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ABSTRACT 

Postural instability is one of the most common causes of dependence, reduced quality 

of life, and falls, the leading cause of injury and subsequent death for older adults. Older 

adults with cognitive impairment are at an increased risk of postural instability and falls 

due to decreased neural control. Although quantitative postural sway measures have been 

used to assess postural instability, postural sway in older adults with mild cognitive 

impairment (MCI) has yet to be measured frequently across time. Inspired by other 

longitudinal studies conducted within the framework of OHSU’s Oregon Center for Aging 

and Technology (ORCATECH), we integrated a Nintendo Wii balance board and a tablet 

into ORCATECH’s current in-home technological platform to extract daily measures of 

postural sway with and without cognitive loading in older adults with and without MCI. 

This dissertation reveals associations between frequent postural sway measures and 

cognitive functioning, assesses the feasibility of in-home monitoring of postural sway in 

older adults with MCI, and lays the foundation for large-scale, long-term implementation. 

Tracking longitudinal changes in postural sway may further our understanding of early-

stage postural decline and its association with cognitive decline and may aid in preclinical 

detection of dementia and fall risk. 
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CHAPTER 1: Introduction  

1.1 Background 

1.1.1. Postural Control, Falls, & Cognitive Impairment 

Postural instability is one of the most common causes of dependence, reduced quality 

of life and falls, a leading cause of injury and subsequent death for older adults [1]. Postural 

instability is the result of abnormal neural regulation of the body’s center of mass (CoM) 

position relative to the base of foot support. Achieving postural control, an essential daily 

life motor control function, is a complex motor skill derived from the integration of several 

neural components including cognitive processing, which plays a central role in balance 

maintenance and fall prevention [2]. Cognitive impairment compromises postural control 

and, in turn, increases fall risk [3]. Cognitively impaired older adults are at least twice as 

likely to fall (annual incidence of 60-80%) and endure more severe fall consequences 

compared to cognitively intact older adults [4,5]. Because both direct and indirect costs of 

falls are significant, rising and increasingly unsustainable for our healthcare system and 

because cognitive impairments and postural instabilities are both independent predictors of 

falls, there is a pressing need to further elucidate the relationship between cognitive status 

and postural control and to monitor, manage, and help improve postural stability in our 

aging population [3,5,6]. 

The relationship between cognitive impairment and postural control has elicited great 

interest since motor function changes/decline have been evidenced in older adults with 

cognitive decline [7-9] and cognitive impairment has been identified as an independent fall 

risk factor in older adults [1,4,10-15]. Cognitively impaired older adults often have less 

postural control compared to cognitively intact older adults, as shown in studies comparing 

older adults with no cognitive impairment to those with significant cognitive impairment 

(e.g., manifest dementia) [16-20]. However the specific cause of postural instability in 

cognitively impaired older adults remains unknown because isolating the specific cognitive 

deficits that decrease postural stability in older adults who are significantly impaired is 

challenging due to the global nature of the cognitive deficits [21]. In turn, individuals with 

mild cognitive deficits, such as those with mild cognitive impairment (MCI), are ideal 
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candidates when studying the relationship between cognitive impairment and postural 

control since domain specificity of cognitive deficits may make it easier to quantify 

associations between specific types of cognitive deficits and postural control/decline.  

1.1.2. Mild Cognitive Impairment (MCI)  

Mild cognitive impairment (MCI) is the transitional state between healthy aging and 

early dementia, characterized by decline in one or more cognitive domains (e.g., memory, 

executive function, attention, language, visuospatial, etc.) without significant impairment 

to daily life function. More specifically, MCI is cognitive impairment greater than what is 

normal for one’s age but less than what is clinically diagnosed as dementia, affecting an 

estimated 19% of all older adults, and 29% of individuals over the age of 85 [22]. Older 

adults with MCI are 10- to 15-times more likely to develop Alzheimer’s disease (AD) 

compared to cognitively intact older adults [23] – within a three year period about 41-64% 

of individuals with MCI converted to AD [24] – making MCI an ideal sample population 

when working to develop early markers of disease progression and functional decline.  

Although the term “MCI” is a clinically fluid construct, MCI is widely recognized as a 

potentially heterogeneous condition consisting of cognitive domain-specific subtypes: 

amnestic MCI (aMCI) pertains to memory-based MCI and non-amnestic MCI (naMCI) 

pertains to non-memory-based MCI [25]. Because recent studies suggest that older adults 

with aMCI are more susceptible to AD conversion than older adults with naMCI, and 

because aMCI pertains to mild memory-based cognitive impairment, many consider aMCI 

to be the prodromal stage of AD – preserved general intellect, an intact ability to function 

in daily life and no clinically diagnosable AD symptoms, yet mild symptoms are present 

that suggest AD pathology [24]. The time course of disease progression (i.e., rate of 

decline) and overall outcome appears to differ between MCI subtypes – older adults with 

naMCI are less likely to convert to AD or other forms of dementia – suggesting that the 

underlying disease pathology associated with naMCI may be completely different than that 

associated with aMCI (prodromal AD). Due to our limited access to MCI subjects 

(challenges with subject selection/recruitment is discussed in Chapter 4), we did not 

differentiate based on MCI subtype in this PhD research. However it is important to note 

that for future research where a larger MCI cohort is accessible, it may be important to 
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differentiate between MCI subtypes since specific cognitive functions and deficits directly 

influence the postural control system.  

Postural instability has been observed in older adults with MCI [8,12,26-28]. In 

general, the way in which both postural control and MCI are defined varies from study to 

study and differs in precision. MCI definitions range from course (e.g., below a given 

threshold on the Mini-Mental State Exam (MMSE) [29] or the Montreal Cognitive 

Assessment (MoCA) [30]) to fine (e.g., either the Petersen/Winblad [25] or Jak/Bondi 

criteria [31], which both depend on thorough clinical and neuropsychological 

examinations) measurements. Postural control can either be measured quantitatively or 

qualitatively, but it is most often measured qualitatively in the clinic (e.g., Tinetti Balance 

and Gait Assessment [32], Berg Balance Scale [33]), yielding subjective measures that are 

susceptible to measurement bias. Postural control is best measured quantitatively and 

objectively to increase the validity and reliability of observations linking MCI with postural 

instability. 

1.1.3. Postural Sway & MCI 

Postural control is often measured by characterizing postural sway (the small postural 

shifts in both the anteroposterior (AP) and mediolateral (ML) directions during quiet stance 

(i.e., standing in place with a fixed foot position)). Postural sway has been shown to be 

related to age, postural stability and falls [27,34-43] and has been used to measure postural 

control in older adults both with and without cognitive impairment [27,44,45]. Postural 

sway abnormalities have been detected in older adults with MCI however the number of 

studies relying on quantitative measurements is limited [12,20,27,46-49]. Like postural 

control in general, current clinical measures of postural sway are acquired via rating scales 

and/or timed trials and are coarse, qualitative, subjective, influenced by clinician bias, and 

insensitive to mild postural instability [50]. Quantitative, objective postural sway measures 

are necessary to be sensitive to mild pathology, express experimental and clinical validity, 

and have good test-retest reliability [50,51]. This PhD research will lay the foundation to 

develop quantitative, objective, clinical postural sway measures capable of detecting mild 

postural instability specific to (and/or present in) older adults with MCI. 
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1.1.4. Quantifying Postural Sway  

 Postural sway is quantified by either the movement of the body’s center of pressure 

(CoP) or the acceleration (Acc) of the body’s CoM. Both CoP- and Acc-based 

measurement devices are currently used to measure postural sway. 

1.1.4.i. CoP-based Measurement Devices 

The Force Plate 

Static stabilometry is the “gold standard” instrumental technique used to quantify both 

static (i.e., postural sway) and dynamic postural control: a laboratory-grade force plate is 

used to measure the movement of the body’s CoP within the limits of stability (which is 

bounded within the base of foot support during quiet stance). Prior research has shown 

force plate-based postural sway measures to be sensitive to mild postural instability in older 

adults with mild neurodegenerative diseases [52-54] and/or a high fall risk [55,56]. But 

because force plates are expensive and require proper installation, they are not feasible for 

quantifying postural sway in the home or small clinic environments.  

The Nintendo Wii Balance Board 

The Nintendo Wii balance board (WBB) (Figure 1.1) has recently generated 

significant interest in its application as a postural control measurement device in both the 

clinical and (basic, clinical, and rehabilitation) research domains. Because the WBB is 

incredibly affordable, portable, and easily-accessible, it has been proposed as an alternative 

to the “gold standard” laboratory-grade force plate. However, it is important to note that 

the WBB is an inferior CoP measurement device. It was designed and manufactured for 

entertainment purposes and does not come close to meeting the specifications required of 

a laboratory-grade measurement device. (The WBB’s technological limitations are detailed 

in Chapter 2, Part 1). Nonetheless, the WBB may be used to derive CoP estimates once 

the WBB’s measurement error is sufficiently characterized in the laboratory.  
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Figure 1.1: The Nintendo Wii balance board (WBB) as an alternative to the “gold 

standard” force plate to provide CoP estimates. The WBB is an affordable, portable, 

and easily-accessible alternative that may be used to estimate CoP-based postural sway 

measures once the WBB’s CoP measurement error is fully characterized in the laboratory. 

1.1.4.ii. Acc-based Measurement Device 

The Body-Worn Inertial Sensor 

Static posturography is an alternative instrumental technique that is affordable, portable 

and has been validated as a postural control measurement device: a wireless, body-worn 

inertial sensor (Figure 1.2) composed of a triaxial accelerometer and gyroscope is mounted 

to the approximate location of the body’s CoM to measure the Acc of the body’s CoM. 

Studies have shown that inertial sensor-based postural sway measures are valid and reliable 

and are also sensitive to postural sway features associated with age, mild neurodegenerative 

disease, and/or high fall risk [54,57-59]. 

 

Figure 1.2: Inertial sensors are validated as an alternative postural sway 

measurement device to the “gold standard” force plate. A wireless, body-worn inertial 

sensor (Opal sensor, APDM, Inc.) mounted to the approximate location of the body’s CoM 

(i.e., the trunk, or more specifically, near the L5 lumbar spine) is used to quantify Acc-

based postural sway measures. 
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1.1.5. Objective Postural Sway Measures  

Objective postural sway measures can be derived from both CoP- and Acc-based 

postural sway signals. Traditional, objective postural sway measures are based on the 

statistical mean or variance of the postural sway signal and are divided into two domains: 

time- and frequency-domain measures. Time-domain measures are based on the 

displacement, velocity, or acceleration of the CoP or Acc trajectory; frequency-domain 

measures characterize the area and shape of the power spectral density (obtained by a 

discrete Fourier transform of the time series) of the CoP or Acc trajectory [35,60]. Both 

traditional time- and frequency-domain postural sway measures have been shown to be 

sensitive to age [34,35,38-43], high fall risk [36], postural stability [37], neurodegenerative 

disorders (e.g., cerebellar disorders [61], Parkinson’s disease (PD) [37,62-69], and AD 

[44,70-72]), and even mild cognitive impairment as in MCI [27,44,46]. 

To the best of our knowledge, only five studies to date have used CoP-based 

measurement devices to quantify (time-domain) postural sway in older adults with MCI 

(and we have no knowledge of any studies using Acc-based measurement devices to 

quantify postural sway in MCI). Both Shin et al. [27] (using the WBB) and Young Jeon et 

al. [47] (using a force plate) derived postural sway distance and speed from the CoP-based 

signals. Both groups found higher measures of both distance and speed to be associated 

with MCI status. Deschamps et al. [46] (using a force plate) derived both the means and 

standard deviations (SD) of position, velocity, and the average absolute maximal velocity 

(AAMV) from the CoP-based signals and found higher SD velocity and AAMV to be 

associated with MCI status. Mignardot et al. [48] (using a force plate) derived AAMV from 

the CoP-based signals and found higher measures of AAMV to be associated with MCI 

status. And Sidorovich et al. [73] (using a force plate) derived confidence ellipse area from 

the CoP-based signals and found higher sway areas to be associated with MCI status. In 

sum, increasing distance and velocity-based measures appear to be a hallmark feature of 

MCI. To the best of our knowledge, no studies to date have assessed the relationship 

between frequency-domain postural sway measures and cognitive status. This PhD 

research will further the investigation of distinct postural sway features in MCI and will be 

the first to include frequency-domain measures as part of the analysis. 
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1.1.6. Cognitive-Postural Dual-Tasking   

 The attentional demand for regulating postural sway is typically examined with the 

dual-task paradigm, which presumes that cognitive and postural control compete for 

limited attentional capacity [74]. Cognitive loading during the postural task (dual-tasking) 

is thought to increase the difficulty level of the postural task by redirecting neural resources 

away from the postural task (e.g., quiet stance) and to the cognitive task, however the effect 

of cognitive task on posture has been found to depend on the specific task type [74-76]. 

The amount of cognitive processing required for the dual-task condition depends on both 

the complexity of the postural and cognitive tasks and the capacity of the older adult’s 

cognitive and postural control systems [2]. An individual’s ability to maintain postural 

stability during cognitive loading decreases with age, with a decline in cognitive reserve, 

and further, with cognitive impairment [21,77-79]. Because cognitively impaired older 

adults often do not have sufficient neural resources to adequately regulate both tasks [80], 

the differences in postural sway between cognitively intact and impaired older adults will 

likely be more pronounced under dual-task conditions. Postural instability under dual-task 

conditions has been shown to predict both falls and cognitive decline [3] and may reveal 

mild cognitive and/or sensorimotor pathology affecting postural control. Thus in principle, 

postural instability in MCI may be too mild to detect under the single-task condition (quiet 

stance without cognitive loading), so the dual-task condition (quiet stance with cognitive 

loading) may be necessary to reveal mild pathology that would otherwise remain 

undetected [81].  

For a healthy older adult, maintaining postural stability during quiet stance while 

tending to a cognitive dual-task requires minimal attention. Nonetheless, the primary 

postural task (i.e., quiet stance) is compromised in the presence of a secondary task (i.e., 

the added cognitive load), often quantified by an increase in postural sway from the single- 

to dual-task condition (i.e., a positive postural dual-task cost) [82]. However some studies 

have observed the opposite – an increases in postural sway with the addition of a cognitive 

load (i.e., a negative postural dual-task cost) [61,65] – leading us to believe that cognitive 

dual-task effect on postural likely depends on many different features (e.g., sample 

population, primary postural task type, and secondary cognitive task type). Although the 
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specific neurophysiological mechanisms responsible for this postural dual-task cost are not 

yet fully understood [83], many hypothesize that the cognitive load interferes with postural 

control by competing for the same collection of neural resources [65]. Because of this, the 

specific type of cognitive load (taxing a specific cognitive domain, such as memory, 

executive function, attention, visuospatial, etc.) and task response (e.g., verbal vs. 

nonverbal) may be critical and may dictate the type and/or severity of cognitive 

interference [74,75,84,85].  

1.1.7. The Fundamental Insufficiencies of Infrequent Measures 

There are fundamental insufficiencies in the current paradigm of infrequent measures 

[86]. Both cognitive and postural performance are inherently variable and become 

increasingly more variable during the initial stages of functional decline [87]. In existing 

longitudinal studies of cognition and/or motor (e.g., postural) control, neurocognitive and 

postural control measures are acquired only once or twice a year. These infrequent 

measures reflect one instance of performance, do not measure changes in performance 

variability over time, and in turn may mask true status and decline in cognition and postural 

control. Therefore, current measures may not sufficiently represent the underlying 

longitudinal trends associated with the cognitive and postural control systems (Figure 1.3, 

modified from Hayes et al. [9]).  

Frequent measures are often only attainable via in-home monitoring methods. In-home 

monitoring is an important assessment tool when working to infer true functional status 

since quantifying postural performance in the natural environment of one’s home is likely 

more telling of true postural (dis)ability than that assessed in the unnatural environment of 

a clinic or laboratory. Additionally, by conducting postural assessments out of the clinic 

and in the absence of a task administer/rater, the potential influence of the white coat effect 

on postural performance is avoided. Physiological stress, indexed by elevated blood 

pressure, is often inherent to a doctor’s visit and likely influences one’s ability to perform 

in his/her natural state (i.e., the white coat effect) [88]. In-home monitoring methods 

remove this artifact and preserve the integrity of the biomedical (postural control) signals.  
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Figure 1.3: Infrequent measures are fundamentally insufficient when inferring true 

functional status. The solid lines represent the trends inferred by infrequent (semi-annual) 

measures of an unspecified (cognitive or motor) function. The dotted lines represent the 

underlying trends that are revealed due to frequent measures. The disconnect between 

infrequent and frequent measures applies to the function of postural control. 

1.1.8. Pathophysiological Association between Cognitive & Postural Control 

 Prior research has identified pathophysiological associations between cognition and 

postural control [32], revealing cognition and postural control as  interdependent processes. 

Although both cognitive and postural decline relate to old age, neither process is an 

imminent result of normal aging; functional decline is often coupled with age-related 

disease [89]. Models of aging with neurological disease assign variable behaviors to 

declining systems; instead of abrupt failure, both cognitive and postural control systems 

often demonstrate an initial period of increased variability during the depreciation of 

physiologic reserve [90]. Detecting variability in postural sway over time may result in the 

early detection of postural decline among elders (Figure 1.4, modified from ORCATECH). 

And because changes in postural control have been shown to far precede changes in 

cognition [91,92], such detection may predict cognitive decline, identify elevated risk of 

disease progression and other disease-related events such as falls, and yield the 

development and implementation of therapeutic interventions [49]. Early detection and 

intervention is integral when promoting independent living and increased quality of life 

because treatment during the initial stages of pathological processes may prevent 

subsequent neurodegeneration and progressive cognitive and/or motor decline.  
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Figure 1.4: Importance of detecting variability in a measured function. The period of 

increased variability that precedes functional decline provides a critical opportunity for 

early detection. Infrequent (annual) measures of an unspecified (cognitive or motor) 

function do not sufficiently represent behavior. Frequent (semi-daily) measures of postural 

sway will enable early detection of both cognitive and motor decline. 

1.2. Motivation & Impact 

1.2.1. The Social & Economic Impact of Falls 

 Postural instability often results in falls, creating significant costs for the United States 

healthcare system. Falls are the leading cause of injury and subsequent death in the older 

adult population [5]. Approximately one third of all older adults fall each year [5] and 20-

30% of all falls cause moderate to severe injuries that result in disability, loss of 

independence, and an increased risk of early death [6]. The frequency of falls and fall-

related injuries rise in parallel with the increasing population of older adults; consequently, 

the costs associated with falls are projected to be over $240 billion by 2020 [93]. Both 

direct (emergency, acute, rehabilitation, and long-term care expenditures) and indirect 

(disability, dependence, and reduced quality of life) [6] fall costs are significant, rising, and 

increasingly unsustainable for our healthcare system [5]. 
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1.2.2. The Social & Economic Impact of Aging & Age-Related Disease 

Preserving independence, increasing quality of life, and providing proper medical care 

for older adults has become a multifaceted challenge. Extended life does not necessarily 

imply high quality of life. Because older adults now live longer, our elderly population, 

and healthcare costs associated with this population, continues to rise. Frequent, 

longitudinal, objective measures of postural sway may enable early detection of motor 

decline (e.g., postural instability). Early detection of motor decline will likely predict future 

cognitive decline, identify elevated risk of disease progression and other disease-related 

events such as falls, and enable early healthcare planning which allows time for both the 

older adult and the care provider (family or professional) to make proper 

arrangements/adjustments. Early detection may also yield the development and 

implementation of therapeutic interventions [49]. Timely intervention is integral because 

treatment during the initial stages of disease state (e.g., MCI) may prevent subsequent 

neurodegeneration and progressive motor and/or cognitive decline (e.g., progression to 

dementia). This PhD research will lay the foundation for an integrated postural sway 

assessment system capable of extracting frequent, longitudinal, objective measures of 

postural sway in the natural environment of one’s home. In turn, the proposed research will 

create potential for a future decrease in healthcare costs and an increase in quality of life 

and care for our older adults. 

1.3. Chapter Overview 

1.3.1. Chapter 1: Introduction 

 In this chapter, Chapter 1, we introduce the work carried out within the framework of 

this PhD research. We provide the reader with sufficient background to understand the 

basis of this work. We also detail the motivation and potential impact of this PhD research. 

1.3.2. Chapter 2: Validation Study for the Postural Sway Measurement Device 

In Chapter 2, we conduct two validation studies in effort to fully characterize the 

WBB’s CoP measurement error and prepare for the use of the WBB as the sole CoP 

measurement device in our longitudinal, in-home study (Chapter 4). The “gold standard” 

laboratory-grade force plate is used as our ground truth in both validation studies. In 
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Chapter 2, Part 1, we validate the WBB against the force plate using simulated, one-

dimensional postural sway signals produced by an inverted pendulum mechanical model. 

We observe a significant effect of sway amplitude, frequency, and direction on the WBB’s 

measurement error and propose a linear signal adjustment to calibrate the WBB-based CoP 

(CoPWBB) signals and help reduce CoP measurement error. A version of Chapter 2, Part 1 

was published in the Sensors on September 29, 2014 (ISSN 1424-8220). In Chapter 2, Part 

2, we validate the WBB against the force plate using real, two-dimensional postural sway 

signals produced by healthy young adults. We observe far less CoP measurement error 

with real, biomedical signals. We propose an alternative linear signal adjustment based on 

human postural sway to better fit the CoPWBB signals. We compare our calibrated CoPWBB 

signals produced by our two linear calibration procedures to the uncalibrated CoPWBB 

signals and determine that, despite the effort invested in calibration, the uncalibrated 

CoPWBB signals contain less measurement error and best represent human postural sway.  

1.3.3. Chapter 3: Cross-Sectional Study of Postural Sway in MCI 

In Chapter 3, we conduct a cross-sectional study on postural sway, postural dual-task 

cost, and MCI. We use a body-worn inertial sensor to characterize the associations between 

cognitive status (intact vs. MCI) and postural control in older adults during quiet stance 

both with (dual-task) and without (single-task) cognitive loading. We find objective Acc-

based measures of postural sway to differentiate between cognitive status groups. Both 

measures of postural sway (extracted from the single-task condition) and postural dual-task 

costs (extracted from the dual-task conditions) separate the MCI from the intact group. Our 

cross-sectional findings suggest that quantifying postural sway under the dual-task 

condition may help differentiate postural sway in older adults with MCI from cognitively 

intact older adults.  

1.3.4. Chapter 4: Longitudinal Study of Postural Sway in MCI 

 In Chapter 4, we conduct a longitudinal, in-home study of postural sway in MCI within 

the ORCATECH framework. We integrate a WBB and a tablet into ORCATECH’s current 

technological platform to administer cognitive tasks and extract measures of postural sway 

and postural dual-task cost. We monitor both cognitively intact and mildly cognitively 
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impaired older adults daily for 30 days. We use the uncalibrated CoPWBB signals to provide 

daily estimates of postural control. We determine the feasibility of daily, in-home 

monitoring of postural sway and cognitive dual-tasking in an older adult population with 

MCI. We assess the reliability of objective postural sway measures across time. And, we 

characterize the association between mean and variability measures of postural sway and 

cognitive functioning. We find time-domain postural sway variability to be lower and 

frequency-domain postural sway to be higher in older adults who tested higher in cognitive 

functioning. Our findings suggest that changes in postural sway variability across time may 

serve as a sensitive biomarker for early cognitive decline. 

1.3.5. Chapter 5: Conclusions & Future Direction 

 In Chapter 5, we summarize the studies conducted within the framework of this PhD 

research and discuss our overall findings. We conclude that our significant findings from 

our small (longitudinal) pilot study conducted on a small time scale motivate the large-

scale implementation of this research over a more extended period of time (e.g., months, 

years, and even decades). Tracking longitudinal changes in postural sway may further our 

understanding of early-stage motor decline and its association with cognitive decline and 

may aid in the early detection of dementia during the preclinical stages. 

1.4. PhD Dissertation Contributions 

 This PhD dissertation presents contributions to three different fields: engineering, basic 

science, and applied/translational research. These contributions are detailed below: 

1.4.1. Engineering Contributions 

 In Chapter 2 we carry out a novel validation study to quantify the Nintendo WBB’s 

CoP measurement error for controlled, dynamic input/output signals. The WBB has 

generated significant interest in its application as a postural control measurement device in 

both the clinical and (basic, clinical, and rehabilitation) research domains. Although the 

WBB has been proposed as an alternative to the “gold standard” laboratory-grade force 

plate, its CoP measurement error has not yet been fully characterized and therefore cannot 

yet be considered a valid and reliable CoP measurement device. Although previous 
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research has clearly specified the WBB’s limitations when quantifying CoP under 

controlled static conditions, the WBB’s CoP measurement error under controlled dynamic 

conditions remains unknown. Characterizing the WBB’s performance under controlled 

dynamic conditions is imperative since most, if not all, potential WBB applications call for 

measuring biomedical signals which are dynamic by nature. The WBB has been used to 

measure CoP in many different human populations and under a variety of postural sway 

conditions in effort to test the WBB across varying sway profiles. Nonetheless, human 

sway remains an uncontrolled input signal, rendering the experimenter unable to 

systematically test the WBB’s CoP measurement error with respect to specific postural 

sway features (e.g., sway amplitude, frequency, velocity, etc.). Because quantifying the 

WBB’s CoP measurement error with controlled, dynamic input/output signals is 

fundamental in the effort to fully characterize the WBB’s limitations as a CoP measurement 

device, Chapter 2 of this dissertation serves as a significant contribution to the field of 

engineering.  

 In Chapter 4, we present a novel method to measure postural sway frequently over time 

from the comfort and ease of the home environment. Two off-the-shelf technologies (the 

Nintendo WBB and the Barnes & Noble Nook tablet) are integrated with ORCATECH’s 

current in-home technological platform to quantify postural sway daily across time. A 

custom-written application is designed and built to continuously run on the tablet, 

providing both a user interface for the subject as well as means to acquire, store, and 

transfer both postural sway and cognitive performance data automatically and immediately 

once data is received. This PhD research determined that longitudinal, in-home monitoring 

of postural sway is feasible within the in-home environment and lays the foundation for 

large-scale implementation. Because activity and behavioral health monitoring systems 

have generated significant interest in recent years and because postural sway is considered 

a sensitive health outcome measure, the technological development accomplished within 

the framework of this dissertation serves as a significant contribution to the field of 

engineering. 
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1.4.2. Basic Science Contribution 

 In Chapter 3, we present the results of our novel cross-sectional study on postural sway 

and domain-specific cognitive loading in older adults with and without MCI. First we find 

more postural sway to be associated with MCI during quiet stance, a finding that is 

supported by the literature. Then we find added cognitive loads to have less of an effect on 

postural sway (quantified by lower postural dual-task costs) in the MCI group compared to 

the intact group, a finding that is not substantially supported by the literature but may be 

of interest since we are the first study to use our specific cognitive load-types as cognitive 

dual-tasks during quiet stance in an older adult (MCI) population. The significance of this 

finding and how it compares to previous findings is discussed in greater detail in Chapter 

3, Section 3.4.1. Both the experimental methods and findings from our cross-sectional 

study in Chapter 3 are novel and serve as contributions to the field of basic science. 

 In Chapter 4, we present the results of our novel longitudinal study on postural sway 

and cognitive loading in older adults with and without MCI. The natural variability of 

postural sway across time remains unknown. We are the second (small pilot) study to 

quantify postural sway daily across weeks in older adults. We are the first study to add a 

secondary cognitive load to the primary postural task as well as the first to include older 

adults with MCI in our sample population. The most promising results from our small pilot 

study pertain to the relationship between postural sway variability (quantified by the 

variance in postural sway across the 30-day monitoring period) and cognitive functioning 

(quantified by cognitive global z-scores). We find more day-to-day variability in time-

domain postural sway and less day-to-day variability in frequency-domain postural sway 

to be related to lower cognitive functioning. Our time-domain (i.e., distance and area-based 

postural sway measures) findings are consistent with the literature (discussed previously in 

Chapter 1, Section 1.1.8) and couple well with findings from other ORCATECH studies: 

increased variability in motor function is related to (and may be found to precede) a 

decrease in cognitive function over time. We are the first to assess the variability of the 

frequency content of a motor/postural control signal and relate it to cognitive status/decline. 

Our frequency-domain results are the inverse of our time-domain results and may prove to 

be of significance if our findings are reproduced with a larger sample population and on a 
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larger time-scale. Both the experimental methods and findings from our longitudinal study 

in Chapter 4 are novel and serve as contributions to the field of basic science. 

1.4.3. Applied/Translational Research Contribution 

 Our in-home technological setup from our longitudinal study has potential to contribute 

greatly to the field of applied/translational research. In Chapter 4, we determine 

longitudinal monitoring of postural sway feasible within the in-home environment and lay 

the foundation for large-scale implementation. Our in-home technological setup may be 

applied for the purpose of therapeutic intervention: to help an individual maintain and/or 

improve his/her dual-tasking ability, a necessary skillset for independent living and the safe 

execution of activities of daily living. Studies have shown that dual-task training reduces 

the impact of cognitive distractions on postural sway in older adults [94], and substantial 

gains after dual-task training are sustained even with new task combinations involving new 

stimuli [95]: these findings suggest that dual-task skills can be substantially improved in 

older adults and that cognitive plasticity in attentional control is attainable even in old age 

[95]. So by simply installing our system (after making the necessary technological 

improvements detailed  in Chapter 5, Section 5.1.2.vi), we could easily implement a dual-

task training program to help improve and/or sustain dual-task skills in older adults, which 

in turn may directly aid in fall prevention. Relatively little time, effort, and resources would 

be required to implement this system in all homes outfitted with ORCATECH equipment 

and supported by ORCATECH researchers and staff. A significant amount of gain could 

be acquired with little additional work and financial support.  

 As discussed in Chapters 4 & 5, large-scale research deployment of in-home 

monitoring is an impressive feat with great potential to facilitate the study of both healthy 

aging and disease-related processes. Our longitudinal study also contributes to the field of 

applied/translational research by laying the foundation for longitudinal tracking of postural 

sway from the comfort of one’s home. Tracking longitudinal changes in postural sway 

across a larger time-scale may further our understanding of early-stage postural decline and 

its association with cognitive decline and may aid in the early detection of dementia during 

the preclinical stages. Early detection may also yield the development and implementation 

of therapeutic interventions [49,96]. Timely intervention is integral because treatment 
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during the initial stages of disease state (e.g., MCI) may prevent subsequent 

neurodegeneration and progressive motor and/or cognitive decline (e.g., progression to 

dementia).  
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CHAPTER 2, Part 1: Validation Study for the Postural Sway Measurement Device: 

Validating and Calibrating the Nintendo WBB to Derive Reliable Measures of Postural 

Sway Based on Simulated One-Dimensional Postural Sway Signals Acquired from an 

Inverted Pendulum 

Summary 

Objective: To characterize the Nintendo Wii balance board’s (WBB) CoP measurement error, using 

the “gold standard” laboratory-grade force plate as ground truth, in preparation to use the WBB as 

the sole CoP measurement device in our in-home study (Chapter 4).  

Methods: The WBB and a laboratory-grade AMTI force plate (AFP) were used to simultaneously 

measure the CoP displacement of a controlled dynamic load, which has not been done before. A 

one-dimensional inverted pendulum was displaced at several different displacement angles and 

load heights to simulate a variety of postural sway amplitudes and frequencies (< 1 Hz). Twelve 

WBBs were tested to address the issue of inter-device variability.  

Results: There was a significant effect of sway amplitude, frequency, and direction on the WBB’s 

CoP measurement error, with an increase in error as both sway amplitude and frequency increased 

and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway 

direction. There was no difference in error across the 12 WBB’s, supporting low inter-device variability. 

A linear calibration procedure was then implemented to correct the WBB’s CoP signals and reduce 

measurement error. There was a significant effect of calibration on the WBB’s CoP signal accuracy, 

with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 

2–6 mm (before calibration) to 0.5–2 mm (after calibration). WBB-based CoP signal calibration 

also significantly reduced the percent error in derived (time-domain) CoP sway measures, from 

−10.5% (before calibration) to −0.05% (after calibration) (percent errors averaged across all sway 

measures and in both sway directions).  

