
School of Medicine


Oregon Health & Science University


Certificate of Approval 

This is to certify that the Master’s Thesis of


Benjamin A. Cordier 

“Evaluation of Background Prediction for Variant Detection in a 
Clinical Context: Towards Improved NGS Monitoring of Minimal 

Residual Disease in Hematological Malignancies” 

Has been approved


_________________________________________

Thesis Advisor 


_________________________________________

Committee Member 


_________________________________________

Committee Member 


_________________________________________

Committee Member 


_________________________________________

Committee Member 


_________________________________________

Committee Member 




I would like to give my thanks and gratitude to Dr. Shannon McWeeney (Thesis Mentor, 
Committee Chair) for her invaluable guidance, gentle nudging, and patience – this 
project would in no way have been possible without her; Dr. Christina Zheng 
(Committee Member) for lending her depth of knowledge on genomics data 
processing, managing the GATK pipeline, and aid in the experimental design; Dr. Beth 
Wilmot (Committee Member) for helping guide the problem formulation with probing 
questions; Dr. Richard Press (Committee Member) for his insight into the clinical 
context, practical considerations, and providing much of the original inspiration for this 
research; and Dr. Guanming Wu (Committee Member) for his early support and 
guidance throughout the project. I would also like to acknowledge my family – their 
chorus of support provided much needed motivation during some of the most 
challenging moments, and Molly, whose positivity helped reframe many seemingly 
insurmountable mountains into piddly hillocks. 

�2



Table of Contents 

1.   Abstract 

2.  Background 

	 2.1 Next Generation Sequencing for Monitoring of Minimal Residual Disease


	 2.2 Contemporary Challenges to Somatic Low frequency variant Detection


	 2.3 Software Approaches to Modeling Background Error


	 2.4 The GATK Variant Calling Pipeline


	 2.5 Research Question


3.  Methods 

	 3.1 Selection of Background Error Models


	 3.2 Overview of Computational Pipeline Module Evaluation System Prototype


	 3.3 Experimental Conditions


	 3.4 Synthetic Whole Genome Sequencing Data


	 3.5 General Pipeline Implementation


	 3.6 VCF Analysis


4.  Results


	 4.1 General Performance Evaluation by Condition


	 4.2 Optimal Sensitivity-Specificity Threshold Analysis


	 4.3 Performance Evaluation by Condition for Detection of Low Frequency Variants 

5.  Discussion 

5.1 BQSR and Background Error Model Performance 

5.2 Best Practices & in silico Experimental Design


�3



	 5.3 Recommendations for Bioinformatics Software Development & Distribution 

6.   Limitations & Future Directions 

	 6.1 Synthetic Data Intended Use & Limitations


	 6.2 Ultra Deep Sequencing Fixed Dilution Series


7.  Reference 

8. Supplemental


	 8.1 Interleaved Paired-End Shuffling Algorithm


	 8.2 Evaluated Background Error Models 

9. Addendum 

�4



1. Abstract 

With the growing value of next generation sequencing (NGS) assays for the determination of 
minimal residual disease (MRD) in the clinic, the confident and sensitive detection of low 
frequency variants is crucial to the treatment of cancer. Current in silico pipelines often lack the 
sensitivity to detect low frequency variants, whose variant allele frequencies (VAFs) covary with 
sample purity (i.e. tumor-normal and/or normal-tumor contamination), sample clonality, and 
copy number variations. Sensitivity is also confounded by the background error inherent to 
sequencing data, which may be introduced by systematic platform error, library amplification, 
and errors in sample preparation. Attempting to mitigate background error in sequencing data, 
researchers have developed many software error correction programs that model sources of 
error to mitigate its impact on downstream processing. While these models have been 
developed for de novo assembly, metagenomics research, and viral haplotype reconstruction, 
their application to the use case of low frequency variant detection has yet to be explored in-
depth. For this research, we sought to develop a software framework for the evaluation of 
background error models in the low frequency variant use case, with a specific focus on their 
potential value to MRD monitoring. 
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2. Background 

2.1 Next Generation Sequencing for Monitoring of Minimal Residual Disease 

The sensitive detection of minimal residual disease (MRD), defined as the post-therapy disease 
burden, by next generation sequencing (NGS) represents a valuable prognostic tool when 
aiming to treat hematological malignancies with precision medicine strategies. Current research 
has found that high sensitivity measurements of MRD are predictive of clinical outcome [1], 
may be used to guide additional therapeutic interventions [1-2], allow for more granular risk 
stratification [2], improve the administration of precision therapies [2], and are highly valuable 
for prognostic assessments [3]. A notable example regarding the treatment of acute myleloid 
leukemia (AML) crystallizes the importance of MRD, where it has been asserted that, looking to 
the future, regular quantification of AML with NGS-based assays will be as important in 
determining a precision medicine treatment strategy as the determination of the disease 
subtype [4]. While this assertion may be especially true for AML, there is little reason to believe 
that the knowledge gained from repeated MRD assays would not benefit the standard of care 
for most, if not all, hematological malignancies. Owing to the early successes and potential 
future, interest has grown significantly around the use of NGS for the sensitive measurement of 
MRD – a problem domain that is characterized by somatic low frequency variation.


2.2 Contemporary Challenges to Somatic Low Frequency Variant Detection 

The growing importance of NGS-based MRD assays emphasizes an existing need for 
accurate, sensitive methods for the detection of somatic low frequency variants. Currently, their 
detection is largely made challenging by three confounding factors. The first two arise from the 
cancer itself – the presence of multiple subclones in a sample (clonality) and the presence of 
copy number variations (CNVs), which includes both local CNVs and aneuploidy. The third 
confounding factor is the reduction of sample purity due to normal cell contamination [6].  The 1

impact of the former two dynamics, in comparison to the latter, differs in the challenges they 
present. While reduced sample purity from contamination of normal tissue in a tumor sample is 
expected to result in a global reduction in variant allele frequencies (VAFs) [7-10], the clonal 
structure of a cancer and resident copy number variations may conspire to yield highly 
variable, low VAFs [11]. Combined, these three covariates of VAF form a complex problem 
space for variant detection and, in particular, low frequency variants; defined as variants with 

 A similar, additional concern when analyzing tumor data with a paired normal is contamination of the 1

tumor in the normal sample, however, this has been deemed outside the scope of the current iteration of 
this research.
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an allele frequency of less than of equal to 5% VAF. However, this enumeration merely 
represents the primary biological components of the somatic low-frequency variant detection 
problem. 


Other technical artifacts from sample processing and the selected NGS platform may also 
confound analyses. Library amplification with PCR, required by some NGS sequencing 
platforms (e.g. Illumina), can induce a reduction in the coverage of genomic regions enriched 
with G and C bases, known as GC content bias [12-14]. Systematic base-call errors, which 
include substitutions, insertion-deletions (indels), and homopolymer errors are also common 
across NGS sequencing data, with error rates varying not only by error type, but also by 
organism and platform [14-15]. Fortunately, the former has been found to be unimodal and 
amenable to comparatively simple modeling [13]. Less fortunately, the complexity of platform 
base call errors and their provenance enables no easy solution, even with the integration of 
large amounts of prior knowledge (e.g. platform, organism, error specific profiles, and/or other 
assumptions) [15]. This complexity, however, has not precluded the development of software to 
account for these errors within prescribed contexts.


2.3 Software Approaches to Modeling Background Error 

Indeed, much software has been developed for the modeling of platform error and background 
‘noise’ in sequencing data. While early examples were largely written for the de novo assembly 
use case (where error correction is critical to the genesis of accurate assemblies) and were 
often relatively rudimentary (e.g. failing to incorporate important Phred quality scores in to their 
models) [15], more recent examples have been designed for the reconstruction of viral 
haplotypes and complex genomes [16-20], the correction of long read NGS data (i.e. produced 
by either the Pacific Bioscience or Oxford Nanopore platforms) using short read NGS data (e.g. 
Illumina, Ion Torrent) [21-25], and applications with non-uniform coverage (e.g. single-cell 
sequencing and RNA-seq) [18, 26-32]. In addition to models designed primarily for a biological 
use case, a number of error models have been designed for specific platforms, with developers 
making consideration for the systematic base-call errors that a given platform tends to produce 
(this is especially true for 454 pyro sequencing) [18, 21-35, 28, 32-36]. Of specific interest to 
this research is the Illumina platform, which is largely characterized by substitution errors [15].


