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Abstract            

Antimicrobial resistance (AR) is a serious clinical and public health problem, 

driven largely by inappropriate use of antimicrobials, particularly in the setting of empiric 

therapy of infections.  Provision of local AR prevalence data to clinicians in the form of a 

cumulative antibiogram (CABGM) can provide decision support for antimicrobial 

prescribing, decreasing inappropriate use, improving treatment outcomes, and minimiz-

ing selection of AR organisms.  However, CABGMs are produced by widely varying 

methods from different data sources with different vocabularies, resulting in inaccurate 

data presentations, lack of compliance with published standards, and inability to compare 

AR rates between different health care facilities for quality improvement. 

 To address this, I describe a data model constraining a CABGM to a published 

standard using appropriate vocabularies. This standard data model can be used to con-

struct CABGMs for major use cases, including use as a decision support tool for clini-

cians choosing empiric antimicrobial therapy, as a surveillance tool for hospital 

epidemiologists and public health officials comparing AR prevalence rates between 

hospitals, and as a quality improvement tool for aggregating AR prevalence data from 

different institutions. 

 This data model may be used to construct a relational database model; however, 

clinical microbiology and patient data are frequently stored in electronic medical records 

using a hierarchical database model.  Using the electronic medical record and clinical 

data warehouse employed by the Veterans Health Administration as an example, I outline 

an implementation scheme for migrating clinical and microbiological data from hierar-

chical databases to a relational database defined by the model.   Finally, vocabularies 
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used to describe microbiologic concepts and store clinical microbiology data frequently 

differ between different health care facilities.  I discuss approaches to mapping semantic 

equivalents used for microbiology data to a common set of standard terms. 
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Introduction           

Antimicrobial resistance 

 Antimicrobial therapy represents a signal triumph of 20th century Western medi-

cine.  In combination with mass immunization of susceptible populations against com-

mon infectious diseases, antimicrobials have dramatically lowered morbidity and 

mortality from bacterial pneumonia, tuberculosis, human immunodeficiency virus infec-

tion, and many other previously untreatable infections (Fauci and Morens 2012). Beyond 

these direct benefits, anti-infective therapy has revolutionized treatments for many non-

infectious conditions that rely on control or cure of infection to achieve their therapeutic 

goals.  Prosthetic joint replacement, cancer chemotherapy, and liver transplantation 

would not be possible without antimicrobials. 

Paradoxically, the success of antimicrobial therapy has become self-defeating.  

Widespread use of antimicrobials has rendered many antimicrobials less effective now 

than when they were first introduced.  For example, when first developed for clinical 

practice in the 1940’s, penicillin could reliably cure almost all infections caused by 

Staphylococcus aureus.   Today, fewer than 10% of infections due to this pathogen can 

be successfully treated with penicillin (Lowy 2003). 

This decrease in antimicrobial efficacy across the population, largely due to a 

phenomenon termed antimicrobial resistance (AR)*, is a major public health problem in 

                                            
*  Bacterial Resistance and Antibiotic Resistance are sometimes used as synonyms for 
Antimicrobial Resistance. Because these terms are more restrictive (pathogens other than 
bacteria can develop resistance, and not all antimicrobials are antibiotics), this document uses 
Antimicrobial Resistance. In addition, although the examples used in this capstone and the scope 
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the United States.  In patients with serious bacterial infections, AR-related treatment fail-

ure leads to worse clinical outcomes, increased lengths of hospitalization, and signifi-

cantly higher utilization of health care resources (Fish and Ohlinger 2006). 

Decreased drug efficacy at the individual patient level is common in many 

therapeutic areas. For example, ovarian cancer cells in patients receiving carboplatin are 

likely to become resistant to this agent with repeated exposure (Stordal, Pavlakis, and 

Davey 2007).  As another example, selective serotonin re-uptake inhibitors can lose their 

effectiveness over time (Solomon et al. 2005).  Treatment failure due to AR is unique, 

however, because it affects entire populations, not just individual patients, with develop-

ment of AR in one patient leading to an increased risk of AR infection in other patients.   

This phenomenon occurs via emergence of resistant organisms at the cellular level, 

selection for these organisms at the patient level, and transmission of these microbes at 

the population level. As discussed below, the selection step occurs to a greater or lesser 

degrees with different antimicrobials, making the choice of anti-infective therapy an im-

portant factor in accelerating or retarding the spread of AR. 

Emergence of antimicrobial resistance 

Antimicrobials inhibit physiologic processes essential to a microbe’s survival, usu-

ally by binding to an intracellular molecular target involved in such processes (Gumbo 

2011). For example, penicillin acts primarily by binding to penicillin-binding proteins 

(PBPs) involved in bacterial cell wall synthesis, disrupting their function and killing 

susceptible bacteria. Antimicrobials are designated as broad or narrow spectrum depend-

                                                                                                                                  
of the data model described are restricted to bacteria, the principles apply to other 
microorganisms such as fungi and viruses. 
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ing on the extent of their activity against one or more classes of microorganisms. Com-

mon bacterial classifications are based on morphology (cocci or bacilli), growth require-

ments (aerobic or anaerobic conditions), and staining characteristics (Gram stain-positive 

or negative).  

Antimicrobial resistance is a lack of pharmacologic activity of a particular 

antimicrobial against one or more microbial species at concentrations usually achievable 

in vivo. If the molecular target is absent, a pathogen has innate AR to the antimicrobial. 

For example, Pseudomonas aeruginosa is never susceptible to penicillin because it lacks 

the appropriate PBPs (Alvarez-Ortega et al. 2011).  

AR is more often acquired via mutation in the gene encoding an antimicrobial’s 

target, or acquisition of genetic resistance factors encoding proteins that degrade 

antimicrobials or pump them out of the microbe (Tenover 2006).  For example, penicillin 

resistance is often due to a resistance factor encoding the enzyme β-lactamase, which 

readily destroys penicillin.  Microorganisms readily acquire such factors from other mi-

crobes via plasmid-mediated conjugation, frequently by cell-cell interactions in the 

gastrointestinal tract of an individual patient.  Such transfers can occur across species 

barriers, allowing resistance factors carried by nonpathogenic organisms to be acquired 

by pathogenic microbes. 

A resistance factor may protect an organism against multiple antimicrobials in the 

same class. Extended-spectrum β-lactamases (ESBLs) cause resistance not just to penicil-

lin G, but also to semi-synthetic penicillins such as piperacillin, which was designed to be 

resistant to simpler β-lactamases (Jacoby and Munoz-Price 2005). In addition, mobile 

genetic elements can carry gene cassettes carrying different resistance factors, allowing 
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rapid transfer of resistance to multiple classes of drugs.  Over a hundred such cassettes 

have been described, conveying resistance to β-lactams, cephalosporins, aminoglyco-

sides, macrolides, and many other antimicrobials (Partridge et al. 2009). 

This introductory discussion of principles of antimicrobial resistance and empiric 

antimicrobial therapy provides a basis for consideration of how appropriately presented 

data, such as antibiograms, might be useful in addressing the significant clinical and pub-

lic health problems created by AR.  In the next section, I will discuss the informatics 

implications of AR, providing a rationale for the design decisions underlying the data 

model in this capstone, and a possible implementation schema. 
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Background           

General Principles 

Antimicrobials eradicate susceptible organisms, selecting for growth of AR organ-

isms, and increasing the probability of infection by or transmission of such organisms.  

Normal individuals are colonized by microorganisms of various species in various organs 

and tissues without infection being present. Although some of these organisms may be 

pathogenic, other, nonpathogenic microbial species competing for nutrients restrict their 

growth, a phenomenon known as colonization resistance (Vollaard and Clasener 1994).  

Their ability to cause infection is further limited by immune defenses in the local 

environment.   

For example, although S. aureus is a virulent pathogen frequently found on the skin 

(particularly the nares), it only causes disease if a sufficiently large inoculum exists that 

can enter subcutaneous tissues, for example through a break in the skin.  The same is true 

for AR organisms; usually (although not always), these pathogens are not more virulent 

than their more susceptible cousins.  Thus, methicillin-resistant strains of S. aureus 

(MRSA), which are resistant to most antimicrobials active against susceptible S. aureus, 

do not cause infection unless they multiply and gain access in sufficient quantities to tis-

sues where they can cause infection* (Gordon and Lowy 2008). 

Colonization resistance thus represents a major defense mechanism against infec-

tion, including infection by AR organisms.  It also represents a major defense against 

transmission of AR organisms from colonized to uncolonized individuals.  Thus, 
                                            
* Some MRSA strains are in fact more virulent than more susceptible strains of S. aureus, but 
infection still requires enough growth in the local environment to achieve a sufficient inoculum. 
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individuals who have intact colonization resistance are much less likely to acquire or de-

velop infection from AR organisms. 

Unfortunately, colonization resistance can be easily disrupted. Advanced age, 

malnutrition, serious illness, and prolonged hospitalization are associated with loss of 

colonization resistance, overgrowth of AR organisms in previously colonized individuals, 

and acquisition of AR organisms to uncolonized individuals.  In turn, these individuals 

have a substantially increased risk of serious infections and death.  They may also trans-

mit AR organisms to other susceptible individuals. 

