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ABSTRACT 

BACKGROUND 

To inform and advocate for clinical implementation of model-based iterative 

reconstruction (MBIR) techniques for computed tomography (CT), the complex 

relationships between spatial resolution, noise, and dose index must be explored and 

quantified. This study aimed to provide data illustrating which clinical applications may 

be gained from implementing MBIR by comparing metrics with commonly used 

reconstruction algorithms (adaptive IR and filtered back-projection). 

 

METHODS 

Comparisons were performed using images of the American College of Radiology 

CT accreditation phantom. The phantom was scanned on a Toshiba Aquilion One ViSON 

CT scanner at five tube currents: 45, 90, 180, 270, and 350 mA corresponding to CTDIvol 

levels of 2.5, 5, 10, 14.9, and 19.4 respectively. Each data set was reconstructed with four 

reconstruction algorithms: filtered backprojection (FBP) and three iterative techniques by 

Toshiba Medical Systems (AIDR 3D, FIRST Body and FIRST Body Sharp). To compare 

measurements from images with more realistic patient dimensions, the phantom was also 

scanned with an attenuation body ring. The CT number accuracy, noise-power spectrum, 

and task-based modulation transfer function were calculated for each dose index and 

reconstruction combination using a self-written MATLAB analysis program.  
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RESULTS 

Reconstruction algorithm dependence was seen for all image quality metrics. 

Overall, the FIRST algorithms provided more consistent CT numbers with differing dose 

indices although filtered backprojection and AIDR 3D were more accurate for lower 

contrast inserts and water at lower doses. Noise in the CT accuracy measurements was 

reduced at a minimum of 28% using FIRST (from filtered backprojection) and ranged up 

to an 81% reduction. At low doses, the magnitude of the noise power spectrum of FIRST 

Body is around half that of filtered backprojection. The use of the attenuation ring 

showed FIRST more capable of balancing noise through thicker attenuation layers. 

Furthermore, the peak frequencies of the noise power spectrum were much lower for 

FIRST, suggesting filtered backprojection and AIDR 3D have more noise at smaller 

object sizes. As expected, FIRST showed a dependence on contrast level and dose index 

for spatial resolution whereas FBP stayed steady across all inserts and tube currents. In 

almost all circumstances, the limiting spatial frequency of FIRST is much larger than the 

other algorithms, showing that smaller objects can be resolved. However, at lower tube 

currents, FBP and AIDR 3D performed better for low contrast materials such as 

polyethylene and acrylic. With use of the attenuation ring, the spatial resolution of FIRST 

was more dramatically reduced than FBP, however, the limiting spatial resolution of 

FIRST was still well above that of FBP. 

  

 



ix 

 

CONCLUSIONS 

The FIRST algorithm shows promise in maintaining image quality while reducing 

radiation dose levels, especially if optimized for specific clinical applications. MBIR has 

so far experienced difficulties transitioning into clinical use. The inherent complexities of 

MBIR necessitate the need for more studies in order to fully understand the clinical 

potential of these algorithms and to provide robust reasoning for their application. The 

findings of studies such as this one can provide information on balancing various image 

characteristics for optimal clinical applications and patient care for MBIR CT. 
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1 INTRODUCTION 

Computed tomography (CT), an imaging modality highly used in today’s clinical 

setting, was first actualized in the early 1970s1. Since then, modern technological 

advancements have accelerated CT’s use and applications2. In fact, according to IMV’s 

2016 CT Market Outlook Report, 82 million CT procedures were performed in the U.S. 

in 2016, a 4% increase from 20153. This increase in the number of CT exams also results 

in an increase in radiation exposure to patients. 

The fear of increased exposure is due to the possibility of radiation-induced DNA 

damage leading to genetic mutations and potentially to cancer1. This fear is more 

substantiated at high radiation doses and energies such as those found in radiation therapy 

or radiation disasters1,4,5. At diagnostic exposure levels, such as those in a CT 

examination, the definitive induction of a cancer is uncertain due to the complicated 

interplay of latency periods, age of the patient during exposure, gender of the patient, 

genetic effects, and other confounding factors1,5. In addition, because low doses are a 

relatively weak carcinogen, the population sizes needed to perform an accurate study 

would be extremely large4,5. Nevertheless, the radiological community assumes there is a 

non-zero risk at diagnostic exposure levels, motivating the use of dose reduction 

techniques4,5.  

Although the individual risk of radiation-induced cancer may be small, if one 

considers the large portion of the population being exposed, they may see the potential 

concern for public health in the future5. In addition, low-dose CT has recently been 

implemented for screening cigarette smokers for lung cancer6. CT screening has also 
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been suggested for detection of cardiac disease and colon polyps5. These types of 

screening programs will further increase the overall population exposure to CT5. Due to 

the uncertainty in cancer risk and health concerns of widespread exposure, a major focus 

of CT research is driven by exposure reduction. 

The reduction of radiation exposure can be achieved through many different 

means. A new and promising method to achieve this reduction is through iterative 

reconstruction (IR) techniques. By changing the processing workflow of collected CT 

data, images with equivalent diagnostic performance can be generated with reduced 

exposure for the patient7–9. Thus far, statistical IR techniques have been adopted into 

clinical practice7. However, further advancements have now led to the development of 

model-based iterative reconstruction (MBIR) algorithms7. MBIR algorithms show 

promise in further dose reduction potential with maintained image quality but have not 

yet been widely implemented clinically7,10–13. Additional understanding of the image 

properties of MBIR is necessary to fully discern both why and how it should be clinically 

implemented. 

In this work, the performance of a new model-based iterative reconstruction 

algorithm (FIRST, Toshiba Medical Systems) was assessed through image quality 

comparisons with currently used clinical reconstruction algorithms. The goal of the 

project was to perform robust quantification of the relationships between image quality 

and various dose levels. This quantified description is necessary to inform clinical 

implementation of FIRST. 
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2 BACKGROUND 

2.1 COMPUTED TOMOGRAPHY UTILITY 

CT is used to image anatomy ranging from the brain, to the torso, and to the 

extremities, yielding widespread use and immense applicability in the clinic. Due to 

technological advances, such as helical and multidetector CT, the diagnostic power and 

consequently the number of CT imaging studies has greatly increased over time8. In 

addition to providing improved image quality, hardware upgrades also increased 

acquisition speed which in turn increased the potential patient volume, adding to the 

growing number of exams1. As a result of these innovations, the use of CT has increased 

at a rate of ~10 to 11% annually from 1993 to 20062. 

 A major reason for this growth is due to the ability of CT to provide physicians 

with images of the patient in any anatomical plane. For most acquisitions, computed 

tomography collects data from a full 360-degree rotation of an x-ray tube around the 

patient. This data is then computationally reconstructed into a virtual stack of image 

slices comprised of three-dimensional volume elements, also called voxels, which contain 

information analogous to the patient’s anatomy. 

2.2 COMPUTED TOMOGRAPHY IMAGE RECONSTRUCTION 

At its most basic level, during a CT exam the x-ray tube and detector rotate around 

the patient, and millions of measurements are recorded. These measurements represent 

the amount of x-ray energy that was transmitted through the patient and, inversely, the 
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amount of attenuation along the beam’s path. X-ray attenuation occurs exponentially per 

the equation, 

 𝐼 = 𝐼0𝑒− ∫ 𝜇(𝑥,𝑦,𝑧)𝑑𝑠 (1) 

where 𝜇(𝑥, 𝑦, 𝑧) is the attenuation factor at a given location within the patient along the 

beam path, 𝑠1. Thus, the forward projection, 𝑝, of the beam at a specific angle, 𝜃, is the 

line integral of the attenuation coefficients along the path1, 

 𝑝(𝜃) = ln (
𝐼

𝐼0
) = − ∫ 𝜇(𝑥, 𝑦, 𝑧)𝑑𝑠 (2) 

The goal of CT reconstruction is to solve the system of equations from all projections 

collected from 𝜃 = 0 to 360° in order to assign an attenuation factor to each specific 

voxel. These attenuation factors are then converted into the more useful Hounsfield units 

defined by 

 𝐻𝑈(𝑥, 𝑦, 𝑧) = 1000 ∗  
𝜇(𝑥, 𝑦, 𝑧) − 𝜇𝑤

𝜇𝑤
 (3) 

where 𝜇𝑤 is the linear attenuation coefficient of water. Due to the fact that Hounsfield 

units have direct correlation to tissue attenuation, CT data is inherently quantitative, 

adding it its utility. 

