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ABSTRACT 

Objective: To algorithmically extract lab test and value pairs and to evaluate the performance of 

a machine learning-based solution to this task as compared to a rule-based solution. 

Materials and Methods: Feature construction and annotation input/output were implemented as 

part of the cTAKES pipeline. The final feature space used in our implementation comprised of a 

combination of token and contextual word contents for both the lab test mention and lab value, 

as well as features identifying structure, such as distance between the test mention and value. A 

support vector machine (SVM) classifier was trained on 200 documents from the 2010 

Informatics for Integrating Biology & the Bedside (i2b2) data set using the aforementioned 

feature space, a linear kernel, 10-fold cross validation, and a grid search for hyperparameters. 

The trained classifier was then run on a 50 document holdout data set, also from the 2010 i2b2 

data set.  

Results: We obtained extraction results of an F1-score of 0.874 with precision 0.861 and recall 

0.888. A rule-based approach to this extraction task designed for extraction from biomedical text 

obtained an F1-score of 0.0897, with a precision of 0.0473 and recall of 0.8597. 

Discussion: The performance of the support vector machine was significantly better than its 

rule-based counterpart when applied to extraction from clinical narratives, for which the rules in 

the rule-based solution were not specifically designed. We note several possible expansions on 

this work through which the performance of the support vector machine could be improved, as 

well as several important limitations within our study, namely the relatively small data set as 

well as limitations within the gold standard training/evaluation document set.  
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Conclusion:  The additional generalizability offered by the machine learning approach along 

with its overall relative performance may be sufficient to warrant practical usage in applications 

where portability amongst different systems and input data sets may be of significant concern.
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I. BACKGROUND AND SIGNIFICANCE 

A. Introduction 

Information contained in clinical records has been shown to be extremely useful both for 

supporting clinical tasks (1) and for research purposes (2). However, a vast portion of said 

information is stored electronically as unstructured free-text, which requires translation into 

semantic structures prior to computational use.  

The problem of translating unstructured clinical free-text, particularly in the form of clinical 

narratives, into computable semantic structures has been one of the most significant barriers to 

making use of the wealth of information contained in the medical record.  Historically, this 

extraction task was accomplished through manual reading and annotation of values of interest, 

but with the increasing volume of input data being available and necessary for practical 

applications, manual extraction is no longer a feasible approach (3). An active field of research 

has thus been the development of algorithmic extraction methods to support natural language 

processing (NLP), which is essential to making meaningful computational use of the information 

contained within unstructured medical text (4,5,6). 

In this paper, we evaluate the performance of a machine learning-based approach to 

algorithmically extract one such example of useful information present in unstructured clinical 

text, patient laboratory test results. 

B. Natural Language Processing 

a. Introduction to NLP and Methods 

NLP is a rapidly growing field dealing with computational modelling and understanding of 

human languages. This is done through the algorithmic extraction of useful syntactic and 
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semantic features so as to replicate features as used during the process of human understanding 

of language.  

Approaches to NLP information extraction can be divided into two overarching paradigms: a 

symbolic rule-based method using hard-coded rules regarding the presence and structure of 

various features of the text (e.g. the textual content itself and/or other syntactic or semantic 

features as extracted by some other NLP extractor such as parts of speech tags), or a machine 

learning-based method through which statistical or logical models are used to dynamically 

generate the capability to extract features of interest.  

Machine learning approaches can likewise be divided into two overarching implementation 

methods depending on what they seek to learn: rules or statistical models. Rule learning 

implementations seek to algorithmically identify extraction rules using supplied correct examples 

which are then used to perform future extraction tasks (7,8). Several common examples are 

learning classifier systems (9),  association rule learning (10), and inductive logic programming 

(11).   

In the case of model learning, either the parameters of various statistical models are identified 

and trained to tune the model so as to correctly identify items of interest, or the model itself is 

learned (12). Examples of this approach include Bayesian classifiers, conditional random fields, 

the support vector machine (SVM) (13), decision trees (14), and the k-nearest neighbors 

algorithm (15). 

Both symbolic rule-based extraction and machine learning extraction have their own strengths 

and weaknesses. In their paper on the importance of rule-based approaches in industry 

applications, Chiticariu et al. acknowledge that that while offering excellent performance within 
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the specific domains and document corpora for which they are encoded, rule-based approaches to 

information extraction tend to suffer from either a rapid decrease in performance or an 

exponential increase in cost due to encoding cost of the sheer volume of new rules needed to 

maintain existing performance levels (16), a problem that is likewise reflected in biomedical 

rule-based extraction implementations (17). A solution for the problem of generalizability in 

rule-based approaches is the use of machine-learning techniques (18,19); rather than relying on 

encoded domain-specific rules, extraction tasks can be done by either algorithmically learning 

the rules or through statistical models (13,20).  

