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ABSTRACT 

 

Objective 
 

Our objective is to apply multiple imputation methods with statistics of agreement and 

electronic health records (EHR). These methods used together with this type of data is not 

well documented. By applying these methods in a novel way, we examine their potential for 

future use.  

 

As a secondary objective, we assess for discrepancies in screening documentation between 

EHR and Medicaid claims data, across Race and Federal Poverty Level (FPL) categories which 

may reveal possible issues with data collection that would need to be addressed. 

 

Methods 
 

Using individual patient data from 43 Oregon community health centers for 13,101 Medicaid-

insured adult patients, documentation for screening services were compared using kappa 

statistics, before and after imputing for missing data. Multivariate imputation by chained 

equations (MICE) was used to impute missing values due to its flexibility working with large 

and complex data sets. 

 

Results 
 

We successfully provide a practical example and guidance for combining MICE and kappa 

statistics. In this work, we determined no differences in documentation of screening services 

for groups based on Race and FPL. 
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Discussion and conclusions 
 

We conclude that MICE is a beneficial tool when working with missing EHR data and when 

measuring agreement using kappa statistics. Though these methods are not well-

documented in use together, by following the available literature, these methods were 

adapted and successfully applied to a non-standard statistic like Cohen’s kappa. Ongoing 

work with this topic would be to examine the effects of transforming kappa prior to pooling. 

Also, sensitivity analysis would be important to assess the missingness mechanism. 

 

Keywords 
 

Missing data; multiple imputation; chained equations; fully conditional specification; 

electronic health records; EHR; kappa statistics; agreement. 
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INTRODUCTION 

 

The inspiration for this thesis came from an interest to gain experience working with 

electronic health records (EHR) data and to learn about multiple imputation, a statistical 

technique for analyzing data sets where some values are missing. As a motivating example to 

investigate these topics, we will build upon the research of a 2014 study by Heintzman, et al. 

(the “original study”) that assessed agreement of EHR with Medicaid claims data for 

documentation of 11 preventive care procedures in a population of continuously insured 

adult Medicaid recipients being served by a network of Oregon community health centers 

(CHCs) during 2011 [1]. The original study was interested agreement for the samples as a 

whole and utilized kappa statistics to remove agreement due to chance alone. For the purpose 

of this thesis, we selected three adult health procedures: Cholesterol screening, Chlamydia 

screening, and Colonoscopy, to assess agreement between the two data sources across 

demographic categories of Race and Federal Poverty Level. There is missing demographic 

data in both categories which may impact the stratified results. We have the opportunity here 

to investigate the potential impact and to compare agreement with the incomplete data and 

with complete data that has been multiply imputed.  

 

With the Medicare Access and CHIP Reauthorization Act (MACRA) that was signed into law 

in 2015 and takes effect in 2019, there are changes coming in Medicaid reimbursements that 

shift the physician focus away from volume and towards better quality of care while avoiding 

unnecessary costs [2]. How quality is measured will need to be addressed. Consideration 

must be given to the source of data, EHR or claims data, for measuring quality and how good 

those sources are. It will also be important to ensure the same quality of care is being 

provided across demographics groups, and measured with metrics that perform the same in 
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different contexts. By examining agreement across demographic categories, Race and Federal 

poverty level (FPL), we can assess any systematic differences among patients to ensure the 

same quality of care for all.  

 

Through this thesis, we seek to determine: 

1. The viability of using multiple imputation techniques with EHR data and kappa 

statistics. The documentation of these statistical techniques used together is limited 

to non-existing. Most literature on multiple imputation use statistical models as a 

basis for discussion. Whereas, multiple imputation for non-standard statistics, like 

kappa statistics, are not fully developed. By our example, we hope to provide guidance 

and reference for others working with large electronic health databases to apply 

these methods. 

2. If there are discrepancies in agreement between EHR and Medicaid claims among 

Race categories and Federal Poverty Level categories. Apparent systematic 

differences would be cause for concern on a societal level as well as a public health 

concern. 

 

In the Introduction, we hope to provide a survey of the topics covered here: EHR, kappa 

statistics, and multiple imputation, and provide sufficient explanation to highlight the topics 

that shaped the later analysis. 

 

Electronic Health Records (EHR) 

 

Electronic health records (EHR) are growing in use as a data source of healthcare services 

reporting, for both regulatory and reimbursement purposes. In the past, insurance claims 
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data have been considered to be the most accurate source of reporting data, but there are 

many flaws inherent to the claims data. There can be issues and time involved to obtain the 

information; the data often requires significant work in order to be cleaned and suitable for 

analysis; and this data work can prove to be costly. By comparison, EHR have desirable 

advantages of being easier to obtain and in a cleaner format and, thus, less costly. In addition 

to these advantages, EHR include additional information on unpaid services, services to 

uninsured person, and those with varied payers. There is potential for EHR to be used in place 

of or as a proxy data source for insurance claims data. Though EHR have been validated with 

Medicaid claims data for certain diabetes services, the work is growing to compare the 

documentation of preventive services [1]. 

 

Kappa Statistics 

 

In this thesis, we are interested in the reliability of EHR data to serve as either a proxy or 

replacement for Medicaid data records. In assessing reliability, we are asking how well do 

these two sources of data agree with each other. The kappa statistic (or kappa coefficient or 

kappa), first proposed by Cohen (1960), is the most widely used statistic to measure 

agreement between two or more observers or “raters”.  

 

When discussing reliability and agreement, it should be noted that there are two types that 

exist and that the kappa coefficient could be used for both. The first, intrarater reliability, 

assesses agreement between the ratings of the same observer on two or more occasions, i.e. 

multiple ratings by the same rater. Second, interrater reliability assesses agreement between 

ratings made by two or more observers. From this distinction, we can see that here we are 

using the kappa statistic to assess interrater reliability. 
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The simplest situation where the kappa coefficient can be used is when two observers each 

provide one rating of the same subject. Kappa can be used when there are more than two 

possible ratings, i.e. more than one rating per subject by each of the observers. The weighted 

kappa would be applicable when there are more than two possible ratings and size of the 

discrepancy between raters matters. Fleiss (1971) has given methods for when more than 

two raters may rate each subject or when each observer may not rate each subject [3]. In this 

thesis, for each preventive service, stratified or not, we will be concerned with the simple case 

where 2 raters (EHR and Medicaid/Claims) give an independent single rating (e.g. received 

preventive screening or not) for each subject. 

 

To compare the two sources of data and to assess their agreement in the documentation of 

preventive services, we can summarize the counts of the n subjects classified by the two data 

sources (the two raters) using a 2×2 contingency table. This is customary way to show binary 

ratings, such as yes or no, by two different raters, i.e. two independent observers are 

evaluating the same thing. One data source is assigned to the rows and one to the columns. 

Each of the four cells will represent a specific value for each of the two data sources. An 

example using Claims data and EHR data sources as the two raters can be seen in Figure 1 

where the entries in the table refer to the number of subjects. 
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Figure 1 – Example of a 2x2 table 
Example of 2×2 contingency table showing the counts of subjects where the two raters are 
the EHR data and the Medicaid Claims data; and the ratings for each are binary yes/no 
response whether a preventive service was recorded in a particular data file. The cells along 
the main diagonal (a and d) show where the two raters agree and the off-diagonal cells (b and 
c)  
 

 

 

In Figure 1, cells a and d show the number of subjects for which the ratings in both the EHR 

data and the Medicaid claims data are in agreement. Cells b and c show the number of subjects 

where the two data sources disagree. The marginal row totals, 𝑚𝑚1 and 𝑚𝑚0, show the number 

of subjects rated “Yes” and “No”, respectively, for a preventive service in the EHR data only. 

The marginal column totals, 𝑛𝑛1 and 𝑛𝑛0, show the number of subjects rated in the Claims data 

as “Yes” and “No”, respectively. n is the total number of subjects deemed eligible for a 

particular preventive service. The 2×2 contingency table of count information can be 

converted to show the proportions or frequencies by dividing each entry by the total number 

of eligible subjects, n. 

 

The simplest index of agreement that can be determined from this table is the overall 

proportion of agreement 

𝑝𝑝𝑂𝑂 =
𝑎𝑎 + 𝑑𝑑
𝑛𝑛

 

sometimes called the proportion of observed agreement. Note that the values used in the 

observed agreement come from the concordant cells along the diagonal of the 2×2 table. The 

interpretation of observed agreement is the proportion of all eligible subjects where the two 

EHR data Yes No Total
Yes a b m1

No c d m0

Total n1 n0 n

Claims data
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data sets agree, i.e. proportion of subjects recorded as “Yes” in both data sources or “No” in 

both data sources. If there were complete agreement between the two data sets, the cells b 

and c would be zero and the observed agreement (𝑝𝑝𝑂𝑂) would be 1. Conversely, if the two data 

sets are in complete disagreement, then cells a and d would be zero and 𝑝𝑝𝑂𝑂 would be 0. 

 

Many other indices of agreement have been proposed, but without the realization that, except 

in extreme circumstances (𝑚𝑚1 = 𝑛𝑛0 = 0 or 𝑚𝑚0 = 𝑛𝑛1 = 0), there will be some agreement 

between raters that is due to chance alone [4]. It is important to separate the degree to which 

the raters agree purely by chance, since, in this case, they would not really be in agreement. 

Cohen’s kappa was introduced as a measure of agreement that could be considered a measure 

of “true” agreement by adjusting the observed proportional agreement to take account of the 

amount of agreement which would be expected by chance. To do this adjusting, one must 

determine the proportion of agreement that is due to chance. This determination is based on 

the assumption that the assessments are independent between the two raters, i.e. the 

probability of a subject being in a certain row is independent of the column that they appear 

in. From the 2×2 table, this proportion of expected agreement is calculated by multiplying the 

marginal totals that correspond to each cell along the main diagonal, each divided by n 

𝑝𝑝𝐸𝐸 =
𝑛𝑛1
𝑛𝑛
∙
𝑚𝑚1

𝑛𝑛
+
𝑛𝑛0
𝑛𝑛
∙
𝑚𝑚0

𝑛𝑛
 

 

Using the proportion of observed agreement (𝑝𝑝𝑂𝑂) and the proportion of expected agreement 

(𝑝𝑝𝐸𝐸), Cohen stated the formula for the kappa statistic as 

𝜅𝜅 =
𝑝𝑝𝑂𝑂 − 𝑝𝑝𝐸𝐸
1 − 𝑝𝑝𝐸𝐸

 

which he interpreted as “the proportion of agreement after chance agreement is removed 

from consideration” [5]. 
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Figure 2 below shows visually how the components of the kappa statistic reflect chance-

adjusted agreement. In the upper half of Figure 2, the proportion of observed agreement is 

shown to take on values between zero and one, and that chance agreement will be less than 

observed. The numerator 𝑝𝑝𝑂𝑂 − 𝑝𝑝𝐸𝐸  is the amount of observed agreement above agreement 

expected by chance. Then in the lower half of Figure 2, we see how the maximum possible 

observed agreement (1.0) is adjusted for the proportion of agreement expected due to chance 

to give the denominator, 1 − 𝑝𝑝𝐸𝐸 . The figure makes it clear that the kappa coefficient is “the 

observed agreement, corrected for chance, as a fraction of the maximum obtainable 

agreement, also corrected for chance” [6]. 

 

Figure 2 – Kappa illustration 
Illustration showing the numerator of kappa as observed agreement adjusted for chance, and 
the denominator as possible agreement adjusted for chance. Adapted from Rigby and from 
Sim and Wright [6], [7]. 
 

 

 

1
Observed 
agreement

Chance 
agreement

Observed 
agreement 

above chance

Possible 
agreement

Chance 
agreement

Possible 
agreement 

above chance

0

𝑝𝑝𝐸𝐸 1−𝑝𝑝𝐸𝐸

𝑝𝑝𝐸𝐸 𝑝𝑝𝑂𝑂 − 𝑝𝑝𝐸𝐸

𝑝𝑝𝑂𝑂
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Possible values for kappa range from −1 to 1. Perfect agreement (𝑝𝑝𝑂𝑂 = 1), where the raters 

agreed in each classification, is indicated by 𝜅𝜅 = 1. Observed agreement that is no better than 

that expected by chance (𝑝𝑝𝑂𝑂 = 𝑝𝑝𝐸𝐸) is indicated by 𝜅𝜅 = 0. In the instance of perfect 

disagreement (𝑝𝑝𝑂𝑂 = 0), then the lowest possible value of for kappa is −𝑝𝑝𝐸𝐸 1− 𝑝𝑝𝐸𝐸⁄ . So 

depending on the value of 𝑝𝑝𝐸𝐸 , kappa may take on a negative value on the range [−1, 0). 

Negative kappa would indicate agreement worse than that expected by chance and rarely 

occurs in clinical contexts [7].  

 

Even though kappa provides an indication of the size and direction of agreement, there are 

many interpretations of what qualifies as “good” agreement. Thought there is no formal scale, 

the most widely used standards to assess kappa statistics were originally proposed by Landis 

and Koch, see Table 1 [8]. They do acknowledge that, though the divisions are arbitrary, it is 

useful to have benchmarks for discussion. 

 
Table 1 – Scale for interpreting kappa 
Interpretation of strength of agreement indicated by the kappa statistic. From Landis and 
Koch [8]. 
 

 

 

The original study condensed the cutoff points shown in Table 1 to consider: > 0.60 

substantial agreement, 0.41–0.60 moderate agreement, 0.21–0.40 fair agreement [1]. This 

interpretation is the same as what was proposed by Landis and Koch except that any kappa 

Kappa statistic Strength of agreement

< 0.00 Poor
0.01 – 0.20 Slight
0.21 – 0.40 Fair
0.41 – 0.60 Moderate
0.61 – 0.80 Substantial
0.81 – 1.00 Almost perfect
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greater than 0.60 is considered “substantial”; separate classification of “almost perfect” was 

not a priority. Since this thesis builds upon the work of the original study, their interpretation 

will be used. It’s important to note that kappa is dependent on the prevalence of a condition, 

and that care should be taken when comparing kappa values from different studies where the 

prevalence varies [9].  

 

It won’t be examined or discussed in this thesis, but it should be mentioned that there is a 

hypothesis test where under the null kappa = 0. It does not test the strength of agreement, 

but only whether agreement is due to chance. Kappa is used to give a quantitative measure 

of the magnitude of agreement between observers [10]. Thus, the interest lies in strength of 

agreement not whether or not it is due to chance. 

 

There is debate about interpreting agreement between raters solely based on kappa. 