Conclusions: In this study, we characterized the WBB’s CoP measurement error under controlled, 

dynamic conditions and implemented a linear calibration procedure for WBB CoP signals that is 

recommended to reduce CoP measurement error and provide more reliable estimates of time-

domain CoP measures. Despite our promising results, additional work is necessary to understand 

how our findings translate to the clinical and rehabilitation research domains. Once the WBB’s CoP 

measurement error is fully characterized in human postural sway (which differs from our simulated 

postural sway in both amplitude and frequency content), it may be used to measure CoP 

displacement in situations where lower accuracy and precision is acceptable, such as in our in-home 

study.  
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A version of CHAPTER 2, Part 1 was published in Sensors on 29 September 2014: 

Sensors 2014, 14, 18244-18267; doi:10.3390/s141018244 

ISSN 1424-8220, www.mdpi.com/journal/sensors 

2.1.1. Introduction 

The Nintendo WBB has generated significant interest beyond the public domain, 

particularly in its application as a postural sway measurement device in both the clinical 

and (basic, clinical, and rehabilitation) research domains. Posturography is the traditional 

instrumental technique used to objectively quantify postural sway. This technique uses one or 

two laboratory-grade force plates to measure two-dimensional center of pressure (CoP) 

displacement. Prior research has shown force plate-based CoP measures to be sensitive to mild 

postural instability in older adults with mild neurodegenerative diseases and/or a high fall risk 

[27,37,39,40,42,52,53,55,97]. However, because force plates are expensive, not easily 

portable, and require proper installation, they are not feasible for quantifying postural sway 

in the small clinic or home on a frequent basis. Although, frequently quantifying postural 

sway in the laboratory is neither reasonable nor economical. The WBB has been recently 

proposed as an affordable, portable, and easily accessible alternative to the force plate [98-

103], however additional research is necessary before the WBB can be considered a valid 

and reliable CoP measurement device. 

Both the WBB and laboratory-grade force plate measure force distribution and the 

resultant CoP displacement. However, there are significant differences between devices, 

pertaining to both material composition and technical capacity, which result in functional 

limitations of the WBB. Force plates are composed of metal while the WBB is composed 

of plastic. Due to the WBB’s material properties, it is susceptible to elastic deformation 

when a significant load is applied to the WBB’s usable surface. If the usable surface 

deforms during data acquisition, the WBB’s ability to acquire accurate CoP measurements 

may be hindered. Also, both devices rely on four force sensors located near each of the 

four corners of the plate or board to measure force distribution. Force plates measure tri-

axial forces and moments while the WBB only measures uni-axial (vertical) forces. 

Because the WBB is unable to measure moments and horizontal forces, its ability to acquire 
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accurate CoP measurements may be hindered when the input signal has significant 

horizontal and shear components. The WBB’s accuracy is further restricted by several 

mechanical and electronic limitations, characterized in a 2011 publication on the 

differences between the WBB and a force plate. Pagnacco et al. [104] clearly substantiated 

the WBB’s low resolution (0.5 mm), low and inconsistent sample rate (time jitter), low 

signal to noise ratio, and occasional glitches in the WBB data (discussed further in Section 

2.1.4). According to the authors, a significant amount of noise in the WBB data can be 

attributed to the unshielded cables, under-designed electronics (incapable of noise 

minimization), and unsynchronized sampling across the four force sensors. These 

limitations, along with the uncertain validity and reliability of WBB-based CoP measures 

derived from a dynamic input signal, currently restrict our utilization of the WBB for 

clinical or research purposes.  

Many studies have used the WBB to quantify postural sway in varying populations (e.g., 

healthy young, healthy old, and impaired old) and under varying sway conditions (e.g., 

eyes open vs. eyes closed, single- vs. double-leg stance, etc.) [98-102]. In all but two prior 

studies [99,104], the WBB and force plate were used to measure CoP displacement during 

separate trials. Although WBB- and force plate-based CoP measures were found to be 

highly correlated, CoP measurement error could not be determined since CoP displacement 

was not measured simultaneously by the WBB and force plate. In 2011, Pagnacco et al. 

[104] were the first to simultaneously measure CoP displacement with the WBB and force 

plate, eliminating within-subject variability and increasing the validity of their between-

device comparison. Unlike in previous work [98], Pagnacco and colleagues chose to not 

calibrate the WBB data using a custom calibration method and used the manufacturer’s 

internally-stored values instead. The authors relied on the WBB’s internal calibration 

values vs. those determined empirically because a custom calibration method is expensive, 

time intensive, and neither affordable nor feasible for most users. Also, according to 

Pagnacco et al., custom calibration detailed in Clark et al. [98] has minimal effect on the noise 

inherent in the WBB data. For data acquisition, the authors quantified the WBB’s CoP 

measurement error for two “subjects”—A 50 kg dead weight and a 48 kg, 1600 mm tall 

human—During 60 s of quiet stance. In doing so, Pagnacco and colleagues characterized 
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the WBB’s mechanical and electronic limitations as a CoP measurement device (discussed 

above). Despite the aforementioned limitations and Pagnacco’s strong recommendation to 

not use the WBB for anything other than its intended use (i.e., as a toy) [104,105], the 

WBB continued to generate significant interest in both the clinical and research domains.  

In 2013, Huurnink et al. [99] were the second to measure CoP displacement with the 

WBB and force plate simultaneously. The authors investigated postural sway in 14 healthy, 

young adults under three different sway conditions (single-leg stance with eyes open, with 

eyes closed, and after a short sideways hop). Although Huurnink and colleagues 

determined the WBB as “sufficiently accurate” when measuring CoP displacement, they 

only investigated a narrow CoP displacement range (i.e., which was restricted to the area 

of the standing footprint during their single-leg stance conditions) and quantified CoP using 

only two, two-dimensional time-domain measures (mean sway amplitude and velocity). 

Because Huurnink et al. did not assess one-dimensional (AP vs. ML) CoP measures, they 

were unable to quantify the WBB’s dimension-specific performance error (e.g., the WBB 

may be more accurate in measuring sway in the AP direction compared to that in the ML 

direction). Additionally, the authors did not assess the WBB’s ability to measure frequency 

content, nor did they assess the inter-device variability across multiple WBBs [99]. 

Information typically available for laboratory-grade force plates, such as measurement 

uncertainty and reliability across varying sway conditions and measurement variability 

across multiple devices, was unavailable for the WBB until a recent 2014 publication by 

Bartlett et al. [103]. Bartlett and colleagues conducted a standard measurement uncertainty 

analysis to quantify the repeatability and accuracy of WBB CoP measurements. They also 

assessed the effect of wear (lightly used vs. heavily used WBBs) on CoP measurement 

performance. Two different static loads (14.3 kg and 45.8 kg) were systematically applied 

to five specified locations on the WBB’s usable surface (center and four corner positions 

located approximately halfway from the WBB’s center to the corner edges). Nine WBBs 

(three lightly used, six heavily used) were tested. The authors found the total uncertainty 

of CoP measurement to be within ±4.1 mm across the nine WBBs, which is much higher 

than that recommended for posturography (0.1 mm). They found repeatability within a 

single WBB to be better (1.5 mm), suggesting that the WBB be applied as a relative (vs. 
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absolute) CoP measurement device (i.e., comparing measurements within, as opposed to 

across, WBBs). Consistent with previous findings [106], Bartlett et al. found the WBB to 

behave linearly, with a statistically significant increase in error from the center to the corner 

locations and from the light to heavy static loads. There was no significant effect of wear 

on mean CoP measurement error. Additionally, the authors found the WBB’s internal 

calibration values to be comparable to those determined empirically. According to Bartlett 

et al., although the WBB lacks the accuracy recommended for posturography and should 

not be used as a replacement for the “gold standard” laboratory grade force-plate, it may 

be used to estimate force and CoP measurements when lower accuracy and precision is 

acceptable [103]. In static analyses, the WBB may be sensitive to postural sway differences 

greater than 10 mm, which could differentiate between healthy and impaired populations 

[103,107]. 

Although Bartlett et al. clearly specified the WBB’s limitations when measuring CoP 

under controlled static conditions, the WBB’s CoP measurement error under controlled 

dynamic conditions remains unknown. Characterizing the WBB’s performance under 

controlled dynamic conditions is imperative since most, if not all, potential WBB 

applications call for measuring biomedical signals which are dynamic by nature. As 

mentioned above, the WBB has been used to measure CoP in many different human 

populations and under a variety of postural sway conditions in an effort to test the WBB 

across varying sway profiles. Nonetheless, human sway remains an uncontrolled input 

signal, rendering the experimenter unable to systematically test the WBB’s CoP 

measurement error with respect to specific postural sway features (e.g., sway amplitude, 

frequency, velocity, etc.). Quantifying the WBB’s CoP measurement error with controlled, 

dynamic input/output signals is fundamental in our effort to fully characterize the WBB’s 

limitations as a CoP measurement device.  

In this study, we used the WBB and a laboratory-grade force plate (AFP) (AMTI OR6-

6, Watertown, MA, USA) to simultaneously measure one-dimensional CoP displacement 

of controlled, dynamic input/output signals. An inverted pendulum mechanical system was 

employed as our dynamic load so we could systematically modulate CoP displacement (via 

adjustments made to the inverted pendulum’s displacement angle and load height). The 
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WBB’s CoP measurement error was quantified and analyzed with respect to sway 

amplitude, frequency, and direction (AP vs. ML). Twelve WBBs were tested to address the 

issue of inter-device variability. Our two research aims were: Aim I, to validate the WBB 

against the “gold standard” AFP by quantifying the WBB’s CoP measurement error under 

controlled dynamic conditions; and, Aim II, to determine the WBB’s inter-device 

variability across 12 different WBBs. 

2.1.2. Experimental Methods  

Our experiment was conducted under controlled laboratory conditions using an inverted 

pendulum mechanical system (described in Section 2.1.2.1 and illustrated in Figure 2.1.1) 

to simulate one-dimensional postural sway. We carried out one laboratory experiment to 

address our two research aims. For Aim I, we tested a variety of sway amplitudes and 

frequencies in both sway directions to validate the WBB against the AFP. For Aim II, we 

repeated our Aim I testing protocol (detailed in Section 2.1.2.2) with 12 different WBBs to 

determine the WBB’s inter-device variability. All data were collected at the Oregon Health 

& Science University using resources and materials from the Balance Disorder’s 

Laboratory and the Human Spatial Orientation Laboratory. 

2.1.2.1. Description of Mechanical System 

A single inverted pendulum mechanical system (Figure 2.1.1C) was constructed to 

simulate one-dimensional postural sway. Springs (Figure 2.1.1C) were employed to 

counteract gravitational forces and stabilize the pendulum at equilibrium (perpendicular to 

the ground). The inverted pendulum weighed 15.1 kg, with most of its weight concentrated 

at the base. The pendulum was loaded to the maximum tolerable weight (16.0 kg) at the 

approximate height of a human body’s center of mass (CoM) [108,109]. Four lead blocks, 

each weighing ~6.8 kg, were then positioned symmetrically on the pendulum’s base 

(Figure 2.1.1B) to stabilize the loaded pendulum as it oscillated. Therefore, the total mass 

of the mechanical system was 15.1 + 16.0 + 4 × 6.8 = 58.3 kg. To simulate one-dimensional 

postural sway, the inverted pendulum was displaced at a specified angle and then released. 

The pendulum oscillated, following a dampened oscillation pattern due to internal friction 
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and air resistance. To test a variety of sway amplitudes and frequencies (for Aim I), we 

systematically adjusted both the displacement angle and load height prior to each trial.  

 

Figure 2.1.1: Experimental setup to measure simulated one-dimensional postural 

sway. (A) The Nintendo Wii balance board (WBB) mounted and centered on the AMTI 

force plate (AFP). (B) Four (6.8 kg) lead blocks positioned symmetrically on the 

mechanical system’s base to stabilize the inverted pendulum during oscillation. (C) The 

experimental setup: the mechanical system was mounted and centered on the WBB, which 

was mounted and centered on the AFP. The mechanical system consisted of a single 

inverted pendulum supported by springs (15.1 kg), a (16.0 kg) load applied at the CoM 

height, h, and four lead blocks positioned on the base to stabilize the inverted pendulum 

during oscillation. The inverted pendulum was displaced at a specified angle, θi, and then 

released to oscillate in the AP direction. The mechanical system was rotated 90º to acquire 

one-dimensional sway in the ML direction.  

2.1.2.2. Procedures  

Aim I: to validate the WBB against the AFP. The mechanical system was mounted and 

centered on the WBB (Figure 2.1.1C), which was mounted and centered on the AFP 

(Figure 2.1.1A). Our testing protocol consisted of nine 30-second trials to test a variety of 

sway amplitudes and frequencies: three initial displacement angles (θi = 2, 4 and 6°) at three 
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different load heights (ℎ = 900, 1000 and 1100 mm, corresponding to three different 

oscillation frequencies (ω) 0.6, 0.5, and 0.4 Hz, respectively). Because the pendulum 

oscillated in one-dimension, the testing protocol was repeated twice to acquire sway data 

in both the AP and ML directions, for a total of 18 30-second trials for each WBB. (NOTE: 

the mechanical system was rotated 90º to acquire sway data in the ML direction (Figure 

2.1.1C)). 

Aim II: to determine the WBB’s inter-device variability. The Aim I testing protocol 

detailed above was repeated 12 times with 12 different WBBs. Two WBBs had been lightly 

used and the remaining 10 were new.  

CoP displacement was measured by both an AFP and a WBB. The WBB functions with 

four force sensors housed in the foot-pegs located under each of the four corners of the 

WBB (Figure 2.2.2B). The force sensors act as uni-axial force transducers, each consisting 

of a metal beam and strain gauge, and measure vertical forces [103]. The WBB was 

interfaced with a laptop computer (operating on Microsoft Windows Vista) using custom-

written software (C++) and a Bluetooth connection. The initial (vertical) offset was 

recorded by each of the four force transducers when the WBB was first connected, before 

the mechanical system was positioned atop the WBB’s usable surface (Figure 2.1.2A). 

During data acquisition, both raw sensor values and internal calibration values (issued at 

three different calibration points) were reported for each of the four force transducers. The 

raw sensors values were converted into calibrated mass measurements (in kg) using the 

internal calibration values and the initial (vertical) offset and were then converted into force 

units (N). (The use of the manufacturer’s internally-stored calibration values to calibrate 

WBB data is justified in by Pagnacco et al. [104]). The calibrated sensor values were then 

stored as our WBB data. The AFP was calibrated in accordance with the manufacturer’s 

recommendations. The initial (tri-axial) offset was recorded by the AFP prior to data 

acquisition, when the WBB was mounted and centered on the AFP, but before the 

mechanical system was positioned atop both measurement devices. The weight of the WBB 

was subtracted from the vertical force channel of the AFP’s initial offset. This adjusted 

offset, excluding the vertical force applied by the weight of the WBB, was then used to 
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calibrate the AFP measurements. Calibrated tri-axial forces and moments were stored as 

our AFP data. 

 

Figure 2.1.2: The WBB’s usable surface and sensor location. (A) Top-view of the WBB 

shows the usable surface. (B) Bottom-view of the WBB shows the four foot-pegs, located 

under each of the four corners of the WBB: top right (TR), top left (TL), bottom left (BL), 

and bottom right (BR). The four force sensors are housed in the four foot-pegs. 

2.1.2.3. Data Acquisition 

To determine an appropriate sampling rate, the spectral characteristics of our simulated 

postural sway were first examined. During pilot testing, the inverted pendulum’s maximum 

oscillation frequency (induced by the shortest load height) was found to be 0.6 Hz. All 

frequency content within the power spectrum lay below 1.0 Hz for all tested displacement 

angles and load heights. 

The WBB sampled at approximately 50 Hz when interfaced with our laptop computer. 

Because the WBB samples at an inconsistent rate, a data averaging method was employed 

to create time series with samples at equal time intervals (tDA). During data acquisition, our 

custom-written software averaged across (approximately 3–6) samples every 93.75 ms (tDA 

= 0.09375 s; data averaging frequency, fDA = 1/tDA = ~10.7 Hz). Although a rate of ~10.7 

Hz is low compared to what is clinically recommended for posturography [110], it was 

high enough to capture the spectral characteristics of our simulated postural sway since all 

frequency content lay below 1.0 Hz. 

The AFP sampled at 100 Hz, and a 10.5 Hz low-pass filter was applied during data 

acquisition. 
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2.1.2.4. Data Analysis 

All data were analyzed in Matlab R2014a (The MathWorks, Natick, MA, USA). 

2.1.2.4.i. CoP Signals 

To account for the inherent (yet small) positioning errors during the experimental setup 

(described in Section 2.1.2.1: The mechanical system was mounted and centered atop the 

WBB, which was mounted and centered atop the AFP), a Principal Component Analysis [111] 

was used to transform the (x- and y-) axes of both the WBB and AFP data sets. CoP 

displacement (in both the AP (y-axis) and ML (x-axis) directions) was then calculated from 

the transformed axes of both WBB and AFP data.  

WBB-Based CoP Signals 

The WBB measures vertical (z-axis) ground reaction forces but is unable to measure 

horizontal (x- or y-axis) forces and (x-, y-, and z-axis) moments (Figure 2.1.3). Specifically, 

the CoP calculations used for the WBB data do not take horizontal and shear components 

into account. The WBB’s calibrated sensor values were expressed in force units (N). The 

vertical forces (FTR, FBR, FTL, FBL) measured by each of the four force transducers were then 

used to calculate CoP for the WBB (CoPWBB): 

𝐶𝑜𝑃𝑊𝐵𝐵𝑥
=

𝑋

2

(𝐹𝑇𝑅 + 𝐹𝐵𝑅) − (𝐹𝑇𝐿 + 𝐹𝐵𝐿)

𝐹𝑇𝑅 + 𝐹𝐵𝑅 + 𝐹𝑇𝐿 + 𝐹𝐵𝐿
; 

 𝐶𝑜𝑃𝑊𝐵𝐵𝑦
=

𝑌

2

(𝐹𝑇𝑅 + 𝐹𝑇𝐿) − (𝐹𝐵𝑅 + 𝐹𝐵𝐿)

𝐹𝑇𝑅 + 𝐹𝐵𝑅 + 𝐹𝑇𝐿 + 𝐹𝐵𝐿
 

(2.1.1) 

where X and Y represent the distance (in mm) between each force transducer assuming that 

each transducer is positioned in the center of each foot-peg, and CoPWBBx and CoPWBBy  

represent the CoP displacement (in mm) calculated in the ML and AP directions, 

respectively [112]. 
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Figure 2.1.3: Diagram of the WBB. Accurate X and Y dimensions are essential for 

accurate CoP calculations: X = 433 mm, Y = 238 mm. 

AFP-based CoP signals 

The AFP measures tri-axial (x-, y-, and z-axis) forces (F) and moments (M) (Fx, Fy, Fz, 

Mx, My, and Mz), providing the “gold standard” measurement of CoP. For our experimental 

setup, a given motion of the inverted pendulum produced a different CoP displacement at 

the surface of the WBB compared to the surface of the AFP due to: 1. the additional height 

of the WBB (hWBB), and 2. the additional (static) force applied to the surface of the AFP 

from the weight of the WBB (FWBB) (Figure 2.1.4). In order to compare CoP measured by 

the AFP to that measured by the WBB (CoPWBB), a CoP prediction (CoPAFP’ and in Figure 

2.1.4) of the CoP at the surface of the WBB was derived from AFP data and known 

parameters of the experimental setup.  
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Figure 2.1.4: Simplified diagram of the experimental setup for x-direction CoP 

displacement. (NOTE: FAFPx’ = FAFPx since these values reflect the acceleration of the 

CoM, which is the same for both the WBB and AFP). 

First, x-direction CoP displacement was calculated (CoPAFPx) in accordance with AMTI 

Biomechanics Platform Instructions Manual. Then, the predicted CoP at the WBB surface 

(CoPAFPx’) was calculated using the following procedure: 

1. With known CoPAFPx, moments were summed about the point of rotation, 

R to calculate T:  

𝑇 = 𝐶𝑜𝑃𝐴𝐹𝑃𝑥
𝐹𝐴𝐹𝑃𝑧

+ (ℎ𝑅 + ℎ𝑊𝐵𝐵)𝐹𝐴𝐹𝑃𝑥
 

(2.1.2) 

2. With known 𝑇, the AFP’s prediction of the WBB’s CoP measurement was 

calculated: 

𝐶𝑜𝑃𝐴𝐹𝑃𝑥

′ = [𝑇 − ℎ𝑅𝐹𝐴𝐹𝑃𝑥

′]/𝐹𝐴𝐹𝑃𝑧

′ 
(2.1.3) 

where, FAFPx’ = FAFPx, FAFPz’ = FAFPz – FWBB, FWBB = mWBBg, mWBB = the mass of the WBB, 

and  

g = acceleration due to gravity. 
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A similar calculation was made for CoP displacement in the y-direction. The AFP-

derived signals  CoPAFPx’ and CoPAFPy’ were then compared to the WBB-based CoP 

(CoPWBBx and CoPWBBy) obtained using Equation (2.1.1). 

Influence of displacement angle and load height on CoP displacement  

As expressed in Equation (2.1.3) and illustrated in Figure 2.1.4, the AFP’s prediction of the 

WBB’s CoP displacement = = CoPAFPx’ = [T – hRFAFPx’] / FAFPz’. The distance from R to the 

surface of the WBB (hR) is a constant and the vertical force (FAFPz’) is unaffected by changes 

in both displacement angle (θ) and load height (h). So, CoP displacement is dependent on 

both 𝑇 and the horizontal force (FAFPx’), which are both functions of  θi and h: 

𝑇(𝑡) = (𝑘 − 𝑚𝐼𝑃𝑔ℎ)𝜃(𝑡) 
(2.1.4) 

where k = the spring constant of springs supporting the inverted pendulum, mIP = the mass 

of the inverted pendulum mechanical system, h = the height of mIP above the rotation axis, 

and t = time. Ignoring any damping, the angular motion of the inverted pendulum is given 

by: 

𝜃(𝑡) = 𝜃𝑖sin(𝜔𝑡) 
(2.1.5) 

where ω is the oscillation frequency of the inverted pendulum, and θi = the initial angular 

displacement of the pendulum. From torsion pendulum mechanics, the oscillation 

frequency is given by: 

𝜔 = √(𝑘 − 𝑚𝐼𝑃𝑔ℎ) 𝑚𝐼𝑃ℎ2⁄  
(2.1.6) 

Thus as h increases ω decreases. 

The horizontal shear is proportional to the horizontal acceleration of the pendulum mass: 

𝐹𝐴𝐹𝑃𝑥

′ = −𝑚𝐼𝑃�̈� ≈ −𝑚𝐼𝑃ℎ�̈�(𝑡) = 𝑚𝐼𝑃ℎ𝜃𝑖𝜔
2𝑠𝑖𝑛(𝜔𝑡) 

(2.1.7) 

So, 

𝐶𝑜𝑃𝐴𝐹𝑃𝑥
′(𝑡) = [(𝑘 − 𝑚𝐼𝑃𝑔ℎ − ℎ𝑅𝑚𝐼𝑃ℎ𝜔2)𝜃𝑖sin(𝜔𝑡)] 𝐹𝐴𝐹𝑃𝑧

⁄
′
 

(2.1.8) 

Therefore, the main effect is that larger θi produces larger CoPAFPx’ but a secondary 

effect is that a shorter load height h also produces a larger CoPAFPx
’. 
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CoP Signal Processing 

All CoP signals were low-pass filtered with a fourth-order, zero-phase Butterworth filter 

with a cutoff frequency of 5 Hz [35]. Because the WBB sampled at a different rate than the 

AFP, the CoPWBB signals were resampled at 100 Hz to match the CoPAFP’ sampling rate. 

Additionally, because the WBB and AFP were not time-aligned during data acquisition, 

offline signal synchronization was necessary. To synchronize offline, the CoPWBB and 

CoPAFP’ signals were zero-meaned, cross-correlated using a Hanning window, and time-

aligned. 

2.1.2.4.ii. CoP Measures 

Time- and frequency-domain CoP measures (Table 2.1.1) were derived from the last 25 s 

of both the CoPWBB and CoPAFP’ signals. The calculations of the time-domain measures are 

detailed in Prieto et al. [35]. The single frequency-domain measure, peak frequency, was 

determined by finding the frequency index of the power spectrum at which the maximum 

power lies. The power spectrum was estimated using Welch’s method [111]. 

2.1.2.4.iii. Quantifying the WBB’s Performance by Determining CoP Measurement Error 

The CoP measurement error was differentiated into two parts: CoP signal error and CoP 

measure error. The CoP signal error (defined below) pertains to the difference between the 

CoPWBB and CoPAFP’ signals. The CoP measure error (defined below) pertains to the 

difference between the WBB- and AFP-based CoP measures defined in Table 2.1.1. 

Table 2.1.1: CoP-based measures. Time- and frequency-domain CoP measures 

derived from both the WBB- and AFP-based one-dimensional CoP signals. 

Measure Abbr. Description Units 

Time-Domain Measures 

Mean distance, or  

sway amplitude 

MD Average distance from the center of the 

CoP time series 

mm 

Root-mean-squared 

distance 

RMS The standard deviation (SD) of the zero-

meaned CoP time series 

mm 

Sway range RANGE Peak-to-peak range, or maximum 

distance, of the CoP values 

mm 

Mean velocity MV Average velocity of the CoP time series  mm·s−1 

Frequency-Domain Measure 

Peak frequency PFREQ Peak frequency of the power spectrum Hz 
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The WBB’s performance was first quantified by comparing the CoP signals (CoPWBB 

vs. CoPAFP’). The CoP signal error was defined as the difference (in mm) between the WBB 

CoP measurement and the AFP CoP measurement (CoPWBB − CoPAFP’). This error value 

was calculated for each data point in every trial (across all sway amplitudes and in both 

directions) for each WBB. Agreement between measurement devices (AFP vs. WBB) was 

visually represented by plotting the CoP signal error against the “gold standard” AFP CoP 

measurement (CoPAFP’). Simple linear regression was used to fit a straight trend line to the 

CoP signal error plotted against the CoPAFP’ signals: CoPWBB – CoPAFP’ = β*CoPAFP’ + α. 

The slope of the trend line (β coefficient) was then used to quantify CoP signal error as a 

function of both sway amplitude and direction. 

The WBB’s performance was then quantified by comparing the CoP measures (Table 

2.1.1) derived from both the CoPWBB and CoPAFP’ signals (measureWBB vs. measureAFP). 

The CoP measure error was defined as the percent difference between AFP- and WBB-

based CoP measures. This error was calculated for each CoP measure, treating the 

measures derived from the CoPAFP’ signals as theground truth: 

𝐶𝑜𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =  
100 ∗ ( 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐴𝐹𝑃 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑊𝐵𝐵)

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐴𝐹𝑃
 (2.1.9) 

Bland-Altman plots were used to visually represent the WBB’s CoP measure error. 

2.1.2.4.iv. Linear Calibration of the CoPWBB Signals to Reduce the CoP Measurement Error 

After characterizing the CoP signal error, simple linear regression was implemented to 

linearly correct the CoPWBB signals and reduce measurement error. Simple linear regression 

was used to fit a straight trend line to the CoPWBB signals plotted against the CoPAFP’ signals 

(CoPWBB = m*CoPAFP’ + b). The linear regression coefficients (mAP, bAP, mML, bML) in 

Table 2.1.2 represent the statistical means averaged across all sway amplitudes, in both 

sway directions, for each of the 12 WBBs. These WBB-specific coefficients were then 

used to linearly calibrate all one-dimensional CoPWBB signals acquired from each WBB 

(CoPWBB
calib = 1/m*(CoPWBB – b)). The linear regression coefficients stored in the last row 

of Table 2.1.2 represent the statistical means averaged across all 12 WBBs There was a 

statistical difference across directions: the slope of the trend lines (m coefficients) were 
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significantly less in the ML direction (p < 0.001). However, there was no statistical 

difference between m coefficients across the 12 WBBs (p = 1 in both directions).  

Table 2.1.2: Linear regression coefficients (mAP, bAP, mML, bML) used to 

calibrate all one-dimensional CoPWBB signals for each of the 12 WBBs. 

Simple linear regression was used to fit a straight trend line to the CoPWBB signals 

plotted against the CoPAFP’ signals (CoPWBB
calib = 1/m*(CoPWBB – b)) for each 

WBB. 

WBB 
AP ML 

mAP bAP mML bML 

WBB_1 1.087 −0.002 1.111 0.001 

WBB_2 1.086 0.020 1.097 0.010 

WBB_3 1.086 0.006 1.098 −0.020 

WBB_4 1.084 −0.011 1.094 −0.040 

WBB_5 1.085 −0.001 1.095 0.014 

WBB_6 1.088 −0.019 1.096 0.029 

WBB_7 1.091 0.002 1.097 0.020 

WBB_8 1.093 −0.015 1.102 −0.010 

WBB_9 1.086 0.020 1.094 0.012 

WBB_10 1.090 −0.008 1.101 −0.005 

WBB_11 1.085 0.005 1.093 −0.017 

WBB_12 1.099 0.025 1.097 −0.008 

mean 

±std 

1.088 

±0.004 

0.002 

±0.014 

1.098 

±0.005 

−0.001 

±0.019 

Because all CoP signals were zero-meaned, the trend line y-intercepts (bAP and bML) 

should equal zero. The y-intercepts reported in Table 2.1.2 are not significantly different 

from zero and therefore should not influence the calibration procedure we recommend to 

use for any WBB. Only the mean trend line slopes (mAP and mML in the last row of Table 

2.1.2) should be used to linearly calibrate CoPWBB signals acquired from any WBB ( 

(CoPWBB
calib = 1/m*(CoPWBB)). 

2.1.2.4.v. Statistical Analysis  

First, the CoP signals were analyzed. For Aim I (validation), Pearson’s linear correlation 

coefficients were calculated to assess CoP signal agreement (CoPWBB vs. CoPAFP’). Then, root-

mean-squared errors (RMSE) (in mm) were calculated to quantify the difference between 

the CoPWBB and CoPAFP’ signals. A t-test was performed to confirm that the RMSEs were 

significantly different from zero before calibration. To investigate the effect of direction 

on CoP signal error, one-way, fixed effect (sway direction) ANOVAs were performed on 
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both the RMSEs and β coefficients. Then, to investigate the effect of calibration on signal 

error, one-way, fixed effect (calibration) ANOVAs were performed on the RMSEs in both 

sway directions. We then performed a one-way, fixed effect (sway direction) ANOVA on 

the RMSEs after calibration to investigate the effect of direction on signal error after linear 

calibration of the CoPWBB signals. For Aim II (inter-device variability), one-way, fixed 

effect (WBB) ANOVAs were performed on both the RMSEs and the β coefficients to 

assess the effect of the 12 WBBs on CoP signal error in both directions, before calibration. 

To assess inter-device variability after calibration, one-way, fixed effect (WBB) ANOVAs 

were performed on the RMSEs in both directions. 

As a secondary analysis, we investigated the effect of sway amplitude and frequency on 

CoP signal error. Two-way, repeated measures, fixed effects (displacement angle, load height) 

ANOVAs were performed on the RMSEs to assess both the main and interaction effects of 

displacement angle and load height on signal error in both directions, both before and after 

calibration. A Bonferroni correction was applied to account for multiple comparisons (3 

displacement angles × 3 load heights = 9 comparisons).  

Second, the CoP measures were analyzed. For Aim I (validation), one-way, fixed effect 

(device) ANOVAs were first performed on all one-dimensional CoP measures (defined in 

Table 2.1.1) to assess the difference between AFP- and WBB-based CoP measures in both 

directions. To investigate the effect of direction on CoP measure error, one-way, fixed 

effect (sway direction) ANOVAs were performed on all CoP measure errors before 

calibration. Then, to investigate the effect of calibration on measure error, one-way, fixed 

effect (calibration) ANOVAs were performed on the CoP measure errors in both sway 

directions. We then performed one-way, fixed effect (sway direction) ANOVAs on all CoP 

measure errors after calibration to investigate the effect of direction after linear calibration 

of the CoPWBB signals. For Aim II (inter-device variability), a one-way fixed effect (WBB) 

ANOVA was performed for each measure to assess the effect of the 12 WBBs on CoP 

measure error in both directions, both before and after calibration. 
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2.1.3. Results & Discussion 

2.1.3.1. CoP Signal Error 

2.1.3.1.i. CoP Signal Error before Linear Calibration of the CoPWBB Signals 

The CoPWBB signals were significantly correlated with the CoPAFP signals across all 

sway amplitudes and frequencies and in both sway directions for all 12 WBBs (r > 0.99) 

(Figure 2.1.5).  

