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Chapter	1:	Introduction	
	
One	hundred	million	people	worldwide	have	obstructive	sleep	apnea	(OSA),	a	
disorder	characterized	by	collapse	of	the	upper	airway	and	repeated	pauses	in	
breathing	throughout	sleep(1-5).	Sleep	fragmentation	caused	by	sleep	apnea	can	
lead	to	daytime	sleepiness(2,	4,	6,	7),	increased	risk	for	motor	accidents(2,	6),	and	
reduced	quality	of	life.	The	physiological	changes	associated	with	these	pauses	are	
believed	to	contribute	to	the	development	of	hypertension(2-4),	diabetes	
mellitus(2),	obesity(2),	stroke(2,	3),	and	heart	disease(2,	3).	
	
Duration	of	the	apneic	events,	age(3),	degree	of	oxygen	desaturation,	and	other	
features	likely	contribute	to	the	severity	of	OSA.	The	severity	of	OSA	is	measured	as	
the	number	of	times	a	sleeper	stops	breathing	per	hour,	which	is	called	apnea-
hypopnea	index	or	AHI(5).	However,	it	has	become	increasingly	clear	that	this	
measure	is	insufficient	and	that	additional	measures	are	needed.	Furthermore,	it	is	
likely	that	there	are	several	different	subtypes	of	OSA,	each	with	different	
pathophysiological	causalities,	comorbidities,	age	range,	and	polysomnographic	
features(1,	3,	8-10).	Heretofore,	this	heterogeneity	has	been	poorly	defined.	By	
characterizing	these	subtypes	and	identifying	comorbid	medical	conditions,	we	may	
be	able	to	improve	and	personalize	treatment.	
	
Up	until	recently,	tools	for	identifying	OSA	subtypes	were	limited.	However,	new	
computational	approaches	have	made	it	more	feasible.	Separating	and	classifying	
entities	such	that	entities	in	the	same	group	are	more	similar	than	those	in	a	
different	group,	or	cluster,	has	been	a	long-studied	problem	in	the	field	of	machine	
learning.	Previous	attempts	to	examine	subtypes	involve	splitting	the	data	along	a	
predefined	boundary	(e.g.,	younger	versus	older	age)	and	seeing	how	the	rest	of	the	
variables	differ(7,	9,	11).	Clustering	allows	discovery	of	subgroups	without	any	
predefined	parameters(12),	and	can	be	applied	to	many	domains	like	cancer	gene	
expression	profiles(13),	HIV/AIDS	epidemiology(14),	and	ribosomal	structure(15).	
A	few	groups	have	used	cluster	analysis	to	identify	OSA	subtypes	in	terms	of	clinical	
features,	but	these	studies	were	limited	due	to	their	small	sample	sizes	and	
homogeneous	populations	(16-18).	These	studies	also	had	variable	findings.	
	
Another	barrier	is	historical	lack	of	access	to	large	public	datasets.	Fortunately,	
there	has	been	a	shift	in	attitude,	with	more	and	more	scientists	recognizing	that	
sharing	their	data	is	vital	to	good	science.	An	example	of	an	initiative	for	sharing	
data	in	the	sleep	community	is	the	National	Sleep	Research	Resource	(NSRR),	which	
will	make	50,000	studies	publically	available	for	secondary	analysis	over	the	next	
few	years(19,	20).	
	
However,	even	when	researchers	are	committed	to	data	sharing,	several	issues	
arise.	One	of	these	key	issues	is	trying	to	integrate	data	across	studies.	It	is	not	
uncommon	for	every	study	to	use	its	own	set	of	vocabulary	terms.	While	this	is	not	a	
large	issue	if	only	a	few	dozen	data	points	have	been	collected	for	a	limited	number	



of	subjects,	the	problem	rapidly	becomes	intractable	when	a	study	contain	hundreds	
or	more	data	points	for	thousands	of	subjects.	Furthermore,	the	standardization	of	
sleep	terms	and	definitions	across	studies	is	not	as	well-developed	as	other	fields.	
Over	time,	the	standard	definition	of	terms	like	apnea-hypopnea	index	(AHI)	may	
change.(5)	This	makes	comparisons	across	studies	difficult.	Resources	such	as	
Common	Data	Elements(21)	and	PhenX(22)	are	attempts	to	standardize	vocabulary	
and	protocols.	Therefore,	integrating	heterogeneous	datasets	from	different	studies	
is	a	key	informatics	challenge.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Chapter	2:	Background	
	

Phenotype	data	in	sleep	
The	traits	of	an	organism	are	called	phenotypes.	Phenotypes	result	from	
interactions	between	an	organism’s	genes	and	the	environment	over	time.	For	
example,	obesity	is	a	phenotype	that	is	partially	inherited,	but	also	affected	by	diet.	
A	disease	will	be	associated	with	several	phenotypes.	Each	phenotype	is	associated	
with	one	or	more	genes.	The	Monarch	Initiative,	a	project	developed	for	the	
integration	of	biological	information	using	semantics	from	many	sources,	including	
gene,	genotype,	variant,	and	phenotype,	has	tools	to	investigate	these	associations.		
	
Sleep	studies	collect	a	myriad	of	phenotypical	data.	There	is	the	usual	demographic	
and	medical	history	data.	The	data	specific	to	sleep	studies	comes	in	the	form	of	
subjective	sleep	questionnaires	and	objective	polysomnograms	(PSG).	There	are	
many	different	sleep	questionnaires	that	ask	the	patient	to	self-report	sleep	
symptoms,	sleep-disordered	breathing,	insomnia	symptoms,	and	family	and	social	
history.	Typical	sleep-related	questions	are	“How	many	hours	do	you	sleep	a	night?”	
and	“How	often	do	you	fall	asleep	at	work?”	There	are	also	psychiatric	questions	like	
“How	many	days	do	you	feel	nervous	or	anxious?”	The	answers	are	scored.	This	is	
typically	how	scores	like	the	Epworth	Sleepiness	Scale	are	calculated.	
	
PSGs	are	collected	in	an	overnight	patient	sleep	visit	to	a	sleep	clinic	(they	can	also	
be	collected	in	the	home).	The	patient	has	electrodes	and	sensors	applied	all	over	
their	body,	and	then	they	will	sleep	in	a	private	bed	in	the	clinic	while	monitored	by	
a	sleep	technologist.	The	signals	recorded	include	EEG,	EMG,	ECG,	EOG,	airflow,	
breathing	effort,	oxygen	saturation,	and	leg	movements.	
	

Ontologies	
The	formal	naming	and	definition	of	entities	and	the	interrelations	between	them	is	
called	an	ontology(23-25).	Popular	websites	using	ontologies	include	Yahoo,	which	
categorizes	websites,	and	Amazon,	which	categorizes	books	and	products	for	sale.	
Clinical	studies	often	use	a	set	of	controlled	vocabularies,	called	a	data	dictionary,	in	
order	to	provide	a	standard	naming	convention	for	data	capture	and	organization,	
but	an	ontology	also	defines	the	relationship	between	terms.	
	
There	are	many	reasons	why	ontologies	are	useful.	One	is	sharing	common	
understanding	of	the	structure	of	information(26).	In	the	case	of	having	many	
different	studies	related	to	the	sleep	domain,	if	they	used	the	same	standardized	
vocabulary,	then	computer	agents	can	extract	and	aggregate	this	information,	which	
then	could	be	used	to	respond	to	user	queries	or	as	input	for	other	tools.	
	
Enabling	reuse	of	domain	knowledge	was	one	of	the	main	drivers	of	ontology	
development(26).	The	Human	Phenotype	Ontology	(HPO),	for	example,	is	a	large-



scale	ontology,	containing	over	12,000	terms,	designed	to	support	large-scale	
computational	analysis	of	the	entire	human	phenome(27).	It	is	meant	to	be	used	by	
researchers,	doctors,	and	patients	for	phenotype	comparison	and	improved	
diagnosis.	It	merges	many	different	ontologies	together	and	invites	contributors	to	
extend	its	vocabulary.	
	
An	ontology	makes	domain	assumptions	explicit(26).	What	gives	the	HPO	its	power	
is	that	the	curators	have	worked	to	develop	computable	logical	definitions	for	the	
terms	that	relate	phenotypic	abnormalities	to	anatomy,	pathology,	physiology,	
biochemistry,	and	other	areas.	There	is	nothing	inherent	in	the	term	“arthritis”	that	
implicitly	relates	to	“skeletal	joint”;	a	human	infers	or	learns	this	through	education	
and	experience,	but	it	has	to	be	explicit	for	machine	computation.	The	structure	of	
the	ontology	adds	logic	and	makes	functional	comparison	between	entities	possible.		
	
Because	the	HPO	incorporates	a	layer	of	5,000	synonymous	terms,	it	allows	patients,	
basic	science	researchers,	and	machines	to	use	it(28).	For	example,	even	if	they	may	
not	know	the	term	“hypopnea”,	they	can	search	for	“reduced	breathing”	and	find	it.	
In	this	way,	it	separates	domain	knowledge	from	operational	knowledge.		
	

Research	Aim	
Our	aim	is	to	improve	treatment	of	obstructive	sleep	apnea	through	better	
subtyping.	We	mapped	and	integrated	terms	from	a	large,	publically	available	sleep	
database,	the	Sleep	Heart	Health	Study	(SHHS)(29),	to	an	ontology	for	phenotype	
comparisons,	the	Human	Phenotype	Ontology	(HPO)(30),	then	used	cluster	analysis	
to	find	OSA	subtypes.			
	
To	achieve	the	goals	outlined	above,	we	planned	to	use	tools	developed	as	part	of	
the	Monarch	Initiative.	They	have	created	and	collaborated	on	many	computational	
tools	and	pipelines	for	ontology	building	and	phenotype	analysis,	including	the	
HPO(30),	and	OWLSim,	an	algorithm	that	compares	phenotypes	and	calculates	a	
similarity	score	based	on	information	content(31-33).	However,	sleep	terms	are	not	
well	represented	in	the	HPO.	Therefore,	novel	discovery	for	sleep	diseases	through	
this	methodology	is	limited.	Conversely,	integrating	sleep	terminology	into	the	HPO	
will	contribute	to	knowledge	and	discovery	for	other	researchers.	
	
The	concept	of	semantic	similarity	clustering	has	been	used	for	phenotype	
classification	and	disease	gene	discovery(34).	Similar	approaches	have	been	done	to	
study	the	genetic	causes	of	bleeding	and	platelet	disorders	(35),	drug	associations	in	
breast	cancer	tumor	mutations	(36).	However,	to	our	knowledge	this	has	not	been	
done	for	sleep	apnea.	
	
Precision	medicine	is	a	new	approach	for	treatment	of	disease	that	accounts	for	
difference	in	genes,	environment,	and	phenotype	for	each	patient.	Different	
phenotypes	respond	differently	to	treatment,	so	understanding	and	characterizing	
those	heterogeneous	subtypes	will	allow	us	to	more	effectively	treat	each	patient.	