Feinstein and Cicchetti discuss the “paradoxes” that can occur and detail the issues that can 

arise due to prevalence and marginal totals [11]. Their recommendation, in addition to kappa, 

is to report an index of average positive agreement and an index of average negative 

agreement (commonly just called proportion of positive and proportion of negative 

agreement) [12]: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2𝑎𝑎
2𝑎𝑎+𝑏𝑏+𝑐𝑐

 and 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 2𝑑𝑑
2𝑑𝑑+𝑏𝑏+𝑐𝑐

. Proportion of positive agreement, for 

example, estimates the conditional probability, given that a randomly selected rater makes a 

positive rating, then the other will do so also. These indices are closely analogous to the 

sensitivity and specificity (𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎
𝑎𝑎+𝑐𝑐

 and 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑
𝑑𝑑+𝑏𝑏

) which are commonly 

seen and trusted in diagnostic testing, where one rater is considered the “gold standard”.  
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Byrt et al. also sought to resolve the paradoxes associated with kappa and the effect of 

prevalence on its calculation [9]. They proposed a prevalence index (𝑃𝑃𝑃𝑃 = |𝑎𝑎−𝑑𝑑|
𝑛𝑛

) to assess the 

difference between proportions of positive rating and negative rating. The argument is that 

magnitude of kappa is affected by prevalence, and so kappa must be interpreted taking 𝑃𝑃𝑃𝑃 

into account. Also, a bias index (𝐵𝐵𝑃𝑃 = |(𝑎𝑎+𝑏𝑏)−(𝑎𝑎+𝑐𝑐)|
𝑛𝑛

= |𝑏𝑏−𝑐𝑐|
𝑛𝑛

) is discussed that assess the extent 

to which raters disagree on the proportion of positive or negative cases. If substantial bias 

exists then it needs to be investigated and an index of agreement may not be appropriate. To 

adjust kappa for the imbalances caused by these measures, Byrt et al. provide the prevalence 

and bias adjusted kappa (𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃 = 2 �𝑎𝑎+𝑑𝑑
𝑛𝑛
� − 1). Some have been critical of 𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃 [13] [14], 

but it has advantages to reporting a single summary measure rather than kappa and several 

other prevalence and bias indices. 

 

Though there are a range of indices available and some disagreement on which to report. 

Current literature tend to agree that additional indices provide more information relevant to 

understanding and improving the interpretation of agreement than if kappa was reported 

alone [11] [12] [9] [13] [14]. However, we focused this thesis on the kappa statistic because 

it is commonly used and preferred in the medical literature. 
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Missing data, patterns and mechanisms 
 

Sooner or later (usually sooner), anyone who does statistical analysis runs 
into problems with missing data. 

Allison (2002) [15] 

 

Missing data are defined as values that are not available and that would be meaningful for 

analysis had they been observed [16]. Ignoring missing data or editing may make the data 

seem complete, but it may lead to problems such as: 

• Inefficiency – loss of information leading to loss of power,  

• Systematic difference – leading to biased results, and 

• Unreliable results. 

 

When working with missing data methods, one must first consider both the missing data 

pattern and the missing data mechanism. The missing data pattern describes which values 

are observed in the data matrix and which values are missing. The missing data mechanism 

describes the relationship between missingness and the values of the variables in the data 

matrix.  

 

Many different patterns can arise in the missingness in a given data set. Some missing data 

methods will work for general patterns and other methods will apply only to special patterns. 

Missing data patterns will influence the amount of information that can be transferred 

between variables. For this thesis and discussion, it important to mention the types that Van 

Buuren highlights for theoretical and practical reasons [17]: 
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1. Univariate and multivariate – If only one variable in a data set has missing values, the 

missing data pattern is univariate. More than one variable with missing values, 

multivariate. 

2. Monotone and non-monotone (or general) – Monotone patterns occur when the 

missing data can be arranged by observations and variables so that there is a 

sequential order to the number of missing values by variable. That is, if variable 𝑉𝑉𝑗𝑗 

has missing values, the all variables 𝑉𝑉𝑘𝑘 with 𝑘𝑘 > 𝑗𝑗 are also missing. This occurs in 

longitudinal studies with drop-out occurring; once a subject is missing values they 

are missing subsequent values. Non-monotone (or general) pattern is not monotone 

and appears arbitrary. 

3. Connected and unconnected – If any observed data point can be reached from any 

other observed data point through a series of horizontal or vertical moves. Connected 

patterns are needed in order to identify unknown parameters [17]. 
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Figure 3 – Example missing data patterns 
An interpretation of a visual aid provided by Van Buuren [17] that illustrates the differences 
in missing data patterns listed above. 

 

 

Figure 3 above provides example missing data patterns. The comparative difference between 

univariate and multivariate should be clear. The monotone example shows how successive 

variables have more missing values than the one preceding; non-monotone shows a more 

random looking pattern than sequential. The connected example above is also what is known 

as file matching: an attempt can be made to fill in missing values for variables 3 and 4 by 
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matching on the basis of variable 1 or 2 and imputing value from the matching units. The 

unconnected example also shows a case where two variables are never observed jointly; so 

parameters related to the association between such variables may not be estimable from the 

data and may lead to misleading results [17] [18]. 

 

The mechanism that leads to missing data is a different issue. The mechanism examines the 

“reason” for missing values and tries to determine whether variables that are missing are 

related to the underlying values of the variables in the data set.  

 

Rubin (1976) classified missing data mechanisms into three categories [19] [18]. Let 𝑌𝑌 

represent a 𝑛𝑛 × 𝑝𝑝 matrix with data for 𝑛𝑛 observations (rows) and 𝑝𝑝 variables (columns). To 

characterize the nature of the missing data, define a response matrix, 𝑅𝑅, as a 𝑛𝑛 × 𝑝𝑝 matrix of 

0 − 1 values. The elements of the matrices 𝑌𝑌 and 𝑅𝑅 are denoted as 𝑠𝑠𝑖𝑖𝑗𝑗  and 𝑟𝑟𝑖𝑖𝑗𝑗 where 𝑠𝑠 = 1, … ,𝑛𝑛 

and 𝑗𝑗 = 1, … ,𝑝𝑝. Acting as an indicator for missingness: 

𝑟𝑟𝑖𝑖𝑗𝑗 = �
1, 𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖𝑗𝑗  𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑
0, 𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖𝑗𝑗  𝑠𝑠𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑚𝑚  

Note that 𝑅𝑅 is completely observed in the sample. The complete data values 𝑌𝑌 are made in 

two parts 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 and 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝, where 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 represents the collective elements in 𝑌𝑌 that are observed 

(𝑟𝑟𝑖𝑖𝑗𝑗 = 1) and 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 represents the collective elements of 𝑌𝑌 that are missing (𝑟𝑟𝑖𝑖𝑗𝑗 = 0). In 

addressing the problem that 𝑌𝑌 is observed incompletely, the key assumption is the nature of 

the mechanism that generates 𝑅𝑅. Let 𝜓𝜓 contain the unknown parameters of the missingness 

mechanism, then the general expression of the missing data model is 

𝑃𝑃𝑟𝑟(𝑅𝑅|𝑌𝑌,𝜓𝜓) = 𝑃𝑃𝑟𝑟�𝑅𝑅�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝,𝜓𝜓� 
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The data are said to be missing completely at random (MCAR) if no information in 𝑌𝑌 can 

predict whether the data are missing or not. The causes of the missing data are unrelated to 

the data. So data are MCAR if 

𝑃𝑃𝑟𝑟(𝑅𝑅 = 0|𝑌𝑌,𝜓𝜓) = 𝑃𝑃𝑟𝑟(𝑅𝑅 = 0|𝜓𝜓) 

Missing data under MCAR are essentially a random sample of 𝑌𝑌, and the probability of being 

missing is the same for all cases. Though it has convenient properties, it is often an unrealistic 

assumption for real data. MCAR is the only mechanism that can be tested through a 

multivariate test developed by Little (1988). Most simple fixes for missing data only work 

under the MCAR assumption which is often unrealistic and may provide biased results. 

 

The data are said to be missing at random (MAR) if the probability that observations are 

missing may depend on 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 but not 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝. So data are MAR if  

𝑃𝑃𝑟𝑟(𝑅𝑅 = 0|𝑌𝑌,𝜓𝜓) = 𝑃𝑃𝑟𝑟�𝑅𝑅 = 0�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝜓𝜓� 

MAR allows for the possibility that probability of missingness can be predicted from other 

available, observed data. Van Buuren states that data are MAR if the probability of 

missingness is the same only within groups defined by the observed data [17]. Some known 

aspect of the data may influence whether it is missing or observed which does not fit MCAR. 

However, if the groups are known and MCAR can be assumed within the groups, then the data 

are MAR.  

 

If data are not MCAR nor are they MAR, then they are classified as missing not at random 

(MNAR). Some use the label NMAR (for not missing at random), but there we will continue 

with the same notation used by Van Buuren, MNAR. Here, the probability of missingness 

varies for reasons that are unknown. This case does not simplify and data are MNAR if 

𝑃𝑃𝑟𝑟(𝑅𝑅 = 0|𝑌𝑌,𝜓𝜓) 
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This ends up being the most complex situation to handle. More data must be collected to 

determine the cause of missingness or scenario analysis can be performed [17] [18] [20]. 

 

Note that in each of the mechanisms for missing data there are the unknown parameters for 

the missing data model, 𝜓𝜓. From Van Burren, in practice, it is important to distinguish 

between the missingness mechanisms (MCAR, MAR, and MNAR) since it clarifies the 

conditions where the parameters of interest can be accurately estimated without the need to 

know 𝜓𝜓 [17]. The missing data model is considered “ignorable” if the MCAR or MAR 

assumption holds (discussed more later in assumptions for multiple imputation). This idea 

of ignorability is important for imputation since it implies that the distribution of the data 𝑌𝑌 

is the same in the response and non-response groups 

𝑃𝑃𝑟𝑟�𝑌𝑌�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝑅𝑅 = 1� = 𝑃𝑃𝑟𝑟�𝑌𝑌�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝑅𝑅 = 0� 

When the missing data model is ignorable, one can model the posterior distribution 

𝑃𝑃𝑟𝑟�𝑌𝑌�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝑅𝑅 = 1� from the observed data and use this model to impute the missing data. For 

some cases, though, MAR may not be plausible or realistic. An analyst must take it on faith 

that the observed data are sufficient to correct for the effects of the missing data; this can only 

be tested against separate validation data. Strategies do exist for determining when the data 

is nonignorable; the two strategies mentioned by Van Burren are (1) to expand the data and 

assume ignorability on the expanded data set and (2) formulate a model for the non-response 

groups different from that of the response [17] [21]. 

 

Approaches to missing data 
 

Missing data most often is traditionally handled by deleting cases with missing values. 

Complete-case analysis (aka listwise deletion) is a default way to handle missing data in many 
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software packages and confines the data to cases where all variables are present [17]. While 

a convenient approach to implement, it relies upon the assumption that the data are MCAR 

and can results in biased estimates and a reduction in statistical power [22]. Pairwise deletion 

(aka available-case analysis) is typically used when working with a correlation matrix and it 

tries to fix the data loss problems with listwise deletion. Using the correlation matrix to 

illustrate this method, all data are taken into account for each pair of variables for which data 

is observed. Though good idea to try to use all available information, the estimates are based 

on different subsets of cases and may result in biased estimates [22].  

 

Single imputation methods are considered to be an improvement, but they do not reflect the 

uncertainty in the imputations [23]. Specific details are not examined here, but some common 

methods include: mean imputation, regression imputation, stochastics regression 

imputation, hot-deck, cold-deck, last observation carried forward, and baseline observation 

carried forward [17]. These methods tend to lead to standard errors that are too small and 

have potential for incorrect conclusions [17] [23]. 

 

A method popular in public health and epidemiology is known as the indicator method where 

a dummy variable (0/1) is included in the statistical model to indicate whether the value for 

a variables is missing or observed [24]. The advantage is that the method retains the full data 

set and reduces the loss of statistical power. The method may be suitable for some special 

cases, but these conditions are difficult to achieve in practice making it a less than optimal 

general approach [17].  

 

Likelihood-based methods, often referred to as full-information maximum likelihood (FIML) 

methods, define a model for observed data, and so there is no need to impute missing data or 
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to omit incomplete cases [17]. FIML assumes that the data are MAR and multivariate normal 

joint distribution for all the variables [25]. FIML is considered to be more efficient than the 

methods mentioned above [26]. These methods are only available for certain models, such as 

longitudinal or structural equations models, and generally require specialized software [23].  

 

Weighting methods, such as inverse probability weighting (IPW), can reduce bias when the 

probability of being selected in a survey differs between respondents [17] [27]. These 

methods can be used when individuals vary in the probability of having missing information. 

It is a relatively simple method to apply and can be useful in certain circumstances.  

 

When available, obtaining alternative sources of information can be an appropriate solution 

to missing data problems. Prevention of missing data in the first place is the most direct way 

to avoid problems with missing data. Advice and strategies exist in a variety of sources, but 

still missing data issues persist. 

 

The field of missing data is extensive. We do not intend to cover all the methods and 

approaches in depth. This section serves to mention just some of the approaches that are 

available before moving on to multiple imputation, the missing data method that is the focus 

of this thesis. 
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Multiple Imputation 
 

The goal of multiple imputation is to obtain statistically valid inferences 
from incomplete data.  

Van Buuren (2012) [17] 

 

Multiple imputation (MI) is a statistical method for analyzing data sets with missing values. 

Figure 4 shows the main three stages involved in multiple imputation: generating m multiply 

imputed data sets, analyzing the m imputed sets, and pooling the results from the m analyses 

[17]. Starting with observed, incomplete data, MI creates several versions of the data by 

replacing missing values with plausible ones. The parameters of interest are estimated for 

each of the imputed data sets. Then the multiple parameter estimates are pooled into one 

estimate. 

 

Figure 4 – Stages of multiple imputation 
The three stages of multiple imputation [17] 
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Generating m multiply imputed data sets 
 

Figure 4 starts from the left with the observed, incomplete data set (𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝). Using multiple 

imputation, m complete data sets are created by replacing missing values with plausible ones. 

It’s assumed that the intended data, 𝑌𝑌 = �𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�, follow a distribution 𝑝𝑝(𝑌𝑌|𝜃𝜃), where 𝜃𝜃 

is the collection of all the parameters of the model. Then also assuming that the data are MAR, 

these imputed, plausible values are drawn from the posterior predictive distribution of the 

𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 given 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝, which can be written as 

𝑝𝑝�𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝� = �𝑝𝑝�𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝜃𝜃�𝑝𝑝�𝜃𝜃�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝�𝑑𝑑𝜃𝜃 

where 𝑝𝑝�𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝜃𝜃� is the conditional predictive distribution of 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 given 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 and 𝜃𝜃, and 

where 𝑝𝑝�𝜃𝜃�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝� is the posterior distribution of 𝜃𝜃 based on the observed data 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝. This 

posterior predictive distribution can rarely be expressed in a closed form due to the 

integration, and it is difficult to draw samples from the distribution directly [28]. A single 

imputation of 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 can be produced by  

1. Calculating the posterior distribution 𝑝𝑝�𝜃𝜃�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝� of 𝜃𝜃 based on the observed data 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,  

2. Simulating a random draw of 𝜃𝜃� from the observed-data posterior distribution, 

𝑝𝑝�𝜃𝜃�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝�.  