The CoP signal error was a function of CoP magnitude. As the sway amplitude increased 

the CoP signal error increased, indicated by positive slopes (βAP, βML) of the linear trend lines 

(in red) in Figure 2.1.6. In other words, the WBB’s accuracy appears to decrease as 

horizontal and shear sway components increase. As shown below in Figure 2.1.6, 

agreement between CoP signals was not only a function of sway amplitude but also a 

function of sway direction. The CoP signal error was larger in the ML direction, indicated 

by a steeper slope (βML) in Figure 2.1.6B. 
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Figure 2.1.5: The WBB’s CoP signal error. The CoPWBB (in blue) and CoPAFP’ (in red) 

signals for the condition invoking the lowest frequency response and highest sway amplitude. 

The zoomed-in templates illustrate the WBB’s CoP signal error: the difference (in mm) in CoP 

displacement (CoPWBB − CoPAFP’). 

 

Figure 2.1.6: Linearity of the WBB’s CoP signal error. An individual WBB’s (WBB_4) 

CoP signal error (CoPWBB − CoPAFP’) is plotted for all sway amplitudes and in both the AP 

(A) and ML (B) directions.  

The β coefficients in Table 2.1.3 characterize the direction-specific slope of the linear 

trends for each WBB. The linear regression coefficients (βAP, αAP, βML, αML) were derived 
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from the CoP signal error across all sway amplitudes, in both directions, for each of the 12 

WBBs. There was a significant difference in signal error across directions: the β 

coefficients are significantly greater in the ML direction (F1,22= 24.30, p < 0.001). 

However, there was no statistical difference between β coefficients across the 12 WBBs, 

indicating low inter-device variability (p = 1 in both directions).  

Table 2.1.3: Linear regression coefficients for the 12 WBBs. The linear 

regression coefficients ( βAP, αAP, βML, αML)  were derived from the CoP signal 

error across all sway amplitudes and frequencies, in both directions, for each of 

the 12 WBBs. Simple linear regression was used to fit a straight trend line to the 

CoP signal error plotted against the CoPAFP’ signals: CoPWBB – CoPAFP’ = 

β*CoPAFP’ + α. 

WBB 
AP ML 

 βAP αAP βML αML 

WBB_1 0.094 −0.002 0.125 0.001 

WBB_2 0.094 0.021 0.107 0.011 

WBB_3 0.093 0.007 0.108 −0.022 

WBB_4 0.090 −0.012 0.103 −0.044 

WBB_5 0.092 −0.001 0.104 0.015 

WBB_6 0.096 −0.021 0.105 0.032 

WBB_7 0.099 0.003 0.107 0.022 

WBB_8 0.102 −0.017 0.112 −0.011 

WBB_9 0.094 0.022 0.103 0.013 

WBB_10 0.098 −0.009 0.111 −0.006 

WBB_11 0.092 0.006 0.101 −0.019 

WBB_12 0.109 0.028 0.107 −0.009 

mean 

± std 

0.096 

±0.005 

0.002 

±0.016 

0.108 

±0.006 

−0.001 

±0.022 

These findings were statistically supported by our analysis of RMSEs. The RMSEs quantify 

residuals and represent the difference between the CoPWBB and CoPAFP’ signals. The means 

and standard deviations of the RMSEs were 3.5 ± 0.9 mm and 4.0 ± 1.1 mm for the AP and 

ML directions, respectively. The RMSEs were significantly greater than zero (p < 0.001 in 

both directions), and the ML RMSEs were significantly greater than the AP RMSEs (F1,214 = 

15.19, p < 0.001). There was no statistically significant difference in RMSEs across the 12 

WBBs, indicating low inter-device variability (AP: F11,96 = 0.53, p = 0.881; ML: F11,96  = 0.28, 

p < 0.988).  
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Additionally, there was a significant effect of displacement angle (θi = 2, 4, and 6°) on 

RMSE, with a significant increase in RMSE as displacement angle increased (AP: F2,2,4 = 

234.46, p < 0.001; ML: F2,2,4  = 232.79, p < 0.001). There was a significant effect of load height 

(h = 900, 1000 and 1100 mm) on RMSE in the AP direction (F2,2,4  = 5.86, p < 0.004), with a 

significant decrease in RMSE as load height increased. There was not a significant effect of 

load height in the ML direction F2,2,4  = 0.05, p = 0.950) and there was no interaction between 

the two factors (displacement angle and load height). We hypothesize that there was no effect 

of load height on RMSE in the ML direction due to the larger magnitude and wider distribution 

of RMSE in the ML direction (see Figure 2.1.8, before calibration). 

2.3.1.ii. CoP Signal Error after Linear Calibration of the CoPWBB Signals 

The difference between the CoPWBB and CoPAFP’ signals, quantified by the RMSEs, was 

significantly reduced by the linear calibration of the CoPWBB signals. Figure 2.1.7 shows 

the effect of calibration on the CoPWBB signals. 

There was a significant reduction in RMSEs with calibration (AP: F1,214 = 856.52,  p < 

0.001; ML: F1,214 = 794.05, p < 0.001). After calibration, the RMSEs were no longer 

significantly greater in the ML direction (F1,214  = 0.37, p = 0.5451). Similar to the results 

before calibration, there was no difference in RMSEs across the 12 WBBs (AP: F11,96   = 

0.11, p = 0.999; ML: F11,96  = 0.24,  p < 0.993). Linear calibration of the CoPWBB signals 

reduced the inter-device variability, which in turn strengthened the WBB’s inter-device 

reliability.  
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Figure 2.1.7: Effect of calibration on CoPWBB signals. All four plots contain three signals: 

The CoPWBB signal before calibration (in blue, solid line), the CoPWBB signal after calibration 

(CoPWBB
calib) (in green, dashed line), and the “gold standard” CoPAFP’ signal (in red, solid line).  

The significant effect of displacement angle remained after calibration. Like before, the 

RMSE values increased as displacement angle increased (AP: F2,2,4  = 204.71, p < 0.001; 

ML: F2,2,4  = 170.82,  p < 0.001). There was a significant effect of load height in the AP but 

not in the ML direction before calibration. Because the CoP signal error was significantly 

greater in the ML direction before calibration, and because our linear calibration procedure 

corrects the CoP measurement and reduces error, there was an effect of load height in the 

ML direction after calibration. After calibration, the RMSEs significantly decreased as load 

height increased in both sway directions (AP: F2,2,4  = 55.27, p < 0.001; ML: F2,2,4  = 20.75, 

p < 0.001). These results are consistent with what we expected to see since larger 

displacement angles and shorter load heights produce larger CoP amplitudes and, as we 
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saw in our primary analysis, RMSEs increase as sway amplitude increases. Like before, 

there was no interaction between the two factors (displacement angle and load height). The 

significant effect of calibration on CoP signal error is shown in Figure 2.1.8. 
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Figure 2.1.8: Effect of calibration on CoPWBB signal error measured by RMSEs. This 

figure shows the distribution of the RMSEs across all sway amplitudes and WBBs, in both 

the AP (A) and ML (B) directions, both before and after linear calibration of the CoPWBB 

signals. The three oscillation frequencies (ω) corresponding to the three load heights (h = 

900, 1000 and 1100 mm) are 0.6, 0.5, and 0.4 Hz, respectively. 
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2.1.3.2. CoP Measure Error 

2.1.3.2.i. CoP Measure Error before Linear Calibration of the CoPWBB Signals 

Before calibration, there was a significant difference between the AFP- and WBB-based  

time-domain measures, indicated by large F statistics and small p-values in Table 2.1.4A. 

However, there was no difference between the AFP- and WBB-based frequency-domain 

measure, peak frequency (PFREQ), in both directions (Table 2.1.4A).  

The CoP measure error, averaged across all sway amplitudes and WBBs, was about −10% 

and −11% for all AP and ML time-domain measures, respectively (Table 2.1.5A). There was 

a significant difference in error between directions (AP vs. ML) for all CoP time-domain 

measures (p-values in Table 2.1.5A). Since the CoP measures were derived from the CoP 

signals, the error in CoPWBB time-domain measures was a direct function of the CoP signal 

error, as seen in our Bland-Altman analysis. For example, the Bland-Altman plot for the 

CoP time-domain measure, mean velocity (MV), before calibration (Figure 2.1.9A,C) 

follows the same trend expressed by the CoP signal error (Figure 2.1.6). There was no CoP 

measure error for the frequency-domain measure, PFREQ (Table 2.1.5A), meaning the 

WBB accurately measured the frequency content of the CoP signals.  

There was a significant effect of WBB on CoP measure error p < 0.001 for all CoP time-

domain measure errors, with error from one WBB (WBB_12) being significantly greater 

than the error from the remaining 11 WBBs in the AP direction and error from a different 

WBB (WBB_1) being significantly greater than the error from the remaining 11 WBBs in 

the ML direction). Evidently, there is significant inter-device variability on CoP measure 

error (based on the performance of two out of 12 different WBBs) before calibration. 

2.1.3.2.ii. CoP Measure Error after Linear Calibration of the CoPWBB Signals 

After calibration, there was no statistical difference between the AFP- and WBB-based  

time-domain measures, indicated by small F statistics and large p-values in Table 2.1.4B. 

Like before calibration, there was no difference between the AFP- and WBB-based PFREQ 

after calibration (Table 2.1.4B). Since our linear calibration simply corrects the CoP 

measurement (in mm) and reduces error, it has no effect on the frequency content of the 

CoP signal and in turn on the frequency-domain measure PFREQ. 
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The significant reduction of time-domain CoP measure errors (from Table 2.1.5A–B) 

shows the significant effect of calibration on CoPWBB measure accuracy in the time-domain 

(p < 0.001 for all CoP time-domain measure errors, in both directions). This effect is clearly 

illustrated in Figure 2.1.9: before calibration there was a strong correlation between 

measure error and amplitude, with an increase in error as measure amplitude increases, but 

this effect was absent after calibration. After calibration, just one time-domain CoP 

measure remained sensitive to direction: the magnitude of error for MV was significantly 

greater in the AP direction (p-values in Table 2.1.5B). As expected, the CoP measure error 

for PFREQ did not change with calibration.  

Dissimilar to the results before calibration, there was no effect of WBB on CoP measure 

error after calibration (0.930 < p ≤ 1.000 for all time-domain CoP measure errors, in both 

directions). These findings suggest that our proposed calibration procedure is effective 

when comparing CoP measures acquired from different WBBs. 
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Table 2.1.4: Means and standard deviations of both AFP- and WBB-based CoP measures, 

both before and after linear calibration of the CoPWBB signals. Results from the one-way, 

fixed effects (device) ANOVAs shows the difference between AFP- and WBB-based CoP 

measures before and after linear calibration. 

A. Before Linear Calibration of CoPWBB Signals: 

Measure 

AP ML 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,214 p- value 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,214 p- value 

MD 31.0 ± 7.8 34.0 ± 8.5 7.23 0.008 32.2 ± 8.8 35.6 ± 9.7 7.64 0.006 

RMS 34.9 ± 8.8 38.2 ± 9.6 7.32 0.007 36.1 ± 9.8 40.0 ± 10.8 7.71 0.006 

RANGE 123.5 ± 30.4 135.6 ± 33.2 7.82 0.006 128.3 ± 34.4 142.2 ± 38.0 7.97 0.005 

MV 97.2 ± 27.1 106.8 ± 29.9 6.16 0.014 100.0 ± 28.4 110.9 ± 31.6 7.14 0.008 

PFREQ 0.5 ± 0.1 0.5 ± 0.1 0.00 1.000 0.5 ± 0.1 0.5 ± 0.1 0.00 1.000 

B. After Linear Calibration of CoPWBB Signals: 

Measure 

AP ML 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,214 p- value 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,214 p- value 

MD 31.0 ± 7.8 31.0 ± 7.8 <0.001 0.993 32.2 ± 8.8 32.1 ± 8.8 <0.001 0.996 

RMS 34.9 ± 8.8 34.9 ± 8.7 <0.001 0.998 36.1 ± 9.8 36.1 ± 9.8 <0.001 0.998 

RANGE 123.5 ± 30.4 123.6 ± 30.3 <0.001 0.975 128.3 ± 34.4 128.3 ± 34.4 <0.001 0.994 

MV 97.2 ± 27.1 97.4 ± 27.3 <0.001 0.957 100.0 ± 28.4 100.0 ± 28.5 <0.001 0.983 

PFREQ 0.5 ± 0.1 0.5 ± 0.1 0.00 1.000 0.5 ± 0.1 0.5 ± 0.1 0.00 1.000 

Table 2.1.5: Time-domain CoP measure (%) errors both before and after linear 

calibration of CoPWBB signals. The p-values quantify the direction-specific difference in error 

(AP vs. ML) both before (A) and after (B) calibration. The (%) errors for the one frequency-

domain CoP measure PFREQ is not reported here because there is no difference in PFREQ 

measured by both the WBB and AFP (see Table 2.1.4). 

Measures 

A. CoP Measure (%) Error before Linear 

Calibration of CoPWBB Signals: 

B. CoP Measure (%) Error after Linear 

Calibration  CoPWBB of Signals: 

AP mean ± std ML mean ± std p-value AP mean ± std ML mean ± std p-value 

MD −9.70 ± 0.67 −10.85 ± 0.88 <0.001 −0.01 ± 0.40 0.01 ± 0.57 0.805 

RMS −9.71 ± 0.64 −10.86 ± 0.88 <0.001 −0.02 ± 0.37 0.00 ± 0.56 0.744 

RANGE −9.83 ± 0.76 −10.90 ± 0.91 <0.001 −0.13 ± 0.57 −0.03 ± 0.64 0.251 

MV −9.89 ± 0.60 −10.90 ± 0.87 <0.001 −0.18 ± 0.34 −0.04 ± 0.56 0.021 
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Figure 2.1.9: Bland-Altman plots of a time-domain CoP measure, mean velocity (MV), 

before and after linear calibration of the CoPWBB signals. Comparison of MV derived 

from both the CoPWBB and CoPAFP’ signals for every trial (12 WBBs, 3 load heights, 3 

displacement angles per load height, per sway direction = 108 trials). The solid line represents 

the mean difference between measurements (MVWBB vs. MVAFP) and the dotted lines represent 

the 95% limits of agreement (± 1.96 times the standard deviation of the mean difference).  

2.1.4. Conclusions 

The WBB is an affordable, portable, and easily accessible device that may be used to 

measure ground reaction forces and CoP displacement in situations where lower accuracy 

and precision is acceptable. The WBB should not be used as a replacement for the “gold 

standard” laboratory grade force-plate when measuring CoP under both static and dynamic 

conditions, as it is a uni-axial device and lacks the accuracy recommended for 

posturography [110]. However, once the WBB’s CoP measurement error is fully 

characterized and accounted for (under uncontrolled dynamics conditions – e.g., real 

human postural sway), the WBB could substitute for a laboratory-grade force plate in 

situations where lower accuracy and precision is acceptable. 

The WBB’s time jitter poses a significant limitation, in general, for the use of the WBB 

as a CoP measurement device. Because the WBB samples at an inconsistent rate, we 

employed a data averaging method to create time series with samples at equal time intervals 

(tDA). In this study, we averaged across samples every 93.75 ms (tDA= 0.09375 s; fDA = 

 ~10.7 Hz). Because we found the WBB’s mean sampling rate fs to be ~50 Hz, we could 
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potentially increase CoP measurement accuracy and reduce error by decreasing the time 

interval tDA, in which we averaged across samples. However, occasionally the WBB only 

acquired 1 or 2 samples worth of data during the specified tDA (even though it usually 

acquired 3–6 samples). If our custom-written software was set to average across samples 

at a faster rate, fDA, our data set could contain missing data. Because the WBB has been 

reported to sample at different mean rates (fs = 35 [99], 40 [98], 64 [104], and even 100 Hz 

[103]), we conclude that the WBB’s mean sampling rate depends on both the device and 

the operating system of the device used to connect to the WBB. The WBB’s time jitter 

combined with an inappropriately fast fDA (dependent upon the connected device) could 

explain the “occasional glitches in the data” reported in previous publications [99,104]. In 

sum, the device and operating system used to acquire data from the WBB, as well as the 

way in which the WBB’s time jitter is treated, may affect the quality of CoP measures 

derived from WBB data. 

The way in which we processed both the WBB- and AFP-based CoP signals poses 

another limitation of this study. We used PCA to synchronize the CoPWBB and CoPAFP’ 

signals in space (to account for the inherent yet small positioning errors) and we zero-

meaned the signals when time-aligning offline. In doing so, we were unable to detect the 

WBB’s initial (horizontal) offset error previously documented by Bartlett et al. [103]. 

Despite this limitation, our research findings remain significant with regards to purpose 

and implementation. Although we do not quantify the WBB’s initial (horizontal) offset 

error, we do quantify the WBB’s (horizontal) CoP measurement error once the CoPWBB and 

CoPAFP’ signals are synchronized in both space and time. Our future research aims 

motivated the signal processing methods carried out in this study. In future work, we plan 

to derive summary postural sway measures (such as the CoP time-domain measures 

reported in Table 2.1.1) from human postural sway measured by a single WBB on a frequent, 

longitudinal basis. We are more concerned with the relative accuracy and reliability of WBB-

based CoP measures and less concerned with the WBB’s absolute precision as a CoP 

measurement device. Furthermore, assuming there is no drift in the WBB’s (horizontal) offset 

error across time (a potential issue which has yet to be explored), it would not influence 

summary measures like mean sway amplitude, path length, and velocity. 
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Additional limitations of this study pertain to our experimental setup and procedures. 

The weight distribution of the inverted pendulum mechanical system does not closely 

resemble that of a human body, in which two thirds of the body’s weight is concentrated 

at or around the height of the body’s CoM [112]. Most of the mechanical system’s weight 

was concentrated at the base with only 28% of the weight loaded at the approximate height 

of a human body’s CoM. So although we acquired promising results, we cannot make 

confident inferences regarding the WBB’s competency in practice until we test a load with 

a weight distribution more representative of a human body. Furthermore, our simulated 

postural sway signals (with respect to both sway amplitude and frequency) differ from 

human sway. As previously discussed, we systematically tested multiple displacement 

angles and load heights to induce a variety of sway amplitudes and frequencies. Although 

the load heights were selected according to the approximate height of a human body’s CoM 

[108,109], the selected displacement angles induced higher sway amplitudes than typically 

seen human postural sway. We were restricted to a relatively large range of displacement 

angles (θi = 2°, 4° and 6°) due to the limited precision of the device used to measure the 

displacement angles. If we were able to reduce and restrict our range (e.g., to θi = 0.5°, 1.0° 

and 1.5°), we would have induced sway amplitudes that were more similar to human 

postural sway. We expect a lower CoP measurement error when using the WBB to measure 

human postural sway since human sway tends to be lower in amplitude relative to our 

simulated postural sway amplitudes and since we determined error to be a function of sway 

amplitude in this study. Lastly, we only assessed one-dimensional sway and a limited range 

of sway frequencies (ω = 0.4, 0.5 and 0.6 Hz induced by h = 1100, 1000 and 900 mm, 

respectively). The range of frequencies tested is comparable to the mean frequencies found 

in both healthy young and old adults during quiet stance with both eyes opened and eyes 

closed [35], however a higher frequency range (1–10 Hz) [113] should be tested in order 

to translate our findings to more challenging sway conditions that elicit an increase in 

postural sway (e.g., Romberg, standing on foam, or tandem stance) and/or to human 

populations with known postural instabilities and abnormal postural sway. 

So although we have identified the WBB’s CoP measurement error under controlled 

dynamic conditions, future work is needed before the WBB can be used as the sole postural 
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sway measurement device in the clinical research and rehabilitation research domains. In 

agreement with Pagnacco et al. [105], we do not recommend the use of the WBB as a clinical 

diagnostic tool. The WBB was designed and manufactured for entertainment purposes and 

lacks the accuracy, precision, and reliability required of medical devices. In future work, 

human postural sway must be measured under a variety of sway conditions and in many 

human populations (differentiated by both age and health status) simultaneously with both 

the WBB and force plate in order to characterize CoP measurement error under 

uncontrolled dynamic conditions. Once the WBB’s CoP measurement error is fully 

characterized and accounted for, the WBB could substitute for a laboratory-grade force 

plate in situations where lower accuracy and precision is acceptable, such as for frequent, 

longitudinal monitoring of postural sway for older adults in a small clinic or home 

environment.  
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CHAPTER 2, Part 2: Validation Study for the Postural Sway Measurement Device: 

Validating and Calibrating the Nintendo WBB to Derive Reliable Measures of Postural 

Sway Based on Real Two-Dimensional Postural Sway Signals Acquired from Healthy, 

Young Adults 

Summary 

Objective: To further characterize the Nintendo Wii balance board’s (WBB) CoP measurement 

error, using the “gold standard” laboratory-grade force plate as ground truth, in preparation to use 

the WBB as the sole CoP measurement device in our in-home study (Chapter 4).  

Methods: The WBB and a laboratory-grade AMTI force plate (AFP) were used to simultaneously 

measure the CoP displacement of an uncontrolled dynamic load: human postural sway. Seven 

healthy young adults (three females, mean age of 32.9 ± 9.7 years) participated in a series of 30-

second quiet stance trials while standing in place with a fixed foot position. The subjects performed 

3 trials each for 4 different quiet stance conditions: 1.eyes open (EO); 2. eyes closed (EC); 3. 

standing on foam with eyes open (FEO); and, 4. standing on foam with eyes closed (FEC). The 

WBB CoP signals were calibrated via two different methods: 1. the pendulum-based calibration 

method detailed above in Chapter 2, Part 1; and 2. a human-based calibration method derived from 

the human-based postural sway. The CoP measurement error was determined and calibration 

methods were compared. 

Results: The CoP measurement error for the calibrated WBB CoP signals (both pendulum- and 

human-based) was significantly greater than that for the uncalibrated WBB CoP signals, with the 

pendulum-based calibrated signal error significantly greater than the human-based calibrated signal 

error which were significantly greater than the uncalibrated signal error.  

Conclusions: There was not a significant difference between the AFP- and WBB-based CoP 

measures before linear calibration of the WBB CoP signals. Neither calibration method reduced 

the WBB’s CoP measurement error. Despite the significant effort dedicated to calibrating the WBB 

CoP signals to reduce the WBB’s CoP measurement error, it appears as though the uncalibrated 

WBB CoP signals most accurately quantify CoP in human postural sway. Because of this, neither 

pendulum- nor human-based calibration will be implemented in Chapters 4 of this dissertation. The 

uncalibrated WBB CoP signals will be used to provide CoP estimates during our longitudinal study 

of postural sway in older adults with MCI. 
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2.2.1. Introduction 

Chapter 2, Part 2 extends beyond Chapter 2, Part 1 by using real, two-dimensional 

postural sway signals to characterize the WBB’s CoP measurement error. Before 

implementing the WBB as the sole measurement device, its measurement error must be 

quantified using uncontrolled, two-dimensional biomedical signals such as in human 

postural sway. In this study we quantified the WBB’s measurement error during quiet 

stance in seven healthy, young adults. As discussed in Chapter 1, quiet stance with no 

cognitive loading is an easy postural task for a healthy, young adult. In order to elicit more 

postural sway and in an effort to emulate the mild postural instabilities evidenced in older 

adults, the difficulty level of the quiet stance condition was modulated. As detailed by 

Horak et al., spatial orientation in postural control is based on the interpretation of 

convergent sensory information from the somatosensory, vestibular and visual systems [2]. 

When you manipulate or remove input from one or multiple systems, a subject’s ability to 

orient one’s self in space and maintain postural stability is compromised. We modulated 

the quiet stance condition by removing visual input (i.e., instructing the subject to close 

his/her eyes) and by dampening the biomechanical feedback of the support surface (i.e., 

having the subject stand on foam as opposed to a hard surface, such as the relatively rigid 

usable surface of the WBB). This study’s aim was to extend beyond our first WBB 

validation study (detailed in Chapter 2, Part 1) by quantifying the WBB’s CoP 

measurement error under uncontrolled dynamic conditions, as in human postural sway. Before 

using the WBB as the sole postural sway measurement device in the clinical research and 

rehabilitation research domains, it first must be validated against the AFP using real, two-

dimensional biomedical signals. 

2.2.2. Experimental Methods 

 The Institutional Review Board at OHSU approved this study’s experimental methods 

and all subjects gave informed written consent prior to participation. 
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2.2.2.1. Procedures 

Seven healthy young adults (three females, mean age of 32.9 ± 9.7 years) participated 

in a series of 30-second quiet stance trials while standing in place with a fixed foot position. 

Each subject mounted the WBB (WBB_12 from Chapter 2, Part 1), which was mounted 

and positioned centrally on the force plate, and assumed a fixed foot position. A foam pad 

was mounted and positioned centrally on the WBB for the two foam conditions. Testing 

order remained constant across all seven subjects, with four quiet stance conditions (eyes-

open (EO), eyes-closed (EC), foam-eyes-open (FEO), and foam-eyes-closed (FEC)) and 

three consecutive trials per condition for a total of 12 30-second trials per subject. Both 

measurement devices (the WBB and AFP) acquired two-dimensional CoP displacement 

data simultaneously. 

 

 

Figure 2.2.1: Experimental setup to measure real, two-dimensional postural sway in 

healthy young adults across four quiet stance conditions. The subject stood atop the 

WBB, which was mounted atop the AFP. (A) Setup for EO and EC conditions; (B) Setup 

for FEO and FEC conditions. The black reference block was used to ensure a fixed foot 

position and was removed before data acquisition. 

2.2.2.2. Data Acquisition 

Prior to data acquisition, pilot data was collected to assess the spectral characteristics 

of postural sway in healthy young adults. Two healthy young adults (one female, mean age 

of 28.5 ± 6.4 years) underwent the testing protocol. The majority of the power spectrum 

was contained below 2.0 Hz, across all four conditions (EO, EC, FEO and FEC) and in 

both directions (AP and ML). The only condition that contained frequencies higher than 

2.0 Hz (up to 4.0 Hz) was FEC. Our findings are consistent with previous findings 

A. Without foam                 B. With foam 
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regarding the spectral characteristics of postural sway in healthy, young adults [35]. But to 

be overly cautious and avoid violating the Nyquist-Shannon sampling theorem [114], we 

modified our custom-written software to store all WBB samples during data acquisition 

with the intent to create a time series with equally distributed samples during post-

processing. This method is different from our first WBB validation study where we 

employed our data averaging method during data acquisition, setting the WBB to sample 

at a rate of ~10.7 Hz (detailed in Chapter 2, Part 1). In this study, our second WBB 

validation study, the WBB sampled at its inconsistent rate with a mean frequency of 50.22 

Hz. The time between samples (∆t) varied by a factor of 15.5 ms:  

∆t = n * 15.5, n = 0, 1, 2 or 3    (2.2.1) 

 

Figure 2.2.2: The WBB’s inconsistent sampling rate. The time between samples (∆t) 

varied by a factor of 15.5 ms. The mean ∆t was 19.9 ms, resulting in a mean sampling 

frequency of 50.22 ± Hz. 

Our data averaging method was employed during post-processing to account for the 

board’s sampling restrictions (discussed in Chapter 2, Part 1). We averaged across all 

samples every 50 ms (fDA = 20 Hz). This rate was the fastest usable sampling rate, meaning 

the specified sampling interval could not be any shorter without producing a data set with 

missing data points. A sampling rate of 20 Hz is low compared to recommendations in the 

literature [98] but high enough to capture the spectral characteristics of the postural sway 

in our seven healthy, young adults under relatively stable postural stance conditions.  
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The AFP sampled at 100 Hz, and a 10.5 Hz low-pass filter was applied during data 

acquisition. 

2.2.2.3. Data Analysis 

All data were analyzed in Matlab R2014a (The MathWorks, Natick, MA, USA). 

2.2.2.3.i. CoP Signals 

CoP Signal Derivation 

Both the WBB- and AFP-based CoP signals were derived based on the methods detailed 

in Chapter 2, Part 1 with small adjustments made to the calculations during the FEO and 

FEC conditions to account for both the height (hf) and mass (mf) of the foam pad, which 

was positioned centrally atop the WBB, which was positioned centrally atop the AFP. The 

AFP’s predicted CoP at the foam surface (CoPAFP’’) was calculated by making the 

following adjustments to Equations 2.1.2-3: 

- To calculate T, the summed moments about the point of rotation, R, Equation 2.1.2 

was modified by  

o adding hf to (hR + hWBB) to represent the increased length of the lever arm 

𝑇 = 𝐶𝑜𝑃𝐴𝐹𝑃𝑥
𝐹𝐴𝐹𝑃𝑧

+ (ℎ𝑅  + ℎ𝑓 + ℎ𝑊𝐵𝐵)𝐹𝐴𝐹𝑃𝑥
 

(2.2.2) 

- To calculate CoPAFP’’, Equation 2.1.3 was modified by 

o subtracting the force applied by the foam pad, Ff , from FAFPz’ to represent 

the vertical forces applied to the foam surface, FAFPz’’ 

𝐶𝑜𝑃𝐴𝐹𝑃𝑥

′′ = [𝑇 − ℎ𝑅𝐹𝐴𝐹𝑃𝑥

′′]/𝐹𝐴𝐹𝑃𝑧

′′ 
(2.2.3) 

where, FAFPx’’ = FAFPx, FAFPz’’ = FAFPz – FWBB – Ff, FWBB = mWBBg, Ff = mfg, mWBB = the 

mass of the WBB, mf = the mass of the foam pad, and g = acceleration due to gravity. 

The WBB’s predicted CoP at the foam surface (CoPWBB’) can be calculated as well using 

known T: 

𝐶𝑜𝑃𝑊𝐵𝐵𝑥

′ = [𝑇 − ℎ𝑅𝐹𝑊𝐵𝐵𝑥

′]/𝐹𝑊𝐵𝐵𝑧

′ 
(2.2.4) 

where, FWBBx’ = FWBBx = 0 since the WBB is unable to measure horizontal forces, and FWBBz’ 

= FWBBz – Ff. Because FWBBx’ = FWBBx = 0, hf does not influence CoPWBB’. Equation 2.2.4 

relies on information from the AFP, and because the purpose of this work is to be able to 
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use the WBB as the sole measurement device to estimate CoP, Equation 2.1.1 was used 

instead to calculate CoPWBB’. Equation 2.1.1 was modified to account for Ff by subtracting 

Ff from FWBBz across the WBB’s four force transducers (TR, BR, TL, and BL). A 30-second 

bias trial was conducted to determine the four vertical forces applied to the WBB by the 

foam pad (FTRf, FBRf, FTLf, and FBLf). The four vertical forces attributed by the foam were 

then subtracted from the vertical forces measured by each of the four force transducers 

(FTR, FBR, FTL, and FBL) in Equation 2.1.1 to calculate CoPWBB’. 

For ease of discussion, from here forward the CoPWBB’ and CoPAFP’’ signals derived 

during the FEO and FEC conditions will be referred to as CoPWBB and CoPAFP’, 

respectively. 

CoP Signal Processing 

The CoPWBB and CoPAFP’ signals were processed and time-aligned according to the 

methods detailed in Chapter 2, Part 1. 

2.2.2.3.ii. CoP measures 

All four time-domain CoP measures detailed in Chapter 2, Part 1 were derived in this 

study as well. Two frequency-domain CoP measures replaced the one frequency-domain 

CoP measure detailed in Chapter 2, Part 1 (PFREQ) to better represent the frequency 

content of human sway since, in comparison to the pendulum sway, human sway has a 

broader frequency spectrum (i.e., more than just one (pendulum oscillation) frequency) and 

contains higher frequencies. The 95% power frequency, f95, and the centroidal frequency, 

fC, were included in this analysis for a total of four time-domain measures (MD, RMS, 

RANGE, and MV) and two frequency-domain measures (f95, and fC). The f95 marks the 

frequency at which 95% of the total power is contained and the fC marks the frequency at 

which the spectral mass is concentrated. Derivations for these two additional frequency-

domain measures are detailed elsewhere in Prieto et al. [35]. Both the AP and ML CoP 

signals were used to derive the six CoP measures in this study since human sway is two-

dimensional (as opposed to the one-dimensional measures used to quantify the one-

dimensional pendulum sway in our first WBB validation study). 
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2.2.2.3.iii. Quantifying the WBB’s Performance by Determining CoP Measurement Error 

As in Chapter 2, Part 1, the CoP measurement error was differentiated into two parts: 

CoP signal error and CoP measure error (derivations detailed in Chapter 2, Part 1). At first 

glance, it was clear that the CoP signal error was less in human sway compared to that in 

pendulum sway (Figure 2.2.3). Because of this, a second set of linear regression 

coefficients were proposed to represent the WBB’s CoP signal error in human sway. 