On the other hand, machine learning approaches tend to suffer from worse performance 

compared to a properly specialized rule-based approach, and there exists some opaqueness in 

terms of human attempts at debugging should performance issues arise. Similarly, an adjustment 

to a rule-based approach simply involves modification or encoding of a rule, whereas 

modification for a machine learning approach involves retraining on a new data set, which takes 

time. More importantly, as rule-based methods are encoded by domain experts, they do not 

require input data to function properly, whereas machine learning does, which can be an issue in 

regards to performance in data-scarce environments (See: §I.E - Data Sources) (21). 

There have also been proposals to implement a hybrid approach for some extraction tasks, where 

the strengths of a rule-based approach are used to extract some features that are a prerequisite to 

support machine learning implementations where representations may differ widely amongst 

different document corpora (22). In this study, we seek to evaluate the performance of the 

machine learning portion of one such hybrid approach. 

As clinical NLP tends to be done in a pipeline, with additional extractors building upon the 

extracted features from previous extractors in the pipeline on a given text, several NLP pipelines 



4 
 

exist with plug-and-play extractor functionality to simplify interoperability between different 

components in the pipeline, notably Apache’s Unstructured Information Management 

Architecture (UIMA) (23). 

b. Challenges in Clinical NLP 

Several challenges exist for clinical natural language processing applications that are not present 

in natural language processing for general biomedical language. Notably, biomedical text is 

typically written with clarity to a general audience in mind, whereas a clinical narrative is 

typically written by clinicians for clinicians. As a partial consequence to this distinction, a study 

by Leaman et al. (24) outlined several common complications in clinical narratives as compared 

to typical biomedical text, notably commonly missing punctuation, parenthetical expressions, 

significant format differences, unusual part-of-speech combinations (e.g. “Head, eyes, ears, nose, 

and throat examination revealed normocephalic and atraumatic.”), missing words for the sake of 

brevity, and a much richer vocabulary, including significant use of jargon and acronyms.  

These issues are significant as many clinical feature extraction implementations rely on other 

NLP features first being accurately extracted (25,26). For this reason, it would be beneficial for 

NLP extractors of clinical information to be built off of other NLP components and pipelines that 

have specifically been tailored for extraction from the clinical domain. 

To that end, several NLP pipelines with components specifically tailored for clinical extraction 

have been developed for research and practical purposes, including the Apache Clinical Text 

Analysis and Knowledge Extraction System (cTAKES) (27), which utilizes the Apache UIMA 

framework. Other existing medical NLP pipelines that were not used as part of this study include 
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MedLEE (28), MedKAT/p (29), BioMedICUS (30), and ONYX (31). With some adaptation, 

similar implementation should be possible on many of these systems. 

C. Laboratory Test Result Extraction – Significance and Past Work 

One of the medical semantic features that have been found to be potentially useful in both 

clinical and research applications are patient laboratory test mentions and their result values. For 

instance, within the sentence fragment “…observed a hct of 43.3 mg/dL and platelet count of 

450,000…”, we would be interested in extracting lab test mention/value pairs, in this case “hct” 

of ”43.3 mg/dL” and “platelet count” of “450,000”. This information can then be used in a 

variety of both research and clinical applications, such as improving past medical history parsing 

in clinical decision support tools, as well as supporting cohort discovery and EHR analytics 

tasks. 

Past work has been done on the problem of algorithmic extraction and relation of lab values: 

Kang et al. demonstrated an approach to solving this task using a rule-based approach on FDA 

decision summaries evaluating the performance or proposed laboratory/diagnostic devices (3). 

Hao et al. similarly explored using a rule-based method of value extraction and association for 

lab values as part of identifying HbA1c comparison statements (32).  

While these rule-based approaches all reported excellent performance, with F1-scores (which are 

a harmonic mean of recall and precision, intended to provide a general representation of overall 

performance) (33) in the 0.9+ range (3,32), it is important to note that these rulesets were not 

created for the purpose of extracting from clinical text. As both implementations are rule-based 

approaches, they are likely to have the aforementioned limitations in terms of generalizability, or 

the lack of code reusability in different applications. For this reason, we would expect a decline 
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in performance should these same rulesets be used in a document set for which they are not 

designed.  

In this study, we seek to evaluate a hybrid approach to the problem of lab test/value extraction. 

We do not believe there is sufficient variance in lab test and numeric value representations 

between document sets to warrant extensive rule re-encoding. As such, we continue to extract 

individual mentions and numeric values using existing rule-based methods that have been shown 

to have high performance. On the other hand, syntax and structure that would be used to 

associate a test with its respective value tends to differ greatly from text to text (or be completely 

absent in some cases), and as such the generalizability issue present in rule-based approaches 

poses a problem to successful extraction implementations. We seek to solve this generalizability 

problem by instead using a machine learning approach in the association step. 

D. Lab Value Extraction as Relation Extraction 

The lab value extraction problem presented in this study consists of two sub-problems: first 

candidate lab tests and candidate lab values must be extracted, and then the two must be 

associated back to one another. As an example, consider the example sentence fragment used in 

§I.C, “…observed a hct of 43.3 mg/dL and platelet count of 450,000…”. The first step in an 

algorithmic solution would thus be to extract the lab test (“hct” and “platelet count”) and value 

(“43.3 mg/dL” and “450,000” mentions, and the second step would then be to perform 

association, e.g. determining that “43.3 mg/dL” corresponds to “hct” and not “platelet count”.    