3. Then randomly drawing a value for each element of 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 from the conditional 

predictive distribution, 𝑝𝑝�𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝,𝜃𝜃��.  

The conditional predictive distribution is usually straightforward once the observed data and 

values of the parameters 𝜃𝜃 are given, the first step is not. Though different approaches are 

possible, Markov chain simulation methods are most often used to do the Bayesian analysis 

to generate parameter values from the observed-data posterior distribution [29].  
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Steps 2 and 3 above are repeated to create m (m > 1) independent imputations: given 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝, m 

values of 𝜃𝜃� are independently drawn from the observed-data posterior distribution to get 𝜃𝜃�(𝑡𝑡) 

where 𝑠𝑠 = 1, 2, … ,𝑚𝑚. For each 𝜃𝜃�(𝑡𝑡), one imputed set of values of 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 is randomly drawn for 

the corresponding conditional predictive distribution 𝑝𝑝�𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝, 𝜃𝜃�(𝑡𝑡)� [28].  

I.E. Steps 2 and 3 are repeated for more imputations. 

 

There are two main assumptions to multiple imputation. First, the missing data should be 

MAR (i.e. the probability an observation is missing may depend on observed data but not on 

missing data). MAR allows for the possibility that the probability of missingness can be 

predicted from the available data [30]. The missing data mechanism is said to ignorable if the 

data are MAR, and the parameters of the data model and missingness parameters are distinct 

[18]. The MAR requirement is regarded as more important; for practical purposes, the 

missing data model is ignorable if MAR holds [17]. The second assumption: the imputation 

model must match the model used for analysis which Rubin termed a “proper” imputation 

model [31]. Rubin (1987) gives a more precise, technical definition, but if the multiple 

imputations are proper then the average of the estimators is a consistent, asymptotically 

normal estimator, and an estimator of its asymptotic variance is given by a simple 

combination of the average of the complete data variance estimators and the empirical 

variance of the m estimators (the “between imputation variance”) according to “Rubin’s rule” 

(defined later) [32]. From a practical standpoint, it is more important that the chosen 

imputation model performs well over repeated samples than it is to be technically proper 

[30]. Last, the algorithm used to generate imputed values must be “correct”; it must allow for 

and include the necessary variables and their associations [31]. 
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Analyzing the m imputed sets 
 

The second step in the multiple imputation process is to analyze each imputed data set on its 

own. Here we let 𝑄𝑄 denote the parameters of scientific interest (e.g. a regression coefficient, 

or a Kappa statistic). In general though, 𝑄𝑄 can represent any estimand of scientific interest. 

So, in this step, 𝑄𝑄�  is estimated for each imputed data set, along with their variance-covariance 

matrices. This is typically done by the intended method had the data been complete, since the 

missing data have been filled in by the imputations and can now be considered complete data. 

The results of the m analyses will differ due to differences in the imputed values for each set, 

i.e. the uncertainty due to the missing observations [17] [33]. 

 

Pooling the results from the m analyses 
 

The last step is to pool the m parameter estimates, 𝑄𝑄�1, … ,𝑄𝑄�𝑚𝑚 into a single estimate 𝑄𝑄�  and to 

estimate its variance-covariance matrix. For parameters 𝑄𝑄 that follow an approximately 

normal distribution, Rubin’s rules provides the method to pool estimates [34]. 

Supposing that 𝑄𝑄�𝑙𝑙  is the estimate for the 𝑙𝑙th imputation that contains 𝑘𝑘 parameters and is 

represented as a 𝑘𝑘 × 1 column vector. The combined estimate 𝑄𝑄�  is equal to the average of the 

estimates from each of the complete imputed data sets 

𝑄𝑄� =
1
𝑚𝑚
�𝑄𝑄�𝑙𝑙

𝑚𝑚

𝑙𝑙=1

 

The combined variance-covariance matrix incorporates both within-imputation variability 

and between-imputation variability. The within-imputation variance reflects the uncertainty 

about the results from a single imputed data set which is the conventional statistical variance 

due to the fact that we are taking a sample instead of observing the entire population. 

Suppose that 𝑈𝑈𝑙𝑙  is the variance-covariance matrix of the estimate 𝑄𝑄�𝑙𝑙  from the 𝑙𝑙th imputation, 
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then the combined within-imputation variance 𝑈𝑈� is equal the average of the complete data 

variances 

𝑈𝑈� =
1
𝑚𝑚
�𝑈𝑈𝑙𝑙

𝑚𝑚

𝑙𝑙=1

 

The between-imputation variability reflects the uncertainty due to missing information, i.e. 

the variance between (among) the m complete data estimates 

𝐵𝐵 =
1

𝑚𝑚 − 1
��𝑄𝑄�𝑙𝑙 − 𝑄𝑄��𝑡𝑡�𝑄𝑄�𝑙𝑙 − 𝑄𝑄��
𝑚𝑚

𝑙𝑙=1

 

where the superscript  𝑠𝑠 indicates transpose when 𝑄𝑄 is a vector. 

So the total variance 𝑇𝑇 is given by 

𝑇𝑇 = 𝑈𝑈� + �1 +
1
𝑚𝑚
�𝐵𝐵 

Note that the total variance 𝑇𝑇 is not given by the simple sum of 𝑈𝑈� and 𝐵𝐵. An additional term 

𝐵𝐵 𝑚𝑚⁄  is included to reflect the additional variance since 𝑄𝑄�  is estimated for finite m. Including 

the extra term ensures that multiple imputation works at low m; not including it would 

produce p-values that are too low and confidence intervals that are too narrow [17] [34].  

 

Statistical Inference 
 

For multi-parameter inference, approaches are available such as Wald Test, likelihood ratio 

test, and 𝜒𝜒2-test. These methods are complex and not utilized in this thesis; further details 

can be found in references [17]. Most if not all MI software is able to facilitate these 

calculations.  

 

For single parameter or scalar inference, like kappa statistics and others examined in this 

thesis, Wald-type significance tests and confidence intervals can be calculated in the usual 
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way [33]. Since the total variance of 𝑇𝑇 is not known, 𝑄𝑄�  follows a t-distribution rather than 

normal. So univariate tests are based on the approximation  

𝑄𝑄 − 𝑄𝑄�

√𝑇𝑇
~𝑠𝑠𝑣𝑣 

where 𝑠𝑠𝑣𝑣 is Student’s t-distribution with 𝑠𝑠 degrees of freedom. Calculation of degrees of 

freedom is discussed in references [17] [30] [35]. 

The 100(1− 𝛼𝛼)% confidence interval for 𝑄𝑄 is calculated as [17] [34] 

𝑄𝑄� ± 𝑠𝑠𝑣𝑣,1−𝛼𝛼 2⁄ √𝑇𝑇 

 

Pooling non-normal quantities 
 

Rubin’s rules for pooling results from m complete data analyses were discussed above and 

are based on the assumption that the parameter estimates 𝑄𝑄�  are normally distributed around 

the population value 𝑄𝑄 with a variance of 𝑈𝑈. When faced with pooling quantities with non-

normal distributions (e.g. odds ratios, hazard ratios, etc.), some transformation may be 

required to ensure that their distribution is close to normal. Statistical inference is improved 

by first transforming the estimates to approximately normal, then applying Rubin’s rules, and 

back-transforming to the original scale [17]. White et al. provide a summary of common 

statistics that can and cannot be using Rubin’s rules directly [33]. 
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Table 2 – Pooling common statistics with Rubin's rules 
Common statistics that can and cannot be combined directly using Rubin’s rules. 
 

 

 

Note that the main statistic of interest for this thesis, kappa statistics, is not mentioned 

specifically in the table above. Nor did literature review provide any example of how to 

transform or not transform kappa statistics for combining. For the purposes here, kappa will 

be treated the same as a proportion and will be combined without transformation; this will 

be mentioned as a limitation in a later section. 

 

Multivariate imputation by Chained Equations (MICE) 
 

The description above for multiple imputation illustrates the ideas behind univariate 

imputation, i.e. only one variable in the data set has missing data to be imputed. In practice, 

missing data are almost always multivariate. Conveniently, the multivariate problem can be 

broken into a series of univariate problems and solved by univariate imputation [36]. 

 

  

Can be combined 
without 

transformation

May require sensible 
transformation before 

combination Cannot be combined
· mean · odds ratio · p -value
· proportion · hazard ratio · likelihood ratio test statistic
· regression coefficient · baseline hazard · model chi-squared statistic
· linear predictor · survival probability · goodness-of-fit test statistic
· C-index · standard deviation
· area under the ROC curve · correlation

· proportion of variance explained
· skewness
· kurtosis
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Notation 
 

Some notation is needed to aid in the discussion: 

• Let 𝑌𝑌𝑗𝑗 be one of 𝑝𝑝 variables, where 𝑗𝑗 = 1, … ,𝑝𝑝. Then the collection of variables to be 

included in the imputation model are 𝑌𝑌 = �𝑌𝑌1, … ,𝑌𝑌𝑝𝑝�.  

The collection of variables 𝑌𝑌 could be the whole data set or a subset of variables. It 

would depend on the choices the researcher makes in variable selection for the 

imputation model. 

These variables included in the imputation model can be complete (no missing) or 

partially complete (some missing). In the regression models, they could be the 

dependent variable being predicted or one of the covariates that is used to impute (a 

predictor). 

• Each 𝑌𝑌𝑗𝑗 consists of observed and missing values, 𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝 and 𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝 respectively. Then the 

observed and missing data in 𝑌𝑌 are denoted as 𝑌𝑌𝑝𝑝𝑏𝑏𝑝𝑝 = �𝑌𝑌1𝑝𝑝𝑏𝑏𝑝𝑝, … ,𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝� and 𝑌𝑌𝑚𝑚𝑖𝑖𝑝𝑝 =

�𝑌𝑌1𝑚𝑚𝑖𝑖𝑝𝑝, … ,𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝�. 

• The collection of 𝑝𝑝 − 1 variables in 𝑌𝑌 except 𝑌𝑌𝑗𝑗 is denoted as 𝑌𝑌−𝑗𝑗 =

�𝑌𝑌1, … ,𝑌𝑌𝑗𝑗−1,𝑌𝑌𝑗𝑗+1, … ,𝑌𝑌𝑝𝑝�. To clarify the distinction, if 𝑌𝑌𝑗𝑗 is being imputed then 𝑌𝑌−𝑗𝑗 

would be the covariates that are used in the regression model. 

• Let 𝜃𝜃 be the unknown parameters of the scientifically interesting model with the 

multivariate distribution 𝑃𝑃(𝑌𝑌|𝜃𝜃) for the hypothetically complete data set. 

 

Fully conditional specification 
 

Two common approaches have emerged to handle multivariate imputation: joint modeling 

(JM) and fully conditional specification (FCS). The typical model is the JM model developed 
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by Schafer (1997) using the multivariate normal model [30]. This assumes that variables have 

a normal distribution, all conditional expectation functions are linear, and all conditional 

variance functions are homoscedastic [15]. JM techniques exist for other multivariate models 

also. The general idea applies that the multivariate distribution is specified for the missing 

data and imputations are drawn from the conditional distributions using Markov chain Monte 

Carlo (MCMC) methods. The JM method assumes though that the multivariate distribution is 

a reasonable description of the data [37]. 

 

Fully conditional specification (FCS) in contrast does not explicitly assume that a particular 

form of the multivariate distribution as in JM, though it does assume that a multivariate 

distribution exists. Instead, FCS implicitly defines a multivariate distribution, 𝑃𝑃(𝑌𝑌|𝜃𝜃), by 

specifying a separate conditional distribution on a variable-by-variable basis. FCS 

accomplishes this by specifying the multivariate distribution by iteratively sampling a set of 

conditional distributions [38] 

𝑃𝑃(𝑌𝑌1|𝑌𝑌−1,𝜃𝜃1) 

⋮ 

𝑃𝑃�𝑌𝑌𝑝𝑝�𝑌𝑌−𝑝𝑝,𝜃𝜃𝑝𝑝� 

The 𝜃𝜃1, … ,𝜃𝜃𝑝𝑝 parameters are not of scientific interest and only serve to model the respective 

conditional densities used for imputation. So they are not intended to be a product of a 

factorization of the “true” joint distribution of 𝑃𝑃(𝑌𝑌|𝜃𝜃) [37]. Starting from a simple draw from 

the observed marginal distribution, successive draws are to that the 𝑠𝑠th iteration of the 

method is as follows  
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𝜃𝜃1
∗(𝑡𝑡)~𝑃𝑃 �𝜃𝜃1�𝑌𝑌1𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌2

(𝑡𝑡−1), … ,𝑌𝑌𝑝𝑝
(𝑡𝑡−1)� 

𝑌𝑌1
∗(𝑡𝑡)~𝑃𝑃 �𝑌𝑌1𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌1𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌2

(𝑡𝑡−1), … ,𝑌𝑌𝑝𝑝
(𝑡𝑡−1),𝜃𝜃1

∗(𝑡𝑡)� 

         ⋮ 

𝜃𝜃𝑝𝑝
∗(𝑡𝑡)~𝑃𝑃 �𝜃𝜃𝑝𝑝�𝑌𝑌1𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌2

(𝑡𝑡), … ,𝑌𝑌𝑝𝑝
(𝑡𝑡)� 

𝑌𝑌𝑝𝑝
∗(𝑡𝑡)~𝑃𝑃 �𝑌𝑌𝑝𝑝𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌2

(𝑡𝑡), … ,𝑌𝑌𝑝𝑝−1
(𝑡𝑡) ,𝜃𝜃𝑝𝑝

∗(𝑡𝑡)� 

One cycle through all 𝑌𝑌𝑗𝑗 makes one iteration 𝑠𝑠. Since no information about 𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝 is used to 

draw 𝜃𝜃𝑝𝑝
∗(𝑡𝑡), this approach differs from MCMC method to joint modeling and convergence can 

be quite fast [38]. Though convergence should be monitored, the suggested number of 

iterations can be fairly low, 5 to 20 [17] [37], especially compared with other MCMC 

techniques which can require thousands of iterations. The fast convergence is achieved when 

there is independence between the imputations themselves. The univariate imputation 

models create imputations that are already statistically independent for a given value of the 

regression parameters [37]. The 𝑠𝑠 iterations are executed 𝑚𝑚 times in parallel to generate 𝑚𝑚 

multiple imputations.  

 

If the joint distribution defined by the specified conditional distributions exists, then this 

process is a Gibbs sampler [39], a Bayesian simulation technique that samples from the 

conditional distributions in order to obtain samples from the joint distribution. FCS is a very 

flexible method that is adaptable to the data, but the drawback to this flexibility is that the 

joint distribution may not even exist and convergence criteria are unclear. Two conditional 

densities are compatible if a joint distribution exists that has the given densities as its 

conditional densities [38]. The theoretical weakness of FCS is known as incompatibility of 

conditionals where no joint distribution exists for the specification of conditional 
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distributions. FCS is able to produce imputed data whether the joint distribution exists or not. 

