
SIMULATION AND PERFORMANCE EVALUATION OF A
GRAPH REDUCTION MACHINE ARCHITECTURE

Ananda G. Sarangi
B. S., University of Calcutta, 1980

M.S., East Carolina University, 1982

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science 8c Engineering

July, 1984

The thesis "Simulation and Performance Evaluation of a Graph
Reduction Machine Architecture" by Ananda G. Sarangi has
been examined and approved by the following Examination
Committee:

Richard B. Kieburtz, Thesis be arch Advisor
Professor,
Department of Computer Science and Engineering

David Maier
Associate Professor,
Department of Computer Science and Engineering

-----------.---------.-----------------------------
Robert G. Babb IT
Assistant Professor,
Department of Computer Science and Engineering

,--=---

Dan Hammerstrorn
Adjunct Assistant Professor,
Intel Corporation

The completion of this particular piece of work provides a wel-
come opportunity to acknowledge some long standing personal
and intellectual debts.

It was Dr. Richard B. Kieburtz who first introduced me to the
field of functional programming and language directed com-
puter architectures. This work reflects, to a great extent, the
result of his insight, criticism, and encouragement. I am deeply
indebted and very grateful to Dr. Kieburtz for his guidance and
patience with this thesis and its author. This work would never
have been completed without his support and advice in the
development of ideas for this report.

In addition, Richard Vireday and Mark Foster have made many
valuable contributions to the discussion which follows, and
helped tremendously in keeping things moving forward.
Richard Vireday was of immeasurable help in designing and
carrying out large amount of testing for the simulator. The
instruction trace analyzer reported in this work was written by
Mark Foster, part of the data reported in the later chapters
were obtained from the trace analyzer. I gratefully ack-
nowledge their assistance.

I would also like to thank Dr. Ashoke Deb for many valuable
suggestions he made during the course of this project.

Many thanks are also due to Dr. David Maier, Dr. Robert Babb II
and Dr. Dan Hamrnerstrom for their efforts as my thesis com-
mittee members.

To everyone, my thanks.

Ananda G. Sarangi
The Oregon Graduate Center
July, 1984

TABU OF CONTENTS

... List of Tables

... List of Figures

1 . Introduction ...

2 . Background ...

3 . LML, . An Experimental Language for Graph Reduction

..

4 . The Binding of LML Programs to the G-Machine

5 . Functional Description of the G-Machine Architecture

..

.. 5.1 General Operation

... 5.2 Memory Organization

.. 5.3 The instruction Set

5.4 The G-Machine System Architecture

6 . The GMachine Execution Model: A Simple Example

.. 7 . A Novel Architecture

................... 8 . The Design of a Simulator for the G-Machine

9 . Performance Evaluation of the G-Machine Architec-

.. ture

... 10 . Conclusion

vi

vii

1

5

.. References 73

Appendices ... 78

Appendix A Specification of the GMachine In-

structions ... 78

Appendix B Effective Graph Memory References

of the G-Machine Instructions .. 83

LT.S OF TABUS

TABLE Page

9.1 Summary of Dynamic Statistics 60

9.2 Dynamic Percentage of Instruction Executions 6 1

9.3 Dynamic Percentage of Storage Access over Execution

Time .. 63

9.4 Performance Characteristics of New UNWIND Scheme

U S OF FIGURES

FIGURE Page

... 3.1 Construction of a graph 22

3.2 TheGraphReductionof"addone" 23

...................................... 5.1 Block Diagram of the G-Machine 35

............................... 5.2 The G-Machine System Environment 42

................. 6.1 Pointer Stack Configuration for " c o u n t 5 10" 44

9.1 Arrangement of the Stack after UNWIND (Existing

... Scheme) 67

9.2 Arrangement of the Stack after UNWIND (New

... Scheme) 67

vii

SIMULATION AND PERFORMANCE EJVALUATIOW OF

A GRAPH REDUCTION MACHINE ARCHITECTURE

Ananda G. Sarangi, M.S.

The Oregon Graduate Center, 1984

Supervising Professor: Richard B. Kieburtz

The Graph Reduction Machine (G-Machine) is an architecture

intended to achieve high performance in executing functional

language programs. The success or failure of this novel architec-

ture can only be determined by its performance in executing "real"

programs. The simulator of the G-Machine, described in this thesis,

makes possible detailed studies of the performance of the G-

Machine architecture even though the hardware implementation of

a G-Machine is not complete.

1. INTRODUCTION

Computational architectures are determined by the interplay

of a number of different and interesting constraints. These include

the nature of the algorithm to be executed, the data structure to

be employed, the nature of the programming language to be used,

the architectural units to be designed and the means for their

interconnection, and the implementation technology.

Unquestionably, the most important determinant factor of

these constraints is the nature of the programming language to be

supported by the the machine architecture. This in fact dictates

the architectural units and the instruction set that need to be

designed to support the efficient execution of the source language.

Due to the advent of VLSI [I], special purpose computer archi-

tectures can be realized that are not based on traditional, sequen-

tial control flow program organization, but on alternative, naturally

parallel organizations such as reduction or data flow to interpret

high-level-languag e (HLL) constructions. In fact the technological

advancement gives new ground rules ("language -> architecture ->

machine") of system design and makes possible a whole new rela-

tionship between language and technology. Architectures that use

this new concept of system design have machine organizations that

instructions manipulate their operands, and their patterns of con-

trol and storage structures. These machine architectures need not

designed to be general purpose, instead they may be highly spe-

cialized and have the attributes of so-called language-directed

architectures that eliminate the semantic gaps of conventional

computing systems.

A whole spectrum of special-purpose computer systems are

now under development t o support Direct Execution [Z-51 of one or

more high-level-languages. A direct executian interpreter is

ciefked to execute the intermediate language of the source pro-

gram without further any translation to low level machine

language. Graph reduction is now considered as an important com-

puting model for direct evaluation of functional language programs

[6]. The basis of graph reduction is that

1) each expression is evaluated at most once, no matter how

many times the expression is referenced.

2) evaluation of an expression is simply the reduction of a func-

tion application to its value.

3) the expression evaluation mechanism supports non-strict

semantics. Thus evaluation of a function application need not

cause evaluation of the arguments of the application.

4) every expression is evaluated in a static environment.

In graph reduction, an expression that is under evaluation is

represented as a rooted, directed graph. Initially, to evaluate an

expression, an instruction demands the value associated with the

given expression. Instead of making a copy of the definition, the

evaluator merely traverses the graph, with the aim of reducing the

graph into a normal form -- one for which no further reduction

steps a re possible.

One of the ways of identifying the demand, is to maintain a

reference. tc the original source of the demand in the environment -

throughout the evaluation process. During the course of evaluation

each instruction that accesses a particular definition of the graph

simply manipulates the reference to the definition. This traversal

of the definition and manipulation of the references is continued

until all the arguments of an expression are reduced to some

canonical form.

The concept of graph reduction that is described here comes

from the work of Thomas Johnsson [6] and other works on reduc-

tion computer architectures [?-lo]. Johnsson's paper describes an

abstract machine architecture for executing functional language

programs with lazy evaluation. Using Johnsson's abstract model,

this thesis is an attempt t o present and justify a graph reduction

machine architecture that will efficiently execute functional

4

programming languages, with the ultimate aim of producing a suit-

able implementation in VLSI. We do this by presenting a brief

description of the compilation of the language, the machine organi-

zation, and some initial results from our simulation of the architec-

ture.

A compiler [I 11, peephole optimizer [12], and assembler [13]

for the G-Machine have been developed. The simulator for the G-

Machine that is described here is capable of simulating the execu-

tion of substantial programs and producing instruction and data

address traces. Executions . . of a few programs are simulated and a

trace analyzer [14], developed as a part of this project, is used to

obtain dynamic instruci,ion frequencies. These results are used for

a preliminary evaluation of the novel features of the G-Machine

architecture.

We start here, by giving background for the work that makes

graph reduction an important computing model for evaluation of

functional language programs.

2. BACKGROUND

Over the past few years there has been a growing interest

among language designers in functional (or applicative) languages

as a potential alternative to conventional programming languages,

particularly since the publication of Backus's influential paper[l5].

This interest arises from two distinct points of view, one coming

from software considerations and the other from rapid develop-

ments of semiconductor technology. Despite the advantages of

functional languages for their elegance, clarity, and expressive

power, current implementation make less efficient use of machine

resources than do implementations of imperative languages. Thus

i t is a challenge to produce an implementation of a functional

language and to design a computing system that will execute func-

tional languages more efficiently than existing computing systems.

A principal technique that is used to evaluate functional

languages is reduction. The canonical reduction architecture is

based on the theory of lambda calculus [16,17]. A lambda calculus-

based system is founded on the use of lambda abstractions to

represent mathematical functions. The basic reduction rule,

known as "beta-reduction", realizes the application of a function to

an argument expression, by substitution of the argument for all

occurrences of the bound variable (formal parameter) in a lambda

expression. The lambda expression with its associated substitution

rules is capable of defining all possible computable functions of all

possible types and of any number of arguments. If one starts with a

simple lambda calculus evaluator based on substitution rules, and

introduces the device of using pointers to the expressions rather

than manipulating textual expressions themselves, one is lead to a

graphical representation of the expression. In a lambda reducer,

. the bindings of variables to the expressions they represent consti-

tutes an environment. Reduction transformations take pl-ace rela-

tive to an environment.

The first practical lambda evaluator was proposed by Landin

[18] and is known as. the SECD machine. The SECD machine is an

abstract architecture where applicative expressions are

represented as trees with leaf nodes labeled by identifiers that

name variables. The SECD machine has four major components:

S the stack used to hold intermediate results
in the traversal of expression trees;

E the environment used to hold the values bound to variables
during the process of evaluation;

C the control list used to hold machine instructions
to evaluate an expression;

D the dump used as a stack to hold values on
recursive function calls;

The stack is used in this machine as a temporary store for

evaluation of function applications. During the course of evaluation,

on each function call a new area of the stack is allocated to hold

the parameters for the function environment. If the function body

has a nested function call then the suspended environment is saved

on the dump and a new environment is brought onto the stack

before the evaluation continues. Most of the complexity of the

SECD machine arises in constructing the environment correctly.