2.2.2.3.iv. Linear Calibration of CoPWBB Signals Based on Human Sway  

The human-based linear regression coefficients were determined following the methods 

detailed in Chapter 2, Part 1. The human-based m coefficients (mAP = 0.981, mML = 0.987) 

are significantly less than the pendulum-based m coefficients (mAP = 1.099, mML = 1.097 

from Table 2.1.2) (p < 0.001), suggesting there may be a significant difference in 

calibration methods. In this study, the CoPWBB signals were linearly calibrated twice, once 

using the pendulum-based linear regression coefficients, CoPWBBcalib_pendulum, and once 

using the human-based linear regression coefficients, CoPWBBcalib_human. The pendulum- vs. 

human-based calibration methods were then compared. 

2.2.2.3.v. Statistical Analysis 

As in Chapter 2, Part 1, Pearson’s linear correlation coefficients and RMSEs were used 

to quantify the WBB’s CoP signal agreement and error, respectively. A t-test was first 

performed to confirm that the RMSEs were significantly different from zero before 

calibration. Then, a 3-way, fixed effects (sway direction, quiet stance condition, calibration 

method) ANOVA was performed on the RMSEs to assess the main and interaction effects 

of sway direction (AP, ML), sway condition (EO, EC, FEO, FEC), and calibration method 

(none, pendulum-based, human-based). A Bonferroni correction was applied to account for 

multiple comparisons (2 sway directions × 4 quiet stance conditions × 3 calibration methods = 

24 comparisons). 

 As in Chapter 2, Part 1, the percent errors in the CoP measures were used to quantify 

the WBB’s CoP measure error. First, one-way, fixed effect (device) ANOVAs were 

performed on each CoP measure to assess the difference between the AFP- and WBB-

based CoP measures during each of the four quiet stance conditions. Then, one-way, fixed 
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effect (quiet stance condition) ANOVAs were performed on the CoP measure errors to 

assess the difference in measure error between quiet stance conditions. This analysis was 

performed both before and after linear calibration of the CoPWBB signals. Lastly, one-way, 

fixed effect (calibration method) ANOVAs were performed on the CoP measure errors to 

assess the effect of (both human- and pendulum-based) calibration on CoP measure error.  

2.2.3. Results & Discussion 

2.2.3.1. CoP Signal Error  

 The CoPWBB were significantly correlated with the CoPAFP’ signals during all four sway 

conditions and in both sway directions (r > 0.99) (Figure 2.2.3). 

 

Figure 2.2.3: CoPWBB and CoPAFP’ signals for a healthy, young adult during the EO and 

FEC conditions. Postural sway increased as the difficult level of the quiet stance condition 

increased (from EO (A and B) to FEC (C and D)) in both the AP (A and C) and ML (B and 

D) directions. The CoPWBB signals (blue) lay on top of the CoPAFP’ signals (red). See Figure 

2.2.5 for zoomed-in templates showing the slight difference between the CoPWBB and 

CoPAFP’ signals. 

 The WBBs CoP signal error increased as the amount of postural sway increased, which 

was induced by increasing the difficulty level of the quiet stance condition (from EO to EC 

to FEO to FEC) (Figure 2.2.4, plots A and B). The linear trends in CoP signal error were 

not nearly as strong in human sway as in pendulum sway (compare Figure 2.2.4, plots C 

and D, to Figure 2.1.6). The β coefficients for human sway (βAP = 0.019, βML = 0.013 from 
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Figure 2.2.4, plots C and D) are significantly less than that for pendulum sway (βAP = 

0.090, βML = 0.103 from Figure 2.1.6 and Table 2.1.3) (p < 0.001). Note the difference in 

sway range: sway range is less in the human sway compared to the pendulum sway 

(approximately 120 mm and 100 mm in AP and ML human sway, respectively; 

approximately 160 mm in both AP and ML pendulum sway).  
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Figure 2.2.4: The WBB’s CoP signal error in human sway is less than in pendulum 

sway: red = EO, yellow = EC, green = FEO, and blue = FEC. Plots (A) and (B) show the 

difference in signal error between conditions on unscaled axes to better show the 

differences in WBB’s CoP signal error between quiet stance conditions: signal error 

increased (marked by larger deviations from zero along the y-axis) as the difficulty level 

of the quiet stance condition increased (from EO to EC to FEO to FEC). Plots (C) and (D) 

show the same data set plotted on scaled axes in order to illustrate the difference in linearity 

between human and pendulum sway (compare to Figure 2.1.6). Note: two different WBB’s 

produced the data in these two figures: WBB_4 in Figure 2.1.6 and WBB_12 in this figure. 

The β coefficients associated with WBB_12 for the pendulum sway are βAP = 0.109, βML = 

0.107 from Table 2.1.3. 
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The difference in calibration methods was then compared. The human-based 

calibration method appeared to adjust the CoPWBB signals better than the pendulum-based 

calibration method (Figure 2.2.5), although the uncalibrated CoPWBB signals appear to 

agree most with the CoPAFP’ signals. 

 

Figure 2.2.5: Comparison of pendulum- vs. human-based calibration methods for the 

CoPWBB signals: red = CoPAFP’ signals, blue = CoPWBB signals, green = 

CoPWBBcalib_pendulum signals, and magenta = CoPWBBcalib_human signals. The human-

based calibration method appeared to better adjust the CoPWBB signals. Both signals (EO 

(A) and FEC (B)) are the AP signals from Figure 2.2.3. 

The effect of calibration method, as well as sway direction and quiet stance condition, 

was then quantified using RMSEs (Figure 2.2.6). The RMSEs were significantly different 

from zero before calibration (p < 0.001 in both sway directions). There was a statistically 

significant effect of sway direction, quiet stance condition, and calibration method on the 

RMSEs. The RMSEs in the AP direction were significantly greater than that in the ML 

direction (F1,2,3 = 109.07, p < 0.001). The RMSEs in the FEO and FEC conditions were 

significantly greater than that in the EO and EC conditions, with the FEC RMSEs 

significantly greater than the FEO RMSEs which were significantly greater than both the 

EO and EC RMSEs (F3,1,2 = 193.44, p < 0.001). The RMSEs for the calibrated CoPWBB 

signals (both CoPWBBcalib_pendulum and CoPWBBcalib_human) were significantly greater than that 

for the uncalibrated CoPWBB signals, with the pendulum-based RMSEs significantly greater 

than the human-based RMSDs which were significantly greater than the uncalibrated 
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RMSDs (F2,3,1 = 217.30, p < 0.001). All interaction effects were significant (p < 0.001), 

meaning the significance of each main effect depends on another main effect. 

 

Figure 2.2.6: Effect of both pendulum- and human-based calibration on CoPWBB 

signal error quantified by RMSEs. This figure shows the distribution of the RMSEs 

across all four quiet stance conditions (purple = EO, blue = EC, green = FEO, and 

yellow = FEC) in both the AP (A) and ML (B) directions, both before and after linear 

calibration of the CoPWBB signals: “after pendulum” refers to the CoPWBBcalib_pendulum 

signals, and “after human” refers to the CoPWBBcalib_human signals. Both calibration 

methods increased the CoP signal error (the pendulum-based calibration more than the 

human-based calibration). 

2.2.3.2. CoP Measure Error  

 There was not a significant difference between the AFP- and WBB-based CoP 

measures before linear calibration of the CoPWBB signals (note the low F statistics and high 

p-values in Table 2.2.1).  
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 There was a significant effect of quiet stance condition on CoP measure error before 

linear calibration of the CoPWBB signals (note the high F statistics and low p-values in 

Table 2.2.2. A). The magnitude of percent error in MD and RMS was significantly less in 

the FEO condition compared to both the EO and EC conditions. The magnitude of percent 

error in RANGE were significantly less in the FEO condition compared to the EC condition. 

The magnitude of percent error in MV was significantly less in both the FEO and FEC 

conditions compared to both the EO and EC conditions. (The statistics for the time-domain 

CoP measure errors are contained in Table 2.2.2. A.) The percent errors for f95 and fC are 

-1.77 ± 2.36 and -1.91 ± 1.02, respectively. There was no significant difference in the 

Table 2.2.1: Means and standard deviations of both AFP- and WBB-based CoP 

measures during the four quiet stance condition (EO, EC, FEO, and FEC). The F 

statistics and p-values are the results from the one-way, fixed effect (device) ANOVAs. 

The low F statistics and high p-values show that there is not a significant difference 

between AFP- and WBB-based CoP measures before linear calibration of the CoPWBB 

signals. 

WITHOUT FOAM 

Measure 

EO condition EC condition 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,40 

p-

value 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,40 

p-

value 

MD 3.77 ± 1.78 3.84 ± 1.81 0.01 0.906 4.67 ± 2.27 4.75 ± 2.31 0.01 0.906 

RMS 4.40 ± 2.02 4.48 ± 2.06 0.02 0.901 5.47 ± 2.56 5.56 ± 2.61 0.02 0.895 

RANGE 
22.19 ± 

10.14 

22.70 ± 

10.31 
0.03 0.873 

28.13 ± 

12.49 

28.85 ± 

12.81 
0.03 0.855 

MV 7.79 ± 1.92 8.22 ± 1.97 0.53 0.471 
10.60 ± 

3.12 
11.13 ± 3.22 0.29 0.593 

f95 1.49 ± 0.41 1.53 ± 0.42 0.06 0.801 1.65 ± 0.41 1.67 ± 0.42 0.01 0.906 

fC 0.65 ± 0.18 0.67 ± 0.18 0.07 0.795 0.72 ± 0.18 0.73 ± 0.18 0.04 0.838 

WITH FOAM 

Measure 

FEO condition FEC condition 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,40 

p-

value 

AFP: 

mean ± std 

WBB: 

mean ± std 
F1,40 

p-

value 

MD 8.44 ± 2.73 8.55 ± 2.77 0.02 0.898 
11.84 ± 

3.37 

12:02 ± 

3.49 
0.03 0.859 

RMS 9.61 ± 3.09 9.75 ± 3.14 0.02 0.890 
13.65 ± 

3.88 
13.88 ± 4.00 0.04 0.852 

RANGE 
50.28 ± 

16.90 

51.17 ± 

17.18 
0.03 0.866 

72.90 ± 

22.19 

74.41 ± 

22.77 
0.05 0.829 

MV 
20.27 ± 

6.85 
20.96 ± 7.03 0.10 0.752 

36.85 ± 

17.31 

38.13 ± 

18.07 
0.06 0.815 

f95 1.52 ± 0.30 1.55 ± 0.31 0.08 0.780 1.90 ± 0.44 1.95 ± 0.45 0.09 0.762 

fC 0.68 ± 0.13 0.69 ± 0.13 0.12 0.733 0.83 ± 0.17 0.84 ± 0.17 0.08 0.782 
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magnitude of percent error between quiet stance conditions for both frequency-domain 

measures (f95: F3,80 = 1.24, p = 0.301; fC: F3,80 = 1.11, p = 0.352). 

 As shown in Table 2.2.2, CoP measure error for the time-domain measures mainly 

increased with both the pendulum- and human-based calibration (difference between Table 

2.2.2 A, B, and C). Because the magnitude of percent error in the two frequency-domain 

measure errors does not change with linear calibration of the CoPWBB signals, f95 and fC 

are not reported in Table 2.2.2. 

2.2.3.3. Differences between Human- & Pendulum-Based CoP Signals 

There was much more CoP measurement error when the WBB quantified pendulum- 

based signals compared to human-produced signals. This is likely due to the many 

Table 2.2.2: Time-domain CoP measure (%) errors both before (A) and after (B and 

C) linear calibration of CoPWBB signals. The F statistics and p-values are the results from 

the one-way, fixed effect (quiet stance condition) ANOVAs The high F statistics and low p-

values show that there is a significant difference in CoP measure error between quiet stance 

conditions. The CoP measure errors are smallest before calibration (A). The two frequency-

domain CoP measures are not included in this table because the frequency-domain CoP 

measure errors are not influenced by the linear calibrations. 

Measure 
EO 

mean ± std 

EC 

mean ± std 
FEO 

mean ± std 

FEC 

mean ± std 
F3,80 p-value 

A. Percent error of CoPWBB signals (“before”) 

MD -1.88 ± 0.36 -1.81 ± 0.36 -1.27 ± 0.49 -1.51 ± 0.64 6.23 0.001 

RMS -1.84 ± 0.36 -1.93 ± 0.34 -1.38 ± 0.51 -1.58 ± 0.65 5.61 0.002 

RANGE -2.41 ± 0.81 -2.55 ± 0.70 -1.82 ± 0.78 -2.01 ± 0.78 4.14 0.009 

MV -5.80 ± 1.91 -5.11 ± 1.09 -3.44 ± 0.66 -3.38 ± 0.45 22.76 <0.001 

B. Percent error of  CoPWBBcalib_pendulum signals (“after pendulum”) 

MD 7.33 ± 0.33 7.32 ± 0.32 7.79 ± 0.44 7.57 ± 0.58 5.79 0.001 

RMS 7.30 ± 0.33 7.22 ± 0.30 7.70 ± 0.46 7.51 ± 0.59 5.14 0.003 

RANGE 6.77 ± 0.75 6.65 ± 0.63 7.29 ± 0.71 7.12 ± 0.70 3.89 0.012 

MV 3.67 ± 1.72 4.31 ± 0.99 5.81 ± 0.60 5.88 ± 0.41 23.02 <0.001 

C. Percent error of  CoPWBBcalib_human signals (“after human”) 

MD -3.62 ± 0.37 -3.62 ± 0.39 -3.00 ± 0.51 -3.22 ± 0.69 7.69 <0.001 

RMS -3.67 ± 0.35 -3.77 ± 0.39 -3.13 ± 0.54 -3.32 ± 0.71 7.12 <0.001 

RANGE -4.21 ± 0.79 -4.39 ± 0.73 -3.57 ± 0.78 -3.77 ± 0.83 4.95 0.003 

MV -7.62 ± 1.99 -6.95 ± 1.13 -5.20 ± 0.70 -5.18 ± 0.47 21.84 <0.001 
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differences between the controlled, simulated sway signals (produced by the inverted 

pendulum model) and the uncontrolled, real human sway signals (produced by healthy, 

young adults) (discussed in detail in Section 2.1.4). Because the inverted pendulum’s CoM 

shifted much faster (higher sway velocity) and further (larger sway range) than that during 

human postural sway, there were significantly more shear and horizontal force components 

contained within the pendulum-produced CoP signals. The WBB is composed of just 

vertical force sensors and therefore cannot measure the shear and horizontal components 

of the CoP trajectory. This technological limitation of the WBB likely explains why there 

was significantly more CoP measurement error for the pendulum-based CoP signals 

compared to the human-based CoP signals. 

The distributions of the human- and pendulum-based CoP data sets are shown in Figure 

2.2.7. Upon visual inspection, it appears as though the human- based CoP signals (both AP 

and ML) follow exponential distributions with strong peaks at zero, rapid decay, and heavy 

tails (Figure 2.2.7, A & B). This distribution pattern may help explain why the human-

based calibration method did not reduce the WBB’s CoP signal error (quantified by RMSEs 

in Figure 2.2.6). Unlike the pendulum-based CoP data set, most of the human-based CoP 

data is concentrated around a CoP displacement value of zero (as shown in Figure 2.2.4). 

By visually comparing the human- to the pendulum-based distributions (Figure 2.2.7 A & 

B vs. Figure 2.2.7 C & D), we can deduce that the 95% confidence interval for the human-

based CoP data is much smaller compared to that for the pendulum-based CoP data (range 

of approximately 20mm and 120mm for the human- and pendulum-based CoP data, 

respectively). This may help explain why a linear correction significantly reduced the 

WBB’s CoP signal error for the pendulum-based CoP data set but had a limited (negative) 

effect on the WBB’s CoP signal error for the human-based CoP data set (shown in Figure 

2.2.6). We conclude that a linear correction was not an appropriate calibration procedure 

for the human data set: it had no-to-little effect on the majority of the data (since the 

majority of the human CoP values were very small) and it appeared to induce a small 

amount of error for the few larger CoP values (values shown by the tails of the histograms 

in Figure 2.2.7 A & B and errors quantified by the RMSEs in Figure 2.2.6).  
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Despite significant effort, we still cannot explain why the human-based calibration had 

a (slight) negative effect on the CoP measurements: the human-based linear calibration 

coefficients were derived from the human CoP data set and a slight linear trend does exist 

in the WBB’s CoP signal error when measuring human CoP (Figure 2.2.4). For reference, 

the CoP signal errors for the human-based calibrated and uncalibrated CoPWBB signals are 

strongly correlated (Pearson’s correlation coefficient equal 1.0 for both CoP directions). 
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Figure 2.2.7: Histograms to show the distributions of the human- vs. pendulum-based 

CoP data. Plots A & B show the exponential distributions of the human-based data in both 

the AP and ML directions, respectively. [The human data set consists of 210000 total data 

points: 2500 data points per trial (sampling frequency of 100 samples/second x 25-second 

worth of data per trial), 12 trials per subject (4 conditions x 3 trials per condition), and 7 

subjects = 2500 x 12 x 7 = 210000 total.] Plots C & D show the distribution of the 

pendulum-based data in both the AP and ML directions, respectively. [The pendulum data 

set consists of 270000 total data points: 2500 data points per trial (sampling frequency of 

100 samples/second x 25-second worth of data per trial), 9 trials per WBB (3 displacement 

heights x 3 displacement angles), and 12 WBBs = 2500 x 9 x 12 = 270000 total.] Our 

experimental setup in Chapter 2, Part 1 induced the non-normal distributions in C & D. 

[The combination of the three different displacement heights (h = 900, 1000, and 1100mm) 

and three different displacement angles (θ = 2, 4, and 6º) produced non-normally 

distributed CoP displacements when collapsing all 9 CoP displacement conditions 

together.] For each plot, the x-axis represents CoP displacement (in mm) and the y-axis 

represents the count (i.e., the number of data points in the data set corresponding to the 

specific CoP displacement value on the x-axis). This figure shows the ground truth data 

(CoP quantified by the “gold standard” force plate).  

2.2.4. Conclusions 

 In Chapter 2, Part 1 we discuss WBB’s limited accuracy and precision due to several 

mechanical and electronic limitations innate to the measurement device. The WBB’s has 

substantially low resolution (0.5 mm), low and inconsistent sample rate (time jitter), low 

signal to noise ratio, and tends to produce missing data due to occasional electronic glitches 
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during data acquisition [104]. Because the WBB has low resolution, and because human-

based CoP tends to be limited in range (Figure 2.2.7) with the majority of CoP 

displacements falling below ± 10 mm, there appears to be no advantage to calibrating our 

human-based CoP data set. Here in Chapter 2, Part 2 we show that there was not a 

significant difference between the AFP- and WBB-based CoP measures before linear 

calibration of the CoPWBB signals (Table 2.2.1). We then show that neither calibration 

method reduces the WBB’s CoP measure error (Figure 2.2.6 and Table 2.2.2). Although 

we do not fully understand why the human-based calibration method does not reduce error, 

we attempt to explain this as best we can. Despite the significant effort dedicated to 

calibrating the CoPWBB signals to reduce the WBB’s CoP measurement error, it appears as 

though the uncalibrated CoPWBB signals most accurately quantify CoP in human postural 

sway. Because of this, neither pendulum- nor human-based calibration were implemented 

in Chapters 4 of this dissertation. The uncalibrated CoPWBB signals were used to provide 

CoP estimates during our longitudinal assessment of postural sway in older adults with 

MCI. 
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CHAPTER 3: Cross-Sectional Study of Postural Sway in MCI: Using an Accelerometer 

to Quantify Postural Sway during Quiet Stance with Cognitive Loading in Older Adults 

with MCI 

Summary 

Objective: Our study objective was to characterize the associations between cognitive status and 

postural control in older adults during quiet stance both with (dual-task) and without (single-task) 

domain-specific cognitive loading.  

Hypotheses: Our hypotheses were: 1. Older adults with MCI will have more postural sway and 

higher postural dual-task costs compared to cognitively intact older adults since reduced postural 

control and dual-tasking ability has been observed in older adults with cognitive impairment; and, 

2. Attention- and executive function-based cognitive loads will elicit higher postural dual-task costs 

compared to memory-based cognitive loads since attentional and executive control influences 

posture. 

Methods: Twenty-nine older adults (10 intact, 19 MCI) Twenty-nine subjects enrolled in 

ORCATECH studies were recruited for this pilot study. Three different domain-specific cognitive 

loads were presented to each subject during quiet stance, each designed to tax a specific cognitive 

domain (e.g., attention, memory, and executive function). Postural sway was quantified using an 

accelerometer mounted to the subject’s posterior trunk and objective postural sway measures were 

derived from the accelerometry data.  

Results: Higher sway jerk and frequency differentiated the MCI group from the intact group during 

the single-task condition. Lower postural dual-task costs in sway path length, jerk, and frequency 

differentiated the MCI group from the intact group during the dual-task conditions. The executive 

function-based load elicited significantly lower postural- dual-task costs compared to the other two 

domain-specific cognitive loads. Although there was no interaction effect between cognitive status 

and cognitive load, the separation between cognitive status groups appeared to be most pronounced 

during the attention-based dual-task condition.  

Conclusions: Our findings suggest that mild postural instabilities do occur during early cognitive 

decline (as in MCI) and quantifying postural sway under the dual-task condition could help to 

further differentiate postural sway in older adults with MCI from cognitively intact older adults. 

This is the first study to quantify both postural sway jerk and frequency during cognitive dual-

tasking in older adults with and without MCI. Both postural sway measures expressed sensitivity 

to MCI status under both single- and dual-task conditions. If our findings hold with a larger, more 

diverse sample population, lower than normal postural dual-task costs may suggest mild cognitive 

decline. Future studies of postural sway and dual-task cost in MCI might provide more insight as 

to why older adults with MCI are at a higher risk of falls. Such knowledge would yield opportunity 

for the development and implementation of therapeutic interventions and aid in fall prevention. 
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3.1. Introduction  

 In Chapter 1 we explained the use of cognitive-postural dual-tasking to study the 

relationship between cognition and postural control. Here in Chapter 3 we use the dual-

task paradigm to examine postural sway in older adults with and without MCI under dual-

task conditions and assess the effect different cognitive task types have on postural sway. 

3.1.1. Background 

 Attentional and/or executive capacity consistently emerge as strong predictors of 

postural control and decline; cognitive deficits relating to attentional and/or executive 

control have been associated with poor performance on complex mobility tasks, other 

postural instabilities, and frequent falls [41,65,115-118]. Attention is the anatomical 

network responsible for processing incoming or attended-to excitation to influence the 

operation of other brain networks and is often considered a specific executive function 

[116]. Executive functions are defined as higher cognitive processes necessary for 

planning, monitoring, and executing complex sequences of goal-driven actions [119]. 

When attentional and/or executive functioning is compromised, problems with information 

processing, resource allocation and flexible set shifting (all essential functions for dual-

tasking) arise. This chapter explores whether cognitive tasks designed to specifically tax 

attention and/or executive function interfere more with postural control, quantified by a 

higher postural dual-task cost, compared to other domain-specific cognitive tasks (e.g., 

memory-based tasks).  

3.1.2. Objectives & Hypotheses 

 This study quantified postural sway during quiet stance in both cognitively intact and 

mildly cognitively impaired older adults under both single- and dual-task conditions. Our 

main objective was to characterize the associations between cognitive status (intact vs. 

MCI) and postural control both with (dual-task) and without (single-task) domain-specific 

cognitive loading.  

 Our main objective yields two hypotheses: 

Hypothesis I: We hypothesize that older adults with MCI will have more postural sway 

and higher postural dual-task costs compared to cognitively intact older adults since 
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reduced postural control and dual-tasking ability has been observed in older adults with 

cognitive impairment. 

Hypothesis II: We hypothesize that attention- and executive function-based cognitive loads 

will elicit higher postural dual-task costs compared to memory-based cognitive loads since 

attentional and executive control influences posture.  

 If both the postural and cognitive task compete for the same collection of neural 

resources during the dual-task condition the older adult’s dual-tasking ability will likely be 

impaired, which may be evidenced by a higher postural dual-task cost.  

3.2. Experimental Methods 

The Institutional Review Board at OHSU approved this study’s experimental methods 

and all subjects gave informed written consent prior to participation. 

3.2.1. Subjects 

Twenty-nine older adults enrolled in Oregon’s Center for Aging & Technology 

(ORCATECH) studies were recruited for this pilot study. Twenty-one subjects (10 intact, 

11 MCI) were recruited from either ORCATECH’s Living Laboratory (OLL) study or from 

the Intelligent Systems for Assessing Age Change (ISAAC) study, detailed elsewhere in 

[86]. Both the OLL and ISAAC studies are a part of the Oregon Alzheimer’s Disease 

Center (OADC), the core program at OHSU’s Layton Aging & Alzheimer’s Disease 

Center, meaning the 21 subjects from OLL/ISAAC undergo comprehensive 

neuropsychological testing on an annual basis. The remaining eight subjects (8 MCI) were 

recruited from ORCATECH’s Conversational Engagement Study (CES), a study that is 

not a part of the OADC, meaning these eight subjects have not undergone comprehensive 

neuropsychological testing. Subject characteristics by cognitive status group (intact vs. 

MCI) are contained in Table 3.1. All 29 subjects were ambulatory, community-dwelling 

older adults that met the following inclusion criteria: free of physical impairment that 

significantly inhibits stability; no walking aid (i.e., walker or cane); no known visual, 

vestibular, or somatosensory impairment greater than what is normal for one’s age; and, 

either classified as “cognitively intact” or “mildly cognitively impaired” (i.e., MCI). All 
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subjects provided written informed consent, approved by the institutional review board at 

OHSU. 

Table 3.1: Subject characteristics, by cognitive status group 

 Intact MCI 
Group 

differences 

F1,27, p 

# of subjects 10 19 ---------- 

Sex (% female) (#) 80 (8) 74 (14) ---------- 

Race (% non-white) (#) 10 (1) 32 (6) ---------- 

Age (yrs) (mean ± std) 88.2 ± 4.9 82.4 ± 7.2 5.10, 0.032* 

Education (yrs) (mean ± std) 15.0 ± 1.6 16.1 ± 2.6 1.39, 0.249 

MMSE Score 28.8 ± 1.2 28.1 ± 1.6 1.69, 0.205 

Tinetti Balance Score** 1.9 ± 3.1 2.6 ± 3.3 0.21, 0.651 

**8 subjects (all MCI) did not have Tinetti Balance Scores 

 There was a significant difference in age between cognitive status groups, with the 

intact group significantly older than the MCI group (F1,27 = 5.10, p = 0.032 from Table 

3.1). There was not a significant difference in years of education, MMSE Scores, and 

Tinetti Balance Scores between the two cognitive status groups. 

3.2.2. Clinical Diagnostic MCI Criteria  

Cognitive status for the 21 OLL/ISAAC subjects was determined based on OADC’s 

annual clinical and neuropsychological testing, detailed elsewhere in [1,86]. The 

conventional Petersen/Winblad criteria as operationalized by the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) was used to diagnose MCI, detailed elsewhere in [24,25]. 

Impaired cognitive function was operationalized using the domain-specific 

neuropsychological tests detailed elsewhere in Kaye et al. [86] and was defined as a score 

of 1.5 SDs or more below the model-derived predicted mean value, adjusted for age, 

education and sex. In this study, all 11 OLL/ISAAC subjects classified as “MCI” or 

“intact” were diagnosed based on their most recent annual neuropsychological evaluation. 

Because all eight CES subjects did not undergo comprehensive neuropsychological testing, 

their cognitive status was operationalized by the global clinical dementia rating (CDR): all 

eight CES subjects were classified as “MCI” based on a CDR score of 0.5. 
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3.2.3. Procedures 

The subject performed a series of four 60-second trials during quiet stance both with 

(three trials) and without (one trial) cognitive loading. Each of the three cognitive dual-

task conditions consisted of a cognitive load designed to tax specific cognitive domains 

(Table 3.2). Before each dual-task, the subject was given clear instructions and an 

opportunity to train to ensure that the subject conceptually understood the specific 

cognitive task (described in Table 3.3). The subject was free to rest between tasks to 

minimize the effect of physical and mental fatigue on postural performance. Task sequence 

(Table 3.2) was consistent across all 29 subjects.  

Table 3.2: The three cognitive loads used for dual-tasking during quiet stance 

Trial 

(in sequence) 
Cognitive domain(s) Cognitive test Abbr. 

1 Attention Alpha-Numeric Sequencing Task ANST 

2 --------------------------- ---------------------------------------------- single 

3 Memory 
Hopkins Verbal Learning Task, 

delayed recall 
HVLT 

4 Executive function 
Altered Simon Task, 

incongruent condition 
AST 
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Table 3.3: Administration of the three cognitive dual-tasks 

Dual-task 

(in sequence) 
Description of and instructions for each cognitive dual-task 

ANST 

ANST is a simple, easy-to-administer, cognitive task used (in both the clinic and 

laboratory) to tax attentional set shifting, information processing, and working memory 

[120]. The subject was instructed to stand quietly while counting and reciting the 

alphabet, alternating between number and letter. E.g., “1-A-2-B-3-C-4-D, etc.” The 

subject was instructed to pick up where he/she left off if he/she made a mistake and/or 

forgot his/her place in the alpha-numeric sequence. Performance on ANST was used to 

quantify attention in this study. 

HVLT 

HVLT is a clinical neuropsychological test designed to test both short- and long-term 

memory function. Instructions were administered according to the HVLT instruction 

manual [121] with one exception – subject sat during encoding and stood during recall. 

The subject had three practice trials to learn a list of 12 words (3 categories, 4 

words/category) (encoding). To test short-term memory, the subject was then instructed 

to stand quietly while recalling the list of 12 words he/she just learned (immediate recall). 

To test long-term memory function, the subject was instructed to stand quietly while 

recalling the list of 12 words he/she learned 20-25 minutes prior (delayed recall). 

Performance during delayed recall was used to quantify memory function in this study. 

AST 

AST is an altered version of the Simon Task, a neuropsychological test designed to test 

executive function [122-125]. The subject wore headphones and heard the word “LEFT” 

or “RIGHT” in either the left or right ear. The subject was instructed to stand quietly 

while saying what ear he/she heard the word in and not the word itself. For the congruent 

condition (mild difficulty level), the word “LEFT” was transmitted via the left earphone 

and the word “RIGHT” was transmitted via the right earphone. For the incongruent 

condition (moderate difficulty level), the word “LEFT” was transmitted via the right 

earphone and the word “RIGHT” was transmitted via the left earphone. Performance 

during the more difficult (incongruent) condition was used to quantify executive function 

in this study. 

Performance on the three cognitive dual-tasks was used to quantify cognition during 

quiet stance. [A significant limitation of this study was our inability to reliably measure 

cognitive performance during all three cognitive dual-tasks. A wireless microphone was 

used to record our subjects’ verbal responses during the cognitive dual-task conditions. The 

audio recordings were to be transcribed and used to measure cognitive performance. 

Unfortunately, the wireless microphone frequently malfunctioned resulting in a significant 

amount of missing data. Fortunately though, the subjects’ verbal responses were also 

manually recorded as well during two out of the three cognitive dual-tasks, so cognitive 

performance data was missing for only one cognitive dual-task (ANST).] 
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Posturography was used to quantify postural sway during quiet stance. An inertial 

sensor (Opal monitor, APDM, Inc.), composed of a tri-axial accelerometer and gyroscope, 

was mounted to the subject’s posterior trunk (L5 lumbar vertebrae level) near the 

approximate location of the body’s CoM (Figure 1.2 from Chapter 1). Tri-axial 

acceleration signals were acquired from the inertial sensor, processed, and used to derive 

the objective postural sway measures. 

