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A GRAPH REDUCTION MACHINE ARCHITECTURE 

Ananda G. Sarangi, M.S. 

The Oregon Graduate Center, 1984 

Supervising Professor: Richard B. Kieburtz 

The Graph Reduction Machine (G-Machine) is an architecture 

intended to achieve high performance in executing functional 

language programs. The success or failure of this novel architec- 

ture can only be determined by its performance in executing "real" 

programs. The simulator of the G-Machine, described in this thesis, 

makes possible detailed studies of the performance of the G- 

Machine architecture even though the hardware implementation of 

a G-Machine is not complete. 



1. INTRODUCTION 

Computational architectures are determined by the interplay 

of a number of different and interesting constraints. These include 

the nature of the algorithm to be executed, the data structure to 

be employed, the nature of the programming language to be used, 

the architectural units to be designed and the means for their 

interconnection, and the implementation technology. 

Unquestionably, the most important determinant factor of 

these constraints is the nature of the programming language to be 

supported by the the machine architecture. This in fact dictates 

the architectural units and the instruction set that need to be 

designed to support the efficient execution of the source language. 

Due to the advent of VLSI [I], special purpose computer archi- 

tectures can be realized that are not based on traditional, sequen- 

tial control flow program organization, but on alternative, naturally 

parallel organizations such as reduction or data flow to interpret 

high-level-languag e (HLL) constructions. In fact the technological 

advancement gives new ground rules ("language -> architecture -> 

machine") of system design and makes possible a whole new rela- 

tionship between language and technology. Architectures that use 

this new concept of system design have machine organizations that 



instructions manipulate their operands, and their patterns of con- 

trol and storage structures. These machine architectures need not 

designed to be general purpose, instead they may be highly spe- 

cialized and have the attributes of so-called language-directed 

architectures that eliminate the semantic gaps of conventional 

computing systems. 

A whole spectrum of special-purpose computer systems are 

now under development t o  support Direct Execution [Z-51 of one or 

more high-level-languages. A direct executian interpreter is 

ciefked to execute the intermediate language of the source pro- 

gram without further any translation to low level machine 

language. Graph reduction is now considered as an important com- 

puting model for direct evaluation of functional language programs 

[6]. The basis of graph reduction is that 

1) each expression is evaluated at most once, no matter how 

many times the expression is referenced. 

2) evaluation of an expression is simply the reduction of a func- 

tion application to its value. 

3) the expression evaluation mechanism supports non-strict 

semantics. Thus evaluation of a function application need not 

cause evaluation of the arguments of the application. 



4) every expression is evaluated in a static environment. 

In graph reduction, an expression that is under evaluation is 

represented as a rooted, directed graph. Initially, to evaluate an 

expression, an instruction demands the value associated with the 

given expression. Instead of making a copy of the definition, the 

evaluator merely traverses the graph, with the aim of reducing the 

graph into a normal form -- one for which no further reduction 

steps a re  possible. 

One of the ways of identifying the demand, is to  maintain a 

reference. tc the original source of the demand in the environment - 

throughout the evaluation process. During the course of evaluation 

each instruction that accesses a particular definition of the graph 

simply manipulates the reference to the definition. This traversal 

of the definition and manipulation of the references is continued 

until all the arguments of an expression are reduced to some 

canonical form. 

The concept of graph reduction that is described here comes 

from the work of Thomas Johnsson [6] and other works on reduc- 

tion computer architectures [?-lo]. Johnsson's paper describes an 

abstract machine architecture for executing functional language 

programs with lazy evaluation. Using Johnsson's abstract model, 

this thesis is an attempt t o  present and justify a graph reduction 

machine architecture that will efficiently execute functional 



4 

programming languages, with the ultimate aim of producing a suit- 

able implementation in VLSI. We do this by presenting a brief 

description of the compilation of the language, the machine organi- 

zation, and some initial results from our simulation of the architec- 

ture. 

A compiler [I  11, peephole optimizer [12], and assembler [13] 

for the G-Machine have been developed. The simulator for the G- 

Machine that is described here is capable of simulating the execu- 

tion of substantial programs and producing instruction and data 

address traces. Executions . . of a few programs are simulated and a 

trace analyzer [14], developed as a part of this project, is used to 

obtain dynamic instruci,ion frequencies. These results are used for 

a preliminary evaluation of the novel features of the G-Machine 

architecture. 

We start here, by giving background for the work that makes 

graph reduction an important computing model for evaluation of 

functional language programs. 



2. BACKGROUND 

Over the past few years there has been a growing interest 

among language designers in functional (or applicative) languages 

as a potential alternative to conventional programming languages, 

particularly since the publication of Backus's influential paper[l5]. 

This interest arises from two distinct points of view, one coming 

from software considerations and the other from rapid develop- 

ments of semiconductor technology. Despite the advantages of 

functional languages for their elegance, clarity, and expressive 

power, current implementation make less efficient use of machine 

resources than do implementations of imperative languages. Thus 

i t  is a challenge to produce an implementation of a functional 

language and to design a computing system that will execute func- 

tional languages more efficiently than existing computing systems. 

A principal technique that is used to evaluate functional 

languages is reduction. The canonical reduction architecture is 

based on the theory of lambda calculus [16,17]. A lambda calculus- 

based system is founded on the use of lambda abstractions to 

represent mathematical functions. The basic reduction rule, 

known as "beta-reduction", realizes the application of a function to 

an argument expression, by substitution of the argument for all 



occurrences of the bound variable (formal parameter) in a lambda 

expression. The lambda expression with its associated substitution 

rules is capable of defining all possible computable functions of all 

possible types and of any number of arguments. If one starts with a 

simple lambda calculus evaluator based on substitution rules, and 

introduces the device of using pointers to the expressions rather 

than manipulating textual expressions themselves, one is lead to a 

graphical representation of the expression. In a lambda reducer, 

. the bindings of variables to the expressions they represent consti- 

tutes an environment. Reduction transformations take pl-ace rela- 

tive to an environment. 

The first practical lambda evaluator was proposed by Landin 

[18] and is known as. the SECD machine. The SECD machine is an 

abstract architecture where applicative expressions are 

represented as trees with leaf nodes labeled by identifiers that 

name variables. The SECD machine has four major components: 

S the stack used to hold intermediate results 
in the traversal of expression trees; 

E the environment used to hold the values bound to variables 
during the process of evaluation; 

C the control list used to hold machine instructions 
to evaluate an expression; 

D the dump used as a stack to hold values on 
recursive function calls; 



The stack is used in this machine as a temporary store for 

evaluation of function applications. During the course of evaluation, 

on each function call a new area of the stack is allocated to hold 

the parameters for the function environment. If the function body 

has a nested function call then the suspended environment is saved 

on the dump and a new environment is brought onto the stack 

before the evaluation continues. Most of the complexity of the 

SECD machine arises in constructing the environment correctly. 

Specifically, if an expression contains free variables then one must 

either substitute expressions for the free variables or pass around 

the environ.;nents in which the free variables are defied. This 

creates a substantial amount of overhead in the SECD model in 

re.ducing a lambda-expression to its value. 

The evaluation scheme used in the SECD model is totally 

applicative-order, hence strict. In this scheme a function's argu- 

ments are evaluated prior to the application of the function, which 

corresponds roughly to the call-by-value function calling mechan- 

ism of most Algol-like languages. This evaluation mechanism for 

functional language implementation is not safe. That is, for some 

programs this applicative-order evaluation may not terminate at 

all [19], although a terminating computation is possible when a 

different evaluation rule is used. 



Besides the SECD machine, another lambda reducer we know 

of, also based on an applicative-order evaluation scheme, is 

Berkling's GMD reduction language machine [20]. The evaluation 

technique used in this machine is very classical in nature and 

makes use of some well understood mathematical properties of 

beta-reduction. This architecture assumes that the expressions 

are represented as strings, and i t  provides hardware support to 

dissect expression strings using a set of push-down stacks. A more 

elaborate description of' this machine and its program organization 

can be found in 121,221. 

The model of comput.ztion that Berkling's machine supports is 

known as string redu;tion. String reduction differs from graph 

reduction in that each reduction step accessing a particular 

definition will manipulate a separate copy of that definition. On the 

other hand, graph reduction is based on the concept of manipulat- 

ing pointers to the expression and making updates in place for 

function applications rather than recopying the expressions them- 

selves. 

Two other string reduction computing systems that have been 

proposed to do applicative-order evaluation are Mago's Cellular 

Tree machine 1231 and Treleaven's demand-driven multi-processor 

reduction machine [24]. 



The organization of the Cellular Tree machine is a binary tree 

structure and i t  directly executes Backus's functional program- 

ming language FP [15]. A program for the tree machine is a linear 

string of symbols that are mapped onto a vector of memory cells in 

the computer. During the execution, the expression under evalua- 

tion is partitioned into a collection of cells and their corresponding 

microprograms (associated with each cell) execute to reduce the 

expression to a value. 

The multi-processor reduction machine as described by 

Treleaven is radically different in nature from the Cellular Tree 

machine. It supports a user-dehed reduction language and 

operates in a highly parallel r5anner. The machine consists of 

three major parts, 

1) A common memory containing the definitions; 

2) A set of identical, asynchronous processing units; 

3) A large segmented shift register containing the expression to 

be evaluated. 