Specifically, if an expression contains free variables then one must

either substitute expressions for the free variables or pass around

the environ.;nents in which the free variables are defied. This

creates a substantial amount of overhead in the SECD model in

re.ducing a lambda-expression to its value.

The evaluation scheme used in the SECD model is totally

applicative-order, hence strict. In this scheme a function's argu-

ments are evaluated prior to the application of the function, which

corresponds roughly to the call-by-value function calling mechan-

ism of most Algol-like languages. This evaluation mechanism for

functional language implementation is not safe. That is, for some

programs this applicative-order evaluation may not terminate at

all [19], although a terminating computation is possible when a

different evaluation rule is used.

Besides the SECD machine, another lambda reducer we know

of, also based on an applicative-order evaluation scheme, is

Berkling's GMD reduction language machine [20]. The evaluation

technique used in this machine is very classical in nature and

makes use of some well understood mathematical properties of

beta-reduction. This architecture assumes that the expressions

are represented as strings, and i t provides hardware support to

dissect expression strings using a set of push-down stacks. A more

elaborate description of' this machine and its program organization

can be found in 121,221.

The model of comput.ztion that Berkling's machine supports is

known as string redu;tion. String reduction differs from graph

reduction in that each reduction step accessing a particular

definition will manipulate a separate copy of that definition. On the

other hand, graph reduction is based on the concept of manipulat-

ing pointers to the expression and making updates in place for

function applications rather than recopying the expressions them-

selves.

Two other string reduction computing systems that have been

proposed to do applicative-order evaluation are Mago's Cellular

Tree machine 1231 and Treleaven's demand-driven multi-processor

reduction machine [24].

The organization of the Cellular Tree machine is a binary tree

structure and i t directly executes Backus's functional program-

ming language FP [15]. A program for the tree machine is a linear

string of symbols that are mapped onto a vector of memory cells in

the computer. During the execution, the expression under evalua-

tion is partitioned into a collection of cells and their corresponding

microprograms (associated with each cell) execute to reduce the

expression to a value.

The multi-processor reduction machine as described by

Treleaven is radically different in nature from the Cellular Tree

machine. It supports a user-dehed reduction language and

operates in a highly parallel r5anner. The machine consists of

three major parts,

1) A common memory containing the definitions;

2) A set of identical, asynchronous processing units;

3) A large segmented shift register containing the expression to

be evaluated.

Thus the machine provides the storage medium for both the

expressions and the definitions, a means of controlling the traver-

sal of the expression and recognizing reducible subexpressions,

and a processor to perform the reduction.

The next evaluation scheme is based on the theory of lambda

calculus, but is quite different from the applicative-order evalua-

tion scheme, and is known as normal-order evaluation. In normal-

order evaluation the left-most redex (reducible subexpression) is

reduced fist, which specifies that the outer subexpressions are

reduced before the inner ones. This gives normal-order evaluation

more expressive power than applicative-order evaluation in that

the evaluation is safe and has the terminating property (if there

exists any terminating sequence of reductions, then a normal-

order sequence terminates). To see that the applicative-order

evaluation terminates less often, suppose that. a function which

returns a constant answer (for example: hd (from '09, see next

section for the definition of from) is applied to a non-terminating

sub-expression. Here evaluation will terminate under normal order

but not under applicative order, where it will be attempted, in vain,

to reduce the sub-expression completely before discarding it (i.e.

normal order supports non-strict functions while applicative order

does not). Graph reduction normally corresponds to normal-order

evaluation. This method also has the property that no subexpres-

sion is evaluated more than once (value sharing; also called "fully

lazy" [25] evaluation).

The correctly-implemented graph reduction evaluators we

h o w of to date are software implementations of abstract

machines. One of these, the AMPS machine, a token-matching

loosely-coupled multi-processor [8], was designed to simulate the

parallel evaluation scheme of a LISP like language. The second is a

hybrid multiprocessing system (a refined version of AMPS with a

different interconnectiori network) of dataflow, reduction and von

Neurnann processes called REDIFLOW [9], which was designed to

exploit the implicit concurrency of functional languages. Another is

a token-storage, parallel graph reduction architecture ALICE [26]

that evaluates a variety of applicative languages. All of these

machines have significant architectural similarities, including the

evalu~tis1; scheme they use. A t the logical level, similarities in the

evaludtion mechanisms and the treatment of higher-order func-

tions show that all three schemes have their root in the graph

reduction model of computation. A t the physical level, AMPS is

arranged as a tree structure and it exploits parallelism a t the level

of user-defined function calls. ALICE is organized somewhere

between a ring and bus structure, and it achieves parallelism both

at the level of function calls and also inside function bodies. Both of

these machines are based on the concept of multi-processing and

they use a large random access memory in a distributed fashion

(through packet communication) during the course of evaluation.

Using a new implementation technique (based on the results

derived by Curry and Feys [27]), Turner [7] showed how to

implement a reduction machine using combinator calculus. Combi-

nator calculus uses a technique called bracket abstraction to elim-

inate variables from lambda expressions, producing an expression

consisting solely of constant operators (combinators) and data.

There are reduction rules defined for each combinator, but as

there are no variables, combinator reduction does not involve sub-

stitution. Also, there is no environment. The combinators are called

S, K, I, I3 and C and obey the following equations.*

B f g x = f (9 4

C f g z = f x g

Combinators lend themselves naturally to lazy evaluation [28]

of the lambda calculus. Lazy evaluation is a technique where the

evaluation of arguments of a function is postponed until the value

of the argument is actually required, and the result of the evalua-

tion is made available to other functions that use the same argu-

ments.

'Here we denote application by juxtaposition and assume it associates to the left. Thus, for ex-
ample f z (g z) means the result of applying (the result of applying f to z) to the result of applying g
to 2.

Thus the two calculi can be thought of giving two different

machine codes for a functional language implement ation. The ques-

tion naturally arises which approach is more efficient. This ques-

tion has been investigated by Jones [29]. The comparison between

the two systems was made by writing reducers for each, and

measuring the costs of the computation in terms of the number of

accesses to data structures whose size is potentially unbounded.

In the classical combinator reduction scheme as described by

Turner [7], the programs are transformed into expressions con-

taining the combinators S, K, I, E, r, S1, BB', C', Y, such that all vari-

ables are removed from the program body. This combinator

expression is then evaluated using normal-order graph reduction,

.I-e., an expression subgraph is transformed to its value when the

value is needed. Thus the combinator reduction involves graph

reduction instead of environment manipulation, and it requires an

extra stack (called the reduction stack) that initially contains

(pointers to) the expression to be evaluated.

The hardware realization of a combinator reducer, called SKIM

has been proposed by Clark, et al. [lo]. The SKIM machine organi-

zation is based on a conventional microprocessor with microcoded

instruction sets that directly support combinator reduction. These

instruction sets are very similar to that of Turner's S-K reduction

machine, and they can be further classified as combinator

instructions, list operators and standard arithmetic instructions.

The programs are represented in SKIM by a graph built of two ele-

ment cells, which is implemented by dividing the memory into two

banks, HEAD and TAIL. The SKIM architecture is driven by a combi-

nator reducer that scans down the left-most branch of the program

tree to find the operator at the leaf. This pointer, after being used

to go down one level in the tree, is reversed to indicate the return

route. Eventually the sequence of pointers from root to leaf in

SKIM is transformed into a sequence of pointers from leaf to root.

Thus SKIM uses pointer reversal instead of stacks -to traverse the

program tree.

The idea of forming efficient combinator expressions for graph

reduction has been recently proposed by Hughes [30]. In this

scheme, a set of super-combinators are used for program transfor-

mations instead of proper combinators (super-combinators are

closely related to "proper combinators", but they differ in that

constants may occur in their bodies and in that the combinators

themselves are regarded as program-defined constants). An

attractive feature of this scheme is that once an application is

evaluated it can be overwritten by its new value. This ensures that

every expression is evaluated a t most once regardless of the

number of times it has been referenced. It is related to the lazy

evaluation of lambda calculus [28], in which every expression

once. This scheme is advantageous over classical combinator

reduction in that it achieves full laziness more directly by employ-
" "

P ing some optimizing steps (such as replacing original lambda
9
-3 expressions with simpler ones) in the translation scheme.
3
S;
Z,
g The evaluation approach used in the G-machine bears close

f resemblance to the super-combinator approach. In this scheme, a

program that contains lambda-expressions is transformed into an
*
% expression (without lambda expressions) and a set of function
5
$ definitions. This process is known as lambda lifting, and is 4alo-

Il - gous to Turner's [?I bracket abstraction process and Hughes's 251
!

'1 *
super-combinator abstraction scheme. -This process, like the other

k 'two processes, ensures that only the variables that are really
f
i? referred to in expressions are bound as parameters to functions,

g -%- instead of binding the whole environment.
1
&* * z- The G-machine architecture is superficially similar to that of
$' - -
&
t
?

Landin's model but it has different components than the SECD
I.

machine. A state in the Gmachine can be described in terms of 6-

tuple <C, P, V, G, E, D>, where

C the control list

P the pointer stack

I
1 V the value stack

which holds instructions for
the Gmachine;
which contains pointers
into the graph;
which is used for evaluations of

16

arithmetic expressions;
G the graph which is the image of an expression

that to be reduced;
E the environment which provides the context in which

expressions are evaluated;
D the dump which is used as a stack t o store

context on recursive functions calls;

The Gmachine simplifies Landin's model of applicative order

evaluation. The graph which is under evaluation is represented as a

rooted, directed graph. This expression graph is not necessarily a

k 5 tree, nor even acyclic. Because applicative expressions have the

d
1 property of referential transparency, the value that an expression

represents remains the same whether or not the expression has
c
f been evaluated. Graph reduction is the process that transforms an
ti
s&

$ expression graph to a normal form by applying a set of evaluation
&
k

I rules until no further reductions are possible.
E
&
;;t The environment, E, is static in the Gmachine, because a
*-
=

graph which is under evaluation contains no occurrences of free
t
8
% variables. All arguments of a function are bound in function appli-
5:
T"

B " - cations. Thus the environment E contains only the bindings of con-

stants, which in the source program are just the defmed functions.