There	are	sleep	components	in	rare	phenotypes	like	Down	syndrome	which	are	
heretofore	unexplored	and	unquantified,	and	this	work	will	help	other	researchers	
discover	new	relationships	between	these	diseases.	Lastly,	OSA	is	a	complex	disease,	
and	this	approach	can	serve	as	a	model	for	a	workflow	to	use	secondary	data	for	
data-driven	subtyping	of	complex	diseases.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Chapter	3:	Aim	1	
	
Aim	1:	Determine	which	terms	in	SHHS,	a	large	representative	sleep	dataset,	are	
defined	in	the	HPO,	a	tool	for	analyzing	phenotypes.		
Sub-Aim	1.1:	Evaluate	coverage	of	sleep-related	phenotypes	in	HPO.	
Sub-Aim	1.2:	Enhance	HPO	with	new	terms	covering	sleep-related	phenotypes.	
	

Background	
	

The	Human	Phenotype	Ontology	
	
The	curators	of	the	HPO	have	mapped	nearly	all	the	clinical	descriptions	in	the	
OMIM	(Online	Mendelian	Inheritance	in	Man)	database,	the	largest	database	of	
human	hereditary	disorders(37).	OMIM	was	developed	30	years	ago	and	was	not	
designed	with	a	controlled	vocabulary.	
	
The	HPO	is	structured	as	a	directed	acyclic	graph	(DAG)	where	the	nodes	are	
connected	by	is.a	(class-subclass)	transitions,	which	is	similar	to	a	hierarchy,	but	is	
different	in	that	a	child	node	can	be	related	to	more	than	one	parent	node	(Figure	1).	
HPO	annotations	are	represented	in	a	simple	tab-delimited	format	described	at	
[http://human-phenotype-ontology.github.io/documentation.html](27).	
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Figure	1.	Schematic	of	a	section	of	the	HPO	DAG.	Not	all	nodes	are	labeled.	
	

Sleep	Heart	Health	Study	
The	data	that	is	used	in	this	study	is	from	the	Sleep	Heart	Health	Study	(SHHS),	a	
multi-cohort	study	focused	on	sleep-disordered	breathing	and	cardiovascular	
outcomes(29).	It	consists	of	6,441	men	and	women	aged	40	and	older	from	six	
health	centers.	It	is	the	largest	widely	cited	study	in	the	sleep	field.	There	were	two	
exam	cycles,	from	1995-1998	and	2001-2003.	This	dataset	is	now	available	for	
secondary	analysis	through	the	National	Sleep	Research	Resource(20)	
(https://sleepdata.org),	a	comprehensive	repository	of	de-identified	sleep	data,	
including	bio-physiological	signals,	which	are	linked	to	risk	factors	and	outcome	
data	for	participants	in	major	National	Institute	of	Health	studies.	Over	130	
manuscripts	have	been	published	using	this	data.	Other	data	sets	will	later	become	
available,	so	our	work	in	developing	a	pipeline	for	sleep	phenotype	discovery	will	be	
helpful	for	others	wanting	to	use	these	data	to	their	full	advantage.		
	
Data	collected	in	the	SHHS	includes	demographic	information	like	age,	ethnicity,	and	
gender;	anthropometric	measurements	like	body	mass	index	and	neck	
circumference;	physiological	measurements	like	blood	pressure	and	cholesterol;	
medications	the	patients	are	taking,	self-reported	health	history	like	cigarette	
smoking	and	caffeine	intake,	sleep	questionnaires	that	assess	time	and	quality	of	
sleep;	and	detailed	polysomnographic	measurements.	Phenotypes	collected	include	
history	of	coronary	artery	disease,	atrial	fibrillation,	asthma,	stroke,	diabetes,	
snoring,	gasping	during	sleep,	among	others.	
	
A	request	was	submitted	to	the	NSRR(19,	20),	summarizing	the	goals	of	this	
research.	The	online	NSRR	Data	Access	and	Use	Agreement	(DAUA)	for	this	proposal	
was	completed	and	executed.	An	Institutional	Review	Board/Ethics	Committee	
review	of	this	project	was	also	performed	by	the	NSRR	Internal	Review	Committee	
to	ensure	the	data	will	be	used	for	appropriate	research	purposes	and	to	ensure	
data	security	and	appropriate	handling	of	the	data	at	the	users	site.	
	

Methods	
	
After	acquisition	of	the	SHHS	data,	the	distribution	and	range	of	each	variable	was	
plotted.	Obvious	data	entry	errors	were	identified	and	removed.	There	are	a	total	of	
351	GB	worth	of	25,582	files,	but	the	bulk	of	this	data	was	EDF	files	containing	the	
actual	polysomography	signals	recorded	during	the	sleep	studies.	This	latter	type	of	
data	was	not	needed	for	clustering.	Also	not	relevant	to	our	approach	were	EDF	
associated	annotations,	and	EEG	spectral	analysis.	Remaining	were	five	main	
datasets:	SHHS1,	SHHS2,	CVD	(cardiovascular	disease),	HRV	(heart	rate	variability),	
and	interim,	plus	documentation,	which	were	easily	downloadable.	The	other	
important	files	were	the	data	dictionary	and	domain	information.	
	



We	have	written	code	for	the	processing	and	manipulation	of	SHHS	data,	using	R	
(38).	This	code	is	stored	in	an	open	Github	repository	
(https://github.com/monarch-initiative/sleep-apnea-clustering).	This	code	largely	
is	built	on	top	of	the	dplyr	library(39),	and	a	lot	of	functions	are	wrappers	designed	
to	work	more	closely	with	this	particular	dataset,	breaking	down	into	frequently	
used	categories,	removing	unnecessary	columns,	and	recoding	fields	and	values	into	
more	usable	formats.	
	
Any	field	that	consisted	of	more	than	50%	missing	values	was	deleted	and	not	
considered	for	further	analysis.	Exploratory	data	analysis	was	performed	to	check	
for	general	trends	and	outliers.		
	
There	are	1,991	terms	in	the	SHHS	canonical	data	dictionary	(version	0.11.0).	
Several	of	these	differ	only	in	category,	degree,	or	visit	(e.g.	“REM	power	density	at	
8.0	Hertz”	vs.	“REM	power	density	at	9.5	Hertz”).	Duplicates	were	removed.	We	used	
a	simple	Python	script	that	called	the	Monarch	ontology	as	a	Neo4j	graph,	
designated	Scigraph	(https://github.com/SciGraph/SciGraph),	and	matched	strings	
in	an	input	text	file	(“traits”)	to	terms	in	the	ontology	(“matches”).	The	script	
searched	for	up	to	three	matches	per	trait.	As	a	check,	coverage	of	sleep	terminology	
was	assessed	by	using	Monarch’s	built-in	browser	search	function.	
	
Extending	and	annotating	the	HPO	is	done	by	making	term	requests.	A	HPO	curator	
is	contacted	through	Github	and	the	term,	its	definition,	synonyms,	and	parent	class	
are	provided.		
	

	
Table	1.	The	possible	cases	for	term	mapping	from	SHHS	to	HPO,	with	examples	from	
preliminary	search.	
	
Table	1	describes	the	possible	cases	for	term	mapping.	The	easiest	case	is	when	
there	is	a	perfect	match	between	the	SHHS	and	HPO	term.	There	is	no	need	to	do	
anything.	Most	synonyms	will	already	be	in	the	HPO.	
	
An	imperfect	match	where	the	definition	is	different	in	the	HPO	will	require	making	
term	requests.	We	do	not	anticipate	there	will	be	that	many	instances	where	the	
definition	needs	drastic	changing.	Most	likely	there	will	just	be	some	disambiguation	

Case Definition SHHS HPO
Match SHHS term exists in HPO, same definition hypertension hypertension

Synonym
SHHS term does not exist in HPO, is 
synonymous with term that does diabetes mellitus

Type II diabetes 
mellitus

Imperfect match SHHS term exists in HPO, different definition unrefreshed sleep

somnolence, 
drowsiness, sleep 
disturbance, etc.

No match SHHS term does not exist in HPO, no synonyms habitual snoring

Category 
conversion

SHHS term can be a match to HPO if the data is 
put into categorical form BMI Overweight, obesity

Not appropriate
SHHS term does not exist in HPO, should not be 
put in categorical form, should be left out

NREM power 
density at 13.5 
Hertz



of	terms.	The	same	is	true	of	synonyms.	The	synonyms	are	found	through	the	search	
algorithm,	then	grouped	all	together,	then	term	requests	are	made	for	each	group.		
	
For	“No	match”	terms,	a	full	term	request	was	made	for	each	one.	Because	our	data	
dictionary	is	mostly	in	the	sleep	domain,	which	is	not	well-covered	in	the	HPO,	it	
may	be	more	expedient	because	most	of	the	terms	will	not	have	conflicts	about	
where	they	fit	in.	
	
The	domains	of	the	terms	were	also	considered	for	the	“category	conversion”	case.	
There	were	variables	such	as	“Type	of	stroke”,	to	which	there	were	8	separate	types,	
such	as	cerebral	hemorrhage	and	ischemic	stroke.	These	would	be	considered	
separate	terms	in	the	HPO,	and	the	coding	of	the	dataset	was	altered	to	expand	for	
these.	In	the	same	vein,	domains	that	were	not	listed	explicitly	were	created,	for	
example,	BMI	can	be	converted	from	a	number	into	categorical	ranges,	so	that	there	
are	“underweight”	(<18),	“overweight”	(25-29),	and	“obese”	(>30)	categories.	

Results	
By	comparing	the	terms	in	the	data	dictionary	of	the	Sleep	Heart	Health	Study	
(SHHS)	and	those	in	the	HPO	using	text	mining,	terms	were	identified	that	needed	to	
be	added	to	the	HPO.		
	
Deleting	fields	with	more	than	50%	missing	data	eliminated	columns	related	to	HRV	
(heart	rate	variability)	entirely.		Because	some	patients	were	allowed	to	fill	out	
questionnaires	by	mail,	a	lot	of	survey	questions	were	left	blank.	Some	variables	
were	not	collected	by	certain	centers.	The	SHHS1	dataset	was	reduced	down	to	894	
fields	from	1,207,	the	SHHS2	dataset	down	to	804	fields	from	1,213,	and	the	CVD	
data	down	to	24	fields	from	38.	In	the	next	step,	any	patient	that	was	missing	a	value	
from	any	of	the	fields	was	eliminated.	In	the	final	clustering	analysis,	this	reduced	
number	of	patients	to	4,556.	
	
Table	2	is	a	selection	of	the	overall	statistics	of	the	SHHS	dataset.	The	patient	cohort,	
even	though	measures	were	taken	to	include	as	many	minorities	as	possible,	was	
overwhelmingly	white	(84.5%).	Asians,	Hispanics,	and	Native	Americans	were	all	
put	into	the	“other”	category.	There	is	evidence	of	Asians	possibly	requiring	a	
different	set	of	cutpoints	for	body	mass	index(40),	but	mixing	them	with	other	
ethnicities	makes	it	impossible	to	apply	those	separate	thresholds.	Our	exploratory	
data	analysis	indicated	that	race	did	not	have	a	significant	effect	on	key	variables,	
with	the	exception	of	hypertension	(41).	Some	centers	that	recruited	largely	or	
exclusively	from	a	minority	patient	base	did	not	collect	a	lot	of	the	variables,	
therefore,	since	our	analysis	method	requires	clustering	over	the	full	range	of	
variables,	those	patients	were	not	used.	
	