Antimicrobials have particularly pernicious effects on colonization resistance 

(Rubin and Samore 2002).  First, even an antimicrobial with a narrow spectrum of activ-

ity will kill off a significant amount of normal microbial flora, impairing colonization re-

sistance.  Second, AR organisms are, by definition, much less likely to be affected by 

antimicrobials.  Thus, antimicrobial use selects for growth of AR organisms.  Once estab-

lished as a dominant species in the local environment of a colonized individual, an AR 

strain may prevent re-establishment of colonization resistance, even if the inciting 

antimicrobial has been discontinued.  As an example, even a single dose of an antimicro-

bial can lead to overgrowth of the gut pathogen Clostridium difficile, causing life-

threatening colitis.  This condition is of particular concern because of the attributable 

mortality it causes, particularly in vulnerable patients with other serious co-morbid condi-

tions (Bajaj et al. 2010), and the difficulty of successfully eradicating this pathogen once 

it has established itself through selection and overgrowth (Gerding, Muto, and Owens 

2008). 
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Spread of antimicrobial resistance 

One last step is required for spread of AR organisms – transmission.  For this to oc-

cur efficiently, colonized and susceptible individuals must be brought together in large 

numbers, and a route of transmission provided.  If one had to design a setting for such 

transmission, it would be difficult to improve on the modern hospital.  The patient 

population has a heavy representation of seriously ill individuals (particularly in intensive 

care units), who are likely to have risk factors for loss of colonization resistance, and are 

extremely likely to undergo interventions that breach normal host defenses and promote 

infection, particularly by AR organisms, such as use of indwelling vascular catheters and 

endotracheal intubation.   The population consists of both colonized and uncolonized pa-

tients who are both cared for by teams of health care workers (HCWs) that can serve as 

vectors for transmission of AR organisms.  The situation is exacerbated by intermittent 

adherence to hand washing by HCWs (Harris et al. 2000). 

This fertile soil is almost literally watered by large-scale use of antimicrobials.  As 

discussed above, any antimicrobial use may affect colonization resistance, but the classes 

of antimicrobials used among hospitalized patients – parenterally administered agents 

with broad antimicrobial spectra – are particularly likely to disrupt colonization re-

sistance and promote acquisition of AR organisms. 

While the hospital has traditionally been the venue for heavy use of antimicrobials, 

it is worth noting that over the last quarter-century, the use of these agents has increased 

dramatically in the outpatient setting as well, usually in the setting of acute respiratory 

tract infections (McCaig and Hughes 1995).  While this has had the advantage of avoid-

ing admission for parenteral antimicrobial therapy, it has also led to an increasing preva-
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lence of colonization of individuals by AR organisms.  For example, prior receipt of oral 

antimicrobials is an extremely strong predictor of colonization by penicillin-resistant 

Streptococcus pneumoniae in children (Samore et al. 2001). 

Empiric antimicrobial therapy and antimicrobial resistance 

The epidemiologic mechanisms underlying emergence and spread of antimicrobial 

resistance has created an interesting clinical and public health problem.  In most clinical 

situations where there are multiple drugs available to treat a particular condition, the 

choice depends on patient-specific factors: how effective the drug is likely to be in a 

particular patient, the risk of toxicity, and the cost.  However, in the case of an infectious 

disease, the choice of agent may affect the risk to the population as a whole.  This point is 

nicely illustrated by the correlation between the level of fluoroquinolone use in Canada 

and the prevalence of resistance to this class of agents in isolates of Streptococcus pneu-

moniae, a virulent pathogen that is the primary cause of community-acquired bacterial 

pneumonia (Adam et al. 2009). In addition, as discussed above, antimicrobial therapy 

may treat an infection but select for AR organisms, raising a treated patient’s risk for fu-

ture problems. 

The problem is exacerbated by the nonspecific clinical presentation for many acute 

infections requiring anti-microbial therapy, leading to selection of antimicrobial therapy 

on empiric (as opposed to microbiologic) grounds.  For example, although there are rela-

tively few bacterial etiologies of community-acquired pneumonia in immunocompetent 

individuals, it is usually not possible to distinguish between them solely on the basis of 

clinical signs and symptoms. Sputum and blood cultures are relatively insensitive in this 

setting, and in any event do not yield results for days, if at all.  Thus, initial antibacterial 
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therapy for this infection is usually chosen so as to cover all reasonable possibilities, even 

though only one of them is likely to be responsible (Mandell et al. 2007).  Even if a spe-

cific organism is identified, it is extremely common for the broad initial treatment to be 

continued, even if narrower-spectrum antimicrobials targeting the identified pathogen are 

available. 

Antimicrobials used for empiric therapy, because of their broader spectrum of 

activity, differ in their effects on colonization resistance (Rice et al. 2004).  Agents with a 

relatively narrow antimicrobial spectrum have less effect than do broader spectrum 

agents (Rice 2012).  Other factors, such as the antimicrobial concentrations achieved in 

various body fluids and an antimicrobial’s half-life, may also contribute to a given 

antimicrobial’s relative influence on colonization resistance. 

At the same time, while there is a common perception that the broader spectrum 

antimicrobials used for empiric therapy or for treatment of infections due to AR organ-

isms are “better” or “stronger” than narrower-spectrum antimicrobials for a specific 

infection, this is not correct.  The overwhelming majority of antimicrobials marketed in 

the U.S. are approved on the basis of noninferiority trials, which only require showing 

that a new agent is not much worse than existing therapy (Fleming and Powers 2008). 

Even in cases where a new antimicrobial appears to have better activity in vitro against 

AR organisms, this does not imply superior clinical activity.  For example, telithromycin, 

a ketolide antimicrobial, was widely marketed for empiric therapy of community-ac-

quired respiratory tract infections due to resistant pathogens, despite the absence of clini-

cal trial data to support this claim. Unfortunately, telithromycin turned out to cause se-
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vere hepatotoxicity, thus increasing the risk to patients without any corresponding clinical 

benefit (Ross 2007). 

Thus, empiric (or microbiologically defined) therapy with inappropriately broad 

spectrum antimicrobials is unlikely to yield a clinical benefit, but increases the risk of 

selection for, colonization by, or infection with AR organisms.   Despite this, physicians 

frequently feel compelled to choose overly broad spectrum antimicrobials because of 

anxiety over the consequences of “missing” a resistant pathogen, pressure from patients, 

or lack of information about the characteristics of different antimicrobials and their 

appropriate use (DiNubile 1990).  The last factor is of particular interest to medical 

informaticists because of the potential application of decision support systems to this gap. 

Antimicrobial stewardship 

Multiple integrated public health strategies have been devised to address AR, such 

as development of new drugs and increased attention to hand hygiene and other infection 

control measures.  However, antimicrobial stewardship – organizing health care delivery 

in both the hospital and community to maximize appropriate use of antimicrobials – 

holds particular promise for combatting AR (Tamma and Cosgrove 2011). Antimicrobial 

stewardship refers to a discrete set of structures, processes, and outcomes used to opti-

mize appropriate use of antimicrobials. When properly designed, implemented, and exe-

cuted, a stewardship program can decrease emergence of ARs, improve treatment out-

comes, avoid toxicities associated with antimicrobial use, and lower health care costs 

(Goff 2011).  The Infectious Diseases Society of America and Society for Hospital 

Epidemiology of America have jointly issued evidence-based guidelines on design and 

implementation of antibiotic stewardship programs (Dellit et al. 2007). 



 11 

Although evaluation of a stewardship program’s effectiveness relies on multiple 

process and intermediate outcome measures, the prevalence of AR in a particular practice 

setting is a key metric.  In addition, clinically relevant AR prevalence data is itself a key 

stewardship tool, providing decision support for clinicians choosing empiric antimicro-

bial therapy, allowing them to integrate the probability that a given patient has an infec-

tion due to an AR organism with other data, and avoid unnecessarily broad treatment.  

The antibiogram – decision support for microbiologically defined therapy 

An antibiogram* (ABGM) is the profile of susceptibility or resistance of an organ-

ism isolated from a patient (an isolate) to a panel of antimicrobial agents, usually those 

that are clinically relevant to treatment of infections caused by the particular species iso-

lated. ABGMs are produced from data derived by antimicrobial susceptibility testing 

(AST). AST consists of testing the in vitro activity of an antimicrobial against a pure 

strain of an organism isolated from a patient, often using automated analyzers†.  Depend-

ing on the technique used, the in vitro activity may be expressed as the lowest concentra-

tion of the antimicrobial that inhibits growth of the organism by 99.9% (the minimum 

inhibitory concentration, or MIC, which is usually expressed as µg/mL). The lower the 

MIC, the more susceptible the isolate is to the antimicrobial. Alternatively, the antimicro-

bial’s activity against an isolate may be measured by the extent to which microbial 

growth is inhibited in the area surrounding a paper disc impregnated with an antimicro-

                                            
* The term antibiogram generally refers to susceptibility profiles for bacteria; profiles for other 
classes of microorganisms are designated by terms such as phenotyping. Because of its common 
usage in the literature, I will use antibiogram throughout this document, but the principles apply to 
any susceptibility profile. 
†  AST can also be performed against non-clinical isolates, such as those cultured from 
environmental surfaces. For simplicity, this discussion will focus on clinical isolates. 
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bial, usually expressed as millimeters; the larger the zone of inhibition, the more suscepti-

ble the isolate is to the antimicrobial (CLSI 2012). 

The AST result is then compared to the activity of the antimicrobial against reference 

strains of known susceptibility, using reference values called breakpoints established dur-

ing the development and clinical testing of the drug, and translated into an interpretation.  