 To produce an image from the raw projections, the data is processed with 

mathematical formulations, also known as reconstruction algorithms. These processes 

reconstruct the data into a visual representation of anatomical structures, which are then 

used for diagnosis. Two forms of reconstruction algorithms are filtered backprojection 

and iterative reconstruction. 
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2.2.1 FILTERED BACKPROJECTION 

Backprojection of the system of linear equations found from Equation (2) is 

performed through an inversion process8. By projecting the measured data back onto the 

image matrix, the overlapping data from each projection angle adds information to each 

voxel1. With all the collected projections, an image of the original object can be 

formulated onto the matrix1. However, due to the nature of combining many angles, a 

characteristic 
1

𝑟
 blurring occurs1. This is typically corrected for with a mathematical filter, 

sometimes referred to as a convolution1. In the case of filtering the backprojection blur, a 

deconvolution process is used. This mathematical filter can be defined as, 

 𝑝′(𝑥) = 𝑝(𝑥) ⊕ ℎ(𝑥) = ∫ 𝑝(𝑥) ∗ ℎ(𝑥 − 𝑥′)𝑑𝑥′ 
∞

𝑥′=−∞

 (4) 

where 𝑝(𝑥) is the original projection, ℎ(𝑥) is the deconvolution kernel, and 𝑝′(𝑥) is the 

corrected projection1. In effect, this deconvolution process removes the artificial blurring 

and faithfully represents the imaged object. It is this mathematical operand that gives 

filtered backprojection (FBP) its name1. 

 Due to the time constraints of medical imaging, using a Fourier transform method 

can decrease reconstruction times1. The Fourier transform is applied to Equation (4) to 

produce an equivalent effect, 

 𝑝′(𝑥) =  FT−1{ FT[𝑝(𝑥)] ∗ FT[ℎ(𝑥)] }  (5) 

where FT[] is the Fourier transform and FT-1 is the inverse Fourier transform1. The 

Fourier transform of the deconvolution kernel is sometimes referred to as the ramp filter 

which has a characteristic 
1

𝑓
 shape in the frequency domain1. However, this shape 
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preferentially amplifies the high spatial frequency components of the image1. Image 

noise, discussed in more detail in Section 2.3.2, typically occurs in this frequency range1. 

Thus, in practice, a roll off function is used in place of the ramp filter to reduce the 

amplification of noise1. The amount of roll-off applied in the ramp filter is chosen based 

on the clinical application1. This is because increased roll-off reduces noise, however, it 

also reduces the amount of blur reduction and hence reduces spatial resolution1. This 

tradeoff can be balanced for clinical need with both dose and exam indication. 

Filtered backprojection was the standard reconstruction algorithm for CT imaging 

for many years. Now, due to modern computing power increases, iterative reconstruction 

techniques are a tangible solution to preserve image quality with reduced dose7,8. 

2.2.2 ITERATIVE RECONSTRUCTION TECHNIQUES 

Until recently, the evolution of CT technology has mostly been driven by 

advances in hardware including spiral CT, multidetector CT, and dual-source CT8. 

However, due to advancements in computing power, other realms of development are 

becoming important. One notable area in CT growth is innovations in reconstruction 

algorithms. With improved computer capacities, more complex reconstruction algorithms 

such as iterative reconstruction (IR) techniques can be used without sacrificing 

computing time8. 

As opposed to filtered backprojection which uses simple mathematical 

assumptions, IR techniques utilize statistical models, geometric models, or both, in order 

to employ a cycle of updating information which improves CT diagnostic performance7. 

This cycle essentially turns the reconstruction problem into one of optimization14. 
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Simplistically, the process can be broken into four steps. First, what is known as a seed 

image, or estimation image, is constructed. This seed image is then compared with the 

measured data to identify differences between the two. Thirdly, these determined 

differences are corrected by the algorithm which, depending on the manufacturer, 

includes varying models of the CT scanner and x-ray spectrum. This modeled 

information aids in determining a more accurate attenuation value for each voxel. Fourth, 

steps two and three are repeated iteratively until the differences between the two images 

meet a preset requirement. Once this requirement is met, the cycle is terminated 

providing the final image. The degree to which geometric and statistical information are 

included in the reconstruction process determines which type of iterative reconstruction is 

being performed. Two important types of iterative reconstruction are statistical IR and 

model-based IR which are discussed in the following two sections. 

2.2.2.1 STATISTIAL ITERATIVE RECONSTRUCTION: AIDR 3D 

Sometimes also called hybrid algorithms, statistical iterative algorithms are a 

mixture of traditional algebraic algorithms such as filtered backprojection as well as 

iterative techniques8. Usually focusing solely on noise reduction, adaptive algorithms are 

not extremely time consuming and are clinically used on scanners today7. In this 

research, an adaptive algorithm, Adaptive Iterative Dose Reduction 3D (AIDR 3D, 

Toshiba Medical Systems), was utilized.  

Statistical, anatomical, and scanner models are all included in AIDR 3D’s 

iterative reconstruction optimization which focuses on reducing noise while preserving 

spatial resolution15. The statistical portion of the model considers statistical fluctuations 



8 

 

in photon counting while the anatomical and scanner models provide a more accurate 

description of noise in projection space16. Iterations are performed in both the raw image 

data domain and the reconstruction domain8. A FBP image is blended with the iteratively 

constructed image to maintain image noise properties consistent with those usually seen 

in FBP images, thus allowing easier clinical implementation due to radiologists’ 

familiarity with this noise texture15. AIDR 3D has proven itself to be clinically adaptive 

and useful. Further advancements in the field have now lead to the formulation of model-

based iterative reconstruction techniques. 

2.2.2.2 MODEL-BASED ITERATIVE RECONSTRUCTION: FIRST 

Typically more complex than statistical iterative reconstruction methods, model-

based iterative reconstruction (MBIR) techniques attempt to model the process of 

acquiring CT images as thoroughly as possible16. This usually includes geometric 

modeling of the CT scanner and detector, statistical modeling of photons, and noise 

regularization16. Several studies have shown MBIR to be superior to FBP and statistical 

IR in terms of reduced radiation dose with preserved image quality metrics7,8,10,14,17–19. It 

is this dose reduction potential that fuels the need to understand these new algorithms 

thoroughly.  

As the main subject of inquiry for this study is the MBIR algorithm FIRST 

(Toshiba Medical Systems), the following description only concerns the specifics of 

FIRST. Other MBIR algorithms may have differences in their reconstruction process. 

Forward-projected model-based Iterative Reconstruction SoluTion (FIRST) is a newly 

developed algorithm that is not yet widely implemented clinically. Its process starts with 
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a rough FBP reconstruction called the seed image20. The seed image is next 

mathematically forward projected based on known qualities of the image acquisition 

process20. This creates a synthesized forward projected estimation of the true image20. 

This synthesized image is then mathematically compared with the raw measured data 

producing a library of differences between the forward projected data and the raw data20. 

These differences provide information on components of the image which could be 

improved20. A correction is thus calculated to update the forward projected image20. The 

corrected image is produced through backprojecting these corrections onto image space20. 

This updated version is then compared to the original projection data once again20. This 

cycle repeats iteratively until a predetermined accepted difference value is achieved, no 

correction is needed, and the final image is stored20. 

Mathematically, the MBIR process can be described by the objective function, 

 �̂� = arg 𝑚𝑖𝑛𝑥≥0

1

2
‖𝑦 − 𝐴𝑥‖𝑤

2 + 𝛽𝑅(𝑥) (6) 

where the left-hand term is called the data fidelity term, which is minimized during the 

process, and the right-hand term is the regularization term, necessary to ensure a 

reduction in noise20. Specifically, 𝐴 is a linear operator, 𝑦 is the measured data, 𝑥 is the 

synthesized data, and 𝛽 is a parameter20. Accurate modeling of the CT system is 

necessary for minimizing the data fidelity term which provides FIRST images with 

improved spatial resolution20. The regularization function for FIRST incudes both 

statistical edge-preserving noise reduction and anatomically-based noise reduction 

functions20. 

 FIRST uses four models of the imaging system: statistical noise, CT scanner, 

optics, and cone beam20. The statistical noise model includes information about photon 
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statistics, anatomical noise, structural noise, and electronic noise20. Forward projections 

require an extremely accurate model of the scanner, thus FIRST incorporates models of 

the CT scanner geometry including bowtie filtration, collimation, source to isocenter, and 

detector geometry20. This greatly differs from FBP reconstructions in which the detector 

elements and focal spot size are considered to be infinitesimally small16. Both modeling 

the focal spot and detector elements as three dimensional and including information on 

detector material absorption factors improves spatial resolution of the resulting images16. 

Traditional reconstruction algorithms simply model the x-ray spectrum as 

monoenergetic16. This is inherently unrealistic and thus the polyenergetic nature of the 

beam is modeled into the MBIR algorithm’s optics model16. The optics model describes 

the x-ray spectrum, its path, and random variations in each individual photon’s path20. In 

addition, energy dependent scatter and beam-hardening effects are also included16. The 

optics model helps to reduce artifacts such as cupping and streaking around high-Z 

materials16. And lastly, the cone beam model reduces the amount of artifact from the 

wide cone angle of the beam20. Each of these models contributes to calculating image 

corrections during each iteration20. 

 The FIRST algorithm has six settings: Cardiac, Cardiac Sharp, Bone, Body, and 

Body Sharp. Each setting provides optimization for specific anatomical fluctuations. In 

this research, FIRST Body and FIRST Body Sharp were analyzed. These settings are 

meant to be used when imaging the abdomen and pelvis. 