While many of these models have proven indispensable across a number of problem domains, 
error correction software designed with the aim of effectively targeting somatic low frequency 
variants and separating them from background error has yet to be developed. This gap may 
have much to do with the aforementioned biological challenges involved with the confident 
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detection of low frequency variants or, alternatively, the relatively novel use case. Nonetheless, 
it is possible that a number of existing models may yield a basic solution with the capacity to 
server as a guide for the development of a novel error model optimized for their detection; in 
this respect, models that have been developed for the study of complex genomes are of 
particular interest. However, questions regarding the extent to which the introduction of 
(additional) background error modeling software into already complex variant calling pipelines 
may influence downstream processing exist. 


Almost all error correction occurs very early in the data processing pipeline, which may have 
negative effects on the performance of downstream pipeline procedures. With out a doubt, any 
successful adoption of such software into an existing variant calling pipeline will require, at the 
least, careful consideration of the parameterization of these other modules and extensive 
benchmarking. In regard of the need for improved low frequency variant detection, the existing 
variant detection pipelines, and current error correction software, a sensible first step may be 
to devise a way to systematically benchmark existing error models within the context of a 
contemporary variant calling pipeline. The aims of this approach would be two-fold: First, to 
ascertain the effect of existing error correction software on the calling of low frequency 
variants, and second, to understand to what degree existing error models may help guide the 
development of a novel error model designed principally for the low frequency variant detection 
use case.


2.4 The GATK Variant Calling Pipeline 

The Genome Analysis Toolkit (GATK) is the dominant variant calling pipeline in contemporary 
genomics [38-39]. Much of the original development of the software behind the GATK pipeline 
was pursued as part of the 1000 Genomes Project, a landmark study in the field of population 
genetics [40-42]. As a result, the software consists of multiple software modules that have 
been designed primarily for the detection of germline variants from whole genome and whole 
exome sequencing (WGS and WES) data produced by the Illumina platform.


More recently, the development of a somatic variant caller, MuTect (and subsequently MuTect 
2, currently in active development and available for beta testing) in conjunction with ContEst, a 
module to estimate sample cross-contamination, has expanded the scope of the GATK 
pipeline into the realm of somatic variant detection [43-44]. Despite this expansion in scope, 
the continued inclusion of modules upstream from MuTect in the GATK somatic best practices 
for WGS and WES sequencing is worth examining. This is due to the immediately apparent 
differences between the use case that these modules were originally developed for and the 
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novel use case enabled by the MuTect family of variant callers; i.e. population-level 
characterization of high-confidence germline polymorphisms versus the detection of somatic 
single nucleotide variants (SNVs) of an individual’s cancer. Implicit in the latter use case are low 
frequency variants, however, the focus of the GATK on the detection of high-confidence 
variants during the development may represent technical debt that must be accounted for if we 
are to progress further towards the confident detection of low frequency variants.


In this respect, of primary interest is the GATKs’ Base Quality Score Recalibration module 
(BQSR). This software module seeks to improve the Phred quality scores of sequencing data 
by targeting mismatching base calls that do not appear in the reference of one or more user-
provided database files (e.g. VCFs from dbSNP [45] and 1000 Genomes [40-42]) and then 
modeling known covariates of read group and base quality, such as dinucleotide context, 
machine cycle, and lane. The modification of base quality scores is done with the intention of 
improving the performance of down stream analyses (e.g. variant calling), however, there are a 
number of concerns regarding the retention of the BQSR module in a low frequency variant 
pipeline. For example, it has been found that the BQSR module may compromise detection of 
de novo variants by reducing their base quality scores [46] and that the module may also 
reduce sensitivity in regions of high divergence (in the cited research, HLA) with little to no 
improvement in precision [47]. Furthermore, platform base calling algorithms have improved 
since the introduction of the BQSR module in 2011, potentially obviating its use entirely [48]. 
Given the questions surrounding the rationale of using the BQSR module for the detection of 
low frequency variants and its use outside of the limited, ‘best practice’ use cases, it is worth 
examining further whether the BQSR module should be included in variant detection pipelines 
that target low frequency variants – especially if we are to explore the inclusion of additional 
error modeling software. 


2.5 Research Questions 

The confident, sensitive detection of MRD represents a powerful motivation for the pursuit of 
methodological improvements to the challenging problem of low frequency variant detection. In 
consideration of the potential of background error modeling approaches to separate true low 
frequency variation from the background error inherent to sequencing data, in addition to the 
anticipated challenges in the application of the GATK pipeline (and particularly the BQSR 
module) to the task of low frequency variant detection, the focus of this research was to 
answer the following questions. 
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• Is the BQSR module diminishing the ability of the GATK pipeline to detect low frequency 
variants? 


• Can existing error correction software be leveraged to accurately model background error in 
somatic sequencing data within the context of the GATK pipeline (with or without BQSR), 
potentially enabling the sensitive detection of somatic low frequency variants? 


• Assuming the optimal error correction software for somatic low frequency variant detection 
does not already exist, can the evaluation of existing models serve as a guide towards the 
development of a novel model designed for their detection?


3. Methods


3.1 Selection of Background Error Models


To answer these research questions, journal articles for 61 background error models or parent 
software suites were culled from a current review of error models for sequencing data [15], in 
addition to literature covering research on error models for application to cancer genomics, 
metagenomics & single-cell sequencing, de novo assembly, and population genomics. A set of 
exclusion criteria was developed with the aim of evaluating each model in a principled way. In 
terms of biology, only one exclusion criterion was defined; that the model should make no 
known haploid/diploid assumption(s) in order to maintain theoretical compatibility with the 
somatic low frequency variant use case. Other exclusion criteria rested largely on technical 
feasibility, which eliminated the majority of models from consideration. The model should:


• Be compatible with modern Illumina and/or Ion Torrent NGS short-read platforms


• Be compatible with a Unix-based operating system


• Be able to receive input of either BAM, SAM, FASTQ, or FASTA/QUALA file formats


• Output either BAM, SAM, FASTQ, or FASTA/QUALA corrected file formats


• Expose a functional API through the command line (i.e. be CLI-accessible)


• Compile correctly with available compilers (GCC 4.8.2 or GCC 5.3.0)


• Have clear, fit to purpose documentation


• Have compatible dependencies that can feasibly be installed
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• Have relatively simple usage & setup (e.g. minimal pre or post-processing required, a single 
error correction step)


• Be licensed under an open-source license


An evaluation of model properties, as available, is presented in Table 8.2 (Supplemental). 
Ultimately, three background error models were implemented for the described iteration of this 
study; BFC, Lighter, and Bloocoo [49-52]. Given a compressed timeframe, their selection for 
this evaluation rested largely on feasibility – each of these error models provides adequate 
documentation, was able to be compiled with relative ease on the target system, and 
implements one or more Bloom filter data structures to maximize time-space efficiency [53]. 
Two additional models, Quorum and BayesHammer, were tested extensively, however, their 
deployment was unsuccessful for this iteration [27-28]. Deployment of Quorum was 
unsuccessful due to the burden placed on the distributed file system of the HPC cluster used; 
while a solution was found to this limitation, the enabled condition was not available for 
analysis at the time of this writing. BayesHammer was not deployed due to an issue parsing 
the validated FASTQ sequence files; this issue is being explored further and a solution is 
anticipated.


