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Abstract 
 
Introduction: Ankylosing spondylitis (AS) is a chronic inflammatory disorder in which aberrant 
immune responses to the intestinal microbiota are thought to drive pathogenesis. The HLA-B27 
transgenic rat is a foremost translational model of disease, with rats expressing the major 
human risk allele for AS. We have shown previously the IgA response to gut microbes is 
strongly elevated in this model, but the specificity of this response remains unclear. Here we 
used the novel IgA-SEQ technique to test the hypothesis that HLA-B27 expression alters the 
microbial repertoire of the intestinal IgA response. 
 
Methods: Feces were collected from 40 adult HLA-B27 transgenic rats (TG) and 32 wild-type 
(WT) controls. IgA-coated and uncoated fecal bacteria were sorted by flow cytometry and these 
fractions were subjected to 16s rRNA gene sequencing (IgA-SEQ). Relative abundance of 
bacteria in these fractions was determined using QIIME and enrichment of bacteria amongst the 
IgA positive fraction was compared between transgenic and control rats. To test the hypothesis 
that HLA-B27 expression alters the microbial repertoire of the intestinal IgA response we 
compared the IgA response of control and transgenic rats by quantifying the IgA response via 
two metrics: IgA Coating Index (ICI Score) and IgA Index. We compared the IgA response of 
control and transgenic rats, as quantified by the two metrics, using two approaches: traditional 
and predictive modeling. These two approaches were validated/replicated in a smaller human 
dataset of 12 HLA-B27 positive and 12 HLA-B27 negative fecal samples collected during routine 
colonoscopies for colon cancer screening. 
 
Results: Our analysis identified several bacterial taxa that have a significantly enriched IgA 
response in the HLA-B27 rats compared to healthy controls. We also found that in the HLA-B27 
rat dataset the IgA Index was a more robust IgA response quantification metric than the ICI 
Score. In our human HLA-B27 dataset we found that some of the highly IgA coated bacteria in 
the HLA-B27 rats were also exhibiting similar IgA coating in the HLA-B27 humans. We also 
found several other bacterial taxa, unique to the human dataset, that have a significantly 
enriched IgA response in the HLA-B27 humans compared to healthy controls.  
 
Discussion: IgA-SEQ revealed HLA-B27 expression dramatically altered the targeting of gut 
microbes by the intestinal IgA response. We have elucidated a gut microbiota-immune 
interaction phenotype in the HLA-B27 rat model and gained valuable insight into the 
immunopathogenesis of AS. We have also validated/replicated our approach in the HLA-B27 
humans identifying some similarities to the rat model and other interesting unique-to-human 
IgA-coated bacterial taxa to study further. This technique could also be used to better 
understand microbiota-immune interactions in other chronic inflammatory diseases, such as AS, 
where dysregulated immune responses to gut bacteria are thought to be a key 
pathophysiological mechanism. 
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Background 
 
1.1 The gut microbiota and disease 
 
Evidence from both animal models and translational human studies have established that 
changes in the composition of the gut microbiome influence and can drive the development of 
inflammatory, autoimmune, metabolic, and non inflammatory diseases.4,10 These perturbations 
from the ‘normal’ gut microbiota of healthy individuals observed in disease are referred to as 
dysbiosis. Indeed, dysbiosis has been widely reported in the inflammatory bowel disease (IBD) 
research field, which includes Crohn’s disease and ulcerative colitis, where specific members of 
the gut microbiota have been identified as disease-causing ‘pathobionts’ in several transgenic 
immuno-compromised mouse models of colitis.2,10 Subsequently, the identification of 
pathobionts has extended beyond the IBD field to other diseases less obviously linked to the 
intestine, for instance age-related macular degeneration, neurological disorders like Parkinson’s 
disease, and maybe even urgency urinary incontinence.22,23,24 

 
While community-level profiling has helped identify several of these ‘pathobionts’, these are 
typically microbes that are present in one population and absent in another, or microbes that are 
vastly over-represented in the diseased population compared to the healthy population. A 
significant limitation of the conventional community-wide 16S profiling approach is that it does 
not account for microbes that may exhibit equivalent colonization in two populations yet elicit a 
different host response. Specifically, the host immune response may be critically relevant to 
inflammatory disease and to our understanding of its immunopathogenesis. 
 
In the gut, there are more immune cells (T-cells, B-cells) and many immune mediators, such as 
immunoglobulins, than anywhere else in the body.4 The gut’s microbial communities are 
constantly being monitored by the host’s intestinal immune system and IgA performs most of 
that monitoring.4 Some commensal bacteria in the gut, such as Segmented Filamentous 
Bacteria (SFB) are known to interact with the intestinal immune system and induce T-cell 
responses that cause systemic inflammation.4,6 Robust activation of intestinal T-cell responses 
is also known to activate B cells to produce secretory IgA. 
 
The gut is a powerful regulator of the host’s immune system because it helps to maintain the 
delicate balance between inflammation and regulation.4,10 IgA regulates the composition of the 
gut microbiota and prevents harmful/unnecessary immune system responses by coating specific 
strains of potentially harmful microbiota which prevents those strain’s direct interaction with the 
host’s epithelium.4 Bacteria, like SFB, that adhere to the gut (intestinal) epithelium come into 
direct contact with the host and elicit more specificity from IgA.2,4,10 Furthermore, bacteria that 
elicit more specificity from IgA, or are more highly IgA coated, are generally considered more 
pathogenic.4,6 
 
1.2 IgA-SEQ 
 
The specific strains of bacteria that are highly bound by IgA can be identified using a novel 
method, developed by Flavell and colleagues called IgA SEQ.6  This technique builds upon 
merely providing a picture of overall bacterial abundance, adding identification of microbes that 
are specifically enriched for IgA coating, indicating bacteria that are highly targeted by the 
immune response. In order to do this, fecal bacteria are stained with a fluorescently-conjugated 



anti-host IgA antibody (Fig 1). This staining permits IgA-coated bacteria to be separated from 
their uncoated counterparts by a fluorescently activated cell sorting (FACS) instrument on the 
basis of differential fluorescence. The isolated IgA positive and IgA negative fractions can then 
be sequenced to ascertain the microbial composition of these populations by DNA extraction 
and sequencing of the 16s ribosomal rRNA gene.  
 

