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Abstract 

The circulating-tumor DNA (ctDNA) field has rapidly advanced over the past six 

years; transitioning from biological curiosity to clinical reality. The field has 

predominantly focused on the clinical and pharmaceutical implications of 

identifying targetable oncogenic mutations in the plasma. In this work, we sought 

to focus more broadly on determining how much information about a patient’s 

disease could be gained from analyzing ctDNA. This has taken the form of two 

major studies looking at different stages of disease: metastatic and localized. 

In our metastatic study we demonstrated that whole-exome sequencing of ctDNA 

was possible due to the high ctDNA abundance. This could provide a liquid 

biopsy of a patient’s disease; identifying mutations of clinical and biological 

interest, and identifying changes in the tumor genome from the primary disease. 

We also identified mutations not present in any matched tumor sample, 

potentially identifying mutations in metastatic sites we did not have tissue from. 

This indicates that it is possible that ctDNA can provide more information in 

metastatic disease than a biopsy could. In addition to mutational information, 

copy number variation could be identified in a patient with sufficiently high ctDNA 

level, providing a more complete picture of the tumor genome. This study was 

among the first to demonstrate the feasibility of this approach. 

To study the lower ctDNA levels present in localized diseased first required the 

development of a new high accuracy, high sensitivity sequencing technique. We 

came up with dual-indexed degenerate adaptors (DIDA). This technique used a 

hybrid capture approach to simultaneously assay dozens of patient-specific 
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mutations, while utilizing adaptors with degenerate sequences allowing for error 

correction to a frequency below 1 in 10k reads. In developing this technique we 

discovered a systemic error which occurred with this, and other related error 

correction techniques, we dubbed “tag swaps.” This error was responsible for 

systematic overestimation of sequencing depth and sensitivity. Several filtering 

methods were attempted, and the most aggressive one was chosen. The final 

version of the technique and analysis proved accurate and robust, allowing us to 

analyze localized disease. 

We chose to track ctDNA in neoadjuvantly treated breast cancer, measuring 

ctDNA before, during, and after treatment. We generally saw a dramatic 

reduction in ctDNA during the course of treatment, however it appeared more 

pronounced in patients who responded to treatment than those who did not. In 

fact, in both patients who had tumor growth during treatment, we saw a 

corresponding increase in ctDNA, demonstrating a potential for early detection of 

progression. We were also able to detect recurrence 7 months before clinical 

presentation in one patient, and potentially identify the effectiveness of post-

surgery radiation in another. These findings indicate that there is the potential for 

considerable clinical upside from pursuing ctDNA tracking in neoadjuvant 

treatment. 

Taken together these two studies have advanced our understanding of ctDNA 

and identified several potential clinical and scientific avenues for further research. 
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Introduction 
Precision cancer treatment requires knowledge of the specific molecular 

drivers in a tumor to select interventions. The traditional method, a small biopsy 

of the primary tumor, only provides a snapshot; it has limited power to identify 

genomic heterogeneity in the tumor or capture alterations that can occur as 

selective pressures on the tumor change over time. One approach to identifying 

the spatial and temporal complexity of tumors is the analysis of tumor DNA 

present in the plasma, or circulating-tumor DNA (ctDNA). ctDNA is released 

primarily via the apoptosis of tumor cells, which may occur throughout a tumor, 

potentially giving a more representative picture of the tumor genome than a 

single biopsy. Additionally, due to the minimally invasive nature of a blood draw, 

ctDNA can be serially collected to measure changes in quantity and composition 

over time. Currently, the ctDNA field is rapidly expanding as measured both by 

an increase in publications and an increase in private sector activity, over $300 

million was raised in January 2016 alone.1 This flurry of activity can be broadly 

divided into several somewhat overlapping areas of focus, requiring a variety of 

analysis methods (Fig 1):  

1) ctDNA as a “liquid biopsy” to identify mutations of interest (including 

resistance mutations) and/or characterize tumor heterogeneity 

2) serial ctDNA quantification to assess tumor burden and response to 

treatment 

3) early detection of disease recurrence following curative treatment 

4) early detection of primary disease 



2 
 

To understand the utility and challenges of these applications, we must 

first cover the basic biology of cell-free DNA (cfDNA) and ctDNA.  

 

Figure 1. Overview of sensitivity, methods, and applications for ctDNA 
analysis. 