FCS is guaranteed to work if the conditionals are compatible [39]. The issue of incompatibility 

of conditionals is still an open topic of research, and not much is known about the impact on 

the quality of imputations. FCS appears to be robust when the condition is not met, and the 

issue is minor in practice when the rate of missing data is modest [17]. Simulation work has 

suggested that the issue is not as serious, but more work in realistic settings is needed. To 

minimize the issue, Van Buuren suggests to ensure that the order in which variables are 

imputed is sensible [37]. 

 

MICE algorithm 
 

Several implementations of FCS exist, this thesis utilizes the MICE algorithm developed by 

Van Buuren and applied in his R software package mice. The steps of which can be explained 

generally as follows [17] [23] [33]: 

1. An imputation model 𝑃𝑃�𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌−𝑗𝑗,𝑅𝑅� is specified for each variable 𝑌𝑌𝑗𝑗 with 𝑗𝑗 =

1, … ,𝑝𝑝.  

These imputation models are decided by the researcher based on the types of 

variables (continuous, categorical, ordinal, etc.). To aid in these decisions, the 

software provides sensible built in defaults  

 

A more extensive list is available in the mice documentation and the defaults can be 

overridden. 

Method Variable type
Predictive mean matching Numeric
Logistic regression Binary
Multinomial logit model Nominal
Ordered logit model Ordinal
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2. For each 𝑗𝑗, missing values are filled in with starting imputations 𝑌𝑌𝑗𝑗0 by a simple 

imputation using the observed values 𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝 (e.g. random sampling of observed value 

with replacement or mean substitution).  

This initialization is repeated for 𝑠𝑠 = 1, … ,𝑇𝑇 and for 𝑗𝑗 = 1, … ,𝑝𝑝. 

3. The values for the variable to be imputed, 𝑌𝑌𝑗𝑗, are set back to missing. The currently 

complete data except 𝑌𝑌𝑗𝑗 is defined 𝑌𝑌−𝑗𝑗𝑡𝑡 = �𝑌𝑌1𝑡𝑡 , … ,𝑌𝑌𝑗𝑗−1𝑡𝑡 ,𝑌𝑌𝑗𝑗+1𝑡𝑡−1, … ,𝑌𝑌𝑝𝑝𝑡𝑡−1�. So, except for the 

variable being imputed, the complete data is made of the values already imputed in 

the current iteration 𝑠𝑠 �𝑌𝑌1𝑡𝑡 , … ,𝑌𝑌𝑗𝑗−1𝑡𝑡 � and the values for the prior iteration 𝑠𝑠 − 1 for 

those not imputed yet in the current iteration �𝑌𝑌𝑗𝑗+1𝑡𝑡−1, … ,𝑌𝑌𝑝𝑝𝑡𝑡−1�. 

4. Draw 𝜙𝜙𝑗𝑗𝑡𝑡~𝑃𝑃�𝜙𝜙𝑗𝑗𝑡𝑡�𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌−𝑗𝑗𝑡𝑡 � where 𝜙𝜙𝑗𝑗 represents the unknown parameters of the 

imputation model. The observed values 𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝 are regressed on the other variables in 

the imputation model  𝑌𝑌−𝑗𝑗𝑡𝑡  in order to obtain estimates of the regression model 

parameters 𝜙𝜙𝑗𝑗𝑡𝑡. Here, the type of regression model is chosen based on the type of 

variable being imputed (continuous, binary, ordered or unordered categorical), so 

each variable is imputed using its own model. 

5. Draw imputations 𝑌𝑌𝑗𝑗𝑡𝑡~𝑃𝑃�𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝�𝑌𝑌𝑗𝑗𝑝𝑝𝑏𝑏𝑝𝑝,𝑌𝑌−𝑗𝑗𝑡𝑡 ,𝜙𝜙𝑗𝑗𝑡𝑡�, the corresponding posterior predictive 

distribution of 𝑌𝑌𝑗𝑗𝑡𝑡. So missing 𝑌𝑌𝑗𝑗𝑚𝑚𝑖𝑖𝑝𝑝 are replaced with predictions (imputations) from 

the regression model that was fit in step 4. Now, all the values for 𝑌𝑌𝑗𝑗𝑡𝑡 consist of both 

observed and imputed values which will be used when 𝑌𝑌𝑗𝑗𝑡𝑡 is included as a covariate 

for the regression models for the other variables. 

6. End and repeat for the next 𝑗𝑗. End and repeat for the next 𝑠𝑠. 

 

Steps 1 through 6 are repeated to create 𝑚𝑚 imputed data sets. 
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One full pass through all the variables to be imputed is called a cycle or iteration. After one 

cycle, all of the missing values have been replaced with predictions from regression models 

that reflect relationships observed in the data [23]. The researcher decides how many cycles 

to perform so that the results have converged or stabilized (generally 10 to 20) which will 

produce one imputed data set. This whole process is repeated m times to produce m imputed 

data sets. 

 

These 𝑚𝑚 imputed data sets are analyzed separately to obtain 𝑚𝑚 separate estimates which 

then pooled to a single estimate as described in the sections above. 

 

Conclusion 
 

This introduction serves to describe and overview the techniques that will be applied in this 

thesis. The research into these topics goes far beyond what is presented here. In the following 

Methods section, we will apply MICE to a data set with missing patient demographic 

information and assess agreement in data capture between two data sources with kappa 

statistics before and after multiple imputation.  
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METHODS 

 

This section will explain the process and steps taken to apply MICE to the data from the 

original study. This includes describing the data, examining the missing values, setting up the 

imputation procedures, running and assessing the results of the imputation. 

 

Background and data 
 

Data for the current analysis was provided by OCHIN, a nonprofit community health 

information network of over 300 CHCs in 13 states. The data set was the same as used for the 

original study with the exception of some improvement to the patient information for 

primary language. In the original study, researchers used claims data for 2011 from Oregon’s 

Medicaid program, collected 18 months after the end of the year to allow for processing lag. 

In the Medicaid data, the researchers identified adult patients aged 19 to 64 during 2011 that 

were fully covered by Medicaid and had ≥ 1 billing claim. EHR data was extracted from 

OCHIN’s data storage for 43 Oregon CHCs for the year 2011. The researchers matched 

patients in the EHR data by Medicaid ID and included patients with ≥ 1 primary encounter in 

at least one of the study clinics during 2011. They excluded patients that had insurance 

coverage in addition to Medicaid, were pregnant, or died during the study period. The 

resulting sample contained 13,101 patient records [1]. 

 

Except for FPL, data was provided in one file with categories already created for the 

demographic information. FPL is a measure of income determined every year by the 

Department of Health and Human Services (HHS) to determine eligibility for certain 

programs and benefits [40]. For individuals, it is calculated based on household income and 
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household size. We were given the calculated percent FPL in a separate file with more than 

one observation per subject, i.e. not given income and household size. The records were 

combined following the method given in the original study: average all 2011 encounters, 

excluding null values ≥ 1000% (which were considered erroneous) [1]. We matched this 

information to the main data file based on a subject identifier (ID). FPL was the categorized 

as ≤ 138% or > 138%. If income is below 138% FPL and the state has expanded Medicaid 

coverage, then an individual can qualify for Medicaid based only on their income [40].  

 

The original study assessed documentation for 11 adult preventive services. In this analysis, 

since we are looking at agreement between electronic health records and claims data across 

Race and FPL, we decided to limit the number of services presented here. All 11 preventive 

procedures were analyzed as we describe, but only 3 are presented: Cholesterol screening, 

Chlamydia screening, and Colonoscopy. 

 

From the results of the original study, these procedures were chosen because of how they 

differed on (1) number of eligible patients, i.e. sample size, (2) level of agreement measured 

by kappa statistics in the original study, and (3) likelihood that the procedure was performed 

in clinic. The original study hypothesized post-hoc that there may be a relationship between 

agreement for procedures and how likely they are to be performed in clinic versus another 

location [1]. The Table 3 below shows how the three procedures differ across the criteria. 
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Table 3 – Procedures in this analysis 
Three procedures chosen for this analysis and how they differ across the criteria.  
 

 

 

Examine the missing data 
 

One of the beginning steps in any data analysis is to examine the data. When missing data is 

present, additional care must be taken. Particularly with multiple imputation, the type of data 

and the missingness will drive the decisions in the process. It is helpful to begin by checking 

the entire data set for missing values. This can be done with visualization, counts, or 

frequencies. Also, note that in knowing the data one must know how missing values are coded 

and know how they are treated by the statistical software being used. 

 

Preliminary checks showed that there are 3 variables in the data set that have missing values: 

ethnicity, race, and FPL. The mice package takes many exploratory data steps and combines 

them into two useful commands for understanding the counts and patterns of missing values: 

md.pattern and md.pairs. See Appendix A.1–A.6 for the output of these commands from 

R. The actual output takes some examination to decipher and one should refer to the vignette 

for the mice package for full details.  

 

Procedure n Kappa
Likelihood 
done in clinic

Cholesterol screening High (12817) High (0.80) High

Chlamydia screening Low (523) Medium (0.52) Medium

Colonoscopy Medium (3761) Low (0.26) Low
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The information from the software for All Patients and those eligible for the procedures of 

interest are presented in Table 4 where we can get a sense of the counts and percentages of 

missing values in the data.  

 

Table 4 – Counts and frequencies of missing values 
Table of counts and frequencies of missing values in the data set for all patients and for those 
eligible for Cholesterol Screening, Chlamydia Screening, and Colonoscopy. 
 

 

 

From the information in Table 1, we observe that FPL has the highest amount of missing 

(21%), then Race, and Ethnicity the lowest. It’s useful to see here that there are similar trends 

of missingness for all patients and across procedures (i.e. there is a similar trend across 

rows). Of the 41 variables in the working data set only 3 have any missing information. For 

imputation purposes, it is important to note for later that the percent of incomplete 

observations (rows with at least one missing value) is 26%. 

 

All patients Cholesterol Chlamydia Colonoscopy
n % n % n % n %

Total observations 13101 12817 523 3761

Complete 9706 74% 9506 74% 374 72% 2828 75%

Incomplete 3395 26% 3311 26% 149 28% 933 25%

Missing variable
Any 4122 31% 4014 31% 162 31% 1111 30%
Ethnicity 531 4% 513 4% 8 2% 127 3%
Race 877 7% 841 7% 46 9% 178 5%
FPL 2714 21% 2660 21% 108 21% 806 21%

No. missing columns
1 2807 21% 2745 21% 136 26% 796 21%
2 449 3% 429 3% 13 2% 96 3%
3 139 1% 137 1% 0 0% 41 1%
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Visualization is a valuable tool in assessing the pattern of missing data. Below is a plot (Figure 

5) that was created to get an overall picture of the amount of missing data. It was limited to 

just the demographic data in the entire set but could have just as easily included all variables.  

 

Figure 5 – Missingness map 
Plot of missingness among the demographic variables in the data set. Note that this plot was 
inspired by the missingness map in the R package Amelia [41]. 
 

 

 

Right away we can see that the missingness is multivariate and that FPL has the most missing. 

The pattern is non-monotone which we might expect given that the data is not longitudinal. 

There is a connected pattern to the data so that there will be available information in the data 

for imputation.  
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What is noted in the pattern of missing data is that Race and Ethnicity seem to be missing for 

many of the same observations. This can be investigated further in the information of 

missingness in pairs of variables from the md.pairs command (Appendix A.5). All 531 

observations with missing Ethnicity are also missing Race. Logically there should be a 

relationship between Race and Ethnicity, but in this data set Race may not be informative of 

the missingness in Ethnicity.  

 

Another well-developed visualization comes from the R package VIM [42], seen in Figure 6. 

This is another variation on the missingness map where only the three variables with missing 

values are shown (missing in beige and observed in blue). In the left side of the visualization, 

a bar plot shows the percent missing in each variable. The right shows the patterns of 

combinations of missingness along with the frequency. FPL and Race are missing together for 

0.4% of observations, all three variables for 1.1%, race only 2.2%, and FPL only 19.2%. Again, 

here we see that 74% of rows in the data set are completely observed. 
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Figure 6 – Missing values histogram and pattern 
Bar plot of frequency of missing values in FPL, Race, and Ethnicity in the data (left). Pattern 
and frequency of missingness (right). Yellow and blue colors indicate missing and observed, 
respectively. 
 

 

 

Table 5 below shows the counts and frequencies of all patients and those eligible for each 

procedure across categories Ethnicity, Race, and FPL. We will be sub-setting the entire data 

set (𝑛𝑛 = 13101) for each of the screening procedures; in a way, three separate sub-set 

analyses. This table let’s us confirm that the missingness we see for all patients can be 

extended to the sub-sets. Looking across rows of the table, we indeed confirm that the 

distributions and missingness by procedure reflects what is seen when looking at all patients 

together. 
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Table 5 – Counts and frequencies by demographic categories 
For all patients and for eligible patients for Cholesterol Screening, Chlamydia Screening, and 
Colonoscopy. 

 

 

The exploratory data steps cannot be undervalued when dealing with missing data. 

Depending on what is found here can direct many of the decisions that will be made for the 

rest of the analysis with imputation whether you impute or not. Whether through counts and 

frequencies or visualization, there are good tools available to aid the researcher in this step. 

 

Patients eligible for procedures
All patients Cholesterol Chlamydia Colonoscopy

No. % No. % No. % No. %

n 13101 12817 523 3761

Race, ethnicity
Hispanic 1186 9.1          1125 8.8         109 20.8 248 6.6         

Non-Hispanic, white 8943 68.3        8782 68.5       300 57.4 2673 71.1       

Non-Hispanic, other 2441 18.6        2397 18.7       106 20.3 713 19.0       

Missing/Unknown 531 4.1          513 4.0         8 1.5 127 3.4         

Total 13101 100.0      12817 100.0     523 100 3761 100.0     

Race
Asian/Pacific Islander 772 5.9          756 5.9         18 3.4 256 6.8         

American Indian/Alaskan native 180 1.4          175 1.4         7 1.3 48 1.3         

Black 1409 10.8        1388 10.8       70 13.4 397 10.6       

White 9720 74.2        9518 74.3       365 69.8 2860 76.0       

Multiple Races 143 1.1          139 1.1         17 3.3 22 0.6         

Missing/Unknown 877 6.7          841 6.6         46 8.8 178 4.7         

Total 13101 100.0      12817 100.0     523 100 3761 100.0     

Federal poverty level
<=138% FPL 10153 77.5        9930 77.5       401 76.7 2906 77.3       

>138% FPL 234 1.8          227 1.8         14 2.7 49 1.3         

Missing/Unknown 2714 20.7        2660 20.8       108 20.7 806 21.4       

Total 13101 100.0      12817 100.0     523 100 3761 100.0     
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Specification of the imputation model 
 

Van Buuren labels the specification of the imputation model as the most challenging step in 

multiple imputation and that the model should [17]: 

• Account for the process that created the missing data,  

• Preserve the relations in the data, and 

• Preserve the uncertainty about these relations. 