For the purposes of this paper we assume that the first of these two sub-problems is a solved 

problem (Kang et al. demonstrated that a rule-based approach for entity/numeric value extraction 

tended to fare better than machine-learning based counterparts (3)), and instead focus on the 
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relation extraction task of associating the corresponding extracted lab test and lab value 

annotations with one another. 

Machine learning approaches to relation extraction typically cast the problem into a classification 

task, where candidate relation instances are determined to either be related or not-related. There 

are several approaches to machine learning common in literature; broadly speaking they can be 

divided into supervised, semi-supervised, and unsupervised learning approaches, with the 

distinguishing factor being the level of annotated data available to the machine learning 

algorithm for training. As we wish to perform a classification task, the appropriate approach to 

take would be the supervised approach, where annotations denoting correct relations are 

provided to the algorithm for training purposes (34). 

A common supervised learning approach to relation extraction, and the one used in this study, is 

the support vector machine (SVM). SVMs function by attempting to find a discriminatory “line”, 

often referred to as a maximum-margin hyperplane, which can be drawn through the input data 

points to divide them into their corresponding classes (13). This division can then be used to 

predict the classification of future data points by finding its position relative to the classifying 

hyperplane. 

For relation extraction purposes, this classification task is first supported by extraction of other 

syntactic or semantic features, e.g. part-of-speech tags and raw text of the two relation arguments 

and the contents in-between, which are extracted for a given argument pair and sent along with 

their associated classification, i.e. related or not related, as training data points to the classifier 

(17). In cases where the input data is not suitable for linear division, as is often the case in 

information extraction with complex feature spaces, the dimensionality of the input is increased 

via transformation of the input data points with a kernel function in the hopes of eventually 
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rendering the data separable (35). The relation extraction task then becomes a matter of 

evaluating the feature space of every possible combination of the two relation arguments within a 

given document and classifying the relation pair as either being related or not related. 

E. Data Sources 

While machine learning does not have the generalizability and cost of maintenance issues that 

are present with rule-based approaches, supervised and semi-supervised approaches do come at 

the cost of requiring annotated training data to function, which can be sparse and expensive to 

obtain. Efforts have thus been made by various organizations to support the production of 

annotated public data sets of biomedical/clinical text. 

Of particular note is the organization Informatics for Integrating Biology & the Bedside (i2b2), 

which has hosted yearly NLP challenges related to some aspect of producing clinical document 

sets with annotated information, ranging from automatic de-identification of clinical notes to 

render them suitable for release (36), to challenges involving extracting syntactically or 

semantically useful features from clinical text such as medical concepts, assertions, relations 

(37,38), co-references (39), and various clinically relevant tasks (40,41). The document sets 

along with gold standards for all produced annotations resulting from i2b2 challenges were then 

released to the wider research community for public use. 

F. Study Roadmap 

This paper evaluates the performance of a support vector machine applied to part of the lab value 

extraction problem as a solution to the generalizability issues inherent to rule-based extraction 

approaches. Specifically, we evaluate the performance of the SVM classifier in performing the 
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relation extraction task of relating numeric values back to laboratory test mentions, and compare 

its performance to a rule-based method both in and outside of its intended domain. 

In addition, we will validate that the decline in performance for an exclusively rule-based 

approach does actually occur when the input document set is changed to one for which the 

encoded ruleset is not designed. 
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II. METHODOLOGY 

The pipeline used in this study is best described as four separate phases: generation of a training 

data set and gold standard for evaluation, generation of numeric value candidates, SVM relation 

extraction, and performance evaluation. 

The Clinical Text Analysis Knowledge Extraction System (cTAKES) was selected as the engine 

used to generate NLP artifacts used in feature generation because its NLP components are 

specifically tailored for clinical text semantic artifact extraction (27,42). This may improve 

performance extracting syntactic and semantic features that we use during feature generation 

compared to other NLP solutions not tailored for the medical domain (See: §I.B.b - Challenges 

in Clinical NLP). As cTAKES is based on the Apache UIMA framework (23), we opted to use 

the ClearTK library (43) to support feature generation tasks.  

For reference and reproduction purposes, code and limited portions of the annotated gold 

standard/training dataset (as permitted by data use agreements) are publicly supplied at 

https://www.github.com/andrew2060/ctakes-lab-value-extraction . 

A. Phase I: Training Data and Gold Standard Construction 

The i2b2 2010 dataset (37) was selected as a baseline data set from which to construct training 

annotations for this study. This particular dataset was selected due to the presence of laboratory 

test annotations generated as part of the original NLP challenge for that year (although respective 

values were not labeled) as well as the broad coverage in different fields of medicine within the 

provided clinical discharge summaries, ranging from ICU to neonatal care to routine visits. 