 

Biology of cfDNA and ctDNA 

The presence of fragmented DNA in the circulating blood, dubbed cell-free 

DNA (cfDNA), was first described in 1948,2 however nearly three decades 

passed before this DNA was analyzed in patients with cancer.3,4 These initial 

observations led to the discovery that circulating cfDNA was elevated in patients 

with cancer. The first direct confirmation of the existence of ctDNA occurred in 

1994 when mutant NRAS was detected in the plasma of individuals with AML.5 
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This was shortly followed by observations of KRAS and TP53 mutations in 

individuals with solid tumors. 

 

Figure 2. Stereotypical cfDNA size distribution. Agilent 2100 Bioanalyzer 
high-sensitivity trace of cfDNA from patient with metastatic breast cancer (patient 
#2 in chapter 1). Asterisks mark lower and upper size markers.  

 

The vast majority cfDNA is highly fragmented in nature, with an average 

fragment length of approximately 170 bp, roughly corresponding to the length of 

DNA wrapped around a single nucleosome, with progressively lower quantities of 

cfDNA at lengths representing two and three nucleosome sizes (Fig 2).6,7 This 

nucleosome association in the blood likely protects the cfDNA from activity of 

blood-borne nucleases.7-9 In fact, we contributed to the first study which 

demonstrated that the pattern of read depth can be used to infer nucleosome 

occupation.10 Genes with low expression corresponded to tightly packed 

nucleosomes and high read depth, while regions with highly expressed, 

housekeeping genes showed a ~170 bp periodicity of high read depth centered 

on the transcriptional start site. Determining this pattern of nucleosome 
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occupation can be used to estimate tissue of origin,7 and, to a limited extent, 

gene expression.9,10 There are several potential sources of cfDNA; the regular 

size indicates that the majority of cfDNA is the result of cell death, primarily 

apoptosis, though there is evidence for cfDNA release through necrosis,11 

extracellular vesicles,12 and even active DNA release as well.13 The tissue of 

origin study identified that immune cells are a major contributor to cfDNA.7 

Intriguingly, the mechanism of release may be dependent on tissue type or 

biological process as there is evidence that ctDNA (derived from tumor cells) is 

about 7 bp shorter than cfDNA (derived from normal cells).14,15  
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Figure 3. cfDNA concentration overview. A) Variation in cfDNA concentration 
of 7 normal, healthy plasma donors. Each data point represents a separate 
plasma donation. Mean +/- Standard deviation. B) Average cfDNA concentration 
for 61 samples across 10 tumor types, error bars +/- SEM. C) cfDNA is 
significantly elevated in metastatic disease (N=36) compared to localized primary 
(N=40) disease, error bars +/- SEM. 

 

In healthy adults the level of cfDNA is typically 5-10 ng/ml of plasma, while 

in individuals with cancer the cfDNA concentration can be anywhere from the 
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normal range to over 50 times the normal levels (Fig 3).16,17 Variation over time in 

the same individual can be several-fold, with many potential factors influencing 

the level including: exercise, time of day, and a variety of non-cancer disease 

states (Fig 3A).11,18-21 Whether this variation is driven primarily by changes in 

cfDNA release or cfDNA clearance is poorly understood, and is deserving of 

further study. Differences in the cfDNA yield can dramatically alter the potential 

sensitivity of a given assay, and must be taken into consideration during study 

design. As a general rule, cfDNA from patients with metastatic disease is 

dramatically higher than in primary disease (Figs 3B and 3C). Tracking the loss 

of fetal Y-chromosome DNA following birth demonstrated that the half-life of 

cfDNA is around an hour,22 with cfDNA being processed in the spleen, liver and a 

smaller portion excreted in the urine.11,23,24  

The most challenging aspect of cfDNA analysis is often how little of the 

cfDNA is of tumor origin. Levels of ctDNA as measured by mutant allele 

percentage of mutations known to be present in a patient’s tumor vary widely, 

anywhere from above 25% to well under 1 part in 10k.16,17 The most 

comprehensive study to date looking at multiple tumor types and stages found 6-

logs of variation in the level of ctDNA, with wide variation between and within 

tumor types.17 They were able to detect ctDNA in 100 percent of some primary 

cancers (bladder, colorectal, and ovarian), and as little as 10 percent of glioma 

cases, with most cancer types detected in over half of cases. Across all tumor 

types both the level of ctDNA and likelihood of detection were increased in higher 

stage cancer, with the most dramatic improvement occurring when comparing 
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metastatic to localized disease. This trend of increasing ctDNA level with 

increasing disease stage has been widely shown in the literature. The broad 

variation in ctDNA level requires methods more sophisticated than conventional 

sequencing approaches which have error rates of around 1 in 1,000.25 This has 

led to the development of a variety of high-accuracy, high-sensitivity techniques 

(Table 1). It is hypothesized that the fragmented nature of cfDNA, combined with 

the large average distance between mutations, means that detection of each 

mutation can be considered an independent test. So the sensitivity of an assay 

will be driven by the number of input cfDNA molecules, the efficiency of 

sequencing those input molecules, the number of mutations assayed, and the 

accuracy of detection. Development of new types of assays has significantly 

broadened the potential clinical utility of ctDNA analysis.  