 
Figure 1. The methodology of IgA-SEQ. Feces were collected from adult HLA-B27 transgenic rats and 
WT controls (n=32-40 per group). IgA-coated and uncoated fecal bacteria were sorted by flow cytometry 
and these fractions were subjected to 16s rRNA gene sequencing (IgA-SEQ). These 16s sequencing 
reads are grouped into OTUs and taxonomy is assigned via QIIME then this data is imported into R for 
further analysis 14,20,21. 
 
Like conventional community-wide profiling studies of the entire microbial community of the gut, 
IgA-SEQ also utilizes 16s rRNA gene sequencing to determine microbial composition of a given 
sample. To do this, DNA is extracted from a microbial sample and the 16s rRNA gene is 
amplified using primers which target conserved regions of the 16s rRNA gene found in all 
prokaryotes. The sequenced 16S rRNA gene reads can be identified as belonging to specific 
bacterial species by aligning the reads to known reference sequences found in databases like 
SILVA27 or GREENGENES28. The key difference between IgA seq and conventional 
community-wide 16S profiling is that the bacteria is first sorted into two fractions using 
fluorescent activated cell sorting (FACS). FACS allows for the 16S sequencing of each of the 
two fractions, i.e., the fraction coated by IgA and the fraction not coated by IgA. 



 
IgA-SEQ has been used successfully to identify potentially pathogenic/colitogenic bacteria in 
IBD and malnutrition.2,5,18 For instance, Palm et al found highly IgA coated microbes induced an 
inflammatory phenotype and increased colitis severity upon adoptive transfer to murine 
recipients in a mouse model of IBD.2 IgA-SEQ has also been used to monitor and describe the 
development of mucosal IgA responses showing that IgA-SEQ can be used to “define gut 
mucosal immune development in health and disease states”.3  The successful uses of IgA-SEQ 
in these studies2,3,5,11 illustrate that IgA-SEQ is a powerful technique for identifying bacterial taxa 
that provide a strong stimulus to the host’s immune system, i.e., provides scientists the means 
to identify immunogenic/pathogenic bionts in their experimental investigations.4,6 
 
Identifying which biota are potentially pathogenic in a disease like AS and many other 
inflammatory diseases using IgA-SEQ is of great importance. Performing analysis on 16S data 
is already challenging and the increased complexity of IgA-seq data, i.e., the different IgA 
coated fractions, makes this more challenging. Determining what manipulation of the data and 
statistical approaches are appropriate is not a trivial task, thus we have provided a best practice 
IgA-SEQ workflow implemented in R which can be used on other data sets (see 
https://github.com/markklick206/IgA-SEQ_Workflow ).14,17,20,21 

 
1.3 Ankylosing Spondylitis 
 
Ankylosing spondylitis (AS) and other spondyloarthropathies are hugely debilitating diseases 
with significant unmet clinical need. These diseases typically manifest themselves at 20-30 
years of age with chronic inflammation of the spine and sacroiliac joints. AS alone affects 
roughly 1% of the U.S. population, representing some 40,000 Oregonians with an estimated 
annual economic burden of $15-20,000 per patient in healthcare costs and lost productivity. Like 
IBD and other chronic inflammatory diseases, there are several observations that indicate the 
intestinal microbiota may be critical for the pathogenesis of IBD.19 These include: 
 

1. AS patients exhibit a dysbiotic gut phenotype relative to healthy controls.29 

2. Over half of AS patients exhibit signs of subclinical bowel inflammation implicating 
disease overlap with IBD.30 

3. Germ-free animals that are sterile and hence lack an intestinal microbiota do not develop 
AS-like symptoms.31 

 
HLA-B27 is a major risk factor for ankylosing spondylitis, acute anterior uveitis, reactive arthritis 
and other spondyloarthropathies. Indeed, some 90% of AS patients are HLA-B27 positive 
versus a prevalence of 5-10% in the general population. Moreover, transgenic rats that express 
human HLA-B27 go on to develop penetrant HLA-B27-associated inflammatory sequelae such 
as bowel and joint disease.32 This transgenic model is an excellent model of disease, with 
animals developing a hyper-active immune response to the gut microbiota, accompanied by 
large alterations to the gut microbiota.1  
 
The Asquith lab has shown previously that the IgA response to the intestinal microbiota is 
dramatically increased in HLA-B27 transgenic (TG) rats vs healthy controls.1 The identity of 
bacteria targeted by this IgA response are unknown. However, IgA-SEQ has the ability to 
determine which bacteria may be differentially targeted by the IgA response in this transgenic 
model. This study consists of 32 WT and 40 TG rats each sorted into IgA-negative (IgA-neg), 

https://github.com/markklick206/IgA-SEQ_Workflow


IgA-positive (IgA-pos) and All-Bacteria(AllBac) fractions and subjected to 16s rRNA 
sequencing.. 
 
These animals are a robust model of AS. The HLA-B27 rat model could be considered the 
foremost translational model of AS because animals manifest with bowel inflammation at 8-10 
weeks of age.1 We already mentioned our interest in comparing the IgA response between 
genotype, but our HLA-B27 dataset also consists of rats of different age groups. If the HLA-B27 
32 WT and 40 TG rats develop bowel inflammation at 8-10 weeks old, then it makes sense that 
12 weeks old is considered an early time point in disease progression/development and 16 
weeks old being considered a later time point with established disease. This later time point is 
also when animals start to manifest with extra-intestinal symptoms, namely arthritis.1  
 
We have a smaller human dataset of HLA-B27 positive and HLA-B27 negative fecal samples 
collected during routine colonoscopies (n=12-15 per group) in which we will also test the 
hypothesis that HLA-B27 expression alters the microbial repertoire of the intestinal IgA 
response using our IgA-SEQ workflow.This validation/replication of our analysis approach 
allows us to compare the IgA-coated bacterial taxa found in the HLA-B27 rat model to the 
IgA-coated bacterial taxa found in the HLA-B27 Humans. In other words, the translational 
potential of the HLA-B27 rat model will be examined. We will also get a glimpse of the intestinal 
IgA response phenotype in humans which provides novel insight into the immunopathogenesis 
of AS. 
 
