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Abstract 

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder.  It is the sixth 

leading cause of death in the United States. Genome-wide association studies have 

uncovered nearly 40 common genetic variants (minor allele frequency (MAF) > 5%) 

which are associated with increased susceptibility to AD. However, the common variants 

found so far do not completely account for the genetic component of the disease. With 

the technological advancement of deep sequencing, the focus has shifted to exploring the 

role of rare (MAF < 0.5%) and private variants. In addition, it has been hypothesized that 

rare variants are generally functional and highly penetrant with large effect sizes. We 

investigated whether the aggregation of rare and private variants within a gene region 

based on linkage disequilibrium (LD) complemented the association between common 

variants in the gene region and the disease. The whole genome sequencing and phenotype 

data used in our study come from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). We looked at four AD associated genes with different LD structure -  APOE, 

ABCA7, CD2AP, and CR1, and found a total of 3016 variants  (common, low-frequency, 

rare and private) across the four genes. All four genes had varying percentages of rare 

(APOE-75.39%, ABCA7-47.77%, CD2AP-77.34%, CR1-70.34%) and private (APOE-

54.45%, ABCA7-43.33%, CD2AP-42.74%, CR1-52.24%) variants. In order to aggregate 

the effects all types of variants present in these genes, we used the Sequence kernel 

association test (SKAT-O) to test the association between the overall burden of variants 

and the AD phenotype. We found that aggregating all the variants indeed complements 

the individual common variant – disease association and is an effective strategy to 

identify the genomic regions harboring potential rare causal variants.  
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Chapter 1: Introduction 

1.1 Alzheimer’s Disease and Rare Variants 

 Alzheimer’s disease (AD) is a complex neurodegenerative disorder afflicting 

approximately 44 million people worldwide (Querfurth & LaFerla, 2010). It is the most 

predominant form of dementia and is characterized by progressive cognitive decline. It is 

heritable with a strong genetic risk factor component. Several genome-wide association 

(GWA) studies have been undertaken to uncover the common variants (Minor Allele 

Frequency (MAF) > 0.5%) contributing to risk of developing AD. Although these studies 

have identified more than 40  genetic risk factors for AD, a large percentage of the 

heritability remains unexplained. This “missing heritability” can be explained by the fact 

that traditionally GWAS studies have focused mostly on the role of the common variants. 

It is possible that the low-frequency (0.5%<MAF ≤ 5%), rare (0.1%< MAF≤ 0.5%), very 

rare (MAF≤ 0.1%), and private variants are the  additional variants/risk factors associated 

with complex diseases (Long et al., 2017). Indeed, recent GWA studies with large 

number of case-control samples have found significant association of low-frequency and 

rare variants with other complex traits such as type 2 diabetes and cancers.  Rare coding 

variants have also been found in several Alzheimer’s disease genes, such as PLD3, APP, 

ADAM10, AKAP9, APOE, SORL1, UNC5C, and TREM2 (Lord, Lu, & Cruchaga, 2014).  

The importance of rare variants can be realized from the fact that many Mendelian 

disorders are caused by highly penetrant rare variants. It  has also been observed that the 

a large majority of the rare variants – single nucleotide and indels, are functional, 

resulting in loss of gene function. Hence, rare variants assume importance in 
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understanding the etiology of a complex disease such as Alzheimer’s as well as 

developing new targets for disease diagnostics and treatment. 

1.2 Methods to study the rare variants 

 Since rare variants are kept at low frequency by purifying selection, very large 

populations are needed to identify such variants with large effects on clinical traits. Many 

statistical methods have been developed for testing the association between the sets of 

rare variants and binary or continuous traits. These methods combine the variants based 

on a gene or a region, to test for the association with the trait. There are two main types 

of such collapsing/aggregating tests – burden tests and variance component tests, and a 

third type, which combines both the burden and the variance component tests. Other 

strategies to study the rare variant association include, using family samples or isolated 

populations so as to increase the frequency of the rare variant and use of samples which 

are phenotypic extremes (Nicolae, 2016). 

1.3 Specific Aims 

1. Identify all the variants – common, low-frequency, rare, and private variants in 

AD genes – CR1, CD2AP, ABCA7, and APOE. 

2. Determine association between the known significantly associated variant for 

each gene and AD status. 

3. Aggregate all the variants for a gene/gene-region and determine the association of 

the region with the AD status.  
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Chapter 2: Background 

3.1 Alzheimer’s Disease  

 Alzheimer’s Disease (AD) is the most common cause of dementia in late adult 

life. Clinical characteristics of AD include, loss of memory, inability to learn new 

things, inability to do calculations, mental confusion, indifference, depression and 

delusions. It is estimated that, 5 million or 1 in 9 people over the age of 65 are 

afflicted by AD, in the United States alone, making it a critical public health issue. 

$200 billion are spent annually on caring for individuals suffering from dementia. 

 There are  three recognized stages of AD: preclinical, mild cognitive impairment 

(MCI), and Alzheimer dementia. An AD brain is marked by progressive loss of 

neurons and synapses in the cerebral cortex and certain subcortical regions on the 

brain. The neuropathological hallmarks of AD are amyloid plaques and formation of 

intraneuronal neurofibrillary tangles consisting of hyperphosphorylated tau protein. 