	
Table	2.	Overall	statistics	for	SHHS	dataset.	BMI=body	mass	index,	AHI	3%	=	apnea-
hypopnea	index	(events/hour	using	3%	oxygen	desaturation	criteria),	AHI	4%	=	(4%	
oxygen	desaturation	criteria),	ESS=	Epworth	Sleepiness	Scale	
	
A	preliminary	assessment	of	sleep	term	coverage	in	Monarch	showed	that	the	“Sleep	
Phenotype”	class	is	small,	with	three	subclasses,	and	16	phenotypes	below	that.		
	
	
	

	
Figure	2.	Overview	of	the	data	dictionary	for	the	SHHS,	divided	into	general	categories.	Of	the	1991	
terms,	392	were	deemed	possible	candidates	for	phenotypes.	1599	were	unsuitable.		
	

mean SEM
BMI 28.16 0.06
Age 63.13 0.15
AHI 3% 14.65 0.2
AHI 4% 10.18 0.17
ESS 7.71 0.06

n %
sex(male) 2765 47.60%



From	the	NSRR	canonical	data	dictionary,	a	list	of	392	terms	was	drawn	after	
removing	inappropriate	and	duplicate	terms,	plus	adding	separate	domains	as	
terms	(Figure	2).	There	are	340	primary	matches	out	of	the	392	terms,	but	it	is	clear	
that	several	of	these	are	nonsensical	or	not	applicable	(e.g.	“hypopnea	events”	is	
matched	with	“fewer	egg	laying	events	during	active”).	Scigraph’s	search	engine,	
although	based	on	Lucene(42),	a	Java-based	search	engine	library,	is	quite	basic.	It	
simply	examined	any	word	in	the	input	string	and	found	any	Monarch	term	that	also	
contained	that	word.	When	further	restricted	to	HPO	terms	only	and	eliminating	
SHHS	terms	that	point	to	the	same	HPO	term,	79	primary	matches	were	found.		
	
	
	

	
Figure	3.	Frequency	of	occurrence	in	the	SHHS	cohort	of	the	79	HPO	terms	that	could	be	mapped	to	
the	SHHS	data	dictionary.	Whenever	possible,	matches	were	consolidated	into	as	few	terms	as	
possible.	For	example,	“heart	attack”	was	consolidated	under	“myocardial	infarction”.	In	the	end,	79	
terms	were	found.	These	fell	under	four	general	categories.	
	
	
There	were	very	few	non-matches	between	the	HPO	and	the	SHHS,	which	was	a	
pleasant	surprise	and	a	testament	to	the	hard	work	of	the	curators.	As	a	result,	only	
three	term	requests	were	made	to	the	Monarch	HPO	Github.	These	were	for	snoring	
(Figure	4),	loud	snoring,	and	wide	hips.		All	requests	were	answered	promptly,	and	
were	accepted	with	some	revisions.	“Wide	hips”	was	already	included	under	“large	
pelvis”.	

We would like to submit a revised definition of snoring. 

Preferred label: Snoring 
Synonyms: snore, snores, snoring symptoms 

cardiovascular 
 
 
 
 
 

respiratory 
 
 
 
 
 
 

sleep 
 
 
 
 

body meas/ 
other 
 
 

term type 



Definition: Intense, noisy breathing during sleep(43) caused by air pressure and resistance 
changes in the upper airway(44). 

References: UMLS C0037384, NCI thesaurus code C116315 
[(https://ncimeta.nci.nih.gov/ncimbrowser/ConceptReport.jsp?dictionary=NCI%20Metathesau
rus&code=C0037384)], Hoffstein, 1996; Levartovsky et al., 2016 

Suggested Parent term: sleep phenotype, breathing dysregulation 

A term for Snoring already existed (HP:0025267). I have created a hybrid definition from your 
suggestion 
Deep, noisy breathing during sleep accompanied by hoarse or harsh sounds caused by the 
vibration of respiratory structures (especially the soft palate) resulting in sound due to 
obstructed air movement during breathing while sleeping. 
and added the synonyms. I also agree with 'breathing dysregulation' as a parent class. 
Figure	4.	An	example	of	a	Github	term	request	that	was	successful.	
	
	
Discussion	
	
The	major	drawback	of	using	HPO	and	Monarch	tools	for	clustering	is	that	there	is	a	
lot	of	information	lost	when	eliminating	the	polysomnography	data	such	as	
arousals,	oxygen	desaturations,	and	apnea	and	hypopneas.	At	the	same	time,	this	
data	is	too	granular	to	effectively	incorporate	into	the	HPO.	Because	of	this,	we	
cannot	leverage	the	semantic	similarity	calculator	as	a	clustering	metric.	Perhaps	
the	biggest	loss	of	information	is	that	there	is	no	designation	of	the	severity	of	the	
phenotype	in	many	cases.	A	future	direction	would	be	adding	the	severity	of	the	
phenotype	with	an	annotation	(http://human-phenotype-
ontology.github.io/documentation.html#annot).	
	
There	are	also	a	lot	of	interesting	subjective	data	that	does	not	exactly	qualify	as	a	
phenotype,	such	as	the	frequency	of	“falling	asleep	while	watching	TV”	or	“how	blue	
do	you	feel.”		Grouping	them	under	existing	terms	like	“excessive	daytime	
sleepiness”	or	“depression”	would	be	implying	causality.	
	
The	final	79	terms	predominately	consist	of	rare	ECG	anomalies.	Many	apply	to	as	
few	as	0	or	1	patients	out	of	the	whole	cohort.	We	do	have	information,	but	it	might	
not	be	the	right	type	of	information	needed	to	produce	a	quality	semantic	clustering.	
	
What	was	accomplished	was	preparation	and	cleaning	of	the	SHHS	data	for	data	
manipulation,	as	well	as	some	enhancement	of	the	HPO	with	new	sleep	terms.	There	
should	be	more	work	done	in	this	area,	and	perhaps	it	could	be	guided	by	the	results	
of	Aim	2,	which	could	indicate	what	terms	to	focus	on.	
	
	
	



Chapter	4:	Aim	2	
Aim	2:	Identify	subtypes	of	obstructive	sleep	apnea.	
	

Background	
	
There	are	a	couple	of	challenges	that	need	to	be	addressed	before	the	SHHS	dataset	
can	be	used	for	clustering.	The	first	issue	is	how	to	handle	the	different	types	of	
data.	The	second	is	dealing	with	the	high	dimensionality	of	the	dataset.	

Clustering	
Clustering	is	the	task	of	grouping	a	set	of	objects	or	events	such	that	objects	in	the	
same	group	(“cluster”)	are	more	similar	to	each	other	than	objects	in	other	
groups(12).	Clustering	is	an	unsupervised	task,	meaning	that	there	is	no	“training”	
by	a	labeled	sample	set.	This	is	why	it	is	suitable	for	this	problem.	As	stated	before,	
there	is	no	consensus	solution	for	subtyping	sleep	apnea.	Clustering	is	not	a	
particular	algorithm,	rather,	many	different	methods	fall	under	the	umbrella	of	
clustering.	It	is	assumed	the	reader	has	knowledge	about	clustering	algorithms.	The	
common	algorithms	that	will	be	used	in	this	work	are	Partitioning	Around	Medioids	
(PAM)	and	hierarchical	clustering.	A	detailed	discussion	of	these,	as	well	as	semantic	
clustering	based	on	OWLSIM(31),	is	contained	in	the	Appendix.		
	
The	pipeline	for	our	analysis	is	described	in	Figure	5.	The	features	to	be	used	must	
be	selected	(dimensionality	reduction).	Then	each	patient	record	containing	these	
features	is	compared	to	every	other	patient	record,	and	the	distance	or	dissimilarity	
between	them	is	calculated	according	to	some	metric.	These	scores	can	be	arranged	
in	a	matrix,	which	is	used	by	a	clustering	algorithm	to	group	similar	records	
together.	The	clustering	result	is	measured	for	quality	and	validated.	
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Figure	5.	Pipeline	of	clustering	analysis.		
	

Handling	mixed	data	
This	dataset	shares	many	characteristics	with	psychological	research,	in	particular,	
having	mixed	data,	including	ordinally	scaled	data	from	survey	questionnaires.	
Because	of	this,	the	R	library	psych	(45),	which	is	able	to	handle	binary	and	ordinal	
data	was	used	for	analysis.	
	
The	SHHS	dataset	consists	of	a	mix	of	continuous,	dichotomous,	and	polytomous	
variables.	Kolenikov	and	Angeles	wrote	a	detailed	discussion	about	ways	to	deal	
with	the	violations	of	the	normality	assumption	when	there	is	discrete	data(46).	We	
considered	several	approaches	to	handle	this	problem.		One	was	coding	our	own	
functions	to	calculate	chi-square	statistic	for	comparisons	between	binary	variables	
and	ANOVA	statistic	for	comparisons	between	binary	and	continuous	variables,	
which	can	be	used	like	Pearson	or	Spearman	correlation	statistics.	Another	
approach	was	to	use	network	analysis	of	mixed	graphical	models(47).	The	easiest	
approach	was	to	use	polychoric	correlation(48).	
	
The	tetrachoric	correlation(49)	calculates	the	equivalent	of	Pearson	correlation	for	
binary	data.	The	polychoric	correlation(50)	does	the	same	for	ordinal	category	data.		
	
Binary	data	was	coded	as	0	(if	a	particular	variable	is	absent)	and	1	(if	that	variable	
is	present).	What	complicated	the	SHHS	data	was	that	there	were	various	ways	of	
coding	“don’t	know”	or	“not	applicable”	from	survey	to	survey.	We	rectified	this	by	
treating	all	“don’t	know”	responses	as	NA	(missing	data).	In	one	variable	that	we	
thought	was	important	to	preserve,	loud	snoring,	we	imputed	missing	data	by	
means	of	a	random	Gaussian	function.	Ultimately,	this	variable	was	not	used	in	the	
final	analysis.	(Data	showing	imputation	did	not	affect	final	distribution	can	be	
provided	in	the	appendix.)	

Dimensionality	reduction	
We	used	factor	analysis	to	perform	dimensionality	reduction.	The	principle	behind	
factor	analysis	is	that	multiple	observed	variables	have	similar	response	patterns	
because	they	are	associated	with	a	latent	factor(51,	52).	Essentially,	a	high-
dimensional	matrix	can	be	represented	as	the	product	of	two	smaller	matrices	plus	
noise.	This	can	be	expressed	in	a	form	of	an	equation:	
	

!!×! = !!×!Λ!×! + !!×!	
where	

1. !!×!	is	the	observed	data	matrix	consisting	of	n	observations	of	p	features;	
2. !!×! 	is	the	factor	matrix	consisting	of	k	factors	for	each	of	the	n	observations	
3. Λ!×!	is	the	factor	loading	matrix	which	tells	the	contribution	of	each	feature	

to	each	factor.	
4. !!×!	is	random	Gaussian	noise,	!!~(0,Ψ).	