Construction of lab test and lab value relation annotations was done manually and stored in the 

same format as that of i2b2’s original dataset, that is to say the textual value followed by a string 
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of the following format 𝑎𝑛𝑛𝑆𝑡𝑎𝑟𝑡𝐿𝑖𝑛𝑒: 𝑎𝑛𝑛𝑆𝑡𝑎𝑟𝑡𝑊𝑜𝑟𝑑 𝑎𝑛𝑛𝐸𝑛𝑑𝐿𝑖𝑛𝑒: 𝑎𝑛𝑛𝐸𝑛𝑑𝑊𝑜𝑟𝑑, with 

word indexes starting at 0 (refer to Supplement 1 - Example Annotation Strings). The 

resulting annotated i2b2 document set consisting of 250 doucments was then split into two data 

sets of 200 and 50 documents for training and testing purposes respectively. 

The validity of the manually constructed gold standard and training data was obtained through a 

determination of inter-annotator agreement: a set of 20 documents was sent to a domain expert 

for annotation and the resulting annotations were compared with those of our manually created 

gold standard/training data so as to determine accuracy. Disagreements were noted but not 

corrected so as to preserve consistency as part of our evaluation. The relative number of 

agreements and disagreements were used to calculate an inter-annotator agreement percentage, 

which gave an estimate of how closely the gold standard and training data annotations reflected 

results that would actually be desired in a real-world application for that particular document set.  

These manual annotations were then imported into the UIMA Java Common Analysis System 

for further processing (i.e. feature generation), and later for evaluation purposes, via a UIMA 

CollectionReader.  

B. Phase II: Candidate Numeric Value Generation 

The default cTAKES clinical pipeline was run twice: once prior to the training phase and again 

prior to the testing phase. The purpose of running this pipeline was to generate appropriate NLP 

artifacts for later usage.  

Candidate lab values were extracted on a per-sentence basis after some textual preprocessing for 

normalization purposes. Numeric values were then detected using the regular expression filter 
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"−? (? :\𝑑 ∗\. )?\𝑑 + " while potential unit denotations were detected using the unit regular 

expression filter as described by Hao et al. (32) 

Candidate lab values were then scored on their likelihood of being a lab value through a 

combination of the existence of an associated unit and the distance to the closest lab test 

annotation. Specifically, we selected values that had a maximum distance of five words to the 

closest lab test annotation or contained a measurement unit (see §IV.C - Study Limitations and 

Error Analysis for effects of this extraction method on overall performance metrics).  

C. Phase III: Relation Extraction via Support Vector Machine  

The SVM implementation used was that of LibSVM (44), as bundled within the ClearTK library 

for compatibility with cTAKES’ UIMA based framework. Selected model parameters were 

obtained via grid-based search and 10-fold cross-validation (See: Table 1 - SVM Training 

Parameters) (45). Of the 256 documents in the i2b2 dataset, 200 were used for training purposes 

with an additional 50 set aside as an evaluation set. The remaining 6 documents were omitted 

due to incompatibilities with the manual annotation software used during training set creation 

(See: Table 2 - Document Sets).  

Classification was a simple true/false problem where true (+1) was used to indicate the existence 

of a relation between a given lab test and numeric result, while a classification of false (-1) 

indicated no relation. To compensate for SVM performance being poor in cases where training 

and test data have unbalanced output classes (46), i.e. there are significantly more false 

classification examples being supplied than true classifications, SVM parameter weights of 1.0 

for true and 0.02188 for false were selected. This selection was done based on the relative 

frequencies of true and false training feature sets within the i2b2-based training data set by 
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placing a significantly lesser penalty on incorrect classifications of false (which significantly 

outnumber true classifications in our dataset) so as to correspond to placing equal penalties on 

both true and false relation classifications were we to use a balanced data set. (47) 

The training data fed to the SVM consisted of a set of instances of true and false relation 

instances. An instance was constructed for every possible lab test and lab value pair within a 

given document and consisted of a constructed feature space from the two relation arguments as 

well as a true or false classification on the existence of a relation between them. The features 

constructed for each (lab test, lab value) instance are as follows (refer to Supplement 2 - 

Example Features for examples as applied to actual text):  

- Token Text Features:  

o The first and last word present in each lab test and value annotation 

o A bag of words of the covered text of each lab test and value annotation 

o The preceding and following 3 words for each annotation, stored by their relative 

positions and not as a bag 

- Window Features: 

o The distance in words between a candidate lab test and lab value 

o The number of candidate lab values that are closer to the candidate lab test than the 

value being tested 

o A bag of the words within the window between the candidate lab test and lab value 

- Syntax Features: 

o A bag of part of speech tags (as generated by cTAKES’ preexisting components 

(27,48)) for every word in both candidate lab test and lab value 
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o Directionality: whether a lab test or lab value appeared first in the sentence of the lab 

test in the relation being evaluated (-1 if lab value, 1 if lab test) 

Candidate lab test/value pairs that were classified as being relevant to one another from the 

holdout testing 50 document set were then stored using the existing cTAKES type system as a 

LabMention and MeasurementAnnotation with the relation stored as a ResultOfTextRelation 

(42).  