3.2 Selected Background Error Models


All three selected background error models make use of a similar approach to error correction 
known as the k-mer spectrum approach, originally developed for the problem of de novo 
assembly [54]. The k-mer spectrum algorithm works by first taking genome reads from the 
sequencing data and fragmenting them into substrings of a predefined length k, with each 
fragment known as a k-mer. If a given k-mer belongs to more than S reads, a threshold defined 
by the user, the k-mer is considered solid. In contrast, if the k-mer belongs to fewer than S 
reads, the k-mer is considered weak. The fragmentation process results in a distribution of k-
mers Gk, of which the distribution of solid k-mers (the so-called k-mer spectrum) approximates 
the genome G. At this point, the error correction problem is cast as a spectral alignment 
problem, where the aim is to find the minimum number of steps to transform each given weak 
k-mer substring s into a a strong k-mer. The approach to error minimization may be done 
according to any edit distance deemed appropriate (e.g. Hamming, Levenshtein). While all 
three selected background error models use a variation of the k-mer spectrum approach, they 
exhibit a number of distinctive properties. 


BFC: BFC fragments reads into substrings with length k and proceeds to classify them by 
counting and comparison against a user-defined threshold. The software then iterates over 
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reads searching for the longest substring comprised of strong k-mers; if no strong k-mer is 
found, search for strong k-mers 1 mismatch away. When an eligible strong k-mer is found, 
undergo substring extension. Eligible k-mers 1 mismatch away are corrected, but only one 
such k-mer is allowed per read during the substring extension step [49].  

Bloocoo: Similar to BFC, Bloocoo first classified k-mers as strong or weak by counting.  The 
software then simply corrects unambiguous reads (i.e. those with a clear best available 
correction). For reads that are ambiguous, reads are corrected through read extension using 
eligible strong k-mers and a majority vote algorithm. The software also attempts to avoid false 
positive corrections by verifying that each correction is supported by multiple solid k-mers 
[50-51].


Lighter: Rather than counting, Lighter randomly subsamples k-mers with replacement from the 
k-mer spectrum, omitting reads with N bases and those randomly ignoring a fraction of read, 
as specified by the parameter α (the authors offer guidelines on how to set this). The k-mers 
are then classified as strong or weak with a threshold strong k-mers at consecutive positions 
are combined and stored in a secondary Bloom filter. Each read then is matched to eligible 
consecutive k-mers and is corrected through read extension. Reads with equally eligible 
corrections from the consecutive k-mers are left uncorrected [52]. 

3.3 Overview of Computational Pipeline Module Evaluation System Prototype


A software prototype was developed with the aim of evaluating software modules for the GATK 
pipeline, according to the Broad Institutes’ Best Practices for Somatic SNV and Indel Discovery 
in Whole Genome and Exome Sequence [55] (along with any additional software modules as 
required by the pipeline or the experimental and control conditions), in an audit-able and 
systematic way. Three primary goals for the system were established:


1. To provide a simplified and consistent API abstraction for the multiple software packages 
and pipeline procedures required (e.g. GATK, Samtools, Picard Tools).


2. To automate the enforcement of experimental design requirements throughout the pipeline 
via appropriate scope management.


3. To manage and enforce logging of each pipeline procedure and requisite steps to ensure 
the audit-ability of an experiment through system logs.


To do this, the concept of a pipeline ‘procedure’ was developed. Here, a procedure is defined 
as a set of one or more steps required to realize a discrete conceptual process, to be applied 
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to the sequencing data passing through the pipeline; examples of procedures include ‘variant 
calling’, ‘error modeling’, ‘marking duplicate reads’, or ‘multiple sequence alignment’. While the 
focal point of a procedure is often a specific algorithm (e.g. BQSR for base recalibration), 
additional child steps may include data extraction, processing, transformation, and/or 
validation, in addition to basic custodial tasks such as file system management, data 
structuring, or the extraction of metadata. 


Due to a lack of scoping features within the GNU bash environment, scope is managed almost 
entirely through namespacing that corresponds to the directory structure of the file system. 
Importantly, in addition to providing rudimentary scope management, the namespacing 
architecture also serves to enforce an appropriate and rigorous directory structure for each 
experimental condition. Leveraging the namespacing approach, a rudimentary state 
management system was also introduced to the prototype to prevent unnecessary duplication 
of data processing via a ledger of the pipeline management systems’ global state. This state 
management system functions by first validating that a step has yet to run given the user-
defined experimental condition(s). This is done through a call to the state ledger prior to the 
initialization of each child step of a procedure. If the given state is not found, the pipeline 
executes the given step (within a procedure). Upon successful completion (verified by an exit 
status code of 0), the state is exported to the state ledger. Each state is represented via a 
unique string, the uniqueness of which is guaranteed by the inclusion of the entire namespace 
generated via each software API call required to initialize a procedure, along with an indication 
of the selected procedure, and an integer representing the completed step within the 
procedure.


The Prototype System was developed on the Exacloud HPC cluster at Oregon Health & 
Science University in a Unix environment (CentOS 6.5) using shell scripting (GNU bash 4.4.5) 
and Python (version 3.5.2). Core software dependencies for the pipeline include GATK 3.6 
[38-39], Picard Tools 2.9.0 [56], Samtools 1.3.1 [57], BWA 0.7.15-r1140 [58], and BioPython 
1.68 [59]. Language dependencies include GNU bash 4.4.5, Python 3.5.4, Java 8 (1.8.0_112) 
and Perl v5.24.0. Dependency management was handled using package management 
solutions, Linuxbrew 1.18 and Miniconda 4.3.11, when available. Depending on the 
requirements the software, compilation was performed using either GCC version 4.8.2 or 5.3.0. 
The prototype is publicly available under an open source BSD 3-clause license via a public 
source code repository hosted on Github (URL: https://github.com/greenstick/thesis-pipeline). 
All algorithm parameters can be found within their parent scripts as part of their invocations, 
located in the procedures directory (URL: https://github.com/greenstick/thesis-pipeline/tree/
master/procedures).
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3.4 Experimental Conditions 

Figure 3.4.1 – Overview of Experimental Conditions Applied 

Summary: The illustrated conditions were executed for each data set (Set 1, Set 2, & Set 3), on both 
tumor and normal. For aggregate condition 1, the goal was to understand whether BQSR influences the 
sensitivity of the GATK pipeline to low frequency variants when run according to the relevant GATK best 
practices. No error model was used, however, both child conditions were active (BQSR and no BQSR). 
For aggregate condition 2, Error Model n is representative of the given error model (Lighter, BFC, or 
Bloocoo), as each background error model condition would be subject to the procedures along the 
horizontal pipeline vectors (i.e. error modeling, realignment, the given base recalibration condition, and 
variant calling). The purpose of condition 2 was to assess the effect of each error model on low 
frequency variant detection both with and without BQSR. Overall, conditions 1 and 2 were designed to 
answer two questions, respectively: 1. Is the BQSR module diminishing the ability of the GATK pipeline 
to detect low frequency variants? and 2. Can existing error correction software be leveraged to 
accurately model background error in somatic sequencing data within the context of the GATK pipeline 
(with or without BQSR), potentially enabling the sensitive detection of somatic low frequency variants? 
Importantly, note that not all procedures are illustrated by this overview (hence the Error model n 
notation) and that realignment and variant calling are indicated to show roughly where in the pipeline 
each condition resides – i.e. the pipeline vectors do not represent a full enumeration of procedures run.


With the selection of three error models for evaluation, twenty-four multi-tiered (aggregate) 
conditions (6 control, 18 experimental) were designed for evaluation via the Prototype System. 
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The combination of conditions was designed to allow for the independent evaluation of the 
selected background error models, both within the context of the larger pipeline and in their 
relation to the BQSR module, in addition to the independent evaluation of the BQSR module 
itself. For each data set (Set 1, Set 2, & Set 3), the tumor normal pairs were run through the 
pipeline both with and without the BQSR module. Then, for each error model (Lighter, BFC, 
Bloocoo), a similar approach was taken. For example, under the BFC condition, each data set 
would be processed with BFC and both with and without BQSR (Figure 3.3.1).