3.2.4. Acc Signal Processing 

All Acc signals were processed using Matlab R2015a (The MathWorks, Natick, MA, 

USA). Tri-axial acceleration signals were collected with a 108-Hz sampling frequency and 

transformed to a horizontal-vertical coordinate system to account for the inherent (slight) 

tilt of the inertial sensor when mounted to the posterior trunk [58]. The two-dimensional 

(AP and ML), horizontal acceleration signals were then zero-meaned and filtered with a 

3.5 Hz cut-off, zero-phase, low-pass Butterworth filter [37]. 

3.2.5. Outcome Measures 

3.2.5.i. Cognitive Performance Measures 

Cognitive performance for the attention-based cognitive dual-task (ANST) was not 

quantified due to technical errors (detailed above in Section 3.2.3). In the memory-based 

cognitive dual-task (HVLT), cognitive performance was quantified by the number of words 

recalled (in percent, out of 12). In the executive function-based cognitive dual-task (AST), 

cognitive performance was quantified by the number of cues accurately identified (in 

percent, out of 16).  

3.2.5.ii. Postural Performance Measures  

Measures of postural sway and postural dual-task cost were used to quantify postural 

performance. All measures of postural sway and dual-task cost were derived using Matlab 

R2015a. Four objective postural sway measures were carefully selected to represent 

different and independent features of the postural sway signal: total sway path length 

(TPATH) [35], mean sway velocity (MV) [35,126,127], normalized mean sway jerk 

(NJERK) [37], and centroidal sway frequency (fC) [35,126,127] (Table 3.4). All four 

postural sway measures were derived from the resultant planar (two-dimensional, 
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horizontal) acceleration (Acc) signals. Measure derivations are detailed elsewhere in 

Mancini et al. [63]. 

Table 3.4: Acc-based postural sway measures  

Measure Description / Computation Units 

TPATH Total sway path length: the total length of the Acc trajectory 𝑚𝑚/𝑠2 

MV 
Mean sway velocity: the mean of the time integral of the Acc 

trajectory 
𝑚𝑚/𝑠 

NJERK 

Normalized mean sway jerk: the mean of the time derivative 

of the Acc trajectory, normalized by sway range (squared) 

and the time duration of the trial 

--------- 

fC 
Centroidal sway frequency: the frequency at which the 

spectral mass is concentrated 
Hz 

Postural dual-task costs were used to quantify the effect of a specific cognitive load 

(Table 3.2) on postural performance during quiet stance. The postural dual-task cost 

[100*(dual-task condition – single-task condition)/single-task condition] was calculated 

for each postural sway measure (Table 3.4) during each dual-task condition (Trials 1, 3 

and 4 in Table 3.2) using Trial 2 in Table 3.2 as the single-task measurement. Higher costs 

are positive in value and represent a larger increase in sway from the single- to dual-task 

condition. 

3.2.6. Statistical Analysis 

All statistical analyses were performed using Matlab R2015a. Data from 26 subjects (9 

intact, 17 MCI) were included in the statistical analysis. Equipment malfunctioned for 2 

MCI subjects. One intact subject was an outlier (postural sway, quantified by all four 

postural sway measures, was greater than 2.5 standard deviations from the group means 

under the single-task condition). Non-normally distributed data were log-transformed to 

achieve normal distributions prior to the statistical analyses detailed below. 

3.2.6.i. Cognitive Performance 

To investigate the effect of cognitive status (intact, MCI) on cognitive performance 

during the dual-task conditions, one-way, fixed effect (cognitive status) ANOVAs were 

performed on the cognitive performance measures. 
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3.2.6.ii. Postural Performance  

First, postural sway during the single-task condition was analyzed. Each subject’s 60-

second single-task condition was used to represent the subject’s postural sway during quiet 

stance. To investigate the effect of cognitive status (intact, MCI) on postural sway without 

cognitive loading, one-way, fixed effect (cognitive status) ANOVAs were performed on 

the four postural sway measures (Table 3.4). Statistical significance was determined at the 

5% level. 

Second, postural sway during the dual-task conditions was analyzed. To investigate the 

effect of both cognitive status (intact, MCI) and cognitive load (attention-based, memory-

based, executive function-based) on postural sway during the three 60-second dual-task 

conditions, two-way, fixed effect (cognitive status, cognitive load) ANOVAs were 

performed on the four postural sway measures. Then, to investigate the effect of both 

cognitive status and cognitive load on postural dual-task cost, two-way, fixed effect 

(cognitive status, cognitive load) ANOVAs were performed on the four measure-specific 

dual-task costs. Statistical significance was determined at the 5% level. A Bonferroni 

correction was applied to account for multiple comparisons (3 different cognitive loads), 

adjusting the significant p-value from 0.050 to 0.017 (α = 0.050, m = 3 dual-task conditions, 

critical value = α/m = 0.050/3 = 0.017). Because all four postural sway measures have been 

determined to be independent of one another [126,127], each quantifying a distinct and 

separate feature of postural sway, the critical value was not adjusted for repeated measures.  

3.3. Results 

3.3.1. Cognitive Performance 

There was no statistically significant difference in cognitive performance between the 

two cognitive status groups during the dual-task conditions. Cognitive performance for the 

attention-based cognitive dual-task (ANST) was not quantified due to technical errors. In 

the executive function-based cognitive dual-task (AST), all but two subjects (1 intact, 1 

MCI) earned a perfect score, meaning there was no difference in executive function-based 

cognitive performance between groups. Additionally, there was no group difference in 
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cognitive performance on the memory-based cognitive dual-task (HVLT) (F1,24 = 0.49 p = 

0.490). 

3.3.2. Postural Performance  

3.3.2.i. Postural Sway during the Single-Task Condition 

Postural sway jerk (NJERK) and frequency (fC) were significantly higher in the MCI 

group compared to the intact group during quiet stance with no cognitive loading (the 

single-task condition) (Table 3.5, Figures 3.1-2).  

 

Figure 3.1: Higher postural sway jerk (NJERK) and frequency (fC) during the single-

task condition (quiet stance with no cognitive loading) was associated with MCI. 

Histograms show the group means and SEs. NJERK and fC were significantly higher in 

the MCI group (see statistical results in Table 3.5).  
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Figure 3.2: Box plots of NJERK and fC during the single-task condition to show the 

(group- and measure-specific) non-normal distributions of and outliers in the data in 

Figure 3.1. The horizontal red lines represent the group medians, the edges of the boxes 

mark the 25th and 75th percentiles, the whiskers extend to the most extreme data points that 

are not outliers (quantified as > Q3 + 1.5*(Q3-Q1) or < Q1 – 1.5*(Q3-Q1), where Q1 and Q3 

represent the 25th and 75th percentile, respectively). 

There was no significant difference in postural sway path length (TPATH) and velocity 

(MV) between the two cognitive status groups during the single-task condition. The group 

means and standard errors (SE) for the four postural sway measures during the single-task 

condition are reported in Table 3.5.  

Table 3.5: Effect of cognitive status on postural sway measures under the single-task 

condition 

Measure 
Intact 

Group mean ± SE 
MCI 

Group mean ± SE 

Effect of cognitive 

status 

F1,24 𝒑 

TPATH 89.22 ± 10.92 124.69 ± 14.67 2.93 0.100 

MV 11.44 ± 2.10 8.63 ± 1.69 1.91 0.180 

NJERK 12.85 ± 0.91 16.77 ± 1.28 4.77 0.039* 

fC 0.57 ± 0.03 0.79 ± 0.06 4.88 0.037* 

*all non-normally distributed data (all data for a given single-task measure, collapsed across 

both cognitive status groups) were log-transformed to achieve normal distributions prior to the 

one-way, fixed effect ANOVAs 

*reached statistical significance,  critical value = α < 0.05 

3.3.2.ii. Postural Sway & Dual-Task Costs during the Dual-Task Conditions 

Main Fixed Effect of Cognitive Status 

There was no significant difference in dual-task postural sway between the two 

cognitive status groups when collapsing across the three dual-task conditions. The group-
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specific postural sway measures during the three dual-task conditions are contained in 

Table 3.6 and the statistical results are contained in Table 3.8. 

Table 3.6: The dual-task postural sway measures during the three dual-task conditions, 

by cognitive status group 

Measure 

Dual-task conditions 

Attention 

Group mean ± SE 

Memory 

Group mean ± SE 

Executive function 

Group mean ± SE 

A. Intact 

TPATH 206.63 ± 33.74 154.30 ± 22.91 101.75 ± 8.90 

MV 8.84 ± 1.55 16.32 ± 4.18 8.86 ± 1.30 

NJERK 21.97 ± 1.98 16.50 ±1.34 16.07 ± 1.68 

fC 0.94 ± 0.09 0.69 ± 0.07 0.75 ± 0.07 

B. MCI 

TPATH 175.67 ± 23.42 171.01 ± 19.31 146.26 ± 19.12 

MV 9.37 ± 1.56 7.51 ± 1.13 8.43 ± 1.16 

NJERK 18.68 ± 1.29 17.62 ± 1.53 17.75 ± 0.83 

fC 0.85 ± 0.04 0.78 ± 0.06 0.87 ± 0.05 

 

There was, however, a significant difference in postural dual-task costs between groups 

(Table 3.8, A). The costs in TPATH, NJERK, and fC were significantly lower in the MCI 

group compared to the intact group when collapsing across all three dual-task conditions. 

There was not a statistically significant effect of cognitive status on the MV cost. The 

difference in postural dual-task costs are shown in Figures 3.3-4. 
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Figure 3.3: Lower postural dual-task sway costs were associated with MCI. 

Histograms show the group means and SEs. The costs in TPATH, NJERK, and fC were 

significantly lower in the MCI compared to the intact group. This figure shows the 

significant difference in postural dual-task cost between groups for the three sensitive 

measures. This histogram shows the group means and SEs for TPATH, NJERK and fC costs 

during the attention-based dual-task condition.  
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Figure 3.4: Box plots of the group-specific postural dual-task costs for the three 

sensitive measures during the attention-based dual-task condition to show the (group- 

and measure-specific) non-normal distributions of and outliers in the data in Figure 3.1.3. 

The horizontal red lines represent the group medians, the edges of the boxes mark the 25th 

and 75th percentiles, the whiskers extend to the most extreme data points that are not 

outliers, and the red crosses represent the outliers (quantified as > Q3 + 1.5*(Q3-Q1) or < 

Q1 – 1.5*(Q3-Q1), where Q1 and Q3 represent the 25th and 75th percentile, respectively). 

The postural dual-task costs (in percent) in the four postural sway measures (TPATH, 

MV, NJERK, and fC) for the two cognitive status groups (intact and MCI) during the three 

dual-task conditions (attention-, memory-, and executive function based) are reported in 

Table 3.7. 
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Table 3.7: The measure-specific postural dual-task costs (in %) during the three dual-

task conditions, by cognitive status group 

Measure 

Dual-task conditions 

Attention 

Group mean ± SE 

Memory 

Group mean ± SE 

Executive function 

Group mean ± SE 

A. Intact 

TPATH 136.49 ± 35.63 85.18 ± 35.20 19.00 ± 6.62 

MV 3.72 ± 29.27 60.07 ± 31.20 16.87 ± 36.71 

NJERK 77.86 ± 18.66 33.12 ± 12.27 26.79 ± 11.62 

fC 69.43 ± 19.16 22.29 ± 12.15 33.87 ± 14.18 

B. MCI 

TPATH 47.08 ± 13.14 49.38 ± 15.42 19.34 ± 9.31 

MV 74.40 ± 44.26 55.01 ± 37.65 62.09 ± 32.76 

NJERK 18.50 ± 9.33 10.94 ± 11.34 13.82 ± 8.67 

fC 18.28 ± 11.19 1.89 ± 7.18 7.82 ± 6.88 

Main Fixed Effect of Cognitive Load 

There was no significant difference in dual-task postural sway between the three 

different dual-task conditions for both cognitive status groups. There was, however, a 

significant difference in postural dual-task cost between the three different dual-task 

conditions. There was a significant effect of cognitive load on the dual-task cost in TPATH 

when analyzing across both cognitive status groups. The executive function-based 

cognitive load elicited a significantly lower cost in TPATH compared to both the attention- 

and memory-based cognitive loads (Figures 3.5-6). There was no effect of cognitive load 

on the other three postural dual-task costs (MV, NJERK, and fC costs) (Table 3.8, B). 
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Figure 3.5: The executive function-based cognitive load elicited a significantly lower 

postural dual-task cost (in TPATH). For each cognitive status group (intact = blue; MCI 

= red), the cost in TPATH is plotted during each of the three dual-task conditions (attention-

based condition = dark shade; memory-based condition = medium shade; executive 

function-based condition = light shade). This histogram shows the group means and SEs 

for TPATH cost during the three different dual-task conditions. 

 

Figure 3.6: Box plots of the group-specific postural dual-task costs in TPATH during 

all three dual-task conditions to show the (group- and condition-specific) non-normal 

distributions of and outliers in the data in Figure 3.5. The horizontal red lines represent the 

group medians, the edges of the boxes mark the 25th and 75th percentiles, the whiskers 

extend to the most extreme data points that are not outliers, and the red crosses represent 

the outliers (quantified as > Q3 + 1.5*(Q3-Q1) or < Q1 – 1.5*(Q3-Q1), where Q1 and Q3 

represent the 25th and 75th percentile, respectively). 
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Interaction between the Two Main Fixed Effects: Cognitive Status & Cognitive Load 

There was no interaction between the two main fixed effects (cognitive status and 

cognitive load) when analyzing both postural sway and postural dual-task costs, showing 

no evidence that the significant effects of cognitive status depends on the specific cognitive 

load and vice versa (Table 3.8, C).  

Table 3.8: Main and interaction effects for the two-way, 

fixed effects ANOVAs on postural sway and postural dual-

task costs during the dual-task conditions 

Measure 
Dual-task Dual-task costs 

F1,2,2 p F1,2,2 p 

A. Main effect of cognitive status 

TPATH 0.31 0.579 6.75 0.011* 

MV 3.05 0.085 0.79 0.378 

NJERK 0.02 0.900 9.33 0.003* 

fC 0.16 0.687 12.30 0.001* 

B. Main effect of cognitive load 

TPATH 4.33 0.017 6.85 0.002* 

MV 0.53 0.589 0.26 0.773 

NJERK 2.81 0.067 2.14 0.125 

fC 3.71 0.029 3.23 0.046 

C. Interaction effect of cognitive status & cognitive load 

TPATH 1.32 0.274 2.09 0.131 

MV 2.36 0.102 1.14 0.324 

NJERK 1.42 0.247 1.09 0.343 

fC 0.81 0.450 0.70 0.499 

**all non-normally distributed data (all data for a given dual-task 

measure or cost collapsed across both cognitive status groups and all 

three dual-task conditions) were log-transformed to achieve normal 

distributions prior to the two-way, fixed effect ANOVAs 

*reached statistical significance after correcting for multiple 

comparisons (Bonferroni) 

α = 0.05,  

m = 3 dual-task conditions, 

critical value = α/m < 0.05/3 < 0.017 
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3.4. Discussion 

3.4.1. Main Findings 

3.4.1.i. Postural Sway and Postural Dual-Task Costs 

Postural sway jerk and frequency differentiated between the intact and MCI groups 

under the single-task condition (i.e., quiet stance with no cognitive loading) with higher 

sway jerk and frequency associated with MCI. Our first hypothesis is partially supported 

by this finding: more postural sway, which is often interpreted as less postural control, was 

observed in the MCI group. Higher jerk is thought to be attributed to frequent corrections 

of postural sway direction and has been evidenced in Parkinson’s disease (PD), an older 

adult population known for postural instability and increased fall risk. Higher jerk may 

reflect attempts to compensate for poor proprioceptive control of posture with longer-loop, 

visual postural feedback; it may also reflect increases in axial rigidity at the trunk (the 

location of the inertial sensor during this study) [37,63]. Sway frequency has been found 

to increase with age and is thought to represent postural instability and age-related deficits 

in the postural control system [35]. Lower sway frequencies (compared to age-matched 

controls), however, have been evidenced in PD [37,63]. Although both PD and MCI are 

independent risk factors for falls [128], and both PD and postural instability predict 

cognitive decline [20], our findings on postural sway frequency in MCI are not consistent 

with that in PD because we observed higher frequencies in the MCI group. 

There was no difference in postural sway path length and mean velocity (two out of 

our three time-domain distance measures) between the intact and MCI groups at baseline, 

a finding that does not support the literature since distance measures were found to be 

sensitive to MCI status in the five previous studies that objectively quantified postural sway 

in MCI [27,46-48,73]. Although not significantly different, path length was higher and 

mean velocity was lower in the MCI group. Our velocity finding is not consistent with 

other studies because Mignardot et al. [48] and Deschamps et al. [46] found sway velocity 

measures to be higher in MCI. To reiterate, there was no effect of cognitive status on mean 

sway velocity in our small pilot study of 10 intact and 19 MCI subjects. There are several 

differences between our study and the Mignardot and Deschamps studies that could 

attribute to our inconsistent results: 1. Our study was much smaller than the other two 



87 

 

studies (611 and 175 subjects in the Mignardot and Deschamps studies, respectively), so 

we may simply not have a large enough sample size to observe postural sway velocity-

based differences between groups; 2. Although we used the same MCI criteria 

(Petersen/Winblad as operationalized by ADNI [24,25]), our neuropsychological 

assessment battery used for the criteria is much more extensive than that used in the other 

two studies. As detailed elsewhere in Kaye et al. [86], we use 2-4 classic 

neuropsychological tests per cognitive domain to quantify cognitive domain-specific 

functioning. Because Mignardot and Deschamps’ neuropsychological testing is much less 

extensive than ours, it is likely that our MCI status definitions (which are, in significant 

part, derived from the testing battery) are quite different. A subject classified as “MCI” 

according to Mignardot and Deschamps could possibly be classified as “intact” according 

to our methods since our testing battery is much more thorough and, in turn, likely more 

sensitive and less likely to produce false positives; and, 3. Our postural sway velocity-

based measures quantify different aspects of CoP velocity dynamics and may be the reason 

why we did not observe a cognitive status effect on our velocity measure. The most 

sensitive velocity-based measure in the Mignardot and Deschamps studies is the average 

absolute maximal velocity (AAMV), which quantifies the bounding limits of CoP velocity 

dynamics and is detailed elsewhere in [129]. We used a more widely-accepted velocity-

based measure, mean sway velocity (MV) (our feature selection is justified and defined 

above in Section 3.2.5.ii). In sum, there are several fundamental differences in our 

experimental methods that account for our differing results. 

 When domain-specific cognitive loads were applied to the postural task (i.e., quiet 

stance) in an effort to increase the difficulty level of the overall testing condition, the 

separation between cognitive status groups became more pronounced. The postural dual-

task costs however were lower in the MCI group compared to the intact group, a finding 

that does not support our first hypothesis. We predicted postural dual-task costs to be higher 

in the MCI group since reduced postural control and dual-tasking ability has been observed 

in older adults with cognitive impairment. This finding opposes the underlying theory of 

the cognitive-postural dual-task paradigm [74,76,130,131]: if the individual’s cognitive 

and/or postural control is impaired, he/she most likely has limited neural attentional 
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resources and will be less likely to adequately regulate both tasks during dual-task 

conditions, resulting in higher dual-tasks costs compared to the intact control. We observed 

the opposite in our sample population: our MCI group had lower postural dual-task costs 

(quantified by sway path length, jerk, and frequency) compared to the intact group.  

 Both groups had positive dual-task costs, meaning the cognitive tasks interfered with 

the postural task represented by an increase in postural sway from the single- to dual-task 

condition. This finding is consistent with the literature: an added cognitive task yields a 

decrease in postural control in older adults tending to both a cognitive and postural task 

[74,84,132-134]. The MCI group had significantly more postural sway (quantified by sway 

jerk and frequency) than the intact group at baseline, but there was no difference in postural 

sway between cognitive status groups during the dual-task conditions. The significantly 

lower postural dual-task costs (in sway path length, jerk, and frequency) in the MCI group 

(although still positive in value) might in part be attributed by the already significant 

amount of postural sway (relative to the intact group) at baseline. It is possible that the MCI 

group was already approaching their limits of stability during quiet stance so an added 

cognitive load may not have had as much of an effect on their postural response (in 

comparison to the intact group who had significantly much less sway at baseline and may 

have, in turn, had more room to increase in sway before pushing the limits of stability). 

 If mild postural instability is in fact a hallmark feature of MCI [48], it is possible that 

older adults with MCI are aware of the subtle changes in their postural control system and, 

in turn, may pay more close attention to their sway when instructed to stand quietly. 

According to the “constrained action hypothesis” [135,136], consciously controlling one’s 

movement interferes with the coordination of automatic processes responsible for 

regulating the movement. Conversely, diverting attention away from the movement (and 

towards a secondary task) enables the automatic processes to operate unconstrained, in turn 

generating movement more efficiently [137]. This hypothesis could help explain our 

findings of more single-task sway and less dual-task cost in the MCI group: under the 

single-task condition, the mildly posturally impaired MCI subject may over-control his/her 

sway resulting in significantly more postural sway compared to the intact subject; but when 

the MCI subject’s attention is directed towards something else, such as the cognitive tasks 
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in our dual-task condition, the MCI subject’s automatic control of posture may take over 

resulting in more similar sway to the intact subject with no postural instabilities.  

The “posture first hypothesis” [78] could offer another possible explanation as to why 

we observed lower postural dual-task costs in the MCI group. Assuming mild postural 

instability is a hallmark feature of MCI, older adults with MCI would chose the “posture 

first” strategy when a cognitive task was added to the postural task since they would already 

be experiencing mild postural instability before the additional load. In contrast, cognitively 

intact older adults could afford to reallocate more attention away from the postural task 

and to the cognitive task due to their intact postural control (relative to age) and limited 

amount of postural sway at baseline. If the older adult has insufficient neural attentional 

resources to adequately regulate both the cognitive and postural task, she will likely choose 

the “posture first” strategy, abandoning the less critical (cognitive dual-) task in effort to 

maintain postural stability and prevent a fall [74,131]. Our older adults with MCI may have 

had lower postural dual-task costs compared to cognitively intact older adults if the added 

cognitive load had overtaxed the cognitive and/or postural control systems. But because 

we did not repeat the protocol while our subjects were sitting and because our cognitive 

performance data set lacks significance, we are unable to quantify the cognitive dual-task 

cost and, in turn, make strong inferences regarding the amount of cognitive effort exerted 

on the added cognitive task and the trade-off between cognitive and postural control.  

3.4.1.ii. Domain-Specific Cognitive Loads 

Although executive function has been identified as a significant contributor to postural 

control, our chosen executive function-based task elicited significantly lower postural dual-

task costs in both cognitive status groups. We suspect this may be due to the ease of our 

chosen executive function-based task (AST). All but two subjects (1 intact,1 MCI) earned 

a perfect score on the AST task. The AST task did not appear to be challenging enough to 

elicit cognitive performance-based differences between cognitive status groups. This 

observed ceiling effect was confirmed by the subjects’ feedback: when prompted, all 

subjects reported on the ease of the task – “No, it did not seem challenging”. Perhaps a 

more taxing executive function-based task (e.g., AST with mixed (congruent and 

incongruent) cues) would compete more for the collection of neural resources required for 
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the postural task, increasing the difficulty level of the dual-task condition and likely 

eliciting a higher dual-task cost.  

Trends in our data suggest that the attention-based load may elicit the highest postural 

dual-task costs in a larger sample population. Also, the separation between cognitive status 

groups appeared to be most pronounced during the attention-based dual-task condition. 

This finding supports our second hypothesis: although our executive function-based load 

elicited the lowest postural dual-task costs (likely due to the task’s ceiling effect), our 

attention-based load appeared to elicit relatively high postural dual-task costs and seemed 

to best differentiate between groups.  

Since no interaction effect (between cognitive status and cognitive load) reached 

statistical significance, the effect of MCI status on postural cost likely does not depend on 

the specific type of cognitive loading. Nonetheless, using an attention-based cognitive load 

may best serve as a sensitive cognitive dual-task for identifying older adults with (mildly) 

limited cognitive reserve (e.g., MCI) since it appeared to be the task that induced the most 

amount of postural sway and the highest postural dual-task cost. Tending to two tasks at 

once requires a certain amount of attentional set shifting, information processing, and 

working memory (a completely different entity than short- or long-term memory), and as 

previously stated, the amount of cognitive processing required for a given dual-task 

condition depends on both the complexity of the two tasks as well as the capacity of the 

individual’s cognitive reserve. Our chosen attention-based task (ANST) was designed to 

tax these specific cognitive functions, which may be why this cognitive load appeared to 

compete for the most amount of shared resources. As previously stated, memory 

(specifically long-term, which was the type of memory taxed in our chosen memory-based 

task (HVLT)) has not been postulated as a cognitive function necessary for postural 

control, so it is likely HVLT did not compete for the same neural resources required for 

postural stability during quiet stance. Nonetheless HVLT elicited statistically similar 

postural dual-task costs to that elicited by ANST in this study, suggesting the two tasks 

were of similar difficulty levels and required similar amounts of attentional resources.  
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3.4.2. Study Limitations 

The main limitation of this study was our inability to quantify the cognitive dual-task 

costs, inhibiting us from fully interpreting our unpredicted results. An important note: this 

protocol was performed as an exploratory pilot study to investigate the older adult’s ability 

to perform a variety of cognitive tasks during quiet stance. We were mainly interested to 

know whether or not older adults (both cognitively intact and mildly cognitively impaired) 

could safely perform certain tasks without significantly compromising postural control. 

This pilot was performed in preparation for our in-home study of postural sway during 

cognitive dual-tasking (Chapter 4 of this dissertation) and was not designed for the purpose 

of a thorough investigation. Although our study design is lacking an important feature 

(measurement of cognitive dual-task costs), we still report interesting results. We used 

objective postural sway measures to differentiate MCI from cognitively intact controls 

under both postural single-task and cognitive-postural dual-task conditions.  

The age gap between cognitive status groups (intact vs. MCI) is another major concern 

associated with this pilot study. We did not adjust for age in our statistical analyses because 

we did not have enough statistical power given our small sample population. Although we 

drew from age-matched pools during subject recruitment, we ended up with a six year 

difference between the intact group and MCI groups once all subjects were recruited and 

tested. During recruitment we found older adults with MCI less likely to participate in our 

study compared to the cognitively intact older adults. Because this study served as 

preliminary work for a more extensive study of postural sway and cognitive dual-tasking 

in MCI, we were primarily driven by a time constraint and less concerned about our 

subjects’ specific age. Since this pilot study we have been more stringent during subject 

recruitment since a six year age gap (e.g., early eighties vs. mid-late eighties) may 

differentiate the groups based on underlying age-related pathologies and/or may dilute any 

important findings pertaining to disease-related pathologies. For future studies (and 

specifically, for our longitudinal study of postural sway in MCI, Chapter 4) we have/will 

recruit our MCI group first and age-match the cognitively intact group accordingly. 

Although our sample population was small (10 intact, 19 MCI), our findings are 

promising given the statistically significant p-values even after conservatively accounting 
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for our multiple comparisons via a Bonferroni correction (three different cognitive loads). 

Similar investigations should be conducted on larger, more diverse samples to assess the 

significance of our findings. If lower postural dual-task costs differentiate MCI subjects 

from intact subjects in a larger, more diverse population, objective postural sway measures 

and dual-task costs may be implemented as early markers of MCI. 

3.5. Conclusions 

Our findings suggest that mild postural instabilities do occur during early cognitive 

decline (as in MCI) and quantifying postural sway under the dual-task condition could help 

to further differentiate postural sway in older adults with MCI from cognitively intact older 

adults. This is the first study to quantify both postural sway jerk and frequency during 

cognitive dual-tasking in older adults with and without MCI. Both postural sway measures 

expressed sensitivity to MCI status under both single- and dual-task conditions. If our 

findings hold with a larger, more diverse sample population, lower than normal postural 

dual-task costs may suggest mild cognitive decline. Future studies of postural sway and 

dual-task cost in MCI might provide more insight as to why older adults with MCI are at a 

higher risk of falls. Such knowledge would yield opportunity for the development and 

implementation of therapeutic interventions and aid in fall prevention. 
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CHAPTER 4: Longitudinal Study of Postural Sway in MCI: Using the Nintendo WBB to 

Quantify Postural Sway during Quiet Stance both with and without Cognitive Loading in 

Older Adults with MCI in the Home for 30 Days 

Summary 

Objectives: Our study objectives were to: 1. Determine the feasibility of daily, in-home monitoring 

of postural sway and cognitive dual-tasking in an older adult population with and without mild 

cognitive impairment; 2. Assess the reliability of objective postural sway measures across time; 3. 

Characterize the associations between cognitive status and postural sway both with (dual-task) and 

without (single-task) cognitive loading longitudinally; and, 4. Characterize the day-to-day 

variability in postural sway in an older adult population with and without mild cognitive 

impairment. 

Hypotheses: Our study hypotheses were: 1. Our in-home study of postural sway and cognitive dual-

tasking will be feasible in our older adult population with and without mild cognitive impairments; 

2. Objective postural sway measures will exhibit good test-retest reliability; 3. Older adults with 

lower cognitive functioning will have more postural sway; and, 4. Older adults with lower cognitive 

functioning will have higher day-to-day variability in postural sway. 

Methods: Twenty subjects (10 intact, 10 MCI) enrolled in ORCATECH’s OLL and ISAAC studies 

were recruited. A Nook tablet and Nintendo Wii balance board (WBB) were integrated into 

ORCATECH’s current in-home technological platform to quantify postural sway (both with and 

without cognitive loading) daily for 30 days. Five objective postural sway measures were derived 

from the two-dimensional postural sway (CoP) signals and were used to quantify daily postural 

sway (during both the single- and dual-task condition) and dual-task cost measures. The feasibility 

of the in-home study and potential group differences in subject adherence were assessed. The test-

retest reliability of objective postural sway measures was assessed. The means and variability in 

postural sway and postural dual-task cost across the 30-day monitoring period were analyzed both 

between and across cognitive status groups. 

Results: Monitoring of postural sway during dual-task conditions was determined to be feasible 

within the in-home monitoring environment. All five objective postural sway measures exhibited 

good test-retest reliability across the 30-day monitoring period. When analyzing between cognitive 

status groups, there was significantly higher day-to-day variability in the dual-task cost in sway 

frequency in the MCI group compared to the intact group. When analyzing across cognitive status 

groups, there were linear relationships observed between postural sway variability and cognitive 

functioning (indexed by cognitive global z-scores): more variability in time-domain postural sway 

(indexed by sway distance and area) and less variability in frequency-domain postural sway 

(indexed by centroidal sway frequency) was associated with lower cognitive functioning. 

Conclusions: In-home monitoring of daily postural sway proved to be feasible. Objective postural 

sway measures were reliable when acquired daily for 30 days. Variability measures of postural 

sway were found to be related to cognitive functioning, with more variability in time-domain 
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postural sway and less variability in frequency-domain postural sway associated with lower 

cognitive functioning. Analyzing postural sway across cognitive status groups proved to be of 

significance, suggesting that more descriptive measures of cognitive status (spectrum instead of 

binary data) are necessary to observe the relationship between postural instability and mild 

cognitive dysfunction. Our small pilot study conducted on a small time scale motivate the large-

scale implementation of this research over a more extended period of time (e.g., months, years, and 

even decades). Tracking longitudinal changes in postural sway may further our understanding of 

early-stage motor decline and its association with cognitive decline and may aid in the early 

detection of dementia during the preclinical stages. 
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4.1. Introduction  

4.1.1. Longitudinal Study Design 

 Chapter 4 extends beyond Chapter 3 by assessing postural sway on a frequent, 

“longitudinal” basis. Due to the time constraints inherent to PhD research, we monitored 

postural sway and postural dual-task cost daily for only 30 days. Within this chapter, our 

use of the term “longitudinal” simply refers to daily measures acquired over a relatively 

short time course (e.g., weeks or months).  

