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Chapter 1

Introduction

1.1 Ras Biology

1.1.1 Ras in cell signaling and cancer

Rat sarcoma viral oncogene homolog (Ras) proteins are important signaling

molecules ubiquitously expressed in eukaryotes and are key regulators of normal

proliferation and differentiation [1]. The Ras family is a group of small GTPases

that reside on the membrane and are involved in multiple cell signaling cascades

[2, 3] (Figure 1.1.1).

They transmit growth signals from cell surface receptors, such as tyrosine kinase

receptors, by switching between GTP or GDP bound states [4]. Ras is inactive when

GDP bound, but stimulation by upstream factors results in the exchange of GDP

for GTP with the aid of guanine exchange factors (GEFs). GTP bound Ras is able

to bind and recruit downstream effectors to the membrane. Although Ras is able to

hydrolyze GTP to GDP, the endogenous reaction is slow and is catalyzed by GTPase-

activating proteins (GAPs). A third of all human cancers have a constitutively active

Ras mutation, making Ras one of the most frequently mutated oncogenes [2, 3, 5].

Oncogenic Ras mutations are single base substitutions that stabilize GTP-bound

state which results in constitutive activation of Ras and its target proteins, leading

to several hallmarks of cancer [3, 5].
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Figure 1.1.1: Ras Signaling Pathways. Reprinted from [2].

Although the Ras proteins are involved in multiple cascades, the mitogen-activated

protein kinase (MAPK) pathway is frequently mutated in cancer and is a major driver

of cancer progression [2, 3, 5]. The MAPK cascade is an evolutionarily conserved

signaling pathway that transmits extracellular signals to the nucleus resulting in

changes to the transcriptome [3, 5] (Figure 1.1.2). Located downstream of receptor

tyrosine kinases, such as the epidermal growth factor receptor, components of the

Ras-MAPK pathway include rapidly accelerated fibrosarcoma (RAF), MAPK kinase

(MEK) and extracellular signal-regulated kinase (ERK). Each kinase recruits and

activates its substrate via phosphorylation [3, 5]. This culminates in phosphorylated

ERK (pERK) that translocates into the nucleus and activates multiple transcription

factors resulting in the regulation of cell proliferation, differentiation, migration and

apoptosis. Although the biochemical aspects of this pathway have been relatively

well studied, recent work suggests that spatial regulation is also a critical step in Ras

activation.



Figure 1.1.2: Simplified MAPK Pathway. Ligand bound receptor tyrosine kinases
(RTKs), i.e. epidermal growth factor receptor bound to the epidermal growth factor,
activate RAS and change the cell transcriptome.

1.1.2 Isoform specific Ras properties and biological activity

The Ras superfamily is mainly divided into five major branches (Ras, Rho, Rab,

Ran and Arf) based on functional and sequence similarity [6, 7]. All Ras are small

GTP-binding proteins that function as signal transducers that propagate signals initi-

ated by some environmental stimuli [6, 7, 8]. The most well-known human oncogenes

within the Ras subfamily are the three RAS genes (K, H and N) that function as

transducers and propagators of multiple signaling pathways [2, 3]. KRas further has

two different splice variants, KRas 4A and KRas 4B, with the latter being the most

highly expressed splice variant. Although the Ras isoforms are highly conserved,



especially in the effector binding G domain region, they have different biological

functions. For example, KRas knock out is embryonic lethal while H and NRas are

not [2]. In addition, there are significant differences in the presence of the isoforms

in human cancers [2, 3]. KRas mutation is much more frequent than N or HRas,

and the mutation rates also differ by cancer types. Almost all pancreatic cancers

exhibit KRas mutation while NRas is the most common Ras mutation in melanoma.

Further, Ras GTPases are known to activate over 20 different signaling pathways,

but Ras isoforms have different preferences for different signaling pathways [9, 8].

For example, KRas primarily activates MAPK while the PI3K pathway is activated

more strongly by HRas [10, 8]. Although the mechanism is unclear, these differences

indicate that Ras isoforms have distinct biological functions.

Figure 1.1.3: Ras Isoform Structural Differences. Reprinted from [11]

Ras is composed of two regions, the G domain and the hypervariable region

(HVR) (Figure 1.1.3) [2, 11, 8, 12, 13]. The G domain is the catalytic domain that is

responsible for the loading and the hydrolysis of GTP [2, 11, 8, 12, 13]. The structure

of the G domain of the Ras isoforms is virtually identical and almost all of the

structural differences come from the HVR [2, 12, 13, 11, 8]. The hypervariable region,

located at the C-terminal end of Ras, undergoes post-translational lipid modications

that results in dierent lipid tails for each isoform [2, 11, 13, 12, 8]. Two palmitoyl



chains and a farnesyl chain are appended to the HRas tail [2, 13, 12, 11, 8]. NRas

and KRas 4A both are modified with the addition of one palmitoyl and a farnesyl

chain respectively, while KRas 4B is farnesylated and contains six lysine residues that

interact with the negatively charged phospholipids to facilitate KRas 4B interaction

with the membrane (Figure 1.1.3). Given the prevalence of KRas 4B, KRas will be

used to refer to KRas 4B from here on.

1.1.3 Role of the membrane in isoform-specific Ras biology

Due to their structural and functional variability, it was hypothesized that the

Ras isoforms have non-redundant biological functions with the largest structural

difference in the HVR, which contains the membrane targeting motif. As such, it was

hypothesized that the Ras isoforms segregate to different regions of the membrane

and this segregation could cause the observed diversity in Ras activated signaling

pathways [9, 8].

Far from a homogenous sea of lipids, it is becoming clear that the membrane is

a complicated, heterogeneous system [14, 8]. In addition to lipids and cholesterol,

the membrane is crowded with proteins and carbohydrates. The picket fence model

states that membrane compartmentalization is achieved by a meshwork of filamen-

tous proteins such as actin and regular arrays of transmembrane proteins anchored

to the underlying cytoskeleton that hinder lateral diffusion [14, 8]. Other features of

the membrane include lipid rafts, which are hypothesized to be small membrane do-

mains on the order of nanometers that are enriched in cholesterol, sphingolipids and

lipid raft associated proteins, such as Glycosylphosphatidylinositol-anchored proteins

(GPI-APs) [15, 8]. Aside from lipid rafts, there are other membrane microdomains.

Caveolae invaginations are known to form their own high density microdomains with

components similar to lipid rafts [16]. Another example of non-raft microdomains

include pools of anionic phospholipids, such as phosphatidylserine, that interact with

positively charged proteins through electrostatic interactions [17, 18, 18]. Further,

there is evidence suggesting that these microdomains function as signaling platforms

for membrane proteins, and that these microdomains can be either transient or sta-



ble structures [19, 20, 21]. Therefore, it is becoming evident that the membrane has

an elaborate organization with many different components.

Multiple studies have shown that Ras isoforms indeed differ in their dependence

on different membrane structures [22, 23, 24, 25, 26]. More specifically, GTP loaded

HRas was observed to associate with lipid rafts and co-localize with caveolin, the

primary component of caveolae which are involved in endocytosis [26] (Figure 1.1.4).

However, HRas-GDP did not, indicating that HRas lateral segregation on the plasma

Figure 1.1.4: Ras Compartmentalization. Reprinted from [9]

membrane is dependent on its nucleotide status. In contrast, KRas resides outside of

lipid rafts regardless of the bound nucleotide [26]. Further, KRas has been shown to

be sensitive to actin [25], and the KRas tail, the membrane targeting motif, encodes

lipid selectivity and has high affinity to phosphatidylserine [27, 28]. Phosphatidylser-

ine, an anionic lipid that is relatively abundant on the inner leaflet of the membrane,

forms immobile and mobile pools in the membrane [29, 18]. As such, it is hypothe-

sized that KRas segregates to these phosphatidylserine pools on the membrane.



1.2 Ras Dimers and Clusters in Signaling

1.2.1 Protein clusters on the membrane

Clustering of membrane proteins is proving to be a ubiquitous mechanism [30].

A diverse set of membrane bound proteins, from signaling to immune receptors, have

been observed to form clusters [30]. GPI-APs are lipid-linked extracellular proteins

that are involved in a range of functions including signal transduction, cell adhesion

and endocytosis. Chemical crosslinking and fluorescence resonance energy trans-

fer (FRET) revealed that GPI-APs form oligomers of at most four molecules [30].

This was observed for multiple GPI-AP species. Lymphocyte function-associated

antigen-1 and CD209, transmembrane proteins involved in the immune system, are

also known to form large nanoclusters [30]. In addition, well studied signaling pro-

teins such as the members of the ERBb family are also known to form transient,

reversible dimers on the membrane where the dimerization is a necessary step for

the activation of the intracellular tyrosine kinase domain [31]. The prevalence of

protein clusters across biological functions begs the question of its necessity. Some

potential explanations include allosteric regulation of the receptor oligomers or in-

creasing the dwell time of a ligand by providing multiple ligand binding sites in close

proximity [30]. It has also been suggested that nanoclusters can filter out noise in

signal transduction by digitizing the continuous analog input signals, in terms of lig-

and binding, and preventing spurious generation of signal [32]. The recent advance

of super resolution imaging has allowed for a more in-depth investigation of protein

oligomerization as an organizing principle.

1.2.2 Ras dimers and clusters on the membrane

The clustering behavior of Ras was first described by Prior and colleagues in

an immuno-EM study where Ras formed clusters of 6-8 Ras molecules [26]. These

Ras nanoclusters were further characterized in a follow-up paper [32]. In this study,

about 60% of the Ras molecules on the membrane existed as monomers, while the

other 40% existed as nanoclusters. Importantly, it was shown that monomeric Ras



did not interact with RAF, concluding that Ras clustering was necessary for signal

transduction [32] and that KRas scaffold protein galectin-3 is a necessary component

of nanoclusters [33]. Further, the Hancock lab was able to show that H and KRas

reside in different membrane compartments [23, 25]. Although showing the necessity

of Ras clustering behavior in MAPK signaling was groundbreaking, the immuno-EM

was performed with an overexpression of Ras (∼14 fold higher expression than in a

normal cell [25, 34]) due to the technical limitation of labeling efficiency of the target

protein by antibody-labeled gold.

Nan et al. overcame the labeling limitations of EM by using quantitative PALM,

a super resolution microscopy technique [34]. High labeling efficiency was achieved

by genetically tagging KRas G12D with PAmCherry1, a photoactivatable red fluo-

rescent protein. The construct was placed under a tetracycline promoter so that the

expression of the exogenous fusion protein increased with the addition of doxycycline,

a tetracycline analog [34]. This doxycycline-inducible system allowed them to ex-

press KRas GTP at physiological levels, and the resulting multimers were quantified

through single-molecule counting [34]. At the physiologically relevant Ras densities

of 70 Ras molecules/µm2, dimers were the dominant cluster size and higher order

multimers (3 or more Ras molecules in a cluster) were rare, implying that the dimers

were the physiologically relevant Ras signaling unit [34]. The functional requirement

of Ras dimers was further validated through both chemical cross-linking and Ras

dimer interface inhibition [35, 36]. Inouye et al. showed that the dimerization of Ras

was essential for activation of Raf [35], while Smith et al. demonstrated the necessity

of KRas GTP dimers in signal transduction by preventing Ras dimer formation with

a synthetic monobody [36]. Thus, multiple studies have determined that Ras dimers

are the minimum necessary unit to signal downstream affectors.



1.3 Different approaches to studying spatial dis-

tribution of membrane proteins

Aside from the use of traditional biochemical assays to investigate protein oligomers,

such as chemical cross-linking and western blots, several imaging techniques have

been used to directly observe and probe membrane proteins.

1.3.1 Electron Microscopy

Electron microscopy (EM) has the highest spatial resolution to observe the mem-

brane structures of a cell [37, 38]. With nanometer resolution, EM can identify

various membrane structures including caveolae, clathrin coated vesicles, and actin

filaments [38, 37]. In immunogold electron microscopy (immuno-EM), target pro-

teins of interest can be visualized by labeling them with an antibody conjugated to

a gold nanoparticle [37, 38]. The Hancock lab successfully applied this technique to

directly characterize Ras nanoclusters on the membrane [23, 25]. They successfully

mapped the spatial distribution of the Ras isoforms to different membrane compart-

ments. Using two different sized gold nanoparticles, they also mapped the spatial

distribution of H and KRas on the membrane [23, 25].

Despite providing the best spatial detail, EM is limited to only fixed cells and

suffers from low immuno-gold labeling efficiency. In order to compensate for the

low labeling efficiency, Ras proteins were extremely overexpressed using a CMV pro-

moter. Aside from issues arising from protein expression, since EM is incompatible

with live cells, this technique is unable to confer any dynamic information.

1.3.2 Fluorescence Microscopy

Fluorescence microscopy (FM) in many ways offers opposite advantages and dis-

advantages compared to EM. Unlike EM, FM has high labeling efficiency via genetic

tags, is compatible with live cell imaging, and is easy to implement multiple colors.

However, fluorescent probes used to label target proteins can have significant interfer-



ence on the binding kinetics and the spatial distribution of the protein [39]. Further,

the spatial resolution of FM is often significantly worse, at approximately 200 nm

depending on the excitation wavelength. The diffraction limit for light microscopy

can be described as follows [40]:

resolution =
λ

2NA

where λ is the excitation wavelength and NA is the numerical aperture. As such,

protein clusters cannot be directly observed with conventional FM. For example, ex-

citation wavelength of 550 nm would result in ∼ 290 nm resolution with 0.95 NA.

Fluorescence Resonance Energy Transfer (FRET)

FRET is one technique that can measure protein-protein interactions using FM [41].

FRET is a fluorescence imaging technique that relies on the transfer of energy be-

tween two fluorophores with overlapping emission and excitation wavelengths. If

the two fluorophores are within a few nanometers, the emission from the donor fluo-

rophore excites the acceptor fluorophore and the resulting emission from the acceptor

fluorophore can be detected to determine the dimerization of two proteins (Figure

1.3.1).

Figure 1.3.1: Detecting Protein-Protein Interactions Using FRET



This highly restricted sensing range, on the order of nanometers, makes this tech-

nique an accurate method for detecting protein protein interactions. Further, this

approach is live cell compatible, and thus it is able to give dynamic information on

the duration and the spatial location in addition to the frequency of cluster formation.

Super-Resolution Microscopy

Super-resolution microscopy (SRM) is a group of light microscopy techniques that

can circumvent the diffraction limit of light in conventional FM [40]. In general, there

are three different super-resolution methods: single molecule localization microscopy

(SMLM) [42, 43], structured illumination microscopy (SIM) [44], and stimulated

emission depletion (STED) [45]. The work presented in this thesis only relies on

SMLM. Hence only SMLM will be covered.

SMLM consists of photoactivated localization microscopy (PALM) [43], stochastic

optical reconstruction microscopy (STORM) [42], and DNA-Point Accumulation for

Imaging Nanoscale Topography (PAINT) [46]. As shown in Figure 1.3.2C, in a

densely labeled sample, SMLM surpasses the diffraction limit of light by spatially

isolating individual fluorophores. If the point spread function (PSF) of an imaging

system is known and the individual fluorophores are isolated, then super-resolution

can be achieved by fitting the PSF to the diffraction limited spot of the emitter. In

SMLM, fluorophores are spatially isolated by random activation of only a subset of

fluorphores, such that at any given time only a small number of fluorophores are

actively emitting light. In most cases, the random activation enables separation of

the emitters greater than the limit of the spatial resolution (i.e. ∼250 nm). Thus,

the locations of all of the fluorophores are imaged sequentially by acquiring a movie

with hundreds to hundreds of thousands of frames.

Subdiffractive localization of individual molecules, on the order of nanometer

resolution, is achieved by fitting a two-dimensional Gaussian to each point spread

function (PSF) generated from a light diffracted point source (Figure 1.3.2 A). The

centroid localization of the fitted 2D Gaussian determines the spatial resolution,



which depends on the number of photons collected [43, 40]:

σx,y ≈
s√
Nsig

where σx,y is the localization precision of the estimated particle position, s is the

standard deviation of the Gaussian fitted to the PSF, and Nsig is the total number

of photons. After the sample is imaged, the coordinates are extracted in the post

image processing step where this function is fitted to all of the emitters in the movie.

The final high resolution image is constructed using the extracted coordinates. Since

the localization precision depends on the number of photons collected per emitter, a

brighter fluorophore leads to improved spatial resolution.

In PALM, this is achieved by utilizing fluorescent proteins that start in the dark

state and require input energy to fluoresce while STORM relies on dyes that stochas-

tically switch between on and off states. In the case of DNA-PAINT, artificial blink-

ing is mimicked by the kinetics of binding between the complementary DNA strands

between the target protein and the dye.



Figure 1.3.2: Single Molecule Localization Microscopy and Single Particle Tracking.
Reprinted from [40]



Single Particle Tracking

Single particle tracking (SPT) is a technique that allows the measurement of dynamic

information [47, 48, 14, 49, 50, 40]. More importantly, SPT is the only method that

allows observation of motions of individual molecules [50, 40]. In an SPT experiment,

particle motion in real time is obtained by taking a movie of the diffusing particles

labeled with a fluorophore (Figure 1.3.2B). After the movie acquisition, the spatial

positions for each particle are extracted and connected over time (discussed in further

detail in Chapter 2). Since the coordinates must be extracted for each frame, similar

to super resolution, each emitter must be spatially separated beyond the diffraction

limit of light.

Traditional SPT techniques only employed a handful of fluorescent probes to pre-

vent aggregation of multiple emitters in the same light diffracted space. This limited

the acquisition of single particle trajectories to only a handful of trajectories, which

limited the statistical and observational power. This limitation was overcome with

sptPALM, where the technique of temporally separating single emitters in PALM

was introduced to SPT to allow significantly more trajectories to be collected [51].

Similar to PALM, sptPALM relies on photoactivatable fluorescent proteins that ini-

tially start out in the dark state. Only a small number of fluorophores are activated

at a time, which allows each particle position to be extracted and connected over

adjacent frames. More fluorophores are activated as the current fluorophores become

photobleached and the cycle is repeated until the end of the movie or until all of the

fluorophores have been activated.

The analysis of the resulting single molecule tracks reflects the underlying diffu-

sion behavior of the molecule for a given spatial location. This indirectly allows us

to detect hidden underlying interactions between the tagged molecule and the mem-

brane structure. Because SPT is a collection of individual measurements, rare and

transient behavior can be detected. Through SPT the hidden interaction between a

given protein and its spatiotemporal interaction with the membrane can be modeled.



1.3.3 Analysis of Single Particle Tracking Data

While there are multiple methods for analyzing single particle tracking data, we

will focus on three different methods: calculating the mean square displacement

(MSD), fitting a cumulative distribution function (CDF), and applying the varia-

tional Bayes single particle tracking (vbSPT) method.