3.5 Synthetic Whole Genome Sequencing Data 

Table 3.5.1 – Synthetic Data Specifications 

Source: Modified from: https://www.synapse.org/#!Synapse:syn312572/wiki/62018
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Set 1 Set 2 Set 3

Aligner BWA Backtrack BWA Backtrack BWA Backtrack

Mutation Types SNV & SV (deletions, 
duplications, inversions)

SNV & SV (deletions, 
duplications, insertions, 
inversions)

SNV, SV (deletions, 
duplications, insertions, 
inversions) & INDEL

Cellularity 100% 80% 100%

Subclone VAFs N/A N/A 50%, 33%, 20%

Sex Female Female Female

Original BAM HCC1143 BL from TCGA 
Benchmark 4

HCC1954 BL from TCGA 
Benchmark 4

HCC1143 BL from TCGA 
Benchmark 4

Coverage  
(Tumor / Normal) 29.93x / 29.93x 30.97x / 30.98x 31.09x / 31.14x

n Reads  
(Tumor / Normal)

964,638,036 / 
964,739,976

1,122,018,486 / 
1,122,503,732

1,127,400,640 /  
1,129,059,456

% Positions with >= 
20x Coverage 
(Tumor / Normal)

75.89% / 75.93% 78.09% / 78.15% 78.75% / 78.96%

BAMSurgeon 
Commit

https://github.com/
adamewing/bamsurgeon/
tree/
12862f1127cd513186b91
444cfb03dc02bbd69ee

https://github.com/
adamewing/bamsurgeon/
tree/
df7bc9148b490ca2dbdc20b
a192ee4c7d676b4d1

https://github.com/
adamewing/bamsurgeon/
tree/
6485d9c756d5f7d5b2025d1
3a21615be8db4be20

Reference Genome Homo_sapiens_assembly
19.fasta

Homo_sapiens_assembly19
.fasta

Homo_sapiens_assembly19
.fasta

https://cghub.ucsc.edu/datasets/benchmark_download.html
https://cghub.ucsc.edu/datasets/benchmark_download.html
https://cghub.ucsc.edu/datasets/benchmark_download.html
https://github.com/adamewing/bamsurgeon/tree/12862f1127cd513186b91444cfb03dc02bbd69ee
https://github.com/adamewing/bamsurgeon/tree/df7bc9148b490ca2dbdc20ba192ee4c7d676b4d1
https://github.com/adamewing/bamsurgeon/tree/6485d9c756d5f7d5b2025d13a21615be8db4be20


The data analyzed with the Prototype System was comprised of three, interleaved paired-end 
tumor-normal WGS data pairs (Set 1, Set 2, & Set 3; 6 BAM files total), with each tumor file 
synthetically generated from its corresponding normal pair by the BAMSurgeon software for 
the 2014 ICGC-TCGA-DREAM Somatic Mutation Calling Challenge [60]. For the challenge, 
normal files were sourced from the TCGA Mutation Calling Benchmark 4 [61]. Each set 
exhibited a coverage of approximately 30x, but varied in complexity. Ordered from least to 
most complex, Set 1 exhibited 100% purity and 3,537 somatic single nucleotide variants 
(SNVs), Set 2 reduced sample purity of 80% (20% normal contamination) with 4,332 SNVs, and 
Set 3 100% purity with 7,903 SNVs and variant allele fractions of 50%, 33%, and 20% (Table 
3.4.1). The aligned data (released in BAM format [57]) was downloaded using the GeneTorrent 
download client [58].


3.6 General Pipeline Implementation 

The following procedures were performed for both the tumor and normal BAM files from all 
three sets (Set 1, Set 2, & Set 3) (Figure 3.5.1). A notable exception is that of MuTect 2, which 
receives both normal and tumor BAM files as inputs. MuTect 2 was run for each of the three 
sets (Set 1, Set 2, & Set 3) and was run twice for each set – once on data processed with 
BQSR, and once on data processed without BQSR. Also note that the hg19 reference was 
indexed by BWA once prior to the execution of any pipeline conditions.  

BAM to FASTQ: The synthetic data downloaded for the study consisted of aligned BAM files 
originally aligned with BWA backtrack algorithm [59]. Due to the incompatibility of these 
original alignments with the targeted GATK Best Practices for Somatic SNV and Indel 
Discovery in Whole Genome and Exome Sequence, these alignments were removed via 
reversion to FASTQ format. This process was accomplished first by splitting the merged BAM 
files by read group, coordinate sorting the read group-level BAM files, and then reverting each 
read group-level BAM to FASTQ format. All these steps were executed using Samtools. 


Apply Error Model n: Each read group-level FASTQ was then processed individually using the 
background error model selected for the given experimental condition. For Bloocoo, this 
procedure required the extra steps of separating the sequence and quality data, applying the 
error model, and then merging the output corrected sequences with quality data. Similarly, 
Lighter required the separation of the interleaved paired-end reads into single-end reads. Upon 
completion, the error corrected single-end reads were re-interleaved into a single paired-end 
FASTQ. 
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Figure 3.6.1 – Simplified Diagrammatic Overview of Experimental Pipeline


Summary: Starting at the top, Sets 1, 2, & 3 were first downloaded. Second, MD5 check sums were 
computed, FastQC was run, the BAMs were split by read group, and then converted to FASTQ format. 
Third, error modeling was applied as required by the given experimental condition, reads were then 
shuffled and aligned before the read group BAMs were merged back together. Fourth, the GATK pipeline 
was run using Picard Tools Mark Duplicates, the required BQSR condition (i.e. BQSR / No BQSR), and 
finally somatic variant calling with MuTect 2.
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into paired-end FASTQs. BFC required no additional processing. These child steps were done 
using custom Python scripts available on the Prototype System’s public repository (URL: 
https://github.com/greenstick/thesis-pipeline/tree/master/utils). 


Alignment: Once a given error correction procedure had completed, the alignment procedure 
was initiated. For each experimental condition, each read group-level FASTQ was shuffled 
using a custom Python script, also available on the public repository (URL: https://github.com/
greenstick/thesis-pipeline/tree/master/procedures/shuffle-fastq.py). This shuffling was done to 
avoid bias associated with the previous alignment embedded in the downloaded BAM files. 
After shuffling, the FASTQ files were aligned using the default parameters for the BWA-mem 
algorithm, the aligner recommended by the GATK best practices documentation. The resulting 
alignments were then annotated with their corresponding read groups using Samtools 
addreplacerg prior to being unified into a merged BAM using Samtools merge, with the 
resulting BAM now mimicking the original BAM file, but with a BWA-mem alignment and the 
designated background error correction.


Mark Duplicates: The error corrected, aligned, and merged BAM file was then passed to the 
core GATK pipeline. First, the BAM file was coordinate sorted using Samtools sort and then 
indexed using Samtools index. Next, duplicate reads were marked using Picard Tools mark 
duplicates algorithm. This was followed by a secondary indexing of the merge BAM file. 
2

Base Recalibration: For conditions requiring BQSR, the base recalibration procedure was then 
performed. This procedure consisted of four steps. First, run the BaseRecalibrator module to 
build a model of covariation for the data, as detailed in Section 2.4; second, run the 
BaseRecalibrator module again to build the second model of covariation; third, run the 
AnalyzeCovariates module to generate plots of the base recalibration; and finally, write the 
recalibrated base quality scores to a new BAM file. Again, the new file was indexed with 
Samtools.


Call Variants: The final step of the GATK pipeline is to call variants. To do this, cross sample 
contamination was first estimated using the recommended contamination estimation tool, 
ContEst [43]. The output contamination estimation file was parsed for the estimated value, 
which was then converted from a percentage to a proportion for input into the MuTect2 
somatic variant caller [44]. In addition to the contamination estimation, the recommended 

 After each step of the GATK pipeline, the BAM files were indexed using Samtools. Indexing of the BAM 2

files was often superfluous, however, this was done to ensure no warnings would be generated by the 
GATK tools processing these files. 
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dbSNP and COSMIC database VCF files, available in the GATK resource bundle [45, 63-65], 
and the processed, paired tumor-normal BAM files were also input to MuTect2. The output of 
MuTect2 is a VCF file of both somatic and germline variant calls annotated accordingly.