 Despite the improvements in image quality and the dose reduction potential, 

MBIR algorithms have been historically difficult to implement in the clinic7. The noise 

reduction algorithms can cause the images to have a different, often unnatural, image 
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texture7. This may require adaptation by the radiologic community in order for MBIR 

images to be clinically successful7.  

2.3 IMAGE QUALITY IN CT 

There are multiple metrics which assess CT image quality. These metrics provide a 

way to compare reconstruction algorithms. In these comparisons, it is advantageous to 

replicate clinical situations by varying the dose and phantom size.  

In this study, the image quality metrics of CT number accuracy, noise, and high-

contrast spatial resolution were evaluated for three reconstruction algorithms. A 

description of each of these metrics is described in the following sections. In addition, 

special considerations must be taken when measuring image quality on IR techniques, 

this is discussed first. 

2.3.1 RECONSTRUCTION ALGORITHM DEPENDENCE 

 It is important to note that the reconstruction algorithm used to create an image 

influences image quality measurements. This is true even when comparing different roll 

off functions, also called filters, in filtered backprojection1. As described in Section 2.2.1, 

the amount of roll off can reduce noise, but it influences spatial resolution. It is thus 

important the same filter is used across reconstruction algorithms if they are to be 

compared. 

Furthermore, when iterative reconstruction techniques are used, traditional 

metrics of image quality must be scrutinized1,21. This is because measurements of the 

modulation transfer function (MTF, Section 2.3.4.2) and noise power spectrum (NPS, 
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Section 2.3.3.2) require that the system is linear in nature1,22. In loose terms, filtered 

backprojection can be assumed to be linear1. However, IR has been shown to be non-

linear due to the nature of iteration1,21. In other words, the point spread function of the 

system is not the same in all locations; it is non-stationary1. Due to this, the MTF and 

NPS become highly dependent on the contrast levels within the image as well as the 

location of measurement for IR techniques1,21. 

Departing from the characteristics of FBP, and due to the non-linearity, the spatial 

resolution of MBIR is both dose and contrast dependent, described in more detail in 

Section 2.3.4.321,23. Noise and spatial resolution are also highly dependent on one 

another, making patient size an important factor as well23. These aspects result in a much 

more complicated process for protocol optimization in the clinic for MBIR and a 

necessity for more studies such as this one to understand this complicated interplay23,24. A 

more detailed description of how these effects change noise and spatial resolution 

measurements are discussed in their respective background sections. 

2.3.2 CT NUMBER ACCURACY 

As described in Section 2.2, materials within the body have differing attenuation  

properties which can be defined by their Hounsfield unit (Equation (3)). CT number 

accuracy measures how well a system portrays the HUs of a known material which is 

important for clinical diagnoses. Materials commonly imaged for quality control include 

bone equivalent, water equivalent, acrylic, air, and polyethylene. These are chosen as 

they mimic the electron density properties of materials found in the body. 
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 The CT number of a given volume of interest (VOI) is the mean value of 

Hounsfield units (HUs) of the voxels within the VOI25. The standard deviation of HUs 

within the VOI is a measurement of spread and thus provides information on the noise 

within this area25. Noise standard deviation is described more in Section 2.3.3.1.  

2.3.3 NOISE 

There are a few origins of noise relevant in CT imaging: electronic noise,  

anatomical noise, and quantum noise1. Electronic noise originates from the electronics 

which carry the signal information through the system1. If electrons are added to the 

signal flow through un-related events such as thermal noise or shot noise, they inherently 

add information to the signal that is not due to events occurring inside the patient1. In low 

signal situations, such as when the dose level is low, the ratio of signal to electronic noise 

can be high, degrading the final image1. 

 Anatomical noise is due to patient anatomy that is not important to the diagnosis1. 

An example given by Bushberg et al. is from digital subtraction angiography, a 

fluoroscopic study, in which injection of contrasts agents allows image subtraction of all 

anatomy except the vascular anatomy1. In CT and other tomographic modalities, 

overlapping anatomy is not an issue due to the three-dimensional nature of the image 

collection1. In essence, anatomical noise is greatly reduced “through spatial isolation1.”  

 Statistical fluctuations in the numbers of x-ray photons is called quantum noise1. 

In x-ray imaging, photons follow a Poisson distribution1. The number of photons, N, 

recorded in each detector element is, 

   𝑁 = 𝜑𝐴𝜀 (7) 



14 

 

where 𝜑 is the photon fluence on the detector (photons/mm²), 𝐴 is the area of each 

element (mm²), and 𝜀 is the detector efficiency1. Using a normal approximation of the 

Poisson distribution, we can then define the quantum noise as1, 

   𝜎 = √𝑁 (8) 

If this relationship is turned into relative noise, i.e. a percentage, we find1, 

   relative noise =  
𝜎

𝑁
=

√𝑁

𝑁
 (9) 

This relationship shows that with an increase in N, the relative noise in the image will 

decrease. Thus, by adjusting techniques on the CT scanner to increase the number of 

photons, the noise in the resulting image will be reduced. However, there is a linear 

relationship between N and the dose to the patient1. This is an important tradeoff in x-ray 

imaging as noise reduction aids in clinical diagnoses, but it is important to attempt to 

keep radiation doses low. 

2.3.3.1 MEASUREMENTS OF NOISE: STANDARD DEVIATION 

One way to measure the noise of an image is through measuring σ in a 

homogenous area of a phantom image1. The standard deviation, σ, is calculated using the 

HUs of a given VOI within the homogeneous area, 

   𝜎 = √∑ (𝐻𝑈𝑖−𝐻𝑈̅̅̅̅̅)2𝑁
𝑖=1

𝑁−1
 (10) 

for all voxels 𝑖 = 1 to 𝑁 within the VOI1. Similar to CT number accuracy, the standard 

deviation can be measured for differing materials within the phantom to display material 

dependent noise. 
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2.3.3.2 MEASUREMENTS OF NOISE: NOISE POWER SPECTRUM 

The standard deviation of HUs within a VOI, although useful, is a simple metric  

for measuring noise. Two areas in the image could have an equivalent value of σ but look 

very different to an observer21. These areas are then described as having different noise 

textures, or a difference in the spatial-frequency distribution of noise21. 

 The origin of spatially dependent noise is the correlation between adjacent 

detector elements1. Imaging systems have a blur phenomenon that occurs in the point 

spread function and line spread function1. This blurring causes the possibility of noise 

sharing across adjacent voxels and thus a spatially dependent noise1. With no blur in the 

system, there would be no correlation between voxels which would result in what we call 

white noise1. The noise power spectrum (NPS) is a measurement of the frequency 

dependent noise variance of an image21. In modern CT scanners, multi-detector arrays 

and helical imaging induce the possibility of noise correlation occurring in the z 

dimension as well as in the axial plane (x and y)1. Thus, it is important to calculate the 3D 

noise power spectrum to include all potential correlation in the image1. 

 With  ∆𝑥, ∆𝑦, and ∆𝑧 denoting the pixel spacing in each dimension (mm), 𝑁𝑥, 𝑁𝑦, 

and 𝑁𝑧 denoting the number of voxels in each dimension per VOI, and 𝑓𝑥, 𝑓𝑦, and 𝑓𝑧 

denoting the spatial frequencies in each dimension, the 3D NPS is calculated through, 

   NPS(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) =
1

𝑁
∑ |DFT3D[𝐼𝑖(𝑥, 𝑦, 𝑧) − 𝐼�̅�]|2𝑁

𝑖=1

∆𝑥∆𝑦∆𝑧

𝑁𝑥𝑁𝑦𝑁𝑧
 (11) 

where the summation from 𝑖 = 1 to 𝑁 and multiplication by 
1

𝑁
 refers to averaging the 

NPS over 𝑁 VOIs21. The signal from the 𝑖th VOI is denoted 𝐼𝑖(𝑥, 𝑦, 𝑧) and 𝐼�̅� is the 
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average of the 𝑖th VOI21. DFT3D is the discrete Fourier transform in three dimensional 

space21. The resulting units of the 3D NPS are HU2mm3. 

 When the NPS is calculated, a well-studied artifact typically occurs21. This 

artifact, known as “cupping,” refers to the phenomena in which HUs in the center of a 

cylindrical object will be lower than those near the periphery, causing a low-frequency 

spike in the NPS21. To reduce the effects of this artifact, a process known as detrending is 

performed on the data prior to calculations21. To combat this artifact, either a low-order 

polynomial is subtracted away from the data, or image subtraction is used21. As image 

subtraction was the method chosen for this study, it is focused on here.  