Mean Squared Displacement

The probability density function (PDF) for the one-dimensional position of a particle

as a function of time is given by the following [52]:

p(x, t) =
1√

4πDt
exp

(
−(x− x0)2

4Dt

)
where x is the coordinate after time lag t, x0 is the starting coordinate at time 0 and

D is the diffusion coefficient. The variance of the above PDF is the MSD [48, 52, 50]:

MSD = 2nDt

where D is the diffusion coefficient, n is the number of dimensions, and t is the time

interval. The MSD measures the variation in the position of a particle as a function

of the time interval.

Assuming brownian motion, this is a simple method that has been used widely

to extract the diffusion coefficient from the single particle trajectories. To plot the

MSD, the average displacement is calculated for each time lag.

MSD =
1

N

N∑
n=1

(xn(t)− xn(0))2

where N is the number of particles, xn(t) is the starting position of that particle

at time t, and xn(0) is the initial starting position of particle. To determine the

diffusion coefficient of a molecule undergoing random motion, the slope of the plot

of MSD over time can be divided by 2n (where n is the number of dimensions) [52].



Unfortunately, this approach is limited to simple diffusion where the slope of the MSD

curve is linear. Nonlinear curves at short time scales indicate anomalous diffusion

[52]. The following MSD functions can be fitted for two-dimensional diffusion:

MSD = 4Dt normal diffusion

MSD = 4Dtα anomalous diffusion

where D is the diffusion coefficient, t is the time lag, and α > 1 indicates superdif-

fusion and α < 1 indicates subdiffusion. Although straightforward and easy to im-

plement, MSD cannot separate different diffusion modes. For example, if a particle

displayed slow and fast diffusion, MSD analysis will aggregate both diffusion modes

into a single diffusion coefficient [52].

CDF fitting for a mixture model

One way to infer different number of diffusion states, their corresponding occupancies,

and diffusion coefficients is by fitting a mixture model to the data.The PDF for a

single diffusion state is known. We can fit the functional form of a mixture of

distributions for each diffusion state to the observed step size distribution to obtain

the mixture coefficients (occupancies) and the corresponding diffusion coefficients for

a given number of diffusion states. For a 2D particle undergoing brownian motion, the

probability density function for a given displacement vector is given by the following

[53, 54, 48, 55]:

P (~r, t) =
1

4πDt
exp

(
−~r 2

4Dt

)
The PDF for a given scalar displacement of size, r, can be derived by integrating

over all angles.

PDF(r, t) =

∫ 2π

θ=0

P (~r, t) d~r =
r

2Dt
exp

(
−r2

4Dt

)

CDF(r, t) =

∫ r

0

PDF (r, t) dr = 1− exp

(
−r2

4Dt

)



The CDF for more than one diffusion coefficient is given by the following [54, 56]:

CDF(r, t) = 1−
n∑
i=1

αi exp(
−r2

4Dit
)

where α is the fraction or occupancy corresponding to each diffusion coefficient.

Although technically the histogram of the step sizes can be fitted to the PDF to

determine the corresponding diffusion coefficient, the quality of the histogram de-

pends on the size of the bins [53]. However, the empirical CDF, by definition, does

not depend on bins (Fn = 1
n

∑n
i=1 1{Xi ≤ x}) and it has some nice properties that

are guaranteed to converge to the theoretical CDF [57]. Therefore, the empirical

CDF was constructed from the step size histogram, and then was fitted to obtain

the diffusion coefficients.

Variational Bayes Single Particle Tracking (vbSPT)

The third method discussed here, vbSPT, is more complex than the other meth-

ods but provides a rich diffusion model that can identify different diffusion states,

the corresponding occupancies, and the transition probabilities [58]. vbSPT models

particle diffusion as a hidden Markov model.

One way to model sequential data is using a Markov model, which is a type of

probabilistic graphical model [59]. Given some finite number of states, a first order

Markov model assumes that the next state only depends on the current state [59].

The transition probability is the probability for the occurrence of a transition from

one state to another, conditioned on the previous state (p(xn|xn−1), where n is the

number of latent variables) [59]. Therefore, the probability for a sequence of N

observations can be described as follows [59]:

p(x1, ..., xN) = p(x1)
N∏
n=2

p(xn|xn−1)

where xi is the observed state at time i. All of the transition probabilities for a given



state i must sum to 1:
n∑
j=1

p(xj|xi) = 1

A hidden Markov model (HMM) is a Markov model where the states are discrete

and hidden (latent variables z), and the observations come from one of the discrete

states [59]. HMM can be thought of as a mixture model with zn components, the

latent variables, that generate some observation xm [59]. Since observations are

drawn from the latent variables, the emission probabilities describe the probability

of generating an observation conditioned on one of the latent variables (p(xi|zj))
[59]. The transition matrix, A, is an n by n (n is the number of latent variables)

square matrix that describes the transition probabilities between every pair of states

[59]. A vector of initial state distributions π, where πi = p(zi) determines the initial

probability of observing the first state (z1) [59]. The joint probability of observing

a sequence of N observations (X = {x1, x2, ..., xn}) given N hidden states (Z =

{z1, z2, ..., zn}) can be written as follows, where θ = {π,A, φ} represents the model

parameters:

p(X|Z, θ) = p(z1|π)
N∏
n=2

p(zn|zn−1, A)
N∏
m=1

p(xm|zm, φ)

which describes the probability of first state based on the initial probability (p(z1|π)),

p(zn|zn−1, A) describes the state transitions, and p(xm|zm, φ) describes the probabil-

ity of the observation based on the hidden variable with φ describing the set of

parameters governing the emission probability distribution [59]. Since π is a vector

of initial state probabilities, its components must sum to 1 [59]:

n∑
i=1

πi = 1

For single particle tracking experiments, particle diffusion can be modeled with

HMM as shown in Figure 1.3.3. The distribution and the order of observed step

sizes depend on the hidden diffusion state of the particle. In Figure 1.3.3, a particle



with 2 modes of diffusion spends 60% of its time in a slow diffusion state and the

other 40% of its time in a fast diffusion state with corresponding diffusion coefficients

of 0.1 µm2 and 1 µm2, respectively. If the particle is in the slow state, it is much

more likely to generate small step sizes (distribution of steps shown in blue) while

a particle in the fast state is more likely to generate large step sizes (distribution of

steps shown in red). With enough data, i.e. single particle trajectories, the HMM

parameters (diffusion coefficient, occupancy, transition probabilities) that most likely

generated the sequences of observed step sizes can be inferred. For a given dataset,

vbSPT takes single particle trajectories and infers the HMM parameters for the most

optimal model size [58].

Figure 1.3.3: An Example of Modeling SPT Data with HMM

Among the three different SPT analysis methods discussed above, vbSPT pro-



vides the greatest amount of information [58]. The analysis of MSDs is restricted

to the most simple case of a single diffusion state, and CDF fitting is limited to

the number of diffusion states (diffusion coefficients and occupancies associated with

each diffusion state). Not only does vbSPT estimate the same parameters as CDF

fitting, but it also outputs the most probable sequence of hidden states responsible

for the observed data [58]. This makes it possible to link diffusion states to spatial

and temporal location. Thus, vbSPT allows the detection of dynamic spatiotemporal

information.

1.3.4 Application of SPT to studies of protein dynamics on

the membrane

Live-cell single-particle tracking (SPT) [47, 48, 14, 49, 40] complements static

imaging by providing information about molecular motions, and it has been used

to study Ras dynamics on the membrane [60, 61, 62]. The underlying rationale is

that interactions of Ras with different membrane domains and signaling partners

would manifest as varying diffusion behavior. Indeed, using SPT, Murakoshi et al.

observed transient events of Ras immobilization on the membrane, which became

more frequent upon epidermal growth factor stimulation, potentially reflecting the

formation of signaling complexes or interactions with raft domains [61]. Lommerse

and colleagues also used SPT to probe Ras diffusion and similarly observed transient

and context-dependent confinement of Ras in membrane regions not more than 200

nm in diameter [62].

1.4 Remaining questions and major directions

1.4.1 Ras clustering at the membrane

Although we have determined the functional necessity of Ras dimers and clus-

ters at the membrane, the mechanisms through which they form, and the role of

the biological membrane in signaling activity and specificity of Ras are still poorly



understood. Recent studies suggest that Ras multimer formation, signaling, and

membrane partition is dependent on membrane nanodomains. However, due to the

static nature and lack of throughput of the high resolution imaging techniques used

previously to probe membrane Ras, there is little known about the transient and

spatiotemporal dynamics of Ras interaction with the membrane. Thus, this thesis

attempts to address some of these remaining questions using live cell sptPALM to

detect Ras membrane interactions in real time.

1.4.2 Outline of the Thesis

The following chapters are organized as stated. Chapter 2 describes experimental

and analysis pipeline for live cell SPT that will be used for the rest of this thesis.

Chapter 3 utilizes the techniques described in Chapter 2 to discover the nested mem-

brane nanodomain organization with respect to Ras. Chapter 4 characterizes the

Ras nanodomains found in the previous chapter and explores the differences in Ras

isoform interaction with the nanodomains. Chapter 5 explores potential roles for

Ras nanodomain in Ras multimer formation and considers the overall impact of the

membrane organization in membrane-bound signaling proteins.



Chapter 2

Optimizing data acquisition and

analysis for high-throughput SPT

2.1 Introduction

This chapter addresses how single particle tracking movies are processed into

single particle trajectories, which is the basis for all of the data analysis, and the

pitfalls associated with the data acquisition pipeline. One of the major challenges

that we addressed was the impact of the single particle trajectory construction on

the diffusion model. All single particle tracking analysis methods that we examined

assume that the trajectories are accurate without any false connections between two

different particles [61, 48]. Even a relatively small number of misconnections can

result in inaccurate diffusion parameters, such as the appearance of additional arti-

ficial diffusion states. The problem of trajectory construction has no ground truth;

if there are multiple particles within close distance, it is not possible to know the

exact assignment between the particles in the previous and current frames. Unfortu-

nately, no simple and straight forward method existed to connect trajectories in high

particle density conditions that prevented misconnections. This was not an issue

with traditional SPT where a fewer number of fluorophores were imaged with longer

trajectories but became a problem for high-throughput SPT where a large number
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of particles are collected with short trajectories.

Our investigation into this issue was first prompted by the observation that when

using vbSPT to infer the diffusion model based on the experimental sptPALM data

[51], the model outputs varied in terms of both the model size (i.e., number of diffusive

states, Figure 2.1.1) as well as the model parameters (e.g. diffusion coefficients),

even for data acquired from different cells under the same conditions [58]. Moreover,

vbSPT also yielded different models depending on the threshold of the search distance

used for connecting the particle coordinates in adjacent frames into trajectories [58,

63].

2.2 Experimental set up

2.2.1 Microscope

A custom single color imaging system was constructed using Nikon Eclipse Ti-

U inverted microscope with 60x APO TIRF oil objective (NA=1.49). Four lasers

emitting at 647 nm, 561 nm, 488 nm, and 405 nm sharing the same light path were

directed through a beam expander (50:150 mm) and reflected into the back of the

microscope with a multi-edge dichroic mirror (405/488/561/635 nm). The fluores-

cence signal from the sample was collected through the same objective and passes

through a 405/488/561/635 nm quad-edge laser dichroic beamsplitter from Semrock

and reflected to the side port by a mirror. Illumination with the 561 nm and 405

nm laser was cleaned up by passing the sample signal through a band pass filter and

two notch filters (405 and 561/647) placed before the detector. Fluorescence signal

was acquired using an electron multiplied charge-coupled device (Andor iXon Ultra

897). TIRF illumination of the sample was achieved by shifting the incident laser

horizontally on the back focal plane of the objective before it entered the microscope.

Stage top incubator from Tokai Hit (INUG2F-SSI-W and UNIV2-CSG ), connected

to a CO2 line, was placed on top of the microscope stage and enabled live cell single

particle tracking by controlling the humidity, temperature (37C), and CO2 (5%).



Figure 2.1.1: vbSPT Model Output on Experimental spt-PALM Datasets Acquired
at High Particle Densities. When spt-PALM datasets of PAmCherry1-KRas G12D
in U2OS cells were acquired at particle densities higher than 0.03 per µm2 per frame
(typically around 0.05 – 0.1 per µm2 per frame), vbSPT outputs diffusion models
of varying sizes, many reaching 6 or more states (A, B). However, a histogram of
the diffusion coefficients of all detected states shows 3 clusters, indicating that a
three-state model is still likely the best to recapitulate KRas diffusion (C). Note that
the three clusters are centered at diffusion coefficient values similar to those obtained
with vbSPT or CDF analysis of spt-PALM datasets acquired at low particle densities
(<0.03 particles per µm2 per frame) as in Figure 1F. All data were taken at a frame
rate of 35 ms/frame.

2.2.2 Cell line

KRas G12D was genetically fused to PAmCherry1, a red fluorescent protein,

to ensure high labeling specificity and efficiency. The PAmCherry1-KRas G12D

coding sequence is placed under a CMV promoter regulated by the TetOn operon.

The construct was transduced via lentivirus into an isogenic U2OS-tetR cell line

that constitutively expresses tetR. Single cell clones were subsequently isolated and



screened to yield isogenic cell lines that express the PAmCherry1-KRas G12D fusion

protein under doxycycline (Dox) regulation.

2.2.3 Cell treatment for single particle tracking

Cells were grown in fluorobrite DMEM (Thermo Fisher Scientific A1896701) with

10% FBS in eight well Lab-Tek chambers (155409; Thermo Fisher Scientific) and Dox

induced 1.5 days before imaging. The chamber slides were treated with 1M NaOH

for 3-5 hours at room temperature and rinsed 5 times with PBS+ and incubated in

fluorobrite DMEM prior to being plated by cells. Cells were serum starved for at

least 12 hours prior to the movie acquisition and did not exceed 24 hours of serum

starvation. Live cell single particle tracking experiments were performed at 37C

temperature and 5% CO2 using a stage top incubator (see microscope set up). 561

nm ( 400 W/cm2) and 405 nm lasers (at extremely low power) were used to excite

PAmCherry1 molecules at 12 ms and 35 ms frame intervals.

2.3 Optimizing data analysis for high-throughput

SPT

2.3.1 Coordinate Extraction

Similar to PALM, coordinates are extracted from raw images by fitting a two-

dimensional Gaussian to each particle, hence sptPALM [40, 50]. The threshold for

goodness of fit (RMS) depends on multiple factors, such as the signal to noise ratio

[61, 48]. Thus, RMS value was set based on visual inspection of the quality of the

particles for each movie. The end product is a list of coordinates and frames for each

particle in the movie.



2.4 Two-Dimensional Markov Simulation

As mentioned previously, the identities of individual particles from experimental

movies are unlabeled, and hence there is no way to test if the resulting single parti-

cle trajectories are correctly constructed. Instead, simulations were used to generate

single particle tracking data, with known diffusion parameters, which was then used

to test the accuracy of our trajectory connection pipeline. The inputs to the sim-

ulations were experimentally derived diffusion parameters: number of trajectories,

diffusion coefficients, occupancies, transition matrix, frame rate, and the trajectory

density. The trajectory density and the number of trajectories are used to determine

the width of the simulation space. At the start of the simulation, every particle is

randomly assigned a coordinate and a state based on the occupancies. Once a state

is assigned, particles are assigned new coordinates by drawing displacements for each

dimension from the corresponding X ∼ N(0, 2Dt), where each state has a different

diffusion coefficient, D, and t is the time interval. At the next time step, a new state

is randomly assigned to every particle based on its current state and the transition

probability matrix. This process is repeated for the total simulation time.

2.4.1 Trajectory Connection

Once the coordinates from the experimental movie are collected, single particle

trajectories are constructed by connecting the coordinates from the same particle in

successive frames. Coordinates in adjacent frames are assumed to be from the same

particle if the distance between the coordinates is less than the connection distance

threshold. The connection distance threshold specifies the search radius around each

particle in the current frame for its possible locations in the next frame. This is

a critical parameter for linking particle coordinates into trajectories but is initially

unknown. This is addressed in Figure 2.4.1. Trajectories were terminated when

no particles or multiple particles were found within the threshold distance in the

next frame. Therefore, determining the optimal threshold is vital to preventing false

connections between two unrelated particles and also to prevent truncating the left

side of the step size histogram generated by real particle movement.



In general, the likelihood of connecting two unrelated particles is the greatest

when the maximum step size (frame to frame displacement) for a given particle is

large. The maximum step size is a function of the fastest moving particle and the

frame rate. The connection distance threshold reflects our belief in the maximum

step size a particle could take given a single frame interval. In order to determine

the correct connection distance threshold, we ran simulations and compared the step

size histogram between the simulated particles and the experimental data.

We ran two-dimensional markov simulations (described in Two-Dimensional Markov

Simulation) of diffusing particles with 2 diffusion states (0.1 and 1 µm2/s, referred

to as the ‘slow’ and the ‘fast’ states, respectively) at 12 ms frame acquisition time

(the fastest frame rate for the camera used with a sufficiently large field of view to

fit couple of cells) and particle density at 0.03 particles/µm2 per frame. Here, the

fast diffusion coefficient at 1 µm2/s was used empirically based on previous reports

as well as model outputs from existing datasets [51, 58, 63]. Particle coordinates

generated in the simulations were connected in the same way as the experimental

datasets to intentionally introduce errors in trajectory connection.

To define the threshold distance, we first constructed the trajectories using an

arbitrarily large distance significantly greater than the expected maximum step size

(∼2,000 nm), from which a step size histogram could be constructed (Figure 2.4.1 A).

The step size histogram broadly consists of two components; signal and noise. Signal

represents the shorter step sizes generated by real particle movement, while noise is

due to the misconnections between two different random particles. As Figure 2.4.1

A shows, the step size histogram clearly shows the approximate boundary between

signal and noise, where the majority of the molecules moved 500 nm or less in 12 ms.

Therefore, we reconstructed the single particle trajectories at 400, 500, and 600 nm

connection distance thresholds and compared the diffusion model as well as the step

size histogram for each condition. We discovered that the exact connection distance

threshold was not critical to the diffusion model inference (Figures 2.4.1 B&C). The

correct 2 state model was still returned even at 400 nm cut off, even though that

threshold clearly truncated the tail of the distribution. However, the tail truncation

did result in a slower diffusion coefficient being returned for the fast state. The



occupancy was similar for all three connection distance threshold values.