	



The	question	of	how	many	factors	to	retain	has	many	conflicting	answers,	and	a	
balance	must	be	struck	between	them(53).	The	number	of	factors	was	estimated	
using	a	parallel	analysis(54)	on	a	scree	plot.	A	scree	plot	is	a	plot	of	the	eigenvalues	
of	each	factor.	The	scree	test	(55)is	a	subjective	test	where	the	cutoff	for	number	of	
factors	is	determined	by	where	there	is	a	bend	in	the	graph	and	the	eigenvalues	
level	off.	Parallel	analysis	attempts	to	introduce	objectivity.	A	random	data	set	of	the	
same	size	and	the	same	range	of	values	is	simulated.	The	eigenvalues	of	this	random	
data	are	extracted	and	plotted	on	the	same	scree	plot	as	the	real	eigenvalues.	The	
factors	that	should	be	retained	are	those	with	eigenvalues	greater	than	the	
equivalent	random	eigenvalues.	
	
An	alternate	analysis	called	Very	Simple	Structure	(VSS)	was	also	considered(33).	
VSS	compares	the	original	correlation	matrix	(R)	to	that	produced	by	a	simplified	
version	(S)	of	the	original	factor	matrix.	If	we	consider	that	R	is	an	n	x	n	matrix	that	
is	a	factor	matrix	of	dimensions	n	x	k	multiplied	by	its	transpose,	plus	a	diagonal	
matrix	of	uniquenesses,		
	

Rnn	~	FnkF’kn	+	U2nn	
R	~	SS’	+	U2	

	
Then	we	can	also	have	a	simplified	matrix	S	and	its	transpose	S’.	S	is	composed	of	
the	c	largest	loadings	of	each	factor,	where	c	(complexity)	is	a	parameter	from	1	to	
the	number	of	factors.	The	VSS	criterion	is	the	fit	of	the	simplified	model	to	the	
original	correlation	matrix.		

!"" = 1− ! ∗!
!! 	

where	R*	is	residual	matrix	R*=R-SS’	and	r*	and	r	are	the	elements	of	R*	and	R	
respectively.		
	
Wayne	Velicer’s	Minimum	Average	Partial	(MAP)	criterion(56)	is	a	related	test	to	
VSS	to	decide	the	optimal	number	of	factors	to	extract.	In	short,	it	involves	finding	
the	average	squared	correlation	of	the	full	correlation	matrix,	then	subsequently	
partialing-out	of	the	first	factor	and	finding	the	average	squared	correlation	of	that	
matrix.	The	process	repeats.	The	MAP	is	the	step	where	the	lowest	average	squared	
partial	correlation	was	found,	and	represents	the	point	at	which	variance	in	the	
matrix	is	still	systemic,	rather	than	random	error.	
	

Validation	of	clusters	
Since	unsupervised	learning	defines	clusters	that	are	not	known	a	priori,	there	has	
to	be	some	kind	of	evaluation	of	the	clustering.	There	are	two	types	of	validation.	
One	is	biological	validation,	where	one	uses	another	sample	or	set	of	samples	to	
confirm	the	results,	using	an	alternate	method(57).	We	could	apply	our	algorithm	to	
a	previous	paper’s	data	to	compare	our	clustering	results	to	theirs,	but	we	do	not	
have	easy	access	to	their	data.	Thus	we	are	limited	to	computational	validation.	If	



we	can	make	the	case	that	our	computational	results	hold	true,	then	biological	
validation	can	be	attempted	by	experimental	scientists.		
	
There	is	no	generally	agreed	upon	categorization	of	sleep	apnea	subtypes,	and	
previous	research	disagrees	on	the	number	and	features	of	the	subtypes.	
Furthermore,	as	we	only	have	access	to	this	particular	data	set,	we	can	only	
computationally	validate	based	on	internal	criteria.	
	
Homogeneity	is	the	measure	of	the	similarity	of	elements	in	a	cluster	to	one	another	
(Figure	6A).	Alternately,	it	measures	the	amount	of	variation	within	a	cluster.	
Formally,	it	is	defined	as	the	average	distance	of	an	observation	to	its	assigned	
cluster	center	over	all	points.	It	is	an	unbounded	measure	and	requires	cluster	
centers	as	an	input.	
	

	 	

Figure	6.	A)	homogeneity	is	mean	distance	of	observation	to	its	own	cluster	center.	B)	
separation	is	the	average	distance	between	the	cluster	centers,	normalized	for	the	number	
of	cluster	members.	Silhouette	width	incorporates	both	the	distance	of	observations	to	their	
own	cluster	center	and	to	neighboring	cluster	centers.	
	
Separation	is	the	measure	of	the	amount	of	variation	between	clusters	(Figure	6b).	
The	distance	between	each	cluster	center	is	calculated	and	normalized	for	the	
number	of	cluster	members.	The	average	distance	is	taken	as	the	separation.	As	with	
homogeneity,	separation	is	unbounded	and	requires	knowledge	of	the	cluster	
centers.	
	
Silhouette	width(58)	can	be	thought	of	as	a	balance	between	homogeneity	and	
separation.	Let	a	be	the	average	distance	of	an	element	to	all	other	points	in	its	own	
cluster.	Then	call	average	distance	from	the	same	point	to	points	in	the	next	closest	
cluster	b.	The	silhouette	width	is	then	defined	as:	

! = ! − !
max (!, !)	

We	then	divide	by	the	number	of	total	data	points	for	the	average	silhouette	width.	
This	value	is	bounded	by	[0,1],	and	values	closer	to	1	are	preferred.	
	
The	Dunn	index	is	the	shortest	distance	between	all	points	not	in	the	same	cluster,	
divided	by	the	longest	distance	between	points	in	the	same	cluster	(59).	
Mathematically,	

homogeneity	

separation	



! ℂ =
min
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where	diam(Cm)	is	the	maximum	distance	between	observations	in	cluster	m.	Dunn	
index	is	bounded	by	[0,	∞)	and	larger	values	are	interpreted	as	better(60).		
	
Connectivity	differs	from	silhouette	and	Dunn	index,	in	that	it	is	somewhat	like	the	
precision	or	recall	statistic.	For	a	given	distance	matrix,	it	determines	how	often	the	
observations	that	are	the	nearest	to	each	other	are	placed	in	the	same	cluster(60).	If	
N	is	the	number	observations	in	a	dataset,	define	nni(j)	as	the	jth	nearest	neighbor	
of	observation	I,	and	let	xi,	nni(j)	be	zero	if	I	and	j	are	in	the	same	cluster	and	1/j	
otherwise.	Then,	for	a	particular	clustering	C	into	K	clusters,	

!"## ! = !!,!!!(!)
!

!!!

!

!!!
	

where	L	is	a	parameter	giving	the	number	of	nearest	neighbors	to	use.	Connectivity	
is	bounded	by	[0,	∞)	and	smaller	values	are	preferred(60).	
	
There	is	an	R	package	designed	for	comparison	of	clustering	quality	called	
Consense(61,	62).	While	we	did	not	directly	use	this	package,	many	of	the	ideas	
from	it	were	incorporated	in	this	part	of	the	analysis.	
	
It	should	be	stressed	that	these	measures	only	serve	as	a	guideline,	and	that	
ultimately,	the	clusters	should	also	be	assessed	as	to	whether	they	make	sense	
biologically.	
	

Methods	
	
The	polychoric	correlation	matrix	of	the	data	was	calculated	using	heterochor	in	
the	R	library	polycor(63),	with	factoring	method	of	Maximum	Likelihood	and	the	
stipulation	that	the	resulting	matrix	must	be	positive-definite	(that	is,	no	negative	
eigenvalues	allowed	and	the	matrix	must	be	invertable).	Factor	analysis	was	
performed	using	psych functions.	The	number	of	factors	was	determined	by	
considering	parallel	analysis,	the	VSS,	MAP,	and	finally,	the	individual	eigenvalues	
and	percentage	of	variance	explained	(based	on	cumulative	eigenvalue)	are	
considered.	The	highest	load	feature	for	each	factor	was	taken	as	the	representative	
of	that	factor.	
	

Clustering	
	
After	dimensionality	reduction,	clustering	was	performed	using	the	daisy	function	
in	the	cluster	library(64).	The	Gower	distance	was	used	as	the	distance	metric.	
(65)	Certain	factors	were	marked	as	symmetrical	binary	(e.g.	gender)	and	others	
were	marked	as	asymmetrical	binary	(e.g.	coronary	artery	disease)	and	scaled	



ordinal	factors	were	marked	as	such.	All	other	factors	were	considered	to	be	
continuous.		
	
The	resultant	dissimilarity	matrix	serves	as	the	input	to	a	number	of	clustering	
functions,	including	pam	and	hclust.	The	clustering	algorithms	chosen	were	PAM	
(partitioning	around	medioids),	diana (divisive	hierarchical	clustering),	and	three	
methods	of	hierarchical	agglomerative	clustering:	single-linkage,	complete-linkage,	
and	average-linkage.	Other	clustering	methods	were	not	considered	as	they	either	
took	unreasonably	long	to	run	or	did	not	accept	the	distance	matrix	as	an	input.	For	
a	detailed	explanation	about	clustering	algorithms,	including	OWLSIM	semantic	
clustering,	see	the	appendix.	
	
The	proposed	pipeline	for	OWLSim	semantic	clustering	was	as	follows:		
1.	Each	patient	would	be	coded	as	a	list	of	HPO	phenotypes	(the	“patient	record”)	in	
a	csv	file.		
2.	OWLSIM	would	be	adapted	to	compare	each	patient	record	to	each	other,	
outputting	the	IC	and	simJ	scores.	
3.	Choosing	either	IC	or	simJ	across	all	pairs,	each	pairwise	comparison	score	is	
placed	in	a	similarity	matrix.	The	scores	are	subtracted	from	1	to	make	a	
dissimilarity	matrix.	
4.	The	dissimilarity	matrix	is	then	fed	into	one	of	the	other	clustering	algorithms	like	
PAM	or	hclust,	and	clusters	are	determined.	

Validation	
Silhouette	width,	Dunn	index,	and	connectivity	were	calculated	for	clusterings	with	
2	to	10	clusters	for	each	separate	method.	Clusters	were	set	by	cut	point	in	the	case	
of	the	hierarchical	clustering,	and	specified	beforehand	in	the	case	of	PAM.	
	
Comparisons	between	clusters	were	made	by	one-way	ANOVA	with	post-hoc	
Bonferroni	correction	and	chi-square	tests	for	continuous	and	binary	data	
respectively.	Data	were	expressed	as	mean	±	standard	error	of	the	mean	when	
reporting	continuous	variables	and	counts	or	percentages	when	reporting	
categorical	variables.	For	all	analyses,	a	p-value	of	less	than	0.05	was	considered	
significant.	All	analysis	was	performed	in	R	version	3.2.2.	
	