All commands were executed using either their software defaults or, if available, recommended 
parameterization. All GATK, Picard Tools, and BWA commands were executed according to 
best practices documentation available on the GATK website. The complete set of commands 
issued for each software tool is available as part of the procedure scripts on the public 
repository (URL: https://github.com/greenstick/thesis-pipeline/tree/master/procedures).


3.7 VCF Analysis 

VCF analyses were performed using custom Python scripts available on the analyses public 
repository (URL: https://github.com/greenstick/thesis-analyses/tree/master). For each error 
model condition, both the BQSR and No BQSR VCF files, along with the truth set provided by 
the 2014 ICGC-TCGA-DREAM Somatic Mutation Calling Challenge [60], were parsed using 
pyVCF (URL: http://pyvcf.readthedocs.io). 


Within a VCF file, each variant was assessed to be unique via the combination of chromosome, 
position, reference allele, and alternate allele values. These values were combined into a 
unique string and then hashed using the SHA1 message digest algorithm to enable time-space 
efficient set computations of VCF statistics and pipeline performance characteristics (e.g. 
sensitivity, specificity, accuracy). Sensitivity-specificity curves were computed along with their 
accompanying AUC to aid in the assessment of each conditions’ performance using 100 tumor 
LOD score (tLOD) thresholds ranging from 0 to 100. The optimal tLOD for each pipeline, 
defined as the tLOD threshold that maximized the sum of sensitivity and specificity, was also 
computed.


4. Results 

4.1 General Performance Evaluation by Condition 

The performance of each condition was measured via sensitivity-specificity curve AUC across 
the full variant allele frequency range (0.0 - 1.0 VAF), computed from tLOD cutoff thresholds 
ranging from 0 to 100. The sensitivity-specificity curve AUCs for each dataset and aggregate 
condition were together summarized for comparison (Table 4.1.1). The Bloocoo BQSR 
aggregate condition demonstrated the best performance across all tLOD thresholds for Set 1 
(AUC = 0.9746). For Set 2, the best performing was the Bloocoo No BQSR aggregate condition 
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(AUC = 0.9610). Similar to Set 1, the best performing Set 3 was the Bloocoo BQSR aggregate 
condition (AUC = 0.9339).


Table 4.1.1 – Sensitivity-Specificity AUC by Condition 

For Set 1, the Bloocoo background error model, combined with the No BQSR and BQSR 
conditions, were found to exhibit the best performance in terms of sensitivity and specificity 
across all tLOD thresholds with AUCs of 0.9731 and 0.9746, respectively (Figure 4.1.1). An 
observable difference was seen between the BQSR and No BQSR conditions for the No Model 
and Lighter background error model conditions; however, no difference was seen between the 
BQSR and No BQSR conditions for the BFC and Bloocoo background error model conditions. 
It appears that in some cases, background error models may mitigate the effects of the BQSR 
module. This was especially true for Bloocoo, which demonstrated this mitigation behavior 
across all three datasets. 


For Set 2, aggregate conditions incorporating the Bloocoo background error model conditions 
were again found to exhibit the best performance in terms of sensitivity and specificity across 
all tLOD thresholds, with rough equivalency between the No BQSR and BQSR conditions, 
yielding AUCs of 0.9610 and 0.9558, respectively (Figure 4.1.2). These aggregate conditions 
were followed closely by the No Model No BQSR aggregate condition (AUC = 0.9466). Notably, 
the BFC background error model exhibited improved performance in concert with the BQSR 
module in contrast to its No BQSR condition, with AUCs of 0.8063 and 0.7723, respectively – 
an improvement over both comparable Set 1 aggregate conditions. Generally, the 20% normal 
contamination present in Set 2 did not appear to meaningfully compromise sensitivity and 
specificity (as compared to comparison to Set 1) for the No Model condition.
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Background Error Model BQSR Condition Set 1 Set 2 Set 3

No Model 
No BQSR 0.9200 0.9466 0.8909

BQSR 0.9034 0.8966 0.8333

BFC
No BQSR 0.7929 0.7723 0.7819

BQSR 0.7828 0.8063 0.7961

Bloocoo
No BQSR 0.9731 0.9610 0.9335

BQSR 0.9746 0.9558 0.9339

Lighter
No BQSR 0.8834 0.8596 0.8006

BQSR 0.8518 0.8102 0.7996



Figure 4.1.1 – Set 1 Performance Comparison BQSR Versus No BQSR 

Summary: Clockwise from top left: No Model, BFC, Bloocoo, Lighter. Set 1 comparison sensitivity-
specificity curves across all VAF ranges (0.0 - 1.0) for the No BQSR and BQSR conditions by 
Background Error Model Condition. 
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Figure 4.1.2 – Set 2 Performance Comparison BQSR Versus No BQSR 

Summary: Clockwise from top left: No Model, BFC, Bloocoo, Lighter. Set 2 (exhibiting 20% tumor 
contamination) comparison sensitivity-specificity curves across all VAF ranges (0.0 - 1.0) for the No 
BQSR and BQSR conditions by Background Error Model Condition.
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Figure 4.1.3 – Set 3 Performance Comparison BQSR Versus No BQSR 

Summary: Clockwise from top left: No Model, BFC, Bloocoo, Lighter. Set 3 (exhibiting clonality) 
comparison sensitivity-specificity curves across all VAF ranges (0.0 - 1.0) for the No BQSR and BQSR 
conditions by Background Error Model Condition.
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Figure 4.1.4 – Condition Sensitivity-Specificity AUC Across 0.05 VAF Ranges 

Summary: A heat map of sensitivity-specificity curve AUC values for each aggregate condition by 
variant allele frequency range; each sensitivity-specificity curve was computed within a 0.05 VAF range 

interval. The teal color increases in saturation as AUC increases.
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For Set 3, the difference between the No BQSR and BQSR conditions appeared to be 
effectively eliminated by the use of a background error model. That is, for the BFC, Bloocoo, 
and Lighter background error model conditions, the No BQSR and BQSR conditions exhibited 
comparable sensitivity and specificity (Figure 4.1.3). Again, the Bloocoo background error 
model condition yielded the highest AUCs of 0.9335 and 0.9339 for the No BQSR and BQSR 
conditions, respectively. The No Model and No BQSR aggregate condition exhibited superior 
performance to the No Model and BQSR aggregate condition, with AUCs of 0.8909 and 
0.8333, respectively. Generally, AUCs were lower across Set 3 as compares to Sets 1 and 2, 
likely on account of the clonality exhibited. 

To better understand sensitivity and specificity across VAF ranges for each condition, 
sensitivity-specificity curves were also computed across 0.05 VAF range intervals (e.g. variants 
with allele frequencies greater than 0.30 VAF and less than or equal to 0.35 VAF). The 
computed AUCs for each ranged curve were then projected as a heat map for examination of 
broad patterns in the performance of the aggregate conditions (Figure 4.1.4). In this visual, we 
see aggregate condition on the y-axis by VAF interval on the x-axis. The teal color represents 
AUC value, with increased color saturation serving as the mark of a greater AUC in the given 
range. 


In general, the heat map is largely as expected – above 0.5 VAF we see much more empty 
space where AUCs of 0.0 are reported. This is in line with the biological assumption that the 
vast majority of variants will be heterozygous. In addition, we also see a tapering of the 
performance band below the 0.15 VAF mark, indicating either a lack of low frequency variants 
in the data, the challenges in their detection, or a combination. However, we also see that each 
background error model exhibits remarkably different performance characteristics. For 
example, the best performing background error model conditions, No Model and Bloocoo, 
each exhibit a clustering of predictions below the 0.5 VAF threshold. This clustering is less 
apparent for both BFC and Lighter, with Lighter especially exhibiting banding that extends 
much past the 0.5 VAF limit in both Sets 1 and 3. Regarding the BQSR and No BQSR 
conditions, we see that the large differences seen for some aggregate conditions in figures 
4.1.1 - 4.1.3 are the result of a combined effect across VAF ranges rather than differences 
clustering in a specific VAF range. 