4.1.2. Background Summary 

 In Chapter 1, Section 1.8 we detailed the fundamental insufficiencies in the current 

paradigm of infrequent measures (of both cognitive and physical performance). Infrequent 

measures reflect one instance of performance, do not measure changes in performance 

variability over time, and in turn may mask true status and decline in cognition and/or 

postural control [86]. In Chapter 1, Section 1.9 we detailed the pathophysiological 

association between cognitive and motor control. A marked increase in functional 

variability (either cognitive or motor) often occurs before the clinical manifestations of 

functional decline [89,90]. And because changes in sensorimotor control have been shown 

to far precede changes in cognition [91,92], longitudinally monitoring a motor function 

(e.g., postural sway) may yield early detection of progressive motor decline and has 

potential to predict cognitive decline [49]. 

4.1.3. Study Foci 

 Our first focus for this longitudinal study was to determine the feasibility of daily, in-

home monitoring of postural sway in both cognitively intact and mildly cognitively 

impaired older adults. If proven feasible, this study will lay the foundation to extract 

frequent, longitudinal measures of postural sway from the natural home environment to 

track changes in the neural control of posture across time.  

 Our second focus was to characterize the dynamic time-course of postural sway in both 

cognitively intact and mildly cognitively impaired older adults. Only one study to date has 

monitored postural sway daily in the home in older adults: McGrath et al. [138] determined 

the stability of daily, in-home postural sway measures in cognitively intact older adults 
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over the course of 8 weeks. Although daily postural sway expressed good statistical 

reliability (ICC > 0.7) across the 8-week monitoring period, the researchers observed a 

significant amount of variability in day-to-day postural sway both between (37-107%, 

depending on the postural sway measure) and within (17-56%, depending on the postural 

sway measure) subjects. McGrath et al. concluded that “the idea of applying a group-

focused approach at an individual level may result in misclassifying important changes for 

a particular individual. Early detection of deterioration can only be achieved through the 

creation of individual trajectories for each person, that are inherently self-referential” 

[138]. To the best of our knowledge, a longitudinal, in-home study of postural sway in 

mildly cognitively impaired older adults (i.e., MCI) has not yet been done. As expressed 

by McGrath et al., “establishing natural patterns of variation in the day-to-day signal, 

occurring in the relative absence of functional decline or disease, would enable us to 

determine thresholds for changes in postural control from baseline” [138]. Thus in 

principle, establishing the variability patterns present during the initial stages of functional 

decline and/or disease state (e.g., MCI) would enhance our ability to develop biomarkers 

for early decline. The research conducted within the framework of this study holds great 

clinical weight since the characterization of both natural aging and disease-related patterns 

could enable early detection and prevention of bio-psycho-social decline that threatens the 

independence and quality of life within our aging population [138]. 

4.1.4. Quantifying Cognitive Functioning Beyond MCI Status 

 Chapter 4 extends beyond Chapter 3 by using cognitive global z-scores to quantify 

cognitive functioning within both the intact and MCI groups. So, in addition to analyzing 

postural sway between cognitive status groups (intact vs. MCI), we used global z-scores to 

analyze postural sway across groups for a more in-depth analysis of postural sway and 

cognitive status. 

4.1.5. Objectives & Hypotheses 

 This study quantified postural sway during quiet stance in both cognitively intact and 

mildly cognitively impaired older adults under both single- and dual-task conditions daily 

for 30 days. Our four main objectives were: 1. To determine the feasibility of daily, in-
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home monitoring of postural sway and cognitive dual-tasking in an older adult population 

with mild cognitive impairment; 2. To assess the reliability of objective postural sway 

measures across time; 3. To characterize the associations between cognitive status and 

postural sway both with (dual-task) and without (single-task) cognitive loading 

longitudinally; and, 4. To characterize the day-to-day variability in postural sway in both 

cognitively intact and mildly cognitively impaired older adults. 

 Our four objectives yield four hypotheses: 

Hypothesis I: We hypothesize that our in-home study of postural sway and cognitive dual-

tasking will be feasible in our older adult population with mild cognitive impairments. We 

are optimistic about feasibility because: 1. The successful implementation of our cross-

sectional study (detailed in Chapter 3); and, 2. The overall impressive adherence-to-

protocol history within our ORCATECH cohort.  

Hypothesis II: We hypothesize that objective postural sway measures will exhibit good 

test-retest reliability. Our prediction is based on previous findings from a similar study 

design [138]. 

Hypothesis III: We hypothesize that older adults with lower cognitive functioning will have 

more postural sway since previous studies have shown cognitive decline to degrade 

postural control. We expect the differences in postural sway between cognitive status 

groups to be more pronounced under the dual-task condition due to the added cognitive 

load.  

Hypothesis IV: We hypothesize that older adults with lower cognitive functioning will have 

higher day-to-day variability in postural sway since previous studies have shown increased 

variability in a (motor or cognitive) function during the initial stages of functional decline. 

4.2. Experimental Methods 

The Institutional Review Board at OHSU approved this study’s experimental methods 

and all subjects gave informed written consent prior to participation. 

4.2.1. Subjects 

Twenty subjects (10 intact, 10 MCI) enrolled in ORCATECH’s OLL and ISAAC 

studies were recruited for this study (Table 4.1). All subjects were ambulatory, 
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community-dwelling older adults that met the following inclusion criteria: free of physical 

impairment that significantly inhibits stability; no walking aid (i.e., walker or cane); no 

known visual, vestibular, or somatosensory impairment greater than what is normal for 

one’s age; and, either classified as “cognitively intact” or “mildly cognitively impaired” 

(i.e., MCI). All subjects provided written informed consent, approved by the institutional 

review board at OHSU. 

Table 4.1: Subject characteristics, by cognitive status group 
 

 Intact MCI 

Group 

differences 

F1,18 p 

# of subjects 10 10 ----- ------- 

Sex (% female) (#) 70 (7) 60 (6) ----- ------- 

Race (% non-white) (#) 0 (0) 10 (1) ----- ------- 

Age (yrs) (mean ± std) 88.0 ± 7.6 86.1 ± 6.0 0.38 0.547 

Education (yrs) (mean ± std) 14.9 ± 2.1 14.6 ± 2.7 0.08 0.785 

MMSE Score [29] 29.2 ± 1.3 27.7 ± 2.4 3.07 0.098 

Cumulative Illness Rating Scale [139] 20.5 ± 2.3 19.5 ± 2.5 0.87 0.362 

Geriatric Depression Scale [140] 0.6 ± 0.7 0.6 ± 0.7 0.00 1.000 

Tinetti Balance Score [32] 2.7 ± 4.1 2.3 ± 2.5 0.07 0.793 

 There was no difference in age, years of education, MMSE Scores, Cumulative Illness 

Rating Scale, Geriatric Depression Scale, and Tinetti Balance Scores between the two 

cognitive status groups. [Note: there have been many different scoring systems reported 

for the Tinetti Balance Score [141]. At OHSU’s LAADC, balance is measured on a scale 

of 0-26 with lower scores indicating better performance [86].] 

4.2.1.i. New Clinical Diagnostic MCI Criteria  

Cognitive status for all 20 subjects was determined based on OADC’s annual clinical 

and neuropsychological testing, detailed elsewhere in [1,86]. Diagnosis of MCI was 

consistent with the new comprehensive neuropsychological Jak/Bondi criteria detailed in 

[31], which depends on: (a) domain-specific cognitive impairment operationalized using 

the domain-specific neuropsychological tests detailed elsewhere in Kaye et al. [86] and 

defined as a score of at least 1 SDs or more below the age-stratified normative data on at 

least two tests within one or more of the six cognitive domains (1. memory; 2. language; 
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3. executive function; 4. processing speed; 5. working memory; and, 6. visual 

perception/construction); (b) nonfulfillment of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV) criteria for dementia; (c) preserved general cognitive 

functions as confirmed by a score of 24 or above on the MMSE; and, (d) absence of severe 

depression as confirmed by a score of less than 5 on the Geriatric Depression Scale. This 

actuarial neuropsychological method put forward by Jak and Bondi was designed to 

balance test sensitivity and reliability and is thought to be more refined than the MCI 

diagnostic criteria used in Chapter 3 (the conventional Petersen/Winblad ADNI criteria). 

In a comparison between these two diagnostic methods, the Jak/Bondi criteria appears to 

remove the ‘false positive’ diagnoses produced by the Petersen/Winblad ADNI criteria 

[142]. MCI status was defined to include subjects who have had at least one MCI 

classification (according to the Jak/Bondi criteria) in the past, whether or not they were 

classified as “MCI” at their most recent evaluation.  

4.2.1.ii. Cognitive Functioning Defined 

Cognitive functioning was defined by cognitive global z-scores. Access to global z-

scores enhanced our assessment of postural sway/dual-task cost and cognitive status by 

enabling an analysis of cognitive functioning across cognitive status groups (as opposed to 

simply between cognitive status groups, as in Chapter 3). Z-scores are more descriptive 

than MCI status (spectrum vs. binary data) and represent the subject’s level of cognitive 

functioning (and severity of cognitive impairment) relative to the group mean. The 

normative data used to derive the z-scores were drawn from the first (baseline) evaluation 

of all (>3000) cognitively intact subjects from OHSU’s LAADC. 

 Global and domain-specific z-scores were derived from the subjects’ most recent 

domain-specific neuropsychological test scores and were used to classify the subjects as 

“intact” or “MCI” according to the Jak/Bondi criteria. Note that six out of our ten MCI 

subjects were classified as “intact” according to the Jak/Bondi criteria at their most recent 

evaluation. Nonetheless, there was a significant difference in the z-scores between our two 

cognitive status groups (Table 4.2). The group means and SEs for the z-scores, as well as 

the effect of cognitive status on the z-scores (quantified by one-way, fixed effect (cognitive 

status) ANOVAs), are reported in Table 4.2. Despite the “intact” classification for six out 
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of our ten MCI subjects, all z-scores (one global measure and six domain-specific 

measures) were significantly lower in the MCI group. 

Table 4.2: Global and domain-specific z-scores for the two cognitive status 

groups 

Cognitive domains 
Intact 

mean ± SE 

MCI 

mean ± SE 

Group 

differences 

F1,18 p 

Global 0.61 ± 0.20 -0.41 ± 0.14 17.37 0.001* 

Memory 0.72 ± 0.29 -0.52 ± 0.34 7.57 0.013* 

Language 1.11 ± 0.44 -0.29 ± 0.27 7.26 0.015* 

Executive function 0.88 ± 0.27 -0.10 ± 0.21 8.42 0.010* 

Processing speed 0.39 ± 0.13 -0.17 ± 0.21 5.11 0.038* 

Working memory 0.13 ± 0.20 -0.75 ± 0.27 6.95 0.017* 

Visual perception/construction 0.45 ± 0.24 -0.67 ± 0.16 14.44 0.001* 

*reached statistical significance,  p < 0.05 

*NOTE: the degrees of freedom associated with the F statistic for the processing speed 

domain are 1,16 (F1,16) and for the visual perception/construction domain are 1,17(F1,17) 

due to 2 subjects- and 1 subject-worth of missing data, respectively 

Two out of the 20 subjects (both MCI) were unable to complete the full test battery 

during their most recent neuropsychological evaluation due to progressive macular 

degeneration. One of these MCI subjects was unable to complete all tests required to derive 

the processing speed z-score; and the other MCI subject was unable to complete all tests 

required to derive both the processing speed and visual perception/construction z-scores. 

For these two subjects, the global z-score was derived from only 4 or 5 cognitive domains-

worth of data (as opposed to all 6 cognitive domains specified above in Table 4.2).  

4.2.3. Procedures  

4.2.3.i. Experimental Setup & Daily Testing Protocol 

A Nook tablet and Nintendo Wii balance board (WBB) were integrated into 

ORCATECH’s current in-home technological platform to quantify postural sway (both 

with and without cognitive loading) daily for 30 days. The WBB was positioned on an 

uncarpeted floor forearm’s distance away from a wall and was used to quantify postural 

sway via the displacement of the subject’s center of pressure (CoP) projected on the WBB’s 

usable surface. The subject’s feet were traced with tape on the WBB’s usable surface to 

ensure a fixed foot position over the course of the 30-day monitoring period. The WBB 
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transmitted CoP data to the tablet via a Bluetooth connection. The tablet was mounted on 

a wall at eye-height and served as the user-interface, running a custom-designed/built 

application that walked the subject through his/her three-minute daily routine. The tablet 

was used to acquire CoP data from the WBB and cognitive performance data input by the 

subject. Upon completion of the daily routine, the tablet automatically transmitted both the 

postural (CoP) and cognitive performance data to ORCATECH’s data repository via a 

wireless internet connection. The in-home setup is shown in Figure 4.1. 
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Figure 4.1: The in-home setup of the Nook tablet and the Nintendo WBB to acquire 

daily CoP-based postural sway measures. (A) Shows the in-home setup of our 

technological platform: The WBB was mounted on the uncarpeted floor parallel to the wall 

and the tablet was mounted and levelled the wall. The subject’s feet were traced with tape 

on the WBB’s usable surface to ensure a fixed foot position. Both devices were plugged 

into a power source to run continuously throughout the 30-day monitoring period. The 

system was positioned near a sturdy surface so the subject could grab hold and regain 

postural stability if need be. (B) Shows the subject during quiet stance: Standing without 

shoes in a comfortable, natural upright posture with a fixed foot position, arms resting at 

side, looking straight ahead. (C) Shows the position of the WBB and tablet relative to the 

wall and subject. The WBB was positioned at the subject’s resting-arm’s distance away 

from the wall to ensure a comfortable reach when interacting with the tablet. The tablet 

was centered relative to the WBB and positioned on the wall at the subject’s eye-height.  

The custom-written application ran continuously over the course of the 30-day 

monitoring period on the tablet and responded each day when the subject stepped on the 

WBB. The application provided the subject with detailed instructions and administered two 
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quiet stance trials: one 30-second trial without cognitive loading followed by one 60-

second trial with cognitive loading (a daily word search task). At the end of the 60-second 

trial the subject was asked to report the solution to the word search by answering a multiple 

choice question via touching the tablet fixed to the wall. The subject was instructed to 

simply guess if he/she was unable to solve the word search within the 60 allotted seconds 

or if he/she forgot the answer. A mock-up of the application’s detailed instructions, daily 

word search task, and multiple choice question are shown in Figure 4.2. 
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Figure 4.2: The user-interface for the daily postural dual-task condition: a mock-up 

of the application’s detailed instructions (A-B), the daily word search task (C), and the 

multiple choice question (D). A-B: the subject was able to toggle back and forth to ensure 

he/she was clear on the instructions: the subject had to press “CONTINUE” to begin his/her 

daily word search task, ensuring he/she was ready for the 60-second dual-task trial to begin. 

C: the word search task served as the cognitive load during 60 seconds of quiet stance: the 

progress bar at the top of the screen tracked the subject’s time. D: after 60 seconds passed, 

the multiple choice question automatically appeared; the subject was instructed to simply 

guess if he/she was unable to solve the word search within the 60 allotted seconds or if 

he/she forgot the answer. 
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4.2.3.ii. Cognitive Task Selection Process 

Selection of the cognitive task type was mainly driven by this study’s main purpose – 

to quantify postural sway daily across time. Because we sought to quantify postural sway 

during quiet stance, we were unable to administer a task that required either a verbal or 

physical response during the 60-second trial because articulation and/or physical 

movement would disrupt the postural sway signal. Cognitive task selection was also driven 

by restrictions inherent to an in-home study design. Because the daily cognitive task was 

“self”-administered via the tablet, we were limited in our ability to quantify effort exerted 

on the cognitive task. And because our primary drive was to preserve the integrity of the 

postural sway signal, we were limited in our ability to quantify actual cognitive 

performance (i.e., if we would have allowed our subjects to respond as soon as they found 

the word in the letter grid we would have been able to measure response time, a more 

descriptive outcome measure than simply “correct” or “incorrect”; but because we placed 

greater value on 60 seconds of uninterrupted quiet stance, we compromised the value of 

our cognitive performance measure). To reiterate, the purpose of the cognitive load was to 

draw neural attentional resources away from the postural task and to the cognitive task in 

effort to increase the difficulty level of the quiet stance condition.  

4.2.3.iii. Subject Training & Support 

 A substantial amount of time was dedicated to train each subject (1-2 hours per subject) 

to ensure full comprehension of the daily in-home testing protocol. Great emphasis was 

placed on “standing quietly” during the training process: subjects were informed of the 

study’s main aim – “to measure one’s ability to stand quietly daily for 30 days.” Each 

subject had ample opportunity to practice quiet stance before testing. The 30-day in-home 

monitoring period did not begin until the subject felt capable, comfortable, and confident 

in his/her ability to adhere to the procedures detailed during the training process. Each 

subject was provided with a cell phone number to call if he/she had any questions or 

concerns and was encouraged to call at any time/day. 
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4.2.4. CoP Signal Processing 

All CoP signals were processed using Matlab R2015a (The MathWorks, Natick, MA, 

USA). The WBB’s CoP signals were derived via the methods detailed in Chapter 2, Part 

2. As discussed in Chapter 2, Part 1, the WBB’s mean sampling rate depends on both the 

device and the operating system of the device used to connect to the WBB. The WBB 

sampled at a mean rate of ~30 Hz when connected to the Nook tablet (as opposed to mean 

sampling rate of ~50 Hz when connected to the Microsoft laptop computer used in Chapter 

2). Because of this, we had reduce the rate of our data averaging method, fDA, from 20 Hz 

to 10 Hz. Although a sampling rate of 10 Hz is quite low for postural sway compared to 

recommendations for laboratories in the literature [98], it is high enough to capture the 

spectral characteristics of the postural sway in our older adult population [114].  

All CoP signals (both the 30-second single-task and 60-second dual-task signals) were 

trimmed to a length of 25-seconds (3.5*fDA : 28.5*fDA – 1) so both the single- and dual-task 

CoP time series were of the same length and so the first few seconds worth of data were 

eliminated from the time series. [Note: trimming the end of the trial was not necessary, 

however a logical trial length was desired (i.e., 25 vs. 26.5 seconds), so the end of the trial 

was trimmed to achieve this.] The first half of the dual-task CoP time-series was used (as 

opposed to the second half) to increase the probability of quantifying postural sway under 

the dual-task condition. If the subject solved the word search before the 60-second 

allotment was over, his/her postural sway during the end of the dual-task trial would likely 

be more like a single-task condition since he/she would no longer be working to solve the 

puzzle. 

4.2.5. Outcome Measures 

4.2.5.i. Cognitive Performance Measure 

Cognitive performance was quantified by the subject’s performance on the daily word 

search task. Daily performance was reported as “correct” (1) or “incorrect” (0) and overall 

cognitive performance was quantified as the percentage of days across the 30-day 

monitoring period that the subject reported the correct answer to the daily word search task. 

Limited value was placed on this cognitive performance measure since the way in which 
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the subject reported his/her answer was through multiple choice, resulting in a 25% chance 

of getting the correct answer simply by guessing.  

4.2.5.ii. Postural Performance Measures 

Measures of postural sway and postural dual-task cost were used to quantify postural 

performance. All CoP-based postural sway measures were derived from the 25-second CoP 

time series using Matlab R2015a. Four of the five objective postural sway measures were 

carefully selected to represent distinct and independent features of the postural sway signal 

[126,127]: mean sway distance (MD), mean sway velocity (MV), centroidal sway 

frequency (fC), and frequency dispersion (FD) (Table 4.3). Sway area (AREA) was 

included to model the stabilogram and can be conceptualized as the product of MD and MV 

[35]. All five postural sway measures were derived from the resultant planar (two-

dimensional, horizontal) CoP signals. Measure derivations are detailed elsewhere in Prieto 

et al. [35]. 

Table 4.3: CoP-based postural sway measures  

Measure Description / Computation Units 

MD 
Mean sway distance: the average distance of the CoP 

trajectory from the mean CoP 
𝑚𝑚 

MV 
Mean sway velocity: the average velocity of the CoP 

trajectory 
𝑚𝑚/𝑠 

AREA 
Sway area: estimates the area enclosed by the CoP trajectory 

per unit time 
𝑚𝑚2/𝑠 

fC 
Centroidal sway frequency: the frequency at which the 

spectral mass is concentrated 
Hz 

FD 
Frequency dispersion: a unitless measures of the variability 

in the frequency content of the power spectral density 
-------- 

Postural dual-task costs were used to quantify the effect of the cognitive load on 

postural performance during quiet stance. The postural dual-task cost calculations were 

detailed earlier in Chapter 3.  

4.2.6. Statistical Analysis 

Statistical analyses were performed using both Matlab R2015a and IBM SPSS 

Statistics 22 (IBM Corp., Armonk, NY, USA). Non-normally distributed data were log-
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transformed to achieve normal distributions prior to the statistical analyses detailed below. 

P-values were not adjusted due to the limited size of our sample population. 

4.2.6.i. Feasibility of In-Home Postural Sway Assessments in Older Adults  

 To assess the feasibility of an in-home study of daily postural sway and postural dual-

task cost in older adults who are either cognitively intact or mildly cognitively impaired, 

subject adherence was assessed. A t-test was used to assess whether or not there was a 

difference in subject adherence (quantified by the number of missing days-worth of data 

due to subject error) between cognitive status groups. 

4.2.6.ii. Cognitive Performance & Cognitive Status 

 To investigate the effect of cognitive status (intact, MCI) on cognitive performance, a 

one-way, fixed effect ANOVA was performed on the cognitive performance measure. 

4.2.6.iii. Reliability of Daily Postural Sway Measures across Time 

 The stability of postural sway across time was examined using the statistical procedures 

put forth by McGrath et al. [138] to quantify the reliability of our quantitative postural 

sway measures (Table 4.3) acquired daily for 30 days in our 20 non-demented older adults. 

Intra-class correlation coefficients (ICC(2,k)) [143,144] were calculated for all five 

postural sway measures extracted from the single-task condition. Standard error of 

measurement (SEM) was calculated using the formula: 𝑆𝐸𝑀 = 𝑆𝐷 × √1 − 𝐼𝐶𝐶, where 

SD was the standard deviation of the mean values across the 20 subjects and ICC was the 

reliability statistic. Minimum detectable change (MDC) was calculated using the formula: 

𝑀𝐷𝐶 = 𝑆𝐸𝑀 × 1.96 ×  √2, where 1.96 is the Z which is the score associated with the 

95% confidence interval and √2 is the multiplier to account for uncertainty when multiple 

tasks are conducted of a measure [145]. Because a complete data set was necessary to 

calculate the ICC metric, missing days-worth of data were replaced by the subject’s mean 

measurement over the course of the 30-day monitoring period.  

4.2.6.iv. Means of Postural Sway & Dual-Task Cost across Time 

 Pearson’s linear correlation was used to assess the association between our clinical 

(static) postural control measure (Tinetti Balance Score [32], acquired at the subjects’ most 
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recent annual evaluation (Table 4.1)) and the monthly means of postural sway and dual-

task cost. 

Between Cognitive Status Groups 

To investigate the effect of cognitive status (intact, MCI) on postural sway and dual-

task cost longitudinally, linear mixed effects models were performed on the weekly means 

of postural sway (during both the single- and dual-task condition) and dual-task cost 

acquired over the course of the 30-day in-home monitoring period. Subject-specific weekly 

means were used instead of daily measures to increase statistical power, since 30 data 

points per subject for a given measure with only 20 subjects (10 per group) is far too many 

measurements for the statistical model. The first and last day of the 30-day monitoring 

period were excluded to reduce our data set to 28 days, or four weeks, worth of data. Each 

weekly mean measure was derived from 4-7 days-worth of data (see Table 4.4 and Figure 

4.3 for a description of missing data). Cognitive status and time were defined as the two 

main (fixed) factors; the model assessed both the main and interaction effects of/between 

these two factors. Subject was defined as a random effect to account for the correlated 

residuals within each of the 20 subjects. 

Across Cognitive Status Groups 

 To assess whether or not there was an association between cognitive functioning and 

mean postural sway and/or dual-task cost, cognitive global z-scores were regressed against 

the monthly means for each measure of postural sway and dual-task cost averaged across 

the 30-day monitoring period. Linear regression analyses via the least squares method was 

used. 

4.2.6.v. Day-to-Day Variability in Postural Sway & Dual-Task Cost across Time 

Pearson’s linear correlation was used to assess the association between our clinical 

(static) postural control measure (Tinetti Balance Score [32], acquired at the subjects’ most 

recent annual evaluation (Table 4.1)) and the day-to-day variability in postural sway and 

dual-task cost. 
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Between Cognitive Status Groups 

 The day-to-day variability in postural sway and dual-task cost across time was 

quantified by calculating the variance in postural sway and dual-task cost across the 30-

day monitoring period. To investigate the effect of cognitive status (intact, MCI) on the 

day-to-day variability in postural sway and dual-task cost, one-way, fixed effect (cognitive 

status) ANOVAs were performed on the variance measures.  

Across Cognitive Status Groups 

 To assess whether or not there was an association between cognitive functioning and 

day-to-day variability in postural sway and/or dual-task cost, global z-scores were analyzed 

against the variance in each measure of postural sway and dual-task cost across the 30-day 

monitoring period. Linear regression analyses via the least squares method were used. 

4.3. Results 

4.3.1. Illustration of Postural Sway Quantified by the WBB  

 Postural sway under both the single- and dual-task condition for a cognitively intact 

subject is illustrated by stabilograms (Figure 4.3). Upon visual inspection, there appeared 

to be no significant effect of cognitive load on postural sway (i.e., there is no observable 

difference in postural sway between the single- and dual-task conditions for this one subject 

on this one study day). 
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Figure 4.3: Stabilograms illustrating the two-dimensional CoP signals acquired from 

the WBB under both the single- and dual-task conditions: 25-seconds worth of CoP 

data for a cognitively intact subject during both the single- and dual-task condition (A and 

B, respectively). There is no observable difference between the single- and dual-task 

stabilograms for this one subject on this one study day. The ML CoP trajectory (x-axis) is 

plotted against the AP CoP trajectory (y-axis), providing a visual 

representation/approximation of postural sway area (AREA, the one postural sway measure 

that is conceptualized as the product of two other measures used in this study – MD and 

MV). 

4.3.2. Feasibility of In-Home Postural Sway Assessments in Older Adults  

 The total number and percentage of missing days-worth of data are reported in Table 

4.4. Missing data was often due to technological (i.e., tablet-related) errors: 1. the tablet 

lost connection to the wireless internet network and did not reconnect automatically; or, 2. 

the tablet rebooted and did not reinitialize properly. Only two out of the 20 subjects (1 

intact, 1 MCI) missed more than one third of the monitoring days. The remaining 18 

subjects missed six or fewer out of the 30 days total. On average, there were 2.95 ± 0.72 

days, or 9.38 ± 2.39 percent, missing per subject throughout the 30-day monitoring period. 

The distribution of missing days-worth of data is shown in Figure 4.4, C. The distributions 

of missing days-worth of data due to technological error, subject error, and subject error 

by group are shown in Figure 4.4, A, B, and D respectively. There was no difference in 

subject adherence (quantified by subject error) between cognitive status groups (p = 0.70) 

(Figure 4.4, D). 
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Table 4.4: Feasibility: number of missing days out of 30 days of monitoring. 

The total number of missing days-worth of data, as well as the number of missing 

differentiated based on cause: 1. Due to technological error; and, 2. Due to subject 

error. Feasibility data is separated by cognitive status group (intact (A), MCI (B)) to 

assess potential group differences in subject adherence to protocol (quantified by 

number of missing days due to subject error). There was no difference in subject 

adherence between cognitive status groups (p = 0.70). 

SubjID  

Number of missing days (#) 
Total missing  

out of 30 

Due to 

technological error 

Due to 

 subject error 
(#) (%) 

A. Intact 

2  0 0 0 0.00 

3  1 1 2 6.67 

4  3 2 5 16.67 

5  1 9 10 33.33 

10  0 0 0 0.00 

12  1 2 3 10.00 

14  0 0 0 0.00 

15  0 1 1 3.33 

18  0 1 1 3.33 

19  1 0 1 3.33 

Intact group: 

mean ± SE 
0.70 ± 0.30 1.60 ± 0.86 2.30 ± 0.99 7.67 ± 3.30 

B. MCI 

1  5 6 11 36.67 

6  0 0 0 0.00 

7  2 2 4 13.33 

8  1 4 5 16.67 

9  0 0 0 0.00 

11  1 0 1 3.33 

13  1 5 6 20.00 

16  2 0 2 6.67 

17  2 2 4 13.33 

20  2 1 3 10.00 

MCI group: 

mean ± SE 
1.60 ± 0.45 2.00 ± 0.72 3.60 ± 1.05 12.00 ± 3.49 

Both groups 

combined: 

mean ± SE 
1.15 ± 0.28 1.80 ± 0.55 2.95 ± 0.72 9.83 ± 2.39 
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Figure 4.4: Distributions of missing days-worth of data: A. due to technological error; 

B. due to subject error; C. total; and D. by cognitive status group. Plot D shows the 

distribution of missing days due to subject error by cognitive status group (intact vs. MCI) 

to assess a potential group-effect on subject adherence to protocol. The maroon/purple 

color (blend of blue and red) represents group overlaps. There was no difference in subject 

error between-groups (p = 0.70). 

4.3.3. Cognitive Performance & Cognitive Status 

 There was no difference in cognitive performance between the cognitive status groups 

(F1,18 = 0.97, p = 0.338, Figure 4.5). 
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Figure 4.5: Cognitive performance rate (%), by cognitive status group. There was no 

difference in cognitive performance between the intact and MCI groups. The horizontal 

red lines represent the group medians, the edges of the boxes mark the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points that are not outliers 

(quantified as > Q3 + 1.5*(Q3-Q1) or < Q1 – 1.5*(Q3-Q1), where Q1 and Q3 represent the 

25th and 75th percentile, respectively). 

4.3.4. Reliability of Daily Postural Sway Measures across Time 

 The test-retest reliability of our five postural sway measures extracted daily during the 

single-task condition is reported in Table 4.5. All five measures exhibited excellent 

statistical reliability (ICC > 0.90).  
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 The means of and (intra-subject) variability in postural sway across the 30 days, per 

subject and postural sway measure (extracted daily during the single-task condition) is 

reported in Table 4.6. Subjects are separated by cognitive status group and group statistics 

are provided. Inter-subject variability by cognitive status group is also reported. Intra- and 

inter-subject variability ranges from 5-35% and 4-65%, respectively, depending on the 

postural sway measure. [Intra- and inter-subject variability is quantified by the CoV values 

contained in Table 4.6. The interpretation of CoV values should be approached with 

caution since CoV is sensitive to small changes in the mean when the mean nears zero 

(e.g., for the frequency-domain postural sway measures) and may not accurately represent 

true variation in the measure.] 

 

Table 4.5: Reliability of the postural sway measures across time. Results from the 

reliability analysis (put forth by McGrath et al. [138]) to assess the stability of daily in-home 

postural sway measures across 30-days of monitoring in 20 non-demented older adults. 

Measure Mean SD CoV ICC  (95% CI) SEM MDC 

MD 4.22 1.39 32.93 0.987 (0.977 - 0.994) 0.16 0.45 

MV 15.29 6.05 39.58 0.994 (0.990 – 0.997) 0.46 1.27 

AREA 21.71 14.16 65.20 0.989 (0.980 – 0.995) 1.51 4.18 

fC 1.09 0.25 23.10 0.981 (0.966 – 0.991) 0.04 0.10 

FD 0.76 0.03 4.05 0.947 (0.908 – 0.976) 0.01 0.02 

Means: determined first by calculating the mean across days per subject and then calculating the mean 

across subjects  

Standard deviations (SD): calculated from the SD of the means across subjects 

Coefficients of variation (CoV): calculated by taking the ratio of the SD to the mean, expressed as a 

percentage 

Intra-class correlation coefficients (ICC): using Cronbach’s alpha. 

Standard error of measurement (SEM): 𝑺𝑫 × √𝟏 − 𝑰𝑪𝑪 

Minimal detectable change (MDC): 𝑺𝑬𝑴 × 𝟏. 𝟗𝟔 ×  √𝟐 

Note: because a complete data set is necessary to calculate the ICC metric, missing data points (~10% 

missing per subject, on average) were replaced by the subject’s mean measure over the course of the 

30-day monitoring period. In doing so, we introduced a certain amount of measurement error to our 

reliability metric. 
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Table 4.6: Means of and (intra-subject) variability in postural sway across 30 days, per subject and postural sway measure. 
Subjects are separated by cognitive status group (A. intact; B. MCI). Group statistics are provided. Inter-subject variability (quantified 

by CoV) is also reported. 