The idea is that, by following these principles, the method will yield proper imputations and 

result in valid statistical inference. Van Burren and Groothuis-Oudshoorn outline 7 ordered 

choices to make to accomplish this process [37]. We will follow their suggestions to specify 

the model for the data set. The steps are as follows, using our example for discussion 

 

1. Decide if the missing at random (MAR) assumption is reasonable. Missing not at 

random (MNAR) cannot be determined by looking at observed values; and, for 

practical reasons, we have not gone back and collected the missing information. 

Missing completely at random (MCAR) is convenient but can often be unrealistic. 

Though are tests and methods to check MCAR vs. MAR (e.g. Little’s test, tests of 

association with missingness), MAR is a suitable starting place. From the inspection 

of the missingness above and the knowledge of the data, there are no strong reasons 

not to assume MAR. 

 

2. Decide on the form of the imputation model. A univariate imputation model needs 

to be chosen for each incomplete variable. Using mice, the software makes default 

selections based on the variable type. The analyst should review these defaults and 

make different decisions if needed. The choice is driven by the variable type that is to 
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be imputed: continuous, categorical, ordinal, etc. For the three variables with missing 

information, the imputation models are specified as follows based on their variable 

type: 

 
Table 6 – Models selected for target variables 
List of the target variables to be imputed and the form of imputation model selected. 

 

 

 

3. Decide the set of predictors to include in the imputation model. The general 

advice cited is to include as many variables as possible [17] [21]. Using all available 

data results in multiple imputations with minimal bias and maximal certainty. 

Including as many predictors as possible tend to make the MAR assumption more 

reasonable [17], i.e. if there are more variables in the model then it is more likely that 

missingness depends on an observed (included) variable. 

 

The problem with this strategy is that for very large data sets, the models can become 

unwieldy due to multicollinearity and computational issues. Without derived 

variables, interaction effects or other complexities, it is reasonable to include all 

variables for small to medium data sets (20–30 variables). Van Buuren’s notes that 

increase in explained variance in linear regression is negligible after including the 

best 16 variables. For imputation, with a large data set, his advice is to select a subset 

of the data that includes not more than 15 to 25 variables [17].  

 

Variable Variable Type Imputation model
Ethnicity Categorical factor with >2 levels Multinomial logit regression
Race Categorical factor with >2 levels Multinomial logit regression
FPL Categorical factor with 2 levels Logistic regression
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For variable selection with large data sets, he offers additional steps to consider [17] 

[36]: 

1. Include all variables that will be in the model of scientific interest that will 

be applied post imputation. 

2. Include all variables that are known to influence the occurrence of the 

missing data, i.e. related to nonresponse.  

3. Include variables where the distributions differ between response and 

nonresponse groups which can be found by checking correlations with a 

missingness indicator (1/0) of the variable to be imputed. 

4. Include variables that explain a considerable amount of variance to 

reduce the uncertainty of the imputations; simply identified by 

correlation with the variable to be imputed. 

5. Remove variables in steps 2–4 with too many missing values in the 

subgroup of incomplete cases. If the variable to be imputed and the 

predictor variable are missing on the same cases, then do not include. 

 

To apply this method of predictor selection, the first consideration was the data set is 

moderate in size. There are 37 usable variables for the imputation model; subject ID 

is an example of a variable excluded from this list because it does not contain 

information that would help the multiple imputation. Based on the advice that 

including more variables makes MAR more likely, it’s reasonable to include all the 

available variables. This imputation model will be referred to as the Full scenario. 

 

We also wanted to compare the performance of the imputation model with a reduced 

list of variables. How would the results differ if less variables were included? We 
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sought the advice of the primary author for the original study, John Heintzman, MD, 

MPH for advice on ranking the variables in order of importance. This reflects what 

would be done in practice: if the statistician questioned which variables may be most 

informative, they would discuss with the primary investigator (PI) and study team. 

Below in Table 7 is the Full list of 37 variables ranked.  

 
Table 7 – Variables in Full scenario imputation model 
List of variables that were include in the Full scenario, ranked in order of importance 
based on advice of the primary researcher on the original study. For a description of 
each variable, see the data dictionary in Appendix B. 
 

 

 

The mice software contains a useful tool to automate the predictor selection process, 

quickpred(). The function calculated two correlations for each variable pair, an 

(imputation) target and a predictor, using all available cases per pair. The first 

correlation uses the values of the variables as they are in the data. The second 

correlation uses the binary response indicator (1/0, observed/missing) of the target 

and the observed value of the predictor. If the largest (in absolute value) of these 

correlations is greater than a minimum value (default = 0.1), then the predictor will 

be added to the imputation model [37]. You can also specify in the function a 

minimum proportion of usable cases (observed within a subgroup of incomplete 

cases), but the default is zero. Table 8 shows the variables selected as predictors of 

the target variables: Ethnicity, Race, and FPL. 

1 FPL 11 EHR_COLONOSCOPY 21 EHR_FLU 31 ELIG_CERVICAL
2 RACE 12 DMAP_BREAST 22 EHR_CHLAM 32 ELIG_BREAST
3 ETHNICITY 13 DMAP_COLONOSCOPY 23 EHR_SMOKING 33 ELIG_COLON
4 LANGUAGE 14 EHR_CHOLEST 24 DMAP_CERVICAL 34 ELIG_BMI
5 AGE 15 DMAP_CHOLEST 25 DMAP_COLON 35 ELIG_FLU
6 SEX 16 ELIG_CHOLEST 26 DMAP_FLEXSIG 36 ELIG_CHLAM
7 PRIMARY_DEPT 17 EHR_FLEXSIG 27 DMAP_FOBT 37 ELIG_SMOKING
8 EHR_CERVICAL 18 EHR_FOBT 28 DMAP_BMI
9 EHR_BREAST 19 EHR_BMI 29 DMAP_FLU

10 EHR_COLON 20 EHR_WEIGHT 30 DMAP_CHLAM
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Table 8 – Variables selected by software 
Variables selected by quickpred() function as predictors of the target variables in 
the imputation model. 
 

 

 

We used the combined recommendation of the advice from the investigator and the 

selections made by the software to cull a list of 21 variables for a Reduced scenario 

imputation model (roughly half of the Full scenario). We also need to make sure and 

heed the advice of Step #1 of predictor selection above to include all variables that 

appear in the complete data model. Since our research questions looks at the 3 

procedures (Cholesterol screening, Chlamydia screening, and Colonoscopy) and 2 

demographic categories (Race and FPL), these should be included in the imputation 

model.  

 

Keeping variables relevant to the research question in the model and using the ranks 

from the investigator and using the selections from the software, the variables for the 

Reduced scenario are shown in Table 9. 

 

  

Target Predictors

ETHNICITY PRIMARY_DEPT
LANGUAGE
RACE

RACE PRIMARY_DEPT
ETHNICITY
LANGUAGE

FPL EHR_FLU
EHR_SMOKING
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Table 9 – Variables included in Reduced Scenario 
List of variables that were include in the Reduced scenario. 
 

 

 

Since the software gave us it’s predicted imputation model which only had 3 

predictors per target variable, it will be interesting to see how it compares to the 

other two scenarios that we have planned. We will include another scenario based on 

the quickpred() function: QPM scenario. 

 

To summarize, we have 3 planned imputation models: (1) Full scenario with 37 

variables, (2) Reduced scenario with 21, and (3) QPM scenario with 3 variables per 

target. 

 

4. The next choice is to decide whether to impute variables that are function of 

other (incomplete) variables. If the data set contains transformations or sum 

scores, it can be helpful to include the transformed variable in the imputation model. 

The variable that we considered here is the categorized FPL (above or below 138%) 

which is derived from a continuous FPL variable. There is more practical interest in 

Medicaid studies in whether someone is above or below the limit than the actual 

amount, so we decided to only include the categorical version of this variable.  

 

1 FPL 11 EHR_COLONOSCOPY 21 EHR_FLU 31 ELIG_CERVICAL
2 RACE 12 DMAP_BREAST 22 EHR_CHLAM 32 ELIG_BREAST
3 ETHNICITY 13 DMAP_COLONOSCOPY 23 EHR_SMOKING 33 ELIG_COLON
4 LANGUAGE 14 EHR_CHOLEST 24 DMAP_CERVICAL 34 ELIG_BMI
5 AGE 15 DMAP_CHOLEST 25 DMAP_COLON 35 ELIG_FLU
6 SEX 16 ELIG_CHOLEST 26 DMAP_FLEXSIG 36 ELIG_CHLAM
7 PRIMARY_DEPT 17 EHR_FLEXSIG 27 DMAP_FOBT 37 ELIG_SMOKING
8 EHR_CERVICAL 18 EHR_FOBT 28 DMAP_BMI
9 EHR_BREAST 19 EHR_BMI 29 DMAP_FLU

10 EHR_COLON 20 EHR_WEIGHT 30 DMAP_CHLAM
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5. Decide the order in which variables should be imputed. The software allows for 

the user to indicate the order that variables are imputed (aka the visiting sequence). 

The visiting sequence may impact the convergence of the algorithm. This is most 

important when the missing data are monotone or longitudinal, since missing in one 

variable may have an impact on the ones that follow. The software default is from left 

to right position in the data set. The imputations were run from highest number of 

missing to lowest, and from lowest to highest. There was no noticeable difference in 

convergence or computation time. The final decision was to impute from highest to 

lowest: FPL, first; then Race; and last, Ethnicity. The idea is to use more observed 

information to impute variables with high missing. 

 
6. Decide the number of iterations. Convergence must be monitored, and the mice 

software offers visual tools to help. Compared to many modern MCMC techniques, 

which can require thousands of iterations, the MICE algorithm needs a much lower 

number to converge. The number of iterations needs to be large enough to stabilize 

the distributions of the regression parameters [37]. Van Buuren suggest that 

satisfactory convergence comes with just 5 to 10 iterations the software default is 5. 

With large amounts of missing data convergence can be slower. It cannot hurt to 

calculate extra iterations, so to assess the convergence over a longer stretch, we 

decided to use 20. 

 
7. Decide m, the number of multiply imputed data sets. Advice in the past was to use 

a low number of imputations, 5 to 10. This idea is based on the statistical efficiency of 

point estimates [43].  

The true variance of a pooled set of m imputed data sets is similar to the estimated 

quantity given in the INTRODUCTION: Statistical Inference section of this thesis: 
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𝑇𝑇𝑚𝑚 = 𝑉𝑉 + �1 +
1
𝑚𝑚
�𝐵𝐵 

Where 𝑉𝑉 is the average within-imputation variance and 𝐵𝐵 is the between-imputation 

variance. Then for infinitely many imputations: 

𝑇𝑇∞ = 𝑉𝑉 + 𝐵𝐵 

Then the relative efficiency of infinite imputations over 𝑚𝑚 imputations is the ratio: 

𝑇𝑇𝑚𝑚
𝑇𝑇∞

= 1 + 𝐹𝐹𝐹𝐹𝑃𝑃/𝑚𝑚 

Here 𝐹𝐹𝐹𝐹𝑃𝑃 = 𝐵𝐵/(𝑉𝑉 + 𝐵𝐵), which is called the fraction of missing information (not to be 

confused with the percent of complete cases) [34].  

With 50% 𝐹𝐹𝐹𝐹𝑃𝑃, five imputed data sets would yield point estimates that were 91% 

(inverse relative efficiency) as efficient as those based on an infinite number. Ten 

imputed data sets would be 95% as efficient. In the past, the additional resources, 

computer memory and processing, were not thought to be well spent for the small 

gains in efficiency [30].  

 
What works for efficiency does not work for reproducible standard error estimates, 

confidence intervals, and p-values [17] [44]. Several sources advocate for a higher 

number and all tend to suggest the following rule of thumb: “the number of 

imputations should be similar to the percentage of cases that are incomplete” [33] 

[43] [17]. Percentage of incomplete cases is used here as a rough approximation for 

𝐹𝐹𝐹𝐹𝑃𝑃 since it requires less calculation. In larger data sets and those with very high 

missingness (>50%), additional care should be taken and more imputations may be 

needed. At a minimum, good practice would be to always use at least 5, even if, say, 

percent of incomplete cases were <5%. 
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We followed a suggested good practice by Van Buuren: to use m = 5 as a convenient 

setting for model building, then increasing m for the final round of imputation. The 

data set had 26% incomplete cases and m was set to 30 for the final round of 

imputation. 

 

Van Buuren’s advice is that these choices are always needed. His book referred to for deeper 

details or for a different situation. These steps appear to be good, practical considerations to 

apply no matter the imputation method so that thoughtful attention is given to the setup. 

 

Running the imputation models 
 

We ran the specified imputation models for the 3 planned scenarios: (1) Full scenario with 

37 variables, (2) Reduced scenario with 21, and QPM scenario with 3 variables per target. 

Variables were imputed in order from highest percent missing (FPL, 21%) to lowest 

(Ethnicity, 4%). The number of iterations was 20; and the number of imputed data sets was 

set m = 30. 

 

The models needed to be reviewed for convergence. While there is no one method for 

determining if the MICE algorithm converged, the advice is to plot the parameters against the 

iteration number, and the mice package makes this easy. Figures 7, 8, and 9 show the plots of 

convergence for the three scenarios. For convergence, the lines should be well mixed with 

each other and show no signs of a trend [37].  

 

Looking at the plots, the streams do seem to be mixing well in the Full and QPM scenarios, 

but there definitely is noticeable trend in the Ethnicity and Race variables. Though the scale 
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is so small that if the iterations were run out longer, the trend may go away. The Reduced 

scenario does not show the same trend as the others but isn’t as well mixed. FPL plots look 

okay for all three scenarios. 

 

Figure 7 – Convergence plot, Full Scenario, 3 target variables 
Convergence of MICE algorithm for Ethnicity, Race, and FPL variables for the Full scenario. 
Observe fair mixing, but noticeable trend for Ethnicity and Race. 
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Figure 8 – Convergence plot, Reduced Scenario, 3 target variables 
Convergence of MICE algorithm for Ethnicity, Race, and FPL variables for the Reduced 
scenario. Observe fair mixing, but noticeable trend for Ethnicity and Race. 
 

 

 

Figure 9 – Convergence plot, QPM Scenario, 3 target variables 
Convergence of MICE algorithm for Ethnicity, Race, and FPL variables for the QPM scenario. 
Less trend than the other two scenarios, but only fair mixing. 
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The convergence in the three scenarios gave some pause for consideration. There appear to 

be issues with the Ethnicity and Race variables that results in less than ideal convergence. 

There is no known direct relationship between the two variables in the data set (they are 

coded differently and reside separately in the data base). In the real world there is a 

relationship between Ethnicity and Race. There could be a relationship between the observed 

data or the missing values for these two variables that is affecting the convergence.  