Results	

	
Figure	7.	Scree	plot	and	parallel	analysis.		
	
The	scree	plot	(Figure	7)	and	table	of	factor	loadings	(Appendix,	Table	B)	shows	that	
the	first	five	factors	have	relatively	large	eigenvalues	compared	to	the	rest	and	
explain	24.2%	of	the	variance.	Parallel	analysis	indicates	that	the	eigenvalues	of	the	
random	junk	data	set	begin	to	be	larger	than	those	of	the	real	dataset	at	factor	25.			
	
VSS	and	MAP	analysis	agreed	with	the	assessment,	with	MAP	reaching	a	minimum	
at	5	factors	and	VSS	suggesting	4	factors	may	be	the	most	appropriate.	
	
Factor	analysis	suggests	the	dataset	reduces	down	to	five	factors:	(1)	respiratory	
index	(defined	below),	(2)	presence	of	cardiovascular	disease,	(3)	diagnosis	of	sleep	
apnea	by	a	medical	doctor,	(4)	presence	of	hypertension,	and	(5)	SF-36	Physical	
Component	Score	(Figure	8,	Appendix	Figure	C).	



	
Respiratory	index	includes	several	correlated	variables	within	the	sleep	
architecture	and	polysomnographic	categories,	with	high	loadings	for	“percent	of	
sleep	time	in	apnea	or	hypopnea	with	greater	than	3%	desaturation”,	AHI,	and	
average	apnea	length.	The	cardiovascular	disease	factor	was	most	associated	with	
coronary	artery	disease,	but	also	associated	medications	and	conditions	like	
nitroglycerin	and	coronary	artery	bypass	graft.	There	were	two	separate	variables	
for	diagnosis	of	sleep	apnea	by	a	medical	doctor	(abbreviated	“SA15”	and	
“MDSA02”).	They	differed	with	each	other	on	some	patients,	which	may	indicate	
that	some	patients	were	diagnosed	later.	The	link	between	hypertension	and	sleep	
apnea	has	been	well-studied.	SF-36	PC	score	is	itself	a	factor	score	of	how	tired	a	
person	gets	doing	various	tasks.	PC	score	was	correlated	with	several	Quality	of	Life	
survey	questions.	
	
	
	

	
Figure	8.	Factor	analysis	plot	of	first	two	factors	against	each	other.	All	the	respiratory	index	
features	line	up	along	factor	1	axis.	CAD	(coronary	artery	disease)	and	CABG	(coronary	artery	bypass	
graft)	line	up	along	another.	Note	that	there	are	a	lot	of	features	that	do	not	contribute	much	in	any	
direction	and	congregate	in	the	center	(red	points).	Removing	these	reduces	the	random	variation	in	
the	matrix.	AI(REM)	=	Arousal	index	in	REM	sleep,	AHI=apnea-hypopnea	index,	RDI=respiratory	
disturbance	index,	%	time	in	apnea	3%	desat	=	percentage	of	time	spent	in	apnea	over	3%	oxygen	
desaturation.	
	
Python	code	was	written	and	adapted	for	the	semantic	clustering.	Specifically,	there	
was	a	function	to	input	a	csv	file	of	patient	records	as	lists	of	HPO	terms,	a	function	
to	split	that	data	into	separate	lists,	and	a	function	to	use	OWLSIM	to	compare	the	
lists	and	extract	the	IC	and	simJ	scores	from	the	JSON	output.	
	
However,	the	function	to	convert	the	SHHS	features	into	HPO	phenotype	terms	was	
not	written,	partially	because	most	of	the	code	for	manipulating	the	SHHS	was	
already	written	in	R,	and	also	because	by	this	time	we	had	found	that	much	of	the	
sleep	architecture	and	respiratory	data	could	not	be	easily	adapted	into	the	HPO.	



Therefore,	this	part	of	the	aim	was	abandoned,	and	the	rest	of	the	results	will	focus	
on	the	traditional	quantitative	clustering.	
	
Because	of	the	goal	of	the	study	was	to	find	subtypes	of	sleep	apnea,	only	clusterings	
that	resulted	in	3	or	more	clusters	were	considered	(Figure	9).	PAM	performed	very	
poorly	in	all	three	metrics.	This	may	be	because	of	the	binary	features	in	the	model,	
which	tend	to	dominate	if	PAM	is	applied.	
	
Most	of	the	hierarchical	clusterings	showed	marked	worsening	after	more	than	6	
clusters.	At	six	clusters,	the	complete	linkage	clustering	performed	the	best	with	
respect	to	silhouette	width	and	connectivity.	Single	linkage	performed	best	in	Dunn	
index,	but	its	dendrogram	is	much	lower	in	height	than	the	complete	linkage,	
meaning	a	lot	of	objects	were	grouped	together	very	early	and	the	clusters	are	quite	
diffuse.		Upon	checking	the	key	variables	in	a	single-linkage	clustering,	it	was	
revealed	that	there	were	no	significant	differences	in	characteristics	between	
clusters	(i.e.,	ANOVA	tests	failed	to	return	a	p-value	below	0.05	when	testing	a	
difference	between	mean	AHI	of	different	clusters).	
	

	



	

	
Figure	9.	Comparison	of	connectivity	(top),	average	silhouette	width,	and	Dunn	index	for	four	
different	methods	of	clustering.	Other	hierarchical	clustering	methods	were	omitted	for	the	sake	of	
clarity.		
	
It	was	decided	to	choose	complete	linkage	clustering	with	six	clusters,	based	on	both	
internal	validation	metrics	and	the	clinical	interpretability	of	the	clusters,	which	will	
be	discussed	in	the	next	section.	The	average	silhouette	width	was	0.72,	which	is	
considered	fairly	good	separation	(66).	
	



	
Figure	10.	Silhouette	width	plot	for	complete	linkage	hierarchical	clustering	with	six	clusters.	
Average	silhouette	width	of	0.75	is	considered	fairly	good	in	terms	of	homogeneity	and	separation.	
	
The	six	clusters	can	be	characterized	as	follows	(Tables	3	and	4).	Cluster	3	is	
confirmed	sleep	apnea	cases	with	the	highest	AHI	(33.90	±	4.51)	out	of	all	the	
clusters.	Related	measures	like	percent	of	sleep	time	under	90%	oxygen	saturation	
(T90)	and	percent	of	sleep	time	spent	in	apnea/hypopnea	with	desaturation	greater	
than	3%	were	also	the	greatest	in	this	cluster.	Subjects	in	this	cluster	also	had	the	
highest	BMIs	(31.90	±	0.90),	highest	systolic	and	diastolic	blood	pressure	(139/80),	
and	highest	FVC	(3.90	±	0.15).	This	cluster	also	had	the	lowest	minimum	SaO2	(81.7	
±	1.87).	This	cluster	also	had	the	highest	percentage	of	males	(83%),	and	subjects	
take	significantly	more	medication	related	to	hypertension.	
	

	
	



	
Figure	11.	(Top)	Cluster	dendrogram	for	complete	linkage	hierarchical	clustering	with	six	clusters.	
(Bottom)	Dendrogram	for	single	linkage	clustering	with	six	clusters.	Single-linkage	or	nearest	
neighbor	method	tends	to	“chain”	or	add	the	nearest	point	one	at	a	time,	resulting	in	a	spread-out	
cluster.	
	
The	other	confirmed	sleep	apnea	subgroup	is	cluster	5.	The	major	difference	is	that	
subjects	in	this	cluster	have	not	been	diagnosed	with	hypertension.	However,	they	
do	have	a	higher	proportion	of	respiratory	diseases,	stroke,	diabetes,	and	smoking	
than	all	the	other	clusters.	They	have	the	highest	cholesterol	levels	out	of	all	the	
groups	(214.8	±	7.9),	as	well	as	the	highest	ESS	(11.9	±	1.1).	Their	AHIs	are	not	as	
severe	(25.5	±	3.9)	but	they	have	similar	mean	BMI	as	cluster	3.	This	group	has	a	
smaller	percentage	of	males	and	is	on	average	the	youngest	(56.7	±	1.8).	
	
	

	
Table	3.	One-way	analysis	of	variance	(ANOVA)	for	continuous	variables	
	
Of	the	three	non-sleep	apnea-diagnosed	clusters,	cluster	2	can	be	thought	of	as	
healthy	subjects.	They	have	low	proportions	of	all	the	diseases	tested	for,	no	
hypertension,	and	the	lowest	AHI	(12.45	±	0.27),	highest	minimum	SaO2,	and	
highest	SF-36	physical	component	score,	meaning	they	have	the	highest	endurance	
in	performing	tasks	during	the	day.		
	
	

Cluster 1 2 3 4 5 6 p-value
Age 67.15 ± 0.25 61.02 ± 0.22 63.46 ± 1.64 69.55 ± 0.88 56.65 ± 1.78 67.38 ± 1.5 <0.0001
BMI 28.79 ± 0.13 27.52 ± 0.09 31.9 ± 0.9 28.31 ± 0.47 31.03 ± 1.01 27.15 ± 0.66 <0.0001
AHI 3 % 17.08 ± 0.41 12.45 ± 0.27 33.9 ± 4.51 19.23 ± 1.51 25.49 ± 3.87 18.89 ± 3.51 <0.0001
AHI 4 % 12.18 ± 0.37 8.31 ± 0.22 28.02 ± 4.37 13.51 ± 1.39 18.97 ± 3.53 13.71 ± 3.2 <0.0001
T90 4.45 ± 0.27 2.45 ± 0.16 12.05 ± 3.97 7.86 ± 1.88 6.92 ± 3.09 3.73 ± 1.49 <0.0001
FEV1 2.45 ± 0.02 2.81 ± 0.02 2.94 ± 0.13 2.58 ± 0.08 2.95 ± 0.15 2.74 ± 0.15 <0.0001
FVC 3.25 ± 0.02 3.72 ± 0.02 3.9 ± 0.15 3.43 ± 0.08 3.87 ± 0.17 3.69 ± 0.17 <0.0001
Cholesterol 209.76 ± 0.91 206.93 ± 0.77 199.22 ± 6.52 198.79 ± 3.22 214.81 ± 7.89 208.19 ± 6.55 0.0105
Diastolic BP 75.29 ± 0.32 72.09 ± 0.21 80 ± 1.96 71.11 ± 1.25 74.87 ± 2.33 67.44 ± 1.94 <0.0001
Systolic BP 135.05 ± 0.48 121.52 ± 0.34 138.58 ± 3.05 132.12 ± 1.72 122.45 ± 3.13 124.96 ± 3.36 <0.0001
ESS 7.77 ± 0.11 7.64 ± 0.09 11.22 ± 0.98 9.07 ± 0.42 11.94 ± 1.14 7.3 ± 0.71 <0.0001
Minimum SaO2 86.07 ± 0.15 87.543 ± 0.114 81.69 ± 1.87 85.26 ± 0.66 83.64 ± 1.26 86.48 ± 1.17 <0.0001
SF-36 Mental Comp 53.25 ± 0.2 53.83 ± 0.15 51.63 ± 1.44 53.58 ± 0.71 53.56 ± 1.57 54.51 ± 1.12 0.149
SF-36 Physical Comp 45.11 ± 0.24 49.7 ± 0.17 47.13 ± 1.96 42.79 ± 0.98 44.98 ± 2.14 46.27 ± 1.86 <0.0001



	

	
	
Table	4.	Cluster	characteristics	
	
Cluster	4	has	no	sleep	apnea	cases	but	100%	of	subjects	have	hypertension	and	
coronary	artery	disease.	As	such,	there	are	a	high	proportion	of	related	
cardiovascular	disorders,	stroke,	and	diabetes.	This	is	the	oldest	group	(69.6	±	0.9).	
their	AHI	is	the	highest	among	the	clusters	with	no	diagnosed	sleep	apnea	cases,	and	
the	ESS	is	the	highest	in	any	category.		
	