D. Phase IV: Evaluation 

Evaluation was done through position matching where a positive hit for an identified lab test/lab 

value pair within the test data set had the same or overlapping word index in the document as the 

respective gold standard test/lab annotations.  

Generally speaking, this matching procedure is done by checking for overlaps in character spans, 

with an overlap counting as a match. This method was chosen as opposed to full word matching 

due in part to architectural limitations within cTAKES itself, as well as due to certain 

irregularities within the i2b2 document generally resulting from spacing issues. For example, lab 

test and their results may be mashed together into a single word and extraneous formatting 

elements like bullet points becoming part of the result value word. In such cases, it is possible 

that a positive match can correspond to only part of a word in the gold standard set, or even that 

an extracted lab test and lab value both correspond to the same word within the gold standard 

text (see §IV.C - Study Limitations and Error Analysis PP. 1) 

To generate a positive hit, for each extracted relation instance, the argument lab test must collide 

with a gold standard lab test, the argument lab value must collide with a gold standard lab value, 

and a relation must exist within the gold standard between the lab test and lab values that were 
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identified from the collision check. From this we generate the true positive (TP), false negative 

(FN), and false positive (FP) statistics. 

Performance evaluation was done through the use of recall (A), a representation of the ability of 

the extractor to successfully extract an existing relation, precision (B), the positive predictive 

value or a measurement of how many predicted relations actually existed, and f1-score (C), a 

harmonic mean of both precision and recall intended to model overall retrieval ability. 

𝐴.  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐵.  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐶.  𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Result statistics were then compared to existing rule-based systems by running the withheld 50 

document test data set through a reimplementation of the rule-based solution proposed by Hao et 

al. (32) with the same ruleset (see §II.F - Comparative Evaluations). 

E. Feature Discovery Iterations 

While not strictly necessary to reproduce results, we wish to note that the final feature set as was 

proposed above was not the initial feature set used when we first began conducting this study. 

Rather, we started with simply the token text features and gradually added new features through 

an iteration process between phase III and IV, identifying potentially useful features by 

examining false negax1tive and false positive extracted instances. Such a process would likely be 

similarly useful should one wish to further expand on this work by identifying additional useful 

features to improve performance. 
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F. Comparative Evaluations 

An additional evaluation was run on the withheld 50 document data set to establish a 

comparative baseline with a rule-based approach. While Hao et al. did report excellent 

performance with an f1-score of 0.98, it must be noted that said performance metrics were 

obtained from running the encoded rules upon clinical trial eligibility criteria: a document corpus 

for which the encoded rules were specifically designed. To establish a baseline for comparison, 

we re-ran those same rules on the withheld 50 document evaluation data set from the 2010 i2b2 

corpus using lab tests as annotated in the data set and candidate lab values as extracted during 

phase II. The performance of the reimplementation of this rule-based extractor was then 

evaluated using the same procedure as that for the SVM approach (see §II.D - Phase IV: 

Evaluation).  
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III. RESULTS 

Inter-annotator agreement as determined from §II.A - Phase I: Training Data and Gold 

Standard Construction to validate the manually created gold standard/training annotations was 

98.13%, as found by an automated position matching scheme between the results from each 

different annotator and using the same criteria for positive hits as in the evaluation section. 

Grid search during SVM training yielded a linear kernel as having the best performance as 

compared to the other library options of polynomial, RBF and sigmoid kernels.  

Precision, recall, and F1-score statistics as compared with gold standard annotations are 

summarized in Table 3 - Results and Evaluation Comparison for both the SVM approach 

using a linear kernel and for the rule-based approach presented by Hao et al (32), both as 

reported on trial eligibility criteria as well as on the i2b2 document set.  

We found that the support vector machine approach applied to the i2b2 document set attained 

performance metrics of a f1-score of 0.874, recall of 0.888, and precision of 0.861. We also 

found that the same ruleset used by Hao et al. (32) for our simulation of a rule-based approach 

suffered a significant decrease in performance when applied to the i2b2 data set with a f1-score 

of only 0.0897, recall of 0.8597 and precision 0.0473, as opposed to the reported performance 

metrics of reported f1-score of 0.980 with precision 0.989 and recall 0.971 when applied to the 

intended document corpus (clinical eligibility criteria text).  
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IV. DISCUSSION 

A. Result Analysis 

As the evaluation results were calculated based on agreement with a constructed gold standard, it 

was important that said gold standard contained all possible lab test and value pairs so as to 

model the performance of the extractor in a practical application. In our evaluation of the 

accuracy of our gold standard data set, inter-annotator agreement was sufficiently high such that 

a high level of confidence in the accuracy of the gold standard data set exists; the percentage of 

non-matching annotations, with the assumption a similar rate throughout the rest the data set, is 

sufficiently low so as to have had a minimal impact on the model training process. Nevertheless, 

we believe that any errors made in annotating the gold standard and training data/discrepancies 

in inter-annotator agreement should be viewed as insignificant so long as the errors are consistent 

throughout the dataset: it is expected that any errors made here will have a minimal impact as 

extraction of erroneously marked positives and negatives in the training and evaluation data, 

would still demonstrate the feasibility of a SVM in retrieving variable/value associations in a 

practical context with non-erroneous training data.   