In E, each function name is associated with a code sequence that
- _

represents its value. This provides the G-machine a major advan-

tage over the SECD machine in setting the environments properly .

(by the process of lambda lifting) during the computation, and it is

one of the principal contributions of the G-machine compiler [I 11.

For the sake of efficiency, the G-machine has two stacks, one

for traversing the graph and the other for storing intermediate

results during evaluation of arithmetic expressions. Use of the V

stack in this architecture reduces the incidence of indirect refer-

ence to values that have already been computed and the P stack

provides a mechanism to access the arguments of an expression

that is under evaluation.

The control, C is just a sequence of instructions for the G-

machine. The G-machine is a sequential evaluator, with an instruc-

tion counter that advances the state of the control each time an

instruction is executed.

The dump, Dl stores the contexts of nested function applica-

tions. A context during the computation is simply the image of two

stacks, P and V, and the contents of the program counter.

The abstract G-machine that we described here executes an

extended subset of the applicative language ML 1311 with lazy

evaluation, called Lazy ML or LML for short. Although the language

semantics are not the central issue in this thesis, we describe the

program organizations of LML in the next. section to provide a

framework for our specifications on the instruction sets for the G

machine and its execution model.

3. LML : AN EXPERITitENTAL LANGUAGE FOR GRAPH REDUCTION

LML is a strongly-typed, purely applicative programming

language. It is based upon the (impure) applicative language ML,

designed by Milner as the metalanguage of LCF [31], a system for

formal reasoning about programs. It permits the definition of

higher-order functions, has recursive data types, and uses deferred

(lazy) evaluation on lists and tuples, thereby admitting a program-

ming style to deal semantically with unbounded data structures.

The smallest LML program unit that can be compiled and run is

a single expression. Any executable LML program consists of an

expression to be evaluated, but the expression may be a compound

expression, involving the evaluation of locally defined constant

expressions or of global definitions. Here is a simple example using

the polymorphic function called ~ p .

Map takes a function f (of type a->@), and a list 1 (of type

list(#)), and returns the list obtained by applying f to each element

of 1 (which is of type list(@)). Map is defined as

map: (a -> 8) -> list(a) -> list(@)

letrec map = hf.U.case 1 in
nil : nil

11 a.rest : (f a) . map f rest
end

Here period (".") is the infix list construction operator and the

double stroke ("11") is the separator for case instances in case list.

To apply map on actual parameters we define the following

functional program to add one to each member in a list of

numbers, its value being the list of natural numbers incremented

by one.

let F = ha.hb.map(Ax.x + a) b

All function applications in LML are "curried" [18,32]. That is,

al l functions are assumed to take just one argument, which has no

restriction, since that function may return another function that

takes one argument. Map is such a function that we just described.

LML scoping rules are similar to those for most block-

structured languages, in that expressions may reference any

identifier defined locally in the current equation group, or in any

surrounding equation group. However, local references are allowed

to be mutually recursive. This implies that equations may appear in

any order.

20

LML also has a powerful patternmatcher through which corn-

plex functions may be defined more easily. A pattern may have one

of the following form; identifier, pair, cons, or list. For example,

the function append x,y takes two arguments, x and y (both lists),

and produces as a result the single list which has all the items of x

followed by all the items of y. Amend can be defined as

append: (list(a) -> (list(list(a)) -> list(a))

letrec append ([I, [I) = [I
11 append (L1 ,[I) = L1
I1 append ([l,U) = L2
11 append (LI,L23 = hd L1 . append (tl L1, L2)

The pattern-matcher is very useful when used with lists. Lists

are evaluated "lazily". The selector functions are hd ("head") and tl

("tail"), for lists and f s t ("first") and m d ("second") for pairs.

"Infinite lists" are defined in the obvious way. The infinite

stream of numbers starting at zero can be defined by the function

"from ' I .

from: int -> list(int)

t

let succn = n + 1
in

letrec from n = n
in

from 0

from (succ n)

Where szlcc is a successor function, which when applied to its

argument returns its successor.

Of course, elements of an infinite list are not computed until

they are selected ("demanded") for evaluation. When a demand for

a value of a list type occurs, the function returns a pair of closures

(a closure consists of an expression together with bindings for all

free variables in the expression). One closure is evaluated to find

the first element of the list, and the other one is used to evaluate

the remainder of the list.

There are other syntactic and semantic features of LML, but

they are beyond the scope of this paper. The interested reader can

find more about the language LML, its semantics and the imple-

mentation details in [11,33].

To illustrate normal-order graph reduction in LML, we take our

first example map and define a function m2Lone to add one, to

each member in a list of numbers, where aoldDne is equivalent to

let aaEaLone = ha.Ab. map (hx.x + a) b

in
a&Lone 1 [l; 2; 3; 4; 51

Which gives us following series of graphs (see Figures 3.1 and

Equation

' x

X

add
a

Figure 3.l(a) Definition of ' a d b n e '

Equation

Figure 3.1(b) Definition of 'map'

"add-one"

Figure 3.2(a) Construction of the graph for ' a d b n e '

x

add

Figure 3.2(b): Substitute definition of 'adhone' and bind its argu-
ments (the second reduction is an instance of the rule of q-
reduction in the lambda calculus; -.add 1 x = add 1)

Cons

Figure 3.2(c) The graph reduction of ' a d b n e '

The graph reduction execution of a program is carried out by

performing transformations on the expression graph to reduce it

to its value. In particular, evaluation of a function application

amounts to repeatedly transforming an application graph to an

instance of the right-hand side of the function definition, with argu-

ments substituted for parameters, until no further reduction is

possible. Thus the function definition represented in Figure 3,l(a)

is applied to an argument in Figure 3.2(a) (where @ denotes func-

tion application in the Figures). Figure 3.2(a), represents a graph

just before the start of evaluation. The Figure 3.2(b) shows the

graph after substitution. In Figure 3.2(c), the graph is in the cons

f o m , whose head part is reduced to an integer value, whereas the

tail part remains unchanged and needs to be evaluated.

The execution continues in this fashion until there are no more

evaluations to take place for the arguments of the list constructor.

When a part of the graph has been reduced to a canonical form (by

definition the graph is said to be in canonical form when the root

application node is reduced to any one of the following form: int,

boo1 or cons), it may then be used for output. A node will be

removed from the graph when no further reference to it is possi-

ble-

4. THE BINDING OF M L PROG- TO THE W C H I N ' E

Over the past few years, many architectures have been

developed in order to support direct execution of high-level

languages. Such architectures differ from traditional implementa-

tions by the elimination of machine language. Various direct execu-

tion schemes have been proposed. Some assume that the high level

language constructions are to be executed directly by the

hardware without going through any form of translation to an inter-

mediate language [3,34,35,36]. However, most of them advocate a

k"
+- less extreme solution that uses an internal form to represent the
.$.
&? *
?.

source program. Typical direct execution schemes are classified
L'-
b-2 into two models. The first one, analogous to the compilation of con-
++*
1 -

"$E-; ventional models, translates the source program into an intermedi-

ate representation suitable for immediate interpretation. The

second one, holds the high level language program (or the directly

executable language -DEL) itself in the hardware and interprets it

by a Axed microprogram [37].

In comparing these two schemes, the general feeling is that the

overhead in decoding and interpretation by a DEL architecture of a

program that does not go through any compilation is so overwhelm-

ing that such architectures will never become viable for executing

that it is not reasonable t o begin program executions without fist

checking for syntax or detectable semantic errors. These architec-

tures are also less efficient than the other approach in that all

binding is performed dynamically and repetitively during execu-

tion. Thus every time the machine executes a statement, i t per-
t'
I,-

R form the lexical analysis, parsing, and some semantic functions of

a compiler, causing an enormous amount of overhead.

The operating principle of a pure reduction machine [23] is

radically different from a traditional von Neumann computer,

which synthesizes a result by altering stepwise a state vector into a

set of values. A reduction machine always starts out with a denota-

tion of the result, which gets reduced by meaning-preserving

transformations to the final result. The latter is characterized by

the absence of any instances of reduction rules that could be

applied. A reduction language program may be viewed as a set of

definitions, name: expression pairs, and an expression to be

evaluated. Evaluation is usually based on a set of reduction rules

consisting of arithmetic, logic, conditions, beta-reduction, and

recursion. Rules have no side effects and preserve referential tran-

sparency of expressions. This leads to the main architec turd idea

to evaluate literally (or virtually) "in place", i.e. in the expression. t
$2

Q This idea necessitates an appropriate set of reduction operations
= *

that need to be performed on the input source program. These

operations are respectively:

1) Replace a leaf node whose value is an identifier by the graph

bound to that identifier in the (static) environment.

2) Replace any graph whose principal operator is an arithmetic or

boolean operator by &st evaluating its operands, then applying

the operator. The resultant value replaces the operator graph.

3) Reduce a graph whose principal operator is "if" (conditional) by

first evaluating the predicate subgraph, then selecting one of

the tqo alternate graphs for evaluation.

4) Reduce an application graph by first evaluating the left sub-

graph (function part). Then, if the left subgraph is:

(i) a language-defined function, replace the application
graph by the value of the function applied to the
argument subgraph; else

(ii) if the left subgraph is a lambda expression, replace
the application by a copy of the body of the lambda
expression in which all references t o the lambda-bound
variable are replaced by references to the argument
subgraph, then reduce the resulting graph.

This model has in common with combinator reduction that

applications of programmer defined functions are evaluated in

normal-order and by rewriting the graph, and has in common with

lambda calculus reduction that bound variable occurrences are

replaced by argument expressions. However, it differs from combi-

28

nator reduction in that complex expressions (programmer-defined

2
P, functions) have equal status with elementary combinators, and

differs from lambda calculus in that bindings of variables occur by

position rather than by name. Hence there is no dynamic environ-

of recopying function graphs and rebinding their variables. This is

particdarly noticeable when computation is repetitive. Thus it is

difficult to evaluate efficiently certain expressions, such as one in

which a function of several arguments is applied to argument

expressions each of similar form. The problem is that each such

applicative expression requires the construction of a fairly large
JA
6
5: graph. Constructing such a graph may be much more costly than

reducing it.
@
-%

An alternative strategy is to employ a sequential machine capa-
d
.&

t. ble of executing individual instructions to apply language-defined
d
*
9E * operators, implement conditional selection by jumps to labelled
!

instructions, etc. When this is done, it becomes unnecessary to
i
i build a graph to represent the application of a function-valued con-
3
d

p stant to an argument expression, provided that the application is
$

to be evaluated immediately. A function can be represented by a

i
f code sequence rather than by a graph. Although evaluation of

storage, such storage would be required also by a mechanical

evaluator of pure graph reduction.