Most antimicrobials have two interpretative breakpoints for a given microbial species, a 

susceptibility breakpoint and a resistance breakpoint.  If the antimicrobial’s activity 

against the isolate (expressed as either the MIC or zone diameter) is equal to or greater 

than the susceptibility breakpoint for the corresponding reference strain, than the isolate 

is susceptible to the antimicrobial.  If the activity is less than the resistance breakpoint, 

the isolate is resistant.  If the activity is between the breakpoints, then the isolate is 

intermediate. In some cases, no resistance breakpoint has been defined for the activity of 

an antimicrobial, usually because there is insufficient data. In such cases, an antimicro-

bial that does not reach the susceptibility breakpoint is defined as nonsusceptible.  

AST methods are relatively standardized, with the overwhelming majority of 

microbiology laboratories in the U.S. following standards published by the Clinical 

Laboratory Standards Institute (CLSI), an ISO-certified standards organization.  CLSI 

also publishes breakpoints for interpreting AST results by correlating in vitro antimicro-

bial activity with clinical outcomes*.  CLSI regularly revises breakpoint determinations 

based on new clinical, epidemiologic, and microbiologic data, and publishes updated 

interpretations, usually annually.  For example, if surveys of clinical isolates of S. pneu-

                                            
* The U.S. Food and Drug Administration independently determines breakpoints for antimicrobials 
and uses them for the approved labeling for antimicrobials.  FDA breakpoints are usually, but not 
always, identical to those published by CLSI.  For simplicity, I will only consider CLSI breakpoints. 
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moniae show an increase in the median MIC, CLSI may revise the susceptibility break-

point accordingly. 

It’s important to note that not all antimicrobials are tested against all isolates.  As 

discussed earlier, a particular microbial species may have innate AR to a particular 

antimicrobial, making AST against that drug pointless.  AST generally uses selective test-

ing based on features such as the isolate’s morphology, growth characteristics, Gram 

staining characteristics, and the presumed location of the infection.  For example, as dis-

cussed above, E. coli is never susceptible to oxacillin, so that AST would never be per-

formed using this drug against E. coli.  However, it is frequently active against S. aureus, 

making it part of the standard AST panel tested against this species. 

In the case of bacteria, standard AST panels differ between different classes of 

organisms.  For a given class, the AST panel includes antimicrobials that almost always 

active against that class, but which should be reserved for infections in which the patho-

gen is resistant to narrower spectrum antimicrobials.  For example, isolates of E. coli are 

almost always susceptible to ertapenem, a broad-spectrum anti-infective in the car-

bapenem class, but if a particular isolate is known to be also susceptible to ampicillin – a 

narrower spectrum agent – the latter agent is preferable because it is much less likely to 

select for AR organisms or cause C. difficile colitis.  Ampicillin would also have similar 

clinical activity to ertapenem (because of the use of NI trials for antimicrobial develop-

ment, most FDA-approved antimicrobials have comparable efficacy for similar indica-

tions), and would cost much less.  However, because of the inaccurate perception that 

broader spectrum antimicrobials are “better”, many clinicians are likely to choose 
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ertapenem over ampicillin in such a situation, despite the lack of added benefit and the 

increased risks. 

To address this, CLSI divides antimicrobials into report groups specific to 

particular classes of organisms (CLSI 2012). Group A consists of antimicrobials that may 

always be used for initial testing (primary antimicrobials), and for which the results 

should always be reported. Group B consists of antimicrobials that may be used for initial 

testing, but for which the results should be reported selectively to clinicians, in those in-

stances in which the isolate is resistant to Group A agents. Group C consists of supple-

mental antimicrobials, which should be used for AST only in instances or institutions 

where there is a high prevalence of AR; the results for these should also be reported 

selectively.  Group U consists of antimicrobials used for AST of isolates from urine cul-

tures, on the basis of their pharmacokinetics; usually, only Group U AST is performed for 

urine cultures*.  Not all classes of organisms have all groups. 

A particular antimicrobial may be assigned to different reporting groups, depend-

ing on the class of organism.  For example, ampicillin/sulbactam, which combines 

ampicillin with a β-lactamase inhibitor to allow activity against β-lactamase-producing 

organisms, is in Group B for E. coli for aerobic Gram-negative enteric bacteria 

(Enterobacteriaceae), but is in Group A for anaerobes that always express β-lactamase, 

such as Bacteroides fragilis.   

Furthermore, within any given group, the antimicrobials are arranged by class, 

with laboratories having the option of using one of several agents from a particular class.  

                                            
* The CLSI classification also includes Groups O (‘Other’) and Inv (‘Investigational’).  These are 
rarely used in routine clinical microbiology practice, and will not be included in the scope of the 
data model.  However, expansion of the model to include these would be straightforward.  
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For example, in the example just mentioned, that of AST against B. fragilis, a laboratory 

may use any one of four different β-lactam/β-lactamase inhibitor drugs for AST of B. fra-

gilis or E. coli, not just ampicillin/sulbactam.  This introduces an obvious source of 

variability in AST results between laboratories. 

Once AST has been performed and the results interpreted, a single isolate ABGM 

can be constructed, as shown in Figure 1.  These data are extremely useful to clinicians, 

guiding them to antimicrobials known to be active against the isolate infecting a patient, 

and allowing them to avoid antimicrobials that are not (Lambke 2012). When generating 

ABGMs for clinical use, microbiology laboratories generally employ selective reporting, 

displaying results for broader spectrum antimicrobials only if the isolate is resistant to 

more commonly used, narrower spectrum antimicrobials (Pakyz 2007).  In addition, the 

ABGM is typically not displayed for isolates that are identical to previous isolates from 

the same patient.  For example, a patient with S. aureus endocarditis may have persistent 

bacteremia with this organism and repeatedly positive blood cultures; the microbiology 

lab will typically only report the ABGM for the first S. aureus isolate.  
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Figure 1. An antibiogram for a single isolate from a single culture from a single patient.  
The asterisks indicate antimicrobials for which AST results are selectively reported. The 
hospital where this report was produced generally reports all AST results for S. aureus 
isolates because of the high prevalence of resistant strains. 

 

 

 

 

 

 

 

 

 

The cumulative antibiogram – a broader decision support tool 

Results from ABGMs for different isolates can be aggregated by species to create 

a cumulative antibiogram (CABGM), consisting of a tabular presentation of susceptibil-

ity rates for a defined set of pathogens to a defined set of antimicrobial agents over a de-

fined period of time (For clarity, I will refer to any ABGM containing data on multiple 

isolates as a CABGM.) For a given species, the rates shown are derived from the standard 



 17 

AST panel for that species.  If generated for clinical use, CABGMs generally employ 

selective reporting and only report data to clinicians based on the first isolate of a particu-

lar species from a particular patient.  This avoids introduction of bias caused by more fre-

quent microbiologic testing of sicker patients, which would tend to inflate resistance 

rates.  This first-isolate-only approach has been validated by comparison with results 

from CABGMs reporting all results (Shannon and French 2002).  For epidemiologic pur-

poses, CABGMs can be constructed that do include all isolates, including duplicates, in 

the numerator and denominator. 

Figure 2. Sample CABGM summarizing susceptibility rates for selected pathogens, 
aggregating data for multiple isolates grown from multiple cultures obtained from multi-
ple patients.  This report follows CLSI guidelines for analysis and presentation of 
cumulative susceptibility data (CDC 2004). The CABGM is produced annually by man-
ual methods and is distributed as a paper product; it is also available as a Web version. 
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CABGMs serve multiple purposes for different users: 

• Individual clinicians: Decision support for choosing empiric antimicrobial ther-

apy.  In combination with the other components of an antimicrobial stewardship 

program, this can be a powerful tool for choosing empiric therapy that has an 

antimicrobial spectrum broad enough to cover likely pathogens while minimizing 

the risk of selecting for AR organisms by using overly broad anti-infective treat-

ment.  For example, a clinician treating a patient suspected (but not confirmed) of 

having bloodstream infection due to E. coli could use the CABGM in Figure 2 to 

choose ceftriaxone for initial treatment, in place of a broader-spectrum agent such 

as ertapenem that carries a higher risk of selecting for resistant organisms or caus-

ing C. difficile colitis. 

• Hospital epidemiologists, infectious disease pharmacists, microbiology laboratory 

directors, and public health departments: Surveillance of AR trends in individual 

medical facilities, communities, geographic region, countries, or even continents.  

Monitoring of such trends is essential in constructing and revising evidence-based 

recommendations on treatment of infectious diseases (Critchley and Karlowsky 

2004).  

• Quality managers and health care organization executives: Evaluation of the 

effectiveness of components of antimicrobial stewardship programs, such as poli-

cies on antimicrobial utilization and educational campaigns, as well as correlating 

AR rates with other outcome measures such as antimicrobial utilization, treatment 

outcomes, and costs. 
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Practical issues with antibiogram construction 

While design and construction of a CABGM is seemingly straightforward, espe-

cially in a hospital using an electronic medical record, the reality is far different due to 

the fragmentation of information systems and databases in a typical health care organiza-

tion and the lack of automation of many processes, and CABGM’s are rarely the same 

from one hospital to the next. 

Some of this variability reflects the simultaneous existence of multiple accepted 

methods for AST testing and reporting.  For example, one laboratory may perform testing 

by MIC determination while another uses disk diffusion.  Labs may use similar but 

nonidentical panels for AST on the same microbial species. 

However, these issues are remediable, and are nowhere as serious as the 

interoperability problems created by the typical workflow for capturing AST data into an 

electronic medical record and constructing a CABGM: 

1. A culture received in the microbiology laboratory is assigned a unique identifier 

(the accession number, which is entered manually into the EMR, along with pa-

tient data. The accession number is manually entered by a separate proces into the 

Laboratory Information System (LIS). 

