y)

otherwise
1

95

(c ond)

(cond)

(cond)
(camp)
(apply)

(cond)
(camp)
(apply)

(cond)

Proofs that the important laws of the Algebra of FP Programs hold when
Y is added t o FP:

(p + f ; g) 0 h z (p h) -+ (f h) ; (g h)

(p -+ f ; g) Ye:x
3 (p -+ f ; g):(Ye:x)
3 (p:(Ye:x)) -, (f:(Ye:x)) ; (g:(Ye:x))

casep:fle:x) = T
3 f:()'e:x)

case p:(Ye:x) = F
3 g:()'e:x)

otherwise

(p 0 Ye -, f Ye ; g 0 Ye):x * (p o Ye:x) -+ (f Ye:x) ; (g 0 Ye:x)
case (p 0 Ye:x) = (p:(Ye:x)) = T
* f 0 Ye:x
3 f:('fe:x)

case (p 0 Ye:x) = (p:()'e:x)) = F
3 g Ye:x
5 g:(Ye:x)

otherwise
3 1

h o (p + f ; g) b p - + (h f) ; (h 0 g)

(camp)
(constr)

(constr)
(camp)

(camp)
(cond)

(cond)

(cond)

(c ond)

(cond)
(camp)

(cond)
(camp)

(cond)

2 + f ; g):x)
+ Ye:((~:x) -, (f:x) ; (g:x))

casep:x = T
3 Ye:(f:x)

casep:x = F
3 Ye:(g:x)

otherwise
3 Ye:l
3 1

p + y e 0 f ; y e 0 g:x * (p:x) + (Ye 0 f:x) ; (Ye 0 g:x)
case (p:x) = T

5 Ye 0 f:x
5 Ye:(f:x)

case (p:x) = F
3 Ye 0 g:x
5 Ye:(g:x)

otherwise
3 1

(camp)
(cond)

(cond)

(cond)

(cond) .

(c ond)

(cond)
(camp)

(cond)
(camp)

(cond)

APPENDIX E

Proof that 7, a function that maps LAPP, a lanaguage of applications, into

LAFP, an AFP language, preserves the meaning of its domain.

Definition: LAPP is the language of expressions e such that

1) e ELAFP

2) e = (c : d) a n d c € L A p p a n d d € L A P P

3) Nothing else is in LApp

Definition: p : (LmP + LAPP) -+ A

(rnl) p(0) = Oo (0, is the object denoted by 0)
(m2) p(a:b) = p(a):p(b).

(m3) ~ (f O g) = hO . P(f) : : 0)
(m4) p([f,, . . . , fz]) = A 0 . t p (f ,) :O , . . . ,p(f,):O>
(m5) apply) = A<f,x> . f:x

(me) p(f) = F(f)$

f is a functional expression (i.e. an AFP expression that denotes a func-
tion). F is a semantic function that maps functional expressions into
lambda expressions (Appendix B).

Definition: 7 : LAPP + LAFP

(bl) ~ (a) = a (a E 0)
(b2) ~ (a : b) = a:b (a,b E 0)
(b3) 7(a:(b:c)) = ~ (a 0 b:c) (a,b E 0)
(b4) 7(a:(b:c)) = 7(a :~ (b : c)) (a E 0, b not E 0)
(b5) ~ ((a : b):c) = apply [a,Const(~(c))]: b) (a E 0)

(cl) Const(a) = B (a E 0)
(c2) Const(a:b) = a 0 Const(b) (a E 0)

Definition: N : LAFP + LAPP -, integer

(nl) N(a) = 0 (a E (objects + functional expressions))
(n2) N(a:b) = N(a) + N(b) + 1

Proof: byInduction onN(x)

Bases: I) N(x) = 0

Hypothesis: V x in LAP? s.t . N(x) < n, p(x) = ~ (T (x))

Induction: V x in LATT S. t. N(x) = n, p(x) = p (~ (x))

Case 1: x = a:(b:c) a,b E objects + functional expressions

(m2)
(b3)

(m a
(m3)

(beta red)

(2)

Case 2: x = a:(b:c) a E (objects + functional expressions), b @ (objects
+ functional expressions)

1) , u (7 (x)) = p(~(a:(b:c))) = p(T(a:7(b:c)))
2) N(b:c) = N(6) + N(c) + 1
3) N(T(~:c)) c: 1
4) N(7(b:c)) < N(b:c)
5) N(ar~(b:c)) < N(a:(b:c)) = n
6) p (a : ~ (b : c)) = p(T(a:T(b:c)))
7) p(b:c) = p (~ (b : c))
8) p (a :~(b :c)) = p(a) :p (~(b :c))