We applied the same method to determine the connection distance threshold

for the experimental data. The step size histogram from PAmCherry1-KRas G12D

showed the same pattern as the simulation. The first segment comprised the signal

with the first peak around 70 nm and extending to 500 nm, and all step sizes

beyond 500 nm was attributed to noise originating from misconnected trajectories

generated by the unrealistically large threshold distance. Based on this histogram,

we reconstructed the diffusion trajectories using 500 nm as the threshold distance

for 12 ms frame acquisition, and 800 nm for 35 ms frame rate movies (using the

same method). A new step size histogram was then obtained, which was essentially

identical to the first segment of the original step size histogram, confirming that

the new threshold distance eliminated most of the misconnected trajectories (similar

to Figure 2.4.1 A inset and main panel). The step size histograms of trajectories

obtained under the same conditions were also highly consistent, allowing us to set

the same threshold value for each condition.



Figure 2.4.1: Impact of the Connection Distance Threshold on vbSPT Model Output.
Using simulated trajectories at 0.03 particles/µm2 per frame, which comprises a two-
state system with diffusion coefficients at 0.1 and 1 µm2/s. We first synthesized
trajectories using an unrealistically large connection distance threshold of 2000 nm,
and examined the step size distribution of the resulting trajectories (A, main panel),
where it became clear that the vast majority of the molecules moved less than 500
nm between frames. Based on this, we chose 400 nm, 500 nm, and 600 nm as
the connection distance thresholds and resynthesized the trajectories (A, inset); the
histograms essentially overlap except at the large step sizes (blue: 600 nm threshold;
red: 500 nm threshold; and yellow: 400 nm threshold). B-C) Comparison of the
vbSPT model outputs on trajectories synthesized using the three connection distance
threshold values shows that vbSPT was able to pick the correct model size (of 2) at all
three settings. However, setting the threshold value at 400 or even 500 nm caused a
noticeable truncation in the step size histogram (as shown in A) and resulted in lower
diffusion coefficients for the fast state while the 600 nm threshold returned the correct
diffusion coefficient; the slow state was not affected. Interestingly, the threshold
setting had minimal impact on the resulting outputs for state occupancies (C). These
settings were used to guide the trajectory synthesis based on the experimental spt-
PALM data.



2.5 Optimizing experimental conditions for high-

throughput SPT

2.5.1 Impact of particle density on diffusion model construc-

tion

Using the simulated trajectories, we found that the number of particles per raw

image frame has a big impact on the diffusion model outputs from vbSPT and

CDF. At high particle densities, two different particles from successive frames may

be connected leading to some misconnected trajectories and a significant increase

of nonexistent, fast-moving particles, which vbSPT would assign to artificial states.

As demonstrated in Figure 2.5.1, misconnection occurs only in a tiny fraction of

the trajectories (corresponding to the positive end of the step size histogram) and

predominantly skews the fast diffusive states of the model where most ambiguities in

trajectory connection arise. This manifest as altered diffusion parameters of the fast

states or appearance of non-existent ‘fast’ states with suspiciously low occupancies.

The severity of trajectory misconnection depends on how fast the particles diffuse,

how sparse the particles are in each frame, and how quickly the image acquisition

takes place. For a given frame rate, the fastest diffusion coefficient dictates the

maximum travel distance of a particle, which in turn affects the step size and the

particle search distance for trajectory connection threshold. A large search distance

threshold results in an increased likelihood of connecting two unrelated particles, es-

pecially when the particle density is high. Hence, for accurate model reconstruction,

it is better to use a high frame rate with a small number of particles per frame. This

effectively eliminates misconnected trajectories and still yields a sufficient number of

diffusion trajectories to accurately determine the model.





Figure 2.5.1: Impact of Particle Density on Diffusion Model Reconstruction. Test
data were generated by simulating diffusion trajectories of two separate populations
of particles with no transitions exhibiting diffusion coefficients of 0.1 and 1 µm2/s,
and occupancies of 0.3 and 0.7, respectively (see Methods). About 6-10k trajecto-
ries were synthesized (depending on the particle density) with connection distance
threshold of 600 nm and analyzed using vbSPT (B-D) or CDF (E-G). A) Histograms
of step sizes at 0.03, 0.04, and 0.05 particles/µm2 per frame; B-D) show the vbSPT
outputs on simulated trajectories at 0.03, 0.04, and 0. 05 particles/µm2, returning 2,
3, and 3 state models respectively, with the model parameters displayed next to each
state; E) Goodness of CDF fitting at different model sizes, as well as the diffusion
coefficients (F) and state occupancies (G) obtained from fitting to a 2-state model.

2.5.2 Strategies for controlling particle density in high-throughput

SPT

We determined the optimal particle density per frame for tracking KRas G12D

by testing the performance of our analysis workflow with simulated trajectories at

varying particle densities. We used the same simulation described in section 2.2

Trajectory Connection to generate simulated trajectories for particle densities at

0.03, 0.04, and 0.05 per µm2 per frame. As shown in Figure 2.5.1, while the step size

histograms at the three different particle densities seemed virtually identical (Figure

2.5.1 A), vbSPT reported different models for each condition (Figures 2.5.1 B-D),

with only the model output at 0.03 per µm2 per frame being accurate because it

correctly predicts a 2-state model. This suggests that the fraction of misconnected

trajectories at the higher particle densities could be too small to be detected by

visual inspection but it does lead to incorrect model reconstruction. Starting at

0.04 particles per µm2 per frame, vbSPT detected a third state with a diffusion

coefficient greater than 1 µm2/s but with virtually null occupancies (Figures 2.5.1

C&D). Thus, we set the maximum particle density threshold for all of our movies to

be 0.03 particles/µm2. Interestingly, CDF fitting correctly returned a 2 state model

for all the particle densities tested (Figures 2.5.1 E-G), making CDF fitting a useful

parallel approach to confirming the model output of vbSPT.



2.6 Discussions/Conclusions

Through a combination of experimental and analysis optimizations, we deter-

mined both the experimental conditions and also a post acquisition data analysis

pipeline that allowed us to obtain accurate single particle trajectories resulting in a

stable diffusion model. Since the biological behavior of the protein of interest should

be independent of imaging conditions, we reasoned that the diffusion model should

also be independent of image acquisition speed and the particle density in each frame

as long as the biological conditions remain the same. Thus, once the diffusion model

is acquired under ideal conditions to maximize correct trajectory connections (high

frame rate and low particle density per frame), we acquired data obtained in non-

ideal conditions (lower frame rate and high particle density per frame) and analyzed

the non-ideal dataset with the number of states found in the ideal dataset. This al-

lowed us to acquire significantly higher number of trajectories for each movie which

increased the statistical power for the analysis.

A fundamental albeit implicit result from the present study is the importance

of experimental parameters in accurately determining the diffusion model, a critical

step for in-depth analysis of protein dynamics on the membrane. While there are

many different software packages for analyzing spt-PALM trajectories, the impor-

tance of controlling the particle density during image acquisition has not previously

been recognized to our knowledge. Imaging at a per frame particle density of 0.05-

0.1 per µm2, which is typical for single-molecule localization microscopy, yielded

varying estimated model parameters in our early attempts to track KRas with spt-

PALM (Figures 2.1.1 & 2.5.1). Using simulations, we found the source of variability

to be a small fraction of misconnected trajectories mostly caused by fast moving

molecules. In order to minimize the misconnected segments, we kept the density of

activated PAmCherry1 in each frame to below 0.03 per µm2 at an acquisition rate

of 12 ms/frame (Figures 2.5.1). With this precaution, we were able to yield a highly

consistent diffusion model from trajectories acquired in different cells and under dif-

ferent conditions. This was critical to defining a previously unresolved state with

intermediate mobility (D 0.3 µm2/s) and to all subsequent analyses. We recom-



mend the same precautions to be taken for studies of other membrane molecules.



Chapter 3

High-throughput single-particle

tracking reveals nested membrane

nanodomains that dictate Ras

diffusion and trafficking

This chapter is taken from a published paper [64]. I was responsible for the live

cell single particle tracking experiments, post image acquisition processing, and the

analysis, including the simulations.

3.1 Introduction

The plasma membrane has a complex and dynamic landscape that helps shape

how diverse membrane-localized signaling molecules behave [30, 65, 66, 67, 68, 69].

Among others, the Ras small GTPases are prototypical examples of signaling molecules

whose biological activities are directly regulated by the membrane [70, 71]. While

biochemical aspects of how Ras interacts with downstream effectors such as Raf

have been well studied [72, 73], the mechanisms through which the biological mem-

brane defines the signaling activity and specificity of Ras are still poorly understood.

39



Recent studies by us and others suggest that Ras signaling may involve the for-

mation of multimers (dimers and/or clusters) in a membrane-dependent manner

[74, 34, 36, 75, 23, 35, 25], and that partitioning of Ras into nanoscopic membrane

domains and interactions with scaffold proteins or structures likely constitute criti-

cal steps to Ras multimer formation and signaling [27, 76, 77, 33]. While previous

high-resolution imaging experiments using immuno-EM [23, 25] or quantitative su-

perresolution microscopy [34] were instrumental to revealing the existence of Ras

multimers, the resulting images were mostly static and provided limited information

about the spatiotemporal dynamics of Ras – membrane domain interactions.

Live-cell single-particle tracking (SPT) [47, 14, 48] complements static imaging by

providing information about molecular motions, and it has been used to study Ras

dynamics on the membrane [60, 61, 62]. The underlying rationale is that interactions

of Ras with different membrane domains and signaling partners would manifest as

varying diffusion behavior. Indeed, using SPT, Murakoshi et al. observed transient

events of Ras immobilization on the membrane, which became more frequent upon

epidermal growth factor stimulation, potentially reflecting the formation of signaling

complexes or interactions with raft domains [61]. Lommerse and colleagues also used

SPT to probe Ras diffusion and similarly observed transient and context-dependent

confinement of Ras in membrane regions not more than 200 nm in diameter [60].

These prior studies offered important initial insight into the potential connec-

tions between Ras diffusion, function, and membrane organization, but the techni-

cal constraints of traditional SPT limited the throughput and depth of analysis in

these studies. Typically, only a few tens of trajectories could be obtained from each

experiment, which precluded detailed and quantitative characterization of the het-

erogeneous and stochastic nature of molecular diffusion. In consequence, while the

studies consistently reported two diffusion states – a ‘free’ diffusion state and another

‘immobile’ state, it remains to be seen whether a two-state model accurately reca-

pitulates Ras membrane dynamics [60, 61, 62]. Thus, the nature of the membrane

domains occupied by each of these states and how Ras molecules transition between

the states in connection with multimer formation and signaling remain unclear.

Recent years have seen significant advances in both experimental [51, 78, 79, 80,



81, 82] and data analytic strategies [58, 83, 63, 84, 85, 86, 87, 88, 89] of SPT, some

of which have dramatically improved the information throughput. Among others,

spt-PALM combines SPT with photoactivated localization microscopy (PALM) to

enable single molecule tracking under dense labeling conditions through stochastic

photoswitching30. With spt-PALM, it is routine to acquire thousands of diffusion

trajectories from a single cell. A growing list of software tools has also been developed

to facilitate spt-PALM data analysis [58, 63, 84, 88, 90]. In particular, the variational

Bayes SPT (vbSPT) package allows construction of a detailed diffusion model from

spt-PALM data with parameters such as the number of states, the diffusion coefficient

and the occupancy of each state, as well as the state transition rates even when

the individual trajectories are short [58]. Additionally, a wide range of analytical

methods has been introduced to gain further insight into the states and the state

transitions from SPT trajectories [85, 88, 50]. These advances help overcome the

limitations of conventional SPT and make it possible to analyze Ras membrane

dynamics in much greater depth.

Here, we report our efforts on combining spt-PALM with detailed trajectory

analysis to reveal previously unknown aspects of Ras diffusion on the cell membrane.

With carefully controlled expression levels and photoactivation rate, spt-PALM tra-

jectories of PAmCherry1-tagged KRas G12D consistently reported three diffusion

states, including a fast diffusion state, an immobile state, and a previously uniden-

tified diffusion state with intermediate mobility. Leveraging the large number of

trajectories, we were able to spatially map the diffusion states to distinctive mem-

brane domains, estimate the size and life time of each domain, and define the spatial

relationship between the domains. Moreover, in analyzing how KRas transitions

from one diffusion state to another, we discovered that KRas diffusion follows a non-

equilibrium steady state (NESS) model with net mass flow from the fast state to the

immobile state, likely coupled to the endocytic trafficking and membrane recycling

of KRas. Based on these results, we propose a new model to describe the membrane

dynamics of KRas, where nested membrane nanodomains dictate the diffusion, traf-

ficking, and potentially multimer formation and signaling.



3.2 Experimental and data analysis methods

Cell line and treatment for single particle tracking. Same cell line and

live cell image acquisition conditions described in Chapter 2 were used for the data

gathered in this chapter.

Imaging optimization. Based on the results of Chapter 2, we chose to use a

high frame rate (12 ms/frame) and a low particle density (< 0.03 µm−2) to eliminate

misconnected trajectory segments while maintaining a sufficient number of trajec-

tories. However, it is beneficial to obtain more trajectories to accurately infer the

model parameters with vbSPT, especially for the transition probabilities [58]. As

demonstrated in Figure 3.3.11, the diffusion coefficients and the occupancies typi-

cally converged with only a few thousand trajectories, but the transition probabilities

required significantly more trajectories to converge. Thus, we usually acquired spt-

PALM data at higher particle densities once the model size has been defined; for

these datasets, we could safely enforce a three-state model during vbSPT data anal-

ysis, since the diffusion model should not depend on the rates of frame acquisition

rate and photoactivation. This strategy allowed more flexibility in spt-PALM data

acquisition and robustness in the subsequent analyses.

Trajectory connection for single particle tracking. As discussed in Chap-

ter 2, we used 500 nm connection distance threshold for the 12 ms dataset and 800

nm connection distance threshold for the 35 ms dataset.

Two-dimensional Markov simulation. We relied on two-dimensional simula-

tions that mimic experimental observations as controls for some of the analysis. The

same simulations utilized in Chapter 2 (Two-Dimensional Markov Simulation) were

used as a negative control to test the null hypothesis for spatial clustering (Figures

3.3.3, 3.3.4, 3.3.6, 4.3.3, 4.3.8) and equilibrium state analysis (Figures 3.3.7, 3.3.8).

When the simulation was used as the negative control (Figures 3.3.3, 3.3.4, 3.3.6,

4.3.3, 4.3.8, 3.3.7), the simulation was run for every single movie acquired and the



results were compared to the experiment.

State assignment and averaging. States for each trajectory segment were

assigned using vbSPT (contained in field est2.sMaxP, refer to the vbSPT manual).

The state assignment is based on trajectory displacements, not the coordinates (e.g.

if a trajectory has 3 coordinates, then 2 states are returned for the 2 steps). In order

to prevent over counting for the pair correlation analysis (Figures 3.3.3, 3.3.4, 3.3.6,

4.3.3, 4.3.8), in the case of a single molecule staying in the same domain for multiple

frames, we averaged all of the coordinates (including both ends) that were assigned

the same state for consecutive time points in a single trajectory.

Pair correlation function. Pair correlation function, or g(r), in general, mea-

sures the deviation of the particle density from the expected value from a reference

particle as a function of distance. More specifically, g(r) was calculated for each

particle by counting the number of other particles within a circular shell at distance

of r and r + 10 nm and dividing by the expected number of particles assuming

uniform distribution. Therefore, when the observed number of particles for a given

distance is equal to the expected number of particles given complete spatial random-

ness, g(r) = 1 and signifies random distribution of particles. Accordingly, g(r) > 1

indicates clustering behavior since there are more observed particles around each

particle than expected, and g(r) < 1 represents cases where there are fewer particles

than expected. Every movie was sliced into non-overlapping time segments (1, 5, 10,

20 min) and the average position for each state segment was extracted (as described

in State Classification and Averaging) such that every coordinate represented a con-

tinuous track for an individual particle in a domain. Therefore, the coordinates used

to calculate the pair correlation function represented either different particles that

visited the same domain or the same particle that left the domain and returned at

a later time. The resulting coordinates were separated into each of the three states,

and the g(r) was calculated for the coordinates of a given state within the given time

slice. In cross pair correlation function analysis, g(r) was calculated for a given pair

of different states.



Statistical analysis. Sample size is shown for each figure in the figure captions

as n and was not predetermined. All results on model parameters and subsequent

quantifications such as mass-flow rates are shown as arithmetic mean ± 95% confi-

dence interval. Spt-PALM datasets with insufficient number of trajectories to fully

fit up to a 10-state model (e.g. Figure 3.3.1 E) using vbSPT were discarded. The

full raw dataset, including an outlier with abnormally long average trajectory length

and all the discarded datasets are presented in Figure 3.3.11.

3.3 Results

3.3.1 Establishing a three-state model of KRas diffusion on

the membrane

To investigate the lateral diffusion properties of KRas under controlled expression

levels, we established isogenic U2OS cells stably expressing PAmCherry1-KRas G12D

under doxycycline (Dox) regulation [34]. The expression level of PAmCherry1-KRas

G12D was comparable to that of the endogenous KRas at 2 ng/mL Dox as judged

by western blotting, with higher expression levels achieved at 5 - 10 ng/mL Dox

(Figure 3.3.1 A). Hence, initially data were collected from cells induced at 2 ng/mL

Dox. The photoactivatable fluorescent protein PAmCherry1 has been widely used

for quantitative PALM and spt-PALM [91]. Owing to the good single-molecule

brightness of activated PAmCherry1, we were able to track individual PAmCherry1-

KRas G12D molecules at frame rates up to ∼83 Hz (i.e., ∼12 ms/frame) with a low

excitation dose (∼400 W/cm2 at 561 nm). The low spontaneous photoactivation rate

of PAmCherry1 also permits clean single-molecule imaging even at high expression

levels, yielding as many as hundreds of thousands of trajectories per cell via spt-

PALM (Figure 3.3.1 B).

A close inspection of the individual trajectories clearly shows larger diffusive steps

intermittent with moments of transient entrapment, indicating the presence of multi-

ple diffusion states and frequent state transitions (Figure 3.3.1 C and inset). Similar

observations were reported for both HRas and KRas in previous low throughput SPT



experiments, where two diffusion states – a ‘fast’ state and an ‘immobile’ diffusion

state – were detected [60, 61].