 

For the purpose of this thesis, we are focused on Race and FPL demographic categories. So 

Ethnicity is not a variable directly related our interests. It’s inclusion in the imputation model 

would be to aid in the imputation of the other two variables. There are two issues to raise 

with the Ethnicity variable: 

1. There isn’t a lot of information in this variable. Mostly it seems to be able to 

distinguish between “NH White” and others: 

 
Table 10– Counts and frequencies of Ethnicity.  

 

 

2. The proportion of usable cases reveals that there may not be a lot of usable 

information in the variable. Van Buuren discusses this calculation which can be 

implemented with the quickpred() function or md.pairs() with some 

additional calculation (See Appendix A.6) 

 

Ethnicity n Percent Valid Percent
Hispanic 1186 9% 9%
NH White 8943 68% 71%
NH Other 2441 19% 19%
Missing 531 4%
Total 13101 100% 100%
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Table 11 – Proportion of useable cases 
The proportion of usable cases in the data set for Ethnicity, Race, and FPL. Labels 
for target appears on the left and predictor on the top. 
 

 

 

Of the records with missing Race information, 40% have observed data on 

Ethnicity. So Ethnicity may be a poor predictor of Race. But for those missing FPL, 

95% have available information for Ethnicity. There is a trade-off here to 

including or not including it in the imputation model. 

 

We decided to create three more scenarios that did not include Ethnicity in the imputation 

model: Full_2, Reduced_2, and QPM_2 to distinguish from the scenarios where 3 variables 

were imputed. The convergence plots are shown in Figures 10, 11, and 12, where we see more 

healthy convergence before. 

 

  

Ethnicity Race FPL
Ethnicity -         -         0.74       
Race 0.40       -         0.78       
FPL 0.95       0.93       -         
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Figure 10 – Convergence plot, Full Scenario, 2 target variables 
Convergence of MICE algorithm for Race and FPL variables for the Full scenario. Observe 
good mixing, and no noticeable trend. 

 

 

Figure 11 – Convergence plot, Reduced Scenario, 2 target variables 
Convergence of MICE algorithm for Race and FPL variables for the Reduced scenario. Good 
mixing, and no noticeable trend. 
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Figure 12 – Convergence plot, QPM Scenario, 2 target variables 
Convergence of MICE algorithm for Race and FPL variables for the QPM scenario. Good 
mixing, and no noticeable trend. 
 

 

 

We see improved convergence when Ethnicity is not included in the imputation model. But 

there may have been some information sacrificed for not including it as a predictor for FPL. 

If the percent missing for Ethnicity had been high, then it would likely make the decision 

easier. At least for now, we want to move toward comparing the results between all 6 

scenarios. 

 

Note on computation time 
 

It’s worth mentioning the amount of time that it took for the software to run the imputations 

on a desktop computer (Intel® Core™ i7-6700 CPU @ 3.40 GHZ; 230 GB RAM). With large 

data sets and high missingness, the amount of time to run the software to calculate the 

imputations could be very intensive. With the data set, 13101 rows and 26% incomplete 
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cases, it took about an hour on average for all 6 scenarios to calculate 30 imputed data sets. 

Table 12 shows the actual hours that each scenario took to run. 

 

Table 12 – Computation time for multiple imputations 
Hours that the software took to multiply impute 30 data sets for each of the 6 scenarios. 
 

 

It took a notably long time to pool the results, but this is due to the fact that we are calculating 

point estimates (i.e. kappa) and some lacking efficiencies in the code writing. If the results 

were based on a model, then we would have been able to take advantage of built in 

functionality of the software to handle statistical models and the pooling process. We were 

still able to take advantage of the pool.scalar() function in the mice package. For 6 each 

scenario we pooled 23 statistics related to agreement for 242 categories (11 procedures 

times 22 demographic categories). Also, for each of the 6 scenarios we calculated 8 different 

data sets (23 by 242) of statistics related to the pooled results (point estimates, variances, 

degrees of freedom, etc.). All of these were written and saved to files so that they could be 

used in later analysis. 

 

All the work for each scenario took about 12 hours to run, and the complete code finished in 

about 3 days. It’s an important caution that though imputations may happen quickly, the 

subsequent pooling can take a fair amount of time. With more time and some advice from a 

more advanced R programmer, some of this computation time could be reduced. 

 

3 Variables 2 Variables
Full 1.2             0.9             
Reduced 1.0             0.7             
QPM 0.6             0.4             



56 

Assessing the imputations 
 

In imputation, diagnostic checking involves assessing whether the imputations are plausible. 

Good imputations should have a distribution similar to the observed data. To assess the 

plausibility, it is recommended to focus on the distributional discrepancy, the difference 

between observed and imputed data [17]. Some things to check for [37] 

• The imputed values could have been obtained had they not been missing,  

• Imputations should be close to the data, and 

• Imputed data should be possible to occur and make common sense (e.g. pregnant 

fathers). 

 

Data visualization is a helpful tool to identify discrepancies between the observed and 

imputed data. Unfortunately, most of the graphics discussed in literature as examples use 

continuous variables: kernel densities, distributional dot plots, and box plots. Here we are 

working with categorical variables and so the best alternative is likely a box plot which works 

well when you have only a few imputations (for example, 5 sets from the imputation model 

building phase). With 30 imputed data sets like we have here, it can be a little cumbersome, 

so we adapted the idea of the kernel density plot (Van Buuren page 149) to create Figures 13, 

14, and 15 using the Full scenario with 3 variables to impute [17]. 

 

In the 3 figures, we see a similar shape to the distributions of the imputed sets and the 

observed data. Figure 13 shows that the imputed sets have a higher percent Black than the 

observed. Looking at ethnicity in Figure 14, there are differences in the allocations of Hispanic 

and NH White. FPL in Figure 15 is very close to the same between observed and imputed sets. 

 



57 

Dramatic differences should raise concern, but the resulting figures don’t seem too extreme 

to cause worry. MAR data mechanism may result in systematic differences between 

distributions. Only under MCAR would they need to be identical. Differences between 

observed and imputed values may well be appropriate and should be discussed with those 

with expert knowledge of the data subject matter. 

 

Figure 13 – Distribution comparison: Race 
Comparing distributions of observed and imputed data with m = 30 for Race. Original 
observed percents shown by red dots and imputed values shown in blue. Lines drawn 
between points are meant to aid in assessment of the distribution not to imply the data points 
are continuous. 
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Figure 14 – Distribution comparison: Ethnicity 
Comparing distributions of observed and imputed data with m = 30 for Ethnicity. Original 
observed percents shown by red dots and imputed values shown in blue. Lines drawn 
between points are meant to aid in assessment of the distribution not to imply the data points 
are continuous. 
 

 

 

Figure 15 – Distribution comparison: FPL 
Comparing distributions of observed and imputed data with m = 30 for FPL. Original 
observed percents shown by red dots and imputed values shown in blue. Lines drawn 
between points are meant to aid in assessment of the distribution not to imply the data points 
are continuous. 
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Note that we have only shown the visualizations for the Full scenario with 3 imputed 

variables. Other scenarios gave similar plots and are included in Appendix C for reference. 

 

Comparing scenarios 
 

At this point in the analysis, we hoped to compare the results for the 6 scenarios and see if 

there was a noticeable difference due to the different specifications of the imputation models. 

We will compare the main statistic of interest, kappa and its 95% confidence intervals (CIs), 

for the scenarios by procedure and by demographic strata. 

 

In Figure 16, the kappa statistics and 95% CIs are assessed visually by forest plots. Looking 

column by column, the scenarios do not seem to differ substantially. It’s difficult to say that 

one performed better than the others. The kappa statistics for the Multiple Race category 

(Chlamydia and Colonoscopy) seem to change the most from scenario to scenario, but all are 

between 0.7–0.8 and would all be interpreted as showing substantial agreement. 
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Figure 16 – Results from 6 scenarios by Race 
Kappa statistics and 95% confidence intervals plotted for the pre-imputation data and each 
of the 6 scenarios. By Procedure and Race. 
 

 

 

Next we examine the results of the 6 scenarios for FPL categories, see Figure 17. Comparisons 

between the scenarios is similar to Race above. There are only noticeable differences 

between scenarios for >138% FPL for Chlamydia Screening and for Colonoscopy. 
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Figure 17 – Results from 6 scenarios by FPL 
Kappa statistics and 95% confidence intervals plotted for the pre-imputation data and each 
of the 6 scenarios. By Procedure and FPL. 
 

 

 

We suspect that the differences seen in the scenarios for Chlamydia Screening and 

Colonoscopy are due to low counts in the original data for Multiple Races and >138% FPL 

categories. The low counts would be sensitive to changes in the number of patients in the 

categories; the between-imputation variation is not necessarily larger than other categories, 

but just more noticeable because of scale. For example, assigning 1 or 2 patients to a category 

would be more visible in a category with 20 patients to begin rather a hundred or a thousand. 

 

Ultimately, we want to select one imputation scenario to represent the results after-

imputation. The results proved to be robust in spite of the potential issues with convergence 

noticed previously. The similar results across scenarios suggest that there are likely a small 

number of variables that dominate the imputation models. The advice from the literature is 
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that including more variable in the model makes a stronger argument for the MAR 

assumption. With this justification, we select the Full scenario with all 3 target variables. 

 

RESULTS 

 

In an analysis that involves missing data, the conclusions drawn from the statistical results 

are affected by the reporting or not reporting information about the missingness and the 

procedures used to handle it. Guidelines exist for what should be reported from an analysis 

with missing data, but they vary in their scope. Van Buuren compiled the recommendations 

from sources and presented a list of questions that need to be answered when using multiple 

imputation [17]. His suggestions were the guide for the following paragraph which could 

serve as a statistical methodology summary. His text should be consulted for further details 

of the guidelines. 

 

Three of 41 variables in the data set had missing data: race (7% missing), ethnicity (4%), and 

federal poverty level (21%). Of the total 13,101 observations, 3,395 (26%) were incomplete. 

Though the percentages are lower, the reasons for missing Race and Ethnicity is not fully 

known. Full demographics are available in Table 13 below. The original study had reported 

2.0% missing Federal Poverty Level (FPL) data, and, from the raw data, we came up with the 

much higher percent listed before. Normal procedure would be to investigate the 

discrepancy, but we decided to use the higher percent to enrich the learning goals of this 

analysis. Multiple imputation [34] was used to create and analyze 30 multiply imputed data 

sets. Incomplete variables were imputed under fully conditional specification [38]. 

Calculations were done in R version 3.4.0 (2017-04-21) using the default settings of the mice 
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2.3 package [37] as these were deemed appropriate for our study setting. Kappa and other 

statistics were estimated based on established formulae and theory applied to each imputed 

data set separately. The estimates and stand errors were combined using Rubin’s rules 

without transformation. The final results were compared to the analysis done on the subset 

of cases with complete, observed data. 

Table 13 – Demographic characteristics of study sample 
 

 

 

Patients appearing in both
EHR and claims (N=13,101)

No. %
Gender

Female 8,600 65.6
Male 4,501 34.4

Race
Asian/Pacific Islander 772 5.9
American Indian/Alaskan native 180 1.4
Black 1,409 10.8
White 9,720 74.2
Multiple Races 143 1.1
Unknown 877 6.7

Race, ethnicity
Hispanic 1,186 9.1
Non-Hispanic, white 8,943 68.3
Non-Hispanic, other 2,441 18.6
Unknown 531 4.1

Primary Language
English 10,927 83.4
Spanish 589 4.5
Other 1,585 12.1

Federal poverty level
≤138% FPL 10,153 77.5
≥138% FPL 234 1.8
Missing/Unknown 2,714 20.7

Age in years (as of January 1, 2011)
19−34 4,632 35.4
35−50 5,033 38.4
51−64 3,436 26.2
Mean (SD) 40.6 (12.3)
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The original study assessed agreement between EHR and Medicaid claims data for 11 

preventive procedures. These results focus on three of those procedures (Cholesterol 

screening, Chlamydia screening, and Colonoscopy) and the agreement by Race and FPL 

categories.  

 

Cholesterol screening 
 

Cholesterol screening was selected as one of the procedures due to its high number of eligible 

patients (𝑛𝑛 = 12,817). Eligible patients were men and women age 20 or older; the screening 

includes low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides. 

The original kappa statistic indicated substantial agreement between EHR and Medicaid 

claims (𝜅𝜅 = 0.80; 95% CI: 0.79 to 0.81). The original study hypothesized that the high 

agreement could be related to the location the service is provided. Cholesterol screening is 

usually done in the primary care setting. 

 

Table 14 gives kappa and other statistics, prior to imputation, for Cholesterol screening in 

total, by race, and by FPL. Even when stratified, the agreement between EHR and Medicaid 

claims is substantial. Highest agreement is seen among the category for Asian/Pacific 

Islander (𝜅𝜅 = 0.85; 95% CI: 0.81 to 0.89). Lowest agreement was seen in the categories for 

American Indian/Alaskan native (𝜅𝜅 = 0.71; 95% CI: 0.61 to 0.82) and Multiple Races (𝜅𝜅 = 0.71; 

95% CI: 0.58 to 0.83); these two groups also have the lowest numbers of eligible patients 

(175 and 139) also seen in the wider confidence intervals for kappa. For these two groups, 

proportion screened in the EHR data, assessed by EHR (+) p1 and Sensitivity, are lower 

relative to the other Race categories and contributes to the lower but still substantial 
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agreement. Looking at FPL, agreement is higher for those with FPL (above or below 138% 

FPL) than those with Missing/Unknown. 

 

Table 15 provides the same information but after multiple imputation. The two figures are 

nearly indistinguishable. And agreement in the categories are very similar. The high number 

of eligible patients and substantial agreement prior to imputation likely contribute to the 

stable results post-imputation. Figure 18 gives another visual comparison of the kappa 

statistics and the 95% confidence intervals; there is a slight but noticeable shift lower in 

agreement for both FPL groups. This seems due to the lower agreement pre-imputation for 

those with Missing/Unknown FPL. 

 

Overall agreement was already substantial pre-imputation and stayed that way after 

imputation likely due to the high number of eligible patients. Substantial agreement by 

category is likely related to the service being provided in clinic. No categories stand out as 

having vastly different agreement than the others.  

 

See Appendix D for tables of results pre- and post- imputation with additional statistics.



66 

Table 14 – Cholesterol screening agreement results prior to imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Men and 
women aged ≥20; screening includes low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides. 
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Table 15 – Cholesterol screening agreement results after imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Men and 
women aged ≥20; screening includes low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides. 
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Figure 18 – Cholesterol screening: Visualization of kappa statistics and 95% CIs 
Pre-imputation shown in blue; post-imputation in purple.  
 