4.2 Optimal Sensitivity-Specificity Threshold Analysis 

While the AUC statistic is able to give a general sense of how each aggregate condition 
performed across a given range of tumor LOD thresholds by variant allele frequency, it fails to 
reveal which tumor LOD and aggregate condition combination offers the best performance.
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Table 4.2.1 – Optimal Thresholds by Sensitivity-Specificity 

Summary: Statistics for tLOD that maximizes sensitivity and specificity by aggregate conditions. 
Conditions highlighted in blue exhibit the greatest sum of sensitivity and specificity by dataset. Bolded 
statistics indicate the greatest value for that statistic in given dataset. 

Any implementation of a variant calling pipeline requires a validated (optimal) tumor LOD 
threshold for operation outside the research context (this is especially true given that a truth set 
for the variants in a sample being tested would not be available). For the purposes of this 
study, the optimal threshold was naïvely defined as the tumor LOD score threshold which 
maximized the sum of sensitivity and specificity (Table 4.2.1).
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Synthetic 
Data

Background 
Error Model

BQSR 
Condition

Tumor 
LOD 
Threshold

Sensitivity Specificity Accuracy

Set 1

No Model 
No BQSR 16 0.9368 0.8296 0.8339

BQSR 18 0.8844 0.8364 0.8385

BFC
No BQSR 13 0.8122 0.6818 0.6906

BQSR 14 0.8212 0.6821 0.6895

Bloocoo
No BQSR 12 0.9299 0.9532 0.9530

BQSR 12 0.9448 0.9421 0.9421

Lighter
No BQSR 15 0.8083 0.8323 0.8322
BQSR 15 0.7366 0.8381 0.8380

Set 2

No Model 
No BQSR 12 0.9472 0.8740 0.8758

BQSR 16 0.8748 0.8381 0.8397

BFC
No BQSR 11 0.8006 0.6917 0.6979

BQSR 11 0.8287 0.7251 0.7298

Bloocoo
No BQSR 11 0.9011 0.9403 0.9400

BQSR 11 0.8746 0.9431 0.9427

Lighter
No BQSR 15 0.6993 0.8588 0.8587

BQSR 11 0.7640 0.7365 0.7365

Set 3

No Model 
No BQSR 13 0.8690 0.8093 0.8156

BQSR 14 0.8180 0.7383 0.7499

BFC
No BQSR 13 0.7379 0.7132 0.7172
BQSR 13 0.7323 0.7407 0.7396

Bloocoo
No BQSR 11 0.8353 0.9364 0.9347

BQSR 11 0.8301 0.9357 0.9337

Lighter
No BQSR 15 0.6136 0.8644 0.8639

BQSR 15 0.5965 0.8737 0.8732



In regards to sensitivity, a measure highly important for the detection of low frequency variants, 
the No Model, No BQSR aggregate condition demonstrated the best performance for Sets 2 
and 3 (tLOD = 12, sensitivity = 0.9472 and tLOD = 13, sensitivity = 0.8690, respectively). For 
Set 1, the Bloocoo BQSR aggregate condition demonstrated the best performance (tLOD = 12,


sensitivity = 0.9448). In terms of specificity, the Bloocoo background error model demonstrated 
the best performance across all data sets. For Set 1 and Set 3, the highest specificity was 
achieved in combination with the No BQSR condition (tLOD = 12, specificity = 0.9532 and 
tLOD = 11, specificity = 0.9364, respectively). For Set 2, the aggregate Bloocoo BQSR 
condition exhibited the highest specificity (tLOD = 11, specificity = 0.9431). Accuracy was also 
reported for each aggregate condition, across the synthetic data sets, however, the measure is 
perhaps not appropriate for the problem of variant detection (i.e. given the ratio between true 
positives and true negatives will likely always be unbalanced, the accuracy statistic could 
precipitate an improper assessment of classification performance for detecting positive cases).


Importantly, while the No Model No BQSR condition for Set 3 demonstrated the best 
sensitivity, the combined sensitivity and specificity for the condition was much lower when 
compared to the Bloocoo BQSR condition (Sensitivity = 0.8690, Specificity = 0.8093; 
Sensitivity = 0.8353, Specificity = 0.9364, respectively). Thus, a worthy consideration here may 
be how sensitivity should be weighted compared to specificity, the ~3.5% loss in sensitivity 
may be worth the over ~13% improvement in specificity. 


4.3 Performance Evaluation by Condition for Detection of Low Frequency Variants 

A second heat map of sensitivity-specificity curve AUCs was generated using 0.01 width VAF 
ranges (e.g. 0.05 - 0.06 VAF) with the aim of understanding the performance of the aggregate 
conditions in the low frequency variant range (Figure 4.3.1). Unfortunately, computation of AUC 
were found to be compromised for allele frequency ranges below 0.15 VAF (Sets 1 and 2) and 
0.1 VAF (Set 3), yielding AUCs with a zero value. While the low coverage (30x) of the data or 
poor performance by the aggregate conditions may have contributed to this, the likely culprit 
was the dearth of low frequency variants in the data. With no true positives in the lower ranges 
(i.e. VAF < 15%), we can see which conditions appear to generate true negative predictions in 
the lower ranges.


While the heat map does appear to reveal a trailing performance band across most aggregate 
conditions the only dataset worth considering is Set 3, which was the only set that exhibited 
true variants in the frequency range between 0.05 and 0.15 VAF (66 between 0.05 - 0.10 VAF; 
10 between 0.10 - 0.15 VAF). Thus, Sets 1 and 2 are known to be entirely (false positive) noise
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Figure 4.3.1 – Condition Sensitivity-Specificity AUC Across 0.01 Low VAF Ranges


Summary: A heat map of sensitivity-specificity curve AUC values for each aggregate 

condition within the VAF <= 0.15 range. Note low frequency variant range was previously defines as VAF 

<= 0.05. Each sensitivity-specificity curve was computed within a 0.01 VAF range interval. 
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below 0.15 VAF. If we consider this, it does appear that an increase in heat saturation exist in 
the 0.07 - 0.15 VAF range for Set 3, however, this is hardly conclusive. Perhaps the most 
striking features are the largely uniform bands presented by the No Model conditions for Sets 1 
and 2. If we look to Figure 4.1.1, we see that the VAF ranges exhibiting the highest sensitivity 
specificity AUCs for these conditions appear to cluster together. This may indicate that their 
performance is largely attributable to a lack of noise contributed by a background error model.


5. Discussion 

5.1 BQSR and Background Error Model Performance 

For all synthetic datasets, the No Model No BQSR aggregate condition was found to be more 
sensitive than the No Model BQSR condition. Furthermore, for Sets 2 and 3, those exhibiting 
impurity and clonality, BQSR was found to also reduce specificity. This tentatively supports the 
alternate hypothesis for the first research question; that the BQSR software may diminish the 
ability of the GATK variant calling pipeline to detect low frequency variants. However, given that 
only Set 3 exhibited low frequency variants and that the bulk of true variants within that set 
were not low frequency variants, the extent to which low frequency variants contributed to 
these results is highly debatable. Importantly, this surfaces a bigger question: Is the BQSR 
software improving performance at all? Prior research has found this to be questionable, with 
an explanation being that the base calling algorithms on contemporary platforms are much 
improved over their predecessors, removing the need for BQSR software entirely [47-48].