Figure 3.3.1: Defining the membrane diffusion model of KRas using spt-PALM and
vbSPT. A) Western blot showing the increasing expression level of PAmCherry1-
KRas G12D with increasing doxycycline (Dox) concentration; B) Example trajectory
map of membrane KRas acquired at 12 ms frame rate using TIRF illumination.
Each line represents an individual Ras molecule coordinate over time acquired for
the duration of the movie (20 minutes). Only a subset of all trajectories is plotted.
Scale bar: 10 µm; C) Expanded view of the boxed region in B). Only a subset of all of
the trajectories in the boxed region is shown to allow unhindered view of individual
Ras trajectories. Inset shows a KRas trajectory displaying multiple diffusion states.
Scale bars: main figure: 1 µm; inset: 200 nm; D) Determining the optimal model
size for KRas membrane diffusion using CDF fitting, with smaller root mean squared
error indicating a better model (n=8); E) Determining the optimal model size for
KRas membrane diffusion using vbSPT, with smaller absolute model score (i.e., score
of zero being the best global model) indicating a better model (n=5); F) Comparing
the model parameters obtained from CDF fit and vbSPT, both using a three-state
model for KRas membrane diffusion. State transition probabilities were not inferred
from CDF fit and therefore not included in the comparison. Error bars are 95%
confidence intervals (CIs).



Since spt-PALM offers a much larger number of trajectories, we first asked whether

KRas diffusion on the cell membrane could indeed be described by a simple two-state

model. To this end, we used two methods to analyze the Ras diffusion trajectories.

The first approach fits cumulative distribution function (CDF) for Brownian motion

to the squared displacements of Ras trajectories to extract diffusion coefficients and

the respective occupancies of the diffusion states [54]. The second method, vbSPT,

treats particle diffusion and the associated state transitions with a Hidden Markov

Model and performs model selection through variational inference [58].

Using trajectories acquired and analyzed with the optimizations from Chapter

2, both CDF fitting and vbSPT yielded similar three-state models for KRas G12D

diffusion on the membrane of live U2OS cells. Specifically, CDF fitting to a three-

state model had significantly lower residual error compared to a single- or a two-

state model and further increasing the model size did not decrease the error (Figure

3.3.1 D), indicating that a three-state model is sufficient to describe the data. For

vbSPT, a score equal to zero indicates the best model, a condition that was met

with a three-state model but not with larger or smaller size models (Figure 3.3.1 E).

The diffusion coefficient and the occupancy for each of the diffusion states were in

good agreement between the two analysis methods and within each method when

applied to different cells under the same conditions, as evidenced by the small errors

(Figure 3.3.1 F). As discussed in the previous chapter, datasets with high particle

densities can return models with variable sizes, sometimes also with aberrant model

parameters; even so, the histogram of all vbSPT-derived diffusion coefficients still

showed three distinct clusters (Figure 2.1.1 C) corresponding to the three states

listed in Figure 3.3.1 F. Thus, we concluded that the membrane diffusion of KRas

G12D under our experimental conditions is best described by a three-state model,

demonstrating the existence of an intermediate state not detected in previous studies.

Between the two methods, vbSPT was used for most subsequent analyses in the

remainder of this work because it supplies the transition probabilities and state

identities for every time step whereas CDF does not.

The diffusion coefficient of the slowest state in Figure 3.3.1 F is comparable to

that expected from single-molecule localization error ( 30 nm, Figure 3.3.2), which



implied that the actual diffusion of KRas in this state may be even slower than

it appeared.To test this hypothesis, we acquired spt-PALM data at a slower frame

rate (35 ms/frame) to improve the localization accuracy of slowly moving molecules

since more photons could now be collected for each PAmCherry1 molecule in a single

frame (Figure 3.3.2). Indeed, these datasets reported a significantly smaller diffusion

coefficient (0.02 µm2/s) for the slowest state than that obtained earlier (0.08 µm2/s)

using data taken at 12 ms/frame. This result suggests that the slowest diffusion state

of KRas is essentially an immobile state, consistent with previous reports [60, 61].

Figure 3.3.2: Photon yield and localization accuracy at the different frame rates
used in this work. Photon yields were calculated based on the integrated intensity
above background across a 9× 9 pixel area for each single-molecule image; the pixel
intensity units were converted to the number of photons using hardware specific gain
conversion factors. On average, the photon yield for single PAmCherry1 molecules
at 12 ms and 35 ms frame acquisition time was 56 photons and 301 photons,
corresponding to 26 nm and 10 nm localization precisions, respectively.

3.3.2 KRas diffusion states are associated with distinct mem-

brane domains

The diffusion model presented in Figure 3.3.3 A summarizes the results from

the spt-PALM trajectory analyses using vbSPT. Each circle represents one of the



diffusion states with arrows indicating the transition probabilities between pairs of

states. A notable feature of this model is that there appears to be a defined state

transition path: KRas molecules always transition between the fast (F) and the im-

mobile (I) states by going through the intermediate (N) state, and direct transitions

between the fast and the immobile states almost never occur. In order to confirm

this transition path, we compared the distribution of step sizes relative to the immo-

bile state steps, since different step sizes would reflect different diffusion coefficients.

In support of this hypothesis, the histogram of step sizes immediately adjacent to

the immobile steps corresponded to the intermediate diffusion state (Figure 3.3.3

B, blue) while the distribution of the remaining steps had a broader peak implying

a mixture of both fast and intermediate diffusion steps (Figure 3.3.3 B, where the

black color indicates a mixture of states). As expected, the step sizes assigned to

the immobile states (Figure 3.3.3 B, red) are even smaller compared to that of the

other two states. The clear separation of these three step size distributions confirms

the above-mentioned transition path through the intermediate state. The distinc-

tions in step sizes among the three states were even more obvious on data taken at

35 ms/frame, which had better single-molecule localization precision (Figure 3.3.4).

Thus, the intermediate state is not merely a state with intermediate mobility but

effectively an obligatory link between the immobile and the fast states of KRas.





Figure 3.3.3: KRas diffusion states are associated with distinct membrane domains.
A) The three-state model for KRas diffusion with F, N, and I, representing the fast,
the intermediate, and the immobile states, respectively. Model parameters were in-
ferred using vbSPT on spt-PALM datasets with at least 30,000 trajectories obtained
on cells induced with 2 ng/mL Dox. The arrows indicate state transitions (i.e. the
probability of switching to a different state in the next frame) and the area of the
circle and the thickness of the arrows are both roughly scaled to reflect their rela-
tive values. All parameters were derived from data acquired at 12 ms frame interval
except for the diffusion coefficient of the immobile state, which was inferred from
data taken at 35 ms frame interval. Error bars are 95% CIs (n=8); B) Step size his-
tograms for immobilization events (red), one step before or after the immobilization
event (blue), and all other steps (black). A diffusion step was part of an immobi-
lization event if immobile state was assigned to that trajectory segment by vbSPT
(n=14, see Methods); C) Map of the membrane locations where KRas molecules
exhibit specific diffusion states (referred to as state coordinates) within a one-minute
duration (taken from a spt-PALM dataset of 20 min total duration). Red, blue, and
green dots represent locations of the immobile, the intermediate, and the fast states,
respectively, with each rendered circles scaled proportionally to the mean diffusion
coefficient for the state; D) Pair correlation analysis on the averaged state coordi-
nates across multiple, one-minute segments of longer spt-PALM datasets. The same
color coding as in B) was used to distinguish the three states. For this analysis,
molecules in the same diffusion state in successive frames only contributed a single,
averaged state coordinate. The average state coordinates of all molecules captured
within a one-minute segment were used for correlation analysis, and the results from
multiple one-minute segments were averaged to yield the plot. The negative control
was generated through a 2D Markovian simulation, and the resulting trajectories
were analyzed the same as the experiment (see Methods); E) Cross correlation anal-
ysis between pairs of diffusion states. The state coordinates were processed the same
way as in D) prior to the correlation analysis, except that the correlation was per-
formed between two different diffusion states. The negative control was generated
through a 2D Markovian simulation, and the resulting trajectories were analyzed the
same as the experiment (see Methods); F) Estimating the lower bound size for the
immobile and the intermediate domains. The estimation was based on the maximum
distance traveled by the molecule while in the same diffusion state. *D-F) The main
panel shows results inferred from data taken at 35 ms frame intervals for improved
localization precision. The inset shows the data taken at 12 ms/frame (n=14 for 12
ms and n=7 for 35 ms datasets).





Figure 3.3.4: Spatial analysis of KRas membrane domain properties using data ac-
quired at 35 ms per frame. As spt-PALM data acquired at 35 ms/frame showed
better single-molecule localization accuracy than those at 12 ms/frame, we aimed
to perform similar analysis of the domain properties to that shown in Figures 3.3.3
& 3.3.6 using data taken at 35 ms/frame (n=7). A) Step size histograms for the
immobilization events (red), the steps directly before and after the immobilization
events (blue), and all other steps (black); B) Pair correlation analysis on the aver-
aged positions of the three states for one-minute temporal slices of the raw spt-PALM
image stack (see Methods), shows the same trend as observed with data taken at
12 ms/frame acquisition rate. Note the somewhat reduced spatial correlation for
the intermediate domain (state) compared with that obtained with data taken at
12 ms/frame (Figure 3.3.3 D); C) Cross-correlation analysis between the three mem-
brane domains, performed on the same one-minute slices of the raw spt-PALM image
stack; D-F) Peak amplitudes of autocorrelation g(r) at different time intervals. The
steadily decreasing g(r) with increasing time intervals indicates the life times of the
immobile and the intermediate domains to be on the order of minutes.

The observed state transition path may arise from at least two potential scenarios.

In the first scenario, fast diffusing KRas may transition into the intermediate then

the immobile state through spontaneous conformational changes unrelated to slow

or static membrane structures. Alternatively, the immobile states could be caused

by KRas transiently binding to structures (termed ‘immobilization sites or domains’)

residing in specialized membrane regions that confer intermediate mobility to KRas

(termed ‘intermediate domains’). Consequently, these intermediate domains would

act as transition zones between membrane regions where KRas exhibits fast diffusion

and the sites of KRas immobilization, yielding the observed state transition path. In

either case, the intermediate and the immobile states of KRas would be temporally

and spatially correlated. It is only in the latter case, however, that we would observe

multiple visits to the same intermediate or immobilization domains by different KRas

molecules, provided that both domains have life times longer than our temporal

resolution. Of note, the second scenario may encompass the first, as KRas targeting

to the intermediate or immobile domain may take a different conformation than those

molecules still in the fast state.



To distinguish between the two scenarios, we performed auto- and cross-correlation

analysis on the locations of KRas exhibiting a certain diffusion state (referred to here-

after as state coordinates). We first visually examined the spatial distributions of the

states by slicing each raw image stacks into one-minute time segments and plotting

the state coordinates on the same map, with each color representing one of the states

(Figure 3.3.3 C, Figure 3.3.5). Each diffusion trajectory typically contributes only a

few points to the plots as limited by its short duration, and the points from multiple

trajectories accumulate over time (up to 1 min in this case) to ‘paint’ a map of the

membrane regions associated with each of the diffusion states. As shown in Figure

3.3.3 C, the intermediate states and the immobile states not only co-clustered, but

also each appeared to self-cluster. Specifically, regions corresponding to the interme-

diate states (blue) often connect to give rise to nanoscopic domains a few hundred

nm in size and the vast majority of the immobilization sites (red) are surrounded

by the intermediate domains. By contrast, regions corresponding to the fast state

occupy the majority of the membrane area. While both the intermediate and the

immobile domains appeared to be dynamic, a time-lapse domain map showed that

at least some of these domains could last a few minutes (addressed in Figure 3.3.6).

Thus, spatial mapping of the KRas state coordinates provided visual evidence for

the physical presence of nested, nanoscopic domains conferring the distinct KRas

diffusion states.



Figure 3.3.5: Temporal evolution of the membrane domains associated with each
KRas diffusive state. The three membrane domains associated with the immobile,
intermediate, and fast states of KRas are labeled with red, blue, and green, respec-
tively. The domain maps were generated using the same approach as described for
Figure 3.3.3 C (12 ms frame interval), with each panel representing the domain map
within a 1 min duration with 0.5 min overlap. Thus, A-C represent total of 3.5
min time period. Of note, the maps were generated without position averaging, and
therefore each trajectory contributes 2 or more points (including the beginning and
the end) in the corresponding plot. Scale bars, 2 µm.



We next used pair correlation function (g(r)) to quantitate the spatial relation-

ship between the KRas states (Figures 3.3.3 D-E). The function g(r) measures the

ratio of the number of particles located a distance (r) from a given particle to that

expected from a complete spatial randomness (see Methods). Here, the g(r) g(r)

could be calculated for particles in the same diffusion state (auto-correlation) or

between two different diffusion states (cross-correlation); in either case, amplitudes

of g(r) significantly greater than that expected for a random distribution indicate

spatial clustering. When multiple KRas molecules visit the same domain, each at a

different time point but exhibiting the same diffusive state, g(r) would detect spa-

tial auto-correlation for the given state. To avoid false clustering due to the same

molecule staying in the same state across multiple frames, we used the averaged state

coordinate for each continuous trajectory segment that stayed in the same state for

more than two consecutive time points (see Methods). Results from both datasets

taken at 35 ms/frame (main panels) and those at 12 ms/frame (inset) are shown for

comparison (Figures 3.3.3 D-E).

Consistent with the visual observation earlier (Figure 3.3.3 C), coordinates of the

immobile and the intermediate states each showed significant clustering in the g(r)

plots averaged across each 1-minute raw image stacks, whereas g(r) of the fast state

was barely above random across the full range of r analyzed (Figure 3.3.3 D). All

g(r) negative controls were generated with a 2D Markovian simulation of diffusing

particles with no associated domains (see Methods), and the simulated trajectories

were processed through the same analysis pipeline as the experimental data. As

expected, the averaged state coordinates of the simulated negative control had values

close to one and showed no peak in the g(r) plots. Furthermore, g(r) based on spatial

cross-correlation analysis clearly indicated co-clustering between the immobile and

the intermediate state positions but not with the fast diffusion state (Figure 3.3.3

E).

We also estimated the lower-bound size of the domains associated with the im-

mobile and the intermediate states of KRas by calculating the maximum distance a

particle traveled while in a domain (i.e., longest distance between two points within

consecutive steps taken while in the same state). Shown in the main panel Fig-



ure 3.3.3 F are the histograms of the estimated domain sizes determined from data

taken at 35 ms/frame, based on which we determined that the mean diameters of

the intermediate and the immobile membrane domains were at least 200 nm and

70 nm, respectively. This is consistent with the notion that most immobile domains

are likely surrounded by intermediate domains. The distinction between the two do-

mains became much significant with data taken at 12 ms/frame, which we attributed

to the low localization precision of single PAmCherry1 molecules at this fast frame

rate. The distribution of the minimum intermediate domain size appeared to have

at least two peaks at 120 nm and 230 nm, implying that there may potentially be

multiple types of intermediate domains (Figure 3.3.3 F).

3.3.3 Transient, nanoscopic domains mediate the intermedi-

ate and the immobile states of KRas

To understand the temporal behavior of the immobile and the intermediate do-

mains, we extended g(r) calculations as in Figure 3.3.3 from one minute to longer

time intervals. The rationale was that, as the time interval for calculating g(r) in-

creases beyond the life time of a domain, the chance of observing KRas molecules

visiting the same domain (i.e., exhibiting the same diffusion state in close proximity)

should decrease, resulting in lower g(r). Indeed, as shown in Figure 3.3.6 A-C, for

dataset acquired at 12 ms frame interval, the peak amplitudes of g(r) for both the

immobile (Figure 3.3.6 A) and the intermediate (Figiure 3.3.6 B) states decreased

significantly after 5 min with further decay at increasing time intervals, indicative

of finite life times for both nanodomains, likely on the order of minutes on average

(see also Figure 3.3.4 for results with data taken at 35 ms/frame). For the limited

temporal resolution of this analysis, we likely only detected relatively stable domains

with life times longer than 1 min, and the presence of more transient intermediate

or immobile domains should not be ruled out.



Figure 3.3.6: Temporal properties of the KRas-associated immobile and intermediate
domains. A-C) Pair correlation analysis of the state coordinates at different time
intervals (1, 5, 10, and 20 min). The amplitude (maximal g(r) value) of the pair
correlation function at each time interval was plotted in the main panel with the
raw pair correlation plots shown in the inset. A-C show pair correlation functions of
averaged coordinates for the immobile, the intermediate, and the fast states, respec-
tively (see Methods). The negative control in each case was generated through a 2D
Markovian simulation, and the resulting trajectories were analyzed the same as the
experiment (see Methods); D) Deflection angle analysis on KRas diffusion trajecto-
ries separated by diffusion states (red: immobile; blue: intermediate; green: fast).
The deflection angle was calculated as the angle between two successive segments of
the trajectory while the molecule was in the same diffusion state. *Results shown
for data acquired at 12 ms/frame (n=14).



To gain insight into how KRas interacts with the different membrane domains,

we also analyzed the frame-to-frame deflection angle for KRas molecules within each

domain. The deflection angle measures the relationship between the current and the

preceding step: a complete random walk would yield a flat distribution of deflection

angles, whereas a preference for acute angles indicates more ‘returning’ steps. As

shown in Figure 3.3.4 D, KRas molecules trapped in either the immobile or the

intermediate domains (the red and the blue lines) were more likely to exhibit acute

deflection angles, potentially due to backward movements at the domain boundaries.

In comparison, KRas molecules in the fast state exhibit (Figure 3.3.4 D, the green

line) equal probabilities of moving in all directions, consistent with Brownian motion.

3.3.4 Mass flow between the KRas diffusion states

The small variance in the estimated model parameters from data taken on dif-

ferent cells, be it from the same or different samples (Figure 3.3.3 A), led us to

hypothesize that KRas membrane diffusion is in a steady state. To verify this, we

divided each spt-PALM dataset with a minimum of 40,000 trajectories into four

quarters (each with 10,000 trajectories and typically 5 min long) and computed the

diffusion model for each quarter using vbSPT. As Figure 3.3.7 A shows, the model

parameters for all four quarters were essentially identical, which is the case for all

qualifying datasets, confirming that KRas diffusion is indeed in a steady state, at

least in U2OS cells and at the investigated time scales (up to 20 minutes).



Figure 3.3.7: KRas diffusion on the cell membrane is in a non-equilibrium steady
state. A) Time invariance of the KRas diffusion model. A single ∼20 min spt-PALM
dataset was segmented into four quarters with each quarter containing ∼10,000 tra-
jectories (in ∼5 mins), each analyzed separately using vbSPT to obtain the model
parameters such as the diffusion coefficients (upper panel) and the state occupancies
(lower panel). Results from multiple spt-PALM datasets were grouped and plotted
(n=4); B) Temporal evolution of the KRas diffusion model in simulated runs. The
system was setup according to the experimental model parameters (number of states,
state occupancies, diffusion coefficients, and state transition rates) as shown in Fig-
ure 3.3.3 A. The system was then allowed to evolve based on the input, with the
new state occupancies recorded every time step (12 ms) and plotted (see Methods).
Similar to Figure 2A, only movies with minimum of 30,000 trajectories were sim-
ulated (n=8); C) Table summarizing the calculated, simulated, and experimentally
observed occupancies for each of the states. *All error represents 95% CIs.