The amyloid plaques are extracellular precipitations of the β-amyloid (Aβ) peptide 

derived from the proteolytic cleavage of the amyloid precursor protein (APP). There 

is progressive deterioration of memory and cognitive functions, causing the patient to 

lose autonomy, and require full time medical care. No treatment exists for AD. The 

existing drugs only temporarily relieve the AD symptoms. 

2.2 Genetic risk factors for Alzheimer’s Disease 

 AD is a highly heritable (with heritability, that is, the proportion of variation in 

disease risk attributable to inherited genetic variation, up to 60%) and genetically 

complex disease . Age is the principal risk factor for AD.  
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 There are two types of AD: early-onset AD (EOAD) and late-onset AD (LOAD). 

EOAD cases account for 1-2% cases, with symptoms appearing before 65 years of 

age. Autosomal dominant mutations in three genes – amyloid precursor protein gene 

(APP), presenilin 1 gene (PSEN1) and presenilin 2 gene (PSEN2), are the genetic risk 

factors for EOAD.  

 LOAD is the more common and complex form of the disease and occurs late in 

life (>65 years). It has a strong generic predisposition with heritability estimate of 60-

80%. The genetic component though is complex and heterogeneous, with several 

gene, different gene mutations possibly interacting with each other, and with the 

environmental factors. For many years, the APOE-ε4, was the only major known 

genetic risk factor for AD. Other variants that increase the susceptibility to AD have 

found within/near CR1, BIN1, CD2AP, EPHA1, CLU, MS4A64, PICALM, ABCA7, 

CD33, PTK2B, SORL1, SLC24A4-RIN3, DSG2, INPP5D, MEF2C, NME8, ZCWPW1, 

FERMT2, CASS4, TREM2, and UNC5C (Lambert et al., 2013). 

 In this work, we focus our attention to variants present in four of the AD genes – 

APOE, CR1, CD2AP,  and ABCA7.  These genes are among the top ten genetic loci 

strongly associated with AD on the AlzGene database (http://www.alzgene.org). 

2.3 Apolipoprotein E (ApoE) 

 The apolipoprotein E (APOE) gene is located on chromosome 19q13.2 and is 

3639 base pairs (bp) long. The Apo-E protein is the primary cholesterol transporter in 

the central nervous system. It is primarily synthesized by astrocytes and microglia in 

the brain and transports cholesterol to neurons via the Apo-E receptors. There are 

three polymorphic alleles for the human APOE gene – ε2, ε3, and ε4 – with a 
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worldwide frequency of 8%, 77%, and 15% respectively in the general population . 

The ε4 allele frequency is approximately 40% in AD patients. These three 

polymorphic forms are defined by two SNPs, rs429358 and rs7412, in the following 

manner (Lyall et al., 2014): 

 

GWA studies have determined APOE-ε4 to be the strongest risk factor for AD, 

associated with increased risk for both EOAD and LOAD (Chartier-Harlin et al., 

1994). The APOE-ε4 allele shows correlation with increased cerebrovascular 

deposition of Aβ. 

 Genetic susceptibility variants have also been found in TOMM40 (translocase of 

outer mitochondrial membrane 40),  which is located adjacent and approximately 2kb 

upstream to APOE. TOMM40 is in  linkage disequilibrium (LD) with APOE (Roses et 

al., 2016).  

 SNPs and indels conferring susceptibility to AD have also been uncovered in  

APOC1 (apolipoprotein C-1). APOC1 lies approximately 5kb downstream to APOE  

and is also in LD with APOE (Zhou et al., 2014). Since, TOMM40 and APOC1 are in 

LD with APOE, investigators look the TOMM40-APOE-APOC1 region as a whole for 

uncovering susceptibility variants to LOAD.  
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2.4 Complement receptor 1(CR1) 

 CR1 (also known as CD35) is located on chromosome 1 at locus 1q32 and is 

144,500 bp long. It is found on the surface of red blood cells in humans and aids in 

transportation of cellular debris to the liver for degradation. The CR1 variant - 

rs6656401, was first implicated as a LOAD susceptibility variant by the GWAS 

published by Lambert et al. (Lambert et al., 2009). Subsequent GWA studies and 

meta-analysis have replicated and confirmed the association of CR1-rs6656401 with 

AD phenotype (Zhu et al., 2015). To date, a total of nine CR1 SNPs have been 

implicated as being AD risk factors. Six out these, including rs6656401 lie within the 

intronic region of CR1. These do not encode CR1 directly, but potentially regulate the 

gene expression and therefore influence AD susceptibility. It has been hypothesized 

that people with AD-risk CR1 polymorphisms have low levels of CR1 which results 

in less efficient clearance of Aβ, gradually leading to its aggregation and deposition in 

the brain.  