 

A. By Race 
 

 
 
 

B. By FPL 
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Chlamydia screening 
 

Chlamydia screening is included in this analysis since there were a low number patients 

eligible for this procedure (𝑛𝑛 = 523). Eligible patients were sexually active women between 

ages 19 and 24. Overall agreement between EHR and Medicaid claims for this screening was 

moderate (𝜅𝜅 = 0.45; 95% CI: 0.45 to 0.59). The original study had presumed a likelihood of 

0.48 that this service is provided in the primary care clinic; near even chance. 

 

Kappa and other statistics prior to imputation are shown in Table 16 by total and by strata. 

Immediately apparent is the wider confidence intervals for kappa compared to what was 

seen above for Cholesterol screening. Particularly in the categories with low number of 

eligible patients: Asian/Pacific Islander, American Indian/Alaskan native, Multiple Races, and 

>138% FPL.  

 

Table 17 shows post-imputation results where the confidence intervals are still fairly wide. 

An encouraging sign that multiple imputation did not over assign to Race or FPL categories 

with lower counts; increasing the numbers artificially would narrow the confidence intervals. 

Like we saw for Cholesterol screening, results are very similar before and after imputation. 

Highest agreement (post-imputation) was among Multiple Races (𝜅𝜅 = 0.76; 95% CI: 0.54 to 

0.93). Lowest agreement was for Whites (𝜅𝜅 = 0.48; 95% CI: 0.40 to 0.57), which had the 

highest allocation of eligible patients for this procedure. Proportions of patients screened 

according to each data source (EHR (+) p1 and Claims (+) p2) were low indicating a low 

number of eligible patients in this sample had documentation in either source. Specificity was 

around 0.85 for each strata while Sensitivity varied quite a bit. 
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Figure 19 puts the kappa statistics and 95% CIs side by side where we can compare easily 

pre- and post- imputation visually. For the Race categories, results stayed fairly consistent. 

Unknown Race had a higher kappa than other categories pre-imputation, and these subjects’ 

agreement did not seem to affect the other categories too much post-imputation. In FPL, we 

see a different effect where Missing/Unknown FPL had a much lower kappa pre-imputation 

(𝜅𝜅 = 0.39; 95% CI: 0.23 to 0.56). For those with >138% FPL, kappa changed from almost 

perfect agreement pre-imputation (𝜅𝜅 = 0.86; 95% CI: 0.59 to 1.00) to substantial post-

imputation (𝜅𝜅 = 0.74; 95% CI: 0.38 to 1.00). Though the count for this category is low before 

and after (14 vs. 20), the addition of other records through imputation will affect the kappa. 

In this case, the subjects with fair, pre-imputation agreement had the effect to reduce the 

agreement for the categories to which imputation assigned them. 

 

In general, the moderate pre-imputation agreement persisted across all categories post-

imputation despite the lower number of total eligible patients. Though when looking at the 

individual categories where the counts are divided further, the wide confidence intervals 

show a lack of precision.  

 

See Appendix D for tables of results pre- and post- imputation with additional statistics. 
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Table 16 – Chlamydia screening agreement results prior to imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Sexually active 
women ages 19 to 24. 
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Table 17 – Chlamydia screening agreement results after imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Sexually active 
women ages 19 to 24. 
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Figure 19 – Chlamydia screening: Visualization of kappa statistics and 95% CIs 
Pre-imputation shown in blue; post-imputation in purple.  
 
 

A. By Race 
 

 
 
 

B. By FPL 
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Colonoscopy 
 

Colonoscopy was selected as a procedure for the medium number of eligible patients relative 

to other screenings (𝑛𝑛 = 3761) but also for its fair (i.e. low) overall agreement (𝜅𝜅 = 0.26; 95% 

CI: 0.21 to 0.30) due to the tendency to be referred out.  

 

Of the three chosen procedures, EHR and Medicaid claims do not agree well in recording 

Colonoscopy. In Table 18, pre-imputation, the American Indian/Alaskan native strata has 

estimated agreement worse than chance (𝜅𝜅 = –0.12; 95% CI: –0.19 to –0.04) markedly lower 

than the other groups. One of the groups with lower counts, there agreement between the 

two data sources (before or after imputation) on patients being screened, though they do 

agree on “not screened”. Specificity is reasonable (0.88) while Sensitivity is zero (0.00). Each 

data source indicated that 5 patients were screened, but not the same patients. This lack of 

agreement among screened strongly affects the kappa statistic. 

 

The Multiple Races group stands out as having higher agreement (pre- and post- imputation) 

than the other categories (𝜅𝜅 = 0.78; 95% CI: 0.36 to 1.00). This group has the lowest number 

of eligible patients (𝑛𝑛 = 22) and a low number of patients recorded as receiving this procedure 

(3 in EHR and 2 in Medicaid Claims data). It just so happens that the data sources agreed on 

2 of these otherwise the agreement would have looked more similar to that of the American 

Indian/Alaskan native group. 

 

The rest of the Race groups and FPL categories all show fair agreement, pre- and post- 

imputation (Table 18, Table 19, and Figure 20). The differences in the American 

Indian/Alaskan native group and the Multiple Races group highlight the impact that low 
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counts can have on agreement and do not indicate that these groups are being screened 

differently than other groups. 

 

Difference pre- and post- imputation are worth discussing for two categories. Figure 20 

shows a notably wider confidence interval for the American Indian/Alaskan native group 

post-imputation. The number of eligible patients only changed slightly (48 vs. 51), as did 

Sensitivity (0.00 vs. 0.02) and Specificity (0.88 vs. 0.89). The wider confidence interval and 

less precision is likely due to between imputation variability.  

 

The second category to note is the group >138% FPL. The confidence interval for this group 

is narrower post-imputation and we don’t see this in any other groups for Colonoscopy. The 

number of eligibly patients in this group nearly double before and after imputation (49 to 

81), but the Sensitivity and Specificity did not change (0.38 and 0.93 respectively). Here, 

agreement didn’t change but the increased number of patients lowered the standard error. 

 

With Colonoscopy, we saw some noticeable difference in agreement between categories, 

though they could be attributed to low number of eligible patients. Most of the groups showed 

similar agreement and confidence intervals pre- and post-imputation except for the 

American Indian/Alaskan native group and >138% FPL. Small counts were seen in these 

groups with the other procedures. These results suggest that multiple imputation may 

behave differently with kappa statistics when counts are low and agreement is low pre-

imputation. 

 

See Appendix D for tables of results pre- and post- imputation with additional statistics. 
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Table 18 – Colonoscopy agreement results prior to imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Men and 
women age 50 or older with no history of colorectal cancer or total colectomy. 
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Table 19 – Colonoscopy agreement results after imputation 
EHR (+) p1 and Claims (+) p2 indicate proportion of patients listed as screening in the respective data sources. EHR (+), Claims (+) p1+p2 shows the 
combined percent of total eligible patients screened in both data sources. Sensitivity, here, is the proportion of subjects screened in EHR given that they 
are screened in Medicaid claims. Specificity is the proportion not screened in EHR given not screened in Medicaid claims. Eligible patients: Men and 
women age 50 or older with no history of colorectal cancer or total colectomy. 
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Figure 20 – Colonoscopy: Visualization of kappa statistics and 95% CIs 
Pre-imputation shown in blue; post-imputation in purple. 
 
 

A. By Race 
 

 
 
 

B. By FPL 
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DISCUSSION 

 

In the previous section, we saw that the post-imputation results were very similar (point 

estimates and confidence intervals) to the results prior to imputation. This may imply that 

the assumption about the data mechanism favors MCAR instead of MAR. That is, there is no 

relationship between whether a data point is missing and any values in the data set, missing 

or observed. We expect the results of complete case analysis (what was done pre-imputation) 

to provide the same results as imputation when the data are MCAR. Note, this does not violate 

the assumptions of multiple imputation since MCAR implies MAR, but not the other way 

around. 

 

We stated in the introduction that multiple imputation for non-standard statistics like the 

kappa statistics are not fully developed. We have proceeded with these analyses in earnest 

effort and due care. Our work in this area has been extensive, and yet we acknowledge that 

there is still room for further assessment of the methods. 

 

We did not perform sensitivity analysis of the multiply imputed data which is encouraged by 

Van Buuren [17] to assess the reasonableness of the missing at random (MAR) assumption. 

The analyses did not reveal any strong reasons to doubt that the data here is MAR. 

Additionally, our imputation model was carefully constructed using all available data which 

should be robust to deviations in assumptions.  

 

We performed limited diagnostics on the imputations to assessing the distributions of the 

imputed data with the observed data. Approaches for future consideration have been 
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developed by Van Buuren and Groothuis-Oudshoorn [37], by Raghunathan and Bondarenko 

[45], and by Yucel and Zaslavsky [46].  

 

Rubin’s Rules were used to pool the resulting kappa statistics and variances without 

transformation prior to pooling. There is no guidance provided in literature specifically for 

kappa statistics. Our results indicate that this approach is reasonable. Future consideration 

to this would be appropriate when using multiple imputation with kappa statistics.  

 

SUMMARY AND CONCLUSIONS 

 

In this thesis, we sought to explore the use of multiple imputation technique MICE with 

electronic health records (EHR) and kappa statistics. We also sought to examine the 

agreement across demographic categories, Race and Federal poverty level (FPL), to assess 

any systematic differences among patients.  

 

We have shown here a practical execution of the MICE algorithm and associated software to 

multiply impute missing categorical information in EHR. The flexibility of the approach 

makes it particularly well suited for EHR due to the many different types of variables that 

exist in these records. By following the practical guidance developed by Stef Van Buuren, 

these methods were adapted and successfully applied to a non-standard statistic like Cohen’s 

Kappa. 

 

Both before and after multiple imputation, the examination of agreement stratified between 

EHR and Medicaid claims by Race and FPL showed no differences that gave cause for concern. 
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The study results suggest that a similar quality of care is being provided across the 

demographic categories, judging by agreement between strata.  

 

The 3 procedures (Cholesterol screening, Chlamydia screening, and Colonoscopy) were 

chosen to provide varying circumstances to assess the application of MICE to kappa statistics 

across Race and FPL. When number of observations were high and agreement was moderate 

or better, we saw consistent results before and after multiple imputation. But in the case of 

Colonoscopy where agreement was less than moderate, in strata with very low counts we 

saw differences in kappa and confidence intervals pre- and post- imputation. Therefore, we 

recommend additional scrutiny of the results from multiply imputed data when there is a low 

number of observations and agreement is low before imputation. 

 

In conclusion, we deem MICE to be an approach worth further investigation and application 

to obtain statistically valid kappa statistics with incomplete EHR data. 
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ABBREVIATIONS 

Abbreviation Meaning 

Page 
number 
introduced 

   

EHR Electronic health records 1 

CHC Community health center 1 

MACRA Medicare Access and CHIP Reauthorization Act 1 

MCAR Missing completely at random 13 

MAR Missing at random 14 

MNAR Missing not at random 14 

NMAR Not missing at random 14 

FIML Full-information maximum likelihood 16 

IPW Inverse probability weighting 17 

MI Multiple imputation 17 

MICE Multivariate imputation by chained equations 24 

JM Joint modeling 25 

FCS Fully conditional specification 25 

MCMC Markov chain Monte Carlo 25 

HHS Department of Health and Human Services 30 

ID Subject identifier 30 

PI Primary investigator 41 

QPM Quick predictor matrix 43 

FMI Fraction of missing information 45 

CI Confidence interval 56 
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APPENDICES 

 

Appendix A. Inspecting the data 
 

A.1 Output from mice command md.pattern for full data set  
 

Limited to 3 variables with missing data 

> cardiac %>%  
+   dplyr::select(ethnic.cat, race.cat, fpl.cat) %>%  
+   mice::md.pattern(.)  
     ethnic.cat race.cat fpl.cat      
9706          1        1       1    0 
 289          1        0       1    1 
2518          1        1       0    1 
 392          0        0       1    2 
  57          1        0       0    2 
 139          0        0       0    3 
            531      877    2714 4122 

 

There is a lot of information packed into this tables, but for exploring the missing data is does 

a lot for just a simple command. The 1s in the body of the figure indicate available and zeroes 

indicate missing. The column on the left shows the number of records with a particular 

pattern of available/missing data. The last column on the right indicates number of missing 

columns. The last row tells the number of missing rows by variable and in total. 

 

A.2 Output from mice command md.pattern for Cholesterol Screening eligible records 
 

> cardiac %>%  
+   dplyr::filter(ELIG_cholest == 1) %>%  
+   dplyr::select(ethnic.cat, race.cat, fpl.cat) %>%  
+   mice::md.pattern(.)  
     ethnic.cat race.cat fpl.cat      
9506          1        1       1    0 
 275          1        0       1    1 
2470          1        1       0    1 
 376          0        0       1    2 
  53          1        0       0    2 
 137          0        0       0    3 
            513      841    2660 4014 

 



88 

 

A.3 Output from mice command md.pattern for Chlamydia Screening eligible records 
 

> cardiac %>%  
+   dplyr::filter(ELIG_chlam == 1) %>%  
+   dplyr::select(ethnic.cat, race.cat, fpl.cat) %>%  
+   mice::md.pattern(.)  
    ethnic.cat race.cat fpl.cat     
374          1        1       1   0 
 33          1        0       1   1 
103          1        1       0   1 
  8          0        0       1   2 
  5          1        0       0   2 
             8       46     108 162 

 

A.4 Output from mice command md.pattern for Colonoscopy Screening eligible records 
 

> cardiac %>%  
+   dplyr::filter(ELIG_colon == 1) %>%  
+   dplyr::select(ethnic.cat, race.cat, fpl.cat) %>%  
+   mice::md.pattern(.)  
     ethnic.cat race.cat fpl.cat      
2828          1        1       1    0 
  41          1        0       1    1 
 755          1        1       0    1 
  86          0        0       1    2 
  10          1        0       0    2 
  41          0        0       0    3 
            127      178     806 1111 

 

A.5 Output from mice command md.pairs  
 

Here we are able to see the pairwise relationship of missing and observed between variables. 

rr counts if both are observed; rm first variable is observed and the second is missing; mr 

first is missing, second observed; mm both missing. So for the pair race.cat and fpl.cat, 

there are 9706 completely observed pairs, 2518 pairs where race.cat is observed but 

fpl.cat is not, 681 pairs where race.cat is missing and fpl.cat is observed, and 2714 

pairs where both are missing.  
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> cardiac %>%  
+   dplyr::select(ethnic.cat, race.cat, fpl.cat) %>%  
+   mice::md.pairs(.)  
$rr 
           ethnic.cat race.cat fpl.cat 
ethnic.cat      12570    12224    9995 
race.cat        12224    12224    9706 
fpl.cat          9995     9706   10387 
 
$rm 
           ethnic.cat race.cat fpl.cat 
ethnic.cat          0      346    2575 
race.cat            0        0    2518 
fpl.cat           392      681       0 
 
$mr 
           ethnic.cat race.cat fpl.cat 
ethnic.cat          0        0     392 
race.cat          346        0     681 
fpl.cat          2575     2518       0 
 
$mm 
           ethnic.cat race.cat fpl.cat 
ethnic.cat        531      531     139 
race.cat          531      877     196 
fpl.cat           139      196    2714 

 

A.6 Proportion of usable cases using mice command md.pairs  
 

Measures how many cases with missing data on the target variable actually have observed 

values on the predictor. The proportion will be low if both target and predictor are missing 

on the same cases. 