Clear performance differences were seen between background error model conditions. While 
Bloocoo regularly exhibited the most balanced performance according to its sensitivity-
specificity AUC, for Sets 2 and 3 the No Model condition exhibited superior sensitivity while 
maintaining good specificity (Table 4.2.1). For Set 3, considering the complete sensitivity 
specificity tradeoff alongside a preference toward higher sensitivity, the specificity exhibited by 
the Bloocoo No BQSR aggregate condition was far superior, while yielding only a mild 
reduction in sensitivity, in comparison to the No Model No BQSR condition (which exhibited the 
highest sensitivity). Lighter and BFC were found to perform relatively poorly by comparison, 
however, it’s unlikely this can be put down to the software itself – the lack of parameter 
optimization may have handicapped these background error model conditions. Similarly, it’s 
possible that for Bloocoo the default parameters were more appropriate for the synthetic data. 
This may be supported by the fact that each software implements a variation of the k-mer 
spectrum-based approach (Table 5.1.1).
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Table 5.1.1 – Overview of Error Model Characteristics 

Perhaps the most important takeaway here is that a background error model condition 
(Bloocoo) without BQSR outperformed its No Model control. This incentivizes further 
exploration of background error models for somatic variant calling – clearly, with further 
research and validation, they may be of value for the problem of variant detection. The more 
relevant question to this study, however, is whether a background error model can in fact 
enhance the detection of low-frequency variants. This question remains largely unanswered. It 
is notable, however, that for Set 3 the No Model condition exhibited the greatest sensitivity. 
Could it be that the error correction software evaluated stripped out the true variants in the 
0.05 - 0.15 range? Unfortunately, given the complete lack of low frequency variants (i.e. < 0.05 
VAF) in the data, this will remain an open question for now.
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Background 
Error Model

Greedy 
Algorithm Approach Targeted 

Error Type
Quality 
Aware? Basic Approach

BFC No k-mer 
spectrum Substitutions Yes

Classify k-mers as strong or weak by 
counting. For each read, find longest 
trusted substring by extension of solid k-
mer on both ends. If no trusted k-mer 
matches the read, enumerate all trusted k-
mers 1 mismatch away. If a trusted k-mer is 
found, undergo substring extension [49]. 
Reads marked uncorrectable if no eligible 
k-mer is found or correction requires 
multiple mismatching k-mers. 

Bloocoo Yes k-mer 
spectrum Substitutions No

Classify k-mers as strong or weak by 
counting. Correct reads with an 
unambiguous error to their corresponding 
strong k-mers. Ambiguous reads are 
corrected through extension of the strong 
k-mer and a majority vote algorithm. False 
positives are avoided by verifying 
corrections are supported by multiple solid 
k-mers [50, 51].

Lighter Yes k-mer 
spectrum

Substitutions / 
Indels No

Randomly subsample k-mers with 
replacement from the k-mer spectrum, filter 
reads with N bases, place acceptable k-
mers into first Bloom filter. Classify k-mers 
and strong or weak with threshold and 
combine consecutive trusted k-mers and 
insert into second Bloom filter. For each 
read, find longest consecutive k-mer in 
second bloom filter that matches. Correct 
error reads through extension, leaving 
ambiguous corrections uncorrected [52]. 



5.2 Best Practices & in silico Experimental Design 

Figure 5.2.1: The Genome Analysis Toolkit Best Practices for Germline SNPs and Indels in 
Whole Genomes and Exomes – June 2016 

Summary: Best practice documents for variant detection pipelines rarely articulate all computational 
steps required for reproducibility. For example, the best practices above indicate a single ‘Base 
Recalibration’ step, which in reality consists of applying the Base Quality Score Recalibration, Analyze 
Covariates, & Print Reads GATK modules to the sequencing data in four separate steps – the 
construction of two models of quality scores covariates, a visualization (intended to serve as a sanity 
check), and then the application writing of a BAM file with the recalibrated quality scores. Despite minor 
oversights in this figure, the documentation for this particular procedure, found elsewhere, is quite good. 
More revealing are the details for evaluating the callset output by this GATK pipeline – does the callset 
‘look good?’, if yes, use it, if no, troubleshoot. Unfortunately, the ‘look good’ guidance embodies much 
of the challenge with the ‘best practices’ presented here – the lack of clarity requires significant expertise 
to reconcile exactly what dependencies and actions should be taken to execute the procedure. This gap 
precipitates ample opportunity for a researcher to introduce bias into an experiment and waste 
substantial time and resources. It is noteworthy that this documentation is far superior to the 
documentation available for other GATK use cases, one of which was pursued for this study. 

Source: GATK Best Practices Documentation (URL: https://software.broadinstitute.org/gatk/best-
practices/bp_3step.php?case=germshortwgs). 
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In an effort to manage the complexity of variant calling pipelines & experimental design, some 
pipelines developers have sought to author best practices documentation based on a set of 
specified use cases for their pipeline software. Unfortunately, no such ‘best practices’ appear 
to adequately cover the many considerations involved in an in silico analysis (let alone the in 
vitro considerations they are often dependent on) and thus may fail to precipitate their intended 
generalizability. Indeed, it is easy to read available best practice documents and imagine two 
separate researchers implementing two very different pipelines given the same set of 
instructions. Differences in sample acquisition, sample processing, library preparation, 
sequencing platform, computational resources, software availability, and parameterization are 
liable to lead to numerous inconsistencies due to differences. Much of these decisions may be 
traced back to the, often unaccounted for, granular decisions made throughout the course of 
the generation and analysis sequencing data – with a potentially catastrophic effect for 
reproducibility.


A good example of a ‘best practice’ documentation that may instill a poorly founded sense of 
experimental validity is the June 2016 best practice guidelines published for the GATK on the 
application of whole-genome sequencing (WGS) to the discovery of germline single nucleotide 
polymorphisms (SNPs) and indels [38-39, 67]. While the documentation is ostensibly well-
defined and subject to regular revisions, an attentive reading reveals omissions and a lack of 
clarity that makes the use of the term ‘best practices’ optimistic. Although the visual guidelines 
reveal the basic procedures required, they lack a clear articulation of the actual steps in the 
analytics pipeline (Figure 5.2.1). Furthermore, these same GATK best practices state, under the 
heading ‘What is not Best Practices?’, that “the canonical Best Practices (as run in production 
at the Broad) are…optimized for the instrumentation (overwhelmingly Illumina) and needs of the 
Broad Institute sequencing facility” and that “they can be adapted…however, any workflow 
that has been significantly adapted or customized, whether for performance reasons or to fit a 
use case that (is) not explicitly covered, should not be called ‘GATK Best Practices’” [55]. Thus, 
it must be asked, is it possible to reproduce the Broad Institutes’ so-called ‘best practices’ at 
all? In this case, perhaps rather than claiming ‘best practices’, the Broad should consider 
renaming their ‘best practice’ workflows ‘this is how we do it’ 
3

Clearly stated, absent a full enumeration of the processes required to replicate any scientific 
best practice, the reproduction of any analysis or experiment:


• May lean inappropriately on a researchers’ best judgment and expertise.


 Perhaps the Broad Institutes’ naming decision was influenced by an aversion to copyright infringement 3

from Montell Jordan on the grounds of his 90’s hit single.
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• May yield a compounding effect, whereby researchers lack a valuable tool for the quality 
documentation of their own work.


And, further, that:


• A failure in documenting best practices and/or a lack of transparency in best practices may 
expand the potential for researchers to unconsciously insert individual biases. 


• Poor quality best practices may yield significant time and resource inefficiencies, resulting in 
a significant opportunity cost to researchers attempting to reproduce them.


That is not to say best practices and quality documentation are a silver bullet to many-a-
researchers’ woes, but rather that quality best practices provide an objective, widely available 
substrate upon which other researchers may construct experiments, pipelines, and software 
rationally and with full clarity. 


5.3 Recommendations for Bioinformatics Software Development & Distribution 

Throughout the course of this research numerous software limitations were encountered, many 
of which are common across scientific computing. Examples of these limitations included 
resource constraints, particularly relating to the memory usage of various algorithms and/or 
their implementations, to incompatible dependencies, poor documentation, a lack of graceful 
degradation, and poor adherence to standard error management protocols. These however 
represented relatively minor limitations however. 