Methods 
 
2.1 Quantifying the IgA Response 
 
To test the hypothesis that HLA-B27 expression alters the microbial repertoire of the intestinal 
IgA response We will be comparing the IgA response of control and transgenic rats using two 
approaches. The first approach uses traditional non-parametric statistical tests to compare the 
IgA response, whereas the second approach uses predictive modeling. Due to the non-normal 
distribution of the OTU relative abundance data, using a standard t-test to determine statistically 
significant differences between experimental conditions would not be appropriate. Therefore, 
the Wilcoxon Signed Rank test and the Wilcoxon Rank Sum test are used to determine any 
significant differences within/between experimental conditions.2,3,5,6,11,14 Previous studies that 
used IgA-SEQ quantified the IgA response using two different metrics: ICI score and IgA Index 
(Fig. 2).  
 
Palm et. al.2 used a simple ratio, termed IgA Coating Index (ICI score), of the positive fraction 
divided by the negative fraction (Fig. 2). A bacterial taxa with an ICI score above one is 
considered positively IgA enriched, below one is considered negatively IgA enriched, and a ICI 
score of one is considered not coated. A 0.0002 substitution (detection limit) is made for any 0 
relative abundance value in the negative fraction to prevent a division by zero. The authors 
decided a taxa with an ICI score above 10 was considered highly coated in their experiment. 
 
Kau et. al.5, Planer et. al.3, and Viladomiu et. al.18 used a log normalized ratio, termed the IgA 
Index (Fig. 2). The IgA Index is bound between a value of negative one and one. A bacterial 
taxa with a negative IgA Index value is considered negatively IgA enriched, a positive value is 
considered positively IgA enriched, and a IgA Index of zero is considered not coated. Here, a 



substitution of 0.0002 is only made if both negative and positive fractions have 0 relative 
abundance values. 
 

 
Figure 2. Equations for the two different IgA coating quantification metrics. Both of these metrics 
were used to quantify the IgA response. Notice the ICI score is unbounded in its range while IgA Index is 
log normalized so it’s bounded between -1 and 1. 
 
2.2 Predictive Modeling Approach 
 
The second approach used to compare the IgA response of control and transgenic rats is to use 
predictive modeling. This approach allows us to directly compare the different IgA response 
metrics and determine which metric is more robust (Fig. 2). For the analysis we set up a 
supervised binary classification problem which assesses the predictive ability of the IgA 
response in predicting/classifying case vs. control. The goal is to determine what IgA 
quantification metric, if any, is more predictive by constructing a predictive model to identify what 
bacteria are important in answering the binary classification problem, i.e., which IgA coated 
bacteria are best at distinguishing between HLA-B27 vs. control rats.  
 
Using the ICI score and IgA Index matrices (Fig. 3) of the HLA-B27 and control rats as the data 
for this supervised binary classification problem will not only give insight into what bacterial 
genera/features are important in predicting/classifying between genotype but also assess the 
predictive ability/efficacy of the two different IgA response metrics in general. We chose to use a 
random forest as the algorithm for my predictive model for three reasons. First, a random forest 
model makes virtually no assumptions on the distribution of the input data. Second, we can 
assess variable importance in the random forest model to determine what features, or bacterial 
genera, best discriminate genotype. The third reason is that random forests are commonly used 
and considered a best practice in the metagenomics field.3.17,25 To further test the predictive 
ability of the ICI score and IgA Index we built three other predictive models using three common 
machine learning algorithms (Fig.3), e.g.,  Logistic Regression, Linear Discriminant Analysis 
(LDA), and Classification & Regression Trees (CART). 



 
Figure 3. Illustration of the supervised binary classification problem which will address/assess the 
predictive ability of the IgA response in predicting/classifying HLA-B27 (TG) vs. control rats (WT). Data 
matrices, various learners, and the binary classification is shown (left to right). Red oval indicates the 
learner that will be used in this analysis, i.e., a random forest. The other learners will be ran as well. 
 
2.3 Sequence Processing and Taxonomic Identification 
 
16s rRNA gene sequencing was performed with Illumina MiSeq sequencer (Illumina, USA). The 
sequences were processed using scripts from the workflow package Quantitative Insights into 
Microbial Ecology (QIIME) version 1.9.0.15 Individual sequence reads were joined using 
FASTQ-join (ea-utils, version 1.1.2-537; Aronesty, 2013). The sequencing reads were 
demultiplexed and sequences were grouped into operational taxonomic units (OTUs)  with the 
open reference approach implemented in pick_open_reference_otus.py, with the uclust 
algorithm and Green Genes (gg_13_8) reference database. Chimeric sequences were removed 
with the blast_fragments approach implemented in the identify_chimeric_seqs.py script. The 
resulting OTU table was imported into R for filtering and statistical analysis. 
 
2.4 IgA-SEQ Workflow 
 
One of the goals of this analysis was to produce a generalized workflow for any arbitrary case 
vs. control dataset. We use the HLA-B27 rat data set and HLA-B27 human data set as use 
cases for the IgA-SEQ workflow. A description of the IgA-SEQ workflow used on both HLA-B27 
human and rat data sets analysis can be seen in Figure 4.  
 
The IgA-SEQ workflow begins with the key input files for any microbiome study: an OTU table 
(usually in BIOM format), a phylogenetic tree file, and an experimental metadata mapping file. 
We use QIIME Python scripts to convert the OTU table into the standardized BIOM format.12,13 
The R package Phyloseq is used to read in the BIOM table and any experimental metadata into 
the R environment.20 Exploratory data analysis (EDA) is then performed, e.g., making boxplots 
to visualize the distributions of the relative abundance data. EDA can identify confounding 
covariates and allow for careful adjustments based on the EDA such as normalization or 
removal of outlier samples. One of the most common EDA methods for microbiome data is 
principal coordinates analysis (PCoA) which allows us to visually identify associations with a 



covariate of interest: genotype and age. 
 