2.5 CD2-associated protein (CD2AP) 

 CD2AP  encodes a scaffolding protein that regulates actin cytoskeleton and is also 

involved in receptor-mediated endocytosis. It is  located on chromosome 6 at locus 

6p12 and is 149,474 bp long. LOAD-susceptibility variants in CD2AP were first 

uncovered in 2011 in two meta-analsysis GWA studies using European ancestry 

subjects (Hollingworth et al., 2011; Naj et al., 2011). Subsequently, Lambert et al 

found significant association of rs10948363 with AD phenotype (Lambert et al., 

2013) by meta-analysis. The role of CD2AP in LOAD pathogenesis is not yet 
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delineated. It has been suggested that CDA2P regulates the intracellular production of 

Aβ (Ubelmann et al., 2017). 

2.6 ATP-binding cassette transporter A7 (ABCA7) 

 ABCA7  is a member of the A subfamily of ABC transporters, which mainly 

transport lipids across membranes. It is located on chromosome 19 at locus 19p13 and 

is 25,469 bp long. It is abundantly expressed in the brain microglial cells. The ABCA7 

gene locus was first identified as an AD-susceptibility locus by Hollingworth et al. 

through meta-analysis using four GWA data sets (Hollingworth et al., 2011). Multiple 

susceptibility variants have been found within the ABCA7 locus. Lambert et at. using 

a two-stage meta-analysis of GWAS in European ancestry individuals found the 

significant association of the intronic SNP, rs4147929, with AD (Lambert et al., 

2013). It has been suggested that ABCA7 contributes to AD through several 

pathways such as Aβ accumulation, lipid metabolism, and phagocytosis (Zhao, Yu, 

Tan, & Tan, 2015). 

2.7 Rare Variants in Alzheimer’s Disease 

 Although GWAS with common variants have been successful in identifying 

several genes associated with AD, these do not completely explain the heritability in 

AD. Additionally, often the strongest association has been detected within the 

intronic or intragenic region, making the causal factor unclear. Hence, the focus has 

shifted to determining all the variants – common, low-frequency, rare and private 

variants in a locus. Such studies have been aided by technological advances and 

reducing costs of whole genome sequencing (WGS) and whole exome sequencing 
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(WES) as well as the 1000 Genomes Project, which aims at cataloging all human 

variation across multiple populations. 

 Rare risk AD variants – missense and exonic, have been found in TREM2 using 

WGS and imputation into AD case control cohort  and in SORL1 using WES. Using a 

combination of family based design and WES, rare AD variants have been found in 

PLD3, UNC5C, and AKAP9. Protective rare AD variants have been found in APOE 

using mining the publicly available sequencing data to identify the rare variants, 

followed by genotyping those in a large case-control cohort (Lord et al., 2014). 

 The rare variants identified show strong significant association with AD with 

odds ratio in the range from 0.1 to 5.48. Hence, it becomes important to explore the 

role of rare variants in AD. 

2.8 Optimal Unified Sequence Kernel Association Test (SKAT-O) 

 Rare variant association studies are usually underpowered, as only a small 

proportion of samples may carry variant alleles at each locus. Large sample size is 

needed as even with large effect size, rare variants can only be detected in large 

samples. Power can also be further affected by the presence of both risk and 

protective variants. Additionally, the significance level of 5 x 10-8, accepted for 

common variants, is not applicable for rare variants as the rare variants are more 

numerous and less correlated with each other than common variants.  

 One of the strategies therefore, to study the rare variant association, involves 

collapsing/aggregating all the  observed variants within a sub-region, which may be a 

gene or an LD region. This method is called a Burden test. It collapses or aggregates 

multiple rare variants in the region under consideration into a single ‘super’ variant. 
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The association tests are then performed on this single ‘super’ variant (Li & Leal, 

2008). The simplest way of collapsing the variants is to code 1 for individuals that 

carry one or more rare variants within the tested region and 0 otherwise. Burden tests 

are suitable when all the variant in a region are causal and affect the phenotype in the 

same direction.  

 The Sequence Kernel Association Test (SKAT) addresses the problem of when 

the variants with opposite effects are present. Instead of aggregating variants, SKAT 

aggregates the individual variants score test statistics. This test can be less powerful 

than the burden tests if a large proportion of the rare variants in the region under 

consideration are causal and have effects in the same direction. 

 SKAT-Optimal (SKAT-O) is a hybrid method that combines both the burden test 

and the SKAT test (Lee et al., 2012). It tackles that problem that both risk, protective, 

and non-causal variants may be present in a region and that there is no prior 

knowledge about the directionality of a causal variant. The test statistic for SKAT-O 

is given by: 

Qρ = ρQBurden + (1 – ρ)QSKAT, 0 ≤ ρ ≤ 1, where 

QBurden is the score test statistic for the burden test, QSKAT is the test statistic of SKAT, 

and ρ is a correlation term that determines the relative contribution of either test to the 

SKAT-O statistic. The value of  ρ is determined by performing the test with different 

values of ρ and choosing the one that  gives the minimum p-value. When ρ=0, the 

SKAT-O reduces to SKAT test and when ρ=1, it is equivalent to a burden test, and 

when 0 < ρ < 1, it achieves the unification of SKAT and burden test.  
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Chapter 3: Materials and Methods 

3.1 Data 

 The whole-genome sequencing (WGS) and the phenotype data comes from the 

Alzheimer’s Neuroimaging Initiative (ADNI). ADNI is an ongoing multi-site, 

longitudinal study. The ADNI subjects fall into the following categories – normally 

aging (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment 

(LMCI), or AD. ADNI database has clinical, image, genetic, and biomarker data for 

its subjects. The data is available to registered users for scientific investigation, 

teaching or planning clinical research studies.  