2. If the culture is positive, the LIS is electronically updated and the EMR is manu-

ally updated. 

3. Organisms grown from the culture are speciated by a mixture of semi-automated 

and manual methods.  Intermediate results are recorded manually on paper. 

4. AST is performed on the isolate (or isolates) obtained from the culture by a mix-

ture of automated and manual methods.  If an automated AST analyzer is used, 
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the results are captured electronically in the LIS, but are entered manually into the 

EMR. 

5. Cumulative antibiograms are produced by a series of manual steps: Semi-auto-

mated searching within the EMR for AST results by species, manual export of 

single isolate ABGM results into a spreadsheet, manual deletion of duplicate iso-

lates from the same patient, manual deletion of AST results for broad spectrum 

antimicrobials to allow selective reporting, manual export of associated patient 

data into the spreadsheet, generation of frequency counts, susceptibility rates, and 

resistance rates, and production of a list of organisms and susceptibility rates to 

selected organisms. 

6. Production of a CABGM as a paper product. 

From an informatics perspective, this process has the following flaws: 

• Significant variations in vocabulary exist between different laboratories (and even 

within the same laboratory over time). 

• Data and database models are not standardized 

• Analyses are not standardized and are potentially inaccurate 

• Data displays are not standardized and are potentially misleading data 

• There is a high potential for entry of invalid data  

These issues substantially decrease the utility of CABGMs.  Problems include the 

following: 

• Construction of potentially inaccurate and/or ineffective CABGMs 

• Difficulty tracking AR trends at the local, regional, and national levels 
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• Difficulty correlating AR data with data outside the LIS 

• Unable to compare AR rates across different institutions 

• Inability to meaningfully aggregate AR data from different institutions 

These are not just theoretical problems. Surveys have demonstrated substantial 

variability in CABGMs across the U.S. (Zapantis et al. 2005; Lautenbach and Nachamkin 

2006)., reflecting a lack of standardization.  Even worse, it is not uncommon for 

CABGMs to report inaccurate results (even when compiled from accurate AST data), or 

present AR prevalence rates that are biased by oversampling of seriously ill patients. 

Although CLSI has issued multiple revisions of a standard designated M39 for 

collecting, analyzing, and presenting AR data for CABGMs (CLSI 2009), the surveys 

described above demonstrate that they are rarely followed, even though CLSI is the 

recognized standard-setting organization for AST. Examination of CABGM survey re-

sults suggests that the variability is due instead to lack of an interoperable data model and 

vocabularies constraining collection, manipulation, and analysis of data used for 

construction of CABGMs. Laboratory information systems are often isolated from elec-

tronic medical records. Names for pathogens and antimicrobials are often inconsistent 

between labs.   

This suggests that a first step in resolving the interoperability problems involved 

in CABGM is construction of a data model reflecting the M39 standard, based on com-

mon use cases.  With this as a starting point, relational database models can be created, 

schema for importing data from EMRs can be devised and implemented, and applications 

for constructing CABGMs can be built. 
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Prior work 

There is an extensive body of work on clinical decision support tools to guide 

antimicrobial prescribing, starting in the mid-1970’s with MYCIN (Wraith et al. 1976). 

One of the first clinical decision support tools constructed for any therapeutic area, MY-

CIN was an application that provided recommendations to clinicians on appropriate 

antimicrobial therapy, based on a built-in knowledge base of several hundred rules, an 

inference engine, and data provided by the clinician.  Interestingly, recommendations 

made by MYCIN were appropriate in 69% of cases, compared to a range of 42.5% to 

62.5% for infectious disease physicians (Yu et al. 1979).  

Since that time, there has been an enormous amount of effort expended in 

constructing point-of-care tools to improve the quality of empiric antimicrobial prescrib-

ing  ( Kilroy et al. 1984; Mullett et al. 2004;  Sintchenko et al. 2005; Rubin et al. 2006;  

Thursky 2006; Thursky and Mahemoff 2007; Buising et al. 2008), with data to support 

their utility in both the inpatient and outpatient settings (Samore et al. 2005; Leibovici et 

al. 2007).  There has also been theoretical work done to define an ontology of antimicro-

bial resistance (Schober et al. 2010). 

However, these efforts have not addressed the issue of standardization of antibio-

grams.  Of note, MYCIN was never used as a production system, primarily because of the 

need for manual entry of clinical and microbiologic data (an early incarnation of the 

interoperability problem described above). 

There are currently no domain or refined message data models specific to 

CABGM construction.  Existing or candidate standards relevant to CABGM creation in-

clude a draft Clinical Document Architecture standard for submission of hospital-
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acquired infection reports to CDC’s National Healthcare Safety Network (HL7 2009); 

HL7 2.7-compliant laboratory reporting standards, as well as HL7 2.5-compliant 

implementation guides for electronic laboratory and public health reporting; and an HL7 

draft template for antibiotic result templates.  Relevant vocabularies include LOINC, 

SNOMED-CT, and the Public Health Information Network (PHIN) Vocabulary. 

The Veterans Health Administration (VHA) as an implementation model 

The Veterans Health Administration (VHA) represents a useful system for 

implementing HL7-based standards to generate CABGMs from different health care 

facilities. VHA operates the largest civilian health-care organization in the U.S., compris-

ing 152 medical centers and more than 800 outpatient clinics located across the country.  

VHA provides care to 5 million Veterans, with 70 million outpatient visits annually. 

All VHA medical facilities use an electronic health record system, the Veterans 

Health Information Systems and Technology Architecture, or VistA (Brown et al. 2003).  

VistA was developed using MUMPS, and consists of over 100 software modules, provid-

ing functions such as computerized provider order entry, picture archiving and commu-

nication, and display of progress notes and laboratory results.  VistA employs a client-

server architecture, with installation and maintenance of data and applications managed 

by local facilities.   

Although the overall architecture of VistA applications and data files is similar 

between facilities, there is considerable flexibility in how data can be entered and stored.  

This is especially true in the case of antimicrobial susceptibility data.   For example, 

susceptibility results are entered as free text, with a recommendation that the entry consist 
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of either a numeric result (the MIC) or a character (e.g., ‘S’, ‘I’, or ‘R’), along with a free 

text interpretation.   Individual facilities can choose their own nomenclature for adding 

newly introduced antimicrobials. To complicate matters, there are not necessarily any 

procedures in place for validation, error checking, or error handling. 

These features create substantial variability in microbiology datasets throughout 

VA, complicating the task of aggregating AR data to generate CABGMs at the national, 

regional, and local levels.  This is perhaps best illustrated by the dramatically different 

results obtained within the VHA system by three studies of the effects of interventions to 

control the incidence of infections due to methicillin-resistant S. aureus (Jain et al. 2011; 

Kennedy et al. 2010; Tracy et al. 2011).  The first, a national level study aggregating un-

standardized, unvalidated AR data, concluded that use of of active surveillance cultures 

to detect MRSA colonization and application of contact precautions to colonized patients 

decreased infections due to MRSA.  The other two studies, reporting single-center experi-

ences (with automatic standardization of AR data) did not find the same benefit.  Clearly, 

the inability to standardize and validate underlying AST data severely hampers any effort 

to define the benefit of this or other infection control and antimicrobial stewardship prac-

tices.(Graves et al. 2011). However, this situation is not unique to VHA, and the breadth 

of experience within VHA with an EMR integrating clinical and microbiologic data 

makes it a good platform for understanding and modeling the real-life challenges of 

constructing accurate, standardized CABGMs. 

In this capstone, I define a standardized data model for specific use cases, along 

with appropriate business rules for data manipulation. I then present representative exam-

ples of the current universe of data structures currently employed within VHA to organ-
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ize AR data, and describe a schema for migrating VHA data from its current unstruc-

tured, non-standardized form to a relational database. I then discuss how this could be 

feasibly implemented, allowing design and construction of applications to produce 

CABGMs at different levels of specificity within VHA.  
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Methods            

 The objectives of this project are to: 

1. Create a data model and associated data dictionary for generating CABGMs for spe-

cific use cases, based on existing standards and relevant vocabularies 

2. Describe business rules that will allow constrain applications for generating 

CABGMs 

3. Describe a schema processes for cleaning, transforming, and mapping existing AR 

data to a common data structure, using the VHA as a representative platform. 

The scope of the data model includes clinically relevant bacterial organisms for 

which antimicrobial susceptibility testing guidelines have been issued by CLSI. Fungi, 

viruses, and parasites are excluded.  Antibacterials for which breakpoints have been 

established by CLSI are included. Investigational agents and other classes of antimicrobi-

als (e.g., antifungals and antivirals) are excluded. 

Standards  

Standards used in the data model include those published by CLSI, SNOMED-

CT, and LOINC.  The overwhelming majority of clinical microbiology laboratories in the 

U.S. follow standards published by the CLSI for antimicrobial susceptibility testing and 

reporting. CLSI document M100-S22 (CLSI 2012) is an appropriate standard; this is the 

latest in a series of annual updates to the basic technical standards.  With regard to 

modeling data requirements for cumulative antibiograms, CLSI document M39-A3 

(CLSI 2009) is the most recently published standard for designing, formatting, and 

reporting CABGMs. 
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LOINC version 2.38 provides a standard vocabulary for antimicrobial susceptibil-

ity tests and tests for specific resistance factors.  LOINC provides a standardized, 

unambiguous set of identifiers for these concepts.  