After conducting EDA, the relative abundances between the IgA-SEQ fractions are compared 
via Kruskal-Wallis test comparing the positive and negative IgA fractions, similar to the first step 
in the widely used tool LEfSe.7 We also employ a PERMANOVA test on the IgA positive fraction 
using genotype as our covariate of interest to test for associations between bacterial abundance 
and genotype. To further supplement our analysis we use predictive modeling to build several 
random forest models using the log(1+x) normalized relative abundance values for the different 
IgA-SEQ fractions, i.e., IgA-pos, IgA-neg, and AllBac, to predict genotype and identify 
discriminative bacteria.17,25  
 
After visualizing and performing statistical tests on the relative abundances of the different 
fractions in each sample, we compute the IgA quantification metrics, i.e., ICI score and IgA 
Index, for the top 45 most abundant bacterial genera (OTUs) in the AllBac Fraction of the data 
set. The biological reasoning behind this subsetting choice is that we are interested in 
microbes/bacterial genera that may exhibit equivalent colonization in control and HLA-B27 
subjects yet elicit a different host IgA response. However, we have several other methods for 
subsetting but the top 45 most abundant bacterial genera in the AllBac Fraction was the most 
biologically relevant subset. We also look at the distribution of the IgA quantification metrics 
across the samples and bacterial genera (OTUs) and visualize the differences in the IgA 
response between control and HLA-B27 via boxplots.  
 
Then we employ our traditional approach which uses non-parametric statistical tests to compare 
the IgA response between control and HLA-B27 subjects. A Wilcoxon Signed rank test is used 
within each group, control and HLA-B27, to determine any statistically significant differences in 
the distribution of the sample’s IgA quantification value for each bacterial genera (OTU), i.e., 
within each genotype we are statistically testing which taxa have an ICI score that ≠ 1 indicating 
they are significantly IgA enriched (>1) or IgA unenriched (<1). A Wilcoxon Rank Sum test is 
used between each group, control and HLA-B27, to determine if there are any significant 
differences in the distribution of the IgA quantification value for each bacterial genera (OTU’s). 
The results of these statistical comparisons on the IgA-quantification metrics between control 
and HLA-B27 rats are then visualized via heatmaps and bubble plots. 
 
We then employ our predictive modeling approach by constructing the random forest models, 
using the ICI and IgA Index, with the random forest implementation in the randomForest R 
package (Fig. 3).21 Like any standard supervised binary classification we subset our data set 
into a training and test set, we chose a 80:20 split. We repeat the random forest model building 
procedure 100 times similar to that performed by Planer et al 3.  
 
Model evaluation metrics, i.e., accuracy, sensitivity and AUC, tell us how well our models using 
the ICI and IgA Index can discriminate between control and HLA-B27 subjects (how well they 
did in answering the supervised binary classification problem). We then visualize the two 
predictive model’s variable importance plots which illustrate the bacterial genera that are most 
important to the random forest, i.e., the bacterial genera that best discriminate between 
HLA-B27 and control subjects. 
 
To further test the predictive ability of the ICI score and IgA Index we built three other predictive 
models using three common machine learning algorithms (Fig.3), e.g.,  Logistic Regression, 



Linear Discriminant Analysis (LDA), and Classification & Regression Trees (CART). 
 
  
 

 
Figure 4. Flow diagram of the IgA-SEQ Workflow used on the HLA-B27 rat dataset and HLA-B27 human 
dataset. *DESEQ2 was not used and just is shown as an example. *LEfSe was not used and is just 
shown as an example. 
 
Results 
 
3.1 A Subset of Bacterial Genera are Enriched for IgA Coating in HLA-B27 Rats 
 
There is a clear difference in the relative abundance of bacterial taxa for the various IgA-SEQ 
fractions: negative, positive, and AllBac in the HLA-B27 rat data set. Like others who have used 
IgA-SEQ have shown in their datasets, there is also a distinct subset of bacterial genera present 
in the IgA positive fraction of the HLA-B27 rat model.2,3,5,18 Figure 5 illustrates the elevated 
abundance of certain bacterial genera in the IgA positive fraction of the HLA-B27 rats. We also 
constructed PCoA plots (supplementary materials) for each of the fractions using genotype as 



the covariate. These PCoA plots indicate that there is some separation between control and 
HLA-B27 rats. To further supplement/confirm the differential abundance between genotypes a 
PERMANOVA test was computed in the IgA positive fraction, and as we expected the result 
was significant with a p-value<0.02. 
 

 
Figure 5. Relative Abundance of IgA-SEQ fractions. Heat maps are used to illustrate the relative 
abundance values for the top 45 most abundant OTUs in the AllBac Fraction of the HLA-B27 rat data set 
(microbes that may exhibit equivalent colonization in two populations yet elicit a different host response). 
The average relative abundance values for IgA-, IgA+ and AllBac fractions are shown for control (WT) 
and HLA-B27 rats. We are showing the different age groups, 12 and 16 weeks, to visualize the 
differences in relative abundance in our HLA-B27 16 week old diseased rats. There are several OTUs 
that have noticeably higher relative abundance in the IgA+ fraction of the HLA-B27 16weeks rats. 
 
Figure 5 shows the differences in relative abundance for each of the IgA-SEQ fractions between 
the control and HLA-B27 rats. Moreover, the 16 week transgenic rats seem to exhibit a distinct 
repertoire of bacterial genera that are present in the IgA positive fraction. To further investigate 
this we employ the two IgA quantification metrics that have been used in literature, e.g., the ICI 
score and IgA Index. When we look at the IgA response of the top 45 most abundant bacteria in 
the AllBac fraction quantified by the ICI score and visualized via a heatmap, we can see that 
HLA-B27 expression dramatically alters the targeting of gut microbes by the intestinal IgA 
response (Fig. 6). Furthermore, this alteration in the targeting of gut microbes by the intestinal 
IgA response seems to be more pronounced in the 16 week old HLA-B27 rats. Several bacterial 
genera standout allowing us to narrow in on a subset of highly IgA coated bacteria that are 
potentially driving disease in the HLA-B27 rat (Fig. 5-6). 
 