Thus the machine provides the storage medium for both the 

expressions and the definitions, a means of controlling the traver- 

sal of the expression and recognizing reducible subexpressions, 

and a processor to  perform the reduction. 



The next evaluation scheme is based on the theory of lambda 

calculus, but is quite different from the applicative-order evalua- 

tion scheme, and is known as normal-order evaluation. In normal- 

order evaluation the left-most redex (reducible subexpression) is 

reduced fist, which specifies that the outer subexpressions are 

reduced before the inner ones. This gives normal-order evaluation 

more expressive power than applicative-order evaluation in that 

the evaluation is safe and has the terminating property (if there 

exists any terminating sequence of reductions, then a normal- 

order sequence terminates). To see that the applicative-order 

evaluation terminates less often, suppose that. a function which 

returns a constant answer (for example: hd (from '09, see next 

section for the definition of from) is applied to a non-terminating 

sub-expression. Here evaluation will terminate under normal order 

but not under applicative order, where it  will be attempted, in vain, 

to reduce the sub-expression completely before discarding it  (i.e. 

normal order supports non-strict functions while applicative order 

does not). Graph reduction normally corresponds to normal-order 

evaluation. This method also has the property that no subexpres- 

sion is evaluated more than once (value sharing; also called "fully 

lazy" [25] evaluation). 

The correctly-implemented graph reduction evaluators we 

h o w  of to date are software implementations of abstract 



machines. One of these, the AMPS machine, a token-matching 

loosely-coupled multi-processor [8], was designed to simulate the 

parallel evaluation scheme of a LISP like language. The second is a 

hybrid multiprocessing system (a refined version of AMPS with a 

different interconnectiori network) of dataflow, reduction and von 

Neurnann processes called REDIFLOW [9], which was designed to 

exploit the implicit concurrency of functional languages. Another is 

a token-storage, parallel graph reduction architecture ALICE [26] 

that evaluates a variety of applicative languages. All of these 

machines have significant architectural similarities, including the 

evalu~tis1; scheme they use. A t  the logical level, similarities in the 

evaludtion mechanisms and the treatment of higher-order func- 

tions show that  all three schemes have their root in the graph 

reduction model of computation. A t  the physical level, AMPS is 

arranged as a tree structure and it  exploits parallelism a t  the level 

of user-defined function calls. ALICE is organized somewhere 

between a ring and bus structure, and it  achieves parallelism both 

at  the level of function calls and also inside function bodies. Both of 

these machines are based on the concept of multi-processing and 

they use a large random access memory in a distributed fashion 

(through packet communication) during the course of evaluation. 

Using a new implementation technique (based on the results 

derived by Curry and Feys [27]), Turner [7] showed how to 



implement a reduction machine using combinator calculus. Combi- 

nator calculus uses a technique called bracket abstraction to elim- 

inate variables from lambda expressions, producing an expression 

consisting solely of constant operators (combinators) and data. 

There are reduction rules defined for each combinator, but as 

there are no variables, combinator reduction does not involve sub- 

stitution. Also, there is no environment. The combinators are called 

S, K, I, I3 and C and obey the following equations.* 

B f g x = f  ( 9 4  

C f g z = f x g  

Combinators lend themselves naturally to lazy evaluation [28] 

of the lambda calculus. Lazy evaluation is a technique where the 

evaluation of arguments of a function is postponed until the value 

of the argument is actually required, and the result of the evalua- 

tion is made available to other functions that use the same argu- 

ments. 

'Here we denote application by juxtaposition and assume it associates to the left. Thus, for ex- 
ample f z (g z) means the result of applying (the result of applying f to z) to the result of applying g 
to 2. 



Thus the two calculi can be thought of giving two different 

machine codes for a functional language implement ation. The ques- 

tion naturally arises which approach is more efficient. This ques- 

tion has been investigated by Jones [29]. The comparison between 

the two systems was made by writing reducers for each, and 

measuring the costs of the computation in terms of the number of 

accesses to data structures whose size is potentially unbounded. 

In the classical combinator reduction scheme as described by 

Turner [7], the programs are transformed into expressions con- 

taining the combinators S, K, I, E, r, S1, BB', C', Y, such that all vari- 

ables are removed from the program body. This combinator 

expression is then evaluated using normal-order graph reduction, 

.I-e., an expression subgraph is transformed to its value when the 

value is needed. Thus the combinator reduction involves graph 

reduction instead of environment manipulation, and it requires an 

extra stack (called the reduction stack) that initially contains 

(pointers to) the expression to be evaluated. 

The hardware realization of a combinator reducer, called SKIM 

has been proposed by Clark, et al. [lo]. The SKIM machine organi- 

zation is based on a conventional microprocessor with microcoded 

instruction sets that directly support combinator reduction. These 

instruction sets are very similar to that of Turner's S-K reduction 

machine, and they can be further classified as combinator 



instructions, list operators and standard arithmetic instructions. 

The programs are represented in SKIM by a graph built of two ele- 

ment cells, which is implemented by dividing the memory into two 

banks, HEAD and TAIL. The SKIM architecture is driven by a combi- 

nator reducer that scans down the left-most branch of the program 

tree to find the operator at the leaf. This pointer, after being used 

to go down one level in the tree, is reversed to indicate the return 

route. Eventually the sequence of pointers from root to leaf in 

SKIM is transformed into a sequence of pointers from leaf to root. 

Thus SKIM uses pointer reversal instead of stacks -to traverse the 

program tree. 

The idea of forming efficient combinator expressions for graph 

reduction has been recently proposed by Hughes [30]. In this 

scheme, a set of super-combinators are used for program transfor- 

mations instead of proper combinators (super-combinators are 

closely related to "proper combinators", but they differ in that 

constants may occur in their bodies and in that the combinators 

themselves are regarded as program-defined constants). An 

attractive feature of this scheme is that once an application is 

evaluated it can be overwritten by its new value. This ensures that 

every expression is evaluated a t  most once regardless of the 

number of times it has been referenced. It is related to the lazy 

evaluation of lambda calculus [28],  in which every expression 



once. This scheme is advantageous over classical combinator 

reduction in that it achieves full laziness more directly by employ- 
" "  

P ing some optimizing steps (such as replacing original lambda 
9 
-3 expressions with simpler ones) in the translation scheme. 
3 
S; 
Z, 
g The evaluation approach used in the G-machine bears close 

f resemblance to the super-combinator approach. In this scheme, a 

program that contains lambda-expressions is transformed into an 
* 
% expression (without lambda expressions) and a set of function 
5 
$ definitions. This process is known as lambda lifting, and is 4alo- 

Il - gous to Turner's [?I bracket abstraction process and Hughes's 251 
! 

'1 * 
super-combinator abstraction scheme. -This process, like the other 

k 'two processes, ensures that only the variables that are really 
f 
i? referred to in expressions are bound as parameters to functions, 

g -%- instead of binding the whole environment. 
1 
&* * z- The G-machine architecture is superficially similar to  that of 
$' - - 
& 
t 
? 

Landin's model but it  has different components than the SECD 
I. 

machine. A state in the Gmachine can be described in terms of 6- 

tuple <C, P, V, G, E, D>, where 

C the control list 

P the pointer stack 

I 
1 V the value stack 

which holds instructions for 
the Gmachine; 
which contains pointers 
into the graph; 
which is used for evaluations of 
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arithmetic expressions; 
G the graph which is the image of an expression 

that to be reduced; 
E the environment which provides the context in which 

expressions are evaluated; 
D the dump which is used as a stack t o  store 

context on recursive functions calls; 

The Gmachine simplifies Landin's model of applicative order 

evaluation. The graph which is under evaluation is represented as a 

rooted, directed graph. This expression graph is not necessarily a 

k 5 tree, nor even acyclic. Because applicative expressions have the 

d 
1 property of referential transparency, the value that an expression 

represents remains the same whether or not the expression has 
c 
f been evaluated. Graph reduction is the process that transforms an 
ti 
s& 

$ expression graph to a normal form by applying a set of evaluation 
& 
k 

I rules until no further reductions are possible. 
E 
& 
;;t The environment, E, is static in the Gmachine, because a 
*-  
= 

graph which is under evaluation contains no occurrences of free 
t 
8 
% variables. All arguments of a function are bound in function appli- 
5: 
T" 

B " - cations. Thus the environment E contains only the bindings of con- 

stants, which in the source program are just the defmed functions. 

In E, each function name is associated with a code sequence that 
- _  

represents its value. This provides the G-machine a major advan- 

tage over the SECD machine in setting the environments properly . 

(by the process of lambda lifting) during the computation, and it is 

one of the principal contributions of the G-machine compiler [I 11. 



For the sake of efficiency, the G-machine has two stacks, one 

for traversing the graph and the other for storing intermediate 

results during evaluation of arithmetic expressions. Use of the V 

stack in this architecture reduces the incidence of indirect refer- 

ence to values that have already been computed and the P stack 

provides a mechanism to access the arguments of an expression 

that is under evaluation. 

The control, C is just a sequence of instructions for the G- 

machine. The G-machine is a sequential evaluator, with an instruc- 

tion counter that advances the state of the control each time an 

instruction is executed. 