SNOMED-CT (31 Jan 2012 Release) provides a standard vocabulary for culture 

specimen type and collection site, Isolates, and reference bacterial strains used for 

determining breakpoints.  SNOMED-CT provides a standardized, unambiguous set of 

identifiers for these concepts. 

Users and use cases 

This data model is designed for two sets of end-users: clinicians choosing empiric 

antibacterial therapy, and hospital epidemiologists (or other antimicrobial stewardship 

personnel) tracking AR prevalence rates. Three use cases are described (Boxes 1-3).  The 

first illustrates typical use by a clinician.  The second and third describe some of the 

specialized uses by hospital epidemiologists or other stewardship personnel.   
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Box 1. Use case: Choosing empiric antimicrobial therapy.   

Choosing empiric antimicrobial therapy 
Scenario: A physician is caring for a patient who has developed hospital-acquired 
pneumonia; no pathogen has been identified. The patient is at risk for infection by re-
sistant Gram-negative bacteria, anaerobes, and Staphylococcus aureus. The patient 
has had previous episodes of Clostridium difficile colitis due to prolonged treatment 
with antimicrobials.  The patient also has renal insufficiency.  The physician would 
like to choose antimicrobials that have a high probability of active against likely 
pathogens, while avoiding renal toxicity to avoid further compromising the patient’s 
kidney function.  The physician has reasonable knowledge regarding the relative ne-
phrotoxicity of different agents.  However, the physician does not have specific train-
ing or expertise regarding the antimicrobial spectra of the possible choices, and is not 
aware that different anti-infectives are associated with different risks for C. difficile 
colitis 
Actors: 
• Physician 
• System 
Steps 

a. User action: The physician launches a CABGM viewer application based 
on the data model, via Electronic Medical Record (EMR) application.  Alternatively, 
the system could be configured to launch the viewer automatically if the physician 
starts to order an antimicrobial and there are no recent AST results. 

b. System response: The application displays a table similar to that shown in 
Figure 2, showing susceptibility rates for common nosocomial pathogens.  The table 
is formatted so as to highlight antimicrobials associated with a lower risk of C. dif-
ficile colitis, as well as antimicrobials with higher susceptibility rates against various 
pathogens. 

i. The display appears within a few seconds after launching the application. 
ii. Ideally, the view can be filtered to present results for a particular unit (e.g., 

the medical intensive care unit) or particular patient demographics (e.g., patients 65 
years of age and older). 

c. User action: Based on the data in the table and knowledge about the 
nephrotoxicity of the various agents, the physician orders empiric antimicrobial ther-
apy that maximizes the probability of activity against possible hospital-acquired 
pneumonia etiologies and minimizes the risks described above. 
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Box 2.  Use case: Validating AST data in the microbiology laboratory 

Validating AST data in the microbiology laboratory 
Scenario: The director of a hospital microbiology laboratory performs weekly audits 
of the quality and consistency of AST data manually transferred from the Laboratory 
Information System to the clinical database supporting the hospital’s EMR. 
Actors: 
• Lab Director 
• System 
Steps: 
d. User Action: The director launches an AST Consistency Checker based on the 
data model. 
e. System Response: The Checker generates a line listing of all isolates with AST 
results suggesting internally inconsistent data (e.g., an interpretation of Resistant for 
an isolate with an MIC below the susceptibility breakpoint, or MRSA isolates re-
ported as susceptible to cephalosporins), incomplete data (e.g., absence of results for 
the primary AST panel), or inappropriate testing (e.g., testing with secondary agents 
when the isolate is susceptible to primary agents). 
f. User Action: Based on the report, the director: 

i. Reviews the flagged isolates 
ii. Arranges for correction of the data where appropriate 

iii. Uses the results for quality improvement by identifying patterns of data er-
rors or inconsistencies (e.g., identifying inappropriate AST testing requested by spe-
cific clinicians).  
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Box 3.  Use case: Evaluating an antimicrobial stewardship intervention 

Evaluating an antimicrobial stewardship intervention. 
Scenario: The Chief of Clinical Pharmacy is evaluating whether a policy of requiring 
prior approval for particular antimicrobials has affected the prevalence of multi-drug 
resistant Gram-negative bacilli within the hospital over a 36-month period. 
Actors: 
• Chief of Clinical Pharmacy 
• System 
Steps: 
g. User Action: The pharmacy chief launches an AR Trend Analyzer that is based on 
the data model. 
h. System Response:  The Analyzer displays graphs showing rates of susceptibility, 
resistance, and nonsusceptibility over the time period.  The display includes data for 
all antimicrobials (primary, supplemental, and secondary). 

i. Ideally, the view can be filtered to present results for a particular unit (e.g., 
the medical intensive care unit) or particular patient demographics (e.g., patients 65 
years of age and older). 

ii. Additional features could include simultaneous graphing of utilization of 
specific antimicrobials or classes of antimicrobials. 
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The CABGM Data Model 

The CABGM Data Model is described here in several ways.  First, entity-relation-

ship diagrams illustrate the data model in three sections: those dealing with general health 

care delivery (Figure 3), those dealing with microbiologic specimen collection and pro-

cessing (Figure 4), and those dealing with antimicrobial susceptibility testing (Figure 5).. 

Table 1 then shows the complete list of entities and relationships.  Table 2 shows a data 

dictionary with entities, their attributes, and attribute data type.  Table 3 shows allowable 

values for attributes with value constraints.  Following these diagrams and tables are text 

explanations of each model, with a narrative description of relevant entities, their 

characteristics (including how they are uniquely identified), and their relationships.  En-

tity-relationship diagrams were constructed with ER-Assistant 2.10 (Mosor, Inc.). 

 

  



 32 

Figure 3. Clinical entities, attributes, and relationships.  
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Figure 4. Microbiologic entities, attributes, and relationships.  
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Figure 5. AST entities, attributes, and relationships. 
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Table 1. The CABGM Data Model.  Entities and Relationships. 
Strong Entities are bolded; weak entities are in regular type.  The primary key is underlined.  
Identifying relationships are bolded. 

Entity Description Attributes Relationships and cardinality 

Patient Individual patient patientID 

firstName 

middleName 

lastName 

birthDate 

sex 

race 

ethnicity 

serviceEra 

priorityCategory 

o Admitted to Inpt _Admit 
(1-1) 

o Has_OPV to Outpt_Visit 
(1-1) 

o Provides to Culture (1-1) 
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Facility VHA Facility facilityID 

facilityName 

address 

city 

state 

zipCode 

o Unit_Loc_At to Inpt_Unit 
(1-1) 

o InptServ_Loc_At to 
Inpt_Serv (1-1) 

o OutptClin_Loc_At to 
Outpt_Clin (1-1) 

o OutptServ_Loc_At to 
Outpt_Serv (1-1) 

o Belongs_To to Lab (0-1) 

Inpt_Unit Inpatient unit at a 
Facility 

unitName o Unit_Loc_At from Facility 
(0-M) 

o InptAdmit_On to Inpt 
Admit (0-M) 

Outpt_Clin Outpatient clinic at a 
Facility 

clinicName 

stopCode 

o OutptClin_Loc_At from 
Facility (0-M) 

o OPV_At to Outpt_Visit (0-
M) 

Inpt_Serv Inpatient Service at 
a Facility 

inptServName o InptServ_Loc_At from 
Facility (1-1 

o InptAdmit_To to InptAdmit  

Outpt_Serv Outpatient Service 
at a Facility 

outptServName o OutptServ_Loc_At from 
Facility (0-M) 

o OPV_With to Outpt Visit 
(0-M) 

Inpt_Admit Inpatient Admission 
to an Inpt_Unit on 
an Inpt_Serv 

admitDate 

dischargeDate 

deathDate 

o Admitted from Patient (0-
M) 

o InptAdmit_On from Inpt 
Unit (0-M) 

o InptAdmit_To from Inpt 
Service (0-M) 

Outpt_Visit Outpatient Visit to 
an Outpt_Clin run 
by an Outpt_Serv 

visitDate o Has_OPV from Patient (0-
M) 

o OPV_At from Outpt_Clin 
(0-M) 

o OPV_With from 
Outpt_Serv (0-M) 

Culture Single culture from 
a single Patient 

accessionNo 

specType 

collectSite 

o Provides from Patient (0-
M) 

o Grows_Out to Isolate (1-1) 

o Processes to Laboratory 
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collectDate 

collectTime 

(1-M) 

Laboratory A microbiology 
laboratory 

labID o Processes from Culture (1-
M) 

o Belongs_To from Facility 
(0-1) 

Isolate A specific Organism 
isolated from a 
Culture 

isolateNo 

betaLactamase 

 

o Grows_Out from Culture 
(0-M) 

o Is_of_Type from Organism 
(0-M) 

o Tested_Vs to Antibiogram 
(1-1) 

Antibiogram AST results for a 
single Isolate vs. a 
single antimicrobial 

astResult 

interpretation 

reportGroup 

o Abx_Tested from AST (0-
M) 

o Tested_Vs from Isolate (0-
M) 

AST An AST for a 
specific anti-
microbial using a 
specific method 

loincCode 

antimicrobialName 

testMethod 

o Abx_Tested to Antibiogram 
(1-1) 

o Antimicrobial_Tested to 
Breakpoint (1-1) 

Breakpoint Susceptibility and 
resistance break-
points for a partic-
ular antimicrobial 
tested against a 
reference strain  

clsiSupplement 

testMethod 

sBreak 

rBreak 

reportGroup 

o Antimicrobial_Tested from 
AST (0-M)  

o Organism_Tested from 
Organism (0-M) 

Organism A reference bacterial 
strain used for AST 

snomedCode 

genusName 

speciesName 

o Organism_Tested to 
Breakpoint (1-1) 

o Is_of_Type to Isolate (1-1) 

 
 

Table 2. Data dictionary for the CABGM data model.   
Strong entities are shown in bold; primary keys are underlined.  