3.2 Data Demographics 

 The WGS data was available for 808 subjects. All the EMCI, LMCI, and AD 

subjects were pooled together to form the one group – Case and all the CN subjects 

formed the other group – Control. Table 3.1, shows the descriptive statistics for the 

Case and the Control group.  

Table 3.1 - Descriptive Statistics for ADNI data  

  Control (n= 280) Case (n = 528) 

Gender (M/F) 136\144 310\218 

Age (Mean ± SD ) 74.51 ± 5.57 72.56 ± 7.69 

 

3.3 Genotype Data Cleaning 

 The WGS data was present in the Variant Call Format (VCF). There was a VCF 

file for each chromosome. The VCF files for Chromosome 1, Chromosome 6, and 

Chromosome 19 were subsetted to obtain VCF files corresponding to CR1 
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(Chromosome 1), CD2AP (Chromosome 6), ABCA7 (Chromosome 19) and the whole 

of TOMM40-APOE-APOC1 gene region (Chromosome 19). 

 For each of the above four resulting VCF files, variants were evaluated on read 

depth (DP), genotype quality (GQ), and genotype (GT), and excluded if they had any 

sample with either DP=NA or DP < 10, GQ=NA or GQ < 20, or GT=NA (Carson et 

al., 2014). If any of the know significantly associated variants – rs6656401 in CR1,  

rs10948363 in CD2AP, rs4147929 in ABCA7, and rs429358 and rs7412 in APOE 

region had any samples which did not meet the filtering criteria, instead of 

eliminating the variant, the poor quality samples were eliminated. Table 2, depicts the 

data cleaning process. 

3.4 Principal Component Analysis (PCA) 

 PCA was done to adjust for population stratification.  Population stratification 

refers to allele frequency differences between cases and controls due to differences in 

ancestry (Price et al., 2006).  This can lead to spurious associations between the 

genotype and the phenotype. 

 ADNI SNPs on Chromsome 1, Chromosome 6, and Chromsome 19, which had 

also been genotypes for the HapMap samples were used for the PCA analysis. The 

self-reported race category was compared with that determined from the PCA 

analysis. The first principal component was used as a covariate in the null association 

model in the SKAT-O model (Section 3.9). 
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Table 3.2 – Genotype Data Cleaning Steps  

    CR1 CD2AP ABCA7 

TOMM40-APOE-

APOC1 

1 

Number of 

samples 808 808 808 808 

2 

Number of 

variants 1625 2105 529 480 

3 

Most 

significantly 

associated SNP 

according to 

Jean-Charles 

Lambert et al. rs6656401 rs10948363 rs4142979 rs429358 and rs7412 

4 

Is the most 

significantly 

associated SNP 

genotyped Yes Yes Yes Yes 

5 

Number of 

variants out of 

the total that 

have samples 

with DP=NA 82 113 66 12 

6 

Any sample that 

has DP=NA, for 

the most 

significant 

associated SNP? 

If yes, note the 

sample id(s) and 

do not filter the 

SNP  No No No No 

7 

Number of 

variants left after 

filtering out 

those having 

samples with 

DP=NA; 1543 1992 463 468 

8 

Number of 

variants out of 

the variants in 7, 

with samples 

having DP < 10  222 229 349 200 
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9 

Any sample that 

has DP <10, for 

the most 

significantly 

associated SNP? 

If yes, note the 

sample_id(s) 

and do not filter 

the SNP No No 7 samples 

rs429358 has 4 samples 

and rs7412 has 5 samples 

which have DP < 10 

10 

Number of 

variants out of 

the total left 

after filtering the 

variants having 

samples with 

DP=NA or DP < 

10 1321 1763 115 270 

11 

Number of 

variants out of 

the total that 

have samples 

with GQ=NA 190 218 92 28 

12 

Any sample that 

has GQ=NA, for 

the most 

significant 

associated 

SNP?If yes, note 

the sample_id(s) 

and do not filter 

the SNP  No No 1 sample No 

13 

Number of 

variants left after 

filtering out 

those having 

samples with 

GQ=NA 1435 1887 438 452 

14 

Number of 

variants out of 

the variants in 

13, with samples 

having GQ < 20 146 184 181 110 

 



 21 

15 

Any sample that 

has GQ < 20, for 

the most 

significantly 

associated 

SNP?If yes, note 

the sample_id(s) 

and do not filter 

the SNP  No No 140 samples rs4293458 has 11 samples 

16 

Number of 

variants out of 

the total left 

after filtering the 

variants having 

samples with 

GQ=NA or GQ 

< 20 1289 1703 258 343 

17 

Number of 

variants that 

have all samples 

that with both 

DP > 10 and GQ 

> 20, that is 

variants 

common from 

10 and 16 1223 1640 93 243 

18 

Number of 

unique samples 

to be filtered 

from 9, 12, and 

15 0 0 146 samples 19 samples 

19 

Any sample that 

has GT=NA, for 

the most 

significantly 

associated SNP? 