 As shown by Dolly et al., the subtraction method is the most effective at removing 

low-frequency noise26. The method is performed by subtracting two separately acquired 

image data sets of the same homogeneous volume of a phantom21. For data sets 𝐴 and 𝐵 

of the same volume (𝑥, 𝑦, 𝑧), this is, 

   𝐾(𝑥, 𝑦, 𝑧) = 𝐼𝐴(𝑥, 𝑦, 𝑧) − 𝐼𝐵(𝑥, 𝑦, 𝑧) (12) 

with 𝐾(𝑥, 𝑦, 𝑧) being the resulting noise-only image, thus removing the cupping 

artifact21. This noise-only image is then placed into Equation (11), 

   NPS(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) =
1

𝑁
∑ |DFT3D[𝐾𝑖(𝑥, 𝑦, 𝑧) − �̅�𝑖]|2𝑁

𝑖=1

∆𝑥∆𝑦∆𝑧

𝑁𝑥𝑁𝑦𝑁𝑧
 (13) 

to calculate the 3D NPS21. Graphically, a 2D NPS is typically shown for when 𝑓𝑧 = 0 and 

has the shape of a torus in 𝑓𝑦 and 𝑓𝑥 (Figure 1)21. From this, a 1D NPS can be formulated 

by radially averaging the values of 𝑓𝑦 and 𝑓𝑥
21. 
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Figure 1: Example of a 2D NPS at 𝑓𝑧 = 0 (FBP at 270 mA). 2D 

NPSs typically have the shape of a torus. 

2.3.3.3 MEASUREMENTS OF NOISE: RECONSTRUCTION DEPENDENCE 

The reconstruction method used can greatly affect noise in the resulting image. In  

filtered backprojection, because the HUs are backprojected along a line, correlated noise 

can exist across a long line of pixels1. For iterative reconstruction, the non-linearity and 

non-stationary statistics makes it difficult to accurately measure and characterize 

noise24,26.  

Especially when considering the NPS, wide-sense stationary statistics is required 

to properly conduct calculations26. As this condition does not hold in most CT 

acquisitions and especially not for IR, special considerations must be taken26. One way to 

approach this is to sample the image in localized volumes of interest in which stationary 

statistics may be approximated to be true26. In addition, the VOIs should be located at a 

constant radius from the center of the phantom and cover the full 360˚22. These 

requirements were considered in this research. 
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An important study by Gomez-Cardona et al. explored whether a novel power law 

reported by Li et al. for MBIR systems can be generalized from phantom studies to in 

vivo situations24,27. This power law is, 

   𝜎2 = 𝛼(mAs)−𝛽 (14) 

where 𝜎2 is the image noise variance, 𝛼 and 𝛽 are the parameters of interest, and mAs is 

the product of tube current and time per tube rotation (in seconds)27. The study utilized 

both an in vivo animal trial and a prospective human trial27. In the animal study, the value 

of 𝛽 between the phantom and in vivo measurements agreed for both MBIR (𝑅2 =

0.971) and FBP (𝑅2 = 0.997)27. Statistical equivalency of 𝛽 values with phantom 

measurements was also found in the human trail (𝑝 < .05) for both MBIR and FBP27. 

Although it is not the only important image quality measurement, these findings validate 

that noise variance measurements in phantoms can be translated to in vivo situations for 

MBIR, also showing promise for other image quality metrics to do the same. 

2.3.4 SPATIAL RESOLUTION 

The spatial resolution of an imaging system determines the ability of the system  

to distinguish two adjacent objects as being separate from each other1. This is typically 

split into high-contrast spatial resolution and low-contrast spatial resolution1. Low-

contrast resolution refers to detecting small changes in signal intensity between objects 

whereas high-contrast spatial resolution refers to faithfully resolving the physical size of 

objects1. This work focuses on high-contrast spatial resolution for reasons described in 

Section 2.3.4.3. Thus, the term spatial resolution from here on refers to high-contrast 

spatial resolution. 
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2.3.4.1 MEASUREMENTS OF RESOLUTION: LINE PAIR PHANTOMS 

 The most idealistic method to measure the resolution of an imaging system is the 

point spread function (PSF)1. If a point source is imaged by the system, the measured 

signal by the system is the PSF1. Due to the imperfect nature of imaging, the PSF will 

have some blur associated with it1. In other words, the PSF, which theoretically should 

have a delta function output, will be measured as a function similar to a two-dimensional 

Gaussian1. 

Another method is to instead use the line spread function (LSF), or measure a slit 

with the imaging system1. The LSF and PSF are related by the equation, 

   𝐿𝑆𝐹(𝑥) = ∫ 𝑃𝑆𝐹(𝑥, 𝑦)𝑑𝑦
∞

𝑦=−∞
 (15) 

The edge spread function (ESF) is similar to the LSF except that instead of using a slit 

this method measures the response of the system to a sharp edge between two materials1. 

The LSF is the derivative of the ESF1, 

   𝐿𝑆𝐹(𝑥) =
𝑑

𝑑𝑥
𝐸𝑆𝐹(𝑥) (16) 

This becomes important in the measurement of spatial resolution as a sharp edge is easier 

to manufacture than slit or point source phantoms1. 

 Historically, spatial resolution has been measured using line pair phantoms for 

both radiography and subsequently in CT1. These phantoms essentially mimic a line 

spread function with bars constructed of high HU materials spaced at differing 

frequencies1. Although this gives an adequate measurement of spatial resolution for 

routine quality control checks, a more robust measurement of spatial resolution is the 

modulation transfer function (MTF)1.  
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2.3.4.2 MEASUREMENTS OF RESOLUTION: MODULATION TRANSFER 

FUNCTION 

 The MTF is the measurement of how contrast is transferred through the system at 

different object spatial frequencies1. If two objects are spaced far apart, their contrasts 

will not blur together1. But as objects become closer, the resulting image may share 

pixels and thus the contrast between the objects is lost1. The LSF and ESF (Equations 

(15) and (16)) are metrics in the spatial domain21. However, like the NPS for noise, it is 

sometimes helpful to define the system in terms of the frequency domain21. This is done 

in calculations of the MTF, 

   MTF(𝑓𝑥) =
|∫ LSF(𝑥)𝑒−2𝜋𝑖𝑓𝑥𝑥𝑑𝑥

∞
−∞ |

∫ LSF(𝑥)𝑑𝑥
∞

−∞

 (17) 

where 𝑓𝑥 represents the spatial frequency in the 𝑥 dimension, multiplication by the 

exponential is the Fourier transform, the brackets take the modulus, and the denominator 

normalizes the MTF to unity at 𝑓𝑥 = 0 21. 

A perfect optical system would have the value of unity at all spatial frequencies, 

or, in other words, 100% contrast transfer. But as systems are imperfect, the MTF will 

eventually reach a limiting contrast transfer that can be resolved by the system1. This is 

usually quoted at the spatial frequency in which the MTF crosses the 10% level1. 

2.3.4.3 MEASUREMENTS OF RESOLUTION: RECONSTRUCTION 

DEPENDENCE 

There are many factors affecting the spatial resolution of the system including the  

focal spot size, gantry motion, detector width, and sampling1. However, a major factor in 

the appearance of detail is due to the reconstruction filter chosen1. This is because the 
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amount of roll-off used to reduce noise in the image directly affects the spatial 

resolution1. Thus, when making comparisons of reconstruction algorithms, a consistent 

filter must be utilized. 

 In addition, a requirement for measuring the MTF is both a linear and shift-

invariant system22,28. This means the PSF is consistent when measured in all locations in 

the image28. Iterative reconstruction techniques inherently break both requirements28. It 

has been shown that measurements of the MTF for IR techniques show a dependence on 

location and contrast (HU) level of the material forming the edge21. It is still possible to 

make valid MTF measurements on IR images by using specific conditions such as 

localized measurements and low contrast objects22,28. A technique developed by Richard 

et al. is to measure the MTF for differing tasks, i.e. differing contrast levels within the 

image, for non-linear algorithms28. This results in a different curve for each contrast level 

measured thus satisfying the characterization of the entire system28,29. However, it is 

important to keep in mind the measurements constraints when interpreting the results22. 

 This research focuses only on high-contrast spatial resolution. Studies have shown 

traditional metrics of low-contrast resolution, such as the contrast-to-noise ratio, may not 

be valid metrics for IR methods30. Time-intensive observer studies are necessary until 

proper methodologies can be formulated for the measurement of low-contrast resolution 

in IR30. As such, these studies are beyond the scope of this work.   
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3 MATERIALS AND METHODS 

3.1 CT SCAN PARAMETERS, PHANTOM SETUP, AND RECONSTRUCTIONS 

All CT scans were performed on an Aquilion ONE ViSION CT system (Toshiba  

Medical Systems). The ACR CT accreditation phantom (Gammex, Model 464) was 

centered on the table using the Aquilion’s laser system and scout images. To make 

comparisons with images with more realistic patient dimensions, the phantom was 

scanned both with and without a tissue-equivalent body ring (The Phantom Laboratory, 

Model CTP579-15). In both instances, the entirety of the phantom was scanned using the 

parameters listed in Table 1. Scans were performed at 120 kVp in helical mode. Five tube 

current levels were used: 45 mA, 90 mA, 180 mA, 270 mA, and 350 mA corresponding 

to CTDIvol levels of 2.5, 5.0, 10.0, 14.9, and 19.4 mGy respectively. For each phantom 

setup (with/without the ring) ten scans were performed at each tube current with 

equivalent settings. This provided enough data to account for statistical variations in the 

measurements. 