Target on the vertical axis (i.e. left), predictor on the horizontal (i.e. top). 

Of the 877 records with missing race, only 39% (346) have observed information on 
ethnicity. 

 

> p <- mice::md.pairs(cardiac[, c("ethnic.cat", "race.cat", "fpl.cat")]) 
>  
> round(p$mr / (p$mr + p$mm), digits = 3) 
           ethnic.cat race.cat fpl.cat 
ethnic.cat      0.000    0.000   0.738 
race.cat        0.395    0.000   0.777 
fpl.cat         0.949    0.928   0.000 
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Appendix B. Data Dictionary 
 

  

VARIABLE_NAME DESCRIPTION VARIABLE TYPE

StudyID Patient identification Integer
sex Sex (M/F) Categorical, 2 levels
age_start Age Integer
FPL_PERCENTAGE Federal povery level (numerical) Continuous
PrimaryDept Primary department/clinic Categorical, >2 levels
ethnic.cat Race, ethnicity Categorical, >2 levels
lang.cat Language Categorical, >2 levels
race.cat Race Categorical, >2 levels
fpl.cat Federal povery level (categorical) Categorical, 2 levels
age.cat Age (categorical) Categorical, >2 levels
ELIG_BMI Eligible for BMI screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_breast Eligible for breast cancer screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_cervical Eligible for cervical cancer screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_chlam Eligible for chlamydia screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_cholest Eligible for cholesterol screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_colon Eligible for colon cancer screening (1 = Y, 0 = N) Categorical, 2 levels
ELIG_colonoscopy Eligible for colonoscopy (1 = Y, 0 = N) Categorical, 2 levels
ELIG_flexsig Eligible for flexible sigmoidoscopy (1 = Y, 0 = N) Categorical, 2 levels
ELIG_Flu Eligible for flu vaccine (1 = Y, 0 = N) Categorical, 2 levels
ELIG_FOBT Eligible for FOBT (1 = Y, 0 = N) Categorical, 2 levels
ELIG_smoking Eligible for smoking assessment (1 = Y, 0 = N) Categorical, 2 levels
DMAP_BMI Medicaid claims, SCREENED BMI screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_breast Medicaid claims, SCREENED breast cancer screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_cervical Medicaid claims, SCREENED cervical cancer screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_chlam Medicaid claims, SCREENED chlamydia screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_cholest Medicaid claims, SCREENED cholesterol screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_colon Medicaid claims, SCREENED colon cancer screening (1 = Y, 0 = N) Categorical, 2 levels
DMAP_colonoscopy Medicaid claims, SCREENED colonoscopy (1 = Y, 0 = N) Categorical, 2 levels
DMAP_flexsig Medicaid claims, SCREENED flexible sigmoidoscopy (1 = Y, 0 = N) Categorical, 2 levels
DMAP_Flu Medicaid claims, SCREENED flu vaccine (1 = Y, 0 = N) Categorical, 2 levels
DMAP_FOBT Medicaid claims, SCREENED FOBT (1 = Y, 0 = N) Categorical, 2 levels
DMAP_smoking Medicaid claims, SCREENED smoking assessment (1 = Y, 0 = N) Categorical, 2 levels
EHR_BMI EHR, SCREENED BMI screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_breast EHR, SCREENED breast cancer screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_cervical EHR, SCREENED cervical cancer screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_chlam EHR, SCREENED chlamydia screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_cholest EHR, SCREENED cholesterol screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_colon EHR, SCREENED colon cancer screening (1 = Y, 0 = N) Categorical, 2 levels
EHR_colonoscopy EHR, SCREENED colonoscopy (1 = Y, 0 = N) Categorical, 2 levels
EHR_FlexSig EHR, SCREENED flexible sigmoidoscopy (1 = Y, 0 = N) Categorical, 2 levels
EHR_Flu EHR, SCREENED flu vaccine (1 = Y, 0 = N) Categorical, 2 levels
EHR_FOBT EHR, SCREENED FOBT (1 = Y, 0 = N) Categorical, 2 levels
EHR_smoking EHR, SCREENED smoking assessment (1 = Y, 0 = N) Categorical, 2 levels
EHR_Weight EHR, SCREENED weight assessment (1 = Y, 0 = N) Categorical, 2 levels
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Appendix C. Visual diagnostics to assess the imputations for all scenarios 
 

C.1 Full scenario, impute Race, Ethnicity, and FPL 
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C.2 Reduced scenario, impute Race, Ethnicity, and FPL 
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C3 QPM scenario, impute Race, Ethnicity, and FPL 
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C4 Full scenario, impute Race and FPL 
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C5 Reduced scenario, impute Race and FPL 
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C6 QPM scenario, impute Race and FPL 
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Appendix D. Tables for Results 
 
Starts on next page. 
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Table 20 – Cholesterol screening results by Race categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

Total
eligible OCHIN EHR Claims Not κ statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK (95% CI)

All eligible patients 12817 4624 436 776 6981 5060 (39.5) 5400 (42.1) 0.86 0.94 0.81 0.80 (0.79 to 0.81)

Asian / 
Pacific Islander 756 341 38 18 359 379 (50.1) 359 (47.5) 0.95 0.90 0.85 0.85 (0.81 to 0.89)

795 357 39 20 377 397 (49.9) 378 (47.5) 0.95 0.90 0.85 0.85 (0.81 to 0.89)

American Indian / 
Alaskan native 175 56 3 21 95 59 (33.7) 77 (44.0) 0.73 0.97 0.73 0.71 (0.61 to 0.82)

190 61 3 22 103 65 (33.9) 84 (43.8) 0.73 0.97 0.73 0.72 (0.62 to 0.82)

Black 1388 517 63 43 765 580 (41.8) 560 (40.3) 0.92 0.92 0.85 0.84 (0.81 to 0.87)

1483 553 67 48 813 621 (41.9) 602 (40.6) 0.92 0.92 0.84 0.84 (0.81 to 0.87)

White 9518 3365 289 639 5225 3654 (38.4) 4004 (42.1) 0.84 0.95 0.81 0.80 (0.79 to 0.81)

10191 3610 320 670 5590 3931 (38.6) 4281 (42.0) 0.84 0.95 0.81 0.80 (0.79 to 0.81)

Multiple Races 139 36 4 14 85 40 (28.8) 50 (36.0) 0.72 0.96 0.74 0.71 (0.58 to 0.83)

155 41 4 14 95 46 (29.5) 56 (35.8) 0.74 0.95 0.75 0.72 (0.60 to 0.84)

Unknown 841 309 39 41 452 348 (41.4) 350 (41.6) 0.88 0.92 0.81 0.80 (0.76 to 0.84)

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA (NA to NA)

Eligible patients: Men and women aged ≥20; cholesterol screening includes low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides.

Proportion Correctly
Identified by EHR 
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Table 21 – Cholesterol screening results by FPL categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

  

Total
eligible OCHIN EHR Claims Not κ statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK (95% CI)

All eligible patients 12817 4624 436 776 6981 5060 (39.5) 5400 (42.1) 0.86 0.94 0.81 0.80 (0.79 to 0.81)

<=138% FPL 9930 3779 345 536 5270 4124 (41.5) 4315 (43.5) 0.88 0.94 0.82 0.82 (0.81 to 0.83)

12464 4521 423 759 6760 4945 (39.7) 5280 (42.4) 0.86 0.94 0.81 0.80 (0.79 to 0.81)

>138% FPL 227 72 8 8 139 80 (35.2) 80 (35.2) 0.90 0.95 0.86 0.85 (0.77 to 0.92)

352 102 12 16 220 115 (32.7) 120 (34.0) 0.86 0.95 0.84 0.82 (0.74 to 0.89)

Missing/Unknown 2660 773 83 232 1572 856 (32.2) 1005 (37.8) 0.77 0.95 0.76 0.74 (0.71 to 0.77)

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA (NA to NA)

Eligible patients: Men and women aged ≥20; cholesterol screening includes low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides.

Proportion Correctly
Identified by EHR 
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Table 22 – Chlamydia screening results by Race categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

Total
eligible OCHIN EHR Claims Not Kappa statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK [95% CI]

All eligible patients 523 183 41 85 214 224 (42.8) 268 (51.2) 0.68 0.84 0.52 0.52 [0.45 to 0.59]

Asian / 
Pacific Islander 18 9 1 3 5 10 (55.6) 12 (66.7) 0.75 0.83 0.56 0.54 [0.15 to 0.93]

18 9 1 3 5 10 (55.4) 12 (66.2) 0.75 0.84 0.57 0.55 [0.17 to 0.93]

American Indian / 
Alaskan native 7 1 1 0 5 2 (28.6) 1 (14.3) 1.00 0.83 0.71 0.59 [-0.09 to 1.00]

7 1 1 0 5 2 (28.7) 1 (15.4) 1.00 0.84 0.73 0.61 [-0.04 to 1.00]

Black 70 38 3 12 17 41 (58.6) 50 (71.4) 0.76 0.85 0.57 0.54 [0.34 to 0.74]

72 39 3 12 18 43 (58.6) 52 (70.9) 0.77 0.85 0.58 0.55 [0.36 to 0.75]

White 365 107 33 65 160 140 (38.4) 172 (47.1) 0.62 0.83 0.46 0.46 [0.37 to 0.55]

405 125 35 67 176 161 (39.8) 193 (47.7) 0.65 0.83 0.49 0.48 [0.40 to 0.57]

Multiple Races 17 7 0 2 8 7 (41.2) 9 (52.9) 0.78 1.00 0.76 0.77 [0.47 to 1.00]

18 7 0 2 8 8 (41.2) 10 (52.3) 0.78 0.99 0.76 0.76 [0.46 to 1.00]

Unknown 46 21 3 3 19 24 (52.2) 24 (52.2) 0.88 0.86 0.74 0.74 [0.54 to 0.93]

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA [NA to NA]

Eligible patients: Sexually active women aged 19-24.

Proportion Correctly
Identified by EHR 
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Table 23 – Chlamydia screening results by FPL categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

  

Total
eligible OCHIN EHR Claims Not Kappa statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK [95% CI]

All eligible patients 523 183 41 85 214 224 (42.8) 268 (51.2) 0.68 0.84 0.52 0.52 [0.45 to 0.59]

<=138% FPL 401 145 31 61 164 176 (43.9) 206 (51.4) 0.70 0.84 0.54 0.54 [0.46 to 0.62]

502 176 39 84 202 215 (42.9) 260 (51.8) 0.68 0.84 0.51 0.51 [0.44 to 0.59]

>138% FPL 14 6 1 0 7 7 (50.0) 6 (42.9) 1.00 0.88 0.86 0.86 [0.59 to 1.00]

20 6 1 0 11 9 (42.3) 8 (37.8) 0.90 0.86 0.75 0.74 [0.38 to 1.00]

Missing/Unknown 108 32 9 24 43 41 (38.0) 56 (51.9) 0.57 0.83 0.39 0.39 [0.23 to 0.56]

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA [NA to NA]

Eligible patients: Sexually active women aged 19-24.

Proportion Correctly
Identified by EHR 
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Table 24 – Colonoscopy results by Race categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

Total
eligible OCHIN EHR Claims Not Kappa statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK [95% CI]

All eligible patients 3761 113 157 320 3171 270 ( 7.2) 433 (11.5) 0.26 0.95 0.75 0.26 [0.21 to 0.30]

Asian / 
Pacific Islander 256 9 7 21 219 16 ( 6.3) 30 (11.7) 0.30 0.97 0.78 0.34 [0.15 to 0.52]

267 9 7 21 228 17 ( 6.3) 31 (11.6) 0.29 0.97 0.78 0.33 [0.14 to 0.51]

American Indian / 
Alaskan native 48 0 5 5 38 5 (10.4) 5 (10.4) 0.00 0.88 0.58 -0.12 [-0.19 to -0.04]

51 0 5 5 40 5 (10.0) 6 (10.9) 0.02 0.89 0.59 -0.10 [-0.25 to 0.05]

Black 397 10 15 27 345 25 ( 6.3) 37 ( 9.3) 0.27 0.96 0.79 0.27 [0.11 to 0.42]

417 10 15 28 363 26 ( 6.2) 39 ( 9.3) 0.26 0.96 0.79 0.26 [0.11 to 0.42]

White 2860 89 124 250 2397 213 ( 7.4) 339 (11.9) 0.26 0.95 0.74 0.25 [0.20 to 0.31]

2999 91 127 263 2517 219 ( 7.3) 355 (11.8) 0.26 0.95 0.74 0.25 [0.20 to 0.30]

Multiple Races 22 2 1 0 19 3 (13.6) 2 ( 9.1) 1.00 0.95 0.91 0.78 [0.36 to 1.00]

25 2 1 0 21 3 (12.5) 2 ( 9.5) 0.90 0.95 0.89 0.73 [0.27 to 1.00]

Unknown 178 3 5 17 153 8 ( 4.5) 20 (11.2) 0.15 0.97 0.75 0.16 [-0.05 to 0.37]

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA [NA to NA]

Eligible patients: Men and women aged ≥50 with no history of colorectal cancer or total colectomy.

Proportion Correctly
Identified by EHR 
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Table 25 – Colonoscopy results by FPL categories 
Agreement indices between OCHIN EHR and Medicaid claims data. Post-imputation results shaded gray 

 

 

 

 

 

 

Total
eligible OCHIN EHR Claims Not κ statistic

patients a b c d No. (%) No. (%) Screened Screened PABAK (95% CI)

All eligible patients 3761 113 157 320 3171 270 (07.2) 433 (11.5) 0.26 0.95 0.75 0.26 (0.21 to 0.30)

<=138% FPL 2906 91 128 247 2440 219 (07.5) 338 (11.6) 0.27 0.95 0.74 0.26 (0.21 to 0.31)

3679 108 152 312 3106 261 (07.1) 421 (11.4) 0.26 0.95 0.75 0.25 (0.20 to 0.30)

>138% FPL 49 3 3 5 38 6 (12.2) 8 (16.3) 0.38 0.93 0.67 0.34 (-0.02 to 0.69)

81 4 4 7 64 10 (11.6) 12 (15.1) 0.38 0.93 0.70 0.34 (0.02 to 0.66)

Missing/Unknown 806 19 26 68 693 45 (05.6) 87 (10.8) 0.22 0.96 0.77 0.23 (0.13 to 0.34)

0 0 0 0 0 0 (NA) 0 (NA) NA NA NA NA (NA to NA)

Eligible patients: Men and women aged ≥50 with no history of colorectal cancer or total colectomy.

Proportion Correctly
Identified by EHR 
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