The G-machine architecture that has been designed employs

the technology of a sequential, stored program machine to avoid

much of the overhead in copying graphs that is inherent in the

pure graph reduction model. It is this use of sequential machine

technology that allows its performance t o be competitive with

sequential evaluators of imperative language programs.

The G-machine architecture has been developed in order to

support the direct execution of LML programs after translating

them into an intermediate form. LML is a natural choice for graph

reduction because the compilation schemes used for constructing

the graph and further reducing them to a value closely correspond
Y

to the semantics of the language that support a set of reduction

operations. LML is a very simple language in which only a few prim-

itive operators and data types are sufficient for implementing

powerful algorithms with complex data structure. Initially, an LML

program which is under execution is transformed (using a set of

compilations schemes) into the following primitive graphical form

on which graph reduction is performed.

T P l Y
Function Argument

90

Here function and argument may themselves be non-trivial

expressions, and the "apply to" operator is regarded as a construc-

tor that relates the two subexpressions.

A t runtime, when the evaluator wants t o reduce an application

involving a user-defined function, it executes the machine code for

this function that is produced by the LML compiler to reduce the

function application to its value.

Various compilation schemes are used to translate a LML

source program into a set of instructions that can be interpreted

directly. Here we summarize the compilation schemes that are

used for translating function definitions and expressions into exe-

cutable code. (The complete set of compilation rules can be found

elsewhere [33].) The compilation schemes are

1) to generate code for a function definition f = hzl. ... AZ, that

will reduce a graph representing an application f e , ... e, to its

value .

2) t o generate code that constructs a graph representing an

expression and leaves a pointer to the resulting graph on the

top of the pointer stack.

3) to generate code that computes the value of an expression and

leaves a pointer to the result on the top of the pointer stack.

4) to generate code that computes the value of an integer-or

boolean-valued expression and leaves the result on the top of

value stack.

For an intermediate language to act as the instruction set of a

machine, it is necessary that all computational problems can be

executable in this language. Hence the language must contain

primitives for:

1) arithmetic and logical operations.

2) conditional operations.

3) iteration and recursions.

4) list manipulations.

These instructions (which can be thought of as an intermediate

language in conventional implementation) are obtained from the

G-machine compiler by translating the abstract syntax tree. These

instructions and their usage are summarized in the next section.

5. FUNCTIONAL D E S C m O N OF THE GMACHINE ARCHITECTURE

The G-machine is a 32-bit, stack-oriented machine [39],

designed exclusively to execute functional language programs. Its

stack architecture was specifically developed to provide efficient

means for graph traversal and to maintain local environments dur-

ing the course of an evaluation.

The G-machine configures a memory into three parts. The con-

trol memory (C), holds the sequential instructions compiled from

an LML program, and is read only by the processor during program

execution. The graph memory (G), is a directed, rooted graph that

is both read and updated during an evaluation. A t any given time,

the graph holds the representations of partially evaluated program

structures. As the evaluation continues, the graph grows and

shrinks dynamically and therefore requires storage management

by garbage collection. The dump (D), which is used as a stack,

stores contexts on function applications.

The processor itself also contains a pair of stacks. The pointer

stack (P) holds pointers to traverse an expression grdph, and it

provides a local environment and a dynamically allocated work

area for the currently active function application. The value stack

(V) holds intermediate arithmetic and logical values produced in

the course of an evaluation. The information sent to or recovered

from the dump in a context switch consists of the images of pointer

and value stacks, processor status flags and the contents of the

program counter.

5.1. General Operation

The internal functions of the G-machine are partitioned logi-

cally into two units. The first is the Bus Interface Unit and the

second is the Execution Unit, as shown in the block diagram of Fig-

ure 5.1. These units can interact independently but for the most

part they perform their operations as synchronous operational

units.

The bus interface unit provides the functions related to

instruction fetching, operand fetch and store, bus control and

storage allocation using a 40-bit bus (of which the lower 32 bits are

multiplexed for address and data, while the upper 8 bits are solely

used for tag; see the next section for tags).

The execution unit receives pre-fetched instructions from the

bus interface unit and executes the instructions. It primarily per-

forms the basic arithmetic and logical operations and stores the

result back into the value stack or passes it to the bus interface

unit for updating the graph. The execution unit also operates on

t h e pointer stack under program control and manipulates its con-

tents to build a proper environment before a function is called.

The general organization of the execution unit is quite simple.

It is composed of two register stacks, a value stack and a pointer

stack, used as a small local memory, an ALU, a status register, a

stack pointer register (for the dump memory), an instruction

decode unit, a microprogram memory (which generates sequences

of micro-instruction address words to control various functional

modules), and an input/output unit to provide value and pointer

stacks an interface to the bus interface unit.

Figure 5.1 Block diagram of the Gmachine

2-q
$.,
. F The control memory for the Gmachine is organized as a set of
'- L
58. consecutively numbered storage cells [39], where each of these
*'. i"
A -. cells contains eight bits .of information.

f 4

; *" .. *

The graph memory is comprised of individually addressable,

l: : allocatable units, each consisting of a pair of storage cells and a

g +< vector of five tag bits. Each storage cell holds 32 bits of informa- B
I
8
h tion, and is configured as:

I tags I 32 bit cell 32 bit cell

e-
'. ,

The tag bits are used for graph reduction and to support a
2 :
3 g
0 2
@ 'V

'

parallel, on-the-fly garbage collection. Their uses are as following:

1 1) A pair of bits is reserved for use in storage allocation and gar-

bage collection. i.
~

2) A pair of bits (one for each cell), which if set, represents that
i;

the cell currently holds a pointer.
A .

3 s

3) A bit is exclusively reserved for graph node status information.

If set, this bit represents that an expression is in normal form.

Otherwise, the object represents a function application.

The allocated cells in the graph memory are used in construct-

cated cell-pair can be used to represent:

1) An individual scalar value, in which case only the f i s t of the

cell pair holds data;

2) A pair of scalar values;

I

f- 3) A function application, in which the first cell points to an
5

F s expression denoting the function to be applied, and the second

i
P cell points to its argument;

4) A list constructor, in which the first cell points to the head of

the list and the second cell points to the rest; i
B
f 5) A hybrid representation of a list or value pair, in which one cell

holds a scalar value, and the other cell contains a pointer to

the other member of the pair;
i
D

It is not absolutely necessary to make use of hybrid represen-

tations. However, use of the hybrid representations allows some
E
F reduction in indirect reference to scalar values embedded in pairs
$
i and evaluated lists. The abstract G-machine as described by Johns-

* son does not make use of hybrid representations on pairs. These
i
i representations were incorporated in our definition of Gmachine

architecture to provide more efficient access to scalar data items

embedded in pairs after we noticed the lack of support from the

LML compiler to access such data items.

The dump memory for the G-machine is organized as a linear

array of storage cells. Each of these cell contains 32 bits of infor-

mation.

5.3. Tlre Instruction Set

The expression graphs are evaluated (reduced to their values)

using a set of instructions; these instructions are closely tied to

the semantics of the language and traverse the graph to reduce it

into a normal form.

The basic instruction for the G-machine is one byte long. The

instructions are grouped into seven principal categories. The upper

three bits of the instruction byte are used to reflect the

instruction-group it represents and the lower five bits are used to

identify the instructions in the group. Details of the instruction

specifications are given in Appendix A [39], however we describe

the instruction-groups here.

Graph traversal and allocation instructions: These instructions

control expansion and contraction of the expression graph. This is

done by manipulating the pointers contained in the pointer stack.

These instructions also update and allocate new nodes in the graph

and control the evaluation of function application.

Data fetch instructions: These instructions bring values from

nodes of the expression graph or from the instruction stream to

the value stack.

Data structure selector instructions: These instructions operate

on data structures, such as a list, and select its components.

Arithmetic and logical instructions: These are conventional

instructions, and they do the arithmetic and logical operations on

the contents of value stack.

Control transfer instructions: These instructions allow conditional

jumps in the control stream, and provide backward jumps in the

case of tail recursive function applications.

b c t i o n call and return instructions: These instructions support

function call and return operations of LML programs. A function

c d l entails saving the state of the calling function, dynamically

allocating and initializing local storage for the called function,

binding arguments, and executing the called procedure.

hstructions to support user defined data types: These instructions

support user defined (abstract and/or recursive) data types. User-

defined types can be defined as disjoint unions of sets of values,

each formed by the application of a canonical constructor function

40

to arguments. The instruction INJECT constructs a representation

of such a term as a tag-value pair. The instructions IS and OUT

respectively test the tag and give a projection of the value com-

ponent of such a pair.

5.4. The Hachine System Architecture

In any project that attempts to construct a prototype of a new

processor architecture, the question always arises, "How one can

possibly evaluate the processor without constructing an entire

computer system?" The goal of the G-machine project is to evalu-

ate the performance of some new ideas for a processor architec-

ture. Therefore it requires an environment that will not inhibit per-

formance.

In order to provide an operating system environment the pro-

totype G-machine is planned to be run as an asynchronous, parallel

co-processor to a conventional microprocessor. The Figure 5.2

shows the G-machine system environment. The G-machine will

obtain services such as initialization of its program memory and

the graph memory, file input and output, a real-time clock, display

management, code compilation and linkage and even garbage col-

lection of the graph memory from its managing co-processor. The

co-processor and the G-machine will be linked by some special

purpose control circuitry, and will share dual-port access to the G-

machine's program and graph memories. This environment is

expected to provide the necessary performance evaluation of the

Gmachine processor architecture.

I/O Bus

Data/Address Bus

Figure 5.2 The Gmachine system environment

Dump Memory

L

.