If yes, filter out 

those samples 

and keep the 

SNP. No No 4 samples 3 samples 
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20 

Number of 

variants out of 

the variants in 

17, that have 

samples with 

GT=NA 42 56 33 52 

21 

Number of 

variants left 

after filtering 

out variants 

that have 

samples with 

GT=NA 1181 1584 60 191 

22 

Number of 

samples left  808 808 658 786 

 

3.5 Gene Models 

 Gene Models for CR1, CD2AP, ABCA7, and the TOMM40-APOE-APOC1, were 

obtained using the Bioconductor package, biomaRt, which provides an interface to 

the Ensembl and other databases such as Uniprot and HapMap {Citation}. The Gene 

Models were plotted using the Gviz Bioconductor package {Citation}. 

3.6 Linkage Disequilibrium (LD) Plots 

 LD plots were constructed for CR1, CD2AP, ABCA7, and the TOMM40-APOE-

APOC1, using both the 1000 Genomes markers as well as the ADNI SNPs, using the 

Haploview software from the Broad Institute (Barrett, Fry, Maller, & Daly, 2005).  

3.7 Regional Association Plots 

 Regional Association Plots display the strength and extent of the association 

signal relative to genomic position, LD, and recombination pattern and the position of 

genes in the region. These were plotted for CR1, CD2AP, ABCA7, and APOE using 

the LocusZoom web-based software and the data from the Lambert et al (Lambert et 
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al., 2013; Pruim et al., 2010). The data from Lambert et al., was available to 

download from http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php. 

3.8 SNP-level Association Test 

 A logistic regression model, with AD status as the outcome and age, sex, and the 

first principal component as the covariates was used to determine the association of 

the SNPs in CR1, CD2AP, ABCA7, and the TOMM40-APOE-APOC1 with the disease  

status. The logistic regression model can be  represented by, 

logit (pi) ~ β0 + β1.Agei + β2.Genderi + β3.Racei + β4.Genotypei,   

where, pi =  expected value of phenotype for individual i, given the genotype and the 

covariates. 

3.9 Gene-level Association Test/SKAT-O Analysis 

 SKAT-O was used to determine the region level association with the AD status. 

The null model was determined using AD status as the binary outcome, and age, sex, 

and the first principal component as the covariates. The genotype matrix used in the 

association testing consisted of all the variants (all SNPs + all Indels), all the rare and 

low-frequency variants and only the rare variants.  

 

 

 

 

 

 

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
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Chapter 4: Results 

4.1 Genes/Gene-Region to explore 

 Lambert et al. have identified 21 different gene loci associated with Alzheimer’s. 

Our aim was to explore the role of LD structure, to determine the region over which 

to aggregate the variants, for rare variant analysis. The underlying thought here being 

that the variants in a LD structure are inherited together due to linkage disequilibrium 

and hence can be thought of as one unit. We therefore, looked at the LD structure 

(Appendix A) and the Regional Association Plots (Appendix B) for all these genes 

and chose to study CR1, CD2AP, ABCA7, and TOMM40-APOE-APOC1, all of which 

have very different LD structure (Fig 4.2 a & b).  

 These genes/gene-regions are known to harbor variants that are associated with 

Alzheimer’s disease. We started by exploring the gene models for these genes and the 

location of the known most significantly associated variant within these genes. Table 

4.1 gives the gene co-ordinates of the four genes, with their known significant 

SNP(s), genomic position and location of the SNP(s) with respect to genomic feature. 

All the known significant SNPs  are common SNPs, as is seen from their MAF.  

 Fig. 4.1 depicts the gene models for the four genes and the known significantly 

associated SNP.  The two known SNPs of the APOE gene, are located very close to 

each other. The TOMM40 gene lies upstream and the APOC1 gene lies downstream 

to the APOE gene. Linkage Disequilibrium (LD) structure of the genes was 

constructed using the both the markers ADNI data (Fig 4.2a) as well as the markers 

from 1000 Genomes (Fig. 4.2b). The genes show different LD pattern. CR1 gene 

shows long stretches of  LD, with the  whole region made up of 8 haplotype blocks. 
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Table 4.1  Genomic Coordinates of the genes and the top hits within those genes.  