The dump, Dl stores the contexts of nested function applica- 

tions. A context during the computation is simply the image of two 

stacks, P and V, and the contents of the program counter. 

The abstract G-machine that we described here executes an 

extended subset of the applicative language ML 1311 with lazy 

evaluation, called Lazy ML or LML for short. Although the language 

semantics are not the central issue in this thesis, we describe the 

program organizations of LML in the next. section to provide a 

framework for our specifications on the instruction sets for the G 

machine and its execution model. 



3. LML : AN EXPERITitENTAL LANGUAGE FOR GRAPH REDUCTION 

LML is a strongly-typed, purely applicative programming 

language. It is based upon the (impure) applicative language ML, 

designed by Milner as the metalanguage of LCF [31], a system for 

formal reasoning about programs. It permits the definition of 

higher-order functions, has recursive data types, and uses deferred 

(lazy) evaluation on lists and tuples, thereby admitting a program- 

ming style to deal semantically with unbounded data structures. 

The smallest LML program unit that can be compiled and run is 

a single expression. Any executable LML program consists of an 

expression to be evaluated, but the expression may be a compound 

expression, involving the evaluation of locally defined constant 

expressions or of global definitions. Here is a simple example using 

the polymorphic function called ~ p .  

Map takes a function f (of type a->@), and a list 1 (of type 

list(#)), and returns the list obtained by applying f to each element 

of 1 (which is of type list(@)). Map is defined as 

map: (a -> 8) -> list(a) -> list(@) 



letrec map = hf.U.case 1 in 
nil : nil 

11 a.rest : (f a) . map f rest 
end 

Here period (".") is the infix list construction operator and the 

double stroke ("11") is the separator for case instances in case list. 

To apply map on actual parameters we define the following 

functional program to add one to each member in a list of 

numbers, its value being the list of natural numbers incremented 

by one. 

let F = ha.hb.map(Ax.x + a) b 

All function applications in LML are "curried" [18,32]. That is, 

al l  functions are assumed to take just one argument, which has no 

restriction, since that function may return another function that 

takes one argument. Map is such a function that we just described. 

LML scoping rules are similar to those for most block- 

structured languages, in that expressions may reference any 

identifier defined locally in the current equation group, or in any 

surrounding equation group. However, local references are allowed 

to be mutually recursive. This implies that equations may appear in 

any order. 
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LML also has a powerful patternmatcher through which corn- 

plex functions may be defined more easily. A pattern may have one 

of the following form; identifier, pair, cons, or list. For example, 

the function append x,y takes two arguments, x and y (both lists), 

and produces as a result the single list which has all the items of x 

followed by all the items of y. Amend can be defined as 

append: (list(a) -> (list(list(a)) -> list(a)) 

letrec append ([I, [I) = [I 
11 append (L1 ,[I) = L1 
I1 append ([l,U) = L2 
11 append (LI,L23 = hd L1 . append (tl L1, L2) 

The pattern-matcher is very useful when used with lists. Lists 

are evaluated "lazily". The selector functions are hd ("head") and tl 

("tail"), for lists and f s t  ("first") and m d  ("second") for pairs. 

"Infinite lists" are defined in the obvious way. The infinite 

stream of numbers starting at zero can be defined by the function 

"from ' I .  

from: int -> list(int) 



t 

let succn = n + 1 
in 

letrec from n = n 
in 

from 0 

from (succ n) 

Where szlcc is a successor function, which when applied to its 

argument returns its successor. 

Of course, elements of an infinite list are not computed until 

they are selected ("demanded") for evaluation. When a demand for 

a value of a list type occurs, the function returns a pair of closures 

(a closure consists of an expression together with bindings for all 

free variables in the expression). One closure is evaluated to find 

the first element of the list, and the other one is used to evaluate 

the remainder of the list. 

There are other syntactic and semantic features of LML, but 

they are beyond the scope of this paper. The interested reader can 

find more about the language LML, its semantics and the imple- 

mentation details in [11,33]. 

To illustrate normal-order graph reduction in LML, we take our 

first example map and define a function m2Lone to add one, to 

each member in a list of numbers, where aoldDne is equivalent to 

let aaEaLone = ha.Ab. map (hx.x + a) b 

in 
a&Lone 1 [l; 2; 3; 4; 51 

Which gives us following series of graphs (see Figures 3.1 and 



Equation 

' x 

X 

add 
a 

Figure 3.l(a) Definition of ' a d b n e '  

Equation 

Figure 3.1(b) Definition of 'map' 



"add-one" 

Figure 3.2(a) Construction of the graph for ' a d b n e '  

x 

add 

Figure 3.2(b): Substitute definition of 'adhone' and bind its argu- 
ments (the second reduction is an instance of the rule of q- 
reduction in the lambda calculus; -.add 1 x = add 1) 

Cons 

Figure 3.2(c) The graph reduction of ' a d b n e '  



The graph reduction execution of a program is carried out by 

performing transformations on the expression graph to reduce it 

to its value. In particular, evaluation of a function application 

amounts to repeatedly transforming an application graph to an 

instance of the right-hand side of the function definition, with argu- 

ments substituted for parameters, until no further reduction is 

possible. Thus the function definition represented in Figure 3,l(a) 

is applied to an argument in Figure 3.2(a) (where @ denotes func- 

tion application in the Figures). Figure 3.2(a), represents a graph 

just before the start of evaluation. The Figure 3.2(b) shows the 

graph after substitution. In Figure 3.2(c), the graph is in the cons 

f o m ,  whose head part is reduced to an integer value, whereas the 

tail part remains unchanged and needs to be evaluated. 

The execution continues in this fashion until there are no more 

evaluations to take place for the arguments of the list constructor. 

When a part of the graph has been reduced to a canonical form (by 

definition the graph is said to be in canonical form when the root 

application node is reduced to any one of the following form: int, 

boo1 or cons), it may then be used for output. A node will be 

removed from the graph when no further reference to it is possi- 

ble- 



4. THE BINDING OF M L  PROG- TO THE W C H I N ' E  

Over the past few years, many architectures have been 

developed in order to support direct execution of high-level 

languages. Such architectures differ from traditional implementa- 

tions by the elimination of machine language. Various direct execu- 

tion schemes have been proposed. Some assume that the high level 

language constructions are to be executed directly by the 

hardware without going through any form of translation to an inter- 

mediate language [3,34,35,36]. However, most of them advocate a 

k" 
+- less extreme solution that uses an internal form to represent the 
.$ . 
&? * 
?. 

source program. Typical direct execution schemes are classified 
L'- 
b-2 into two models. The first one, analogous to the compilation of con- 
++* 
1 -  

"$E-; ventional models, translates the source program into an intermedi- 

ate representation suitable for immediate interpretation. The 

second one, holds the high level language program (or the directly 

executable language -DEL) itself in the hardware and interprets it  

by a Axed microprogram [37]. 

In comparing these two schemes, the general feeling is that the 

overhead in decoding and interpretation by a DEL architecture of a 

program that does not go through any compilation is so overwhelm- 

ing that such architectures will never become viable for executing 



that it is not reasonable t o  begin program executions without fist 

checking for syntax or detectable semantic errors. These architec- 

tures are also less efficient than the other approach in that all 

binding is performed dynamically and repetitively during execu- 

tion. Thus every time the machine executes a statement, i t  per- 
t' 
I,- 

R form the lexical analysis, parsing, and some semantic functions of 

a compiler, causing an enormous amount of overhead. 

The operating principle of a pure reduction machine [23] is 

radically different from a traditional von Neumann computer, 

which synthesizes a result by altering stepwise a state vector into a 

set  of values. A reduction machine always starts out with a denota- 

tion of the result, which gets reduced by meaning-preserving 

transformations to the final result. The latter is characterized by 

the absence of any instances of reduction rules that could be 

applied. A reduction language program may be viewed as a set of 

definitions, name: expression pairs, and an expression to be 

evaluated. Evaluation is usually based on a set of reduction rules 

consisting of arithmetic, logic, conditions, beta-reduction, and 

recursion. Rules have no side effects and preserve referential tran- 

sparency of expressions. This leads to the main architec turd  idea 

to  evaluate literally (or virtually) "in place", i.e. in the expression. t 
$2 

Q This idea necessitates an appropriate set of reduction operations 
= * 



that need to be performed on the input source program. These 

operations are respectively: 

1) Replace a leaf node whose value is an identifier by the graph 

bound to that identifier in the (static) environment. 

2) Replace any graph whose principal operator is an arithmetic or 

boolean operator by &st evaluating its operands, then applying 

the operator. The resultant value replaces the operator graph. 

3) Reduce a graph whose principal operator is "if" (conditional) by 

first evaluating the predicate subgraph, then selecting one of 

the tqo alternate graphs for evaluation. 

4) Reduce an application graph by first evaluating the left sub- 

graph (function part). Then, if the left subgraph is: 

(i) a language-defined function, replace the application 
graph by the value of the function applied to the 
argument subgraph; else 

(ii) if the left subgraph is a lambda expression, replace 
the application by a copy of the body of the lambda 
expression in which all references t o  the lambda-bound 
variable are replaced by references to the argument 
subgraph, then reduce the resulting graph. 