Protocol Abdomen/Pelvis WO Contrast 

Scan Mode Helical 

kVp 120 

Field of View (mm) 240 

Pitch 0.813 

Tube Rotation Time (s) 0.5 

ATCM Off 

Focal Spot Size Small 

Voxel Size (mm3) 0.468 x 0.468 x 5 

Detector Configuration 0.5 mm x 80 

Table 1: Data acquisition parameters used. 



23 

 

 Each set of raw data was reconstructed using the FBP method and AIDR 3D at 

the Standard level with filter FC19. These algorithms were readily available on our 

machine. As FIRST is not yet clinically available on our scanner, the raw data was 

collected and sent to Toshiba America Medical Systems for reconstruction with FIRST 

Body and FIRST Body Sharp, both at the Standard level. These scans were then returned 

for data analysis which was performed using a custom code written in MATLAB 

(Version R2016b, MathWorks Inc.). Descriptions of the calculations of CT numbers, 

noise, NPS, and MTFtask are found in the following sections. 

3.2 IMAGE ANALYSIS: CT NUMBER ACCURACY AND NOISE 

The center slice of images corresponding to first module of the ACR phantom were  

used for CT number accuracy and noise standard deviation calculations. Module 1 

contains four cylindrical inserts of differing materials (bone, polyethelene, acrylic, and 

air) surrounded by water equivalent material (Figure 2). The slice was chosen to avoid 

the BBs within the phantom as these could affect the HUs of the image, especially for the 

IR reconstructions.  

 

Figure 2: Module 1 of the ACR accreditation phantom without 

the attenuation ring (left) and with the ring (right). 
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 The center location of each insert was found using The Roberts edge detection 

method which uses the following equations to compute the sum of the square differences 

in pixel intensity along the diagonal direction, 

   𝑦𝑖,𝑗 = √𝑥𝑖,𝑗  (18) 

   𝑧𝑖,𝑗 = √((𝑦𝑖,𝑗 − 𝑦𝑖+1,𝑗)2 + (𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗+1)2 (19) 

where 𝑥𝑖,𝑗 is the pixel intensity at location 𝑖, 𝑗 and 𝑧𝑖𝑗 is the derivative31. The result of this 

process yields a binarized image of the insert edge (Figure 3).  

 

Figure 3: VOI surrounding the bone insert in Module 1 of the 

ACR phantom (left) and the binarized edge detection image 

resulting from the Roberts process (right). 

From the edge image, the centroid of the insert could be defined. The x and y 

coordinates were calculated for each insert on images reconstructed with FIRST Body at 

the highest mA value (350 mA) and without the body ring. This reconstruction algorithm 

was chosen as it was shown to reduce noise the most in preliminary studies and thus 

would give the most accurate locations. The calculated locations were then used as the 

insert centers for all CT accuracy calculations for each reconstruction and dose index 

combination. 

A 30 x 30 pixel (197 mm2) VOI was placed on the image, centered around each 

calculated insert center as well as a VOI placed in the water material background at the 
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same radius from the center of the phantom (Figure 4). The average HU value within 

each VOI (𝜇) was recorded along with the standard deviation (𝜎). The values of 𝜇 were 

averaged over ten scans for each insert and a pooled standard deviation (noise) was 

calculated from the values of 𝜎 by the equation, 

   𝜎2 =
[(𝑛1 − 1) ∗ 𝜎1

2]+[(𝑛2 − 1) ∗ 𝜎2
2]+ ⋯ +[(𝑛𝑘 − 1) ∗ 𝜎𝑘

2]

𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 − 𝑘
 (20) 

where 𝑛𝑖 and 𝜎𝑖 are the number of pixels in and the standard deviation of HUs within the 

𝑖th VOI respectively32. This process was repeated for each reconstruction algorithm and 

dose level combination. 

 

Figure 4: VOI locations in Module 1 of the ACR phantom used for CT 

number accuracy calculations for each insert: bone (red), polyethylene 

(green), acrylic (orange), air (blue), and water (black). 

3.3 IMAGE ANALYSIS: NOISE POWER SPECTRUM 

Ten slices within the third module of the ACR phantom were used for the NPS  

calculations. This portion of the phantom is used to assess uniformity and provides a 

large area of solid water to measure noise (Figure 5).  
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Figure 5: Module 3 of the ACR accreditation phantom used for the 

NPS analysis, without the body ring (left) and with the body ring 

(right). 

Two consecutive scans, of the same dose level and reconstruction algorithm, were 

subtracted from one another on a voxel-by-voxel basis, as described by Equation (12), to 

properly detrend the scan in a 3D manor. This results in five noise only images for each 

slice position on which the NPS is calculated. A representative noise only image is shown 

in Figure 6. 

 

Figure 6: Two consecutive scans at 180 mA reconstructed with 

AIDR 3D were subtracted to yield this detrended image. 
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 VOIs were placed at a distance equal to half of the phantom radius (5 cm) from 

the center of the phantom. Each VOI was 128 x 128 x 10 pixels and a total of 32 VOIs 

were used. Locations of each VOI and a representative VOI are shown in Figure 7. These 

parameters were used in Equation (13) to calculate the ensemble average of the Fourier 

transforms calculated over all the VOIs, yielding the 3D NPS. The 2D NPS was extracted 

from the 3D calculation for when 𝑓𝑧 = 0. Finally, 1D NPS were calculated by radially 

averaging the 2D NPS and extracting the NPS in both the x and y directions.  

 

Figure 7: White ‘X’s mark the locations of the VOIs used in the 

NPS analysis (left). One VOI boundary shown in blue (right). 

3.4 IMAGE ANALYSIS: MODULATION TRANSFER FUNCTION 

The MTFtask must be calculated on ensemble averaged images to reduce noise  

aliasing. Six consecutive slices from Module 1 of the ACR phantom were chosen. The 

images corresponding to a specific slice position were averaged together across all ten 

scans for a given reconstruction and dose index. This yielded a data set consisting of six 

low noise images. 
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 The centers of each insert were calculated with the technique explained in section 

3.2. An ensemble averaged image with the insert centers marked in shown in Figure 8. 

With the center of the insert defined, a VOI was drawn around the insert similar to Figure 

3.  

  

Figure 8: Center pixels of each insert were calculated using edge 

detection methods. Each insert center is marked with a blue ‘X’. 

For each pixel within this VOI, the distance to the center of the insert was calculated by, 

   𝑟𝑖,𝑗 = √(𝑥𝑖,𝑗 − 𝑥center)2 + (𝑦𝑖,𝑗 − 𝑦center)2 (21) 

where 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 define the pixel location and 𝑥center and 𝑦center define the center of 

the insert. This distance was stored along with the HU of each pixel. When sorted by 

distance from the insert center, these values yield the ESF of the insert (Figure 9). 

Binning was performed on the data based on the size of one pixel. 
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Figure 9: Edge spread function of the polyethylene insert for AIDR 3D at 180 mA. 

The ESF was next differentiated to yield the LSF (Equation (16)) and normalized 

by the area under the LSF curve (Figure 10). The LSF was calculated on each slice of the 

ensemble average. These values were then averaged to yield the final LSF for the insert. 

The tails of the LSF contain no information about the edge and add noise to the MTFtask. 

Thus, the LSF was clipped to only include the peak and a small margin near the peak. 

These values were then zero-padded for MTFtask graphing purposes.  

The calculation of the MTFtask was performed on the LSF as given by Equation 

(17). It was then normalized to unity at zero frequency. Determination of the frequency 

corresponding to 10% of the modulation transfer (limiting spatial resolution) was found 

for each insert. This process was repeated for each contrast material and each 

reconstruction algorithm and dose index combination. 
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Figure 10: Line spread function of the polyethylene insert for AIDR 3D at 180 mA. 

4 RESULTS 

4.1 CT NUMBER ACCURACY AND NOISE 

The true CT number of each insert is listed in Table 2. In addition, the acceptable 

accuracy criteria as outlined by the ACR CT accreditation program testing instructions is 

listed as well as the acceptable deviation from the true CT number. These values are only 

valid for scans performed without the attenuation ring. 

Insert Material 
CT Number 

(HU) 

Accuracy Criteria 

(HU) 

Acceptable Deviation 

from CT Number (HU) 

Bone 955 850 – 970 -105 – 15  

Acrylic 120 110 – 135  -10 – 15  

Water 0 -7 – 7  -7 – 7  

Polyethylene -95 -107 – -84  -12 – 11  

Air -1000 -1005 – -970  -5 – 30  

Table 2: CT number and accuracy criteria for each insert 

material as outlined by the ACR CT accreditation program 

testing requirements. The acceptable deviation is calculated by 

subtracting the CT number from the accuracy criteria. 
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Comparisons of CT number accuracy of the acrylic insert between images with and  

without the body ring are shown in Figure 11. The known HU of acrylic (120 HU) was 

subtracted from measured values to yield the error in CT number measurement. Values 

are shown for each tube current level and each reconstruction algorithm. The CT number 

accuracy values without the ring are well within the ACR accreditation criteria for acrylic 

(-20 – 15). Without the ring, FBP and AIDR 3D are more accurate at all dose levels. With 

the ring, FIRST reconstructions are more accurate at higher tube currents and are more 

consistent overall, while FBP and AIDR 3D are more accurate at low tube currents. 