SubjID 

MD MV AREA fC FD 

Mean 

Intra-

subject 

CoV 

Mean 

Intra-

subject 

CoV 

Mean 

Intra-

subject 

CoV 

Mean 

Intra-

subject 

CoV 

Mean 

Intra-

subject 

CoV 

A. Intact 

2 5.69 16.53 30.11 10.31 52.17 27.97 1.38 13.76 0.71 5.28 

3 2.37 26.42 8.26 10.08 6.12 38.90 1.07 20.06 0.77 4.28 

4 4.38 23.55 21.64 34.76 26.07 39.82 1.37 28.82 0.77 5.45 

5 4.38 16.03 22.71 11.85 27.65 28.58 1.38 11.01 0.72 5.14 

10 2.85 24.99 10.32 10.65 9.46 32.97 1.41 23.67 0.76 4.76 

12 4.69 17.94 23.83 14.52 35.87 32.59 1.47 17.52 0.75 7.94 

14 6.63 19.94 19.93 16.58 41.00 33.90 0.95 17.44 0.76 4.89 

15 6.16 20.44 17.32 17.24 35.13 36.85 0.74 16.47 0.75 5.93 

18 3.33 22.10 12.53 9.24 13.34 32.96 1.15 19.44 0.78 6.29 

19 4.08 18.20 7.49 12.95 9.74 31.31 0.57 16.94 0.80 5.03 

means ± SE  
4.46 ± 

0.44 

20.61 ± 

1.13 

17.41 ± 

2.38 

14.82 ± 

2.38 

25.66 ± 

4.93 

33.59 ± 

1.25 

1.15 ± 

0.10 

18.51 ± 

1.58 

0.76 ± 

0.01 

5.50 ± 

0.33 

Inter-

subject 

 CoV 

31.35 43.27 60.74 27.14 3.53 

B. MCI 

1 2.83 23.55 11.67 3.27 10.88 26.58 1.13 16.32 0.74 8.46 

6 3.63 22.88 13.57 13.87 14.70 31.85 1.12 14.82 0.74 5.01 

7 4.06 20.23 15.19 11.68 19.35 31.03 0.95 17.42 0.76 6.18 

8 4.33 25.60 11.62 12.87 15.42 32.30 0.92 17.67 0.81 4.06 
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9 2.45 21.65 8.50 9.30 5.69 26.07 1.01 20.47 0.78 4.97 

11 3.24 18.24 12.54 10.19 13.11 24.28 1.13 12.43 0.70 5.19 

13 3.03 16.45 13.03 14.88 12.29 31.77 1.36 15.00 0.73 6.13 

16 4.79 24.02 13.00 18.82 21.05 52.41 0.83 16.60 0.79 4.57 

17 4.00 16.32 11.56 12.14 15.29 24.23 0.91 20.84 0.80 4.49 

20 7.44 23.36 20.95 15.30 49.87 34.12 0.85 17.05 0.79 5.03 

means ± SE 
3.98 ± 

0.45 

21.23 ± 

1.04 

13.16 ± 

1.02 

12.23 ± 

1.32 

17.77 ± 

3.82 

31.46 ± 

2.59 

1.02 ± 

0.05 

16.86 ± 

0.80 

0.76 ± 

0.01 

5.41 ± 

0.40 

Inter-

subject  

CoV 

35.53 24.59 67.91 16.06 4.67 

C. Both cognitive status group combined 

means ± SE 
4.22 ± 

0.31 

20.92 ± 

0.75 

15.29 ± 

1.35 

13.53 ± 

1.36 

21.71 ± 

3.17 

32.52 ± 

1.42 

1.09 ± 

0.06 

17.69 ± 

0.88 

0.76 ± 

0.01 

5.45 ± 

0.25 

Inter-

subject  

CoV 

32.94 39.58 65.20 23.15 4.06 

Note: See Table 4.7 for cognitive status group differences (or lack thereof) in postural sway under the single-task condition 
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 The means of and (intra and inter-subject) variability in postural sway across time is 

illustrated in Figure 4.6. Mean sway distance (MD) was selected to visually represent the 

amount of postural sway in each of the 20 subjects across 30 days of monitoring. 

 

Figure 4.6: Box plots illustrating the subject-specific distribution of postural sway 

distance (MD) across the 30-day monitoring period. The horizontal red lines represent 

the subject-specific medians, the edges of the boxes mark the 25th and 75th percentiles, the 

whiskers extend to the most extreme data points that are not outliers, and the red crosses 

represent the outliers (quantified as > Q3 + 1.5*(Q3-Q1) or < Q1 – 1.5*(Q3-Q1), where Q1 

and Q3 represent the 25th and 75th percentile, respectively). Each boxplot represents a 

subject. The first 10 subjects plotted along the x-axis belong to the intact cognitive status 

group (A); the remaining 10 subjects belong to the MCI cognitive status group (B). 

 The autocorrelation put forth by McGrath et al. was reproduced in this study. Although 

not specified, we assume the authors used a biased autocorrelation function to analyze their 

postural sway time series based on our success in reproducing McGrath’s results. The 

biased autocorrelation for the 30-day MD time series at time lags of 1-7 days for all 20 of 

our subjects is illustrated in Figure 4.7. Each subject is represented by a line on the plot, 

with cognitive status groups separated by color. Maximum lag time was set to 7 days 

because increased variance is inherent with larger time lags since the estimate of the mean 

squared value is inherently more variable and less reliable at larger time lags (i.e., fewer 

data points are used to compute the mean) [111,146].  
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Figure 4.7: Biased autocorrelation function of the 20 subjects’ postural sway distance 

(MD) across time (up to 7 days lag). Each line represents a subject (subjID 1-20), with 

the intact (blue) and MCI (red) subjects separated by color. The x-axis denotes the time lag 

(in days) and the y-axis denotes the autocorrelation function for a given lag and subject. 

 This approach is invalid (and likely led to misinterpretation of the data in McGrath’s 

paper) as it does not account for the fact that when shifting one time series relative to the 

other, fewer data points contribute to the calculation because there is less overlap between 

the time series. An unbiased autocorrelation function is necessary to account for decreasing 

data points as time lag increases and is implemented with a scale factor of 1 𝑁 −  |𝑙𝑎𝑔|⁄ , 

where N represents the length of the time series and lag represents the time step in days 

[111,146].  

 McGrath does not specify how they dealt with missing days-worth of data. If the 

missing days were simply excluded from the analysis or were replaced with simulated data 

(i.e., the subject’s mean measure over time), a certain amount of error would be introduced 

to the autocorrelation function: removing a time-step (i.e., a day with missing data) would 

compromise the information about the specific time-lag linear dependence, and simulating 

data that is missing (e.g., with the mean measure across time) would produce a potentially 

inflated autocorrelation value (amount of error will increase as the number of simulated 

data points increase). To avoid these computational errors, we did not remove the missing 
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data points from the time series but we did exclude any data couples with missing data 

points from our autocorrelation calculations. The unbiased autocorrelation function with 

properly treated missing days-worth of data for the 30-day MD time series at time lags of 

1-7 days is illustrated in Figure 4.8. 

 

Figure 4.8: Unbiased autocorrelation function illustrating the true autocorrelation of 

the 20 subjects’ postural sway distance (MD) across time (up to 7 days lag). Each line 

represents a subject (subjID 1-20), with the intact (blue) and MCI (red) subjects separated 

by color. The x-axis denotes the time lag (in days) and the y-axis denotes the 

autocorrelation function for a given lag and subject. 

 This analysis was performed on the four other postural sway measures as well. Similar 

results were produced for all five postural sway measures. The unbiased autocovariance 

function was then computed to assess whether there were systematic changes in the 

measures over time. The unbiased autocovariance function for the 30-day MD time series 

at time lags of 1-7 days is illustrated in Figure 4.9.  



123 

 

 

Figure 4.9: Unbiased autocovariance function of the 20 subjects’ postural sway 

distance across time (up to 7 day lag). Each line represents a subject (subjID 1-20), with 

the intact (blue) and MCI (red) subjects separated by color. The x-axis denotes the time lag 

(in days) and the y-axis denotes the autocovariance function for a given lag and subject. 

The small plot projected above the main plot represents the group mean autocovariance 

averaged across all 20 subjects and shows that there is no systematic change in MD over 

time (for all lags but zero, the autocovariance remains close to zero).  

 The unbiased autocovariance function (Figure 4.9) is quite informative as it can be 

used to detect time-dependent patterns such as linear trends or periodic variations across 

days. There are no systematic changes in postural sway MD over the course of the 30-day 

monitoring period (illustrated by the group mean autocovariance value approximately 

equaling zero for all time lags but zero – up to 7 days lag is shown in Figure 4.9). The 

same time-scale patterns were expressed by postural sway MV, AREA, fC, and FD, 

suggesting that there are no systematic changes in postural sway in our 20 older adults 

across the 30-day monitoring period. [Note: there is little difference between biased and 



124 

 

unbiased autocovariance functions when there is no systematic change in the measure over 

time: in autocovariance, the means of the time series are zeroed such that the product of 

one time series and the shifted time series (at n lags) is also close to zero so there is little 

difference in scaling by 1 𝑁⁄  or 1 𝑁 − |𝑙𝑎𝑔|⁄ , where N represents the length of the time 

series and lag represents the time step in days.] The unbiased autocorrelation function 

(Figure 4.8) is not very useful since there were no obvious trends in the postural sway time 

series. 

4.3.5. Weekly & Monthly Means of Postural Sway & Dual-Task Cost  

 The monthly means of (both single- and dual-task) postural sway and dual-task cost 

were not significantly correlated with The Tinetti Balance Score (Pearson’s correlation 

coefficient, r < 0.50). 

4.3.5.i. Between Cognitive Status Groups 

Lower postural sway measures appeared to be associated with MCI status when 

measuring postural sway daily for 30 days. Upon visual inspection, the daily group means 

in MV, AREA, and fC trended towards separation, with lower mean measures of postural 

sway in the MCI group. This trend was present under both the single- and dual-task 

conditions. The daily group means for the five postural sway measures across the 30-day 

monitoring period are shown in Figure 4.10. 
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Figure 4.10: The daily group means in three out of the five postural sway measures 

(MV, AREA, and fC) trended towards separation, with lower mean measures 

associated with MCI. This figure shows daily group means and distribution (quantified 

by SE) across the 30-day monitoring period for the five postural sway measures during the 

dual-task condition.  

 Despite the group-specific trends in postural sway shown in Figure 4.10, there was no 

difference in weekly mean measures of postural sway between the intact and MCI groups 

(Table 4.7). There was also no difference in weekly mean measures of postural dual-task 

cost between the intact and MCI groups (Table 4.7) and there were no group-specific 

trends in dual-task cost observed via visual inspection. The statistical results of the linear 

mixed effects models are reported in Table 4.7: there was no effect of cognitive status or 

time on the weekly group means of postural sway and dual-task cost and there was no 

interaction between cognitive status and time. Monthly group means (weekly group means 
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averaged across the four weeks) for postural sway (both single- and dual-task) and dual-

task cost are contained in Table 4.7 for reference.
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Table 4.7: Weekly group means of postural sway and dual-task cost across the 4 weeks of in-home monitoring: Results 

from the linear mixed effects models (fixed effects: cognitive status, time) are reported to show the main and interaction effects 

on the weekly means of postural  sway (single- (A) and dual-task (B)) and dual-task cost (C).  

Measure 

Intact 

Group mean ± 

SE 
across the 4 weeks 

MCI 

Group mean ± 

SE 
across the 4 weeks 

 

Main Effect: 

Cognitive Status 

 

Main Effect: 

Time 

(by week) 

Interaction 

Effect: 

Cognitive 

Status*Time 

Information 

Criteria:  

Log 

Likelihood 

F p F p F p -2logɅ 

A. Single-task 

MD 4.44 ± 0.02 3.98 ± 0.08 0.69 0.415 1.19 0.321 0.76 0.522 -230.47 

MV 17.34 ± 0.14 13.16 ± 0.17 1.67 0.211 1.62 0.195 0.91 0.441 -264.48 

AREA 25.37 ± 0.26 17.75 ± 0.75 1.24 0.279 1.07 0.368 0.91 0.440 -140.14 

fC 1.15 ± 0.01 1.02 ± 0.01 1.40 0.250 0.95 0.422 0.29 0.831 -100.90 

FD 0.76 ± 0.00 0.76 ± 0.00 0.24 0.628 0.99 0.403 0.65 0.588 -361.75 

B. Dual-task 

MD 3.86 ± 0.04 3.50 ± 0.06 0.87 0.362 1.80 0.158 0.13 0.939 -231.61 

MV 16.71 ± 0.28 11.87 ± 0.08 1.89 0.185 1.08 0.363 2.36 0.081 -253.63 

AREA 21.08 ± 0.41 14.47 ± 0.54 1.40 0.250 0.84 0.476 0.34 0.793 -133.15 

fC 1.23 ± 0.01 1.12 ± 0.02 0.73 0.403 2.10 0.110 0.48 0.695 -74.88 

FD 0.75 ± 0.00 0.76 ± 0.00 0.46 0.507 0.61 0.609 0.42 0.742 -351.94 

C. Dual-task costs (in %) 

MD -8.72 ± 0.84 -9.01 ± 0.64 0.00 0.988 0.15 0.927 0.14 0.935 634.59 

MV -5.09 ± 0.95 -8.52 ± 1.09 1.18 0.291 0.98 0.407 1.98 0.127 533.61 

AREA -9.16 ± 0.92 -11.54 ± 1.56 0.07 0.795 0.11 0.954 0.53 0.662 694.24 

fC 10.51 ± 0.84 12.76 ± 1.04 0.12 0.737 0.39 0.762 0.15 0.932 656.57 

FD -0.57 ± 1.17 0.25 ± 0.37 0.27 0.608 0.21 0.889 0.31 0.820 457.96 

Group mean: weekly cognitive status group means of the postural sway measure/cost averaged across the 4 weeks 

SE: SEs of weekly cognitive status group means of the postural sway measure/cost across the 4 weeks 
*reached statistical significance,  p < 0.05  



128 

 

4.3.5.ii. Across Cognitive Status Groups 

 There were no significant linear relationships (p < 0.05) between postural sway or dual-

task cost and cognitive functioning when analyzing across groups (Table 4.8). 

4.3.6. Day-to-Day Variability in Postural Sway & Dual-Task Cost  

 The day-to-day variability in (both single- and dual-task) postural sway and dual-task 

cost were not significantly correlated with The Tinetti Balance Score (Pearson’s correlation 

coefficient, r < 0.50), suggesting that the information gleaned from infrequent, clinical 

measures of (static) postural control does not relate to the information acquired from 

frequent, in-home postural sway measures since the day-to-day variability in postural sway 

was found to be associated with both cognitive status (Section 4.3.6.i) and cognitive 

functioning (Section 4.3.6.ii). 

4.3.6.i. Between Cognitive Status Groups 

 There was significantly higher day-to-day variability in fC cost in the MCI group 

compared to the intact group (Table 4.9, C, Figure 4.11). There were no other differences 

in day-to-day variability between cognitive status groups. 

  

Table 4.8: No linear relationships between postural sway or dual-task cost and cognitive 

functioning. Results from the linear regression analyses are reported to show there were no 

linear relationships between the monthly means of postural sway (single- (A) and dual-task (B)) 

and dual-task cost (C) averaged across the 30 days and cognitive global z-scores. 

Measure 
A. Single-task B. Dual-task C. Dual-task cost 

r F p r F p r F p 

MD -0.34 2.41 0.138 -0.32 2.11 0.163 0.02 0.01 0.931 

MV 0.04 0.03 0.870 0.06 0.07 0.799 -0.05 0.05 0.824 

AREA -0.27 0.55 0.468 -0.18 0.57 0.460 -0.06 0.06 0.813 

fC 0.43 4.17 0.056 0.29 1.59 0.223 -0.18 0.58 0.457 

FD -0.05 0.05 0.827 -0.12 0.24 0.629 -0.12 0.24 0.631 

*reached statistical significance,  p < 0.05 
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Table 4.9: Variability in postural sway and dual-task cost across the 30 days of in-

home monitoring: Results from the one-way, fixed effect (cognitive status) ANOVAs 

are reported to show the effect of cognitive status on the day-to-day variability (quantified 

by variance) in postural sway (single- (A) and dual-task (B)) and dual-task cost (C) within 

the 30-day monitoring period.  

Measure Units 
Intact 

Group mean ± SE 

MCI 

Group mean ± SE 

 

Effect of 

Cognitive Status 

 

F1,18 𝒑 

A. Single-task 

MD 𝑚𝑚2 0.85 ± 0.15 0.87 ± 0.27 0.30 0.588 

MV 𝑚𝑚2 𝑠2⁄  10.94 ± 5.27 3.33 ± 0.94 1.80 0.196 

AREA 𝑚𝑚4 𝑠2⁄  92.47 ± 25.83 54.38 ± 28.31 1.54 0.231 

fC 𝐻𝑧2 0.05 ± 0.02 0.03 ± 0.00 1.21 0.286 

FD 𝐻𝑧2 0.00 ± 0.00 0.00 ± 0.00 0.04 0.845 

B. Dual-task 

MD 𝑚𝑚2 0.68 ± 0.17 0.81 ± 0.28 0.22 0.642 

MV 𝑚𝑚2 𝑠2⁄  10.45 ± 4.33 2.57 ± 1.32 2.17 0.158 

AREA 𝑚𝑚4 𝑠2⁄  53.28 ± 14.77  44.05 ± 26.43 1.14 0.300 

fC 𝐻𝑧2 0.06 ± 0.01 0.05 ± 0.01 0.23 0.641 

FD 𝐻𝑧2 0.00 ± 0.00 0.00 ± 0.00 0.67 0.424 

C. Dual-task costs  

MD % 721.42 ± 205.69 640.19 ± 165.59 0.07 0.790 

MV % 209.98 ± 49.44 144.09 ± 24.86 1.42 0.249 

AREA % 1593.02 ± 342.03 1245.50 ± 339.89 0.78 0.403 

fC % 551.50 ± 69.09 895.64 ± 133.05 5.27 0.034* 

FD % 59.24 ± 5.05 60.59 ± 6.63 0.03 0.874 

Group means: mean day-to-day variability (quantified by variance) averaged across the 10 

subjects  

SE: SE in  day-to-day variability across the 10 subjects  

*reached statistical significance,  p < 0.05 



130 

 

 

Figure 4.11: The variability in fC cost across the 30 days of in-home monitoring was 

significantly higher in the MCI group. The variability in fC cost across the 30-day 

monitoring period was higher in the MCI group (A). This significant group difference is 

shown by a boxplot (B) and is reported above in Table 4.9, C. The horizontal red lines in 

(B) represent the group medians, the edges of the boxes mark the 25th and 75th percentiles, 

the whiskers extend to the most extreme data points that are not outliers, and the red crosses 

represent the outliers (quantified as > Q3 + 1.5*(Q3-Q1) or < Q1 – 1.5*(Q3-Q1), where Q1 

and Q3 represent the 25th and 75th percentile, respectively). 

4.3.6.ii. Across Cognitive Status Groups 

 There were significant linear relationships (p < 0.05) between postural sway variability 

and cognitive functioning when analyzing across groups. Under the single-task condition, 

more variability in MD and less variability in fC across the 30-day monitoring period was 

related to lower global z-scores (Table 4.10, A, Figure 4.12, A & B). Under the dual-task 

condition, more variability in both MD and AREA across the 30-day monitoring period 

were related to lower global z-scores (Table 4.10, B, Figure 4.12, C & D and Figure 

4.13). In sum, more day-to-day variability in time-domain postural sway and less day-to-

day variability in frequency-domain postural sway was correlated with lower cognitive 

functioning (quantified by lower global z-scores).  
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Table 4.10: Linear relationships between the day-to-day variability in postural sway and 

cognitive functioning. Results from the linear regression analyses are reported to show the 

significantlinear relationships between the variance in postural sway (both single- (A) and dual-

task (B)) across 30 days and the cognitive global z-scores. There were no significant linear 

relationships between the variance in postural dual-task cost (C) across 30 days and cognitive 

global z-scores. 

Measure 
A. Single-task B. Dual-task C. Dual-task cost 

r F p r F p r F p 

MD -0.48 5.51 0.031* -0.45 4.47 0.049* 0.08 0.13 0.723 

MV 0.18 0.61 0.446 0.16 0.50 0.491 -0.17 0.51 0.485 

AREA -0.25 1.15 0.297 -0.47 5.03 0.038* -0.06 0.06 0.804 

fC 0.46 4.91 0.040* 0.26 1.33 0.265 -0.27 1.40 0.252 

FD 0.21 0.84 0.371 0.05 0.04 0.842 0.00 0.00 0.992 

*reached statistical significance,  p < 0.05 
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Figure 4.12: Linear relationships between the day-to-day variability in postural sway 

and cognitive functioning. Linear regression shows significant linear relationships (p < 

0.05) between the day-to-day variability in postural sway measures and cognitive global z-

scores. More variability in time-domain postural sway (quantified by MD (A & C) and 

AREA (D)) and less variability in frequency-domain postural sway (quantified by fC (B)) 

is related to lower cognitive functioning (quantified by lower global z-scores). The linear 

trends observed under the single- and dual-task conditions are shown in plots A & B and 

C & D, respectively. 
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Figure 4.13: MD time series illustrating the difference in day-to-day variability 

between relative high and low cognitive functioning: more variability in MD is related 

to lower cognitive functioning. Daily MD measures for two subjects are plotted: the 

(MCI) subject with the lowest global z-score (in red) and the (intact) subject with the 

highest global z-score (in blue). The lines are discontinuous due to missing days-worth of 

data. Both subjects had three days-worth of missing data over the course of the 30-day 

monitoring period. The intact subject (subjID 12) missed two days due to subject error. 

The MCI subject (subjID 20) only missed one day due to subject error. 

4.4. Discussion 

4.4.1. Feasibility  

Results from our feasibility analysis support Hypothesis I: our in-home study of 

postural sway and cognitive dual-tasking was feasible in our older adult population – both 

for cognitively intact and mildly cognitively impaired older adults. Subject adherence to 

protocol was impressive and there was no difference in adherence between cognitive status 

groups. This was to be expected within the ORCATECH cohort due to both our subjects’ 

previous experience with longitudinal, in-home studies of aging with technology and the 

subtlety of impairment within our MCI group. We did not anticipate the MCI group to 

experience trouble adhering to the testing protocol due to the unobtrusive nature of their 

mild cognitive impairments (their impairments were classified based on their lack of 

interference with activities of daily living). 
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All 20 subjects were recommended for this study based on their reliable, capable and 

cooperative nature. All have been active participants in ongoing ORCATECH studies for 

years now, meaning all were comfortable with longitudinal, in-home, technology-driven 

studies. It is important to note that our cohort may not adequately represent the average 

older adult within this age group. Similar studies must be conducted with a larger, more 

diverse sample population before true feasibility can be determined. Nonetheless, this pilot 

study’s feasibility results are promising. 

4.4.2. Cognitive Performance  

 There was no difference in cognitive performance on the daily word search task 

between the intact and MCI groups. Selection of cognitive task type was both driven and 

limited by our study’s main aim – to acquire sound, meaningful measures of postural sway 

daily in older adults with and without MCI via in-home monitoring methods. We were 

driven to select a cognitive task of reasonable difficulty level so it would provide enough 

cognitive demand and sufficiently draw attention away from the postural and to the 

cognitive task. We were limited to select a cognitive task without a verbal or physical 

response (restricting our response type to mental). Both verbal and physical responses 

would affect CoP: articulation provokes changes in the respiratory pattern, which may in 

turn be reflected by an increase in postural sway frequency (and hence sway path distance) 

[75,147]; a physical movement, such as lifting an arm to touch the tablet, would obviously 

be reflected by an increase in postural sway as well. Maintaining the integrity of the 

postural sway signal remained our primary focus in this study. In turn, limited effort was 

placed on acquiring a meaningful cognitive performance measure based on the restrictions 

associated with our experimental setup and primary outcome measure (i.e., postural sway) 

as well as those inherent to in-home study designs.  

 Our daily cognitive task, the word search, is not a classic neuropsychological test and 

was not designed to tax a specific cognitive function. [We consider our word search puzzle 

to be more of a global cognitive task: it has visuospatial and working memory components 

– as the subject searches the letter grid for the word; executive function and 

supervisory/divided attention components – as the subject performs the puzzle, maintains 

postural stability, meanwhile tracking this/her progress relative to the time remaining in 
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the trial; and, a possible short-term memory component – as the subject consciously works 

to remember the solution to the puzzle, assuming the subject solves the puzzle with time 

remaining in the 60-second dual-task condition.] Because the word search puzzle is an “off-

the-shelf” task and is not classically used to measure cognition, it mainly served as a 

cognitive distraction in this study and was not expected to differentiate between cognitive 

status groups. The way in which it taxed cognition (and the sensitivity of the task itself) 

remains unknown in our older adult populations under our cognitive-postural dual-task 

conditions.  

We acquired clinical feedback from several LAADC/ORCATECH researchers and 

staff throughout the user-interface design and development phase in an effort to increase 

the likelihood of successful implementation and meaningful data acquisition within our 

specific cohort. We also tested our system with two older adults before beginning testing 

for this study. We were relatively confidant in the clarity of phrasing, instruction, and 

format for our daily in-home routine. Upon implementation though, we observed consistent 

and sustained confusion on one element of our daily routine. After inputting their answer 

to the multiple choice question, the subjects were prompted to tell us whether or not they 

guessed when responding to the multiple choice question (a simple “yes” or “no” 

response). For some reason, the phrasing of this question seemed to confuse at least a third 

of our subjects. After clarifying the meaning of the question, most subjects remained 

confused and sustained this confusion over the course of the 30-day monitoring period. [I 

routinely called to check-in with these subjects and asked whether or not they found the 

word in their daily word search puzzle. I then asked whether or not they guessed when 

responding to the multiple choice question. The subjects’ responses were inconsistent and 

showed that they remained confused about the question’s intent.] Because this confusion 

often led to incorrect responses, we are unsure how often our subjects actually guessed the 

answer. In hindsight, we simply should have had an “I don’t know” option for the multiple 

choice question. This would have been clearer, avoided confusion, and would have allowed 

us to place more weight on our cognitive performance outcome measure. As is, we are 

unsure of the amount of error within our cognitive performance measure (i.e., how often a 

successful response was simply due to chance). In sum, because our cognitive performance 
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measure lacked precision, accuracy and overall significance, we were not surprised to see 

no effect of cognitive status on cognitive performance in this study. 

4.4.3. Reliability of Daily Measures 

 Our longitudinal findings support the conclusions made by McGrath et al. on the 

stability of daily in-home measures of postural control [138]. All five of our objective 

postural sway measures exhibited excellent statistical reliability (ICC > 0.90), supporting 

Hypothesis II. It is important to note though that by replacing missing data points with the 

subject’s mean measure, we introduced a certain amount of measurement error to our 

reliability metric: as the number of missing days-worth of data increases, the accuracy of 

the ICC metric decreases. Because each subject on average only missed 2.95 ± 0.72 days 

out of the total 30, we consider there to be a limited amount of error in the ICC metric due 

to missing data. It is also important to note that the ICC values may have been inflated by 

the quantity of our repeated measures. On average, each subject was assessed 27 out of the 

30 total days; the weight of error variance decreases as the quantity of repeated measures 

increases, which could in turn inflate the ICC values [148].  

 The ICCs in this study ranged between r = 0.908 and 0.995 (Table 4.5) suggesting that 

there was considerably greater inter- vs. intra-subject variability. This suggests that there 

is a need for more individual–based healthcare approaches. While group (inter-subject) 

analyses are important, early detection of functional decline can only be operationalized 

via the assessment of individual (intra-subject) time-course trajectories, which are 

inherently self-referential. Individual time-series analyses of postural control would expose 

the natural dynamic patterns of an individual’s postural control system across time and may 

reveal pattern changes preceding or paralleling functional decline.  

 We also quantified SEM and MDC metrics for each postural sway measures to assess 

measure stability across the 30-day monitoring period (Table 4.5). The SEM value is 

beneficial as it provides an absolute index of reliability (as opposed to ICC, a relative 

reliability measure) and can be used to define the difference needed between a subject’s 

day-to-day postural sway for the difference to be considered real (MDC values) [145]. 

McGrath and colleagues discuss the value and limitations of these metrics given their 

current clinical application [138]: currently SEM and MDC values are derived from group 
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means and are used to identify when an individual has significantly deviated from the group 

mean. But since we, like McGrath, consider individual-based methods to be the most 

beneficial type of healthcare approach, more meaningful (SEM and MDC) metrics would 

be that derived from one subject (as opposed to one group) over time. 

 Our observed intra- (5-35%) and inter- (4-65%) subject variability in postural sway 

across time was less than that observed by McGrath (17-56% and 37-107% for intra- and 

inter-subject variability, respectively) (Table 4.6). Because our battery of objective 

postural sway measures is similar to McGrath’s, postural sway feature selection most likely 

does not account for this difference in results. The time course of our study was half the 

length of McGrath’s study (4 vs. 8 weeks) and our subjects were ~15 years older than in 

McGrath’s study (mid-late 80’s vs. early 70’s). A shorter monitoring period and older 

cohort may have contributed to the lower amount of observed intra- and inter-subject 

variability. Perhaps the day-to-day (week-to-week, month-to-month, etc.) variability in 

postural sway increases as the time scale increases. And perhaps our older cohort is less 

stable due to the age-related effects on postural control, which may be expressed by a 

reduced amount of day-to-day postural sway variability (a concept supported by the 

literature: too much or too little variability in a given function is an indication of functional 

decline [149]). Although we did not observe as much intra-subject variability as McGrath, 

we did observe some variability that characterizes the natural fluctuation in postural sway 

in older (mid-late 80’s) non-demented old adults. 

Neither the intra- nor inter-variability in postural sway was correlated with The Tinetti 

Balance Score (Pearson’s correlation coefficient, r < 0.50). Our findings support 

McGrath’s conclusion that the observed variation in postural sway (at least for our 10 intact 

subjects) are not necessarily “aberrant movement patterns, but are seemingly representative 

of natural movement variability,” which in turns motivates the use of postural sway 

variability as a sensitive biomarker for early motor and/or cognitive decline [138]. 

The unbiased autocovariance function was used to assess whether there were time-

dependent patterns such as linear trends or periodic variations in postural sway across days. 

There were no systematic changes in all five objective postural sway measures over the 

course of the 30-day monitoring period (illustrated by the group mean autocovariance value 
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approximately equaling zero for all time lags but zero – up to 7 days lag is shown in Figure 

4.9), suggesting that the postural sway in older adults both with and without MCI is a 

stationary process when bound by a relatively small time scale (e.g., one month). 

4.4.4. Postural Sway & Dual-Task Cost  

4.4.4.i. Weekly & Monthly Means 

 The group-specific postural sway trended towards separation with more postural sway 

associated with the intact group during both the single- and dual-task conditions (there 

were no group-specific trends observed in postural dual-task cost) when comparing the 

(daily (Figure 4.10) and weekly (Table 4.7)) means of postural sway between cognitive 

status groups. Furthermore, there were no linear relationships between postural sway 

(under either the single- or dual-task condition) and cognitive functioning (indexed by 

cognitive global z-scores) when analyzing across cognitive status groups. These findings 

do not support Hypothesis III since we predicted older adults with lower cognitive 

functioning (as in MCI) to have more postural sway. 

4.4.4.ii. Day-to-Day Variability 

 Only one (dual-task cost) measure differentiated the day-to-day variability in postural 

sway between cognitive status groups (Table 4.9). There was significantly higher day-to-

day variability in the dual-task cost in sway frequency (quantified by centroidal frequency, 

fC) in the MCI group compared to the intact group (Figure 4.11). This finding supports 

Hypothesis IV: more variability in postural dual-task cost (a specific motor function) was 

associated with MCI (a population that is in the initial stages of functional decline). Perhaps 

an older adult with intact cognitive functioning has a more consistent set-switching strategy 

when dual-tasking [150,151] (quantified by less day-to-day variability in postural dual-task 

cost) compared to an older adult with mildly impaired cognitive functioning. Studies have 

shown an age-effect on dual-task ability and set-switching strategy: older adults experience 

higher (cognitive) dual-task (switch) costs and are less able to switch cognitive strategies 

compared to younger adults [151]. It is likely that the age-effect on set-switching is 

exacerbated in the presence of cognitive impairment due to decreased cognitive flexibility, 
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which may be expressed by less consistent set-switching strategies across time (and 

quantified by more day-to-day variability in dual-task cost) in older adults with MCI. 