Figure 6. ICI Score. Heat map illustrating the distribution of ICI scores for the top 45 most abundant 
OTUs in the AllBac Fraction of the HLA-B27 Rat data set (microbes that may exhibit equivalent 
colonization in two populations yet elicit a different host response). The control (WT) rats are shown on 
the left subdivided into 12 and 16 week age groups, and the HLA-B27 rats are shown on the right. The 
IgA response as quantified by the ICI score identifies several OTUs that are ‘highly IgA coated’ in the 
HLA-B27 16 weeks samples. *log ICI score is shown here for better visualization. 
 
3.2 HLA-B27 Expression Alters the Microbial Repertoire of the Intestinal IgA Response 
 
Visualizing the ICI score and IgA Index using a boxplot allows us to get a sense of the 
distribution of the IgA response for each bacterial genus and visually compare the quantified IgA 
response of control and HLA-B27 rats. Comparing the severity/intensity of the differences in IgA 
response between control and HLA-B27 rats, we can see that ICI score slightly exaggerates the 
IgA response and the IgA Index depicts the IgA response less variably. Figure 7 illustrates the 
fact that no matter how you quantify the IgA response, ICI score or IgA Index, a distinct 
difference in the IgA repertoire between genotypes can be seen. Moreover, the distribution of 
IgA-coated microbial taxa identified by these two indices is broadly similar.  



 
Figure 7. Boxplot of ICI (A) and IgA Index (B) showing the distinct IgA response repertoire of the 
transgenic HLA-B27 rat from the control rat. This illustrates the fact that no matter how we quantify the 
IgA response there is a distinct difference between our control and HLA-B27 rats. Horizontal bars 
represent group medians. N = 32 controls 40 HLA-B27 animals per group. Outliers are shown as black 
dots. 
 
 
3.3 Microbial Repertoire of the Intestinal IgA Response Intensifies in 16 Week HLA-B27 
Rats 
 
The results of our Wilcoxon signed-rank test, which looks at the IgA response of each genotype 
separately, identified many bacterial genera in the 16week HLA-B27 rats that exhibited a 
significantly non-zero IgA index or in other words were enriched in either the IgA positive or IgA 
negative fraction (Fig 8). The results of our non-parametric Wilcoxon rank-sum test identified 
several bacteria in the HLA-B27 rats that exhibited a significantly different IgA quantification 
metric compared to that observed in WT controls (Fig 9). To reiterate, the Wilcoxon rank-sum is 
a between group comparison to identify whether specific microbial genera exhibited differences 
in IgA coating between WT and HLA-B27 animals. This provides further evidence for our 
hypothesis that HLA-B27 expression alters the microbial repertoire of the intestinal IgA 
response by identifying bacterial genera that potentially play a role in the immunopathogenesis 
of disease in these 16 week old HLA-B27 rats. 
 



Figure 8: Wilcoxon Signed Rank test with ICI values. This figure visualizes p-values resulting from 
Wilcoxon Signed Rank test performed on ICI values within WT and HLA-B27 rat samples. We look at 
each genotype, control (WT) and HLA-B27, and see which bacterial genera are determined to be 
significant within each group. We further divide the control (WT) and HLA-B27 genotype groups into our 
two age groups, 12 and 16 weeks, to see if there is a difference in which bacterial genera are significant 
within each group. We show that the HLA-B27 16 week old diseased rats have more significant results 
according to the Wilcoxon Signed rank test. *P-values are corrected for multiple comparisons using 
Benjamini-Hochberg (fdr). 
 



 
Figure 9. Wilcoxon Rank sum test with IgA Index values. The right side visualizes p-values resulting 
from Wilcoxon Rank Sum test comparing IgA Index values of WT vs HLA-B27 rats. We look at each 
genotype, control (WT) and HLA-B27, and see which bacterial genera are determined to be significant 
according to the Wilcoxon rank-sum group comparison. We show our 12 and 16 week groups to visualize 
the difference in results for each age group. We show that the HLA-B27 16 week old diseased rats have 
more significant results. *P-values are corrected for multiple comparisons using Benjamini-Hochberg (fdr).  
 
We also visualized the IgA Index for HLA-B27 and control rats using a bubble plot.3,5 A bubble 
plot allows us to incorporate the magnitude, sign, and significance of the IgA Index for each 
bacterial genera and  is therefore a superior visualization to the ICI heatmap (Fig. 6). Figure 10 
shows the IgA response as quantified by the IgA Index. Again, we see a distinct set of bacterial 
genera that are being highly IgA coated, not only in the 16 week HLA-B27 rats (Fig. 10), but 
also in the whole dataset as well. 
 
 



 
Figure 10. Bubble plots illustrating the IgA response as quantified by the IgA Index showing genotype 
and age groups of the HLA-B27 rats. The size of the circle represents the magnitude of the average IgA 
Index for the bacterial genera. The color of the circle represents a positive or negative IgA Index value, 
red is a positive value (IgA-coated) and blue is a negative value (not IgA-coated). The intensity of the 
color in the circle represents the level of significance as determined by Wilcoxon Signed Rank test within 
WT and HLA-B27 samples. We show that the HLA-B27 16 week old diseased rats have more significant 
results according to the Wilcoxon Signed rank test.  *P-values are corrected for multiple comparisons 
using Benjamini-Hochberg (fdr). 
 