Gene Chr 

Gene 

Start 

Position 

(bp) 

Gene End 

Position 

(bp) 

Gene 

Size 

(bp) 

Known 

Significantly 

Associated 

SNP 

SNP 

Position* 

SNP 

Location 

in gene MAF** 

CR1 1 207669492 207813992 144500 rs6656401  207692049 intron  0.263 

CD2AP 6 47445525 47594999 149474 rs10948363 47487762 intron 0.278 

ABCA7 19 1040102 1065571 25469 rs4147929 1063443 intron 0.182 

APOE 19 45409011 45412650 3639 

rs429358 

rs7412 

45411941 

45412079 

exon 

exon 

0.177 

0.066 

* Build 37, assembly hg19 

** From 1000 Genomes 

 

 
Fig 4.1 -  Gene Models for CR1, CD2AP, ABCA7, and the TOMM40-APOE-

APOC1 gene region 
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 The known significantly associated SNP – rs6656401, lies in the biggest 

haplotype block. The CD2AP region is one big LD region, with no recombination 

spots. The ABAC7 gene shows several small LD regions interspersed with several 

probable recombination regions. The APOE gene shows LD with its two neighboring 

genes – TOMM40 and  APOC1. Similar LD structure for all the genes was obtained 

using the 1000 Genomes markers (Fig. 4.2b). 

 LD ensures that a set of variants are inherited together. The regional association 

plots for the above genes/gene region (Fig 4.3) help in visualizing the varying degrees 

of association of a single strongly associated SNP, with other variants in a region due 

to local LD patterns. For each region, there are several other SNPs, that show varying 

degree of association, with the most significantly associated SNP. Interestingly, 

rs7412, one of the known significantly associated SNPs for APOE, shows as not 

associated with AD (Fig 4.3d) in the Lambert et al data set. 

 Based on the LD plots and the Regional Association Plots, we decided to 

aggregate all the variants for the CD2AP, ABCA7, and the whole of TOMM40-APOE-

APOC1 gene region. For CR1 and ABCA7, we also decided to aggregate the variants 

in only in the haplotype block that contains the known significant SNP (Fig 4.2 a and 

c).  
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1) CR1 

 
 

 

2) CD2AP 
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3) ABCA7 

 
 
4) TOMM40-APOE-APOC1 

 
Fig 4.2a -  Linkage Disequilibrium Plots for 1) CR1, 2) CD2AP, 3) ABCA7, and 

the 4)TOMM40-APOE-APOC1 region constructed using the markers from ADNI 

data. The known significantly associated SNP(s) is indicated by a star. The 

markers used for the LD plot have MAF >= 0.05 for CR1, CD2AP and TOMM40-

APOE-APOC1 and a MAF >= 0.01 for ABCA7. 
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Fig 4.2b -  Linkage Disequilibrium Plots for 1) CR1, 2) CD2AP, 3) ABCA7, and 

the 4)TOMM40-APOE-APOC1 region constructed using the 1000 Genome 

markers. The known significantly associated SNP(s) is indicated by a star. The 

markers used for the LD plot have MAF >= 0.05. 

 

4.2 Variants in the genes/gene region under consideration 

 Table 4.2, gives the number of variants and number of samples obtained after 

data cleaning for each gene/gene region. The variants contain both the SNPs and 

Indels. The variants were further characterized based on their frequency in the data 

set. Table 4.3, gives the number and type of the variants in each region.  Table 4.4, 

looks at how many of the variants are also mentioned in the dbSNP database (Version 

144, GRCh37). It is probable that the variants which are not in the dbSNP database, 

may be the private variants.  

 

 

3) ABCA7 

1) CR1 2) CD2AP 

4) TOMM40-APOE-APOC1 
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a) CR1                                                                      b) CD2AP 

 

d) APOE – rs429358                                                      APOE – rs7412 

 

Fig 4.3 -  Regional Association Plots for a) CR1, b) CD2AP, c) ABCA7, and the d) 

TOMM40-APOE-APOC1 region constructed using the data from Lambert et al 

and LocusZoom.  

   

 

c) ABCA7 
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Table 4.2 – Final number of variants and number of samples for each gene/gene-

region 

Gene Locus CR1 CD2AP ABCA7 

TOMM40-APOE-

APOC1 

Number of 

Samples 808 808 658 786 

Number of 

Variants 1181 1584 60 191 

 

 

 

Table 4.3 -  Type of Variants for each gene/gene-region 

  

Number of 

Rare 

Variants 

Number of 

Low 

Frequency 

Variants 

Number of 

Common 

Variants 

Total 

Number of 

Variants 

CR1 937 91 153 1181 

CD2AP 1225 49 310 1584 

ABCA7 43 4 13 60 

TOMM40-APOE-APOC1 144 12 35 191 

 

 

 

 

Table 4.4 -  Number of dbSNP144-GRCh37 variants per gene/gene-region 

  

Number of 

dbSNP144.GRCh37 

variants 

Number of  NOT in 

dbSNP144.GRCh37 

variants 

Total 

Number 

of 

Variants 

CR1 564 617 1181 

CD2AP 677 907 1584 

ABCA7 39 21 60 

TOMM40-APOE-APOC1 104 87 191 
 

 

A plot of the variants versus the minor allele frequency, stratified on the basis of the 

variant membership in dbSNP144 (Fig 4.4), showed that majorly there were more 
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rare/low-frequency in the non dbSNP group than the dbSNP group. Overall, the total 

number of rare and low-frequency variants was more than the common variants. 