In contradiction to KRas diffusion being in a steady state, we found that the

diffusion model as presented in Figure 3.3.3 A cannot self-sustain. When using

experimentally derived model parameters to simulate how the three-state system

evolves over time (see Methods), we observed that the system quickly deviated from

its initial configuration and instead stabilized at an entirely different set of state

occupancies (Figure 3.3.7 B). In the new, ‘equilibrated’ system configuration, KRas

spends as much as 50% of its time in the immobile state, significantly more than the

observed steady state occupancy of 11%. The fast state is the opposite; the popu-

lation residing in this state is significantly reduced from 58% to 25%. By contrast,

the intermediate state changes only slightly ( 31% vs 24% for the experimental and

the theoretical observations, respectively). We confirmed that the simulated equilib-

rium probabilities were consistent with the principle of detailed balance49 (Figure

3.3.7 C); we also verified that the experimentally determined state occupancies in

Figure 3.3.3 A were not an artifact of vbSPT, since vbSPT correctly retrieved the

steady state model parameters when applied to simulated trajectories from steady

state models with varying input parameters (Figure 3.3.8). Therefore, we concluded

that the model in Figure 3.3.3 A represents a non-equilibrium steady state (NESS).



Figure 3.3.8: Validating vbSPT output accuracy on simulated trajectories using
different model parameter inputs. We simulated steady state systems using three
states, with diffusion coefficients of 0.08, 0.26, 0.84 µm2/s and the same occupancy
for each state (0.33). The state transition probabilities used for (A) were pii = 0.8
and pij = 0.1, which give rise to equal mass flow between each pairs of states; those
used for (B) were p12 = p23 = p31= 0.1 (counter-clockwise) and p13 = p32 = p21 =0.8
(clockwise). Each simulation generated 5,000 trajectories, which were then analyzed
using vbSPT; each model was simulated 5 times, and the exemplary models with
averaged model parameters are shown on the right. The resulting diffusion parameter
outputs confirm that vbSPT was able to accurately determine parameters for both
balanced (A, right) and non-balanced (B, right) state transitions. Error bars show
95% confidence interval.



To further characterize the NESS, we calculated the mass flow for each of the three

KRas diffusion states as the change in state occupancy per time interval. A positive

net flow rate or a ratio of in- vs outflux greater than one indicates an accumulation of

mass for the state, while a negative flow rate or a ratio of flux less than one indicates

the opposite. As shown in Figures 3.3.9 A & B, within the NESS there is a net influx

of KRas molecules into the immobile state and a net outflux of molecules out of the

fast state, whereas the in- and outfluxes for the intermediate state are comparable.

We also calculated the mass flow for each of the three arms in the diffusion model in

Figure 3.3.3 A – in the clockwise direction, it would be the flow from the fast state

to the intermediate state (F to N), intermediate to immobile (N to I), and immobile

to fast (I to F). The results of this calculation are shown in Figure 3.3.9 C, where a

positive value in the y axis (net mass flow between a pair of states) indicates mass

flow in the designated direction, and a negative value indicates flow in the opposite

direction. Consistent with results in Figures 3.3.9 A & B, the dominant net mass

flow through the NESS is unidirectional – from the fast state to the intermediate to

the immobile state (Figure 3.3.9 C) – with minimal ‘leakage’ from the fast to the

immobile state.



Figure 3.3.9: Directional mass flow between KRas diffusion states. A) Net mass
flow per state, defined as the difference between the influx (positive) and the outflux
(negative) for each state and expressed as the fraction (of total KRas population)
entering (positive, flow in) or leaving (flow out, negative) the state per time interval;
B) Ratio of in- and outflux for each state. A ratio of one (dashed line) represents
equal in- and outflux for the state, greater than one represents more influx than
outflux, and less than one represents net outflux of mass from the state; C) Net
mass flow per arm (pair of states) in the KRas diffusion model (Figure 2A). F to N
and N to I are not significantly different. The states were ordered in a clock-wise
direction, and the net mass flow in the direction was calculated as the difference
between forward and backward mass flows, with a positive value indicating net flow
in the indicated direction and a negative value the opposite direction; D) Model for
KRas trafficking between the diffusion states and between the membrane system and
the environment (cytosol). Arrows indicate the directional mass flow, and the dashed
line represents unknown mechanisms connecting the fast and the immobile states.
*All error bars are 95% CIs (n=22).



These results are consistent with the simulated relaxation to equilibrium shown

in Figure 3.3.7 B, where the immobile and the fast diffusion states changed occu-

pancies the most. For the KRas NESS system to be sustained over time as we

observed experimentally, KRas would need to be replenished into the fast diffusion

state and removed from the immobile state. Indeed, KRas has previously been shown

to undergo a constant exchange between the plasma membrane and the cytosol, and

internalized KRas is collected at recycling endosomes and transported back to the

plasma membrane [92, 93]. Our analyses suggest that the loss of KRas from the

membrane would primarily be through the immobile state, and the replenishment

through the fast state. At present, it is unclear whether the intermediate state has

no exchange with the cytosol or has active exchange with equal gain and loss. Ac-

cordingly, the membrane trafficking of KRas should follow the model presented in

Figure 3.3.9 D, where the arrows indicate the net mass flow between the connected

states as well as between the states (F or I) and the environment (cytosol).

3.3.5 KRas diffusion and trafficking are invariant with ex-

pression level

Next, we sought to investigate whether experimental conditions such as expression

level would alter the diffusion properties of KRas. An important observation on Ras

nanocluster (multimer) formation is that the fraction of clustered molecules remains

constant over a broad range of expression levels [25]. This unusual property has

led to two hypothetical mechanisms of membrane nanocluster formation: one based

on protein self-nucleation [25] and another involving actomyosin activity [94]. These

active mechanisms are in contrast to passive localization of Ras to existing membrane

nanodomains via diffusion, which is thought to result in concentration-dependent

multimer formation. To date, it remains controversial as to which mechanism dictates

Ras multimer formation. If Ras multimer formation was linked to localization to

membrane nanodomains – which in the case of KRas would be the intermediate

and/or the immobilization domains – then the observed fraction(s) of KRas in either

or both the intermediate and the immobile states should also be independent of



expression level, as for the fraction of Ras molecules in multimers (clusters).

To address this hypothesis, we induced PAmCherry1-KRas G12D at a range of

expression levels using different Dox concentrations (Figure 3.3.1 A). Similar to our

previous report [34], the expression level of PAmCherry1-KRas G12D responded well

to varying Dox concentrations in the isogenic cells used in this study, with the protein

expression at 0 ng/mL being extremely low (only due to occasional leakage in tetR

suppression) and that at 10 ng/mL about 5-10 fold higher than endogenous KRas.

When measured in terms of protein density at the membrane, the endogenous level

of KRas (matched by PAmCherry1-KRas G12D at ∼2 ng/mL Dox) in U2OS cells

is ∼60 molecules per µm2, and the tuning range corresponds to <10 molecules per

µm2 at 0 ng/mL Dox to >300 molecules per µm2 at 10 ng/mL Dox, or equivalently

∼1/6 to ∼5 times of the endogenous levels of KRas [34].

By comparing estimated model parameters using spt-PALM data of PAmCherry1-

KRas G12D at different Dox concentrations, we found that KRas diffusion properties

remained essentially the same across the range of expression levels investigated (Fig-

ures 3.3.10 A-B and Figure 3.3.11). This model invariance is reflected across all

conditions: not only was a three-state model optimal for describing the diffusion

of KRas as judged with vbSPT (not shown) and with CDF (Figue 3.3.12), but the

diffusion coefficients of each state, the state occupancies, as well as the transition

probabilities between each pair of states, are indistinguishable within the error bars.



Figure 3.3.10: KRas diffusion properties remain constant over a broad range of
expression levels. Spt-PALM trajectories of KRas were acquired at 12 ms/frame after
inducing the cells at 0, 2, 5, and 10 ng/mL Dox for 36-48 hours, and the diffusion
models were inferred as described previously using vbSPT. All aspects of the diffusion
model discussed earlier, including diffusion coefficients (A), state occupancies (B),
net mass flow per state (C), and net mass flow per arm (pair of states, D) at the
different Dox concentrations were analyzed and compared. Error bars represent 95%
CIs (n=12 for 0 ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and
n=18 for 10 ng/mL Dox).





Figure 3.3.11: vbSPT model outputs from KRas diffusion trajectories acquired at
different conditions (frame rate, total number of trajectories, and Dox concentra-
tion). All experimental spt-PALM data on PAmCherry1-KRas (in U2OS cells) ac-
quired with 12 or 35 ms frame acquisition times and under 0, 2, 5, or 10 ng/mL
Dox concentrations were pooled (symbols as indicated), and vbSPT outputs of the
diffusion coefficients (A), state occupancies (B), and state transition probabilities
(C) were plotted against the total number of trajectories. As shown in (A) and (B),
the diffusion coefficients and the occupancies typically converge relatively quickly
at a few thousand trajectories. Additionally, the diffusion coefficients derived from
datasets obtained at 35 ms/frame are consistently lower than those obtained with
12 ms/frame datasets, a result of both localization precision (particularly for the im-
mobile state) and trajectory smearing (predominantly for the faster diffusive states).
Transition probabilities (C) required more trajectories to converge. However, all
model parameters converged at similar values regardless of Dox concentration (i.e.,
KRas expression level). There are a total of 82 data points for the 12 ms dataset
(n=12 for 0 ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and n=18
for 10 ng/mL Dox), and 18 data points for the 35 ms frame rate (n=7 for 2 ng/mL
Dox and n=11 for 5 ng/mL Dox).



Figure 3.3.12: A three-state model remains optimal for describing KRas diffusion
over a broad range of expression levels. The root mean squared error shown here is
for CDF fitting of spt-PALM trajectories obtained at 0-10 ng/mL Dox (n=12 for 0
ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and n=18 for 10 ng/mL
Dox), with all trajectories acquired at optimal conditions (<0.03 particles/µm2 per
frame and frame acquisition time 12 ms/frame). CDF fitting was used to fit data to
one, two, three, and four state models, and the residual errors were calculated (as in
Fig. 1D).



As expected, the net mass flow rates (expressed as the change in state occupancy

per time interval) of KRas within the system also remained the same across all the

Dox concentrations (Figures 3.3.10 C&D). A similar observation was made when we

acquired the trajectories at 35 ms/frame (Figure 3.3.13). Thus, we concluded that

KRas diffusion and trafficking on the membrane remains constant over the range of

tested KRas expression levels. Equivalently, the partitioning of KRas in each of the

three diffusive states – and the corresponding membrane domains – is stable and

independent of KRas protein density on the membrane. This result is consistent

with the prior observation that the fraction of Ras in multimers remains constant at

widely varying membrane densities [25].

Figure 3.3.13: Net mass flow between KRas diffusion states is independent of expres-
sion level. Net flow analysis on datasets acquired at 35 ms/frame from cells induced
to express PAmCherry1-KRas G12D at 2 or 5 ng/mL Dox.

3.4 Discussions/Conclusions

Membrane nanodomains have been implicated in the regulation of many membrane-

resident cellular processes such as Ras signaling [65, 66, 67, 69, 68, 30], but studying

the complex and heterogeneous membrane compartments in a living cell has re-

mained a challenge. Using high-throughput SPT and detailed trajectory analysis,

we were able to uncover rich details of how KRas localizes and interacts with the

membrane. Our results suggest that KRas diffusion on the membrane is best reca-



pitulated with a model that comprises three states – a fast state, an immobile state,

and a previously unknown intermediate state. Leveraging the large number of dif-

fusion trajectories, we were able to map the locations where KRas exhibits specific

diffusion states. These maps revealed membrane nanodomains corresponding to the

intermediate and the immobile states of KRas. The intermediate nanodomains en-

compass the immobilization sites in a nested configuration, such that KRas almost

always transitions between the fast and the immobile states through the intermediate

state. We also found that KRas membrane diffusion is in a non-equilibrium steady

state, with KRas constitutively removed from the membrane through the immobile

sites and replenished as fast diffusing molecules, potentially coupled to KRas traffick-

ing via endocytosis and recycling. Importantly, partitioning of KRas into the three

states remains invariant over a wide range of KRas expression levels, demonstrating

that KRas diffusion and trafficking through the three mobility states and associated

nanodomains is in a maintained, homeostatic condition. Together, these data start

to paint a clear picture of the spatiotemporal dynamics of KRas on the membrane,

providing the basis for understanding the mechanisms of Ras multimer formation

and signaling.

Based on these findings, we propose a new model for Ras membrane diffusion and

trafficking as shown in Figure 3.4.1. In this model, Ras experiences at least three

types of membrane environments: a ‘regular’ membrane region in which Ras freely

diffuses with large step sizes, a ‘transition zone’ or intermediate domain with in-

creased viscous drag and reduced step size, and within the latter an ‘immobilization’

site where Ras interacts with relatively static structures (such as endocytic vesicles).

Both the transition zones and the immobilization sites have finite life times, some

up to minutes, during which freely diffusing KRas molecules could enter the transi-

tion zone, slow down, then either return to the fast state or become trapped in the

immobilization sites. During entrapment, a fraction of the trapped KRas molecules

leaves the plasma membrane to enter a constitutive cycle of KRas trafficking. This

is in agreement with the current understanding that the rate of KRas removal from

the membrane through endocytosis is a concentration dependent process, and the

localization of KRas at the plasma membrane is an energy driven, PDEδ and Arl2



Figure 3.4.1: Proposed model for membrane nanodomains regulating KRas mobility
and trafficking. For KRas, the cell membrane comprises of at least three different
compartments conferring each of the three diffusion states of KRas, namely the fast
(and free), the intermediate, and the immobile diffusion states, depicted as green,
blue, and red regions, respectively. The membrane compartments associated with
the immobile and the intermediate states of KRas are nanoscopic membrane struc-
tures, and at least a subset of the KRas immobilization structures are attributed to
endocytic vesicles. KRas is continuously removed from the immobile state, possibly
through endocytosis, and the internalized KRas molecules are subsequently trans-
ported back to the membrane as fast diffusing species through recycling. KRas im-
mobilization domains such as endocytic vesicles could locally enrich KRas molecules
to facilitate KRas multimer formation and potentially signaling. The arrows in the
legend reflect net flow between each state.

mediated enrichment of KRas in recycling endosomes which collect and transport

KRas back to the plasma membrane [92, 93]. Our work adds important details

to this trafficking model in that the removal of KRas from the plasma membrane

likely occurs during the entrapment phase and its recycling primarily takes place

in membrane regions conferring fast mobility. Additionally, the transient entrap-

ment of KRas could also provide an effective mechanism to locally concentrate Ras

molecules to facilitate multimer formation, which arguably is a critical step for sig-

naling [32, 95]. Thus, the various membrane nanodomains directly influence the

mobility, trafficking, and potentially multimer formation and signaling of KRas.



The three-state diffusion model proposed in this study refines existing models of

KRas membrane diffusion by introducing a previously unresolved intermediate state,

and capturing the role of membrane nanodomains in KRas diffusion. While hetero-

geneous diffusion properties of KRas and other Ras isoforms have been reported,

the prior studies lacked the throughput or spatiotemporal resolutions to determine

whether two states, namely a fast diffusion state and an immobile state, are adequate

to recapitulate KRas diffusion on the membrane. With the diffusion model defined,

we were able to subsequently demonstrate that the intermediate and immobile states

of KRas are each associated with a distinct membrane domain. The average sizes

of the immobile and the intermediate domains of KRas were found to be 70 nm

and 200 nm, respectively, consistent with previous notion that nanoscopic mem-

brane domains regulate Ras organization on the membrane. We note that, although

a three-state model best fits our data, the model could still be an over-simplification.

Among other possibilities, both endocytic and non-endocytic mechanisms may con-

tribute to the immobilization of Ras but cannot be distinguished based on diffusion

properties since Ras is immobile in both cases. In fact, there are also indications of

more than one type of intermediate domains judging from the estimated domain size

(Figure 3.3.3 F).

A unique feature of the model in Figure 3.4.1 is that the membrane nanodomains

associated with the immobile state of KRas are surrounded by those associated with

the intermediate state, creating a nested configuration between the two nanodomains.

A plausible scenario is that the structures that trap KRas preferentially form in the

membrane regions enriched in certain proteins or lipids and/or more densely packed.

In this scenario, KRas would be forced to travel through the intermediate zone to ac-

cess the immobilization structures, explaining the state transition pathway in Figure

3.3.3 A. This scenario is also consistent with the observation that the intermediate

domains are on average much larger in size than the immobile domains, and that the

two nanodomains have similar life times (to the extent of our temporal resolution).

In support of this hypothetic scenario, a growing body of literature demonstrates the

importance of phosphatidylserine in KRas clustering and activation [27, 96, 28, 24].

In addition to the KRas tail encoding for phosphatidylserine specificity, a significant



fraction of phosphatidylserine display slow motion on the membrane as well [28, 18].

Aside from the steady state partitioning of KRas in the different membrane do-

mains, our data also offered important insight into the membrane dynamics of KRas.

We measured a constant flow of KRas from the fast state to the immobile state.

Without exchanging KRas with the cytosol, this directional flow would have caused

net loss of KRas from the fast state and accumulation in the immobile state as

described in Figure 3.3.7 B-C, yet the experimentally observed state configuration

(Figure 3.3.3 A) remained stable over time (Figure 3.3.7 A). We therefore reasoned

that KRas needs to be constantly removed from the immobile state (‘sink’) and re-

plenished via the fast state (‘source’), potentially coupled to membrane trafficking

such as endocytosis and recycling [92, 93, 97, 98, 99]. Previous studies have shown

that endocytosis is a primary mechanism for KRas removal from the plasma mem-

brane [92]. Thus, our data indicate that at least a subset of the immobile domains

could coincide with endocytic vesicles. In support of this, the life time of the im-

mobilization domains was estimated to be on the order of 2-5 minutes on average

(Figure 3.3.6 A-B), which is typical of many endocytic systems [100, 101]. The exact

mechanism of KRas internalization, however, remains incompletely understood at

present.