This model has in common with combinator reduction that 

applications of programmer defined functions are evaluated in 

normal-order and by rewriting the graph, and has in common with 

lambda calculus reduction that bound variable occurrences are 

replaced by argument expressions. However, it  differs from combi- 
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nator reduction in that complex expressions (programmer-defined 

2 
P, functions) have equal status with elementary combinators, and 

differs from lambda calculus in that bindings of variables occur by 

position rather than by name. Hence there is no dynamic environ- 

of recopying function graphs and rebinding their variables. This is 

particdarly noticeable when computation is repetitive. Thus it  is 

difficult to evaluate efficiently certain expressions, such as one in 

which a function of several arguments is applied to argument 

expressions each of similar form. The problem is that each such 

applicative expression requires the construction of a fairly large 
JA 
6 
5: graph. Constructing such a graph may be much more costly than 

reducing it. 
@ 
-% 

An alternative strategy is to employ a sequential machine capa- 
d 
.& 

t. ble of executing individual instructions to apply language-defined 
d 
* 
9E * operators, implement conditional selection by jumps to labelled 
! 

instructions, etc. When this is done, it  becomes unnecessary to 
i 
i build a graph to represent the application of a function-valued con- 
3 
d 

p stant to an argument expression, provided that the application is 
$ 

to be evaluated immediately. A function can be represented by a 

i 
f code sequence rather than by a graph. Although evaluation of 



storage, such storage would be required also by a mechanical 

evaluator of pure graph reduction. 

The G-machine architecture that has been designed employs 

the technology of a sequential, stored program machine to avoid 

much of the overhead in copying graphs that is inherent in the 

pure graph reduction model. It is this use of sequential machine 

technology that allows its performance t o  be competitive with 

sequential evaluators of imperative language programs. 

The G-machine architecture has been developed in order to 

support the direct execution of LML programs after translating 

them into an intermediate form. LML is a natural choice for graph 

reduction because the compilation schemes used for constructing 

the graph and further reducing them to a value closely correspond 
Y 

to the semantics of the language that support a set of reduction 

operations. LML is a very simple language in which only a few prim- 

itive operators and data types are sufficient for implementing 

powerful algorithms with complex data structure. Initially, an LML 

program which is under execution is transformed (using a set of 

compilations schemes) into the following primitive graphical form 

on which graph reduction is performed. 

T P l Y  
Function Argument 
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Here function and argument may themselves be non-trivial 

expressions, and the "apply to" operator is regarded as a construc- 

tor that relates the two subexpressions. 

A t  runtime, when the evaluator wants t o  reduce an application 

involving a user-defined function, it executes the machine code for 

this function that is produced by the LML compiler to reduce the 

function application to its value. 

Various compilation schemes are used to translate a LML 

source program into a set of instructions that can be interpreted 

directly. Here we summarize the compilation schemes that are 

used for translating function definitions and expressions into exe- 

cutable code. (The complete set of compilation rules can be found 

elsewhere [33]. ) The compilation schemes are 

1) to generate code for a function definition f = hzl. ... AZ, that 

will reduce a graph representing an application f e ,  ... e, to its 

value . 

2) t o  generate code that constructs a graph representing an 

expression and leaves a pointer to the resulting graph on the 

top of the pointer stack. 

3) to generate code that computes the value of an expression and 

leaves a pointer to the result on the top of the pointer stack. 



4) to  generate code that computes the value of an integer-or 

boolean-valued expression and leaves the result on the top of 

value stack. 

For an intermediate language to act as the instruction set of a 

machine, it is necessary that all computational problems can be 

executable in this language. Hence the language must contain 

primitives for: 

1) arithmetic and logical operations. 

2) conditional operations. 

3) iteration and recursions. 

4) list manipulations. 

These instructions (which can be thought of as an intermediate 

language in conventional implementation) are obtained from the 

G-machine compiler by translating the abstract syntax tree. These 

instructions and their usage are summarized in the next section. 



5. FUNCTIONAL D E S C m O N  OF THE GMACHINE ARCHITECTURE 

The G-machine is a 32-bit, stack-oriented machine [39], 

designed exclusively to execute functional language programs. Its 

stack architecture was specifically developed to provide efficient 

means for graph traversal and to maintain local environments dur- 

ing the course of an evaluation. 

The G-machine configures a memory into three parts. The con- 

trol memory (C), holds the sequential instructions compiled from 

an LML program, and is read only by the processor during program 

execution. The graph memory (G), is a directed, rooted graph that 

is both read and updated during an evaluation. A t  any given time, 

the graph holds the representations of partially evaluated program 

structures. As the evaluation continues, the graph grows and 

shrinks dynamically and therefore requires storage management 

by garbage collection. The dump (D), which is used as a stack, 

stores contexts on function applications. 

The processor itself also contains a pair of stacks. The pointer 

stack (P) holds pointers to traverse an expression grdph, and it 

provides a local environment and a dynamically allocated work 

area for the currently active function application. The value stack 

(V) holds intermediate arithmetic and logical values produced in 



the course of an evaluation. The information sent to or recovered 

from the dump in a context switch consists of the images of pointer 

and value stacks, processor status flags and the contents of the 

program counter. 

5.1. General Operation 

The internal functions of the G-machine are partitioned logi- 

cally into two units. The first is the Bus Interface Unit and the 

second is the Execution Unit, as shown in the block diagram of Fig- 

ure 5.1. These units can interact independently but for the most 

part they perform their operations as synchronous operational 

units. 

The bus interface unit provides the functions related to 

instruction fetching, operand fetch and store, bus control and 

storage allocation using a 40-bit bus (of which the lower 32 bits are 

multiplexed for address and data, while the upper 8 bits are solely 

used for tag; see the next section for tags). 

The execution unit receives pre-fetched instructions from the 

bus interface unit and executes the instructions. It  primarily per- 

forms the basic arithmetic and logical operations and stores the 

result back into the value stack or passes it to the bus interface 

unit for updating the graph. The execution unit also operates on 



t h e  pointer stack under program control and manipulates its con- 

tents to build a proper environment before a function is called. 

The general organization of the execution unit is quite simple. 

It is composed of two register stacks, a value stack and a pointer 

stack, used as a small local memory, an ALU, a status register, a 

stack pointer register (for the dump memory), an instruction 

decode unit, a microprogram memory (which generates sequences 

of micro-instruction address words to control various functional 

modules), and an input/output unit to provide value and pointer 

stacks an interface to the bus interface unit. 



Figure 5.1 Block diagram of the Gmachine 
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$., 
. F The control memory for the Gmachine is organized as a set of 
'- L 
58. consecutively numbered storage cells [39], where each of these 
*'. i" 
A -. cells contains eight bits .of information. 

f 4 

; *" .. * 

The graph memory is comprised of individually addressable, 

l: : allocatable units, each consisting of a pair of storage cells and a 

g +< vector of five tag bits. Each storage cell holds 32 bits of informa- B 
I 
8 
h tion, and is configured as: 

I tags I 32 bit cell 32 bit cell 

e- 
'. , 

The tag bits are used for graph reduction and to support a 
2 : 
3 g 
0 2 
@ 'V  

' 

parallel, on-the-fly garbage collection. Their uses are as following: 

1 1) A pair of bits is reserved for use in storage allocation and gar- 

bage collection. i. 
~ 

2) A pair of bits (one for each cell), which if set, represents that 
i; 

the cell currently holds a pointer. 
A .  

3 s  

3) A bit is exclusively reserved for graph node status information. 

If set, this bit represents that an expression is in normal form. 

Otherwise, the object represents a function application. 

The allocated cells in the graph memory are used in construct- 



cated cell-pair can be used to represent: 

1) An individual scalar value, in which case only the f i s t  of the 

cell pair holds data; 

2) A pair of scalar values; 

I 

f- 3) A function application, in which the first cell points to an 
5 

F s expression denoting the function to be applied, and the second 

i 
P cell points to its argument; 

4) A list constructor, in which the first cell points to the head of 

the list and the second cell points to the rest; i 
B 
f 5) A hybrid representation of a list or value pair, in which one cell 

holds a scalar value, and the other cell contains a pointer to 

the other member of the pair; 
i 
D 

It is not absolutely necessary to make use of hybrid represen- 

tations. However, use of the hybrid representations allows some 
E 
F reduction in indirect reference to scalar values embedded in pairs 
$ 
i and evaluated lists. The abstract G-machine as described by Johns- 

* son does not make use of hybrid representations on pairs. These 
i 
i representations were incorporated in our definition of Gmachine 

architecture to provide more efficient access to scalar data items 

embedded in pairs after we noticed the lack of support from the 

LML compiler to access such data items. 



The dump memory for the G-machine is organized as a linear 

array of storage cells. Each of these cell contains 32 bits of infor- 

mation. 

5.3. Tlre Instruction Set 

The expression graphs are evaluated (reduced to their values) 

using a set of instructions; these instructions are closely tied to 

the semantics of the language and traverse the graph to reduce it 

into a normal form. 

The basic instruction for the G-machine is one byte long. The 

instructions are grouped into seven principal categories. The upper 

three bits of the instruction byte are used to reflect the 

instruction-group it represents and the lower five bits are used to 

identify the instructions in the group. Details of the instruction 

specifications are given in Appendix A [39], however we describe 

the instruction-groups here. 