Graph Memory Control Memory GMachine

GBus

-
Co-Processor

i

/'

6. THE GMACHUUE EXECUTION MODEL : A SIMP=

In the graph reduction compilation scheme, each function is

translated into a sequence of G-machine inst;ructions which

reduces the graph of a function application to its value. Here we

illustrate the G-machine execution states with the following pro-

gram which returns a list of integers between two numbers:

letrec c o u n t a b =
if a > b then [I
else a . count (a + 1) b

in
count 5 10

The G-machine state.transitions for the execution of this pro-

gram is shown in Figure 6.1. Before the start of the evaluation of

the function application the pointer stack is configured as in Figure

6-l(a), where the stack top points to the function node 'count'.

(The instruction EVAL, which evaluates a function application first

cbecks that the stack contains all the actual parameters of the

function before i t performs a call. Which is a condition for the

reduction to be possible). The G-code compiled for 'count' is:

PUSH 1

(b)

count mj

PUSE i? GET-FST

0') (k)

6.1 Pointer stack configurations for 'count 5

ADD PUSHGLOBAL count vYlep

(0) (PI

count

0

count

PUSH 2

(r)

UPDATE 5

(t)

count: PUSH 1
EVAL
G r n J S T
PUSH 3
EVAL
GETJST
GT
JPALSE label
PUSH-NIL
UPDATE 5
RETURN 4

label: PUSH 3
PUSH 2
GE3"ST
GETLIT 1
ADD
MK,INT
PUSHGLOBAL count
MKAP
M W
PUSH 2
M U R
UPDATE 5
RETURN 4

The purpose of the first few instructions before the JFALSE,

which is a conditional jump instruction, are to obtain the argu-

ments of the function 'count' into the value stack and to test for its

range as defined in the source program. The PUSH m instruction

pushes the myth pointer of the stack, relative to the top (which is

indexed with O), onto the stack. The EVAL instruction evaluates the

top of the stack into a canonical form. Since, by definition, the

integers are always in canonical form, an immediate return from

EVAL is performed in this case, which leaves the stack

configuration unchanged, as shown in Figure 6.l(c). The

instructions GETTST and GETLIT are examples of data fetch

instructions. The GETJST instruction fetches a scalar value into

the value stack from the storage cell pointed to by the top of the

pointer stack and GETLIT stores a literal value into the value stack

from the instruction stream. The top two entries of the value stack

are tested for greater than by the instruction GT, which leaves a

boolean value on the value stack after the comparison is done; this

is shown in Figure 6.1 (h) .

The instruction JFALSE, takes either true or false branch

according to the boolean value present on the top of the value

stack. In the false case (the state transitions given here deal only

with the false case, assuming the true case can be dealt with

' accordingly), the instructions once again set the stack top to

access the function arguments using PUSH instructions. The

GETJSk instruction at this stage brings the first argument of the

count into the value stack and the ADD instruction following the

GETLLTT adds the top two entries of the value stack and leaves the

result which is a new element of the list onto the top of value stack.

The MKLYAL instruction creates a new node into the graph with the

value obtained from the top of the value stack and leaves a pointer

t o this newly created node on the top of the pointer stack. The

instruction PUSHGLOBAL 'count' pushes a pointer to the function

'count' onto the stack and the MK-AP constructs an application

node into the graph with the two topmost pointers from the pointer

stack as its subparts. The Figure 6.l(0) shows the stack

configuration after the PUSHGLOBAL instruction and Figure 6.1 (p)

shows the same after an application node is created.

The MK4R instruction at this moment constructs a cons pair

into the graph whose left part is in evaluated form and the right

part pet to to be evaluated. This is shown in Figure 6.1(s). One thing

we need to note here at this point is how the right part of the cons

pair is structured after the M K P R instruction. This graph is similar

to our initial graph with the difference that one of the arguments of

'count' is the result of evaluating the expression. This illustrates

that in, our computation, expression graphs are evaluated (reduced

to their values) a t most once and all expressions that share a par-

ticular subexpression benefit from the evaluation.

After constructing the graph for the value of the right hand

side in the definition of 'count', the cons node is copied to the root

application node of the expression by the UPDATE instruction. This

completes the evaluation of the function 'count' to its value. The

RETURN instruction a t this moment points to the newly con-

structed node, as shown in Figure 6.l(u) and returns control to the

instruction following the call to the function 'count'.

The instruction that follows the function call is PRINT (it is not

shown here to preserve clarity). The PRINT instruction is a complex

instruction. It is complex in that it trys to print the graph pointed

to by the stack top and may cause a graph evaluation if the graph

is not in a canonical form. The state transitions that were shown in

Figure 6.1, is just before the PRINT can be invoked. Invoking PRINT

on this graph will cause 5 to be printed and the right hand side of

the cons pair will be traversed for further evaluations.

7. A NOVEL ARCHlTE(=TURE

"A general trend in processor design today is to increase the

complexity of architectures commensurate with the increasing

potential of implementation technologies" [40]. This leads to

increased design time, increased design errors and inconsistent

implementations. The G-machine architecture attempts to show

that with the proper architectural support for key aspects of the

machine organization, that performance benefits can be obtained

even with a simpler architecture.

The Gmachine is actually a very simple architecture. Its

novelty lies in the architectural-level support for graph traversal

and update-in-place. This uses a pair of stacks: a pointer stack and

a value stack. The pointer stack holds pointers to traverse the

graph and provides a mechanism not only for procedure linkage

and operand binding, but also for pointer manipulation and the

allocation of a work area for the currently active function applica-

tion. The value stack holds the intermediate arithmetic and logical

values produced in the course of an evaluation and reduces the

incidence of indirect reference to values that have recently been

computed. The consequence is that the Gmachine has relatively

few instructions, a single addressing mode, and very few and very

short instruction operands.

In fact, the G-machine instructions are compiled code for a

graph reduction that can be interpreted directly. These instruc-

tions allow a compiler to keep the code volume smaller for the G-

machine architecture than for other architectures. This has a posi-

tive effect on execution speed because it reduces the amount of

information that must be transmitted between storage and the

processor.

Certain instructions in the G-machine have multiple execution

phases. These are complex instructions which invoke other instruc-

tions during their execution (PRINT and ENAL are examples of such

instructions). They may induce traversal of the graph to construct

an environment for function application. I t is this set of instruc-

tions which most differentiate the G-machine from other architec-

tures.

In programming languages there is a sharp distinction between

data and instructions. Unlike a conventional computing system,

instructions and data in the G-machine are distinguished explicitly

by storing them in different memories. The control memory in the

Gmachine holds only the instructions compiled from the LML pro-

gram, and the graph memory holds a representation of the graph

1 that is under evaluation, along with the necessary constants.
f
I

i

8. THE DESIGN OF A S I m T O R FOR THE GMACHINE

The simulator of the G-machine architecture was designed in

arder to investigate the performance and validity of the architec-

ture before committing t o a particular hardware implementation.

The simulator is a register-transfer-level (RTL) behavioral descrip-

tion of the Grnachine architecture and its components are written

in ISP' [41] to be run on a VAX- 11 /780 under Berkeley UNIX 4.2.

The simulator provides a design environment that enables the

user to

I) specify a hardware/software systems at multiple levels of

abstraction;

2) test different algorithms in an interactive environment in order

to evaluate architectural trade-offs and to study the algorithms

for their functionality and performance.

The simulator consists of four highly-interrelated modules.

They are respectively:

11 An 1SP' description of the G-machine that decodes and exe-

cutes instructions.

2) An assembler for the Gmachine code that transforms

mnemonic instructions to processor object code.

3) A software loader for the G-machine that loads assembler out-

put into simulated memories.

4) The runtime environment, and various support and testing pro-

cedures for use during runtime.

The simulator reads an input fle created by the assembler and

executes the program, interpreting each instruction every time it

is executed. The stacks, program counter, stack pointers and con-

dition code flags as well as bus interface unit and bus protocols are

all designed using simple data structures.

The first task in the design of the simulator was to define the

type of programs to be simulated and the level a t which they would

be simulated. Ideally, the execution of a complete operating sys-

tem with typical user processes should be simulated. This is not

practical mainly for two reasons:

1) The ratio of simulation time to simulated time will simply take

too much time and too many resources on the host computer.

2) An operating system for the G-machine is not intended to be

designed as a part of this project.

Even though an operating system is not simulated, the simula-

tor still deals with the operating system issues, such as

input/output, dynamic memory allocation and storage manage-

ment. The simulator we have developed handles this problem by

<

translating the I/O calls to another program, which in turn pro-

vides the interface between the simulator and the system and does

the necessary I/O. The storage allocation was done statically in the

t - simulator by maintaining an allocation register in an
t autoincrement fashion.
1

I The simulator was designed not only to execute the programs,

but also to obtain dynamic statistics and address traces from the

execution of the programs. There are two places where statistics

can be collected:

k 1) In the simulator itself.
f.
9

q 2) In the trace analyzer, which reads the instructions and data
i

g address traces produced by the simulator.

t
; The advantage of collecting statistics in the simulator itself is

4 that i t is faster than producing address traces and analyzing them

by special programs. The disadvantage of collecting statistics in

U the simulator is that it clutters the interactive environment. Furth-

ermore, when new types of statistics are desired, the simulator

itself must be modified, thereby possibly introducing bugs.

Various statistical pieces of information can be collected from

the simulator. They are respectively:

1) Maximurn/Average depths of the value stack during program i

I execution.
3

2) Maximum/Average depths of the pointer stack during program

execution.

3) Number of JUMP instruction executed during a program execu-

tion.

4) Maximum length of a JUMP interval.

5) Minimum length of a JUMP interval.

6) Maximum number of function arguments in a function call.

7) Number of read accesses to the graph memory.

8) Number of write accesses to the graph memory.

9) Number of read accesses to the dump memory.

10) Number of write accesses to the dump memory.

11) Number of context save requests.

12) Number of context restore requests.

13) Amount of graph memory used during a program execution.

14) Amount of dump memory used during a program execution.

15) Total number of function calls present in a program.

16) The number of executions of an particular instruction.

17) Total timing involved in the program execution.