3.4 The Predictive Model Using the IgA-Index Outperformed the ICI Score Model in the 
HLA-B27 Rat Dataset 
 
The variable importance plots and model evaluation metrics from our predictive modelling 
approach are shown in Figure 11. Variable importance plots shows us which bacterial genera 
best discriminate between control and HLA-B27 rat, giving us crucial insight the 
immunopathogenesis of AS by using predictive modelling techniques. Figure 11 shows the 
results of how well each of the random forest models, one built with the ICI score and the other 
built with IgA Index, was able to discriminate control vs. HLA-B27 rats. We show a common 
model evaluation metric, i.e., AUC (Fig. 11).26  
 
 
 
 
 
 
 
 
 
 



Data set / 
IgA Metric 

RF 
AUC 

LDA 
AUC 

CART 
AUC 

Logit 
AUC 

HLA-B27 Rat Data / 
ICI  

0.78 0.53 0.72 0.53 

16 week rats / 
ICI  

0.95 0.61 0.78 0.53 

HLA-B27 Rat Data / 
IgA Index  

0.81 0.70 0.68 0.64 

16 week rats / 
IgA Index 

0.90 0.85 0.75 0.40 

 
Figure 11. We evaluate the performance of our various predictive models using AUC. We notice that IgA 
Index is slightly more predictive than the ICI score in some cases and in some cases the ICI score is 
more predictive. Here we show the model evaluation results using the full HLA-B27 rat dataset and the 16 
week old diseased subset. Both random forest performed ~0.80 AUC which is evidence for a predictive 
IgA-response signature in the HLA-B27 rats. 
 
We built 100 different random forest models and considered the bacterial genera/features that 
were consistently in the top 5 most important variables to the random forest models. Focusing 
on our 16week old subset again we look at Figure 12. We see the bugs that were important in 
the ICI model are slightly different than those bugs important in the IgA Index model. The most 
predictive genus in both the ICI and IgA Index predictive models is Bacteroides spp., however, 
we see several other predictive genera that are interesting as well, i.e., Turicibacter spp., 
Lactobacillus spp., Streptococcus spp., Blautia spp., and Treponema spp. (Fig. 12). We 
see again that no matter how we quantify the IgA response, there is a predictive 
signature/phenotype which discriminates our control and HLA-B27 rats. The AUC and ROC also 
inform us that there is definitely a predictive IgA signature, for certain bacterial genera, that can 
discriminate control and HLA-B27 rats. Both random forest performed ~0.80 AUC which is 
evidence for a predictive IgA-response signature in the HLA-B27 rats. 
 

 



 
Figure 12. Discriminative Immunogenic Bacteria. Shown here are the bacterial genera that best 
discriminate 16 week old HLA-B27 and control rats. (Top) and (Bottom) show the important 
features/bacterial genera for the ICI score predictive model and IgA Index predictive model respectively. 
These bacteria provide us with a list of potential inflammatory ‘pathobionts’ that could be driving 
disease-driving. 
 
3.5 Characterized the IgA-response to Intestinal Microbiota in HLA-B27 Humans  
 
Even before running the IgA-SEQ workflow (FIg. 4) on the HLA-B27 human dataset we were 
aware of the heterogeneous nature of human gut microbiota. It has been shown that the 
composition of the human gut-microbiome can fluctuate drastically from individual to individual. 
This individual variation/heterogeneity has also been seen in IgA-SEQ studies.2 Palm et. al. 
mentioned that they found a unique signature of IgA-coating for each individual human in their 
study further stating that the ability to identify ‘a unique combination of IgA-inducing 
inflammatory commensals’ illustrates the advantages of IgA-SEQ over conventional 
community-wide 16S profiling.2 IgA-SEQ gives us an understanding of the immunopathogenesis 
of a disease and allows us to identify ‘inflammatory commensals’  
 
Here we present the results of running the HLA-B27 human dataset through the IgA-SEQ 
workflow (Fig. 4). These results represent some of the first insights into the inflammatory 
bacterial taxa that are potentially driving AS in our human subjects (supplemental materials). 
 
3.6 Predictive Signature More Elusive in Heterogeneous HLA-B27 Humans  
 
Our predictive modeling approach did not perform as well in the HLA-B27 human data due to 
the heterogeneity and individualized nature of each human’s inflammatory IgA-coated gut 
microbiota phenotype (Fig, 13). However, we can still gain insight into which bacterial genera / 
predictive features are contributing to the model using the same methodology mentioned in 
section 2.4. Some of the top contributing bacterial genera’s IgA Index value distributions are 
shown in Figure 18 these include: a bacteria from family Ruminococcaceae, family 
Mogibacteriaceae, Escherichia spp. , Bifidobacterium spp. , Odoribacter spp. . 
  



 
Figure 13. Shown here are the bacterial genera that best discriminate HLA-B27 and control humans 
based on their IgA Index score and contribution to the random forest model. We visualize these bacterial 
genera in boxplots to get a sense of the overall distribution of IgA Index values for control and HLA-B27 
humans. The important features/bacterial genera for the IgA Index predictive model are shown.These 
bacteria provide us with a list of potential inflammatory ‘pathobionts’ that could be driving disease-driving. 
*Ruminococaceae and Escherichia are the two most interesting genera. 
 
 
3.7 Several Highly IgA-coated Bacterial Genera in the HLA-B27 Rats Exhibit Similar 
IgA-coating in the HLA-B27 Humans 
 
In our human HLA-B27 dataset we found that some of the highly IgA coated bacteria in the 
HLA-B27 rats were also exhibiting similar IgA coating in the HLA-B27 humans. Specifically, 
Lactobacillus spp. and Blautia spp., displayed similar IgA coating according to the IgA Index 
(Fig.14). This is a very interesting result and gives merit to the HLA-B27 rat model’s translational 
potential. The fact that these two bacterial genera are being targeted by the immune system in 
both the human and rats is encouraging for future studies. These future studies could possibly 
involve isolating, culturing, and mono-associating these potentially immunogenic microbes intro 
germ free mice. 
 
 

 
Figure 14. Shown here are the distribution of IgA Index values for the control and HLA-B27 human 
bacterial genera that were found to be most discriminative in the HLA-B27 rat data set. We visualize 
these bacterial genera in boxplots to get a sense of the overall distribution of IgA Index values for control 
and HLA-B27 humans. *Specifically, Lactobacillus spp. and Blautia spp., displayed similar IgA coating 



according to the IgA Index metric. This is a very interesting result and gives merit to the HLA-B27 rat 
model’s translational potential. 
 