It is noteworthy that the spatial partitioning of KRas and more generally the

diffusion model were invariant over a broad range of KRas expression levels, which

coincides with previous observations where the clustered fraction of KRas or HRas

was independent of the protein expression level [25, 32]. This corroborates the idea

that membrane partitioning of Ras and perhaps many other membrane resident

molecules are in an actively maintained, homeostatic condition. This intriguing

property of certain membrane proteins [25, 102] has drawn much attention and led to

at least two mechanistic models of multimer formation, one based on self-nucleation

[25] and the other driven by actomyosin [94]. Both mechanisms assumed the different

states of the protein on the plasma membrane to be in equilibrium. Our results

argue that the mass exchange between the plasma membrane and the cytosol breaks

the equilibrium and has to be taken into account in order to accurately model the

partitioning behavior of membrane proteins. It is possible that the model presented



in Figure 3.4.1 in combination with either self-nucleation or actomyosin activity

could provide a better description of the observed model invariance of KRas and

potentially other membrane proteins. A clear, mechanistic understanding of this

property is important to understand how Ras functions on the membrane, since the

Ras multimers have been strongly implicated in signaling. Further experimental and

computational work along this line is currently underway.

In summary, our work sheds new light on how complex nanodomains organize

on the membrane to dictate Ras diffusion and trafficking. The insights gained from

this study offer useful guidance to future experiments that aim at determining the

molecular and structural identities of the Ras-associated membrane nanodomains

and defining the mechanisms of Ras multimer formation and signaling. The results

demonstrate the utility of high-throughput SPT and trajectory analysis in uncovering

rich details of the spatiotemporal dynamics of Ras on the membrane, which should

be readily applicable to studies of other membrane molecules or processes in cellular

compartments.



Chapter 4

Isoform dependent Ras interaction

with different membrane

structures for multimer formation

and signaling

This chapter is currently a manuscript in preparation with myself and Dr. Ying

Zhang as co-first authors. Dr. Ying Zhang is responsible for developing the CLEM

protocol, CLEM image acquisition and registration, while I am responsible for ac-

quiring the live cell single particle tracking and the analysis, clustering algorithm to

define domains, and generating the random molecule fraction and identifying Ras

clusters in CLEM data.

4.1 Introduction

In the last chapter, we discovered that the membrane can be broadly categorized

into three different regions that can be identified by their effects on Ras diffusion

as Ras travels through these domains. Further, we discovered that the membrane is

organized in a hierarchical fashion where immobile domains are nested within inter-
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mediate domains which reside in fast regions (default membrane). In this chapter,

we attempt to identify and characterize the immobile and intermediate domains for

K and HRas. The CLEM results shown here in this chapter was acquired by Dr.

Ying Zhang [103].

4.2 Data analysis methods

4.2.1 Algorithm to define domains

Since the Ras-associated membrane domains are defined by the diffusion state

of the Ras molecule, immobile and intermediate domains were identified based on

the x, y coordinates from Ras trajectories associated with either immobile or inter-

mediate diffusion states using vbSPT for the state labeling [58]. Assuming a nested

domain structure identified in the previous chapter, immobile and intermediate do-

mains were identified by merging trajectories overlapping in space and clustered in

time for either immobile or intermediate state coordinates.

The main core of the clustering algorithm is as described below (Figure 4.2.1),

with user inputs for the diffusion state to be clustered (either immobile or interme-

diate), localization error, minimum number of consecutive terminating and growing

points (n), and the maximum number of frames:

1. shorten the movie to the maximum number of frames by discarding frames

beyond the maximum

2. a trajectory is identified as domain trajectory if it has a minimum of 3 points

for the state being clustered

3. for each trajectory with at least 3 points in a given state determine its convex

hull:

3a. expand the convex hull by localization error (current value: 20 nm)

3b. if there is a minimum of n consecutive terminating points inside of the convex

hull, assume that the domain has been terminated (terminating event), and bound

the time window for adding other trajectories to this domain



3c. if there is a minimum of n consecutive points of the same state (growing

points) in the time between terminating events, assume that the domain was present

during those times and add those trajectories to the domain

4. define domains based on the domain trajectories

The state that is being clustered will determine the points used to grow and ter-

minate clusters. For immobile domains, coordinates associated with the immobile

state were used to add trajectories to domains (growing points) while intermediate

and fast state coordinates will restrict the time period used to search for other immo-

bile points within the domain boundary (terminating points). Intermediate domains

will be terminated by fast state and grown by intermediate state coordinates.

Since state labels are given for displacements between two time points, both ends

of the line were included when assigning states to trajectory coordinates. As such,

points of transition were duplicated and categorized under both states. For example,

if a trajectory transitioned from immobile to intermediate state, the point that is

shared by both immobile and intermediate segments is labeled as both immobile and

intermediate. However, terminating points that transitioned from a growing point

was not used to terminate domains since these terminating points could have been

misclassified or mislocalized as being inside of the domain.

Three different minimum growing and terminating parameters were tested (2, 3,

4). The minimum threshold reflect our belief in whether a series of consecutive points

for a given state was due to a real physical structure or an artifact of mislabeling

or mislocalization. Therefore, the growing and terminating thresholds were both

set to the same value. There was no significant difference for the immobile domain

identification between the three thresholds (Figure 4.2.2).



Figure 4.2.1: An example of the domain clustering algorithm. The y-axis indicates
time, where t0 is the start and tn is the end of the movie. The black line is a trajectory
with a minimum of 3 points that is currently being clustered (step 2). The green
lines indicate other trajectories with the same diffusion state that are being used to
grow the domain (step 3c) while the red circles indicate trajectories with diffusion
states that terminate the domain and prevent it from growing past ti (step 3b).



Figure 4.2.2: The effect of minimum clustering parameters on immobile domain
construction.



This is most likely due to the fact that immobile domains are small and tightly

clustered. Although, intermediate domains were more affected by the choice of termi-

nating and growing parameter, the domain area did not change significantly (Figure

4.2.3). As the threshold was increased, the number of domains identified increased

due the fracturing of domains, while the outliers for the domain area decreased. For

the rest of the analysis, a minimum of 3 points was used to grow and terminate

domains.

Figure 4.2.3: The effect of minimum clustering parameters on intermediate domain
construction.



4.3 Results

4.3.1 KRas WT and G12D mutant have similar diffusion

and trafficking properties

To determine whether this was nucleotide specific membrane behavior, we char-

acterized the lateral diffusion properties of membrane bound KRas WT. Similar to

KRas G12D, KRas WT tagged with PAmCherry1 was placed under doxycycline

regulation. KRas WT single particle trajectories were collected following the same

procedure as KRas G12D. As Figure 4.3.1 shows, using the same method as KRas

G12D, the optimal model for KRas WT was also a 3 state model. Further, KRas

WT had similar diffusion properties as KRas G12D. The diffusion coefficients, which

define each of the 3 diffusion states are the same as the diffusion states that define the

3 KRas G12D diffusion states (Figure 4.3.2). KRas WT diffusion parameters (diffu-

sion coefficients, occupancies and the transition probabilities) track very closely to

KRas G12D (Figure 4.3.2). Although there is not enough data to conclusively estab-

lish a difference between the KRas-GTP and KRas-GDP diffusion models, KRas WT

seems to have higher fraction of immobile and lower fraction of fast state populations

compared to KRas G12D.



Figure 4.3.1: Defining the membrane diffusion model size for KRas WT using CDF
fit (A) and vbSPT (B). Both CDF fit and vbSPT agree that the optimal model size
for KRas WT is a three-state model.



Figure 4.3.2: vbSPT model outputs for KRas WT single particle tracking data with
the same conditions as KRas G12D shown in Figure 3.3.11 (frame rate, total number
of trajectories, and Dox concentration). The state diffusion coefficients (A), occu-
pancies (B), and transition probabilities (C) are plotted against the total number of
trajectories. Majority of data points track very closely with KRas G12D, except for
the immobile and the fast state occupancies (B).



Further, KRas WT appears to have the same nested domain structure as KRas

G12D. As Figure 4.3.3 shows, immobile and intermediate KRas WT domains are

tightly clustered indicating a physical location that slows down the diffusion of KRas

WT molecules as they travel through that region. Although the data set is somewhat

incomplete, the pair correlation function for KRas WT seems similar to KRas G12D.

Further, the net mass flow for each state and between each states are the same as

GTP bound KRas. The net flow analysis shows that KRas WT flows from the

fast state, through the intermediate state, and accumulates in the immobile state.

Hence, Figure 4.3.4 shows net loss of KRas from the fast state and net mass gain

in the immobile state. Further, net mass flow between states show that the fraction

of KRas WT molecules that flow from the fast to intermediate is not significantly

different from the flow from the intermediate to immobile states. In order to get

accurate results, only data sets with a minimum of 10,000 trajectories were used for

the flow analysis. Transition probabilities, in particular, require significantly more

data to infer. As such, only 35 ms data is shown because there was not enough of the

12 ms data set with a minimum of 10,000 trajectories. This also indicates that KRas

is deposited on the membrane in the fast membrane region while being removed from

the membrane from the immobile domains. Thus, our findings here show that GDP

bound KRas follows a similar membrane organization as GTP bound KRas.



Figure 4.3.3: Spatiotemporal analysis of the KRas WT diffusion states. Pair cor-
relation analysis was performed for KRas WT state coordinates at different time
intervals (1, 5, 19, and 20 min) for each Dox condition (see Figures 3.3.3 & 3.3.6).
Similar to KRas G12D, the spatial locations for the immobile and the intermediate
diffusion states are clustered, implying that these are caused by underlying mem-
brane domains, and the peak amplitude show that clustering peaks at 1-5 minutes.
The negative control for each condition was generated using the 2D markovian sim-
ulation mentioned previously. The spikes in the g(r) for the 0 ng/mL Dox fast state
condition are due to the lack of trajectories in the 0 ng/mL Dox condition. When no
Dox is added, minimal Ras is expressed from the leaky promotor. If there are only
a few points, then random clustering can produce significant signals.



Figure 4.3.4: KRas WT net flow. Net mass flow for KRas WT remains unchanged
for low (2 ng/mL Dox) and high (5 ng/mL Dox) expression levels. Using the same
method as KRas G12D, the net flows for each state (A) and between each states
(B) were calculated. Error bars represent % CIs. Due to lack of 12 ms data with
minimum of 10,000 trajectories, the net flow analysis was restricted to the 35 ms
dataset.

4.3.2 KRas G12D and HRas G12V show significant differ-

ences in the membrane diffusion model

Given that HRas has the most different tail from KRas, next we investigated the

difference in lateral diffusion between KRas and HRas. In order to be have a fair

comparison, we generated the HRas cell line using the same parental cell line and

the same construct. The PAmCherry1-HRas G12V fusion protein was placed under

a CMV promoter regulated by the Tet operon and transduced via lentivirus into a

U2OS-tetR cell line with constitutive tetR expression. The HRas diffusion model was

constructed using the same experimental and analysis set up as described for KRas.

Contrary to our expectations, HRas membrane diffusion had many similarities to

KRas diffusion. Similar to KRas, the optimal model size for HRas comprised of 3

diffusion states (Figure 4.3.5). More specifically, HRas also did not have any direct

transitions between the fast and the immobile states, and the direction of net mass

flow for each of the three states were similar between the two isoforms as well (Figures

4.3.6 & 4.3.9). The intermediate state for both isoforms had roughly equal flow into



and out of the state while the immobile and the fast states for both H and KRas

showed faster flow into and out of those two states, respectively. Hence, analogous

to the KRas membrane organization and trafficking, pair correlation analysis and

net flow analysis (figures 4.3.8 & 4.3.9) suggested that HRas diffusion states are

also caused by nested membrane domains that modulate HRas diffusion with HRas

being replenished in the fast membrane region and endocytosis in the immobile

domains (to be discussed in more depth in Chapter 4). However, there are significant

differences between the KRas G12D and HRas G12V membrane diffusion behavior.

For instance, the fast state is significantly faster for HRas than KRas (∼ 1.1 µm2/s

vs ∼ 0.9 µm2/s), and HRas had significantly more molecules in the fast state and

less in the intermediate state (Figures 4.3.6 & 4.3.7). These differences suggest that

the Ras tail plays an important role in Ras-membrane interactions.

Figure 4.3.5: HRas is also a three-state model. Using the same method as described
previously for KRas G12D and WT, the optimal membrane diffusion model size was
calculated for HRas G12V using CDF fit (A) and vbSPT (B). Similar to KRas, HRas
also displays three diffusion states on the membrane.



Figure 4.3.6: A comparison between HRas G12V and KRas G12D three state dif-
fusion model parameters. The diffusion parameters from vbSPT using trajectories
acquired at 2 ng/mL Dox with minimum of 10,000 trajectories are summarized here.
Although they both display a three-state model, there are significant difference be-
tween H and KRas (intermediate and fast state occupancies, and the transition
probabilities between the two states).



Figure 4.3.7: A full comparison between H and KRas diffusion parameters generated
by vbSPT. The following diffusion model parameters are compared: (A) diffusion
coefficients, (B) state occupancies, and (C) transition probabilities. The diffusion
coefficients (A) show that HRas fast state is significantly faster than KRas, and the
occupancies (B) show that HRas has a increased fast state and decreased intermediate
fraction compared to KRas.



Figure 4.3.8: HRas immobile and intermediates are also correlated with membrane
nanodomains. Pair correlation was calculated for HRas single particle tracking data
similar to KRas. The results clearly show that the locations of the immobile and the
intermediate states are clustered, indicating an underlying membrane region that is
correlated to immobile and intermediate diffusion.



Figure 4.3.9: HRas also flows from the fast to the immobile state via the intermediate
state. Similar to KRas results, HRas also is deposited on the membrane as the fast
state and is removed from the membrane through the immobile state. Intermediate
state has no net mass gain or loss. The 12 ms data is shown in (A) while 35 ms data
is shown in (B).



4.3.3 Identification of Ras associated nanodomains (RANDs)

Using the algorithm described in the data analysis methods section, we identified

membrane domains associated with the immobile and the intermediate Ras diffusion

states. As figure 4.3.1 shows, the domain density increases with trajectory density for

all cases, which is expected since domains can only be identified when Ras molecules

are observed within them. Most notably, KRas has a significantly higher number of

immobile domains than HRas while the density of intermediate domains is similar

between the two isoforms (Figure 4.3.10).

Comparing the density of immobile and intermediate domains for each isoform,

KRas on average has slightly higher number of immobile to intermediate domains,

resulting in greater 1 ratio of immobile to intermediate domains, while HRas has

on average fewer immobile domains than intermediate, resulting in less than 1 ratio

(Figure 4.3.11). Figure 4.3.12 shows that the sizes of immobile and intermediate

domains for both H and KRas are comparable.



Figure 4.3.10: KRas has more immobile domains than HRas. A comparison between
the isoforms for the immobile and intermediate domains is shown by plotting the
domain density against the trajectory density (A) and the ratio of the domain density
to trajectory density from (A) in (B).



Figure 4.3.11: HRas has a lower ratio of immobile to intermediate domains than
KRas. The same data from 4.3.10 is grouped for each isoform. This figure clearly
shows that there are different trends for immobile vs intermediate domain densities
for K (A) and HRas (B).

4.3.4 Life time analysis reveals multiple types of RANDs

Next we analyzed the life times for both immobile and intermediate domains. Life

time was calculated by measuring the interval between the first and the last trajectory

in that domain. Therefore, life time calculation and, by extension, the assessment

of transient and stable domains are restricted to domains with a minimum of two or

more trajectories.

Further investigation of the life times for immobile and intermediate domains



Figure 4.3.12: Histogram of H and KRas domain diameters. The distribution of im-
mobile (A) and intermediate (B) domain diameters show that both isoforms interact
with similar sized domains.

revealed that there are at least two different subtypes based on their duration: tran-

sient domains with life times on the order of seconds and stable domains that are

still present even after minutes (Figure 4.3.13). Transient and stable domains were

identified by fitting a two-component Gaussian mixture model to the distribution of

the log transformed immobile domain life time (Figure 4.3.13), where the transient

domains are the domains with the life time in the first peak. Given the absence of any

transient intermediate population, the two component gaussian mixture model gen-

erated from the log transformed immobile life time histogram was used to determine

whether an intermediate domain belonged to the transient or the stable population

based on its log transformed life time.

Domain life times are the lower bound estimates since domains can only be iden-

tified when fluorescing Ras molecules travel into these regions. Therefore, the exact

true life time is unknown. Further, due to the nature of the experiment and image

processing, a single trajectory can be disconnected into two or more segments. Some

of the factors that contribute to this challenge include blinking of PAmCherry1 or

the failure to identify and fit a 2D gaussian to a particle due to a decrease in PAm-

Cherry1 intensity or motion blur. Therefore, in the extreme case, it is possible that

the transient domains are stable domains with a single trajectory that was artificially



misidentified as two separate events. In order to verify that the immobile transient

domains were not artifacts of undersampled stable domains with a single trajectory

broken into two, we ran simulations using the empirical distribution of the domain

life time and the trajectory interval (Figure 4.3.14).

Figure 4.3.13: Both K and HRas have transient and stable domains. The histogram
of log transformed domain life times for both immobile (A) and intermediate (B)
domains show two peaks representing short lived domains with peak ∼1s and long
lived domains with life times on the order of minutes.

Trajectory interval was calculated by measuring the time interval between do-

main trajectories for every domain with minimum of two trajectories. We assumed

that the stable domains were real, defined as domains with life times >20 seconds



Figure 4.3.14: Empirical distribution of the log transformed domain life times (A)
and trajectory intervals (B)

(2nd peak in the log transformed life time histogram), and ran simulations to de-

termine whether the simulated fraction of stable domains that has been visited only

once matched the experimental fraction of transient domains. Since we suspected

that some of the shorter intervals in the experimental trajectory interval histogram

could be cases of single trajectory misidentified as two trajectories, we truncated

the experimental trajectory interval distribution at multiple values (0 - 10 s). At

the start of the simulation, the domain life time was constructed by sampling with

replacement from the experimental distribution of the domain life life time with min-

imum of 20 seconds (right of the red line in Figure 4.3.14), and a random number,

drawn with replacement from the truncated experimental trajectory interval, was

added to generate the true domain life time. The additional step of adding a ran-

dom number from the truncated experimental trajectory interval was necessary since

the experimentally acquired distribution of domain life time is underestimated, and

that underestimation is dependent on the trajectory interval. For each domain, a

random number was sampled from the truncated experimental trajectory interval to

simulate the time that it took for a trajectory to visit the domain. The first time

interval was halved, since the movie acquisition starts from a random point in time

and not since the last visit, and trajectories were continually drawn until the total

interval exceeded the true domain life time. The life time of any domain that only



had a single visit was mapped to 1 second, corresponding to the transient life time.

The simulated life time was calculated using the same method as the experimentally

acquired domain life time (last domain trajectory - first domain trajectory). The

number of simulated domains are equal to the number of experimentally identified

immobile domains so that the results can be compared side by side. As Figure 4.3.15

shows, simulations using just the stable domains could not replicate the observed

fraction of transient domains even using the entire experimental trajectory interval

distribution. Therefore, we determined that transient domains are in fact real and

not artifacts of stable domains defined by single trajectories.