Cluster	6	consists	of	subjects	with	coronary	artery	disease	cases,	but	with	no	
hypertension.	Two	sleep	apnea	patients	were	grouped	in	this	cluster,	which	
indicates	sleep	apnea	diagnosis	is	not	the	strongest	factor	in	the	hierarchical	
clustering,	and	there	may	be	some	undiagnosed	sleep	apnea	cases	in	all	the	clusters.	
There	is	a	high	proportion	of	angina,	coronary	artery	bypass	graft,	and	myocardial	
infarction.	
	
The	two	sleep	apnea	groups	can	be	characterized	as	severe	sleep	apnea	with	
hypertension	(cluster	3)	and	moderate	sleep	apnea	without	hypertension,	but	with	
higher	likelihood	of	respiratory	comorbidities	(cluster	5).	
	
It	may	seem	like	it	is	a	foregone	conclusion	that	using	sleep	apnea	diagnosis	as	one	
of	the	factors	will	result	in	a	solution	that	sorts	the	most	severe	sleep	apnea	cases	
into	neat	clusters.	It	should	be	noted	that	by	the	criterion	of	mean	AHI,	all	the	
clusters	except	for	group	2	would	have	moderate	to	severe	sleep	apnea,	so	there	are	
probably	several	undiagnosed	cases.	Also,	we	repeated	the	analysis	using	four	
factors,	removing	the	factor	of	sleep	apnea	diagnosis	(MDSA02).	Similar	clusters	
were	found,	except	now	the	“healthy	subjects”	cluster	includes	the	healthier	
MDSA02	subjects.	
	

Cluster 1 2 3 4 5 6 p-value
n 1808 2533 37 116 31 31
gender 0.465 0.463 0.838 0.698 0.677 0.774 <0.0001
CAD 0 0 0.081 1 0 1 0
Sleep apnea MD 0 0 1 0 1 0.065 0
Hypertension 1 0 1 1 0 0 0
Smoking 0.518 0.52 0.595 0.621 0.71 0.677 0.0262
Alpha-blockers 0.077 0.029 0.189 0.086 0.032 0.065 <0.0001
Asthma 0.084 0.079 0.065 0.079 0.12 0.071 0.964
Runny nose 0.287 0.231 0.351 0.302 0.452 0.452 <0.0001
COPD 0.014 0.006 0 0.04 0.08 0.036 <0.0001
Diabetes 0.116 0.041 0.065 0.208 0.08 0.071 0.0157
Heart failure 0.03 0.004 0.065 0.109 0 0 <0.0001
Stroke 0.055 0.014 0 0.119 0.04 0.036 <0.0001
Angina 0.101 0.019 0.129 0.604 0.08 0.464 <0.0001
CABG 0.051 0.014 0.032 0.277 0.04 0.357 <0.0001
MI 0.092 0.017 0.065 0.505 0.08 0.429 <0.0001
Pacemaker 0.015 0.003 0.065 0.04 0 0.036 <0.0001



An	independent	analysis	on	the	SHHS2	dataset	gave	similar	results.	Respiratory	
index	(AHI)	was	by	far	the	most	important	factor,	then	physical	limitations	on	
activity,	aspirin	(related	to	cardiovascular	phenotypes),	sleep	efficiency,	percentage	
of	time	with	oxygen	saturation	is	below	75%,	and	then	hypertension.		
	
An	analysis	of	the	“interim”	dataset,	without	PSG	data	or	medication	data,	came	up	
with	blood	pressure	(hypertension)	as	the	most	important	factor,	followed	by	
“falling	asleep	during	some	sort	of	activity”	(related	to	physical	limitations),	“sleep	
apnea	symptoms”,	and	“awakening	during	sleep.”	
	
We	saw	similarities	between	our	clusters	and	those	of	the	Vavougious	et	al.	study,	
particularly	in	the	existence	of	severe	obstructive	sleep	apnea	syndrome	(OSAS)	
phenotypes	with	and	without	comorbidities,	as	well	as	moderate	OSAS	phenotypes	
with	and	without	comorbidities.	In	both	our	studies,	the	phenotype	with	the	most	
severe	AHI	had	fewer	concomitant	diseases,	other	than	obesity,	while	a	more	
moderate	phenotype	was	associated	with	a	lot	of	comorbidities.		
	
Age	did	not	seem	particularly	linked	to	OSA	severity	in	our	study.	Age	has	been	
associated	with	an	increased	rate	of	OSAS	but	reduced	severity	in	men	(67).	The	
group	with	the	second	highest	AHI	was	also	collectively	the	youngest,	but	they	also	
had	the	highest	rate	of	smoking	and	respiratory	disorders.		
	
The	link	between	obesity	and	OSA	has	been	well	documented(68).	It	is	a	
complicated	interaction	in	which	obesity	can	lead	to	the	development	of	sleep	
apnea,	which	leads	to	increasing	severity	of	sleep	apnea.	Indeed,	the	two	clusters	
with	100%	sleep	apnea	diagnosed	subjects	also	had	the	highest	mean	BMI.	
	
Hypertension	is	a	well-known	comorbid	condition	with	OSA(68).	It	is	itself	
associated	with	diabetes,	COPD,	and	cardiovascular	disease.	While	in	the	most	
severe	OSA	phenotype,	there	were	low	proportions	of	concomitant	disorders,	in	
moderate	OSA,	when	hypertension	was	also	present,	there	were	the	highest	
proportion	of	comorbid	disorders.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Chapter	5:	Discussion	of	findings	
	
In	general,	our	study	seems	to	confirm	the	results	of	the	Vavougious	et	al.	study(16)	
and	addresses	some	of	the	shortcomings	of	that	paper.	Namely,	it	was	centered	
around	only	a	single	center,	whereas	the	SHHS	sourced	its	participants	from	several	
centers	and	was	more	than	four	times	bigger.	In	addition,	the	SHHS	was	more	
balanced	with	regards	to	gender.		
	
In	addition,	a	newer	study	by	Lacedonia	et	al.	found	that	the	main	differences	in	
their	three	clusters	of	sleep	apnea	patients	was	caused	by	differences	in	AHI,	BMI,	
and	ESS(17).	They	theorized	that	that	a	more	moderate	form	of	sleep	apnea	could	be	
comorbid	with	a	disease	that	is	far	more	threatening	to	health.	This	seems	to	be	the	
case	in	our	cluster	4,	which	has	the	third	highest	AHI,	but	very	high	proportion	of	
cardiovascular	disease	and	diabetes.	
	
Ye	et	al.	published	the	first	paper	to	attempt	a	cluster	analysis	approach	for	
subtyping	OSA(18).	Concerns	about	that	study	were	the	fact	that	it	was	only	on	a	
small	homogeneous	population,	they	did	not	perform	dimensionality	reduction	on	
the	survey	data,	and	that	they	lumped	cardiovascular	disease	into	one	variable.		
	
We	still	believe	semantic	clustering	could	be	done,	if	further	work	was	done	to	
incorporate	different	severity	sleep	apnea	phenotypes	into	the	HPO.	The	
stratification	that	came	from	the	respiratory	index	factor	was	key,	and	that	
information	was	excluded	in	the	semantic	analysis.			
	
The	reason	for	the	exclusion	was	that	we	hypothesized	that	AHI	was	1)	not	a	
sufficient	classifier	for	sleep	apnea	subtypes,	and	2)	it	would	be	possible	to	
construct	better	classifiers	from	the	component	variables	of	AHI.	Hypothesis	1	
turned	out	to	be	correct:	other	factors	are	important	in	describing	a	full	sleep	apnea	
phenotype.	However,	while	there	are	indices	and	measurements	that	are	slightly	
better	predictors	of	OSA	severity,	they	are	highly	correlated	with	AHI.	The	
widespread	clinical	use	of	AHI	makes	it	easy	to	understand.	
	
Additionally,	the	findings	from	the	traditional	clustering	make	the	case	that	
moderate	AHI	and	severe	AHI	are	distinct	phenotypes	that	interact	with	other	
phenotypes	differently,	and	thus	should	be	added	to	the	HPO.		
	
	
	
	
	
	
	
	
	



Chapter	6:	Summary	and	conclusions	
	
Different	OSA	phenotypes	may	respond	differently	to	treatment,	thus	understanding	
and	better	characterizing	the	subgroups	is	expected	to	allow	us	to	assign	more	
effective	precision	treatment	to	the	right	patients.	In	terms	of	our	results,	patients	in	
category	4	are	at	much	higher	risk	for	heart	attacks	compared	to	others.	Therefore,	
these	patients’	cardiovascular	health	should	be	monitored	more	closely.		
	
Viewing	a	disease	as	a	collection	of	individual	but	interacting	phenotypes	may	be	
the	way	diagnosis	is	headed	in	the	future.	It	may	be	that	we	do	not	need	to	
categorize	someone	with	moderately	severe	OSA,	but	rather	they	have	“moderately	
high	AHI	phenotype”,	“increased	diastolic	blood	pressure	phenotype”,	“coronary	
disease	phenotype”,	etc.			
	
In	addition,	incorporating	sleep	data	into	the	HPO	enhances	it	as	a	resource	for	
future	users.	The	code	we	wrote	to	work	with	the	SHHS	dataset	is	an	open	resource	
for	users.	We	also	demonstrated	the	power	of	using	shared	data	from	several	
centers,	showing	that	we	can	extend	the	analysis	to	a	bigger	and	more	diverse	data	
set.	
	
There	are	sleep	components	in	rare	phenotypes	which	are	heretofore	unexplored	
and	unquantified,	and	this	work	will	help	researchers	discover	new	relationships	
between	these	diseases.	Conversely,	the	additional	phenotype	data	will	potentially	
allow	us	to	discover	new	aspects	of	OSA.	The	complex	interaction	of	different	
stratifications	of	AHI	with	comorbid	conditions	is	worth	exploring	further.	OSA	is	a	
complex	disease,	and	this	approach	can	serve	as	a	model	for	a	pipeline	to	use	public	
data	to	subtype	complex	diseases.		
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APPENDIX	
	
The	workflow	for	cluster	analysis	is	as	follows	and	corresponds	to	Figure	5	in	the	
main	text:	
	
-Feature	selection:	We	must	decide	which	traits	or	features	to	perform	clustering	
on.	A	balance	must	be	struck	between	using	as	much	information	as	possible	while	
reducing	computational	load	by	eliminating	unnecessary,	redundant,	low-
information	features.	
	