Graph traversal and allocation instructions: These instructions 

control expansion and contraction of the expression graph. This is 

done by manipulating the pointers contained in the pointer stack. 

These instructions also update and allocate new nodes in the graph 

and control the evaluation of function application. 



Data fetch instructions: These instructions bring values from 

nodes of the expression graph or from the instruction stream to 

the value stack. 

Data structure selector instructions: These instructions operate 

on data structures, such as a list, and select its components. 

Arithmetic and logical instructions: These are conventional 

instructions, and they do the arithmetic and logical operations on 

the contents of value stack. 

Control transfer instructions: These instructions allow conditional 

jumps in the control stream, and provide backward jumps in the 

case of tail recursive function applications. 

b c t i o n  call and return instructions: These instructions support 

function call and return operations of LML programs. A function 

c d l  entails saving the state of the calling function, dynamically 

allocating and initializing local storage for the called function, 

binding arguments, and executing the called procedure. 

hstructions to support user defined data types: These instructions 

support user defined (abstract and/or recursive) data types. User- 

defined types can be defined as disjoint unions of sets of values, 

each formed by the application of a canonical constructor function 
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to arguments. The instruction INJECT constructs a representation 

of such a term as a tag-value pair. The instructions IS and OUT 

respectively test the tag and give a projection of the value com- 

ponent of such a pair. 

5.4. The Hachine System Architecture 

In any project that attempts to construct a prototype of a new 

processor architecture, the question always arises, "How one can 

possibly evaluate the processor without constructing an entire 

computer system?" The goal of the G-machine project is to evalu- 

ate the performance of some new ideas for a processor architec- 

ture. Therefore it  requires an environment that will not inhibit per- 

formance. 

In order to provide an operating system environment the pro- 

totype G-machine is planned to be run as an asynchronous, parallel 

co-processor to a conventional microprocessor. The Figure 5.2 

shows the G-machine system environment. The G-machine will 

obtain services such as initialization of its program memory and 

the graph memory, file input and output, a real-time clock, display 

management, code compilation and linkage and even garbage col- 

lection of the graph memory from its managing co-processor. The 

co-processor and the G-machine will be linked by some special 



purpose control circuitry, and will share dual-port access to the G- 

machine's program and graph memories. This environment is 

expected to provide the necessary performance evaluation of the 

Gmachine processor architecture. 
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Figure 5.2 The Gmachine system environment 
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6. THE GMACHUUE EXECUTION MODEL : A SIMP= 

In the graph reduction compilation scheme, each function is 

translated into a sequence of G-machine inst;ructions which 

reduces the graph of a function application to its value. Here we 

illustrate the G-machine execution states with the following pro- 

gram which returns a list of integers between two numbers: 

letrec c o u n t a b =  
if a > b then [I 
else a . count (a + 1) b 

in 
count 5 10 

The G-machine state.transitions for the execution of this pro- 

gram is shown in Figure 6.1. Before the start of the evaluation of 

the  function application the pointer stack is configured as in Figure 

6-l(a), where the stack top points to the function node 'count'. 

(The instruction EVAL, which evaluates a function application first 

cbecks that the stack contains all the actual parameters of the 

function before i t  performs a call. Which is a condition for the 

reduction to be possible). The G-code compiled for 'count' is: 



PUSH 1 

(b) 

count mj 

PUSE i? GET-FST 

0') (k) 

6.1 Pointer stack configurations for 'count 5 



ADD PUSHGLOBAL count vYlep 

( 0 )  (PI 

count 

0 

count 

PUSH 2 

(r) 

UPDATE 5 

(t) 



count: PUSH 1 
EVAL 
G r n J S T  
PUSH 3 
EVAL 
GETJST 
GT 
JPALSE label 
PUSH-NIL 
UPDATE 5 
RETURN 4 

label: PUSH 3 
PUSH 2 
GE3"ST 
GETLIT 1 
ADD 
MK,INT 
PUSHGLOBAL count 
MKAP 
M W  
PUSH 2 
M U R  
UPDATE 5 
RETURN 4 

The purpose of the first few instructions before the JFALSE, 

which is a conditional jump instruction, are to obtain the argu- 

ments of the function 'count' into the value stack and to test for its 

range as defined in the source program. The PUSH m instruction 

pushes the myth pointer of the stack, relative to the top (which is 

indexed with O), onto the stack. The EVAL instruction evaluates the 

top of the stack into a canonical form. Since, by definition, the 

integers are always in canonical form, an immediate return from 

EVAL is performed in this case, which leaves the stack 

configuration unchanged, as shown in Figure 6.l(c). The 



instructions GETTST and GETLIT are examples of data fetch 

instructions. The GETJST instruction fetches a scalar value into 

the value stack from the storage cell pointed to by the top of the 

pointer stack and GETLIT stores a literal value into the value stack 

from the instruction stream. The top two entries of the value stack 

are tested for greater than by the instruction GT, which leaves a 

boolean value on the value stack after the comparison is done; this 

is shown in Figure 6.1 (h) . 

The instruction JFALSE, takes either true or false branch 

according to the boolean value present on the top of the value 

stack. In the false case (the state transitions given here deal only 

with the false case, assuming the true case can be dealt with 

' accordingly), the instructions once again set the stack top to 

access the function arguments using PUSH instructions. The 

GETJSk instruction at this stage brings the first argument of the 

count into the value stack and the ADD instruction following the 

GETLLTT adds the top two entries of the value stack and leaves the 

result which is a new element of the list onto the top of value stack. 

The MKLYAL instruction creates a new node into the graph with the 

value obtained from the top of the value stack and leaves a pointer 

t o  this newly created node on the top of the pointer stack. The 

instruction PUSHGLOBAL 'count' pushes a pointer to the function 

'count' onto the stack and the MK-AP constructs an application 



node into the graph with the two topmost pointers from the pointer 

stack as its subparts. The Figure 6.l(0) shows the stack 

configuration after the PUSHGLOBAL instruction and Figure 6.1 (p) 

shows the same after an application node is created. 

The MK4R instruction at this moment constructs a cons pair 

into the graph whose left part is in evaluated form and the right 

part pet to to be evaluated. This is shown in Figure 6.1(s). One thing 

we need to note here at  this point is how the right part of the cons 

pair is structured after the M K P R  instruction. This graph is similar 

to our initial graph with the difference that one of the arguments of 

'count' is the result of evaluating the expression. This illustrates 

that in, our computation, expression graphs are evaluated (reduced 

to their values) a t  most once and all expressions that share a par- 

ticular subexpression benefit from the evaluation. 

After constructing the graph for the value of the right hand 

side in the definition of 'count', the cons node is copied to the root 

application node of the expression by the UPDATE instruction. This 

completes the evaluation of the function 'count' to its value. The 

RETURN instruction a t  this moment points to the newly con- 

structed node, as shown in Figure 6.l(u) and returns control to the 

instruction following the call to the function 'count'. 

The instruction that follows the function call is PRINT (it is not 

shown here to preserve clarity). The PRINT instruction is a complex 



instruction. It is complex in that it  trys to print the graph pointed 

to by the stack top and may cause a graph evaluation if the graph 

is not in a canonical form. The state transitions that were shown in 

Figure 6.1, is just before the PRINT can be invoked. Invoking PRINT 

on this graph will cause 5 to be printed and the right hand side of 

the cons pair will be traversed for further evaluations. 



7. A NOVEL ARCHlTE(=TURE 

"A general trend in processor design today is to increase the 

complexity of architectures commensurate with the increasing 

potential of implementation technologies" [40]. This leads to 

increased design time, increased design errors and inconsistent 

implementations. The G-machine architecture attempts to show 

that with the proper architectural support for key aspects of the 

machine organization, that performance benefits can be obtained 

even with a simpler architecture. 

The Gmachine is actually a very simple architecture. Its 

novelty lies in the architectural-level support for graph traversal 

and update-in-place. This uses a pair of stacks: a pointer stack and 

a value stack. The pointer stack holds pointers to traverse the 

graph and provides a mechanism not only for procedure linkage 

and operand binding, but also for pointer manipulation and the 

allocation of a work area for the currently active function applica- 

tion. The value stack holds the intermediate arithmetic and logical 

values produced in the course of an evaluation and reduces the 

incidence of indirect reference to values that have recently been 

computed. The consequence is that the Gmachine has relatively 

few instructions, a single addressing mode, and very few and very 



short instruction operands. 

In fact, the G-machine instructions are compiled code for a 

graph reduction that can be interpreted directly. These instruc- 

tions allow a compiler to keep the code volume smaller for the G- 

machine architecture than for other architectures. This has a posi- 

tive effect on execution speed because it reduces the amount of 

information that must be transmitted between storage and the 

processor. 

Certain instructions in the G-machine have multiple execution 

phases. These are complex instructions which invoke other instruc- 

tions during their execution (PRINT and ENAL are examples of such 

instructions). They may induce traversal of the graph to construct 

an environment for function application. I t  is this set of instruc- 

tions which most differentiate the G-machine from other architec- 

tures. 