 

Figure 11: CT number accuracy of each reconstruction algorithm 

and dose level are shown for images with and without the body ring. 

FBP and AIDR 3D are more accurate however FIRST 

reconstructions show consistency. 

 Without the attenuation ring, all CT number values were well within the ACR 

accreditation criteria, these measured values can be found in Table 1A in Appendix A. 

However, because the use of the body ring mimics clinical situations, the CT number 

values measured when the ring were focused on. Accuracy of each inserts are shown for 

each reconstruction and dose level in Figure 12. Both FIRST reconstructions show slight 

improvements in both bone and air CT numbers. For the water, acrylic, and polyethylene 
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inserts FBP and AIDR 3D are more accurate at the three lowest dose levels. However, 

FIRST reconstructions again show more consistency with changing tube current. 

 

          

Figure 12: CT number accuracy for each reconstruction and 

dose index are shown for bone (upper left), water (upper right), 

acrylic (middle left), air (middle right), and polyethylene 

(bottom) inserts. Values are shown as the difference between 

measured and actual CT number. Legend applies to all graphs. 

 Noise within all inserts was greatly improved with iterative reconstruction 

techniques as compared to FBP. AIDR 3D reduced noise by values ranging from 25.86-

65.29% while FIRST Body reduced noise by 49.27-81.91% and FIRST Body Sharp had a 

reduction of 28.9-73.76%. As seen in Figure 13, the amount of noise reduction increased 
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at lower dose levels. FIRST Body had the largest reduction in noise over all inserts and 

dose levels. 

          

 

 

Figure 13: Noise reduction within each insert as a percentage of 

FBP noise for bone (upper left), polyethylene (upper right), acrylic 

(middle left), air (middle right), and water (bottom) inserts for each 

tube current levels. Legend applies to both graphs. 

4.2 NOISE POWER SPECTRUM 

Figure 14 displays VOIs from detrended images of FBP, AIDR 3D, and FIRST  
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Body at both 45 and 350 mA. Qualitatively, a large difference in noise texture can be 

seen between the algorithms. This difference is more pronounced at the lower tube 

current. 

 45 mA 350 mA 

FBP 

  

AIDR 3D 

  

FIRST Body 

  

Figure 14: VOIs of detrended images for FBP, AIDR 3D, and 

FIRST Body at two different tube currents. 

Quantitatively, this noise texture can be represented by the noise power spectrum.  

Figure 15 displays representative cuts of the noise power spectrum at 𝑓𝑧 = 0 for scans not 

using the attenuation ring at 180 mA. From visual inspection of these images it is noticed 

that FBP has the highest magnitude of noise while FIRST Body has the lowest. In 

addition, FBP has a larger noise magnitude in higher frequencies. All reconstructions 
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have the traditional torus shape of noise. While it may appear that Body Sharp has a high 

NPS, the frequencies do not extend past a certain boundary and thus are more predictable 

than FBP.  

 

 

 

 
FBP AIDR 3D 

  
FIRST Body FIRST Body Sharp 

 

Figure 15: The NPS at 𝑓𝑧 = 0 for each reconstruction algorithm 

at 180 mA and no attenuation ring (display range [0 94]). 

 

 Phantom scans with the body ring had more attenuating material along one 

direction. Because of this, the noise magnitude increases in this direction, as seen Figure 

16. Similar to Figure 15, the magnitude of noise in the FBP reconstruction is much larger. 

The NPS of both FIRST Body and FIRST Body Sharp are much more radially 
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symmetric. It is important to note the images in Figure 15 and Figure 16 are of different 

display ranges and should not be compared with each other directly.  

 

  
FBP AIDR 3D 

  
FIRST Body FIRST Body Sharp 

 

Figure 16: The NPS at 𝑓𝑧 = 0 for each reconstruction algorithm 

at 180 mA and with the attenuation ring (display range [0 

1341]). 
 

The results of radially averaging the NPS for each algorithm and dose level are  

shown in Figure 17. Because the large difference in NPS between x and y would affect 

the radially averaged NPS, all values were calculated on images from scans without the 

attenuation ring. Plots for each algorithm includes curves for each tube current level. As 
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expected, the NPS of FBP has a much higher magnitude than any other reconstruction 

algorithm. AIDR 3D and FIRST Body Sharp have similar characteristics while FIRST 

Body has the lowest magnitude of noise for all tube currents. An important feature to 

notice in the radially averaged plots is frequency at which the NPS approaches zero. The 

NPS values approach zero before 𝑓𝑟 = 0.4 (mm-1) for FIRST Body at all tube currents 

while values do not approach zero until 𝑓𝑟 = 0.6 (mm-1) for FBP, AIDR 3D, and FIRST 

Body Sharp which in addition have a larger peak magnitude. 

 

Figure 17: Radially averaged NPS are shown for each 

reconstruction algorithm and tube current. 

A comparison of NPS for differing reconstruction algorithms is shown in Figure 

18. At 350 mA, the NPS for FBP, AIDR 3D and FIRST Body Sharp are essentially 

equivalent. In contrast, FIRST Body shows a large reduction in NPS magnitude as well as 
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a shift in peak frequency from the other algorithms. With a tube current of 45 mA, this 

relationship becomes more pronounced. At this tube current, FIRST Body has a 

magnitude around half the magnitude of FBP and has a peak frequency that is shifted to 

lower frequencies (and thus larger object sizes). 

 

Figure 18: Radially averaged NPS are shown for each 

reconstruction algorithm for tube currents of 45 mA and 350 mA. 

Curves are a moving average of the NPS points. 

To further investigate the curves shown in Figures 17 and 18, the peak frequency 

of each NPS was found. The results are shown in Table 3 and Figure 19. FIRST Body 

had the minimum peak radial noise frequency at all dose levels and was also extremely 

consistent. At most dose levels, FIRST Body Sharp had a peak frequency similar to 

AIDR 3D. The peak frequency of FBP varied widely depending on dose index.  

Tube Current 

(mA) 
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 0.188 0.153 0.117 0.153 

90 0.200 0.188 0.129 0.153 

180 0.235 0.188 0.117 0.153 

270 0.188 0.164 0.117 0.200 

350 0.176 0.188 0.117 0.188 

Table 3: Peak frequency values (mm-1) for each 

reconstruction algorithm at each tube current level. 
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Figure 19: Radial frequencies of the peak noise are displayed for 

each reconstruction algorithm and dose level. 

 When the attenuation ring was used on the phantom, the NPS in the x and y 

directions had much different magnitudes. Comparisons of the xNPS and yNPS are 

shown in Figure 20. Although there are differences between xNPS and yNPS for all 

algorithms, the x and y curves of FIRST Body are closer in magnitude. This indicates a 

more radially symmetric NPS which was also seen in Figure 16. 

 

Figure 20: Comparisons of the NPS in the x and y directions is 

shown for each algorithm at 270 mA. Curves are a polynomial fit. 
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4.3  MODULATION TRANSFER FUNCTION 

Figure 21 shows the MTFtask for each algorithm at 180 mA. As expected, the  

MTFtask of IR algorithms have a dependence on contrast whereas the FBP curves are 

clustered around the same trend for all inserts. The spatial resolution of bone in both 

FIRST reconstruction algorithms is highly superior. The broad curvature of FIRST 

algorithms shows a more consistent spatial resolution over many object sizes. 

  

 

Figure 21: Task-based modulation transfer function curves for 

each reconstruction algorithm at 180 mA. 

A comparison of MTFtask values between reconstruction algorithms is shown in  

Figure 22. There is an obvious improvement in spatial resolution between FIRST and 

other algorithms for both the bone and air spatial resolution. In the acrylic and 

polyethylene inserts, the Body Sharp reconstruction algorithm has a slight improvement 
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in spatial resolution compared to AIDR 3D and FBP. It is evident that the MTFtask has a 

very different shape for all tasks using MBIR. 

 

 

Figure 22: Comparisons of MTFtask curves between reconstruction 

algorithms for the bone (upper left), acrylic (upper right), air 

(bottom left), and polyethylene (bottom right) inserts at 180 mA. 

Legend applies to all graphs. 

The limiting frequency for each reconstruction algorithm and dose level was found 

from MTFtask plots. The results are displayed in Figure 23. For bone and air inserts, both 

FIRST algorithms had noticeably larger 10% frequencies for all tube currents. In the 

polyethylene and acrylic inserts, FBP performed better at the lowest dose index while 

FIRST performed better at both 180 and 350 mA. Values for every dose level and 

reconstruction algorithm can be found in Table A2 in Appendix A. The inverse of the 
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limiting spatial frequency gives the size in the spatial domain (object size) where spatial 

resolution becomes limited. These results are shown in Figure 24. 