Discussion 
4.1 HLA-B27 expression alters the microbial repertoire of the intestinal IgA response 
 
Here we have presented the results from the examination of the intestinal immune response to 
the gut-microbiota in our HLA-B27 rat model and HLA-B27 humans. We used the novel 
IgA-SEQ technique to test the hypothesis that HLA-B27 expression alters the microbial 
repertoire of the intestinal IgA response. IgA-SEQ and our analysis revealed HLA-B27 
expression dramatically altered the targeting of gut microbes by the intestinal IgA response. We 
have shown previously the IgA response to gut microbes is strongly elevated in the HLA-B27 rat 
model, and now we have elucidated the specificity of this response. We have also provided a 
first glimpse of what bacteria might be contributing to the immunopathogenesis of AS in our 
smaller HLA-B27 human dataset. 
 
We found that the IgA response specifically targeted a subset of bacterial genera identified as 
potentially immunogenic in the HLA-B27 rat data set. This group of potential ‘pathobionts’ or 
potentially disease driving intestinal bacteria were candidates to investigate further in our 
smaller human dataset of fecal samples from HLA-B27 positive and negative individuals 
(n=12-12/group). We observed that two bacterial genera, Lactobacillus spp. and Blautia spp., 
were targeted by IgA in both HLA-B27 rat models and in HLA-B27 humans. These are potential 
bacterial taxa to isolate and study further. 
 
We found that the difference in the IgA response between 12 and 16 week old transgenic 
HLA-B27 rats was interesting in that it gave us some insight into how the IgA response of these 
animals develops with age. The subset of bacteria that progressively become more 
immunogenic, or more highly IgA coated, as these rats age could act as a first step in 
elucidating the immunopathogenesis of AS by creating a microbial biomarker for early 
development of AS in humans. Translating results from these findings into our smaller human 
dataset will be more difficult because we only have a limited number of samples and the age 
difference is nominal in the human cohort. 
 
4.2 Overlap Between IgA-coated Microbes in AS, CD, and SpA 
 
When we compare the gut microbes that have been targeted by the IgA response in our 
HLA-B27 rat model to other disease models, such as IBD and CD, we see some similarities. We 
expect to see similarities due to the fact that there is so much genetic, clinical, and 
micro-biological overlap between IBD and AS.19 The micro-biological overlap in the IgA 
response between IBD and AS is apparent when we look at a recent study focused on 
IBD/Crohn’s disease.2 Not only is there overlap between the bacterial genera being investigated 
in these studies and ours, but several bacterial genera exhibit a similar IgA response. For 
example, the bacterial genus, Lactobacillus spp. (Fig.12), which was found to be significantly 
IgA enriched in Palm et. al was also found to be significantly IgA enriched in the HLA-B27 rat 
dataset and we see similar level of IgA-coating in the HLA-B27 human dataset as well.2 What is 
extremely interesting about this overlap in the IgA response of the same genus in two 
independent studies, is that, this provides novel insight into how the host IgA response fits into 
the already known genetic, clinical, and micro-biological overlap between IBD and AS.19 



 
When we compare the gut microbes that are highly IgA-coated in the HLA-B27 human dataset 
to other human IgA-SEQ studies, we see some interesting similarities. Palm et. al. included 
Blautia as on of the microbes in their IgA+ consortia culture.2 We also found that Blautia spp. 
was more highly IgA-coated in our HLA-B27 humans and HLA-B27 rats. Viladomiu et. al. 
concluded that ‘IgA-coated Escherichia coli’ was more highly coated in patients with Crohn's 
Disease (CD) associated Peripheral spondyloarthritis (SpA) compared to patients with only 
CD.18 Interestingly, we find Escherichia spp. to be highly coated in our healthy controls 
compared to our HLA-B27 human subjects. While this might be surprising in light of the 
CD-peripheral SpA findings, it should be noted that patients in this specific study were 
exclusively HLA-B27 negative to avoid potential overlap with other forms of B27-dependent 
SpA. A plausible explanation may be the the individual variation/heterogeneity of the 
IgA-response to gut microbiota we see in each of our human HLA-B27 subjects and the 
relatively low ‘n’ of each study. This also indicates however that whereas a robust IgA response 
to Escheria spp. may be a pathophysiological mechanism in HLA-B27 negative individuals that 
develop SpA, different mechanisms (at least in individuals without disease as in our study) may 
operate prior to development of disease in the 90% of individuals with SpA that are HLA-B27 
positive. An interesting shared feature of both of our studies however is the enrichment of 
IgA-coated members of the Ruminococceae family in HLA-B27+ individuals and patients with 
IBD (irrespective of the presence/absence of peripheral spondyloarthritis). In this latter study the 
identified microbial OTU was the Ruminococceae family member Eubacterium 
coprostanoligenes.18 

 
4.3 Predictive Modeling Provides Insight into HLA-B27 Rat and Human Datasets 
 
Our predictive modeling approach revealed that the predictive models built using the IgA Index 
were able to discriminate genotype slightly more accurately than the predictive models built 
using the ICI score in some cases and in others the ICI score was slightly more accurate. We 
see again that no matter how we quantify the IgA response, there is a predictive 
signature/phenotype which discriminates our control and HLA-B27 rats. The AUC and ROC also 
inform us that there is definitely a predictive IgA signature, for certain bacterial genera, that can 
discriminate control and HLA-B27 rats. Both random forest models performed ~0.80 AUC which 
is evidence for a predictive IgA-response signature in the HLA-B27 rats. The most predictive 
genus in both the ICI and IgA Index predictive models is bacteroides spp., however, we see 
several other predictive genera that are interesting as well, i.e., Turicibacter spp., 
Lactobacillus spp., Streptococcus spp., Blautia spp., and Treponema spp. (Fig. 12).  
 
The predictive modeling on the HLA-B27 human data did not perform nearly as well but still 
provided insight into certain bugs that may be interesting to keep an eye on until we have a 
larger human sample. When we consider the individual variation/heterogeneity that has also 
been seen in other IgA-SEQ studies our results confirm that each HLA-B27 human harbors a 
unique IgA-targeted inflammatory microbial repertoire.2 With a larger human sample we may 
see some general trends appear like we did in the HLA-B27 rats, and our predictive model may 
perform better with the larger sample size. 
 