Figure 4.3.15: Validating the presence of transient domains with simulations. Simu-
lated life time histogram only for stable domains at various trajectory interval (the
full experimental trajectory interval distribution (A), experimental trajectory inter-
vals greater than 1 s (B), 5 s (C), and 10 s (D)) is plotted against the experimental
life time to show that stable domains cannot produce enough transient life times to
account for the large fraction of immobile transient domains observed in experiments.
The inset shows the same data as log transformed life time.



As Figure 4.3.13 shows, although the total range of the transient fraction is similar

for both isoforms, KRas tends to have slightly lower fraction of transient domains for

both immobile and intermediate domains. The size distributions of the transient and

stable domains are similar between H and KRas (Figure 4.3.16). Although the stable

domains tend to be slightly larger than the transient counterpart, this may be due

to smearing of the positions over time. As expected, the number of trajectories per

domain is higher for stable domains, most likely due to the fact that stable domains

exist for significantly longer period than the transient domains (Figure 4.3.17).

Figure 4.3.16: Distribution of the transient and the stable domain diameters for
immobile (A) and intermediate (B) domains.

4.3.5 Visualizing H and KRas localizations to various RANDs

using correlative microscopy

In order to directly image the membrane environments that Ras inhabits, we

turned to correlated light and electron microscopy (CLEM) which can reveal cellular

ultrastructures and the positions of the individual Ras proteins tagged with PAm-

Cherry1, based on EM and super-resolution imaging respectively. Since Ras resides

in the inner membrane, cells were grown on coverslips and the apical membrane was

ripped off and imaged [103]. The CLEM images were acquired by Dr. Ying Zhang

and the CLEM figures are taken from our joint paper [103].



Figure 4.3.17: Distribution of the number of trajectories for the transient and the
stable domains for immobile (A) and intermediate (B) domains.

Through the use of CLEM, we observed two main membrane structures, fila-

ments and vesicles, and determined that there are differences in the preference for

those structures between H and KRas (Figure 4.3.18). Vesicles are heavily stained

structures about 50-200 nm in diameter while filaments were lightly stained. Mem-

brane features were defined as filament or vesicle based on intensity thresholding

and dilation to further improve the segmentation (Figure 4.3.18). Once filaments

and vesicles were segmented, Ras molecules were categorized as either filament or

vesicle associated if they were within 20 nm to either one of the structures (Figure

4.3.18). Therefore, some Ras molecules were not assigned to either compartment if

they were further than 20 nm from both structures and those that were within the

threshold to both compartments were added to both filaments and vesicles.

The KRas molecules showed above random localization to filaments while more

HRas molecules were found in vesicles than random distribution (Figures 4.3.19 &

4.3.20). Further, this partitioning was similar for just the C-terminal membrane

targeting motif of each isoform, demonstrating that the tail is the main source of the

dissimilar compartmentalization between H and KRas.



Figure 4.3.18: CLEM images show actin and vesicles along with KRas locations. Seg-
mentations of scanning electron microscopy images show actin in black and vesicles
in gray. Red, green, and yellow dots represent Ras molecules within 20 nm distance
to membrane filaments, vesicles, or two both features. Reprinted from [103].



Figure 4.3.19: Preferential localization of tH and HRASG12V to membrane vesicles
and CCPs. (a) Correlative SRM and SEM images showed strong preference of tH
localization of membrane vesicles and CCPs. (b) Quantitative analysis of proxim-
ity of tH to membrane vesicles and filament network at tH densities from ∼10 to
∼90 molecules/µm2. (c) Correlative SRM and SEM imaging of HRASG12V showed
its high localization preference to membrane vesicles and CCPs. (d) Quantitative
analysis of proximity of HRASG12V to membrane vesicles and filament network at
HRASG12V densities ranging from ∼10 to ∼100 molecules/µm2. Reprinted from
[103].



Figure 4.3.20: Preferential localization of tK and KRASG12D to the vicinity of cor-
tical cytoskeleton. (a) Correlative SRM and SEM images showed tK localizing to
vicinity of cortical actin network; (b) Quantitative analysis of the spatial proxim-
ity between tK and the membrane vesicles or the cortical filaments, at expression
levels from ∼10 to ∼110 molecules/µm2; (c) Correlative SRM and SEM imaging
of KRASG12D showed its localization is excluded from vesicles and CCPs. In-
stead, localization of KRASG12D showed high preference to filamentous network.
(d) Quantitative analysis of proximity of KRASG12D to membrane vesicles and
filament network at molecule densities ranging from ∼10 to ∼150 molecules/µm2.
Reprinted from [103].



Interestingly, for both isoforms, dimers were mostly associated with filaments

while larger multimers were found predominantly in vesicles (Figure 4.3.21). How-

ever, KRas tended to form dimers while HRas formed larger multimers [103]. In

conjunction with higher affinity to filaments for KRas and HRas localization to vesi-

cles, this implies that the membrane compartments dictate the size of multimers and

it is the isoform affinities to the compartments that generate the different distribution

of cluster sizes. Consistent with the isoform dependent cluster formation hypothesis,

K and HRas differed in cluster density in addition to the size of the clusters. Cluster

density, defined as the number of Ras multimers (two or more Ras molecules) per

area, showed clear deviation between the isoforms as a function of Ras expression

(Figure 4.3.22). KRas cluster density linearly increased with Ras expression while

HRas cluster density reached a plateau around 60 molecules/µm2. Thus, these ob-

servations support the hypothesis for minimum of two independent mechanisms for

Ras multimer formation.

Figure 4.3.21: Ras dimers preferentially localize to the cytoskeleton while larger
multimers (3 or more Ras molecules) colocalize with the vesicles. Dynamin inhibition
with dyngo treatment results in partial reversal of the isoform specific association
with actin and vesicles. Reprinted from [103].



Figure 4.3.22: The density of KRas clusters increases linearly with Ras density while
HRas reaches a limit around 60 molecules/µm2. Reprinted from [103].

4.3.6 Perturbation studies suggest potential identities of RANDs

associated with H and KRas

Thus far we have shown the importance of the two membrane structures in H

and KRas segregation. We perturbed the membrane by eliminating membrane vesi-

cles through Dyngo 4a, a dynamin inhibitor that prevents the membrane fission

required for endocytosis. Dyngo treatment resulted in the accumulation of both H

and KRas at the membrane and significantly reduced the number of vesicles at the

cell membrane [103]. In addition, it also resulted in the random distribution of both

isoforms, resulting in decreased localization of HRas and KRas to vesicle and fila-

ment respectively (Figure 4.3.21). However, the impact on the Raf-MAPK signaling

was opposite for the two isoforms. HRas showed reduced ppERK signaling after

dynamin inhibition while KRas showed increased signaling.

Given that dyngo treatment in the CLEM work resulted in reversal of isoform



specific preference (Figure 4.3.21), we examined the effect of dyngo treatment on the

RANDs. To our surprise, dyngo treatment resulted in significant differences between

K and HRas diffusion on the membrane. Dynamin inhibition with dyngo resulted

in almost complete immobilization of KRas molecules while HRas still retained a 3

state model, albeit at slower diffusion coefficients for the two mobile states (Figure

4.3.23).

Figure 4.3.23: Impact of dynamin inhibition on K and HRas lateral diffusion. KRas
(A) molecules became immobilized upon dynamin inhibition while HRas (B) still
retained mobility albeit decreased diffusion after Dyngo 4a treatment.



4.4 Discussions/Conclusions

In this chapter, we extended the study of KRas G12D (GTP bound state) lateral

diffusion from the previous chapter to KRas WT (GDP bound state) and HRas,

and characterized the Ras associated membrane domains. These domains were ob-

served to capture multiple Ras over the duration of their life times. To this end,

we developed a clustering algorithm to identify and characterize the immobile and

the intermediate domains. Domain analysis allowed us to estimate the minimum

duration of these domains (life time), their abundance, and their size.

Interestingly, KRas G12D, KRas WT, and HRas all displayed a three state diffu-

sion model on the membrane with the same nested domain structure and trafficking

through the domains. Further, KRas lateral diffusion did not appear to be effected

by the nucleotide bound state; the diffusion model between KRas G12D and KRas

WT did not appear to be significantly different. However, it is difficult to make any

conclusions given that there is insufficient data for KRas WT with high trajectory

density. In contrast, there were significant isoform differences. In addition to dis-

playing a faster diffusion coefficient for the fast state, GTP bound HRas also had

significantly higher fraction of its population in the fast state and less in the inter-

mediate state compared to GTP bound KRas. Since HRas has the most divergent

tail from KRas, this is in line with the hypothesis that the Ras tail is the primary

driver of Ras membrane behavior.

Based on live cell single particle experiments, the distribution of the Ras associ-

ated membrane domains showed two general classes of domains based on their life

time; transient and stable. Concurrently, CLEM work has revealed that there are

two broad categories of membrane structures, actin filaments and membrane vesi-

cles, with differential affinities for H and KRas. We hypothesize that the transient

and stable immobile domains identified from live cell single particle tracking are in

fact associated with the cytoskeleton and membrane vesicles observed in EM images.

Further, we hypothesized that the membrane compartments (actin and vesicles) gen-

erate Ras clusters and that isoform specific affinity to one of those compartments

results in the observed differences in Ras multimer size.



The most striking difference between the Ras isoforms was in the abundance

of the immobile and intermediate domains. KRas had significantly more immobile

domains than HRas while the intermediate domain density are similar between the

two isoforms. This finding is corroborated by CLEM, where live cell SPT and CLEM

showed remarkable similarity in cluster density and immobile domain density as a

function of Ras expression. Both imaging methods showed that KRas cluster density

(CLEM) and immobile density (live cell SPT) grew linearly while HRas reached a

limit. The density of immobile domains and clusters for HRas plateaus around

100 trajectories/µm2 while KRas immobile and cluster densities increase with Ras

density. This implies that immobile domains are involved in cluster formation for

both isoforms. This hypothesis is further validated by the CLEM finding that the size

of the clusters are compartment dependent. Regardless of the isoform, dimers were

associated with actin while larger clusters tended to be found in membrane vesicles.

The differential affinities for actin and membrane vesicles resulted in higher dimer

fraction for KRas and larger clusters for HRas. Thus, evidence suggests immobile

domains are correlated with cluster formation, and the type of immobile domain

dictates the size of the cluster.

The unequal ratio of the number of immobile to intermediate domains implies

distinct membrane organization between the isoforms. The ratio of the immobile to

intermediate domain density was slightly greater than one for KRas and less than one

for HRas. This indicates that there is not a one to one relationship between immobile

and intermediate domains. Some HRas intermediate domains have no immobile

domains within them while some KRas have more than one immobile domain for a

given intermediate domain. Coupled with the fact that that virtually all intermediate

domains are stable for both isoforms, this implies that stable intermediate domains

contain multiple KRas immobile domains while some intermediate HRas domains

lack immobile domains.

The size of the domains and the life time histograms are similar for both isoforms.

This suggests that both H and KRas sample the membrane equally, if we assume

that both molecules are under Brownian motion. However, the difference in their

affinity for the two membrane structures implies that KRas spends more time with



actin filaments while HRas spends more time in vesicles.

A potential confounding variable for the observed isoform differences could be

due to the differences in the cell line and not the Ras isoforms themselves. Although

we tried to address this issue by using the same parental U2OS-tetR cell line, ge-

netic drift results in divergence between the same cell line as they are independently

passaged. A potential experiment to mitigate this factor would be to simultaneously

image both isoforms in the same cell. This would ensure that the observed differences

were due to the isoforms themselves and not due to the cell line.

Dynamin inhibition with Dyngo 4a resulted in the elimination of the membrane

vesicles and in the accumulation of Ras at the membrane. We determined in the

previous chapter that Ras is removed from the membrane through the immobile

domain. Thus, the accumulation of membrane Ras by the loss of endocytic vesicles

supports the idea that at least a subset of the immobile domains are endocytic

vesicles. The link between membrane vesicles as the potential identity of the stable

immobile domain comes from work by Gaidarove et al. Gaidarov et al showed that

clathrin coated pits form at defined sites on the membrane [104]. Consistent with

our measurement of stable domain life time, they found that clathrin coated pits

will reappear in the same location over 9 minutes of observation. Together with

CLEM static images, it seems that actin and membrane vesicles may represent the

underlying structures involved in transient and stable immobile domains. However,

this does not exclude the possibility that the transient immobile domain may also

be composed of clathrin coated pits that did not reform in the same location at a

later time.

Dyngo 4a treatment decreased the isoform specific localization to the cytoskeleton

and membrane vesicles but had remarkably different effects on the diffusion model.

KRas was virtually immobilized while HRas still retained a 3 state model, albeit with

slower states. Naively, one might think that KRas immobilization upon dynamin

inhibition might be due to the blocking of endocytic vesicles and the accumulation of

KRas molecules inside of the membrane vesicles. However, it is difficult to attribute

this change in the diffusion model solely to the elimination of the membrane vesicles.

Dyngo 4a is known to have multiple off target effects such as inhibition of membrane



ruffling, destabilization of F-actin, as well as depletion of cholesterol from the plasma

membrane [105, 106]. In addition, there is no reason to assume that the Dyngo 4a

treated HRas states are the same states as the untreated HRas. Since the diffusion

coefficients are different, that would indicate that the membrane environment has

changed. This would imply that the Dyngo 4a treated diffusion model is not directly

comparable to the untreated cells.



Chapter 5

Potential roles of membrane

nanodomains in Ras multimer

formation and signaling

5.1 Introduction

In the previous chapter, we characterized the Ras associated nanodomains (RANDs)

that organize membrane Ras. However, their function and role in Ras signaling is

yet unknown. While the importance of Ras dimers and clusters in signaling is docu-

mented in the literature, the mechanism for Ras cluster formation on the membrane

remain obscure. Here we present some preliminary work in determining the role of

RANDs in Ras clustering and signaling.

The hypothesis to be tested was whether RANDs facilitate dimer formation. Since

Ras clusters have been shown to be necessary for downstream signaling, if RANDs

are necessary to generate the number of Ras dimers observed in experiments, it

would indicate that RANDs have a direct role in Ras signaling. To understand

the role of RANDs in Ras cluster formation, two different membrane simulations

were created to compare the formation of Ras clusters: 1) a free membrane model

with a freely diffusing, homogeneous Ras population with a single speed, and 2) an
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anchored membrane model to reflect experimental findings of a heterogeneous Ras

population with two different speeds, free and trapped. The simulation was run until

the membrane system reached an equilibrium and the fraction of various cluster sizes

were compared to determine the impact of RANDs in Ras cluster formation.

In order to determine the role of RANDs in Ras signaling, we simultaneously

imaged KRas G12D and CRaf WT to verify that Raf also had RANDs. Since Raf is

the downstream effector of KRas G12D, if RANDs are involved in Ras signaling, it

implies that Raf must also interact with RANDs.

5.2 Experimental, data analysis, and simulation

methods

5.2.1 Membrane Simulations

We compared the equilibrium Ras cluster fraction between two simulations that

assume different cell membrane environments (Figure 5.2.1). The free diffusion model

assumes that the membrane is homogeneous and all of the Ras proteins freely diffuse

on the membrane, resulting in a single speed with a normal distribution. The anchor

model takes membrane heterogeneity into account. Instead of allowing all of the Ras

molecules to freely diffuse in the membrane, there are regions on the membrane that

trap Ras for a given period. Trapped Ras molecules have reduced diffusion and are

only allowed to move within the anchor while they are trapped. Thus, the anchor

model separates the Ras molecules into two populations with different speeds: freely

diffusing Ras and trapped Ras. The anchored model represents a simplified scenario

where the Ras molecules were separated into two diffusion states instead of three.

The following inputs are necessary for both models: the size of the membrane,

Ras membrane density, diffusion rate, Ras radius, and Ras cluster life time (how long

a Ras stays with another Ras). The anchor model requires additional parameters,

such as the size and the concentration of the anchors, as well as the duration of the

Ras-anchor interaction.



Figure 5.2.1: A diagram of the membrane simulation. The green dots, representing
Ras molecules, diffuse and form clusters when two molecules are within 1.6 nm. In
the membrane anchor model (B), anchors (80 nm orange circles) are randomly placed
on the membrane that temporarily trap green Ras molecules. In the free diffusion
model (A), there are no mechanisms that facilitate Ras cluster formation.



5.2.2 Two Color Single Particle Tracking

In order to concurrently track KRas G12D and CRaf WT in the same cell, we

used the U2OS cell line stably expressing doxycycline inducible PAmCherry1-KRas

G12D (described previously) and transiently transfect CRaf WT tagged with PA

GFP. This allowed us to acquire two color sptPALM using both colors, PAmCherry1

and PA GFP, to observe Ras and Raf at the same time.

5.2.3 RAND Detection Method

We developed an analysis method for single particle trajectories to systematically

identify and characterize RANDs with low false positive rates (Figure 5.2.2). The

accuracy of this anchor detection algorithm was validated on simulated dataset.

Since anchors are defined as regions that trap Ras and restrict its mobility, anchors

were identified by filtering for trajectory that displayed restricted mobility, defined

as moving less than 100 nm for minimum of 3 points. We used the following method

to locate RANDs for analysis (Figure 5.2.2 A): 1. screen for trajectories with at least

3 positions less than 100 nm displacement from one of the positions in the trajectory,

2. apply Density - Based Spatial Clustering of Applications with Noise (DBSCAN),

a well-established clustering algorithm, to determine the RAND position and radius,

and 3. apply a Poisson threshold to determine that the amount of time spent inside of

the RAND is higher than expected from complete spatial randomness. We validated

the detection method by running Matlab simulations of freely diffusing particles

(with experimental derived diffusion parameters from the live cell single particle

tracking experiments) that were transiently trapped in randomly placed circular

regions with 50 nm radius (Figure 5.2.2 B). In order to replicate the experiment

as closely as possible, the simulated trajectory length was kept the same as the

experimental trajectory length. The RAND detection method was applied to the

simulated trajectories to measure the detection efficiency of the hidden anchors. Since

this was a simulation, the total number of the hidden anchors were known, and the

detection efficiency using only the simulated trajectories could be calculated. The

efficiency of the detection method depended on two factors, the trajectory density and



the RAND density. RANDs are only detected when two events happen concurrently:

RAND must trap a Ras with a fluorophore in the on state. The red lines indicate

trajectories with anchors that were observed and dotted blue circles indicate anchors

that were never detected because trajectories did not happen to fall into them (Figure

5.2.2 B). Consequently, RAND detection efficiency increases with trajectory density

(Figure 5.2.2 C). The detection method successfully detected most RANDs at high

trajectory densities. Importantly, regardless of the condition, the false positive rate

was extremely low for all cases (Figure 5.2.2 D). While only a fraction of anchors can

be detected, the true number of anchors can be estimated since the Ras trajectory

density is known.