In programming languages there is a sharp distinction between 

data and instructions. Unlike a conventional computing system, 

instructions and data in the G-machine are distinguished explicitly 

by storing them in different memories. The control memory in the 

Gmachine holds only the instructions compiled from the LML pro- 

gram, and the graph memory holds a representation of the graph 

1 that is under evaluation, along with the necessary constants. 
f 
I 

i 



8. THE DESIGN OF A S I m T O R  FOR THE GMACHINE 

The simulator of the G-machine architecture was designed in 

arder to investigate the performance and validity of the architec- 

ture before committing t o  a particular hardware implementation. 

The simulator is a register-transfer-level (RTL) behavioral descrip- 

tion of the Grnachine architecture and its components are written 

in ISP' [41] to be run on a VAX- 11 /780 under Berkeley UNIX 4.2. 

The simulator provides a design environment that enables the 

user to 

I) specify a hardware/software systems at multiple levels of 

abstraction; 

2) test different algorithms in an interactive environment in order 

to evaluate architectural trade-offs and to study the algorithms 

for their functionality and performance. 

The simulator consists of four highly-interrelated modules. 

They are respectively: 

11 An 1SP' description of the G-machine that decodes and exe- 

cutes instructions. 

2) An assembler for the Gmachine code that transforms 

mnemonic instructions to processor object code. 



3) A software loader for the G-machine that loads assembler out- 

put into simulated memories. 

4) The runtime environment, and various support and testing pro- 

cedures for use during runtime. 

The simulator reads an input fle created by the assembler and 

executes the program, interpreting each instruction every time it 

is executed. The stacks, program counter, stack pointers and con- 

dition code flags as well as bus interface unit and bus protocols are 

all designed using simple data structures. 

The first task in the design of the simulator was to define the 

type of programs to be simulated and the level a t  which they would 

be simulated. Ideally, the execution of a complete operating sys- 

tem with typical user processes should be simulated. This is not 

practical mainly for two reasons: 

1) The ratio of simulation time to simulated time will simply take 

too much time and too many resources on the host computer. 

2) An operating system for the G-machine is not intended to be 

designed as a part of this project. 

Even though an operating system is not simulated, the simula- 

tor still deals with the operating system issues, such as 

input/output, dynamic memory allocation and storage manage- 

ment. The simulator we have developed handles this problem by 
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translating the I/O calls to another program, which in turn pro- 

vides the  interface between the simulator and the system and does 

the necessary I/O.  The storage allocation was done statically in the 

t -  simulator by maintaining an allocation register in an 
t autoincrement fashion. 
1 

I The simulator was designed not only to execute the programs, 

but also to obtain dynamic statistics and address traces from the 

execution of the programs. There are two places where statistics 

can be collected: 

k 1) In the simulator itself. 
f. 
9 

q 2) In the trace analyzer, which reads the instructions and data 
i 

g address traces produced by the simulator. 

t 
; The advantage of collecting statistics in the simulator itself is 

4 that i t  is faster than producing address traces and analyzing them 

by special programs. The disadvantage of collecting statistics in 

U the simulator is that it clutters the interactive environment. Furth- 

ermore, when new types of statistics are desired, the simulator 

itself must be modified, thereby possibly introducing bugs. 

Various statistical pieces of information can be collected from 

the simulator. They are respectively: 

1) Maximurn/Average depths of the value stack during program i 

I execution. 
3 



2) Maximum/Average depths of the pointer stack during program 

execution. 

3) Number of JUMP instruction executed during a program execu- 

tion. 

4) Maximum length of a JUMP interval. 

5) Minimum length of a JUMP interval. 

6) Maximum number of function arguments in a function call. 

7) Number of read accesses to the graph memory. 

8) Number of write accesses to the graph memory. 

9) Number of read accesses to the dump memory. 

10) Number of write accesses to the dump memory. 

11) Number of context save requests. 

12) Number of context restore requests. 

13) Amount of graph memory used during a program execution. 

14) Amount of dump memory used during a program execution. 

15) Total number of function calls present in a program. 

16) The number of executions of an particular instruction. 

17) Total timing involved in the program execution. 

18) Total timing involved in instruction fetch. 

Trace analyzers are simple to develop. As part of this project a 

trace analyzer which produces instruction frequencies and jump 



lengths was developed [14]. This program reads the trace output 

from the simulator and produces a summary table of dynamic 

instruction frequencies and jump lengths. 

The simulator and the trace analyzer were used to collect vari- 

ous statistics about the G-machine architecture. We summarize 

this information in the following section. 



9. PERFORMANCE ENALUATION OF THE GMACHINE A R C H I T E m  

As we outlined in previous sections, the novel features of the 

G-machine architecture are: an instruction set that supports graph 

traversal and update in place and a pair of stacks for holding the 

environment during the course of evaluation. Out of the many pos- 

sible measures of the effectiveness of these features, this thesis 

only concentrates on performance (i.e., the time it takes to exe- 

cute a given task), since high performance is the major goal of the 

Gmachine architecture. The simulated execution time of a given 

t a s k  in the G-machine is based on some assumption about the exe- 

cution time of each instruction. The assumption is that each 

memory access takes 4 clock cycles (since the implementation 

technology for the G-machine is not determined yet, an assumption 

on clock speed may not be correct at  the present time), and all 

other instructions (except MUL, DIV and  MOD)^ take a single clock 

cycle for execution. 

Ideally, each component of the Gmachine architecture should 

be evaluated independently. Thus it would be interesting to meas- 

w e  the effectiveness of each instruction, and the number of times 

a graph is traversed to construct an environment and to reduce it. 

each of these instructians is assumed to take OOog N) time for execution, where N is the word 



Since the G-machine architecture supports a pair of stacks in the 

processor itself, information about maximum stack depths will also 

be worthwhile to collect. The effectiveness of a proposed design can 

be deduced from data obtained by simulation of the Gmachine 

architecture. 

Simulation of three example programs has been performed 

using the simulator. Each of these programs has moderate code 

size and takes several thousand machine cycles for its execution. 

These programs were selected to exercise the execution of various 

instructions and to measure the complexity of constructiq the 

environment during the execution. 

The first two programs used in the simulation are quite simple. 

They are, respectively, a linear time algorithm to calculate the Nth 

Fibonacci number and an algorithm t o  compute Ackermann's 

exponential. The first one was selected to exercise the basic reduc- 

tion model with recursive applications and the second one was 

chosen to evaluate the use of higher order functions. The third 

program is a Treesort program of moderate code size that sorts 

the elements of its input list in increasing order. Treesort was 

selected for its use of a recursively defined data type and to 

observe the dynamic growth and shrinkage (it constructs suspen- 

sions before evaluating expressions) of the graph that is under 

size in bits. 



evaluation. 

The basis for the discussion in this section is the data from 

Table 9.1. All the G-machine data was obtained using the simulator 

and opcode trace analyzer [14]. The execution time for the pro- 

grams that obtained from the simulator were compared with the 

VAX execution time. The instruction fetch time for the G-machine 

(from control memory with one byte at a time) counted 4 cycles 

are not overlapped with the execution. The VAX execution time was 

obtained using the csh time command. The number of data 

memory refere~ces and the sequence of instruction executions for 

the VAX has not been determined. Both optimized and unoptimized 

versions of the programs were run on the VAX. 

The G-machine statisti'cs presented in Table 9.1., are only a 

small part of the wealth of information produced by the simulator 

and trace analyzer. The interpretation of some of the items is not 

obvious: UNWIND is a phase of FVAL instruction that traverses a 

graph and constructs the proper environment (by pushing pointers 

to  the argument and function parts of each application node) on 

the pointer stack before the evaluation takes place. The RETURN 

instruction performs a return from NAL. The number of execu- 

tions of the PRINT instruction was collected to observe how many 

leaves of the list in the data structure were evaluated. When the 

value is a list, the head element and the tail list are in turn 



evaluated and printed. The number of PUSH instructions executed 

by the program was collected to observe the need for hardware 

support for stacks. (Recall that PUSH is a stack-to-stack movement 

of a single datum.) 

Table 9.1. 

WAX execution time (msecs) 700 1 700 



B e  performance of the G-machine architecture is enhanced by 

providing hardware support operations on stacks. To determine 

what instructions are used most frequently, we counted the execu- 

tions of each instruction during a program execution. Data col- 

lected from the simulated programs are shown in Table 9.2. 

Table 9.2. 

, RETURN 8.5 2.2 8.7 
PUSH 19.0 16.2 --- 21.0 
PUSGLOBAL 8.7 2.4 8.8 

, MOtGE: 0.0 4.8 0.0 
, MICAP 

MXLPATR 
MKYAL 
GETTST 
G E T l S T  
EQ 
J U W  

, FST 
SND 
IS 
OUT 

, INJECT 
ADD 
SUB 

11.9 
1 .? 
3.4 
6.8 
3.4 
1.7 
1.8 
3.4 
1 .? 
0.0 
0.0 
0.0 
1 .? 
1 .? 