18) Total timing involved in instruction fetch.

Trace analyzers are simple to develop. As part of this project a

trace analyzer which produces instruction frequencies and jump

lengths was developed [14]. This program reads the trace output

from the simulator and produces a summary table of dynamic

instruction frequencies and jump lengths.

The simulator and the trace analyzer were used to collect vari-

ous statistics about the G-machine architecture. We summarize

this information in the following section.

9. PERFORMANCE ENALUATION OF THE GMACHINE A R C H I T E m

As we outlined in previous sections, the novel features of the

G-machine architecture are: an instruction set that supports graph

traversal and update in place and a pair of stacks for holding the

environment during the course of evaluation. Out of the many pos-

sible measures of the effectiveness of these features, this thesis

only concentrates on performance (i.e., the time it takes to exe-

cute a given task), since high performance is the major goal of the

Gmachine architecture. The simulated execution time of a given

t a s k in the G-machine is based on some assumption about the exe-

cution time of each instruction. The assumption is that each

memory access takes 4 clock cycles (since the implementation

technology for the G-machine is not determined yet, an assumption

on clock speed may not be correct at the present time), and all

other instructions (except MUL, DIV and MOD)^ take a single clock

cycle for execution.

Ideally, each component of the Gmachine architecture should

be evaluated independently. Thus it would be interesting to meas-

w e the effectiveness of each instruction, and the number of times

a graph is traversed to construct an environment and to reduce it.

each of these instructians is assumed to take OOog N) time for execution, where N is the word

Since the G-machine architecture supports a pair of stacks in the

processor itself, information about maximum stack depths will also

be worthwhile to collect. The effectiveness of a proposed design can

be deduced from data obtained by simulation of the Gmachine

architecture.

Simulation of three example programs has been performed

using the simulator. Each of these programs has moderate code

size and takes several thousand machine cycles for its execution.

These programs were selected to exercise the execution of various

instructions and to measure the complexity of constructiq the

environment during the execution.

The first two programs used in the simulation are quite simple.

They are, respectively, a linear time algorithm to calculate the Nth

Fibonacci number and an algorithm t o compute Ackermann's

exponential. The first one was selected to exercise the basic reduc-

tion model with recursive applications and the second one was

chosen to evaluate the use of higher order functions. The third

program is a Treesort program of moderate code size that sorts

the elements of its input list in increasing order. Treesort was

selected for its use of a recursively defined data type and to

observe the dynamic growth and shrinkage (it constructs suspen-

sions before evaluating expressions) of the graph that is under

size in bits.

evaluation.

The basis for the discussion in this section is the data from

Table 9.1. All the G-machine data was obtained using the simulator

and opcode trace analyzer [14]. The execution time for the pro-

grams that obtained from the simulator were compared with the

VAX execution time. The instruction fetch time for the G-machine

(from control memory with one byte at a time) counted 4 cycles

are not overlapped with the execution. The VAX execution time was

obtained using the csh time command. The number of data

memory refere~ces and the sequence of instruction executions for

the VAX has not been determined. Both optimized and unoptimized

versions of the programs were run on the VAX.

The G-machine statisti'cs presented in Table 9.1., are only a

small part of the wealth of information produced by the simulator

and trace analyzer. The interpretation of some of the items is not

obvious: UNWIND is a phase of FVAL instruction that traverses a

graph and constructs the proper environment (by pushing pointers

to the argument and function parts of each application node) on

the pointer stack before the evaluation takes place. The RETURN

instruction performs a return from NAL. The number of execu-

tions of the PRINT instruction was collected to observe how many

leaves of the list in the data structure were evaluated. When the

value is a list, the head element and the tail list are in turn

evaluated and printed. The number of PUSH instructions executed

by the program was collected to observe the need for hardware

support for stacks. (Recall that PUSH is a stack-to-stack movement

of a single datum.)

Table 9.1.

WAX execution time (msecs) 700 1 700

B e performance of the G-machine architecture is enhanced by

providing hardware support operations on stacks. To determine

what instructions are used most frequently, we counted the execu-

tions of each instruction during a program execution. Data col-

lected from the simulated programs are shown in Table 9.2.

Table 9.2.

, RETURN 8.5 2.2 8.7
PUSH 19.0 16.2 --- 21.0
PUSGLOBAL 8.7 2.4 8.8

, MOtGE: 0.0 4.8 0.0
, MICAP

MXLPATR
MKYAL
GETTST
G E T l S T
EQ
J U W

, FST
SND
IS
OUT

, INJECT
ADD
SUB

11.9
1 .?
3.4
6.8
3.4
1.7
1.8
3.4
1 .?
0.0
0.0
0.0
1 .?
1 .?

4.5
0.0
6.9

14.0
14.0
7.0
9.4
0.0
0.0
0.0
0.0
0.0
2.3
4.6

10.2
2.2
0.0
1.7
0.0
0.0
4.7
2.2
3.0
3.1
2.7
1.2
0.0
0.0

The most important observation from Table 9.2 is that the

instructions that operate only on the pointer stack without refer-

ence to Gmemory (PUSH and MOVE) are quite significant (about 20

percent of the total number of instructions executed). The instruc-

tions that appeared most frequently after the stack configuring

instruction are those which operate on the stack and also require

access to storage. These instructions include graph traversal,

storage allocation, data fetch and data structure selector instruc-

tions (such as UPDATE, MICAP, M K J A L , GETJST, FST, PUSHGLO-

BAL ~ q d the INWIND phase of ENAL) . This information suggests that

a cost-effective system can be designed for efficient execution of

thz G-machine code by providing a hardware address cache (i.e.,

the pointer stack) in the processor itself, and it is the reason why

the architecture that we simulated provides direct support for the

pointer stack.

In order to make meaningful assessment of an architecture

that is under design it is important that all of the variables that

affect performance are properly addressed. These include the

clock speed of the system and the number of memory system wait

states. A s we outlined before, since the G-machine architecture is

not refined yet for an implementation technology, any assessment

on the clock speed will not be fair a t this time.

One of the most expensive operations in the execution of an

instruction in any computing system is the time spent for memory

access. The Gmachine instructions (excepting the instructions

that support graph traversal and context switching) and their

respective number of memory references are summarized in

Appendix B. Here we include in Table 9.3., the data obtained from

the simulator showing the percentage of the execution time that

was spent to access storage in our example programs.

It has been suggested that context-switching can be the most

time consuming operation in executing high level language pro-

grams [42,43,44]. In our example programs, the percentage of

context-switching requests over the total number of instructions

simulated are 4.5-18%. The definition of the G-machine does not

provide architecture-level support for context-switching. Context-

switching is an expensive operation in the Gmachine as i t is in

most architectures. Performance benefits can be certainly

obtained by providing appropriate hardware support for context-

switching.

A possible solution is to include a cache store in the processor

itself. The addition of a cache will make any architecture run fas-

ter, but a cache is ineffective if it is too small. An effective cache

would require a much larger area and complicated control mechan-

ism in the processor. Another possible solution could be to use the

strategy of overlapped register windows in hardware, which the

designers of the Berkeley RISC-I processor [45] found very impres-

sive. The RISC-I architecture as implemented is tailored to the exe-

cution of imperative language programs (such as Pascal or C) and

not towards the efficient execution of functional language pro-

grams based on recursive function calls. The principal diseconomy

of this model is that the register file overflow will become so

overwhelming in recursive function applications that the efficient

execution of the programs will not be possible without maintaining

a online pool of registers that is freely available.

A much simpler solution can be used to provide the hardware

support for context-switching in the Gmachine architecture by fol-

lowing the traditional architectural support used in ALGOL-like

languages. This includes Dijkstra's "display-technique" and main-

taining a runtime stack in some place in storage. But maintaining a

runtime stack in memory will not certainly improve the perfor-

mance of the G-machine architecture, since a large number of

instructions in the program execution either directly manipulate

the contents of the pointer stack or access it for indirect reference

to the graph memory. Thus it would require a larger number of

storage accesses and will not meet the desired performance goals.3

Solutions that are not practical to implement in hardware to

achieve performance benefits can sometimes be incorporated in

software. One of the ways context-switching can be minimized in

the G-machine program execution is by having a compiler recog-

nize tail-recursive function applications and translating them into

iterative code. This eliminates the need for a context-switch at a

tail-recursive call, instead requiring only the modest instruction

scheduling overhead of a jump instruction.

The present ML compiler as implemented already recognizes

tail-recursive applications in the source code, and generates an

efficient, iterative evaluation sequence. However, it does not

attempt program transformations to generate tail-recursive appli-

cations from a source program that was not written in that form.

Since none of our example programs uses tail recursive function

calls, they do not take advantage of this feature.

In our definition of the G-machine architecture, we justified the

need for architecture-level support for the stacks in the processor

n o u g h this idea has not been simulated but using the data from the simulator we And that ex-
ecution time increases by about 30% (Fib: %.6X, Ack: 27.8% and Treesort: 33.8%) if we use this con-
cept.

68

itself. Thus i t will be interesting to know if we can bound the depth

of the stack during the graph traversal and reduction of function

applications. This will allow the use of a hardware supported

pointer stack without an automatic overflow mechanism. Keeping

the stack depth to a minimum will improve the performance of the

G-machine program execution by having to store only a minimum

amount of pointer stack contents during a context-switch. This can

be readily done during the UNWIND phase of the Gmachine execu-

tion of an EVAL instruction. An example of the existing UNWIND

phase and the new scheme are shown in Figures 9.1 and '9.2.)Is

shown in Figure 9.2, the new scheme differs from the old bne Ly
having only to push a pointer to the root application node' of the

graph onto the stack and then just pushing a pointer to thk argu-

ment part of each application node rather than pushi& new

pointers to the function and argument parts of each appl I cation

node. This is semantically correct because it is only the root appli-

cation node that is updated with the result when the gr I, ph is

reduced to some canonical value. Thus it is not necessary to create

an environment in the pointer stack with redundant pointers'to the

successive chain of application nodes for simply applying $ func-

tion to its arguments. I
I

W e have simulated the proposed UNWIND scheme dur& the

execution of our example programs. A s expected the resdts we
I

Figure 9.1 Arrangement of the stack after UNWIND (existing scheme)
on the application of function 'F' on two arguments

Figure 9.2 Arrangement of the stack after UFJWND (new scheme)

obtained show a significant performance improvement by having

only to savehestore a relatively small amount of pointer stack

contents during each context-switch. The data we obtained during

the simulation of new UNWIND scheme are shown in Table 9.4., and

should be compared with the data of Table 9.3.