Entity Attribute Data type Description Null-
able? 

Antibiogram interpretation CHAR Qualitative 
interpretation of 
astResult 

Yes 

Antibiogram astResult FLOAT MIC, zone diameter, 
or E-test result 

Yes 
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Antibiogram reportGroup CHAR Reporting group for 
antibiograms 

No 

AST antimicrobialName VARCHAR2 
(20) 

Name of antimicrobial 
corresponding to 
loincCode 

No 

AST loincCode VARCHAR2 
(7) 

LOINC code 
corresponding to 
testMethod 

No 

AST testMethod VARCHAR2 
(20) 

Method used for 
susceptibility testing 

No 

Breakpoint clsiSupplement VARCHAR2 
(10) 

M100 supplement 
used as source for 
breakpoints 

No 

Breakpoint reportGroup CHAR Reporting group for 
antibiograms 

No 

Breakpoint rBreak FLOAT Resistance breakpoint 
value for testMethod 

Yes 

Breakpoint sBreak FLOAT Susceptibility 
breakpoint value for 
testMethod 

Yes 

Culture accessionNo INTEGER Accession number for 
the culture – unique to 
the facility 

No 

Culture collectDate DATE Culture collection date No 
Culture collectSite INTEGER SNOMED Code for 

the collection site 
No 

Culture collectTime TIME Culture collection time Yes 
Culture specType INTEGER SNOMED Code for 

the type of collection 
No 

Facility address VARCHAR2 
(20) 

Street address for 
facility 

No 

Facility city VARCHAR2 
(20) 

Facility city No 

Facility facilityID VARCHAR2 
(10) 

Facility identifier – 
usually a 3-digit 
number with an 
optional letter and 
number 

No 



 38 

Facility facilityName VARCHAR2 
(20) 

Official VHA facility 
name 

No 

Facility state VARCHAR2 
(20) 

Facility state No 

Facility zipCode VARCHAR2 
(10) 

Facility Zip code No 

Inpt_Admit admitDate DATE Date of admission No 
Inpt_Admit deathDate DATE Date of death Yes 
Inpt_Admit dischargeDate DATE Date of discharge Yes 
Inpt_Serv inptServName VARCHAR2 

(20) 
Name of inpatient 
service admitting 
patient 

No 

Inpt_Unit unitName VARCHAR2 
(20) 

Physical location to 
which patient is 
admitted 

No 

Isolate isolateNo INTEGER If multiple isolates 
from a culture 

No 

Isolate betaLactamase BOOLEAN Presence or absence of 
a β-lactamase 

Yes 

Laboratory labID VARCHAR2 
(10) 

Identifies lab.  If a 
VHA lab, set to 
facilityID for the 
facility where the lab 
is located 

No 

Organism genusName VARCHAR2 
(20) 

Genus name for 
organism 

No 

Organism snomedCode INTEGER SNOMED code for 
organism 

No 

Organism speciesName VARCHAR2 
(20) 

Species name for 
organism 

Yes 

Outpt_Clin clinicName VARCHAR2 
(20) 

Name of outpatient 
clinic 

No 

Outpt_Clin stopCode INTEGER Three-digit 
identification code for 
type of outpatient 
clinic 

No 

Outpt_Serv OutptServName VARCHAR2 
(20) 

Name of outpatient 
service 

No 
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Outpt_Visit visitDate DATE Date of outpatient visit No 

Patient birthDate DATE Patient’s birth date No 

Patient ethnicity VARCHAR2 
(20) 

Patient ethnicity 
(white, Hispanic, or 
>1) 

Yes 

Patient firstName VARCHAR2 
(20) 

Patient’s first name No 

Patient lastName VARCHAR2 
(20) 

Patient’s last name No 

Patient middleName VARCHAR2 
(20) 

Patient’s middle name Yes 

Patient patientID VARCHAR2 
(9) 

Social Security 
Number 

No 

Patient priorityCategory INTEGER Enrollment category Yes 

Patient race VARCHAR2 
(20) 

Patient race Yes 

Patient serviceEra VARCHAR2 
(20) 

Era of military service Yes 

Patient sex CHAR Patient sex Yes 
 
 

Table 3. Attributes of the CABGM data model with constrained values 

Entity Attribute Allowed Values 
Antibiogram astResult S – Susceptible 

R – Resistant 
I – Intermediate 
N – Nonsusceptible 
U – Undefined 

Antibiogram reportGroup A – Primary test, always report 
B – Primary test, selectively report 
C – Supplemental test, selectively 
report 
U – Test and report only for urine 
cultures 

Breakpoint reportGroup A – Primary test, always report 
B – Primary test, selectively report 
C – Supplemental test, selectively 
report 
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U – Test and report only for urine 
cultures 

Isolate betaLactamase 0 – Negative test for β-lactamase 
1 – Positive test for β-lactamase 

Patient ethnicity W – White 
H – Hispanic 
2 – More than one ethnicity 

Patient priorityCategory Enrollment Category (1-8) 
Patient race W – White 

B – Black 
A – Asian 
P – Pacific Islander 
N – Native American 
2 – More than one race 

Patient sex M – Male 
F – Female 
I – Intersex 
T - Transgender 

Clinical Entities and Attributes 

This portion of the data model consists of concepts related to general health care 

activities that affect individual patients. Figure 3 shows clinical entities, their attributes, 

and their relationships.    

A Patient is uniquely identified by his or her social security number, and has 

attributes describing the patient’s first name, middle name, last name, birth date, sex, 

race, ethnicity, era of military service (e.g., Vietnam era), and enrollment priority cate-

gory (an integer between 1 and 8, inclusive, representing the level of benefits for which 

the patient is eligible.   

A Facility is identified by a unique character string, and has a name, street ad-

dress, city, state, and Zip Code.  Facilities may have Inpatient Units and/or Outpatient 
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Clinics. An Inpatient Unit is identified by the combination of the identifier for the Facil-

ity to which it belongs and the unit’s name.  An Outpatient Clinic is identified by a 

combination of the identifier for the Facility to which it belongs and a three-digit number 

called a stop code; for example, an Infectious Diseases Outpatient Clinic in VHA always 

has the stop code 320. An Outpatient Clinic also has a name.  

A Laboratory may be located at a VHA Facility or be a non-VHA laboratory 

(e.g., a laboratory at an academic medical center or a commercial laboratory).  If the for-

mer, its identifier is a string equivalent to the Facility identifier; if the latter, it’s identifier 

is the name of the non-VHA laboratory.  

Facilities may also have Inpatient Clinical Services and Outpatient Clinical Ser-

vices.  Both of these are identified by a combination of the facility identifier and the ser-

vice’s name, e.g., ‘General Surgery’.   Inpatient Clinical Services are associated with 

particular Inpatient Units at a Facility, while Outpatient Clinical Services are associated 

with particular Outpatient Clinics at a Facility. 

Patients may be admitted to an Inpatient Service on an Inpatient Unit at a particu-

lar Facility.  An Inpatient Admission is uniquely identified by the Facility ID, the Patient 

ID, and the admission date. The admission also has discharge date and date of death as 

attributes.  

Patients may also have an Outpatient Visit to an Outpatient Clinic.  A Visit is 

uniquely identified by the Patient ID, the stop code for the Clinic, the ID for the Facility 

to which the Clinic belongs, and the visit date. 
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Microbiologic Entities, Attributes, and Relationships 

This part of the data model consists of concepts related to microbiologic specimen 

collection and processing. Figure 4 shows microbiologic entities, their attributes, and 

their relationships.  

A Patient may provide Cultures. A Culture is uniquely identified by the combina-

tion of its accession number (which is unique within the facility) and the ID for the Facil-

ity at which it is collected.  A Culture also has the attributes of specimen type, collection 

site, collection date, and collection time.  Cultures are processed by a Laboratory, which 

has a unique string identifier.  

An Organism is uniquely identified by a SNOMED code.  It also has a genus 

name and a species name.  An Organism that grows from a Culture is referred to as an 

Isolate.  Cultures may grow out one or more Isolates; an Isolate is uniquely identified by 

the combination of its isolate number, the accession number of the Culture from which it 

grew, the SNOMED code of the type of organism, and the ID for the Facility at which it 

was collected.  

AST Entities, Attributes, and Relationships 

This part of the data model consists of concepts related to antimicrobial 

susceptibility testing; figure 5 shows AST entities, their attributes, and their relationships. 

An AST is uniquely identified by a LOINC code, and has attributes of antimicro-

bial name (e.g., ampicillin) and test name (e.g., disk diffusion). 
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An Organism can be tested via an AST to produce a Breakpoint, which is 

uniquely identified by the combination of the SNOMED code for the Organism being 

tested, the LOINC code for the susceptibility method used, and the CLSI Supplement 

document used as the reference.  It has attributes of a susceptibility breakpoint value, a 

resistance breakpoint value, and a report group. 

An Isolate can be tested via an AST to yield an Antibiogram, which is uniquely 

identified by the combination of the Isolate’s number, the accession number for the Cul-

ture from which it grew, the Facility ID for the Culture, and the LOINC code for the 

AST.  An Antibiogram has a test result, interpretation, and report group. 