We found that Hao et al’s rule-based methodology suffered a significant decline in performance 

when applied to the i2b2 data set. In particular we found that Hao et al’s ruleset suffered in 

precision due to a significantly higher density of lab test label/value pairs in close proximity to 

one another as well as a lack of separating words and punctuation in between that would be 

present in more formal text. For example, the segment “BLOOD WBC 17.1 RBC 3.37 Hgb 10.1 

Hct 30.1 MCV 89 MCH 30.0 MCHC 33.6 RDW 18.8 Plt Ct 526” presented significant difficulty 

to Hao et al’s ruleset due to the lack of structure and formatting clues that would be present in 

most other texts, e.g. “WBC of 17.1, RBC of 3.37…” or “WBC: 17.1 RBC: 3.37…”. 
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On the other hand, we also found that the support vector machine was able to perform the 

relation extraction task reasonably well, with a f1-score of 0.874, recall of 0.888, and precision of 

0.861. While this is slightly inferior performance compared to the results obtained by Hao et al 

when running the rule-based extractor on the clinical trial eligibility text for which it was 

originally designed, we believe that the performance of the machine learning approach is still 

high enough to warrant practical use in many applications. More importantly, the drastic increase 

in performance compared to a rule-based approach applied out of domain highlights the benefits 

of leveraging the re-usability of the machine learning approach; its flexibility allows it to be 

applied to a much wider variety of input corpora without the need for additional encoding, and as 

such would be more suited for general purpose applications. 

In terms of classification errors, we found no discernable common pattern amongst false positive 

identifications, but we found that many of the false negative identifications occurred in situations 

where there were scarce examples of the syntactic structure involved amongst the overall dataset, 

for instance cases where the laboratory test mention and resulting value occurred on separate 

lines of text. In such cases, an expanded training document set with more examples of these 

scarce structures would likely improve performance. 

It is worth noting that in cases where sparse amounts of source material are available, as is often 

the case for biomedical and clinical texts, it may be preferable to sacrifice precision in favor of 

recall as unextracted instances are undesirable. It may therefore be worthwhile for practical 

applications of this work to modify the regularization parameters (§II.C - Phase III: Relation 

Extraction via Support Vector Machine, Table 1 - SVM Training Parameters) to reflect this 

preference by inducing less of a penalty for false positives on the training algorithm so as to 
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reduce the false negative rate, as opposed to the current settings used in this study that places 

equal importance on both true and false classifications. 

B. Feature Space Analysis 

Overall, we feel that our selected feature space is fairly discriminatory for the task at hand. In 

this section, we outline several ways in which our selected feature set can help discriminate 

between relations and the lack thereof.  

For the token text feature space, we found that both the contents of the lab test mention and 

values were useful: the contents of the annotations were useful as certain lab test annotations, 

e.g. “hct”, “bp”, or “t”, would generally have an associated numeric lab value in our data set 

while others, e.g. “an electrocardiogram”, would not. Contextual information surrounding the lab 

test and lab value annotations also served to identify structural information. Words such as 

“respectively” and “each” help indicate the likely structure and correct associations within a 

sentence. 

Window features were especially important for successful extraction: typically, lab tests and 

their respective values would have a small window size, with rare exceptions that could be 

gleaned from other features within our used feature space. Usage of the window size feature 

removed a majority of the initial false positive associations. Furthermore, a portion of the 

remaining false positives were eliminated using the number of closer values feature. With the 

exception of certain lab tests and/or the presence of the word “respectively” in the immediate 

context, the correct lab value associated with a given lab test tended to be the closest or second 

closest. 
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The sign of the window was also useful for distinguishing tasks by providing information on 

whether the value preceded or followed the lab test mention (see comment on directionality 

further in this section). Furthermore, we used the textual contents of the window as indicators for 

the existence of a relation, e.g. “{test} of {value}”. 

Finally, we had several useful features taking advantage of syntactic features. For instance, as lab 

tests tend to be nouns, values tend to be cardinal numbers and nouns/symbols (for units), the 

presence of certain parts of speech as part of the lab test mention (such as verbs) decreased the 

probability that this is a lab test mention associated with a numeric value. The directionality of 

test/value pairs tended to be preserved throughout a sentence: for instance, “{value} {lab}, 

{value} {lab}, …. “ as opposed to “{lab}: {value}, {lab}: {value} … “. This feature was 

potentially useful in situations where multiple lab test/value relations existed in close proximity 

to one another with similar window sizes in either direction, for instance denotations of a 

patient’s vital signs, where readings were listed one after another with no punctuation in 

between. 