Aside from these results, there is an obvious bias in the ICI score, which is, the artificial inflation 
by substituting the small substitution value and the fact that the metric is unbounded and can 
blow up to infinity. However, the ICI score substitution makes sense in terms of maximizing the 
metric’s ability to detect any taxa that were only found in the positive fraction and not in the 
negative. The IgA Index is more unbiasedly designed in that it is ‘log-normalized’, i.e., the 
values are bounded and range from negative one to positive one. Combining the predictive 
modelling results with our intuitive observations about the two metrics, we recommend that the 
IgA Index becomes the standard IgA response quantification metric for any experiments that 
use IgA-SEQ. 
 
Future Work 
5.1 Possible Predictive Intestinal Immune-targeted Bacterial Biomarker 
 
The results from this experiment have translational potential. The most interesting result is two 
microbes being targeted by the intestinal IgA response in the HLA-B27 rat, also show up as 
highly IgA coated in the human data set. These two microbes, Lactobacillus spp. and Blautia 
spp., are candidates to study further. One option is to isolate these two bacterial strains and 
mono-associate them with germ free mice (Fig. 15). 
 

 
Figure 15. Outline of future work for research. This visualizations shows how we can identify potentially 
immunogenic microbes in our data sets, rat and human, then culture and isolate those strains. We can 
then mono-associate these potentially immunogenic bacteria into a germ free animal to see if these 
bacteria induce disease, i.e., bowel and joint inflammation. 
 
Imagine a prognostic or predictive intestinal immune-targeted bacterial biomarker that could 
predict early onset of AS or monitor progression of disease. It’s possible to identify those 
immunopathogenic microbes that are possibly driving disease development in an individualized 
manner like we have shown. The IgA-SEQ workflow gives us crucial insight into which bacterial 
taxa need to be targeted, eliminated, and possibly replaced with another bacterial taxa. An 
immune-targeted bacterial biomarker for AS would be the long term goal of this study. However, 



the IgA-SEQ workflow will hopefully allow for even more IgA-SEQ data sets to be analyzed 
including a study on age related macular, a study on urgency urinary incontinence/overactive 
bladder syndrome, and a study on pre-Arthritis. 
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Supplemental Materials 

 
S1. Shown here is a PCoA plot of the HLA-B27 rat data set labeled with different shapes for 
genotype, WT or TG, and colored by the IgA-SEQ fraction, IgA-negative or IgA-positive. This 
PCoA plot was constructed using the weighted-unifrac distance metric. We can see some 
separation between the bacterial communities in our IgA-pos and IgA-neg fractions. 

 
S2. Shown here is a PCoA plot of the HLA-B27 rat data set which displays the control (WT) rats 
and is colored by the IgA-SEQ fraction, IgA-negative or IgA-positive. This PCoA plot was 
constructed using the weighted-unifrac distance metric. We can see some separation between 



the bacterial communities in our IgA-pos and IgA-neg fractions. 
 

 
S3. Shown here is a PCoA plot of the HLA-B27 rat data set which displays the HLA-B27 (TG) 
rats and is colored by the IgA-SEQ fraction, IgA-negative or IgA-positive. This PCoA plot was 
constructed using the weighted-unifrac distance metric. We can see some separation between 
the bacterial communities in our IgA-pos and IgA-neg fractions. 
 
 



 
S4. Heat maps are used to illustrate the relative abundance values for the top 45 most abundant OTUs in 
the AllBac Fraction of the HLA-B27 Human data set (microbes that may exhibit equivalent colonization in 
two populations yet elicit a different host response). The average relative abundance values for IgA-, IgA+ 
and AllBac fractions are shown for control and CASE (HLA-B27) humans. We notice some bacterial 
genera that are more abundant in the IgA-positive fraction of the HLA-B27 humans. 
 



 
S5. Heat map illustrating the distribution of ICI scores for the top 45 most abundant OTUs in the AllBac 
Fraction of the HLA-B27 Human data set (microbes that may exhibit equivalent colonization in two 
populations yet elicit a different host response). The control human subjects are shown on the left and the 
HLA-B27 humans on the right. The IgA response as quantified by the ICI score identifies several OTUs 
that are ‘highly IgA coated’ in the HLA-B27 humans and the control humans. This plot illustrates the 
unique signature of IgA-coating for each individual human we see in our data set. *log ICI score is shown 
here for better visualization. 
 



 
S6. This figure visualizes p-values resulting from Wilcoxon Signed Rank test performed on ICI values 
within control and HLA-B27 human samples. We look at each genotype, control and HLA-B27, and see 
which bacterial genera are determined to be significant within each group. *P-values are corrected for 
multiple comparisons using Benjamini-Hochberg (fdr). The right side visualizes p-values resulting from 
Wilcoxon Rank Sum test comparing ICI values of control vs HLA-B27 humans. We look at each genotype, 
control and HLA-B27, and see which bacterial genera are determined to be significant according to the 
Wilcoxon rank-sum group comparison. *P-values are corrected for multiple comparisons using 
Benjamini-Hochberg (fdr).  
 



 
S7. Bubble plots illustrating the IgA response as quantified by the IgA Index showing genotype and age 
groups of the HLA-B27 Humans. The size of the circle represents the magnitude of the average IgA Index 
for the bacterial genera. The color of the circle represents a positive or negative IgA Index value, red is a 
positive value (IgA-coated) and blue is a negative value (not IgA-coated). The intensity of the color in the 
circle represents the level of significance as determined by Wilcoxon Signed Rank test within control and 
HLA-B27 human samples. We observe that there are a few bacterial genera with significantly large IgA 
Index values. *P-values are corrected for multiple comparisons using Benjamini-Hochberg (fdr). 
 
 
 
 
 
 



 
S8. Shown here are the bacterial genera that were found to be significant according to the Wilcoxon 
signed rank test (Fig.16) in the human HLA-B27 dataset. We found 4 significant genera in the HLA-B27 
positive humans and found 1 significant genus in the HLA-B27 negative humans.  We see that the 
differences are not nearly as clear as we saw in the HLA-B27 rat dataset but we still see some interesting 
differences in the level of IgA coating between control and HLA-B27 humans in a few bacterial genera. 
 