Isolates can be tested for zero to many resistance factors; the results are attributes 

of the isolate.  For simplicity, only β-lactamase testing is included in this model, with the 

attribute having a value of TRUE or FALSE (i.e., the factor is present or absent). 

The full model is shown in Figure 6. 

Validation 

Although the data model complies with formal completeness and consistency 

rules, and employs appropriate standards, this by no means guarantees that it accurately 

models the data needed to accurately produce CABGMs and satisfy the use cases de-

scribed in above.  From a business need validation perspective, the first step would in-

volve review of the model by potential end-users to determine if the model completely 

captures the data elements (entities, attributes, and relationships) needed for the use cases 

described above.  Once the model is revised based on this input, the next step would be to 

construct a database model that could be tested and validated. 
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Figure 6. Full model. 
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Implementation of a Cumulative Antibiogram 

Business Rules 

For purposes of generating a database model, the data model in Figure 6 must be 

combined with business rules that specify how results such as AST interpretations are 

derived, constrain attribute values to the values in the data dictionary, prevent logical 

inconsistencies, and incorporate the logic used for antimicrobial susceptibility testing.  

Business rules for the CABGM include the following:  

1. The value of an Inpt_Admit dischargeDate must be equal to or greater than the value 

of the Inpt_Admit admitDate. 

2. If the value for an Inpt_Admit deathDate is not NULL, it must be equal to the value 

for the Inpt_Admit dischargeDate. 

3. Antibiogram interpretations have a restricted set of values, as follows: 

a. If an Antibiogram testResult is less than or equal to the sBreak value for the 

corresponding Breakpoint, the Antibiogram interpretation has a value of S.  

b. If the Antibiogram testResult is greater than the rBreak value for the 

corresponding Breakpoint, the Antibiogram interpretation has a value of R.   

c. If an Antibiogram testResult is less than or equal to the rBreak value for the 

corresponding Breakpoint, and greater than the sBreak, the Antibiogram 

interpretation has a value of I. 
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d. If the Antibiogram testResult is greater than the sBreak value for the 

corresponding Breakpoint, but the rBreak value is NULL the Antibiogram 

interpretation has a value of N. 

e. If the Antibiogram testResult is less than the rBreak for the corresponding 

Breakpoint, but the sBreak value is NULL, the Antibiogram Interpretation is 

U. 

f. If the rBreak value and the sBreak value are both NULL, the Antibiogram 

interpretation is U. 

g. Some Antibiogram interpretations are overridden by the interpretation values 

for other Antibiograms for the same isolate, e.g., if the interpretation for S. au-

reus tested against oxacillin is R, interpretations for cephalosporins should 

also be R except for ceftaroline. 

h. If Isolate.betaLactamase is TRUE, then the interpretation for any AST using 

penicillin or ampicillin (e.g., for ampicillin, loincCode is equal to ‘18864-9’, 

‘29-9’, ‘6979-9’, or ‘28-1’) should always be R. 

4. The interpretation for Antibiograms testing Klebsiella pneumoniae tested against 

ampicillin  (i.e snomedCode = 56415008 and loincCode equal to ‘18864-9’, ‘29-9’, 

‘6979-9’, or ‘28-1’) should always be R. 

5. The interpretation for Antibiograms testing S. aureus against vancomycin (i.e., 

snomedCode equal to 3092008 and loincCode equal to ‘19000-9’, ‘525-6’, ‘7059-9’, 

or ‘524-9’) should always be S. 
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Display Rules for Antibiograms for a Single Isolate  

1. For clinical use in choosing microbiologically defined antimicrobial therapy, selective 

reporting is used as follows: 

a. Only interpretations with a non-NULL value are displayed. 

b. Interpretations for Antibiograms with a reportGroup value of ‘A’ are always 

displayed. 

c. Interpretations for Antibiograms with a reportGroup value of ‘B’ are dis-

played only if all of the interpretations for Group A Antibiograms are equal to 

R. 

d. Interpretations for Antibiograms with a reportGroup value of ‘C’ are dis-

played only if all of the interpretations for Group A Antibiograms are equal to 

R. 

e. Group U Interpretations are only displayed for Antibiograms for urine cultures 

(i.e., cultures with a specType equal to 411852016 or a related SNOMED-CT 

Code). 

2. Full displays should be available to microbiology laboratory directors, infectious dis-

ease physicians, infectious disease pharmacists, and infection control staff. 

Rules for constructing Cumulative Antibiograms 

1. CABGMs consist of susceptibility rates for specific antimicrobials for specific 

organisms of interest (i.e., a genus/species mapping to a unique SNOMED code). 
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2. The susceptibility rate is calculated by dividing the number of Isolates with an 

interpretation of ‘S’ (i.e., susceptible) to a particular antimicrobial by the number 

of Isolates tested against that antimicrobial, regardless of test method used. 

3. For Use Case 1 (i.e., for data presentation for clinicians choosing empiric 

antimicrobial therapy for clinicians): 

a. Only susceptibility rates are displayed. 

b. Only the first Isolate with a particular snomedCode for each patient in a 

reporting period is included in the analysis for a reporting period. 

c. Antibiogram interpretations for Group B and Group C Antimicrobials are 

only included in the numerator and denominator if the values for the 

Antibiogram Interpretations for Group A Antimicrobials for an Isolate all 

have values of R; in other words, only antibiograms that would be dis-

played as individual antibiogram results to clinicians are used in the analy-

sis. 

d. Rates for Group U interpretations are reported separately. 

4. For Use Cases 2-4: 

a. Rates for resistance, intermediate susceptibility, and nonsusceptibility may be 

displayed. 

b. Only Antibiogram interpretation values for the first Isolate of a given 

snomedCode for each patient in a reporting period is included in the 

numerator and denominator. 

With these rules in place, a relational database model can be constructed in a 

straightforward fashion from the data model shown in Figure 6.   Each entity becomes a 
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table, with attributes representing individual columns, and foreign keys used to create 

relationships between tables.  Queries can then be constructed to determine susceptibility 

rates for particular species of interest. Selective reporting can be implemented using 

views, with cumulative antibiograms restricted by producing logical tables that do not 

contain data on Group B or C interpretations except for those isolates resistant to all 

Group A antimicrobials. 

Populating a relational antibiogram database  
 

Construction of a cumulative antibiogram is only possible if the underlying rela-

tional database is populated. However, the data stored in electronic medical records tends 

to be structured using a hierarchical, rather than a relational, database model. Such struc-

tures provide a more natural model for the realities of clinical care because they allow for 

efficient storage and processing of repeated information. For example, a individual pa-

tient may have multiple outpatient visits, or many laboratory test results, or many hospital 

admissions.  Since patient care generally involves focusing on one individual at a time, a 

hierarchical data structure provides an excellent basis for modeling patient-centered 

medical records and prescribing. 

However, this model is not always particularly well-suited or efficient for 

performing queries because of the redundancy inherent in this structure and the time 

needed to traverse the hierarchy.  Thus, from a practical viewpoint, for the antibiogram 

model described above to be useful, it is necessary to migrate hierarchically structured 

clinical data into a relational database. 
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VHA’s electronic medical record system, the Veterans Information System 

Technology Architecture (VistA), is a good platform for addressing this issue.  The VistA 

clinical database is composed of several hundred hierarchically structure files managed 

by Fileman, a database management system (DBMS) written in the Massachusetts Gen-

eral Hospital Utility Multi-Programming System (MUMPS) (Andrews and Beauchamp 

1989).  Fileman files are analogous to relational database tables, and are divided into 

fields that are analogous to columns. 

However, unlike a relational database, the fields of Fileman files are not neces-

sarily individual values. Instead, they are frequently pointers to a subfile (i.e., another ta-

ble). In essence, Fileman files are denormalized tables in which some fields point to a 

subtable with multiple values. 

So, for example, the Fileman County File (File 5.1) has the structure below.  Field 

1 contains a pointer to the State File (File #5) rather than an actual value,  in essence 

yielding a file containing a subfile, which may contain or point to subfiles of its own.  

Field # Name Loc Type Details 
.01 Name 0;1 Free Text  
1 State 0;2 Point to State File (#5) State (#5) 
2 SEER County Code 0;3 Free Text  
3 Abbreviation 0;4 Free Text  
4 VA County Code 0;5 Free Text  
5 Catchment Code 0;6 Free Text  
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Despite the differences between the VistA data model and the structure of rela-

tional databases, migrating data from the former to the latter is not particularly difficult.  

The VistA data model is well-documented, and mapping the VistA data model to the cur-

rent data model is straightforward.  The Vista Cross Reference Documentation Web site  

(Anon.) provides an excellent resource for such mapping. 

Table 4 shows a cross-walk between VistA data files and the current model.  With 

this cross-walk in place, a database management system such as Intersystems Caché can 

be used to construct a relational database from the hierarchically structured data in VistA. 