-Clustering	algorithm	selection:	The	method	of	actually	dividing	the	data	points	into	
clusters	is	selected	in	this	step.	Generally,	each	algorithm	is	defined	by	a	proximity	
measure	and	clustering	criterion.	The	proximity	(or	distance)	measure	is	how	
similar	two	data	points	are.	The	distance	between	a	point	and	itself	must	equal	zero.	
The	clustering	criterion	can	be	expressed	as	a	cost	function	or	some	other	kind	of	
mathematical	rule	that	defines	how	the	data	set	is	to	be	partitioned.	
	
-Measure	of	clustering	quality:	Since	unsupervised	learning	defines	clusters	are	not	
known	a	priori,	there	has	to	be	some	kind	of	evaluation	of	the	clustering.	There	are	
two	types	of	validation.	One	is	biological	validation,	where	one	uses	another	sample	
or	set	of	samples	to	confirm	the	results,	using	an	alternate	method.	We	could	apply	
our	algorithm	to	a	previous	paper’s	data	to	compare	our	clustering	results	to	theirs,	
but	we	do	not	have	easy	access	to	their	data.	Thus	we	are	limited	to	computational	
validation.	If	we	can	make	the	case	that	our	computational	results	hold	true,	then	
biological	validation	can	be	attempted	by	experimental	scientists.		
	
-Interpretation	of	the	results:	The	final	step	is	to	analyze	the	clusters	to	see	if	they	
make	biological	sense.	This	will	draw	on	our	domain	expertise	in	the	field	of	sleep.	
	
Clustering	
1	Partitioning	
The	k-means	algorithm(69)	is	a	well-known,	simple,	clustering	method.	The	general	
k-means	clustering	procedure	is	as	follows:	
	

1. Choose	k	cluster	centers	(centroids)	inside	the	space	containing	the	
observation	set,	where	k	is	the	number	of	clusters	desired.	

2. Assign	each	observation	to	the	closest	centroid	(based	on	Euclidean	distance	
or	squared	error	criterion).	

3. Recompute	the	centroids	using	the	current	cluster	memberships	(i.e.,	the	
new	centroids	must	be	the	center	of	the	clusters).	

4. If	the	convergence	criterion	is	not	met,	repeat	step	2.	Typical	convergence	
criteria	are	no	reassignment	of	points	to	new	cluster	centers,	or	minimal	
decrease	in	squared	error.	

	



The	squared	error	criterion	is	also	known	as	the	sum	of	the	squared	errors.	The	
squared	error	for	clustering	L	of	a	pattern	set	X	containing	K	clusters	is	
	

!! !, ! = !!(!) − !!
!

!!

!!!

!

!!!
	

where	cj	is	the	centroid	of	the	jth	cluster	and	xij	is	the	ith	pattern	in	the	jth	cluster.	In	
essence,	the	squared	error	is	the	square	of	the	Euclidean	distance	of	points	to	the	
centroids	of	the	clusters	to	which	they	belong.	
	
The	potential	problems	of	k-means	clustering	include	never	reaching	convergence,	
converging	on	a	local	minimum	due	to	a	poor	initial	partition	(choice	of	centroids),	
and	unusually	shaped	clusters.		Domain-specific	knowledge	can	help	with	choosing	
a	good	initial	partition.	Setting	up	a	good	convergence	criterion	can	solve	the	second	
problem	(e.g.,	if	the	algorithm	is	forever	switching	one	pattern	back	and	forth	
between	a	cluster,	redefine	what	happens	in	case	of	a	tie	or	terminate	when	only	
one	pattern	is	switching	back	and	forth).		
	
Unusually-shaped	clusters,	such	as	elongated	clusters,	are	not	reproduced	by	k-
means	clustering	because	of	the	squared	error/Euclidean	distance	criterion.	
Because	it	seeks	to	minimize	the	squared	error,	it	tends	to	make	round	clusters.	
	
K-means	is	an	O(n)	algorithm,	which	is	very	efficient.	
	
Another	partitioning	method	is	Partitioning	Around	Medioids.	The	objective	is	to	
find	a	central	data	point	(medioid)	within	each	cluster.	Initially,	c	number	of	
medioids	are	chosen.	Objects	are	then	grouped	with	the	medioid	they	are	closest	to	
(most	similar	to).	Medoids	are	swapped	with	non-selected	objects	until	all	objects	
qualify	as	medioid.	PAM	is	a	quite	computationally	expensive	algorithm,	because	it	
has	to	compare	an	object	with	the	entire	dataset.	
	
2.	Hierarchical	
Within	this	category	are	two	general	types:	agglomerative,	where	the	clusters	
closest	to	each	other	are	merged	together	at	each	step;	and	divisive,	where	clusters	
are	split	apart	at	each	step.	
	
In	R,	hierarchical	clustering	can	be	handled	by	hclust()	or	agnes()	for	
agglomerative	hierarchical	clustering,	and	function	diana()	does	divisive	
hierarchical	clustering.	The	method	used	by	Vavougios	et	al.	was	based	on	SPSS	
(IBM	Analytics,	Almaden,	CA)	Two-Step	Clustering,	a	proprietary	agglomerative	
hierarchical	method	which	can	combine	both	continuous	and	categorical	variables	
and	is	good	for	large	datasets.(16)	It	defines	distance	between	two	clusters	as	the	
log-likelihood	decrease	from	combining	them	together.	The	first	step	of	the	cluster	
analysis	is	sorting	the	points	into	pre-clusters.	This	reduces	the	size	of	the	matrix	



that	contains	the	distance	between	all	pre-clusters.	The	next	step	is	to	combine	the	
closest	clusters.		
	
The	linkage	is	a	function	of	dissimilarity	between	groups.	Agglomerative	
hierarchical	clustering	starts	with	each	object	as	its	own	cluster,	then	repeatedly	
merging	the	two	groups	that	have	the	smallest	dissimilarity,	or	linkage(70).		
	
In	single	linkage	(or	nearest-neighbor	linkage),	the	dissimilarity	between	clusters	G	
and	H	is	the	smallest	dissimilarity	between	a	point	in	G	and	a	point	in	H.	
	

!!"#$%& !,! = min
!∈!,!∈!

!!" 	
	
Therefore,	for	a	cut	at	a	certain	height	(e.g.,	0.9),	for	each	point	Xi	in	a	cluster,	there	
will	be	a	point	Xj	with	dij<=0.9.	
	
Complete	linkage	(or	farthest-neighbor	linkage)	is	when	the	dissimilarity	between	G	
and	H	is	taken	to	be	the	largest	dissimilarity	between	a	point	in	G	and	a	point	in	H.	

!!"#$%&'& !,! = max
!∈!,!∈!

!!" 	
	
The	cut	interpretation	is	that	if	there	is	a	point	Xi	in	a	certain	cluster	cut	at	
height=0.9,	then	every	other	point	Xj	in	that	cluster	will	have	dij<=0.9.	
	
The	average	linkage	between	G	and	H	is	the	average	dissimilarity	between	all	points	
in	both	groups.		

!!"#$!%# !,! = 1
!! ∙ !!

!!"
!∈!,!∈!

	

There	is	not	a	very	good	interpretation	of	cut	height	in	average	linkage.	
	
Single,	complete,	and	average	linkage	do	not	need	to	have	dissimilarities	in	
Euclidean	space,	which	means	the	Gower	distance	matrix	can	be	used.	
Agglomerative	clustering	with	any	of	these	linkages	results	in	a	dendrogram	with	no	
inversions,	i.e.,	the	height	of	a	parent	node	will	always	be	higher	than	its	children	
nodes.	
	
Single	linkage	tends	to	suffer	from	chaining,	or	adding	one	close	point	at	a	time.	
Therefore,	clusters	can	be	too	spread	out	and	not	compact.	Complete	linkage	suffers	
from	the	opposite	problem,	crowding.	A	point	could	be	closer	to	points	in	other	
clusters	than	its	own	cluster.	Clusters	tend	to	be	compact,	but	not	separated	enough.	
As	might	be	expected,	average	linkage	strikes	a	balance	between	the	two,	but	has	
the	problem	of	not	being	very	interpretable.	
	
There	are	many	more	linkage	functions,	as	well	as	divisive	clustering,	which	works	
from	the	top	down	instead	of	bottom	up.	
	



3.	OWLSIM	
A	publicly	available	tool	from	Monarch	is	OWLSim,	which	is	used	to	compare	
phenotype	profiles(31,	32).	The	two	primary	uses	are	1)	disease	knowledge	base:	
that	is,	what	phenotypes	describe	a	disease,	and	2)	in	a	clinical	setting,	annotating	
each	patient	with	a	set	of	phenotypes.	OWLSim	can	compare	the	patient	phenotype	
profile	(a	set	of	phenotypes	associated	with	a	patient)	to	all	the	disease	phenotype	
profiles	in	the	HPO	and	output	a	list	of	diseases	that	are	most	similar.	The	structure	
of	the	HPO	enables	fuzzy	matching	when	phenotypes	are	annotated	at	different	
levels	of	granularity.	
	
We	intended	to	use	OWLSim	in	a	novel	way,	to	find	clusters	of	patients	that	are	
similar	to	each	other.	Essentially,	we	will	use	OWLSim’s	semantic	similarity	score	as	
the	distance	function.	Pairwise	comparisons	of	all	patient	profiles	will	be	made	to	
generate	a	similarity	matrix	between	all	possible	pairs	of	data	points.		
	
OWLSim	compares	a	list	of	HPO	terms	against	another	list	of	HPO	terms.	The	
comparison	is	then	scored	using	either	Information	Content	(IC)	or	Jaccard	
similarity	(simJ)	as	metrics.	SimJ	is	the	ratio	of	shared	attributes	to	total	attributes:	

!"#$ !, ! = !! ∩ !!
!! ∪ !! 	

where	ap	means	the	inferred	attributes	of	phenotype	p	and	aq	means	the	inferred	
attributes	of	phenotype	q.	Jaccard	similarity	is	explained	in	Figure	A.	
	
The	IC	of	a	description	is	the	negative	logarithm	of	the	ratio	of	the	number	of	
features	annotated	with	that	description	over	the	total	number	of	annotations.	
!" !"#$%&'(&)* = −!"#!(

!""#$!"#$%&'(&)*
!""#$ )	

IC	is	calculated	for	the	Least	Common	Subsuming	(LCS)	phenotype	of	the	pairwise	
comparison,	which	is	the	most	specific	set	of	all	shared	attributes.	The	IC	provides	a	
measure	of	how	unusual	the	set	of	attributes	in	common	are.	A	match	where	the	
terms	in	common	are	rare	will	score	higher	than	when	the	common	terms	are	less	
specific	(i.e.,	“stratum	corneum	of	the	epidermis”	will	score	higher	than	“anatomical	
structure”).			
	



	
Figure	A.	How	Jaccard	similarity	is	calculated.	In	this	example,	the	common	terms,	
!! ∩ !!=	2,	while	the	total	number	of	terms	in	the	set,	!! ∪ !! 	=10,	therefore,	
simJ=0.2.	
	