Table 9.4.

During the simulation of our example programs we compared

its code size with the VAX codes (a successful modern minicom-

puter) to measure the effectiveness of each G-machine instruction

(as shown in Table 9.1). Clearly our observations on these features

of the G-machine architecture is very encouraging and we indicate

that the G-machine architecture is a good choice for a functional

language evaluator.

10. CONCLUSION

A n experimental investigation of a graph reduction machine

architecture. has been described. A simulator for the G-machine

architecture, capable of simulating the execution of "real" pro-

grams and obtaining dynamic statistics, has been developed. This

simulator was used to demonstrate the effectiveness of the G-

machine architecture and its instruction set.

The abstract model of computation used in the LML compiler

has been studied. We have identified many potential advantages of

the LML compiler for the G-machine architecture [46]. The values

of expressions are shared among multiple references. In fact,

because of the lazy evaluation strategy, an applicative expression

is evaluated a t most once. Dynamic environments are avoided by

anticipating all references to non-local variables, and binding

exactly the variables needed as arguments in applicative expres-

sions. Some economy in control flow is achieved by recognizing tail

recursive function calls, and thereby avoiding chains of barren

returns from iterative function calls.

The LML compiler as it is implemented presently does not gen-

erate very efficient code. I t requires more memory to build an

application tree for applicative expression than it does t o evaluate

the expression straight away. Thus the lazy evaluation strategy is

wasteful in those cases in which an applicative expression is

suspended at first, but eventually evaluated. Less memory prob-

ably would have been used if it were evaluated immediately.

When an expression is evaluated, it is almost always

represented by a newly allocated node in G-memory. Often, this

node is then copied to overwrite an application node in an UPDATE

operation. If only the copy is wanted of this newly allocated node,

allocation of this new node could have been avoided.

Similarly, when a sequence of tail-recursive calls i ~ : evaluated,

the values computed in all but the final call of the sequence are

only used as arguments to the succeeding call in the sequence.

However, new storage is allocated in G-memory to'represent each

of these intermediate values. If this specialized use were recog-

nized, the new values could just overwrite the storage previously

allocated for arguments, avoiding a sequence of unnecessary

storage aliocations.

Another possible source of optimization in the use of storage is

to recognize when new basic values (arithmetic and boolean) are

used immediately as argurnents of arithmetic or boolean expres-

sions, or tested by an "if". Such values need not be allocated for

storage at all, but may be retained in the V-stack until used. For

repeated uses of the same operand, a more sophisticated

algorithm is required. This strategy may also be extended to values

produced by function applications.

It is extremely important for performance to be able to take

advantage of these opportunities to avoid unnecessary storage allo-

cations. Performance is degraded in three ways by the profligate

use of storage. First, there are extra instructions executed to per-

form allocations. Second, there is either an eventual loss of

efficiency due to storage fragmentation, if a program is run in a

large virtual address space without the use of garbage collection,

or there is time lost in collecting cells to prevent this fragmenta-

tion and restore locality. The overhead of collection will be at least

proportional to the total number of cells allocated (unless collec-

tion is done by a parallel processor). Finally, we have seen that

the re are optimizations of the f unc tion-call protocol which are

available when the compiler implements an application of a

globally-defined function. These optimizations are not possible

when the call is produced by UNWINDing a previously constructed

application graph, which is the case when a suspension is finally

e d u a t e d .

The costs of a computation are identified in terms of a number

of accesses to a data structure whose size is potentially

unbounded. Much of the future research should concentrate to pro-

vide effective means to improve program locality. The results

obtained from the simulator show how some such improvements

were obtained by providing hardware stacks for graph traversal

and to hold local environments during evaluations.

It is also expected that higher performance benefits can be

obtained in the execution of the Gmachine code that supports the

new UNWIND scheme. Some of our future research will be to incor-

porate these ideas into a new G-machine compiler that will produce

highly optimized codes and will reduce redundant allocations.

Performance benefits can also be improved by an order of mag-

nitude if various architectural units of the G--&adhine can be run in

parallel. Such as instruction pre-fetch and execution can be over-

lapped with the sequentiality of the machine state if a separate bus

is provided between the processor and the control memory.

Further studies on various architectural issues can be easily

performed using the simulator developed. The operating system

issues have not been addressed in this thesis. Once the operating

system features are finalized they should be incorporated in the

simulator so that some measures of the new computing environ-

ment could be obtained.

REFERENCES

[I] Mead, C.A. and Conway, L.A., "Introduction to VLSI Sys-
tems". Addison-Wesley, Reading, Massachusetts., 1980.

[2] Bashkow, T.R., Kroft, D. and Sasson, A., "Study of a Com-
puter for Direct Execution of List Processing Language", Tech.
report 103, Columbia University, January 1968, AFCRL-68-0063.

[3] Chu, Y., and Abrams, M., "Programming Languages and
Direct-Execution Computer Architecture", Computer, Vol. 14,
No. 7, July 1981, pp. 22-32.

[4] Ditzel, D.R., "Reflections on the High-Level Language Sym-
bol Computer System", Computer, Vol. 14, No. 7, July 1981, pp. ,

55-66.

[5] Flynn, M.J., "Directions and Issues in Architecture and
Language", Computer, Vol. 13, No. 10, October 1980, pp. 5-22.

[6] Johnsson, Thomas, "The G-Machine: An Abstract Machine
for Graph Reduction", Programming Methodology Group, Dept.
of Computer Science, Chalmers Univ. of Technology, Gothen-
burg, Sweden, August 1983.

[7] Turner, D.A., "A New Implementation Technique for Applica-
tive Languages", Software - Practice and Experience, Vol. 9,
September 1979, pp. 31-49.

[a] Keller, R.M, Lindstorm G. and Patil S., "A Loosely-Coupled
Applicative Multi-processing System", Proc. of NCC. AFIPS
Press, June 1979, pp. 613-622.

[9] Keller, R.M., Lin, F.C.H, and Tanaka, J., "The Rediflow Multi-
processing System", Dept of Computer Science, Univ. of Utah,
1983.

[10] Clarke, T. J.W., Gladstone P. J.S., Maclean C.D., and Norman,
A.C., "SKIM - The S, K, I Reduction Machine", Proc. 1980 LISP
Conference, August 1980, pp. 128-135.

[I 11 Augustsson, L., "Functional Compiler Status Report #I",
Memo 24, Programming Methodology Group, Dept. of Computer
Science, Chalmers Univ. of Technology, Gothenburg, Sweden.,
1082.

1121 Augustsson, L., and Olofsson, G., "A Peephole Optimizer",
Programming Methodology Group, Dept. of Computer Science,
Chalmers Univ. of Technology, Gothenburg, Sweden., 1982.

[131 Vireday, Richard, "An Assembler for the G-machine", Dept.
of Computer Science & Engineering, The Oregon Graduate
Center. February 1984.

[14] Foster. Mark, "Instruction Trace Analyzer for the G
machne", Dept. of Computer Science & Engineering, The Ore-
gon Graduate Center. March 1984.

1151 Backus. John,. "Can Programming be
Von Neurnann Style? A Functional Style
grams", Comm. A.C.M., August 1978, pp. 613-641.

[16] Church. A., "me Calculi of Lambda Conversio ", Annals of
Mathematical Studies, Princeton University Press, 1941.

[I?] Stoy, J.E., "Denotational Semantics", MIT 1977.

[18] Landin. P. J., 'The Mechanical Evaluation of Expressions",
Computer Journal, June 1964, pp. 308-320.

[19] Clark, D.W., "An Empirical Study of List Structure in LISP",
Comm.A.C. M., February 1977, pp. 78-87.

[20] Berkling, K.J., "Reduction Languages for Reduction
Machines", Interner Bericht ISF-76-08, Gesellschaft fur
Mathematik und Datenverarbeitung mbH Bonn, 1976.

1211 Kluge, W.E., "The Architecture of A Reduction Language
Machine Hardware Model", Internal Rep. ISF-GMD-79.03, D-5205
St. Augustin 1, August 1979.

1221 Berkling, K. J., "Experiences With Integrating Parts of the
GMD-Reduction-Language Machine, VLSI Architecture,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[23] Mago, G.A., "A Cellular Computer Architecture for Func-
tional Programming", Proc. IEEE COMPCON 80, February 1980,
pp. 179-187.

[24] Treleaven P.C., and Mole G.F., "A Multi-processor Reduc-
tion Machine for User-defined Reduction Languagesf'. Proc.
Seventh Int. Symp. on Computer Architecture, May 1980. pp.

. 121-130.

[25] Hughes, R. J.M., "Super Combinators: A New Implementa-
tion Method for Applicative Languages", Proc. 1982 A.C.M.
Synp. on Lisp and Functional Languages, August 1982, pp. 1-10.

[26] Darlington J., and Reeve M.. "A Multi-processor Reduction
Machine for the Parallel Evaluation of Applicative Languages",
Proc. of Conf. on Functional Programming Languages and Com-
puter Architecture, October 1981.

[27] Curry, H.B., and Feys, R., "Combinatory Logic", North-
Holland, Amsterdam, 1958.

[a] Henderson, P., "Functioiial Programming -- its Implemen-
tation and Application", Prentice-Hall 1980.

[29] Jones, S.L.P., "An Investigation of the Relative Efficiencies
of Cornbinators and Lambda Expressions", Proc. of 1982 A.C.M.
Symp. on Lisp and Functional Languages, August 1982, pp. 150-
158.

[30] Hughes, R.J.M., "The Design and Implementation of Pro-
gramming Languages", Ph.D. thesis, Oxford University, July
1983.

[31] Gordon, M. J. C., Milner, A. J.R., and Wadsworth, C.P., "Edin-
burgh LCF, Lecture Notes in Computer Science" No. 78,
Springer-Verlag, 1979.