 

 
Fig 4.4 -  Variant versus Minor Allele Frequency for b) CD2AP, c) ABCA7, and 

the d) TOMM40-APOE-APOC1 region. 

  

4.3 Principal Components in the ADNI genotype data 

 Principal Component Analysis (PCA) was done to determine the population 

structure in the ADNI data (Fig 4.5). The first two principal components were plotted 

and the self-reported race for the ADNI subjects was then compared with the race 

determined from the PCA. Most of the ADNI samples clustered with the CEU 

a) CR1 b) CD2AP 

c) ABCA7 d) TOMM40-APOE-APOC1 
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HapMap samples (the Utah resident with Northern and Western European ancestry). 

All the samples were included in the final analysis. The population specific 

differences were adjusted for in the association analysis by using the first principal 

component (PC1) as the covariate in the association mode. 

 
Fig 4.5 – Principal Components Analysis of the ADNI data using HapMap 

samples. 

 

4.4 SNP-level Association Test 

 Logistic regression model was used to determine association of the individual 

variants in the above four genes/gene region with the AD status. Sex, age, and PC1 

were used as the covariates. Five SNPs in the APOE and APOC1 gene were observed 
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to significantly associated (Bonferroni adjusted α = 1.37 x 10-5) with the AD status 

(Fig 4.6). Table 4.5 gives the p-value of the known significantly associated SNPs. 

 

Fig 4.6 – Manhattan Plot showing the SNP-level Association Test 

 

 

rs429358 - APOE 

rs769449 - APOE 

rs10414043 – APOC1 

rs7256200 – APOC1 

rs5117 – APOC1 
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4.5 Region-level Association Test /SKAT-O Analysis 

 All the variants in the CR1, CD2AP, ABCA7, and TOMM40-APOE-APOC1, were 

aggregated to determine the association of the gene/gene–region as a whole with the 

AD status using the optimal unified sequence kernel association test or SKAT-O. 

Different types of variants for a gene region were aggregated to tease out the 

contribution of different types of variants to the association strength. for the gene-

region level association testing.  

 We tested the association by aggregating all the variants (SNPs + Indels), only all 

the rare and low-frequency variants and only all the rare variants all over a gene/gene-

region. Table 4.5 gives the p-value obtained. Aggregating the variants over the whole 

gene/gene region resulted in a stronger association with the AD status for CR1, 

CD2AP, and TOMM40-APOE-APOC1.  

Table 4.5 –  Results from Variant Level and Gene Level Association Tests 

  Chr 

Known 

Significant 

SNP 

Significant SNP 

p-value 

(Logistic 

Regression 

Model) 

Gene level 

p-value 

(All 

Variants) 

Gene level  

p-value  

(Rare + Low 

Frequency 

Variants) 

Gene level 

p-value 

(Only 

Rare 

Variants) 

CR1 1 rs6656401 0.083 0.024 0.029 0.05 

CD2AP 6 rs10948363 0.831 0.5 0.78 0.78 

ABCA7 19 rs4147929 0.319 0.775 0.51 0.79 

TOMM40-

APOE-APOC1 19 

rs429358 

rs7412 

9.345231 x 10-8 

0.1625 6.98 x 10-6 0.011 0.003 

 

 In order to test the role of the LD structure,  all the variants within the different 

haplotype blocks were aggregated and the association with AD status was 

determined.  For CR1, the haplotype block 2, which contains the known top hit (Fig  
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4.2a) showed the most significant association (p-value = 0.027; Table 4.6).  Within, 

this block,  the contribution of rare variants was also estimated (p-value = 0.062).  

 

Table 4.6 –  Gene level and Haplotype Block p-value  

 

 a) CR1 – All Haplotype Blocks 

p-value 

Whole Gene 

(1181 variants) 

 

p-value  

Haplotype Block 1 

(77 variants) 

p-value  

Haplotype Block 2 

(which has 

rs6656401) 

(913 variants) 

p-value  

Haplotype Block 3 

(106 variants) 

0.024 0.938 0.027 0.121 

 

CR1 – Haplotype Block 2 

 

p-value  

Haplotype Block2  

(All 913 variants 

including rs6656401) 

 

p-value  

Haplotype Block 2 

(811 rare + low 

frequency variants) 

  0.027 0.062 

 

 

 b) TOMM40-APOE-APOC1 – All Haplotype Blocks 

 

p-value  

Whole 

Gene 

Region 

(191  

variants) 

p-value  

Haplotype Block 1 

(23 variants)  

p-value  

Haplotype Block 2 

(98 variants) 

p-value  

Haplotype Block 3 

(which has rs429358 

and rs7412) 

(6 variants) 

p-value  

Haplotype Block 4 

(21 variants) 

6.98 x 10-6 0.0003 0.008 1.72 x 10-7 0.006 

 

  

c) ABCA7 – All Haplotype Blocks 

p-value  

Whole Gene 

 

p-value  

Haplotype Block 1 

(13 variants)  

p-value  

Haplotype Block 2 

(which has rs4147929) 

(34 variants) 