 

Figure 23: Spatial frequency of 10% of the MTFtask curves for each 

reconstruction algorithm and dose levels of 45, 180, and 350 mA. 

 

Figure 24: Limiting object size (mm) for each reconstruction 

algorithm at dose levels of 45, 180, and 350 mA. 

 

In addition to contrast dependence, the spatial resolution of iterative reconstruction 

techniques also showed a dependence on dose level. Figure 25 shows the MTFtask for the 

polyethylene insert at each tube current level for both FBP and FIRST Body Sharp. The 



43 

 

spatial resolution of FBP is dose independent where the opposite is true for FIRST Body 

Sharp. The shape and values of MTFtask for polyethylene at the lowest tube current (45 

mA) for FIRST Body Sharp is similar to the FBP curves.  

 

Figure 25: Dose level dependence of FBP and FIRST Body 

Sharp for the polyethylene insert. 

Noise can have a large effect on modulation measurements. This is evident from 

attempting to calculate the MTFtask for scans with the attenuation ring. The ESF and thus 

the LSF of the acrylic and polyethylene inserts had too much noise to accurately calculate 

the MTFtask. when the body ring was used. Thus, only two MTFtask values could be 

evaluated, bone and air. Figure 26 shows the comparison of spatial resolution for FBP 

and FIRST Body Sharp when the body ring was used versus when it was not.  

 

Figure 26: Comparison of MTFtask for bone and air inserts with and 

without the use of the attenuation ring for FBP and Body Sharp. 
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 Although there is a stronger dependence on spatial resolution when using the 

attenuation ring for the FIRST Body Sharp reconstruction, the limiting spatial frequency 

with the ring is still larger than for FBP. The comparisons of limiting spatial frequency 

with the use of the body ring are shown in Figure 27. The limiting frequency of both 

FIRST reconstructions is higher at all tube currents. 

 

Figure 27: Spatial frequency of 10% of the MTFtask for each 

algorithm and dose levels of 45, 180, and 350 mA when the 

attenuation ring was used. 

5 DISCUSSION 

5.1 LIMITATIONS 

Before analyzing the results, it is important to note limiting factors of this study.  

Firstly, while ten scans of the phantom per dose level yields enough data to reduce 

statistical variations, increasing the number of scans taken per dose level may yield more 

statistically significant results. Second, a major assumption in CT image quality is that of 

stationary statistics (shift-invariance). The use of Fourier methods on non-stationary 

images yields invalid results. While shift-invariance can typically be assumed for FBP, 
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MBIR algorithms are inherently non-linear. The effects of this can be reduced through 

utilizing small, localized VOIs and multiple scans as done in this study, however, the 

results must be analyzed with this fact in mind. And thirdly, the non-linearity of MBIR 

also effects the reaction of the algorithm to local HU gradients, especially with high 

contrast materials. Thus, the relatively homogeneous nature of the ACR phantom may not 

fully predict the outcome of the algorithm in a clinical setting although it provides a 

starting point for clinical translation. 

5.2 CT NUMBER ACCURACY AND NOISE 

 Although CT number accuracy is used to analyze CT system performance, 

clinically, the accuracy of HU units helps differentiate between adjacent materials. Thus, 

the measurements using the attenuation ring provide information on how each 

reconstruction algorithm performs. The comparisons of acrylic CT number show that use 

of the attenuation ring can greatly change how a material is perceived (Figure 11). 

Without the ring, all CT numbers were greater than the true HU, while with the use of the 

ring all CT numbers were below 120 HU. This of course can be due to increased noise in 

the image. However, this increased noise will be seen in clinical images and thus analysis 

using the ring is more informative for protocol optimization.  

The CT number of the bone and air inserts was more accurate with FIRST 

reconstructions over all tube currents (Figure 12). However, for lower contrast materials 

such as water, polyethylene, and acrylic, FIRST reconstructions were less accurate at 

presenting the true HU (Figure 12). Nevertheless, the CT number error was more 

consistent over differing dose levels for FIRST. This is important when considering the 
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wide range of scanning protocols used to produce images. A more consistent HU can 

provide a working understanding of material analysis for radiologists that does not vary 

with dose level. 

 The large reduction in noise within each insert is evident based on the 

measurements taken in this study (Figure 13). FIRST Body can reduce noise in 

polyethylene by over 80% as compared to filtered backprojection. While this is an 

impressive number, the reduction in noise needs to be coupled with accuracy in CT 

number as well as spatial resolution in order to be applicable. Because of the consistency 

of CT number accuracy seen, especially considering the accuracy is close to that seen in 

FBP, the reduction in noise should improve image quality. 

5.3 NOISE POWER SPECTRUM 

 Like the noise reduction seen within the Module 1 inserts, the noise power 

spectrum results show the immense noise reduction potential of FIRST Body. This is 

seen both qualitatively from the NPS images (Figure 14), as well as in the radially 

averaged plots (Figure 17). With this level of noise reduction, it may be possible to reduce 

the tube current, and thus the patient dose, while maintaining the same level of noise 

which in turn maintains or improves spatial resolution. 

In this study, we did not use automatic tube current modulation (ATCM). The 

NPS using the attenuation ring may differ if ATCM was used due to the increased 

number of photons in the more attenuating direction. However, the NPS results with the 

ring show that FIRST has mechanisms which distribute noise more uniformly across the 

image even without the use of ATCM. This is evidenced by the increased radially 
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symmetry seen in Figure 16: The NPS at 𝑓𝑧 = 0 for each reconstruction algorithm at 180 mA 

and with the attenuation ring (display range [0 1341]). and Figure 20: Comparisons of the NPS 

in the x and y directions is shown for each algorithm at 270 mA. Curves are a polynomial fit.. 

As seen in Figure 17, the magnitude of the NPS curve for 45 mA of FIRST Body 

is similar to the peak of 90 mA for FBP. The equivalency of these values yields a way to 

optimize and implement FIRST Body protocols in clinical use. For example, protocols 

using a tube current of 45 mA and FBP as the current clinical standard could have dose 

reduction of ~50% with a similar or even reduced noise profile with FIRST Body. 

Another important finding from Figure 17 is the tail of each curve and at which frequency 

it approaches zero. For example, the tail of FIRST Body at 90 mA drops quickly to zero 

whereas the tail of 90 mA for FBP stretches into larger frequency values. This indicates 

there will be more noise at smaller object sizes which may make diagnosis of small 

lesions or seeing small details more difficult.  

The dose reduction potential, in terms of maintaining noise properties, is again 

apparent from the results shown in Figure 18. At higher tube currents the noise magnitude 

between algorithms is similar especially for FBP, AIDR 3D, and FIRST Body Sharp. 

However, as the tube current is decreased, a distinct difference between algorithms 

appears. This could give justification for the implementation of FIRST Body for clinical 

situations needing noise reduction, especially for those in which noise at lower tube 

currents tends to be the limiting clinical factor. An important example of this is pediatric 

studies in which CT dose is greatly reduced and radiologists are accustomed to noisy 

images. 
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This is important in clinical applications as the frequency at which peak noise 

occurs correlates to the size of objects which will be the noisiest. The results of the peak 

frequency analysis (Figure 19) show the peak noise occurs at much lower frequencies for 

FIRST Body. As lower frequencies correlate to larger objects, smaller objects will be less 

noisy as compared with FBP, possibly lending to increased small lesion detection and 

other applications which require analysis of small detail. In addition, FIRST Body had 

the most consistent peak noise frequency over all tube potentials. Radiologists could thus 

become accustomed to a more uniform noise texture for multiple imaging protocols. 

5.4 MODULATION TRANSFER FUNCTION 

 The displayed contrast dependence of IR spatial resolution (Figure 21) can propose 

an intricate problem for clinical applications due to the inherent complexity of anatomy. 

However, in this study it was shown that at all dose indices the limiting spatial resolution 

of FIRST Body Sharp was superior to both FBP and AIDR 3D (Figure 23). This was true 

for all categories except low dose polyethylene and acrylic which mimic materials in the 

body such as liver tissue. For these contrasts levels, although FIRST reconstructions were 

not superior, they were similar in magnitude to FBP and AIDR 3D at these doses and 

were superior at middle and high doses. The spatial resolution of bone and air easily 

surpass FBP and AIDR 3D indicating that spatial resolution in clinical applications in the 

thorax may be greatly improved with FIRST. However, the contrast dependency of 

MBIR will change the method in which detail is viewed in CT images. 

 The limiting spatial frequency (𝑓10) is commonly used at the metric to compare 

spatial resolution. The measured values are shown in Figure 23 as well as a full list in 
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Table A2 in Appendix A. For a low dose, low contrast situation (45 mA and acrylic), the 

limiting spatial frequency of AIDR 3D was 0.680 mm-1 while for FIRST Body Sharp it 

was 0.727 mm-1. These values correspond to object sizes of 1.471 mm and 1.376 mm 

respectively showing that FIRST Body Sharp can resolve smaller objects in the image. 

This result is also seen in Figure 24 in which the limiting object size for each material are 

shown. FIRST Body Sharp is superior in every category except low dose (45 mA) 

polyethylene and acrylic for which FBP was able resolve smaller objects. 