[32] Schonfinkel, M., "Uber Die Bausteine Der Mathematischen
hgik", Mathematische Annalen 92:305, 1924.

[33] Kieburtz, R.B., " N L User Guide", CSE 511 Class Notes,
Dept. of Computer Science & Engineering, The Oregon Graduate
Center, January 1984.

[34] Hoevel, L.W., "IDEAL-Direc tly Executable Languages, An
Analytical Argument for Emulation", IEEE Transactions on Com-
puter, Vol C-23, August 1974.

1351 Schoellkopf, J.P., "A Tutorial on High Level Language
Machine for PASCAL", ENS-IMAG Report 131-Grenoble, October
1978.

[36] Wilner, W. T., "Design of the Burroughs B 1700," Proceedings
of the 1972 Fall Joint Computer Conference, Montvale, NJ:
AFIPS, 1972, pp. 489-497.

[37] Sanson.net, M.J., Castan, M., and Percebois, C., "M3L: A
List-Directed Architecture", International Symposium on Com-
puter Architecture, La Baule, France, May 1980, pp. 105-112.

[38] Ditzel, D.R., and Patterson, D.A., "Retrospective on High-
Level Language Computer Architecture", Proceedings of the
International Workshop on High-Level Language Computer
Architecture, New York: ACM, April 1980, pp. 97-104.

[39] Kieburtz, R.B., "The GMachine: A fast Graph-Reduction
Processor", Dept. of Computer Science & Engineering, The Ore-
gon Graduate Center, November 1983. .

[40] Patterson, D.A., and Sequin, C.H., "RISC I: A Reduced
Instruction Set VLSI Computer", Eighth Annual Symp. on Com-
puter Architecture, May 1981, pp. 443-457.

[41] Rose, C.W., and Ordy, G.M., "N.mPC: A Retrospective",
Proceedings of 20th. Design Automation Conference., IEEE,
June 1983, pp. 497-514.

[42] Knuth, D.E., "An Empirical Study of FORTRAN Programs",
Software -- Practice & Experience, Vol. 1, No. 2, 1971, pp. 105-
134.

[43] Robinson, S.K., and Torsun, I.S., "An Empirical Analysis of
FORTRAN Programs", The Computer Journal, Vol. 19, No. 1, pp.
56-62.

[44] Shustek, L.J., "Analysis and Performance of Computer
Instruction Sets", PM dissertation, Stanford University, 1978.

[45] Patterson, D.A., and Sequin, C.H., "A VLSI RISC", Comuter,
September 1982, pp. 8-21.

[46] IGeburtz, R.B., "Reducing Memory Allocations for G-
Machine", CSE 512 Class Notes, Dept. of Computer Science &
Engineering, The Oregon Graduate Center, May 1984.

APPENDIX A

The following are the definitions of the Gmachine instructions. The action
of each instruction is defined p a transformation of a six-tuple,

in which C is the control. P and V are the traversal and value stacks respectively,
G is the expression graph, D the dump, and E the environment. Sequences are
represented using a dot for the sequence constructor, and () denotes the null
sequence. The majority of the instructions are taken directly from [6]. Some
instructions have been added to allow value-pairs to be handled without indirec-
tion. Less attention has been paid to the arithmetic and logical group than to
other instructions; these will no doubt be refbed somewhat before a design is
committed for implementation.

- EVAL -
<EVAL.C, n.P, V. In: AP nl %]+G. E. D> ==>

<UNWIND.(), n.0. (). [n: AP nl n2]+G. El (C.P,V).D>

<EVAL.C, n.P. V. [n: OP opemnds]+G, E, D> ==>
<C, n.P, V, [n: OP operads]+G, E, D>
a t a node for which OP is not AP.

- UNWIND -
twhen UNW3ND is executed, the active node must be an AP or a FUN)

<UNWlND.(), n.P, V, [n: AP nl n2]+G. E, D> ==>
<UNWIND.(), nl.n2.n.P. [n: A . nl nZ]+G, E, D>

<UNWIND.(), n.n, ... nk(), V, [n: FUN f]+G. [f: (a, C9)]+E (C".P".V").D> ==>
k >= 2*ai-1 : CC'. n.nl ... nk() V, [n: F U N f]+G, [E (a,Ce)]+E, (C".P".V").D>
k < 2*a+i : <C1, nk.PW. V". [n: FUN f]+G. [f: (a.C)]+E. D>
treduction of an application occurs only when the requisite number

of arguments is present]

- CALLGLOBFUN -

<CALLGLOBFUN f.(),.P, V, G, [f: C9]+E, D> ==> <CD,.P, V, G, [f: Cg]+E1 (C,P,V).D>

- RETURN -

< R n V R N m C , no ... m.0. (1. [n,: OPoperands]+G. E. {C',S',VS).D> ==>
<C', nm.P'. V', [n,: OP operands]+G. E, D>
!the node at the bottom of the stack should have been evaluated

before a RETURN is executed{

- PRINT -

<PRINT.C, n.P, V, [n: CONS nl nZ]+G. E, D> ==>
<PUSH 0.FST.EYALPR.INT.SND.EVAL.PHNT. C, nP. V, [n: CONS nl n2]+G. E. D>

<PlUNT.C, n.P, V, [n: OPoparands]+G, E, D> ==>
<C,.P, V, [OP qperands]+G, E, D>
if U P is not CONS.

- instructions to support graph traversal -

CMOVE m.C, ng.nl ... nm.P, V, G. E, D> ==> <C, nl ... nm-l.nO..P, V, G, E, D>
when m > 1

@OPm.C,n o... n, .P,V,G,E,D>==> <C, P ,V , G , E , D >

- UPDATE -
)this is the sole operation that overwrites a node value in the graph]

- Node allocation instructions -
(in which n', nlS, and n2' represent new unique node names]

cMXJT i.C,.P, V, G, E, D> ==> <C, nY.P, V, [n': CONST i]+G, E, D>
[inserts a literal value into the graph]

<KVAL.C,.P, i.V, G, E, D> ==> <C, nl.P, V, [n': CONSTi]+G, E, D>

< u . C , nl.n2.P. V, GI E. D> ==> <C, nS.P, V. [n': AP nl n2]+G1 E, D>

<MWRC, nl.n2.P. V. G. E. D> ==> <C. n'.P. V. [CONS nl nZ]+G. E. D>

<KVALJRC..P, il.i2.V, G, El D> ==> <C, n'.P, V, [n': PRil,i2]+G, E. D>

-VlJRC, n.P, i.V, G, E, D> ==> <C, n'.P, V, [n': H-PR1 i n]+G, E, D>

<AWIOC m.C,.P, V, G. E. D> ==> <C, nll ... nm9.P, [nl: HOE. n,':HOLE]+G. E. D>

- data fetch instructions -

<GET_FST.C, n.P,V, [n:PRili2]+G, E, D> ==>
<C..P, il.V, [n: PR il iZ]+G, E. D>
&he node may also be a H-PR1J

cGETSND.C, n.P, V. [n: PR il i2]+G. E, D> ==>
<C,.P, iZ.V, [n: PR il i2]+G, E, D>
(the node may also be a H-PR2J

<GET_PR.C, n.P. V. [n: PR il i2]+G. E, D> ==>
<C..P, il.i2.V, [n: PR il iZ]+G, El D>

- data structure selection -

<FST.C, n.P. V. [n: H-PR2 nl $J+G. E, D> ==> <C, nl.P, V. [n: H-PR2 nl i2]+G, E, D>

<SND.C, n.P. V. [n: H-PR1 ii nZ]+G. E. D> ==> <C, nZ.P. V. [n: H-PR1 il nZ]+Gl E. D>

<FST.C, n.P. V, [n: CONS nl %]+G. E. D> ==> <C, nl.P..Vl [n: CONS nl +]+GI E, D>

<SND.C, n.P, V. [n: CONS nl nZ]+G. E, D> ==> <C, n2.P, V. [n: CONS nl n2]+G, E, D>

- test for a null List -

<NUUC, n.P, V, [n: CONS nl nZ]+G, E, D> ==>
<C,.P, false.V, [n: CONS nl nZ]+G, El D>

<NUU,C, nP, V, [n: NIL]+G, E. D> ==> <C,.P, true.V, [n: NIL]+G, E, D>

- arithmetic and logical operations1 -

<binop.C,.P, il.iZ.V, G. E. D> ==> <C..P. (il &nap i2).V. G, E, D>
where binop is one of ADD, SUB, MUL, DW, EQ, NE, LT, GT, LE, GE.

<NOT.C,.P, b.V, GI El D> ==> <C,.P, (not b).V, G, E, D>

- control transfer instructions -

cJFUN f.(),.P, V, G, [f: C1]+E, D> ==> <C',.P, V, G, [f: c']+E, D>

Condition codes (zero, negative, carry, overflow) are to be added.

- instructions t o support abstract data types -

<IS n.C, iP, V, [i: HJR1 m d]+G, E, D> ==> CC, P, (m = n).V, G, E, D>

<OUT n.C, i.P, V. [i: H-PR1 n d]+G, E, D> ==> <C, d.P, V, G, E. D>

<OUT n.C, i.P, V, [i: H-PRl m d]+G, E, D> ==> <fail.C, d.P, (m <> n).V, G, E, D>

<INJECT t.C, i.P, V, [i: H-PRl m d]+G, E, D> ==> <C, j.P, V, b: HJRl t i)+G, E, D>

(f is the type value{

GRAPH MEMORY REFERENCES OF THE GMACHCNE
INrnUCTIONS

The following are the G-Machine instructions that access graph
memory. Each instruction is given here with the total number
of graph memory references. The information in parenthesis
describes the number of read and write to the memory. It is
given in the form (R/W), where "R" is the number of read
access and "W" is the number of write access.

Instruction

RETURN

UPDATE

UNWIND

No. of G-Memory ref. Remark

This is true
only if the
node is in
canonic a1

form

It is 4 (2/2)
for pair

For each
application

node

w

M U A I R

M K Y U R

MKYZPR

MKYAGPAIR

G E T r n

GETSND

GET-PAIR

FST

SND

IS

OUT

INJECT

No. of GMemory ref. Remark