C. Study Limitations and Error Analysis 

One of the key limitations of this study were occasional flaws in the gold standard data set as 

provided by i2b2 due to inconsistent formatting. The annotation representation used could only 

denote whole words but occasionally supplied lab test would also contain the respective value. 

For instance, instead of “* WBC – 140,000”, the representation supplied from I2B2 would 

actually be “*WBC-140,000”. In these cases, the gold standard and training document sets would 

contain annotations covering the same (whole) word for both the laboratory test mention and 

respective value.  Additionally, some entities, like blood pressure, may correspond to multiple 

values within the same “word” as defined by i2b2 annotators. We believe that our overlap-based 



22 
 

system of evaluation should have mitigated most of these incompatibilities but it is likely that a 

small portion of these errors due to limitations in formatting exist. That being said, these 

occurrences comprise a small (<1%) portion of the total correct annotations so we anticipate this 

having a minimal effect on the overall results. 

It should be noted that our evaluation method did not account for any errors in numeric lab value 

extraction: this is actually done purposefully as these same errors will likewise be present in the 

rule-based baseline from Hao et al. that we use for evaluating relative performance compared to 

the baseline. The results in an ideal situation with gold-standard lab values being used for the 

relation extraction task are included separately in Table 3 - Results and Evaluation 

Comparison and was shown to have marginally inferior precision but better recall and overall 

performance than with the extracted lab values. We would expect a perfect extraction system to 

offer superior recall for the overall extraction task in combination with any other relation 

extraction method, albeit having a minor effect (if any) on precision.  

One possible concern with this study was the size of the document set used: the training and 

evaluation 250 document set could be considered small enough such that external factors may 

have played a role in overall performance of the SVM relation extractor, notably overfitting 

issues on both for both the training and evaluation data sets. We compensated for this possibility 

by using 10-fold cross-validation during parameter search as well as running evaluation on a 

holdout data set.  

Furthermore, while the 2010 i2b2 document set covered a breadth of topics ranging from 

neonatal care to chronic condition management, they were all similar in format because they 

were all clinical encounter notes (discharge summaries and progress reports). This again calls 

into question the issue of possible overfitting as we would expect that any algorithmic solution 
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be applied to a wide variety of possibilities in input document types beyond just clinical notes, 

e.g. the clinical trial eligibility criteria text used by Hao et al (32). However, one of the main 

strengths to the machine learning approach is its relative flexibility: simply adding documents of 

other types to the training set and retraining should, in theory, resolve this issue. 

The observed performance of the support vector machine approach was potentially inferior to its 

actual potential performance due to limitations within the training dataset. The i2b2 document set 

was sparse in its inclusion of units for lab values (e.g.  mg/dL, kg, etc). Because a relationship 

does exist between lab tests and the units associated with the value (a birth weight will typically 

be in kilograms or pounds, blood urea nitrogen and creatinine will typically be mg/dL or 

mmol/L, etc.), it is likely that rerunning SVM training on a document set that contains more 

examples of correct unit associations will yield better performance on the sparse instances where 

unit values are included, and would especially increase performance when prediction is run on 

documents sets that make ample use of unit values. 

Finally, comparative statements were not extracted as part of this study, despite them containing 

clinically useful information. Information on whether a measurement is less than, greater than, or 

equal to a certain value can be considered clinically significant. There was an insufficient 

amount of comparative statements within the i2b2 data set to perform an evaluation on whether a 

SVM classifier is able to perform such a task. Nevertheless, it should be possible to perform this 

task by retraining using the same or very similar feature space with additional emphasis on the 

window contents feature, as it is essentially the same relation extraction task with additional 

classification classes involved beyond a simple true/false as determined by the content between 

the variable and the value.  
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D. Expansions on this Work 

That reasonable performance was attained with a machine learning approach indicates that the 

same codebase is likely reusable with similar performance on other document sets for the same 

purpose, given appropriate training examples. Nevertheless, one of the greatest weaknesses of a 

supervised learning approach such as a SVM is its need for annotated training data, which can 

often be rather limited in volume. Creation of a greater variety of annotated document sets from 

a greater variety of sources/scopes would thus be helpful for additional validation purposes with 

an expanded dataset. Alternatively, another possibility would be the expansion of the supervised 

learning approach taken in this study to a semi-supervised learning approach by including 

unannotated documents as part of the training data. Such an approach has been shown to 

potentially improve the performance of supervised learning methods (49,50) and also mitigates 

the issue of data sparseness. 

Beyond additional experimentation with an expanded document set to further validate results, 

this task of lab test and lab value association can be generalized to a relation extraction problem 

between any variable and its respective value. It may therefore be useful to investigate a SVM 

classifier being used for variable and value association in general as opposed to merely for lab 

tests/values, one possible application being drug named entity and prescription dosage 

association. 