Adding to the complexity of the contrast dependent spatial resolution, FIRST also 

exhibited a dose level dependence as seen in Figure 25. However, the lowest dose level 

MTFtask for polyethylene was similar in shape and magnitude to FBP, showing FIRST 

will have equivalent or improved spatial resolution. Similarly, the findings utilizing the 

attenuation ring demonstrate that the spatial resolution of FIRST has a larger dependence 

on patient size (Figure 26). Still, the minimal MTFtask values for FIRST Body Sharp were 

either equivalent or superior to that of FBP without the ring. As bone and air were the 

only inserts in which this comparison could be performed, further analysis of this finding 

is necessary for it to be conclusive. 

 An important characteristic shown by spatial resolution analyses is the shape of 

the MTFtask curves. Rather than having a rounded peak at low frequencies that drops 

quickly, the MTFtask for FIRST reconstructions is more linear with frequency. This 

indicates spatial resolution will be more uniform across multiple object sizes. 
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6 CONCLUSIONS 

6.1 FUTURE DIRECTIONS 

The following paragraphs describe possible future studies aimed at further  

understanding the image characteristics of FIRST. Many of these could be performed 

using the ACR CT accreditation phantom. However, increasing the phantom complexity 

(i.e. anthropomorphic phantoms) or using human subjects or cadavers would drive the 

MBIR algorithm into more clinically relevant modes. 

The analysis of stationary statistics within localized regions of FIRST Body and  

FIRST Body Sharp would give validation to many of the assumptions given in this work. 

This could be performed using Module 3 of the ACR phantom and assessing VOIs with 

differing sizes and radii from the center of the phantom.  

 Due to the inherent non-linearity of MBIR, measurements using a phantom are 

only valid with specific conditions and assumptions. To combat this, an observer study 

would provide information on the clinical utility of the algorithms as evaluated by 

professional readers (such as radiologists or medical physicists). Analysis could be 

performed using real clinical images, scans of cadavers, or with images of an 

anthropomorphic phantom each reconstructed with both FBP, AIDR 3D, and FIRST. If 

these results can also be matched with quantitative analysis such as those performed in 

this work, the connections between Fourier image quality assessment and desired clinical 

image quality can be formulated for MBIR. 

Repeating these measurements on images with a smaller slice thickness could yield  
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more information. This research utilized images with a slice width of 5 mm as this used 

clinically. However, because of this, the 3D NPS for 𝑓𝑥 = 0 and 𝑓𝑦 = 0 do not contain 

enough information to fully analyze. If images with slice widths of 1 mm were utilized 

this could yield more z-axis noise information. 

 A comparison of FIRST algorithms with other MBIR is important. It could not be 

completed in this work as other quantitative analyses of MBIR utilized different metrics 

or only provided graphical figures rather than numerical values such as the limiting 

spatial resolution. However, the novel power law,  𝜎2 ∝ mas−𝛽 found by Li et al. and 

validated by Gomez-Cardona et al., defines a difference between FBP and IR 

algorithms24,27. The determinations of 𝛽values for FIRST may give one way to compare 

MBIR algorithms in terms of noise reduction potential. 

A daunting task for the implementation of MBIR techniques is protocol 

optimization. Because of its linear nature, protocol optimization for FBP was relatively 

straight-forward. However, due to the many factors that affect image quality of MBIR, 

this task becomes much more complicated. A technique for deciding which factors are 

important for differing clinical tasks and a new workflow for protocol decision making 

for MBIR would aid the implementation of MBIR in practice. 

6.2 CONCLUSION 

The experimental findings in this study provide a quantitative starting point for  

exploring clinical implementation of FIRST reconstruction algorithms. Overall, this 

research found FIRST to yield images with more consistent image quality over many 

dose levels and material makeup as compared with FBP and AIDR 3D. As noise and 
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spatial resolution are inherently related, and potentially even more so with MBIR, further 

measurements such as those performed here are necessary to fully understand the clinical 

potential of these algorithms and to provide robust reasoning for their application. In 

addition, although the merit of quantitative analysis given through physics research is 

undeniable, the implementation of MBIR will eventually fall onto the responsibility of 

radiologists, radiology technicians, and radiology departments to champion clinical 

implementation and undertake protocol optimization. 

 With the combination of the FIRST Body and FIRST Body Sharp, the protocols 

of seemingly all clinical applications could become optimized as evidenced by this 

research. The noise standard deviation reduction potential of FIRST Body was shown for 

all material inserts, reducing the noise up to 80% from FBP at low doses. This potential is 

also seen in the NPS curves in which the FIRST Body curve for 45 mA was similar to 

that of FBP at 90 mA, indicating a dose reduction potential of ~50%. In addition, the 

spread of FIRST Body does not extend into high frequencies and had a smaller 

magnitude than all other algorithms at every dose level. While FIRST Body could greatly 

improve noise properties, FIRST Body Sharp maintains the noise properties seen with 

AIDR 3D while greatly improving spatial resolution, both with linearity and limiting 

object size. Depending on clinical application, either noise or spatial resolution properties 

can be preferred through the selection of either FIRST Body or FIRST Body Sharp. 

 The CT number accuracy, noise properties, and spatial resolution of the four 

reconstruction algorithms varied greatly based on dose level and the use of the 

attenuation ring. The noise reduction potential of FIRST Body lends itself to improving 

clinical applications in which noise is an issue. Similarly, the spatial resolution of FIRST 
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Body Sharp was superior over a wide range of possible contrast and dose levels. to 

improve patient care in radiology and reduce radiation dose to the population. 
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APPENDIX A 

Bone 

(-105 – 15) 
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 mA -16.913 -15.813 -10.122 -10.087 

90 mA -17.492 -15.897 -9.259 -9.292 

180 mA -16.185 -15.547 -8.358 -8.380 

270 mA -17.823 -15.169 -8.668 -8.669 

350 mA -17.487 -15.330 -9.438 -9.419 

 

Polyethylene 

(-12 – 11)   
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 mA -2.875 -2.583 -3.102 -3.086 

90 mA -2.837 -2.540 -2.802 -2.748 

180 mA -2.570 -2.432 -2.742 -2.694 

270 mA -2.907 -2.569 -2.939 -2.892 

350 mA -2.783 -2.500 -3.013 -2.978 

 

Acrylic 

(-10 – 15) 
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 mA 1.436 1.537 2.188 2.159 

90 mA 1.007 1.560 2.268 2.261 

180 mA 1.910 1.858 2.567 2.524 

270 mA 1.398 2.011 2.516 2.485 

350 mA 1.476 1.936 2.388 2.303 
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Air 

(-5 – 30) 
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 mA 16.888 16.863 11.019 11.043 

90 mA 16.666 16.343 10.305 10.302 

180 mA 16.936 16.569 10.226 10.246 

270 mA 17.356 16.286 10.139 10.135 

350 mA 17.052 16.325 10.461 10.513 

 

Water 

(-7 – 7) 
FBP AIDR 3D FIRST Body 

FIRST Body 

Sharp 

45 mA -0.228 0.053 0.023 0.045 

90 mA -0.229 0.180 0.295 0.299 

180 mA 0.214 0.356 0.450 0.460 

270 mA 0.050 0.555 0.476 0.501 

350 mA 0.089 0.608 0.382 0.412 

Table A1: CT number accuracy for scans without the use of 

the attenuation ring. The acceptable ACR accreditation 

criteria are also shown for each insert. 

 

Air 45 mA 90 mA 180 mA 270 mA 350 mA 

FBP 0.652 0.651 0.649 0.644 0.643 

AIDR 3D 0.619 0.651 0.654 0.648 0.646 

FIRST Body 0.737 0.734 0.731 0.736 0.741 

FIRST Body Sharp 0.739 0.739 0.739 0.743 0.750 

 

Polyethylene 45 mA 90 mA 180 mA 270 mA 350 mA 

FBP 0.674 0.670 0.664 0.674 0.664 

AIDR 3D 0.618 0.648 0.656 0.672 0.668 

FIRST Body 0.631 0.680 0.689 0.700 0.688 

FIRST Body Sharp 0.650 0.710 0.743 0.773 0.768 
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Acrylic 45 mA 90 mA 180 mA 270 mA 350 mA 

FBP 0.752 0.729 0.723 0.726 0.731 

AIDR 3D 0.680 0.696 0.714 0.725 0.735 

FIRST Body 0.708 0.745 0.759 0.766 0.764 

FIRST Body Sharp 0.727 0.762 0.804 0.823 0.827 

 

Bone 45 mA 90 mA 180 mA 270 mA 350 mA 

FBP 0.738 0.741 0.741 0.736 0.732 

AIDR 3D 0.695 0.735 0.741 0.736 0.731 

FIRST Body 0.917 0.906 0.901 0.903 0.897 

FIRST Body Sharp 0.918 0.909 0.905 0.904 0.899 

Table A2: Limiting spatial frequency (𝑓10) for each 

reconstruction algorithm and dose level. 

 