 The day-to-day variability in the four other dual-task cost measures and all five postural 

sway measures (from both the single- or dual-task conditions) did not differentiate between 

cognitive status groups. As mentioned in Chapter 1, this is the first study to quantify 

postural sway frequency in older adults with MCI. Results from this study suggest that 

postural sway frequency (specifically centroidal frequency) may be an important feature to 

quantify and track since it was the only measure to differentiate between the intact and 

MCI groups in this study. 

 Our findings associated with day-to-day variability were amplified when analyzing 

across our cognitive status groups, further supporting Hypothesis IV. There were linear 

relationships observed between postural sway variability and cognitive functioning: more 

variability in time-domain postural sway (indexed by sway distance (MD) and area 

(AREA)) and less variability in frequency-domain postural sway (indexed by centroidal 

sway frequency (fC)) was associated with lower cognitive functioning (indexed by lower 

cognitive global z-scores) (Figure 4.12).  

 Upon visual inspection of Figure 4.12, potential outliers are observed in the data. In 

two out of three of the time-domain plots (MD from the single-task condition (Figure 4.12, 

A) and AREA from the dual-task condition (Figure 4.12, D)), the subject with the lowest 

cognitive functioning (SubjID = 20, global z-score = -1.44, MCI status) had significantly 

more variability in time-domain postural sway across the 30-day monitoring period 

compared to the other 19 subjects. The negative linear relationships observed in Figure 

4.12 A & D did not hold after removing this subject from the datasets: for MD under the 

single-task condition, r = -0.17 and p = 0.481; for AREA under the dual-task condition, r = 

-0.12 and p = 0.618. In sum, the negative linear relationships observed in Figure 4.12 A & 

D were dependent upon the one subject with significantly more postural sway variability 

in MD and AREA. We are hesitant to consider this subject as an outlier though since this is 

the subject with the lowest cognitive functioning (quantified by the lowest cognitive global 

z-score) and, as discussed in Chapter 1, Section 1.1.8, increased variability in motor 

function has been observed during the initial stages of cognitive decline. Because both the 
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cognitive and postural control systems have been shown to demonstrate an initial period of 

increased variability during the depreciation of physiologic reserve [90], and because the 

clinical manifestations of postural decline have been shown to precede that of cognitive 

decline [91,92] (discussed in greater detail below in Chapter 5, Section 5.1.3), the postural 

profile expressed by this subject may in fact be indicative of his/her true cognitive state. 

To determine whether or not this subject is actually an outlier, a more extensive study must 

be conducted with a larger sample population consisting of a more diverse spread of 

cognitive functioning (i.e., subjects with more severe cognitive impairments must be tested 

as well to determine whether increased variability in time-domain postural sway is in fact 

related to lower cognitive functioning). 

 There were two potential outliers in the one frequency-domain plot in Figure 4.12 (plot 

B): two cognitively intact subjects (SubjID = 4, global z-score = 0.72; SubjID = 10, global 

z-score = 0.67) had significantly more variability in frequency-domain postural sway 

across the 30-day monitoring period compared to the other 18 subjects. The positive linear 

relationship between cognitive functioning and day-to-day variability in centroidal 

frequency (fC) was still present after removing the potential outliers from the dataset. In 

fact, the linear trend was stronger after removing these two intact subjects: r = 0.52 and p 

= 0.026. These results are promising: the positive linear relationship between cognitive 

functioning and sway frequency variability remained (and strengthened) after removing 

two potential outliers, 10% of the complete dataset. If this positive linear relationship holds 

with a larger, more (cognitively) diverse sample population, the variability in postural sway 

frequency may prove to be an important feature relating to cognitive functioning and 

decline in older adults. 

4.4.4.iii. Importance of Across-Group Analyses 

 Our findings would be limited if we were restricted to only between-group analyses. 

When simply analyzing between the two cognitive status groups, it appeared as though 

there was no effect of cognitive status on postural sway variability across the 30-day 

monitoring period. But when utilizing cognitive global z-scores to quantify cognitive 

functioning as opposed to just MCI status (i.e., spectrum vs. binary data), significant linear 

relationships between postural sway variability and cognitive functioning emerged. Using 
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a more descriptive measure of cognitive status (cognitive global z-scores vs. MCI 

status/diagnosis) appears to be important when studying the relationship between postural 

sway, the variability in postural sway across time, and cognition.  

4.4.5. Study Limitations 

4.4.5.i. MCI Recruitment 

 The number of OLL/ISAAC subjects classified as “MCI” during their most recent 

annual neuropsychological evaluation was reduced after implementing the more refined 

Jak/Bondi MCI diagnostic criteria. With a reduced number of MCI subjects available to 

us, we had to modify our MCI status definition in order to have enough MCI subjects for 

this study. Instead of only recruiting subjects classified as “MCI” in their most recent 

evaluation, we redefined our MCI status definition to include subjects who have had at 

least one MCI classification in the past, whether or not they were classified as “MCI” at 

their most recent evaluation. Note that MCI status at a given annual evaluation often 

transitions into or out of MCI, or even between MCI subtypes (from aMCI to naMCI and 

vice versa). This variability reflects the challenges associated with accurately classifying 

cognitive status based on a single evaluation, and in turn motivates the implementation of 

frequent assessments via longitudinal, in-home monitoring methods. As discussed in 

Chapter 1 and again above in this chapter, the variability in a given function (e.g., cognitive 

performance) increases with age and further during the initial stages of functional decline. 

Because of this, it is challenging to accurately define cognitive status during the initial 

stages of cognitive decline (i.e., MCI) via cross-sectional methods. 

 Our MCI recruitment pool was reduced from our cross-sectional to our longitudinal 

study due to two main reasons: 1. After implementing the new MCI algorithm, many 

OLL/ISAAC participants who were originally classified as “MCI” (using the 

Petersen/Winblad ADNI criteria) were now classified as “intact” (according to the new, 

more sensitive Jak/Bondi criteria); and, 2. Many of our MCI subjects from the cross-

sectional study (classified using the Petersen/Winblad ADNI criteria) were no longer 

interested in study participation by the time we began recruiting for our longitudinal study. 

[Studies have shown that as cognitive decline manifests in the older adult, she tends to 

withdraw from her usual activities of daily living which results in reduced activity levels 
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and social isolation [152]]. Our limited access to MCI subjects yielded a much smaller 

sample population than originally planned for, which in turn limited our statistical power. 

Because of this, we had to restrict the number of statistical analyses performed to preserve 

what limited statistical power we had. Even though we had domain-specific cognitive z-

scores for all 20 subjects, we did not present results from across-group analyses on postural 

sway and domain-specific cognitive functioning. If we were to report domain-specific 

functioning (detailed in Table 4.1) as possible factors, we would decrease the statistical 

power of our results six-fold (since there are six different cognitive domains). To assess 

potential associations between postural sway and domain-specific cognitive functioning, a 

much larger sample population is needed. [Postural sway and domain-specific cognitive 

functioning should be a research topic of great interest since domain-specific cognitive 

functions control posture and domain-specific cognitive dysfunctions have been associated 

with postural instability (as discussed in Chapter 3).] 

4.4.5.ii. In-Home Technological Setup 

 As discussed above in Section 4.3.2 and reported in Table 4.4, a significant amount of 

missing data was due to technological error (i.e., issues with our in-home technological 

setup and specifically with the tablet). The Nook tablet played an integral role in our 

experimental design: it served as the user-interface (running a custom-designed/built 

application that walked the subjects through the three-minute daily routine); it acquired 

and stored cognitive performance data input by our subjects; it retrieved CoP-based 

postural sway data acquired from the Nintendo WBB; and, it automatically transmitted all 

in-home data to ORCATECH’s data repository via a wireless internet connection 

immediately following data acquisition. Although the Nook tablet possessed all 

technological specifications required for the uses noted above, it proved to be an unreliable, 

unsustainable device in the field, becoming increasingly more unreliable/unsustainable as 

time passed. Detailed below are the main tablet-based issues encountered during the in-

home data acquisition period: 1. often, the tablet would spontaneously shut-down and 

would not reboot properly; 2. occasionally, the tablet would lose connectivity to its wireless 

internet network and would not reconnect automatically; and, 3. occasionally, the tablet 

would neither store nor transfer acquired data. These issues appeared to be non-systematic 
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and therefore could neither be reproduced nor fixed in the laboratory. Given the limited 

time and resources available to develop and support this in-home technology, we were 

restricted in our ability to improve the setup. Mainly, we had to focus on maintaining the 

current system and responding immediately when the tablet malfunctioned in order to 

preserve/achieve the best dataset possible. [It is important to note that these issues did not 

occur during the many months of testing prior to data acquisition – these issues occurred 

after the study began and increased in frequency as time passed.] 

 In theory, our in-home technological setup was fluid, efficient, and reliable and 

required a relatively limited amount of effort when integrating it into ORCATECH’s 

current in-home technological platform. In practice, our in-home technological setup 

proved to be unsustainable, unreliable, and dependent upon full-time monitoring and 

maintenance. As is, our technology is not suitable for future use. However, if one were to 

invest a sufficient amount of time and resources into technological development (i.e., more 

than what was allotted for the purpose of this PhD research) and were willing to dedicate 

more funds to the purchase of a (higher quality) tablet, we are confident that this in-home 

technological setup could be successfully developed, implemented and sustained on a 

large-scale. 

4.5. Conclusions 

 In-home monitoring of daily postural sway proved to be feasible. Objective postural 

sway measures were reliable when acquired daily for 30 days. Variability measures of 

postural sway were found to be related to cognitive functioning, with more variability in 

time-domain postural sway and less variability in frequency-domain postural sway 

associated with lower cognitive functioning. Analyzing postural sway across cognitive 

status groups proved to be of significance, suggesting that more descriptive measures of 

cognitive status (spectrum instead of binary data) are necessary to observe the relationship 

between postural instability and mild cognitive dysfunction. Our small pilot study 

conducted on a small time scale motivate the large-scale implementation of this research 

over a more extended period of time (e.g., months, years, and even decades). Tracking 

longitudinal changes in postural sway may further our understanding of early-stage motor 
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decline and its association with cognitive decline and may aid in the early detection of 

dementia during the preclinical stages. 
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CHAPTER 5: Conclusions & Future Direction 

5.1. Conclusions 

5.1.1. Summary of PhD Research Findings 

In Chapter 2, we conducted two validation studies in effort to fully characterize the 

WBB’s CoP measurement error and prepare for the use of the WBB as the sole CoP 

measurement device in our longitudinal, in-home study (Chapter 4). A “gold standard” 

laboratory-grade force plate was used as our ground truth in both validation studies. In 

Chapter 2, Part 1, we validated the WBB against the force plate using simulated, one-

dimensional postural sway signals produced by an inverted pendulum mechanical model. 

We observed a significant effect of sway amplitude, frequency, and direction on the WBB’s 

measurement error and propose a linear signal adjustment to calibrate the WBB-based CoP 

(CoPWBB) signals and help reduce CoP measurement error. A version of Chapter 2, Part 1 

was published in the journal Sensors on September 29, 2014 (ISSN 1424-8220). In Chapter 

2, Part 2, we validated the WBB against the force plate using real, two-dimensional 

postural sway signals produced by healthy young adults. We observed far less CoP 

measurement error with real, biomedical signals. We proposed an alternative linear signal 

adjustment based on human postural sway to better fit the CoPWBB signals. We then 

compared our calibrated CoPWBB signals produced by our two linear calibration procedures 

to the uncalibrated CoPWBB signals and determined that, despite the effort invested in 

calibration, the uncalibrated CoPWBB signals contained less measurement error and best 

represented human postural sway.  

In Chapter 3, we conducted a cross-sectional study on postural sway, postural dual-

task cost, and MCI. We used a body-worn inertial sensor to characterize the associations 

between cognitive status (intact vs. MCI) and postural control in older adults during quiet 

stance both with (dual-task) and without (single-task) cognitive loading. We found 

objective Acc-based measures of postural sway to differentiate between cognitive status 

groups. Both measures of postural sway (extracted from the single-task condition) and 

postural dual-task costs (extracted from the dual-task conditions) separated the MCI from 

the intact group. Our cross-sectional findings suggested that quantifying postural sway 
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under the dual-task condition may help differentiate postural sway in older adults with MCI 

from cognitively intact older adults.  

 In Chapter 4, we conducted a longitudinal, in-home study of postural sway in MCI 

within the ORCATECH framework. We integrated a Nintendo WBB and a Nook tablet 

into ORCATECH’s current technological platform to administer cognitive tasks and 

extract objective measures of postural sway and postural dual-task cost. We monitored both 

cognitively intact and mildly cognitively impaired older adults daily for 30 days. We used 

the uncalibrated CoPWBB signals to provide daily estimates of postural control. We 

determined daily, in-home monitoring of postural sway and cognitive dual-tasking in an 

older adult population with MCI to be feasible within our cohort. We determined objective 

postural sway measures to be reliable across 30 days. And, we characterized the association 

between mean and variability measures of postural sway and cognitive functioning. We 

found time-domain postural sway variability to be higher and frequency-domain postural 

sway to be lower in older adults who tested lower in cognitive functioning. Our findings 

suggested that changes in postural sway variability across time may serve as a sensitive 

biomarker for early cognitive decline. 

5.1.2. Comparison of our Cross-Sectional vs. Longitudinal Studies 

5.1.2.i. Different Findings: Postural Sway Dual-Task Costs 

 Our findings from our cross-sectional study of postural sway, dual-tasking and MCI 

(Chapter 3) were not supported by our longitudinal analysis (in Chapter 4). Postural dual-

task costs did not consistently separate the MCI group from the intact group longitudinally. 

Furthermore, postural dual-task costs were positive in value in our cross-sectional study 

and negative in value in our longitudinal study in both the intact and MCI groups. Cognitive 

task/response-type and experimental setup may help explain our inconsistent postural dual-

task cost results. 

 Both the cognitive task and task response-type differed between our cross-sectional and 

longitudinal studies. All three cognitive dual-tasks from our cross-sectional study were 

designed to tax specific cognitive domains (1. attention; 2. long-term memory; and 3. 

executive function; Tables 3.2-3) and had verbal responses. The cognitive dual-task in our 

longitudinal study (the word search puzzle) was predominantly a visuospatial and working 
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memory-based task (as discussed in Chapter 4) with a nonverbal response. Because 

articulation provokes changes in the respiratory pattern and has been shown to increase 

postural sway (quantified by a positive postural dual-task cost) [75,147], the difference in 

task response-type alone could help explain the difference between our cross-sectional and 

longitudinal findings. Studies have shown postural sway to increase with the addition of 

verbal mental tasks [153,154] and decrease with the addition of nonverbal mental tasks 

[130,155]. Furthermore, other studies have shown that mental tasks with visuospatial and 

working memory components (as in the word search puzzle from our longitudinal study) 

have less of an influence on postural sway compared to other mental tasks (e.g., verbal 

fluency- and serial subtraction-based tasks, similar to the cognitive dual-tasks from our 

cross-sectional study) [156]. Therefore, the differences in both cognitive task and task 

response-type may explain why there were positive postural dual-task costs in our cross-

sectional study (quantified by both time- and frequency-domain measures, Table 3.7) and 

negative postural dual-task costs in our longitudinal study (quantified by time-domain 

frequency measures, Table 4.7). 

 Another contributing factor to our inconsistent results may be the difference in 

experimental setup between our cross-sectional and longitudinal studies. In our cross-

sectional study, our subjects were simply instructed to stand quietly while looking straight 

ahead during the single-task condition. All objects within our subjects’ field of vision were 

stationary, so the amount of visual fixation/focus was likely less than if there was a moving 

object within the subjects’ field of vision (as in our longitudinal study). During the single-

task condition in our longitudinal study, our subjects followed the same procedure – they 

stood quietly while looking straight ahead. This condition was different though since by 

looking straight ahead, the subjects were visually fixated on the tablet’s screen (since the 

tablet was mounted on the wall at eye-level height). A progress bar was displayed on the 

screen to mark time. Because the progress bar tracked real time, and because real time is 

continuous, there was a constantly-moving object within the subjects’ field of vision 

throughout the entire duration of the single-task condition. Visual tracking is a cognitive 

task and has been shown to influence postural sway [74], so it is possible that our single-

task condition for our longitudinal, in-home study was not in fact a single-task condition. 
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It is likely that there was less of a change in postural sway between our “single-“ and dual-

task conditions in our in-home study since our baseline measures were not actually 

baseline. For future studies, the user-interface must be modified so all objects visible to the 

subject during the quiet stance condition remain stationary. This flaw in our experimental 

setup could help explain the differences in our results regarding postural dual-task costs. 

 In our longitudinal study, the weekly means of postural dual-task cost were negative in 

value in both the intact and MCI groups (quantified by our time-domain postural sway 

measures in Table 4.7, C), meaning that our time-domain postural sway measures 

decreased in the presence of the cognitive dual-task. Although we anticipated postural dual-

task costs to be positive in our longitudinal study (in line with our cross-sectional results), 

we were not alarmed by this finding. As detailed in Chapter 1, the direction (i.e., positive 

vs. negative) of postural dual-task cost depends on several features, including the cohort 

characteristics (i.e., healthy young adults vs. healthy old adults vs. impaired adults (e.g., 

PD, AD, MCI, cerebellar disorders, etc.)), the primary postural task type (e.g., simple quiet 

stance vs. quiet stance with augmented somatosensory, visual, and/or vestibular inputs, as 

in Jacobi et al. [61]), the secondary cognitive task type (i.e., designed to tax global vs. 

domain-specific cognitive functioning), the cognitive task response type (e.g., verbal vs. 

nonverbal), as well as the postural sway outcome measures (e.g., time- vs. frequency-

domain measures, mean vs. variance measures, etc.). In sum, because many important 

factors contribute to the directional effect of a cognitive task on postural sway and because 

many of these factors differ between our cross-sectional and longitudinal studies, the 

determination of the exact causes of the inconsistency between our cross-sectional and 

longitudinal findings on postural dual-task costs would require additional research. 

5.1.2.ii. Different Methods: Postural Sway Measurement Device 

 As discussed in Chapter 1, Postural sway was quantified by either the movement of the 

body’s center of pressure (CoP) or the acceleration (Acc) of the body’s CoM. Currently, 

both CoP- and Acc-based measurement devices are used to quantify postural sway. Acc-

based measures have been validated against the “gold standard” CoP-based measures 

(acquired from a laboratory-grade force plate) as accurate and reliable measures of postural 

sway during quiet stance [58,59]. Because Acc- and CoP-based measures are strongly 
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correlated, Acc-based measurement devices are often used in place of the force plate 

because body-worn inertial sensors are practical, inexpensive, unobtrusive and can easily 

be used in the small clinic and/or home environment [37].  

 We used a body-worn inertial sensor (an Acc-based measurement device) to quantify 

postural sway in our cross-sectional study (Chapter 3) because we had not yet completed 

our validation of the Nintendo WBB. After quantifying the WBB’s CoP measurement error 

and determining it an appropriate CoP-based measurement device for the purpose of this 

PhD research (detailed in our two validation studies, Chapter 2), we used the WBB to 

quantify postural sway in our longitudinal study (Chapter 4). Postural sway feature 

selection for our longitudinal study was driven by our desire to compare our results from 

Chapter 4 to results from Chapter 3. In Chapter 3, we derived total sway path length, mean 

sway velocity, normalized sway jerk, and centroidal sway frequency from the Acc-based 

postural sway signals. In Chapter 4, we also derived mean sway velocity and centroidal 

sway frequency from the CoP-based postural sway signals. Total sway path length however 

was not included in Chapter 4 because the CoP-based derivation for total sway path length 

is simply a function of mean sway velocity and the duration of the trial [35]. Mean sway 

distance was used instead and served as the distance measure in Chapter 4. Normalized 

sway jerk also was not included in Chapter 4 because jerk (the first derivative of 

acceleration, the third derivative of position) lacks precision when derived from CoP-based 

signals. Sway area and sway frequency dispersion were included in Chapter 4 for reasons 

detailed in Section 4.2.5.ii.  

 In summary, three different postural sway measures (sway distance, velocity, and 

frequency) can be compared between Chapter 3 and Chapter 4. So although our postural 

sway signal acquisition methods differ between our cross-sectional and longitudinal 

studies, we can still compare our results and do not attribute our inconsistent findings to 

the change in postural sway measurement device type (CoP vs. Acc). 

5.1.2.iii. Significant Postural Sway Measures 

 In our cross-sectional study (Chapter 3), normalized sway jerk and centroidal sway 

frequency were higher in the MCI group compared to the intact group during the single-

task condition. Furthermore, the postural dual-task costs in sway path length, normalized 



152 

 

sway jerk, and centroidal sway frequency were lower in the MCI group compared to the 

intact group during the dual-task conditions. There was no significant difference in mean 

sway velocity between the intact and MCI groups during both the single- and dual-task 

conditions. 

 In our longitudinal study (Chapter 4), the day-to-day variability in centroidal sway 

frequency cost (i.e., the postural dual-task cost in centroidal sway frequency) was higher 

in the MCI group compared to the intact group. Furthermore, more day-to-day variability 

in mean sway distance and sway area and less day-to-day variability in centroidal sway 

frequency was related to lower cognitive functioning (indexed by cognitive global z-

scores). There was no significant difference in monthly mean postural sway measures 

between the intact and MCI groups and there were no linear relationships between mean 

postural sway measures and cognitive functioning during both the single- and dual-task 

conditions. In sum, variability-based postural sway measures appear to be more significant 

than mean-based postural sway measures when studying the relationship between postural 

sway and cognitive status/functioning across time within our small sample of 20 older 

adults. 

 As discussed above in Section 5.1.2.i, the significance of postural dual-task costs (in 

both the time- and frequency-domain) and MCI in our cross-sectional study (Chapter 3) 

did not hold longitudinally (Chapter 4). Although our results from Chapter 3 were not 

confirmed in Chapter 4, examining both time- and frequency-domain sway measures 

proved to be significant in both studies. Specifically, sway distance (either sway path length 

(Chapter 3) or mean sway distance (Chapter 4)), sway area (Chapter 4), and centroidal 

sway frequency (both Chapters 3 & 4) may be the best metrics to use when studying the 

potential relationship between postural sway (and postural sway variability) and cognitive 

status/functioning in the older old (i.e., 80’s – 90’s) adult population. 

 It is important to note that our longitudinal study in Chapter 4 served as an exploratory 

research pilot study – we had a large number of hypotheses, we ran many statistical models, 

and we had a small sample population. Because of this, we did not adjust our p-values 

when determining statistical significance for our postural sway measures. In turn, the 

conclusions drawn from our longitudinal results in Chapter 4 should be received with 
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caution. Further research with a larger sample population is necessary before strong 

conclusions can be drawn. 

 If we were to account for multiple comparisons with a Bonferroni correction in Chapter 

4, we would have had to divide our p-value of 0.05 by 15 [5 postural sway measures (mean 

sway distance, mean sway velocity, mean sway area, centroidal sway frequency, and 

frequency dispersion) × 3 measure types (single-task condition, dual-task condition, and 

dual-task cost)], resulting in a significant p-value of < 0.003. We ran power calculations to 

determine the sample sizes necessary to achieve statistical significance with adjusted p-

values: in Chapter 4, Section 4.3.6.i (our between-group analysis, Table 4.9), a sample 

population of at least 54 (27 in both the intact and MCI groups) would be necessary to 

observe the group difference in postural dual-task cost illustrated in Figure 4.11; in 

Chapter 4, Section 4.3.6.ii (our across-group analysis, Table 4.10), a sample population of 

at least 56 would be necessary to observe the relationships between postural sway 

variability and cognitive functioning illustrated in Figure 4.12 (a balanced sample of intact 

and MCI subjects would be recommended to emulate this cohort). All power calculations 

were performed in G*Power 3.1 [157,158] with a p-value set to 0.003 and power set to 

80%. In sum, a sample population of at least 56 would be necessary to achieve statistically 

significant results with Bonferroni-corrected p-values. 

5.1.2.iv. Is the Cognitive Load Necessary? 

Since we found the day-to-day variability in postural sway to be associated with 

cognitive functioning under both the single- and dual-task condition, and because there was 

no effect of cognitive status on postural dual-task cost in Chapter 4 (unlike our cross-

sectional findings in Chapter 3), an added cognitive load may not be necessary to 

differentiate between cognitively intact and mildly cognitively impaired older adults. 

Removing the cognitive dual-task would simplify the experimental design and in turn 

reduce the amount of time and resources necessary for in-home monitoring of postural 

sway. But before removing the cognitive dual-task entirely, one must first determine 

whether or not there was a real difference (quantified by an effect on postural sway) 

between our single-task condition in our cross-sectional study (simple quiet stance with no 

added cognitive distraction; i.e., actual baseline measure of postural sway) and that in our 
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longitudinal study (quiet stance with a potential added cognitive distraction of visual 

tracking as the progress bar crossed the screen of the tablet; i.e., may not actually be a 

baseline measure of postural sway). If the “single”-task condition in our longitudinal study 

is shown to influence postural sway (compared to the true baseline measure in our cross-

sectional study), then our longitudinal findings would actually be dependent upon cognitive 

dual-tasking. Additional research is necessary before we can determine whether or not a 

cognitive dual-task is necessary to differentiate between cognitive status groups based on 

daily postural sway. 

5.1.3. Comparison of our Longitudinal Findings to the Longitudinal Patterns of other 

Motor Measures within the ORCATECH Cohort 

 The variability in time-domain postural sway was higher in older adults who tested 

lower in cognitive functioning when analyzing across cognitive status groups. These 

findings are consistent with the literature (discussed previously in Chapters 1 & 4) and 

couple well with findings from other ORCATECH studies.  

 Dodge et al. found in-home gait speeds and variability trajectories to be associated with 

MCI. Within the framework of ORCATECH’s in-home technological platform, we have 

continuously monitored gait speed for years (the assessment of gait speed and its data 

validation process are described elsewhere in [159,160]). Dodge and colleagues analyzed 

weekly means of in-home gait speeds in both cognitively intact and mildly cognitively 

impaired older adults. The weekly means and week-to-week variability in gait speed was 

assessed over the course of 182 weeks, or 3.5 years. Latent class trajectory models were 

used to compare the trajectories of gait speed means and variability between cognitive 

status groups. Dodge et al. found distinct time-course trajectories to be associated with 

both early and late-stage MCI. They found slower weekly mean gait speeds to be associated 

with MCI status. They also found higher and lower gait speed variability associated with 

early and late MCI disease state, respectively. Over the course of the 182-week monitoring 

period, the early-stage MCI group experienced an increase in gait speed variability, 

followed elevated variability for some time, followed by an accelerated decrease in 

variability (a pattern similar to the model shown in Figure 1.4 in Chapter 1). The late-

stage MCI group sustained less gait speed variability over the course of 182 weeks 



155 

 

(compared to both the intact and early-stage MCI group). In sum, the MCI groups had 

distinct time-course trajectories when assessing both the mean and variability of gait speed 

(a specified motor function measure) on a relatively large time scale [91].  

 Buracchio et al. conducted a similar analysis on an even larger time scale: up to 20 

years. The rate of change in both gait and finger-tapping speed (two motor function 

measures) were significantly different between subjects who developed MCI (converters) 

and those who did not (nonconverters). Motor decline as indexed by tapping speed 

accelerated after the clinical onset of MCI. Motor decline as indexed by gait speed 

accelerated up to 12 years before the clinical onset of MCI and in turn predicted MCI 

conversion. Buracchio and colleagues concluded that “longitudinal changes in motor 

function may be useful in the early detection of dementia during preclinical stages when 

the utility of disease-modifying therapies would be greatest” [92]. 

 Because our longitudinal analysis of postural sway (another motor function measure) 

was performed on a much smaller time scale, we did not expect the “longitudinal” changes 

in motor function to be indicative of cognitive functioning. We did, however, predict means 

and/or variability in postural sway to relate to cognitive functioning. Over the course of 

our short 30-day, or 4-week, monitoring period we found both mean and variability 

measures of postural sway to be higher in older adults who tested lower in cognitive 

functioning. Our findings suggest that monitoring the longitudinal patterns of postural 

sway over the course of a more extended period of time (e.g., months, years, and even 

decades) may be of great importance.  

 Objective measures of postural sway are more descriptive than mean gait speed (and 

other common clinical motor measures such as finger tapping speed) and may enable a 

more sophisticated analysis of motor (and specifically, postural) control/decline during the 

preclinical stages of dementia. As discussed in Chapter 1, postural control is a complex 

motor skill derived from the integration of several neural components including cognitive 

processing [2]. Maintaining postural stability is a higher-level cognitive process that relies 

on an intact cerebellum and cortical control [116,161,162]. The interrelationship between 

cognitive deficits and postural instabilities have been attributed to specific brain networks 

such as the prefrontoparietal and cingulate areas [163,164]. So by fully characterizing 
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postural sway (i.e., static postural control) via quantitative time- and frequency-domain 

measures, one may be able to make stronger inferences about cognitive status and mobility 

(dis)ability [3] compared to simply acquiring a mean measure such as gait speed since 

different motor-related brain regions may control distinct aspects of movement (i.e. speed 

vs. balance) [164-166]. Tracking longitudinal changes in postural sway may further our 

understanding of early-stage motor decline and its association with cognitive decline.   

5.2. Future Direction  

5.2.1. Large-Scale Implementation  

As detailed in Chapter 4, Section 4.4.5.ii, our current in-home technological setup is 

unreliable, unsustainable, and not yet suitable for future use. All of our technological issues 

were attributed to the Nook tablet, a relatively inexpensive, low quality device. If one were 

to invest a sufficient amount of time and resources into technological development (i.e., 

more than what was allotted for the purpose of this PhD research) and were willing to 

dedicate more funds to the purchase of a (higher quality) tablet, we are confident that this 

in-home technological setup could be successfully developed, implemented and sustained 

on a large-scale.  

 As eloquently stated by Hayes et al. [167], large-scale research deployment of in-home 

monitoring is an impressive feat with great potential to facilitate the study of both healthy 

aging and disease-related processes. This PhD research determined longitudinal 

monitoring of postural sway feasible within the in-home environment and laid the 

foundation for large-scale implementation. Since we found the day-to-day variability in 

postural sway to be associated with cognitive functioning under both the single- and dual-

task condition, and because there was not a significant effect of cognitive status on postural 

dual-task cost, an added cognitive load may not be necessary to differentiate between 

cognitively intact and mildly cognitively impaired older adults. Simply integrating a WBB 

into ORCATECH’s current technological platform would enable daily extraction of 

meaningful postural sway measures. Keeping the cognitive dual-task feature may be of 

interest though since studies have shown that dual-task training reduces the impact of 

cognitive distractions on postural sway in older adults [94], and substantial gains after dual-
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task training are sustained even with new task combinations involving new stimuli [95]: 

these findings suggest that dual-task skills can be substantially improved in older adults 

and that cognitive plasticity in attentional control is attainable even in old age [95]. So by 

simply installing our system (after making the necessary technological improvements 

detailed above in Section 5.1.2.vi), we could easily implement a dual-task training program 

to help improve and/or sustain dual-task skills in older adults, which in turn may directly 

aid in fall prevention. Relatively little time, effort, and resources would be required to 

implement this system in all homes outfitted with ORCATECH equipment and supported 

by ORCATECH researchers and staff. A significant amount of gain could be acquired with 

little additional work and financial support. 

5.2.2. Conclusions  

 Tracking longitudinal changes in postural sway may further our understanding of early-

stage postural decline and its association with cognitive decline and may aid in the early 

detection of dementia during the preclinical stages. Early detection may also yield the 

development and implementation of therapeutic interventions [49,96]. Timely intervention 

is integral because treatment during the initial stages of disease state (e.g., MCI) may 

prevent subsequent neurodegeneration and progressive motor and/or cognitive decline 

(e.g., progression to dementia).  
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