9) = p(a):p(b:c)
10) P(a):~(b:c) = p (~ (a : ~ (b : c)))
11) p(x) = p(a:(b:c)) = p(a):p(b:c)

12) p(x) = P(T(X))

(b4)
(N)

(Lemma 1)

(2 & 3)
(4)

(~ Y P)
(~ Y P)

(7)
(6,8,9)

(11,lO)

Case 3: x = (a:b):c a E (objects + functional expressions)

1) p(x) = p((a:b):c) = p(a:b):p(c)

2) = (@(a) :~ (b l l :~ (c)
3) ~ (x) = ~((a:b):c) = apply 0 [a,Const(T(c))]: b) (b 5)
4) N(T(c)) 5 1 (Lemma 1)
5) ~ o n s t (~ (c)) is a n FP function (Const)
6) apply 0 [a ,Const(~(c))] E (objects+f-exprs) (5 & def of FP function)
7) n = N(x) = K(a) + N(b) + N(c) + 2 = N(b) + N(c) + 2 (XI
8) ~(applyo[a,Const(7(c))]:b) = N(b) + 1 < n (N)
9) @(apply 0 [a,Const(T(c))]:b) = mu(7(apply o [a, Const (~(c))] : b)) (hyp)
10) p(app1y 0 [a,Const(~(c))]:b = ,u(apply 0 [a,Const(T(c)) 1) :p(b) (m2)
11) = (hO.p(apply):(p([a,Const(~(c))]) :O)): p(b)
12) = p(a~~lY):(p([a,Const(~(c))l):u(b)) (beta red)
13) = p(apply):((AO.<p(a):O,p(Const(~(c))):O>):p(b)) (m4)
14) = p(app1y) :((AO.<p(a):O,(XO.p(7(c)).O>):p(b)) (Lemma 2)

15) = @ (~ P P ~ Y) : (< ~ (a) : ~ (b) , (A ~ . P (~ (c)) : P (~) >) (beta red)
16) = P(~PP~Y):(<P(~):P(~),P(T(C)) >) (beta red)
17) = p(appIy):(</J(a) :p(b),p(c)>) (~ Y P)
18) = (X<f,x> 0 f:x):(<p(a):p(b),p(c)>) (m5)

19) = (~ (a) :~c . (b)) :~ (c) (beta red)
20) @(XI = P(T(x)) (2,3,9,19)

Case 4: x = (a:b):c a 6t' (objects + functional expressions)

1) p(a: b) = ,u(T(a: b))
2) N(a:b) = N(a) + N(b) + 1
3) N(~(a:b)) 5 1

4) N(a) 2 1
5) N(a:b) 2 N(b) + 2
6) N(a(a:b)) < N(a: b)
7) N(~(a:b):c) < N((a:b):c) = n
8) d ~ j a : b) : c) = p(7(7(a: b) :c))
9) p (~ (x)) = p (~ (T (a : b) : c)) = p(T(a: b) : c)

10) = p(T(a:b)):p(c)
11) = p(a: b) :p(c)
12) ~ (x) = p((a:b):c) = p(a:b) :p(c)

13) = P(T(x))

(~ Y P)
(N)

(Lemma 1)
(a not in (objects + f-exprs)

(N4)
(3,5) .

(6)
(~ Y P)

(be)
(m2)

(1)
(m2)
(10)

Proof: by Induction on N(a)

Bases: I) a E (objects + functional expressions)

N(~(a1) = N(a) (b 1)
N(a) = O (K)

11) a = p:q p,q E (objects + functional expressions)

N (~ (a 1 1 = N(p:q) = N(P) + N(q) + 1 (N)
= O + O + l (N)
= 1

Case I: a = p:(q:r) p,q E (objects + functional expressions)

Case 2: a = p:(q:r) p E (objects + functional expressions), q @

(objects + functional expressions)

Case 3: a = ((p:q):r p E (objects + functional expressions)

1) N(7(a)) = N(~((p:q):r)) = N(~(apply0 [p,Const(~(r))]:q)) (b5)
2) N(T(r)) s 1 (~ Y P)
3) Const(~(r)) is an FP function (Cons t)
4) apply [p,Const(~(r)) l E j (def of FP function)
5) n = N((p:q):r) = N(q) + N(r) + 2 (N)
6) N(app1y 0 [p,Const('T(r))]:q = N(q) + 1 < n (K)
7) N(T(apply0 [p,Const(~(r))]:q)) I (~ Y P)
8) N(7(a)) r 1 (L7)