4.5 
0.0 
6.9 

14.0 
14.0 
7.0 
9.4 
0.0 
0.0 
0.0 
0.0 
0.0 
2.3 
4.6 

10.2 
2.2 
0.0 
1.7 
0.0 
0.0 
4.7 
2.2 
3.0 
3.1 
2.7 
1.2 
0.0 
0.0 



The most important observation from Table 9.2 is that the 

instructions that operate only on the pointer stack without refer- 

ence to Gmemory (PUSH and MOVE) are quite significant (about 20 

percent of the total number of instructions executed). The instruc- 

tions that appeared most frequently after the stack configuring 

instruction are those which operate on the stack and also require 

access to storage. These instructions include graph traversal, 

storage allocation, data fetch and data structure selector instruc- 

tions (such as UPDATE, MICAP, M K J A L ,  GETJST, FST, PUSHGLO- 

BAL ~ q d  the INWIND phase of ENAL) . This information suggests that 

a cost-effective system can be designed for efficient execution of 

thz G-machine code by providing a hardware address cache (i.e., 

the pointer stack) in the processor itself, and it is the reason why 

the architecture that we simulated provides direct support for the 

pointer stack. 

In order to make meaningful assessment of an architecture 

that is under design it is important that all of the variables that 

affect performance are properly addressed. These include the 

clock speed of the system and the number of memory system wait 

states. A s  we outlined before, since the G-machine architecture is 

not refined yet for an implementation technology, any assessment 

on the clock speed will not be fair a t  this time. 



One of the most expensive operations in the execution of an 

instruction in any computing system is the time spent for memory 

access. The Gmachine instructions (excepting the instructions 

that support graph traversal and context switching) and their 

respective number of memory references are summarized in 

Appendix B. Here we include in Table 9.3., the data obtained from 

the simulator showing the percentage of the execution time that 

was spent to  access storage in our example programs. 

It has been suggested that context-switching can be the most 

time consuming operation in executing high level language pro- 

grams [42,43,44]. In our example programs, the percentage of 

context-switching requests over the total number of instructions 

simulated are 4.5-18%. The definition of the G-machine does not 

provide architecture-level support for context-switching. Context- 

switching is an expensive operation in the Gmachine as i t  is in 

most architectures. Performance benefits can be certainly 

obtained by providing appropriate hardware support for context- 



switching. 

A possible solution is to include a cache store in the processor 

itself. The addition of a cache will make any architecture run fas- 

ter, but a cache is ineffective if it is too small. An effective cache 

would require a much larger area and complicated control mechan- 

ism in the processor. Another possible solution could be to use the 

strategy of overlapped register windows in hardware, which the 

designers of the Berkeley RISC-I processor [45] found very impres- 

sive. The RISC-I architecture as implemented is tailored to the exe- 

cution of imperative language programs (such as Pascal or C) and 

not towards the efficient execution of functional language pro- 

grams based on recursive function calls. The principal diseconomy 

of this model is that the register file overflow will become so 

overwhelming in recursive function applications that the efficient 

execution of the programs will not be possible without maintaining 

a online pool of registers that is freely available. 

A much simpler solution can be used to provide the hardware 

support for context-switching in the Gmachine architecture by fol- 

lowing the traditional architectural support used in ALGOL-like 

languages. This includes Dijkstra's "display-technique" and main- 

taining a runtime stack in some place in storage. But maintaining a 

runtime stack in memory will not certainly improve the perfor- 

mance of the G-machine architecture, since a large number of 



instructions in the program execution either directly manipulate 

the contents of the pointer stack or access it for indirect reference 

to the graph memory. Thus it would require a larger number of 

storage accesses and will not meet the desired performance goals.3 

Solutions that are not practical to implement in hardware to 

achieve performance benefits can sometimes be incorporated in 

software. One of the ways context-switching can be minimized in 

the G-machine program execution is by having a compiler recog- 

nize tail-recursive function applications and translating them into 

iterative code. This eliminates the need for a context-switch at  a 

tail-recursive call, instead requiring only the modest instruction 

scheduling overhead of a jump instruction. 

The present ML compiler as implemented already recognizes 

tail-recursive applications in the source code, and generates an 

efficient, iterative evaluation sequence. However, it does not 

attempt program transformations to generate tail-recursive appli- 

cations from a source program that was not written in that form. 

Since none of our example programs uses tail recursive function 

calls, they do not take advantage of this feature. 

In our definition of the G-machine architecture, we justified the 

need for architecture-level support for the stacks in the processor 

n o u g h  this idea has not been simulated but using the data from the simulator we And that ex- 
ecution time increases by about 30% (Fib: %.6X, Ack: 27.8% and Treesort: 33.8%) if we use this con- 
cept. 
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itself. Thus i t  will be interesting to know if we can bound the depth 

of the stack during the graph traversal and reduction of function 

applications. This will allow the use of a hardware supported 

pointer stack without an automatic overflow mechanism. Keeping 

the stack depth to  a minimum will improve the performance of the 

G-machine program execution by having to store only a minimum 

amount of pointer stack contents during a context-switch. This can 

be readily done during the UNWIND phase of the Gmachine execu- 

tion of an EVAL instruction. An example of the existing UNWIND 

phase and the new scheme are shown in Figures 9.1 and '9.2. )Is 

shown in Figure 9.2, the new scheme differs from the old bne Ly 
having only to push a pointer to the root application node' of the 

graph onto the stack and then just pushing a pointer to thk argu- 

ment part of each application node rather than pushi& new 

pointers to the function and argument parts of each appl I cation 

node. This is semantically correct because it is only the root appli- 

cation node that is updated with the result when the gr I, ph is 

reduced to  some canonical value. Thus it is not necessary to create 

an  environment in the pointer stack with redundant pointers'to the 

successive chain of application nodes for simply applying $ func- 

tion to its arguments. I 
I 

W e  have simulated the proposed UNWIND scheme dur& the 

execution of our example programs. A s  expected the resdts we 
I 



Figure 9.1 Arrangement of the stack after UNWIND (existing scheme) 
on the application of function 'F' on two arguments 

Figure 9.2 Arrangement of the stack after UFJWND (new scheme) 



obtained show a significant performance improvement by having 

only to savehestore a relatively small amount of pointer stack 

contents during each context-switch. The data we obtained during 

the simulation of new UNWIND scheme are shown in Table 9.4., and 

should be compared with the data of Table 9.3. 

Table 9.4. 

During the simulation of our example programs we compared 

its code size with the VAX codes (a successful modern minicom- 

puter) to measure the effectiveness of each G-machine instruction 

(as shown in Table 9.1). Clearly our observations on these features 

of the G-machine architecture is very encouraging and we indicate 

that the G-machine architecture is a good choice for a functional 

language evaluator. 



10. CONCLUSION 

A n  experimental investigation of a graph reduction machine 

architecture. has been described. A simulator for the G-machine 

architecture, capable of simulating the execution of "real" pro- 

grams and obtaining dynamic statistics, has been developed. This 

simulator was used to demonstrate the effectiveness of the G- 

machine architecture and its instruction set. 

The abstract model of computation used in the LML compiler 

has been studied. We have identified many potential advantages of 

the LML compiler for the G-machine architecture [46]. The values 

of expressions are shared among multiple references. In fact, 

because of the lazy evaluation strategy, an applicative expression 

is evaluated a t  most once. Dynamic environments are avoided by 

anticipating all references to non-local variables, and binding 

exactly the variables needed as arguments in applicative expres- 

sions. Some economy in control flow is achieved by recognizing tail 

recursive function calls, and thereby avoiding chains of barren 

returns from iterative function calls. 

The LML compiler as it is implemented presently does not gen- 

erate very efficient code. I t  requires more memory to build an 

application tree for applicative expression than it does t o  evaluate 



the expression straight away. Thus the lazy evaluation strategy is 

wasteful in those cases in which an applicative expression is 

suspended at first, but eventually evaluated. Less memory prob- 

ably would have been used if it were evaluated immediately. 

When an expression is evaluated, it is almost always 

represented by a newly allocated node in G-memory. Often, this 

node is then copied to overwrite an application node in an UPDATE 

operation. If only the copy is wanted of this newly allocated node, 

allocation of this new node could have been avoided. 

Similarly, when a sequence of tail-recursive calls i ~ :  evaluated, 

the values computed in all but the final call of the sequence are 

only used as arguments to the succeeding call in the sequence. 

However, new storage is allocated in G-memory to'represent each 

of these intermediate values. If this specialized use were recog- 

nized, the new values could just overwrite the storage previously 

allocated for arguments, avoiding a sequence of unnecessary 

storage aliocations. 

Another possible source of optimization in the use of storage is 

to recognize when new basic values (arithmetic and boolean) are 

used immediately as argurnents of arithmetic or boolean expres- 

sions, or tested by an "if". Such values need not be allocated for 

storage at all, but may be retained in the V-stack until used. For 

repeated uses of the same operand, a more sophisticated 



algorithm is required. This strategy may also be extended to values 

produced by function applications. 

It is extremely important for performance to be able to  take 

advantage of these opportunities to avoid unnecessary storage allo- 

cations. Performance is degraded in three ways by the profligate 

use of storage. First, there are extra instructions executed to per- 

form allocations. Second, there is either an eventual loss of 

efficiency due to storage fragmentation, if a program is run in a 

large virtual address space without the use of garbage collection, 

or there is time lost in collecting cells to prevent this fragmenta- 

tion and restore locality. The overhead of collection will be at  least 

proportional to the total number of cells allocated (unless collec- 

tion is done by a parallel processor). Finally, we have seen that 

the re  are optimizations of the f unc tion-call protocol which are 

available when the compiler implements an application of a 

globally-defined function. These optimizations are not possible 

when the call is produced by UNWINDing a previously constructed 

application graph, which is the case when a suspension is finally 

e d u a t e d .  