OWLSim	outputs	four	metrics	for	each	pairwise	comparison	into	a	JSON	object:	
	
avgIC	=	average	IC	score	across	all	pairs	
maxIC	=	maximum	IC	score	across	all	the	pairs	
avgsimJ	=	average	simJ	score	across	all	the	pairs	
maxsimJ	=	maximum	simJ	score	across	all	the	phenotype	pairs	
	
4.	Other	methods	
Density-based	algorithms	such	as	DBSCAN	think	of	clusters	as	dense	regions	of	
objects	separated	by	regions	of	low	density(71).	The	general	idea	is	that	for	each	
point	in	a	cluster,	within	a	given	radius	must	be	a	minimum	number	of	points.	
DBSCAN	is	good	at	handling	noisy	outliers	and	discovering	clusters	of	unusual	shape	
(not	round	or	ellipsoidal).	Vavougios	et	al.	used	a	variation	of	this	method,	
clustering	on	data	set	values	in	order	to	determine	groups	of	subjects	in	a	
correlation	network,	represented	as	a	graph	of	nodes	(subjects)	and	edges	
(connections	between	subjects)(16).	Subjects	that	meet	a	minimum	threshold	of	
correlation	are	connected	by	edges.	
	
Assorted	tables	and	figures	



	

	
Figure	B.	VSS	plot.	With	complexity	of	1,	the	maximum	VSS	is	22	factors	(we	limited	our	
analysis	to	up	to	24	factors),	but	the	output	prompt	suggested	it	is	“probably	more	
reasonable	to	think	about	5	factors.”	Additionally,	the	Velicer	MAP	achieves	a	minimum	of	
0.015	at	4	factors.		
	

	
Table	A.	Eigenvalues	of	the	factor	analysis.		
	
	
	

	

Table 1. Factor analysis eigenvalues for SHHS1 
MR1 MR2 MR4 MR3 MR20 MR7 MR6 MR10 MR11 MR5 MR8

SS loadings 7.096 4.474 3.096 3.088 3.002 2.73 2.467 2.424 2.38 2.117 2.103
Proportion Var 0.091 0.057 0.04 0.04 0.038 0.035 0.032 0.031 0.031 0.027 0.027
Cumulative Var 0.091 0.148 0.188 0.228 0.266 0.301 0.333 0.364 0.394 0.421 0.448

MR17 MR14 MR9 MR13 MR19 MR15 MR18 MR21 MR16 MR12 MR22
SS loadings 2.072 1.972 1.955 1.91 1.881 1.804 1.79 1.732 1.712 1.701 1.478
Proportion Var 0.027 0.025 0.025 0.024 0.024 0.023 0.023 0.022 0.022 0.022 0.019
Cumulative Var 0.475 0.5 0.525 0.55 0.574 0.597 0.62 0.642 0.664 0.686 0.705



	
Figure	C.	(top)	Factor	analysis	plot	of	factors	3	vs.	4	(hypertension,	sleep	apnea	diagnosis).	(bottom)	
Factor	analysis	plot	of	factors	5	vs.	6	(mental	health	vs.	physical	endurance).		The	red	points	are	
features	that	have	loadings	less	than	0.5	on	either	axis.	Blue	dots	are	features	that	have	loadings	
greater	than	0.5	on	the	Y-axis,	and	black	dots	have	loadings	greater	than	0.5	on	the	X-axis.	
CCB=calcium	channel	blocker,	MDSA02	=	medical	diagnosis	of	sleep	apnea,	SA15	=	sleep	apnea	
(presence),	MCS	=	SF-36	mental	component	score,	PCS	=	SF36	physical	component	score.	
	
Table	B.	Factor	loadings	for	final	dimensionality	reduction.	MR=minimum	residual,	which	
is	the	particular	criterion	for	this	factor	analysis	(maximum	likelihood	is	an	alternate	
criterion).	The	factor	columns	are	arranged	in	order	of	largest	to	smallest	eigenvalue.	
	
Loadings: 
           MR2    MR1    MR3    MR4    MR6    MR10   MR14   MR16   MR5    MR13   
age_s1      0.349  0.263 -0.195 -0.527  0.160  0.156                0.121        
gender      0.334  0.265  0.228  0.647         0.290                0.122  0.233 
bmi_s1     -0.111  0.179  0.208                              0.198        -0.144 
avsao2nh          -0.198 -0.138               -0.201        -0.759               
mcs_s1                                                                           
pcs_s1     -0.209 -0.106         0.325 -0.138        -0.196                      
ai_nrem            0.737                                            0.202        
ai_rem             0.604         0.153                0.164                      
arrembp            0.152                                                         
fvc                       0.188  0.801 -0.197        -0.207                0.111 
chol              -0.132        -0.130                       0.193        -0.128 
ace1                                    0.794                                    
alpha1      0.146  0.136  0.100         0.120                                    
hctzk1                          -0.186  0.712        -0.242               -0.116 
sympth1     0.158                      -0.198         0.890                      
ohga1       0.207        -0.122 -0.253  0.113        -0.103  0.104               
ntca1             -0.148                              0.200         0.144  0.125 
thry1             -0.106  0.112 -0.594                             -0.163        
nsaid1     -0.106                                                                
ca15        0.864                       0.120                                    
asthma15                                              0.863                      
pacem15     0.249         0.291         0.249               -0.100               
htnderv_s1  0.307  0.102        -0.118  0.897                0.129               
runny15                   0.259                       0.155                      
cgpkyr                                         0.910                             
cabg15      0.832                                                                
alcoh                            0.338  0.108  0.447                             
sa15                      0.909                                                  
othrcs15    0.711                       0.119  0.110                             
wrface10                                                                         
ltdp10                                                             -0.104        



nitro15     0.789                                            0.115               
evsmok15                  0.111                0.927                             
carful25                                                                         
loudsn02           0.143  0.437                0.138                             
sob02       0.150         0.234                       0.400                      
hrswd02                         -0.139               -0.124         0.238  0.102 
wu2em02                                                                          
tfa02                                                                            
sleepy02                  0.381                                                  
mdsa02                    0.912                                                  
surgtr02   -0.544         0.285  0.165 -0.152        -0.297  0.118  0.113  0.151 
time_bed          -0.189  0.142 -0.255        -0.134                0.578  0.432 
nsupinep                                                                         
pcstahda           0.833  0.166                              0.322               
pctsa75h           0.116         0.116        -0.119         0.684               
tmstg2p            0.305         0.183         0.105                       0.768 
remlaip                                                                          
pctsa90h           0.257                       0.116         0.779               
slpeffp    -0.106 -0.238                                           -0.255  0.188 
hremt1p            0.197                                    -0.102         0.103 
hremt2p                         -0.139                             -0.490  0.151 
hremt34p           0.138 -0.193                                    -0.141        
slplatp                                                                          
tmremp            -0.309                                            0.120 -0.262 
pcstah3d           0.770  0.184                              0.378               
scstg1p            0.121         0.125                              0.747        
scstg2p                                                             0.147  0.920 
slptawp            0.420                                            0.705        
           MR9    MR12   MR15   MR7    MR11   MR8    MR20   MR18   MR19   MR21   
age_s1            -0.122                             -0.196 -0.121         0.190 
gender     -0.103        -0.132                      -0.218                      
bmi_s1                                               -0.139  0.577        -0.241 
avsao2nh                                                                         
mcs_s1     -0.110 -0.861 -0.102                                                  
pcs_s1     -0.116                             -0.142        -0.507        -0.112 
ai_nrem                   0.155                                     0.127        
ai_rem                           0.168  0.267                                    
arrembp                  -0.112         0.900                                    
fvc                                                                              
chol                      0.177         0.107                                    
ace1               0.119                       0.145 -0.233                0.122 
alpha1                           0.858               -0.171                      
hctzk1      0.112         0.116 -0.165        -0.113  0.265               -0.240 
sympth1                                                                          
ohga1              0.159 -0.157                      -0.601  0.184               
ntca1       0.103  0.362  0.587               -0.117  0.146        -0.235        
thry1              0.133  0.110                0.127                             
nsaid1                                                       0.773  0.107        
ca15                                                                             
asthma15                                                                         
pacem15     0.172               -0.809         0.129 -0.122                      
htnderv_s1                                                                       
runny15                                               0.132                0.717 
cgpkyr                                                                           
cabg15                                               -0.223 -0.116               
alcoh      -0.100                              0.127                0.138        
sa15                                                                0.129  0.194 
othrcs15          -0.105        -0.253         0.148  0.110               -0.297 
wrface10                                                            0.759        
ltdp10     -0.231                0.114                             -0.673        
nitro15     0.156  0.105         0.184                       0.147         0.236 
evsmok15                                                                         
carful25           0.827                                                         
loudsn02                                                           -0.132 -0.109 
sob02       0.183  0.154                                     0.170  0.114        
hrswd02    -0.638                                     0.143                      
wu2em02     0.758                                                                
tfa02       0.729         0.126                                     0.112        
sleepy02    0.364  0.335  0.119                                                  
mdsa02                                                              0.139  0.139 
surgtr02                         0.285               -0.166  0.137         0.415 
time_bed                                       0.188  0.228               -0.156 
nsupinep                               -0.860                             -0.109 



pcstahda                                                                         
pctsa75h                                                                   0.141 
tmstg2p                   0.234                      -0.182                      
remlaip                   0.764                                                  
pctsa90h                                                                         
slpeffp                  -0.196               -0.690  0.143        -0.168        
hremt1p                  -0.143        -0.116                                    
hremt2p                  -0.364                       0.217               -0.158 
hremt34p                 -0.108 -0.121                0.645  0.112         0.185 
slplatp                                        0.836                             
tmremp                   -0.645         0.111 -0.104               -0.116 -0.162 
pcstah3d                                                                         
scstg1p                                              -0.101                      
scstg2p                                       -0.203                             
slptawp                                                                          
           MR17   
age_s1            
gender     -0.123 
bmi_s1            
avsao2nh          
mcs_s1            
pcs_s1            
ai_nrem           
ai_rem      0.313 
arrembp     0.115 
fvc               
chol        0.408 
ace1              
alpha1            
hctzk1            
sympth1           
ohga1      -0.135 
ntca1             
thry1       0.126 
nsaid1            
ca15              
asthma15   -0.148 
pacem15           
htnderv_s1        
runny15           
cgpkyr            
cabg15            
alcoh       0.133 
sa15              
othrcs15          
wrface10          
ltdp10            
nitro15           
evsmok15          
carful25          
loudsn02          
sob02             
hrswd02     0.169 
wu2em02           
tfa02             
sleepy02          
mdsa02            
surgtr02   -0.188 
time_bed          
nsupinep    0.147 
pcstahda          
pctsa75h          
tmstg2p           
remlaip           
pctsa90h          
slpeffp     0.175 
hremt1p     0.753 
hremt2p           
hremt34p   -0.145 
slplatp           
tmremp            
pcstah3d          
scstg1p           



scstg2p           
slptawp    -0.165 
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