In contrast, much of the software downloaded and deployed for this study did not follow 
contemporary standards for software development. Comparative studies such as this are made 
challenging by heterogeneous software development and distribution practices. Fortunately, 
solutions for managing the distribution and deployment of software are widely available for 
free, mature, and offer significant utility for tracking the provenance of code and contributions 
by multiple authors. The following recommendations are designed to improve the 
reproducibility of analyses and assure proper tracking of software assets.


• Software should be maintained in a Git protocol based repository, such as Github, Gitlab, 
or Bitbucket


• Continuous integration and unit testing of builds should be managed via an automated 
service, such as Travis-CI, Bamboo, or Jenkins.
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• If possible, software should also be made available via a Docker image. Alternatively, 
validated build scripts should be distributed to the appropriate package manager(s) (e.g. 
Homebrew, Linuxbrew, pip, Conda, npm). This significantly facilitates reproducibility. 


• If possible, documentation should be managed through a language specific documentation 
framework and versioned with Read the Docs.


Executed correctly, these four points enable software to be widely distributed in a fashion that 
is compatible with modern systems. Software is less prone to bugs, and users of software are 
able to create, track, and resolve any bugs that do arise. Reproducibility can be significantly 
enhanced via the appropriate packaging of software and its dependencies. Documentation is 
prioritized and made widely available. Combined, these offer huge benefits to both the author 
and end-user of a software. 


6. Limitations & Future Directions 

6.1 Synthetic Data Intended Use & Limitations 

The ICGC-TCGA-DREAM Somatic Mutation Calling Challenge data, used for the development 
of the pipeline module evaluation prototype and analysis, is subject to a number of limitations 
and caveats. 


First and foremost, the data used for this study was selected for the pipeline development with 
quick accessibility being a primary consideration. The data is WGS with a coverage of 30x, 
which limits the ability of any variant calling method to confidently detect variants, particularly 
low frequency variants. If we consider a base call to be a hypothesis test (where h0 assumes 
that a variant does not exist and the alternate h1 that a variant does exist), we can consider 
depth of coverage at the base position to be analogous to sample size; depth of coverage is 
essential in determining the power of the test to detect a putative variant at the given position 
at or above a predefined minor allele frequency (MAF). Given the structure of the variant calling 
problem and the aforementioned challenges presented by somatic samples (tumor impurity, 
clonality, and CNVs), sequencing data collected with an ultra-deep NGS (defined as greater 
than 1000x (targeted) coverage [68]) approach is highly preferable for somatic variant calling in 
the clinical setting. There are several reasons for this: 1. When combined with databases of 
known variants, such as dbSNP [45], COSMIC [63-64], and ClinVar [69], the ultra deep 
sequencing approach is sensitive even without a normal pair, particularly for known variants 2. 
Ultra deep sequencing is also capable of revealing the complex genomic architecture of a 
cancer that may be particularly relevant in the clinical context [70] and 3. Variants are only 
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actionable if a precision therapy is available; this reduces the genomic search space making 
targeted panels more cost-effective, however, this can also limit the ability to discover and 
build evidence for novel variants. Thus, while ultra-deep NGS approaches are largely fit for 
purpose in the clinical setting, there are significant differences between somatic variant calling 
with ultra-deep NGS without a normal pair versus low coverage WGS with a normal pair, 
differences which may challenge the translation of the present iteration of this research into the 
clinical diagnostic setting.


A second limitation that is less apparent arises from the fact that the data used was synthetic, 
having been generated from the BAMSurgeon software [61]. BAMSurgeon outputs an aligned 
‘tumor’ BAM file containing simulated mutations along with a truth VCF, using a provided BAM 
file, which represents the ‘normal’ condition. While BAMSurgeon does ostensibly reproduce 
genomic architectures and mutations similar to those observed in cancer, the degree to which 
these simulated architectures are truly representative of the complex biology of cancer 
samples, as seen in the clinical context, is unclear. For example, a documented limitation of the 
software is a tendency towards false-positive mutations in structural variant (SV) regions. A 
workaround suggested by the authors is to generate separate BAM files to test for different 
types of mutations [66] – an analytical scheme that may discount any covariation that may 
occur between SV regions and any cis single nucleotide variants (SNVs) or vice versa. In 
consideration of this, a larger question precipitates: Given a proposed analysis, what level of 
granularity is needed to computationally model sequencing data from a tumor sample such 
that it is practically representative of a truly biological counterpart? Further, how can we 
measure the degree to which simulated data represents a true biologically derived sample 
given a specific use case? These questions have yet to be answered and consequently 
precipitate a reduction in the confidence of any synthetic data analysis. While a counterpoint 
may be that even a true biological gold standard may be weakened by reductions in 
confidence, a biological gold standard can at least be made to closely mimic clinical data 
being generated at a specific site. For this reason, this research stands to benefit significantly 
from the analysis of background error models using such a biological gold standard. 


6.2 Ultra Deep Sequencing Fixed Dilution Series 

A future direction currently being pursued is the analysis of a biological gold standard 
sequenced with an ultra deep sequencing methodology. In fact, at the time of writing, the gold 
standard has already been generated via the serial dilution of DNA from an AML pre-treatment 
diagnostic assay sample into a 35-day post-treatment sample from the same patient. The 
dilutions were scaled at 10%, 3%, 1%, 0.3%, 0.1%, 0.01% and 0.0% MAF, resulting in the 
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experimental allele frequencies described by Table 6.2.1. This experiment will enable an 
improved examination of the research questions explored here by alleviating some of the 
limitations arising in the analysis of the WGS synthetic data.


Table 6.2.1 - Ultra Deep NGS Gold Standard Experimental VAFs by Variant 

�36

IDH NRAS NPM1
target % VAF 
of sample

var 
reads

ref 
reads % VAF

var 
reads

ref 
reads % VAF

var 
reads

ref 
reads % VAF

10.00 159 1288 10.9882 155 994 13.4899 99 637 13.4510

3.00 86 2576 3.2306 84 2305 3.5161 76 1515 4.7768

1.00 26 1595 1.6039 15 1143 1.2953 19 849 2.1889

0.30 6 1138 0.5244 2 985 0.2026 8 613 1.2882

0.10 5 1056 0.4712 0 806 0 7 535 1.2915

0.01 2 1373 0.1454 0 871 0 4 692 0.5747

0.00 0 to 1 1108 0.0901 0 781 0 3 468 0.6369
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8. Supplemental 

8.1 Interleaved Paired-End Shuffling Algorithm


A simple script to shuffle interleaved paired-end FASTQ files was developed for use to 
realignment with BWA-mem. The shuffling algorithm first reads in chunks of n pairs, 
shuffling these chunks using the default random.shuffle() Python implementation, it 
then writes the chunks to a temporary directory. Each chunk is counted, with each read 
group FASTQ generating between 600 - 1300 chunk FASTQ files with 50,000 pairs (the 
default n parameter, effectively 100,000 reads), given the synthetic data. Next, the 
algorithm reassembles the FASTQ by randomly writing the shuffled FASTQ chunks to 
the new shuffled FASTQ file. The Python script is available via the source code 
repository (URL: https://github.com/greenstick/thesis-pipeline/blob/master/utils/
shuffle-fastq.py). The current implementation runs in a single thread and lacks 
parallelization, however, this may be updated in the future. 


8.2 Evaluated Background Error Models 

See attached.
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9. Addendum


Immediately prior to the original oral defense of this thesis it was found that some of the 
AUC values computed for each pipeline condition may have been artificially buoyed by 
the introduction of significant numbers of false positive corrections by the background 
error models that were subsequently classified as errors by the MuTect 2 variant caller 
(this is particularly noticeable in figures 4.1.4 and 4.3.1). While it is not believed that this 
affected the performance comparison of the conditions in relation to their ability to 
detect variants, this is nonetheless an area of of ongoing research for this projects. It is 
believed that the tracing of these false positive corrections along with the appropriate 
parameterization of the background error models will greatly mitigate or eliminate this 
effect and allow for better confidence in the quality of the comparisons made in this 
thesis.
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