Case 4: a = (p:q):r p tit (objects + functional expressions)

Case 1: a E (objects + functional expressions)

Case 2: a = p:q p,q E (objects + functional expressions)

(Cons t)

(m3)

(m6,F)
(beta red)

(m2)

APPENDIX F

THE SYNTAX OF FP

"fie syntax of the user-level source language is defined by a

context-free grammar. Annotations have been added to this grammar to

describe the translation of the source language to AST's. The Syntax

Analyzer, which performs the translation, was automatically produced by

sac, a syntax analyzer constructer. [I]

Concrete Grammar

progam :: = statement-list 30pr program
statement-list ::= statement statement-list

I E
statement :: = definition $Opr def

I application
defilEition ::= def Identifier = functional-form
functional-form ::= term ff-tail
f f - td ::= + functional-form ; functional-form $Opr condition (1)

I &

term ::= factor term-tail
termtail ::= 0 term SOpr compose (1)

I c
f a c b ::= insert-L

I apply-to-all
l ff

ff ::= construction
I constant
1 binary-to-unary
I while
1 (func tional-form)

I function-name
function-name :: = selector

I tl
I id
I atom

I eq
I null
I reverse
I distl
I distr
I length
I add
/ sub
I mu1
I div
I trans
1 and

I or
1 not
I apndl
I apndr
I right-selector
I tlr
I rot1

105

$Opr select

$0pr Rselect

I rotr
I Identifier
I gt
I ge
I I t
I le
I ne

selector :: = lSt] 2nd I 3'd / . . .
right-selector ::= r ld / pd I 3'd I . - .
construction ::= [functional-list] $0pr construct
func tional-list : : = func tional-f orm furac tional-lis t-tail

I &

functional-list-tail : : = ,functional-form functional-list-tail
I E

constant ::= object
insertL ::= /factor
apply-to-all : := af actor

$Opr constant
$Opr insertL

$Opr applyAll

binary-to-unary ::= bu functional-form object
while :: = while f unc tional-f orm func tional-f orm
application ::= functional-form : fp-object
fp-object ::= object

I application
object ::= <sequence>

I atom
I bottom

sequence ::= object s-tail

I &

s-tail ::= ,object s-tail
I &

atom ::= literal
I number
I boolean

bottom ::= 1
literal ::= Literal
number ::= Numeric
boolean ::= T

I F

$0pr bu
$Opr while
If60pr apply

$Opr sequence

Concessions to the ASCII Character Set

In order to make it possible to input FP expressions using the ASCII

character set, the following substitutions are made:

FP symbol ASCII equivalent

APPENDIX G

ABSIXACT SYNTAX GRAMMAR FOR FP

Syntactic Domains:

atom =lNumeral,Literalj

definition = {def j

application ={apply]

object =~a tom,sequence , l~

f-expr = !condition, compose, select, Rselect, construct, constant,
insertR, insertl, applyA11, bu, while, tl, id, atom, eq, null,
reverse, distl, distr, length, add, sub, mul, div, trans, and, or,
not, apndl, apndr, Identifier j

Productions:

program -, (definition + application) *
def -, Identifier f-expr

apply -, f-expr (object + suspension + apply)

condition -, f-expr f-expr f-expr

compose + f-expr f-expr

select -, Numeral

Rselect -, Numeral

construct -, f-expr *
constant -, object

insertL -, f-expr

applyAll + f -expr

bu -) f-expr object

while -, f-expr f-expr

sequence + object *

BIOGRAPHICAL NOTE

The author was born 19 August 1952, in Bayport, New York. She

attended the Bayport public schools and graduated from James Wilson

Young High School in 1969.

The author attended Indiana University School of Music, receiving a

Bachelor of Music in 1973 and Master of Music in 1976. During that time

she taught piano and was an associate instructor in Music Theory. In

1978-1979 the author was a visiting lecturer at Indiana University

Southeast.

In 1980 the author began taking courses in Computer Science at

S.U.N.Y. at Stony Brook, where she married Eugene Rollins. In 1981 she

began her studies at the Oregon Graduate ~ e n i e r where she completed

the requirements for the degree Master of Science in Computer Science,

in August 1983.