0.775 0.52 0.568 
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  Similarly, for TOMM40-APOE-APOC1 and ABCA7 also, all the variants 

in the different haplotype blocks were aggregated and the association with AD 

status was determined (Table 4.6). For TOMM40-APOE-APOC1, as well, the 

most significant association with AD status was observed with the variants in the 

haplotype block containing the top hits. However, this block has only a total of 6 

variants, and apparently the top hits which are common variants are driving the 

association. This region overall shows significant association (p-value = 6.98 x 

10-6; Table 4.5), with all the haplotype blocks individually also showing strong 

association (Table 4.6).  Similar strength of association was observed for both the 

haplotype blocks of ABCA7. 
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Chapter 5: Conclusions 

 Significant association at the SNP level was observed for one of the known 

significantly associated SNP, APOE– rs429358. Lack of significant association with 

the other known top hits may be attributed to the small sample size. This may also 

due to some variants and samples being lost at the data cleaning step.  

 APOE is in LD with its neighboring genes, TOMM40 and APOC1. We wanted to 

see how does aggregating all the variants in a gene/gene-region affect the strength of 

association relative to the SNP-level association strength. The underlying hypothesis 

here being that, a known significant SNP, might act as tag for other important/causal 

variants in a region owing to the LD structure. These other tagged variants might 

themselves not be able to achieve significance at an individual level, but when 

aggregated together might add to the strength of the association.  

 Significant association for the whole TOMM40-APOE-APOC1 region was 

observed upon aggregating all the variants (SNPs + Indels) (p-value = 6.98 x 10-6), 

aggregating only all rare and low-frequency variants (p-value = 0.011), and 

aggregating only the rare variants (p-value = 0.003). Since, significant association 

with the region was observed even when only the rare variants were aggregated, it is 

highly suggestive of the presence of some rare variant(s) associated with Alzheimer’s 

(Table 4.5). Considering the association strength of the haplotype blocks individually, 

we found that though the common SNPs drive the association within the haplotype 

block containing the top hits – rs429358 and rs7412, the whole TOMM40-APOE-

APOC1 region, seems to be significantly associated with the AD phenotype. Since the 

other haplotype blocks (which also show significant association) are made up of 
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common, low-frequency, and rare variants, it will be interesting to tease out the 

contribution of the rare and low-frequency variants only to the signal strength being 

observed. 

  With CR1 gene, an improvement in strength of association was observed upon 

aggregating all the variants (p-value = 0.024) as well as on aggregating only the rare 

and low-frequency variants (p-value = 0.029), compared to association observed at 

the individual SNP level (p-value = 0.083). We also assessed the role of LD structure 

in determining the region over which to aggregate the rare variants. Interestingly, 

with CR1, we did observe the most significant contribution from the haplotype block 

(p-value Haplotype Block 2 = 0.027 compared to p-value = 0.938 (Haplotype Block 

1) and p-value = 0.121 (Haplotype Block 3), which contains the top hit. We then 

evaluated the contribution of the rare and low-frequency variants within this 

haplotype block. We observed a distinct and well defined contribution from the rare 

variants to the overall strength of association with the AD phenotype (p-value 

Haplotype Block 2, all variants = 0.027, p-value Haplotype Block 2, rare and low-

frequency variants = 0.062).  

 The ABCA7 gene has no/very little LD (Fig. 4.2 a & b).  As a result of this, the 

signals from the variants within this region are independent. The p-value from the 

most significant SNP, even if all the variants are  aggregated over the weak haplotype 

blocks (Table 4.5 and 4.6).  

 For CD2AP, adding in all the variants results in a lower p-value than that obtained 

by the top hit alone (Table 4.5). This suggests that all the variants in this region – 

common, rare, and low-frequency contribute to the signal strength.  
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 These results serve as a proof of concept, the rare causal variants for a phenotype 

can be identified by aggregating the variants over a genomic region. Aggregating the 

variants adds to the signal strength and ups the  probability of identifying a significant 

association with a phenotype. Rare and low-frequency variants complement the signal 

strength association from a common SNP.  In addition, the LD structure of a 

gene/gene region, can be leveraged in order to determine the region over which to 

aggregate the rare and low-frequency variants.  

 Once a region having a significant association with a phenotype is determined, 

there are algorithms which can help to identify a set of potential causal variants in the 

region. One of these algorithms, works backwards, eliminating one variant at time 

and looks at the effect of the eliminating the variant. If upon eliminating a variant, the 

strength of association goes down, then it indicates that the eliminated variant, might 

be the rare causal variant associated with the phenotype/outcome (Ionita-Laza, 

Capanu, Rubeis, McCallum, & Buxbaum, 2014).  

 Further work would involve looking at aggregating variants over several of other 

AD genes such as BIN1, EPHA1, CLU, PICALM, SORL1, INPP5D, MEF2C, NME8, 

CELF1, CASS4, and ZCWPW1 based on their LD structure.  
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Appendix 

Appendix A: Linkage Disequilibrium (LD) Structure of AD associated genes.  

Appendix B: Regional Association Plots for AD associated genes.  
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