The costs of a computation are identified in terms of a number 

of accesses to a data structure whose size is potentially 

unbounded. Much of the future research should concentrate to pro- 

vide effective means to improve program locality. The results 



obtained from the simulator show how some such improvements 

were obtained by providing hardware stacks for graph traversal 

and to hold local environments during evaluations. 

It is also expected that higher performance benefits can be 

obtained in the execution of the Gmachine code that supports the 

new UNWIND scheme. Some of our future research will be to incor- 

porate these ideas into a new G-machine compiler that will produce 

highly optimized codes and will reduce redundant allocations. 

Performance benefits can also be improved by an order of mag- 

nitude if  various architectural units of the G--&adhine can be run in 

parallel. Such as instruction pre-fetch and execution can be over- 

lapped with the sequentiality of the machine state if a separate bus 

is provided between the processor and the control memory. 

Further studies on various architectural issues can be easily 

performed using the simulator developed. The operating system 

issues have not been addressed in this thesis. Once the operating 

system features are finalized they should be incorporated in the 

simulator so that some measures of the new computing environ- 

ment could be obtained. 
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APPENDIX A 

The following are the definitions of the Gmachine instructions. The action 
of each instruction is defined p a transformation of a six-tuple, 

in which C is the control. P and V are the traversal and value stacks respectively, 
G is the expression graph, D the dump, and E the environment. Sequences are 
represented using a dot for the sequence constructor, and () denotes the null 
sequence. The majority of the instructions are taken directly from [6]. Some 
instructions have been added to allow value-pairs to be handled without indirec- 
tion. Less attention has been paid to  the arithmetic and logical group than to 
other instructions; these will no doubt be refbed somewhat before a design is 
committed for implementation. 

- EVAL - 
<EVAL.C, n.P, V. In: AP nl %]+G. E. D> ==> 

<UNWIND.(), n.0. (). [n: AP nl n2]+G. El (C.P,V).D> 

<EVAL.C, n.P. V. [n: OP opemnds]+G, E, D> ==> 
<C, n.P, V, [n: OP operads]+G, E, D> 
a t  a node for which OP is not AP. 

- UNWIND - 
twhen UNW3ND is executed, the active node must be an AP or a FUN) 

<UNWlND.(), n.P, V, [n: AP nl n2]+G. E, D> ==> 
<UNWIND.(), nl.n2.n.P. [n: A .  nl nZ]+G, E, D> 

<UNWIND.(), n.n, ... nk(), V, [n: FUN f]+G. [f: (a, C9)]+E (C".P".V").D> ==> 
k >= 2*ai-1 : CC'. n.nl ... nk() V, [n: F U N  f]+G, [E (a,Ce)]+E, (C".P".V").D> 
k < 2*a+i : <C1, nk.PW. V". [n: FUN f]+G. [f: (a.C)]+E. D> 
treduction of an application occurs only when the requisite number 

of arguments is present] 

- CALLGLOBFUN - 

<CALLGLOBFUN f.(),.P, V, G, [f: C9]+E, D> ==> <CD,.P, V, G, [f: Cg]+E1 (C,P,V).D> 



- RETURN - 

< R n V R N  m C ,  no ... m.0. (1. [n,: OPoperands]+G.  E. {C',S',VS).D> ==> 
<C', nm.P'. V', [n,: OP  operands]+G. E, D> 
!the node at  the bottom of the stack should have been evaluated 

before a RETURN is executed{ 

- PRINT - 

<PRINT.C, n.P, V, [n: CONS nl nZ]+G. E, D> ==> 
<PUSH 0.FST.EYALPR.INT.SND.EVAL.PHNT. C, nP. V, [n: CONS nl n2]+G. E. D> 

<PlUNT.C, n.P, V, [n: OPoparands]+G,  E, D> ==> 
<C,.P, V, [OP qperands]+G, E, D> 
if  U P  is not CONS. 

- instructions to support graph traversal - 

CMOVE m.C, ng.nl ... nm.P, V, G. E, D> ==> <C, nl ... nm-l.nO..P, V, G, E, D> 
when m > 1 

@OPm.C,n o... n, .P,V,G,E,D>==> <C, P ,V ,  G , E , D >  

- UPDATE - 
)this is the sole operation that overwrites a node value in the graph] 



- Node allocation instructions - 
(in which n', nlS, and n2' represent new unique node names] 

cMXJT i.C,.P, V, G, E, D> ==> <C, nY.P, V, [n': CONST i]+G, E, D> 
[inserts a literal value into the graph] 

<KVAL.C,.P, i.V, G, E, D> ==> <C, nl.P, V, [n': CONSTi]+G, E, D> 

< u . C ,  nl.n2.P. V, GI E. D> ==> <C, nS.P, V. [n': AP nl n2]+G1 E, D> 

<MWRC, nl.n2.P. V. G. E. D> ==> <C. n'.P. V. [CONS nl nZ]+G. E. D> 

<KVALJRC..P, il.i2.V, G, El D> ==> <C, n'.P, V, [n': PRil,i2]+G, E. D> 

-VlJRC, n.P, i.V, G, E, D> ==> <C, n'.P, V, [n': H-PR1 i n]+G, E, D> 

<AWIOC m.C,.P, V, G. E. D> ==> <C, nll ... nm9.P, [nl: HOE. .... n,':HOLE]+G. E. D> 

- data fetch instructions - 

<GET_FST.C, n.P,V, [n:PRili2]+G, E, D> ==> 
<C..P, il.V, [n: PR il iZ]+G, E. D> 
&he node may also be a H-PR1J 

cGETSND.C, n.P, V. [n: PR il i2]+G. E, D> ==> 
<C,.P, iZ.V, [n: PR il i2]+G, E, D> 
(the node may also be a H-PR2J 

<GET_PR.C, n.P. V. [n: PR il i2]+G. E, D> ==> 
<C..P, il.i2.V, [n: PR il iZ]+G, El D> 



- data structure selection - 

<FST.C, n.P. V. [n: H-PR2 nl $J+G. E, D> ==> <C, nl.P, V. [n: H-PR2 nl i2]+G, E, D> 

<SND.C, n.P. V. [n: H-PR1 ii nZ]+G. E. D> ==> <C, nZ.P. V. [n: H-PR1 il nZ]+Gl E. D> 

<FST.C, n.P. V, [n: CONS nl %]+G. E. D> ==> <C, nl.P..Vl [n: CONS nl +]+GI E, D> 

<SND.C, n.P, V. [n: CONS nl nZ]+G. E, D> ==> <C, n2.P, V. [n: CONS nl n2]+G, E, D> 

- test for a null List - 

<NUUC, n.P, V, [n: CONS nl nZ]+G, E, D> ==> 
<C,.P, false.V, [n: CONS nl nZ]+G, El D> 

<NUU,C, nP, V, [n: NIL]+G, E. D> ==> <C,.P, true.V, [n: NIL]+G, E, D> 

- arithmetic and logical operations1 - 

<binop.C,.P, il.iZ.V, G. E. D> ==> <C..P. (il &nap i2).V. G, E, D> 
where binop is one of ADD, SUB, MUL, DW, EQ, NE, LT, GT, LE, GE. 

<NOT.C,.P, b.V, GI El D> ==> <C,.P, (not b).V, G, E, D> 

- control transfer instructions - 

cJFUN f.(),.P, V, G, [f: C1]+E, D> ==> <C',.P, V, G, [f: c']+E, D> 

Condition codes (zero, negative, carry, overflow) are to be added. 



- instructions t o  support abstract data types - 

<IS n.C, iP, V, [i: HJR1 m d]+G, E, D> ==> CC, P, (m = n).V, G, E, D> 

<OUT n.C, i.P, V. [i: H-PR1 n d]+G, E, D> ==> <C, d.P, V, G, E. D> 

<OUT n.C, i.P, V, [i: H-PRl m d]+G, E, D> ==> <fail.C, d.P, (m <> n).V, G, E, D> 

<INJECT t.C, i.P, V, [i: H-PRl m d]+G, E, D> ==> <C, j.P, V, b: HJRl t i)+G, E, D> 

( f  is the type value{ 



GRAPH MEMORY REFERENCES OF THE GMACHCNE 
INrnUCTIONS 

The following are the G-Machine instructions that access graph 
memory. Each instruction is given here with the total number 
of graph memory references. The information in parenthesis 
describes the number of read and write to the memory. It is 
given in the form (R/W), where "R" is the number of read 
access and "W" is the number of write access. 

Instruction 

RETURN 

UPDATE 

UNWIND 

No. of G-Memory ref. Remark 

This is true 
only if the 
node is in 
canonic a1 

form 

It  is 4 (2/2) 
for pair 

For each 
application 

node 



w 

M U A I R  

M K Y U R  

MKYZPR 

MKYAGPAIR 

G E T r n  

GETSND 

GET-PAIR 

FST 

SND 

IS 

OUT 

INJECT 

No. of GMemory ref. Remark 