Figure 5.2.2: Anchor detection using trajectories with limited mobility. For every
trajectory with a minimum length of 5, the displacement from each coordinate in
the trajectory is calculated (A). If there are at least 3 points less than 100 nm
from any other point in the region, the trajectory is determined to be anchored
(A). All spatially overlapping anchored trajectories are grouped and DBSCAN is
used to finalize the anchors (A). We validated our anchor detection method with
simulations of freely diffusing particles that were temporarily trapped by hidden
circular regions (B). The red lines indicate detected anchors and the corresponding
simulated trajectories that defined them, while dotted blue circles indicate anchors
that were never observed (B). Since anchors are only indirectly observed when a
trajectory is trapped within them, the detect efficiency increases and reaches a limit
with increasing trajectory density (C). Although our detection efficiency relied on
the density of the trajectories, the parameters that we used in our anchor detection
method always had a very low false positive rate (D).



5.3 Results

5.3.1 RANDs in Ras multimer formation

Simulations suggest that cluster formation is enhanced with anchors, compared to

the free membrane model. The free membrane simulation was run with the following

parameters: cell membrane size (10 µm by 10 µm), Ras membrane density (50 Ras

molecules/µm2, diffusion rate (4000 nm/s), Ras radius (0.8 nm) and cluster life time

(1 s). In addition to the basic membrane parameters, the anchor membrane model

had 5 anchors/µm2 with 80 nm anchor diameter, and a range of Ras-anchor life times

from 1 to 10 seconds 5.2.1. As Figure 5.3.1 shows, free membrane generated virtually

no clusters, with the membrane anchor model generating up to ∼12% Ras dimers,

depending on the parameters. As expected, the generation of nanoclusters depends

on multiple parameters, such as the number of anchors and the Ras-Ras life time.

Some membrane anchor model parameters enhanced dimer formation while others

generated more nanoclusters. Interestingly, Figure 5.3.2 shows that in some cases,

there is an optimal concentration of anchors to maximize the fraction of clustered

Ras. This is due to the fact that if there are too many anchors, each anchor only

captures a single Ras, preventing cluster formation. However, these simulation results

are based on simulation parameters that were unknown at the time, such as the Ras

cluster duration, the size and the density of the anchors, and the membrane anchor

model represents a simplistic two-state model even though in reality the membrane

Ras behavior is a three-state model with two nested domains (Chapter 3). Hence,

the findings here should be viewed with reservation.

5.3.2 RANDs in Ras signaling to Raf

We analyzed the two color live cell single particle tracking of KRas mutant and

CRaf WT to determine if Raf was also recruited to RANDs. A map of the two color

tracking shows that not only do CRaf anchors exist, but that a subset of the Raf and

Ras anchors overlap (Figure 5.3.3). However, based on this data alone, one cannot

distinguish whether CRaf was recruited to Ras at the anchors or if Raf diffusion



Figure 5.3.1: Simulation suggests that anchors facilitate dimer and cluster formation.
For the given simulation parameters, experimentally observed dimer and cluster frac-
tion was only achieved with the membrane anchor model. The free diffusion model
resulted in almost no dimer or cluster formation.

is just mirroring Ras diffusion. Figure 5.3.4 shows that CRaf anchor domains are

very similar to KRas mutant anchors, in terms of size distribution, density, life time,

and mobility, except that CRaf anchor population is heavily skewed to the transient

anchor population. The fraction of stable anchors is significantly reduced for CRaf.

Interestingly, Raf has more anchors with multiple Raf visits.



Figure 5.3.2: There is an optimum anchor density for maximum dimer and cluster
formation. Contrary to the naive assumption, the relationship between Ras cluster
fraction and anchor density is not linear. The Ras cluster formation peaks and
decreases with increasing anchor density. This suggests that there is an anchor
density that produces the maximum Ras clusters. The simulation used the following
parameters: 10 µ m by 10 µm membrane, 20 nm anchor diameter, 100 Ras/µm2,
Ras-Ras life time of 1 s, and Ras-anchor life time of 10 s.



Figure 5.3.3: Ras and Raf anchors overlap. An example two color live cell tracking
with PAmCherry1 tagged KRas G12D and PA GFP tagged CRaf WT shows that
Raf also have anchors. In this particular cell, 50 CRaf anchors and 302 KRas G12D
anchors were identified.



Figure 5.3.4: Ras and Raf anchors have similar properties. The empirical distribution
of Ras and Raf anchor sizes (A), detected anchor concentration (B), log transformed
anchor life time (C), and anchor life time summary (D) shows that Ras and Raf
anchors are not significantly different. In conjunction with results from Figure 5.3.3,
this supports the notion that Ras and Raf anchors are the same.



5.4 Discussions/Conclusions

This chapter attempted to address the functional roles of the Ras associated

nanodomains (RANDs), as characterized in previous chapters, in Ras membrane

biology. Preliminary results suggest that immobile domains, a subset of the RANDs,

have potential roles in facilitating Ras cluster formation and signaling. We compared

the number of clusters formed between the 2D simulation with and without immobile

domains, and as expected, the results showed that immobile domains facilitated Ras

cluster formation. In addition, there was virtually no dimer formation with the

absence of any mechanism to segregate Ras molecules on the membrane. If immobile

domains are responsible for generating Ras clusters and clustering is a requirement

for Ras signaling, this would imply that these membrane structures directly control

Ras signaling. However, the results discussed in this chapter are limited. While

the simulation results show that the presence of RANDs significantly increase Ras

clustering at some optimal RAND density, the two-state model is too simplistic and

some of the parameters used at the time were unknown and had to be speculated.

In the simplified two-state model, the intermediate state was aggregated into the

fast state. If the intermediate domains also facilitate Ras multimer formation, the

simulation cluster results using the two-state model would be an underestimate of

the true cluster fraction. Although the simulation results are encouraging, more work

needs to be done using a three-state model with nested immobile and intermediate

domains and correct model parameters. However, direct observation of Ras cluster

formation in the immobile domains would be preferable. Ras-Ras FRET would be an

ideal imaging method to observe both features. This approach is live cell compatible,

which allows the identification of immobile domains through Ras diffusion, and is

also sensitive to protein-protein interactions.

In line with the hypothesis that the immobile domains are sites of Ras signaling,

two color tracking of Ras and Raf show that Raf also interacts with RANDs as well,

and that Raf and Ras are often trapped by the same membrane domain. However,

there is insufficient data to make any conclusions. One explanation is that RANDs

are potential sites of Raf membrane recruitment. However, it is also possible that



Raf is only a cargo that is passively experiencing the membrane environment that

Ras is traveling through. Further work needs to be done in order to address whether

RANDs are involved in Raf membrane recruitment. Another interesting observation

is that membrane domains that trap Raf show short (transient) and long lasting

(stable) anchors. The two different anchor domains may have different functional

roles. A potential hypothesis to be tested is whether Ras and Raf proteins overlap

in the transient or the stable Raf anchor domains. If Ras and Raf preferentially

immobilized in the transient anchors, that would indicate that transient anchors have

a greater role in Ras-Raf signaling than the stable anchors. One potential explanation

besides Ras binding is that some of the Raf anchor domains could represent non-Ras

mediated interaction with the membrane.

The compartmentalization of the membrane into nested domains may not only

be responsible for dimer and cluster formation, but may also be responsible for segre-

gating pathway specific downstream effectors. Isoform specific activation of different

pathways could be achieved by regulating the access of Ras proteins to its down-

stream effectors through structurally heterogeneous membrane nanodomains with

varying preferences for Ras isoforms. The different interaction of Ras tails with

different RANDs may affect its interaction with different GEFs and downstream

effectors. Therefore, RANDs could act as either transient or stable functional signal-

ing platforms. These membrane nandomains could be formed from many different

membrane components, such as lipid rafts, consisting of highly ordered and densely

packed structures of sphingolipids and cholesterol, or actin.



Chapter 6

Concluding remarks and future

directions

Although it has recently been established that the cell membrane is required for

Raf activation [8, 9, 35, 22, 32], its role in Ras biology is still unclear. Therefore, mul-

tiple studies have attempted to address this gap in knowledge [22, 23, 24, 25, 26, 38].

From biochemical assays to high resolution imaging, multiple lines of evidence show

the importance of Ras cluster formation and membrane segregation as requirements

for Ras signaling [35, 32, 36]. Not only does Raf activation require Ras dimers and

clusters, Ras membrane segregation is also a critical factor in Ras signaling. More

specifically, Ras isoforms occupy distinct membrane domains. Ras GTPases are

known to activate over 20 different effectors, but the mechanism of isoform specific

activation of Ras pathways is unknown [8]. The main difference between the differ-

ent Ras isoforms is in their membrane targeting domain, and Ras isoform dependent

membrane segregation is a necessary step in downstream signaling. Several pieces of

evidence suggest that Ras isoforms have different affinities with different membrane

components, such as phosphatidylserine, caveolin, actin, and lipid rafts [8]. In agree-

ment with the literature, we observed differences in H- and KRas localization to two

broad categories of membrane structures: actin and vesicle. However, expanding

beyond the known literature, our findings suggest that Ras multimer formation is
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dependent on the membrane structure, i.e. actin vs. membrane vesicle. We found

that dimers tended to colocalize with actin filaments, while large clusters were more

likely to be found in vesicles. Hence, this implies that the membrane structures are

responsible for Ras multimer formation, where vesicles generate large clusters and

actin filaments generate dimers. Therefore, the tendency for HRas to form larger

clusters is likely due to its higher affinity for vesicles while KRas preferences for

actin could explain the higher fraction of KRas dimers. Our findings support the

hypothesis that Ras is organized on the membrane via interactions with multiple

membrane components, and the different membrane compartments are responsible

for distinct Ras isoform signaling.

Given that Ras resides in the plasma membrane, changes in Ras interaction with

membrane components could affect Ras lateral diffusion. Thus, any mechanisms of

Ras spatial regulation on the membrane may result in observable changes to its diffu-

sion, which is tied to Ras trafficking, clustering, and signaling. In order to detect and

understand the role of the membrane in Ras biology, we used single particle tracking

with photoactivated localization microscopy (sptPALM) [51]. We determined that

the membrane is composed of at least three distinct membrane regions that interact

with Ras and change its mobility. The membrane contains ∼70 nm membrane do-

mains nested within a larger domain (∼200 nm) where Ras exhibits immobile and

intermediate diffusions, respectively. These nested membrane domains were iden-

tified through its effect on Ras mobility, hence termed intermediate and immobile

domains. Outside of these domains, Ras freely diffuses, corresponding to fast dif-

fusion. These membrane regions are implicated in Ras endocytosis and trafficking;

Ras is removed from the membrane through a subset of the immobile domains while

Ras is deposited to the membrane in the fast diffusing region, likely coupled to inter-

nalization and recycling. Importantly, both the diffusion and trafficking properties

of Ras remain invariant over a broad range of protein expression levels. In addition,

we showed that both H and KRas isoforms have a nested membrane organization

composed of fast, intermediate and immobile domains but with varying preferences.

KRas had significantly more immobile domains than HRas, while the intermediate

domain densities were similar between the two isoforms. This further supports the



hypothesis that Ras isoforms have unequal affinities for distinct membrane compo-

nents which lead to the observed differences in isoform signaling and cluster sizes.

Although the molecule identities and the role of these Ras associated nanodomains

(RANDs) are not understood, preliminary results show that RANDs have a role in

cluster formation and Ras signaling. Our results reveal how membrane organization

dictates Ras diffusion and trafficking and offer insight into how Ras signaling may

be regulated through spatial mechanisms.

There are a limited number of high resolution tools with the ability to probe pro-

tein dynamics in real time. High-throughput SPT is one of the few techniques that

can quantify molecular interactions and kinetics in live cells [47, 48, 14, 49, 50, 40].

This powerful technique can measure both spatial and temporal information about

the target protein, such that it can detect different diffusion states for a given

molecule, and the transient molecular interactions via diffusion state transitions.

Further, this approach can infer interaction between a target protein and the mem-

brane through the combination of the molecule’s spatial location and its diffusion

state. Thus, it becomes possible to infer membrane organization through spatial

analysis of diffusion trajectories and their state transitions. Since sptPALM collects

individual measurements, it is possible to observe rare, transient events that are

missed entirely by other static or bulk measurements. Multi-color sptPALM could

even directly observe interplay between Ras and its effectors, or to investigate any

membrane protein. sptPALM is a powerful tool that can be used to examine the

interplay between the dynamic cell membrane and its resident proteins.

Although sptPALM is an ideal technique for observing membrane proteins in

live cells, many factors in the experimental and post-acquisition processing can lead

to artifacts. For example, we found that the frame rate, construction of the single

particle trajectories, and particle density in each frame were all factors that heavily

influenced the diffusion model inference, leading to divergent and non-reproducible

results. In order to probe Ras membrane biology, we developed a novel pipeline to

rigorously process and analyze single particle tracking movies. By optimizing exper-

imental and image processing parameters based on 2-dimensional diffusion simula-

tions (e.g. frame interval and particle density per frame), we obtained a stable and



reproducible diffusion model by minimizing false trajectory connections. Compared

to other studies that attempt to address the same issue [85], our method is a simple

and robust solution that does not require extensive refinement of various parameters

specific to imaging and experimental conditions.

Given the complexity of the membrane and its role as a key regulator of Ras ac-

tivation, this study opens the door to understanding exactly how Ras is regulated on

the membrane. We have demonstrated that there is a complex interplay between Ras

and the membrane components, and that the membrane environment is a dynamic

structure that changes over time. Further, Ras signaling pathway is dynamically

regulated via multiple feedback loops that control Ras activation via Ras effectors

such as GEFs and GAPs. Hence, Ras signaling is a complex process that depends on

spatial and temporal elements (i.e. the membrane environment and the transmission

of signal from receptor tyrosine kinases (RTKs) and recruitment of downstream effec-

tors, respectively). Given that both spatial and temporal information are necessary

to fully understand Ras regulation, the work here shows that live cell single particle

tracking is an ideal technique to answer the remaining questions in the field.

Our findings prompt new questions. We found that there are three different re-

gions of the membrane, and that the immobile and intermediate domains may be

composed of multiple membrane structures. Of note, our data implies that the im-

mobile and intermediate domains are composed of at least two different membrane

components, whereby the Ras tail facilitates the interaction with these membrane

structures. Further, preliminary data indicate that immobile domains facilitate Ras

cluster formation. However, the direct observations of these findings are lacking.

We can now address these hypotheses through a combination of live cell compatible

imaging approaches which enable direct observations of the immobile and interme-

diate domains and locations of multimer formation. For example, FRET can be

used to quantify protein interactions, while multi-color imaging can simultaneously

observe multiple membrane components and proteins involved in Ras signaling path-

ways. In addition, these imaging approaches will enable tagging of multiple protein

and membrane components. Simultaneous imaging of multiple tags can be used to

answer questions such as the molecular composition of the immobile and intermedi-



ate domains. This can be extended to investigate whether the immobile domains are

Ras signaling platforms by tagging upstream and downstream Ras effectors, such as

RTKs and Rafs. Although we have discovered the existence of the intermediate do-

main, its function in Ras membrane biology and its composition are unknown. Since

the larger intermediate domain generally contains immobile domains, the interme-

diate domains may potentially act as transition zones that contain the molecular

machinery necessary for the formation of immobile domains.

Particle based simulations in Chapter 5 provided some evidence that RANDs

facilitated Ras dimers, a necessary step for Ras signaling. Although the preliminary

simulation results seem promising, the simulations were too simplistic and did not

entirely reflect all of the experimental findings in Chapter 3. However, spatial and

particle based simulations are highly valuable in exploring some of the mechanistic

details of Ras membrane regulation that cannot be tested experimentally. Therefore,

to accurately determine the role of RANDs in Ras signaling, the simulation needs to

be expanded to include both immobile and intermediate domains with transient and

stable life times, as well as the endocytosis and trafficking to and from the membrane.

A more accurate simulation can be used to determine the function of the intermediate

domains by comparing the rate of dimer or cluster formation in intermediate and

immobile domains. Further, the addition of life times to the domains will allow

further exploration of the role of transient and stable immobile domains in Ras

cluster formation and signaling. Incorporation of downstream factors, such as Raf,

will be helpful for determining whether intermediate domains may play a role in

recruiting Raf to the membrane.

This research was only enabled through tightly coupled experimental and com-

putational approaches. One of the main challenges of single particle tracking experi-

ments is the lack of ground truth when assigning trajectories to individual particles.

Since the data is unlabeled, it is difficult to determine the accuracy of the data pro-

cessing pipeline to construct finalized trajectories from the movies. We were able

to solve this problem through the use of simulations to generate data with known

diffusion parameters. Simulated datasets allowed us to test and refine both the ex-

perimental parameters, such as the frame rate and the maximum particle density



per frame, and the trajectory construction method. Our combined approach was

highly valuable since it allowed us to draw conclusions from otherwise unlabeled

data. Therefore, we recommend the use of simulations to validate data analysis

for similar future work. In addition to informing the experiment, simulations were

utilized to test hypothesis generated by the experiment. Simulations results shown

in Chapter 5 provided some evidence that RANDs facilitate Ras dimer formation.

Overall, this tightly coupled experimental and computational research program en-

abled multiple orthogonal approaches where simulations and experiments informed

each other.

The work presented here focuses on Ras, but there are many other signaling pro-

teins that reside on the plasma membrane, such as RTKs. The different membrane

environments that Ras molecules experience are not unique to Ras; the membrane

organization that governs Ras must also impact other membrane proteins. Conse-

quently, the importance of the membrane features in Ras signaling may not be a

mechanism that is specific only to Ras, but for other signaling proteins that reside

on the membrane as well. Although the RANDs discovered here may be unique

to Ras, membrane segregation is likely a general mechanism that governs all mem-

brane proteins. Other studies have demonstrated the role of the plasma membrane

through endocytosis and subsequent lysosomal receptor degradation and endosomal

recycling in maintaining and propagating a signal [65]. Further, protein clustering is

emerging to be a common requirement for signaling among membrane proteins [65].

Thus, this is an additional mechanism for further regulation ofsignaling proteins.

Therefore, plasma membrane can govern membrane proteins through various ways.

Consequently, being able to understand the dynamic and transient interplay between

the cellular membrane and its resident proteins is going to be a critical step to fully

understanding membrane protein signaling.
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