Finally, feature discovery is an open problem. While the feature space selected in this study were 

sufficient to attain reasonable results, further investigation into possible features may yield 

worthwhile performance gains and thus narrow the gap between the performance of in-domain 

rule-based extraction and machine learning approaches. Several promising features that were not 
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investigated in this study were dependency graphs and word2vec skip-grams (51), both of which 

have shown promising results for other, more complex, relation extraction tasks.  
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V. SUMMARY AND CONCLUSIONS 

The sheer volume of health data and the ever-increasing need for information alongside 

exorbitant time and cost requirements for manual extraction of clinical semantic structures has 

rendered manual annotation unsustainable as a production-level solution to modern information 

needs. Algorithmic extraction of semantic features in support of NLP has been the proposed 

solution to this problem. Broadly speaking, NLP follows two general strategies, rule-based and 

machine learning-based extraction, or some combination thereof. While rule-based methods tend 

to offer excellent in-domain performance, they have a high associated cost for rule encoding and 

lack the ability to be re-used for similar problems outside of their intended domain. 

In this paper, we evaluated using a machine learning approach termed a support vector machine 

to associate numeric lab values back to their respective lab tests, and found that despite a relative 

decrease in performance compared to a rule-based approach for in-domain extraction tasks, the 

performance was still sufficiently high for many practical applications. The drastic improvement 

in performance compared to rule-based methods out of domain, however, may render a SVM 

based approach for lab test and lab value association more desirable for applications designed to 

accept a wide variety of potential inputs. Furthermore, we note that this relation extraction task 

can very likely be generalized to a wide variety of similar variable association tasks, such as 

association of drug labels with dosages thus reducing costs associated with encoding domain-

specialized rulesets. 
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VI. APPENDICES 

Table 1 - SVM Training Parameters 
SVM Parameter Name (-argName) Parameter Value 

Kernel Type (-t) Linear (0) 
k-Fold Cross-Validation Setting (-v)  10 

SVM Type (-s) C-SVC (0 – default) 
Imbalanced dataset penalty/regularization 

parameters (C in C-SVC algorithm (44)) 
True(-w+1): 1.0 
False(-w-1): 0.02188 

Shrinking Heuristics (-h) Disabled (0 – Library Recommended for 
Small Iteration Count) 

 

Table 2 - Document Sets 

Document Set I2b2 Document IDs  

Training 0001 through 0410 (except omitted) 
Evaluation 0412 through 0477  

Omitted (§II.C) 0033, 0125, 0149, 0257, 0313, 0393 

 

Table 3 - Results and Evaluation Comparison 

 Precision Recall F1-Score 
Hao et al. – Reported 

Rule-based Results 
(32) (Clinical Trial 
Eligibility Criteria)  

0.989 0.971 0.980 

Hao et al. – Rule-
based Results (i2b2 

data)  

0.0473 0.8597 0.0897 

Support Vector 
Machine – Linear 
Kernel (i2b2 data) 

0. 8615 0. 8882 0. 8746 

Support Vector 
Machine – Linear 

Kernel w/ Gold 
Standard Lab Values  

0.8576 0.9870 0.9177 
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Supplement 1 - Example Annotation Strings 

Line 111: wbc was 9.1 

c="wbc" 111:0 111:0||v="9.1" 111:2 111:2 

Line 62: o2sat of 100% 

c="o2sat." 62:0 62:0||v="100%" 62:2 62:2 

Line 65: w0 w1 w2 w3 w4 w5 w6 w7 phosphate of 1.6 

c="phosphate" 65:8 65:8||v="1.6" 65:10 65:10 

Supplement 2 - Example Features 

Document Text: 

- On admission included BUN and creatinine of 33 and 2.1 mg/dL respectively 

Correctly extracted relations: 

- BUN <-> 33  
- Creatinine <-> 2.1 mg/dL 

Extracted feature space for Creatinine <-> 2.1 mg/dL  

Token/Covered Text Features: 

- ARG1_FIRST: Creatinine, ARG1_LAST: Creatinine, ARG2_FIRST: 2.1, ARG2_LAST: dL 
- BAG_ARG1: {Creatinine}, BAG_ARG2: {2.1, mg, /, dL} 
- ARG1_PRECEDING_3: included, ARG1_PRECEDING_2: BUN, ARG1_PRECEDING_1: and 

ARG1_FOLLOWING_3: and, ARG1_FOLLOWING_2: 33, ARG1_FOLLOWING_1: of 
ARG2_PRECEDING_3: of, ARG2_PRECEDING_2: 33, ARG2_PRECEDING_1: and 
ARG2_FOLLOWING_3: null, ARG2_FOLLOWING_2: null, ARG2_FOLLOWING_1: respectively 

Window Features: 

- WINDOW_SIZE: 3 
- CLOSER_VALUE_COUNT: 1 
- WINDOW_CONTENT_BAG: {of, 33, and} 

Syntax Features: 

- ARG1_POS_BAG: {NN}, ARG2_POS_BAG {CD, NN, SYM} 
- DIRECTIONALITY: 1 
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