Table 4. Cross-walk between VistA and the CABGM data model  

Entity Attribute Data type VistA File/ 
Field 

Number 

Data type 

Antibiogram interpretation CHAR 63.05/5-200 Free Text 

Antibiogram astResult FLOAT 63.05/5-200 Free Text 

Antibiogram reportGroup CHAR 62.06/7 CHAR 

AST antimicrobialName VARCHAR2 (20) 63.05/5-200 Free Text 

AST loincCode VARCHAR2 (7) 95.3/.01 INTEGER 

AST testMethod VARCHAR2 (20) 63.061/.01 Free Text 

Breakpoint clsiSupplement VARCHAR2 (10) N/A N/A 

Breakpoint reportGroup CHAR 62.06/7 CHAR 

Breakpoint rBreak FLOAT N/A N/A 

Breakpoint sBreak FLOAT N/A N/A 

Culture accessionNo INTEGER 63.05/.06 Free Text 
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Culture collectDate DATE 63.05/.01 DATE 

Culture collectSite INTEGER 63/2 Free Text 

Culture collectTime TIME 63.05/.01 DATE 

Culture specType INTEGER 61/2 Free Text 

Facility address VARCHAR2 (20) 4/1.01 Free Text 

Facility city VARCHAR2 (20) 4/1.03 Free Text 

Facility facilityID VARCHAR2 (10) 4/99 Free Text 

Facility facilityName VARCHAR2 (20) 4/100 Free Text 

Facility state VARCHAR2 (2) 4/.02 Free Text 

Facility zipCode VARCHAR2 (10) 4/1.04 Free Txt 

Inpt_Admit admitDate DATE 45/2 DATE 

Inpt_Admit deathDate DATE 63/12 DATE 

Inpt_Admit dischargeDate DATE 45/70 DATE 

Inpt_Serv inptServName VARCHAR2 (20) 42/.03 Free Text 

Inpt_Unit unitName VARCHAR2 (20) 42/.02 Free Text 

Isolate genusName VARCHAR2 (20) 63.05/12 Free Text 

Isolate isolateNo INTEGER 63.3/.001 INTEGER 

Isolate snomedCODE INTEGER 61.2/2 Free Text 

Isolate speciesName VARCHAR2( 20) 63.05/12 Free Text 

Isolate betaLactamase BOOLEAN 63.061/.01 Free Text 

Laboratory labID INTEGER 63.5/.112 Pointer to 
Institution 
File (#4) 
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Organism genusName VARCHAR2 (20) 63.05/12 Free Text 

Organism snomedCode INTEGER 61.2/2 Free Text 

Organism speciesName VARCHAR2 (20) 63.05/12 Free Text 

Outpt_Clin clinicName VARCHAR2 (20) 40.7/.01 Free Text 

Outpt_Clin stopCode INTEGER 40.7/1 INTEGER 

Outpt_Serv outptServName VARCHAR2 (20) 42.4/1 Free Text 

Outpt_Visit visitDate DATE 9000010/.01 DATE 

Patient birthDate DATE 2/.03 DATE 

Patient ethnicity VARCHAR2 (20) 2/.06 Free Text 

Patient firstName VARCHAR2 (20) 2/.01 Free Text 

Patient lastName VARCHAR2 (20) 2/.01 Free Text 

Patient middleName VARCHAR2 (20) 2/.01 Free Text 

Patient patientID VARCHAR2 (9) 2/.09 Free Text 

Patient priorityCategory INTEGER 8.1/3 Integer 

Patient race VARCHAR2 (20) 2/.06 Free Text 

Patient serviceEra VARCHAR2 (20) 21/20 Free Text 

Patient sex CHAR 2/.02 CHAR 

 

 Although there is some variability in the exact storage locations for microbiologic 

data between different VHA facilities, the number of alternatives is relatively small, 

making it extremely feasible to pull data from a clinical database for a facility and mi-

grate it to a relational database.  Such migration could be done a regular basis; for exam-

ple, the VHA’s national clinical case registries for patients with HIV or chronic hepatitis 
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C sweep the data from individual facilities on a nightly basis, allowing the population of 

a VHA-wide relational database dealing with these diseases, and providing the basis for 

sophisticated queries and analyses (Backus et al. 2009; Backus et al. 2010). 

However, the cross-walk reveals some disconcerting discrepancies in data types 

between the VistA data model and the CLSI-based data model described here, indicated 

by shading.  These primarily involve string variables in VistA being mapped to integer or 

floating-point values in the data model.  To make matters worse, much of the VistA data-

base – particularly for AST results – has been populated by manual entry, as described in 

the introduction, with constraints on values being the exception rather than rule.  Thus, 

migration of VistA data to a relational database for purposes of generating CABGMs in-

volves not just type conversion, but also semantic and syntactic mapping of free text to 

standard vocabularies.  These problems are discussed below. 
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Discussion           

The data model described here provides a basis for standardizing construction and 

analysis of CABGMs, not only facilitating CABGM generation at the individual facility 

level, but also allowing aggregation of data and comparison of AR prevalence rates 

across multiple institutions.  The migration of data from a hierarchical clinical data 

repository to a relational database is relatively straightforward. 

However, as described earlier, microbiology laboratory data is frequently manu-

ally entered into VistA, creating a source for variability in such data.  This problem is 

amplified substantially by the use of strings as a standard data type in MUMPS.  While 

this provides enormous flexibility, it also introduces complex type conversion problems, 

as illustrated by the type discrepancies shown in Table 4. 

To make matters worse, VHA medical facilities frequently use different 

terminologies for microbiology data and different configurations of data files.  For 

example, some facilities will designate ampicillin, a widely used antimicrobial, by the 

string “AMPICILLIN,” while others will use the string “AMP,” and others will use a 

numeric value of 2.006.  Some facilities will use File 62.06 (Antimicrobial Susceptibility) 

for storing AST results, while others will use File 63.05 (Laboratory Data).  This is 

illustrated  in Table 5, which is a flat file showing the genus and species name and which 

antimicrobials were used for testing for a single isolate from a single VHA facility. It 

shows substantial variation in data formats for antimicrobials, even though the data come 

from a single center.  The antimicrobial column contains a mixture of generic and trade 

names, as well as codes such as 2.006, which represents AST with ampicillin. 
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Table 5.  Representative microbiologic VistA data  
Organism Antimicrobial 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS No DD(63.3,2.0003 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS No DD(63.3,2.0004 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS No DD(63.3,2.0006 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS No DD(63.3,2.003 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS CIPROFLOXACIN 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS SYNERCID 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS LEVOFLOXACIN 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS LINEZOLID 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS MOXIFLOXACIN 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS TIGECYCLINE 

This lack of standardization is not unique to the VHA, and creates immediate 

barriers to interoperability for reporting or analyzing AST data.  While a particular medi-

cal center may be able to create CABGMs for its own use, variations in data types, for-

mats, and storage locations represent obstacles to aggregating or comparing AST data 

from multiple centers. 

Manual mapping is one possible approach to this problem.  This method catalogs 

all existing values for a particular concept and maps them all to a standard vocabulary 

term.  Thus, “AMPICILLIN”, “AMP”, and 2.006 would all be mapped to the LOINC 

code 18664-9.  This method has been highly successful in creating the HIV and hepatitis 

C clinical case registries within VHA described above.  It is feasible when there are a 

relatively small number of variations on the terminology for concept, and would be easily 

applicable to mapping antimicrobial names. 

More complex issues may arise in connection with differences in bacterial 

nomenclature, where there may be a large number of variant terms for many different 
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classes of organisms.  This situation arises from periodic revisions in bacterial taxonomy. 

For example, the Gram-negative bacillus Stenotrophomonas maltophilia was originally 

named Pseudomonas maltophilia when originally described in 1958, and multiple organ-

isms thought to be separate species with distinct names (e.g., Bacterium booker, P. 

melanogena, and P. alcaligenes) were classified as being identical to this species.  Analy-

sis of ribosomal RNA genes led to reclassification and renaming of this organism as Xan-

thomonas maltophilia in 1983, with subsequent reclassification and renaming as S. malto-

philia in 1993 (Denton and Kerr 1998). 

This is just one example of how a single concept in bacterial taxonomy can be 

represented by multiple synonyms.  Additional variants can arise because of the use of 

historical synonyms, variant (or incorrect) spellings, and use of abbreviations. 

 Although these differences can be also be resolved via manual mapping, natural 

language processing (NLP) represents an alternative approach, which may also be useful 

for mapping free text entries for bacterial tests to a common term.  NLP has been used 

within VHA to retrieve data on organisms and susceptibilities, such as MRSA (Jones et 

al. 2012) with high levels of precision and recall.  The availability of open-source clinical 

systems such as cTAKES makes NLP a promising complement to manual mapping 

(Garla et al. 2011) for standardization of microbiologic data.  
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Summary and Conclusions        

 The data model described here provides a basis for both a relational database 

model and construction of applications to construct CABGMs for a variety of purposes, 

including internal validation of microbiology data.  Constraining the model to the pub-

lished CLSI standard creates a mechanism for assuring standardization and accuracy of 

CABGMs.  In addition, as discussed above, migration of the data from a hierarchical to 

relational database is relatively straightforward. 

 Data standardization of microbiologic information is a higher and more difficult 

hurdle to clear.  However, the techniques such as manual mapping and natural language 

processing have been used successfully to create registries within VHA for concepts and 

terminologies that are at least as complicated as those related to antimicrobial susceptibil-

ity testing, and should, in theory, be applicable to this area as well. 

 Although the VHA VistA system has been used as a representative platform for 

antibiogram modeling and generation, the issues in VHA are not unique, and the results 

described here are likely applicable to resistance surveillance systems elsewhere in the 

U.S.  This model may thus be useful for initiatives such as the National Healthcare Safety 

Network operated by the U.S. Centers for Disease Control and Prevention, an Internet-

based surveillance system, as well as national monitoring of antimicrobial resistance by 

the U.S. FDA and other public health agencies. 
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