In addition to cfDNA, extracellular vesicles, such as exosomes, are 

another source of circulating nucleic acids. Exosomes are small (~100nm) 

vesicles derived from endosomes with potential roles in cell-cell signaling. While 

not a focus of this thesis, exosomes have shown promise as a source of 

circulating nucleic acid and protein biomarkers in cancer.26,27 
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Technique Description Self-Reported 
Accuracy 

Mutations 
Per Assay 

Refs 

Digital PCR 
(dPCR) 

Input DNA split between >1000 of 
wells/droplets ensuring 0 or 1 copies of 
template molecule present, PCR 
conducted in each well/droplet, presence 
of amplified template measured by 
flourescence (possibly allele-specific 
hybirdization), positive/negative 
wells/droplets counted, mutant allele 
frequency determined 

~1 in 104 varies 
depending on 
platform and 
number of 
wells/droplets 

Allele-specific , ~5 
alleles in single 
assay  

28 

Beads, 
emulsion, 
amplification, 
and 
magnetics 
(BEAMing) 

Emulsion PCR resulting in amplicons 
coating magnetic beads, magnetic 
separation of beads, allele-specific 
fluorescent hybridization to beads, read 
out via flow cytometry 

1.6 in 104 to 
4.3 in 105 

Allele-specific, ~5 
alleles in single 
assay 

29,30 

Safe 
Sequencing 
System 
(SafeSeqs) 

2-Step PCR, initial multiplexed PCR 
using template-specific primers 
containing degenerate barcode and 
universal adapter, second PCR using 
universal adapter adding sample 
barcodes and Illumina Sequencing 
Adapters, error correction by creating 
consensus sequence from degenerate 
barcodes 

9 in 106 Up to 12 31 

Targeted 
plasma re-
sequencing 
(Tam-Seq) 

2-Step PCR, initial multiplexed PCR 
using temple-specific primers containing 
universal adapters, second PCR using 
universal adapter adding sample 
barcodes and Illumina Sequencing 
Adapters 

1 in 1,000 ~48 32 

Integrated 
Digital Error 
Suppression 
(iDES) 

Degenerate barcode ligated to template 
DNA, hybrid capture, error correction 
using degenerate barcode to create 
consensus sequence, subsequent 
computational error correction removing 
error-prone sequences 

2 in 105 Limited by hybrid 
capture panel, 
10's-1000's 

33 

Duplex 
Sequencing 

Double-Stranded degenerate barcode 
sequence ligated to template DNA, hybrid 
capture, error correction to first create 
single-stranded consensus using 
degenerate barcode, then double-
stranded consensus 

1 in 108 Limited by hybrid 
capture panel, 
10's-1000's 

34 

Table 1. Summary of high-accuracy ctDNA detection techniques 

 

Liquid Biopsy 

Much of the development in the ctDNA field has been geared towards the 

‘”liquid biopsy;” that is, the ability to use ctDNA as an alternative to a tissue 

biopsy. While biopsies are routine clinical practice, they are not without their 

limitations, and in some situations tissue biopsies are impossible. There are clear 

risks associated with many tissue biopsies, as an example, a study from MD 
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Anderson reported adverse events in 1.6% of abdominal biopsies.35 In addition, 

the genetic heterogeneity in cancers, especially in metastatic disease, means a 

single biopsy may not accurately reflect the genomic diversity of a tumor, 

potentially missing important mutational drivers.36,37 These limitations create two 

overlapping clinical applications for liquid biopsies: identification of specific 

mutations that would inform treatment, and characterizing genetic intra-tumoral 

heterogeneity, which could be especially useful in metastatic disease. 

Numerous studies have shown varying success in identifying mutations 

present in a patient’s tumor with their ctDNA. In breast cancer, activating PIK3CA 

mutations were identified in ctDNA with 95% accuracy,38 studies looking at 

patients with metastatic disease reported 100% accuracy.39,40 Similar levels of 

success were seen in detecting KRAS and EGFR mutations in lung cancer and a 

variety of mutations in ovarian cancer (97% accuracy).41 A study screening 

ctDNA in 157 patients with advanced cancers for mutations in BRAF, EGFR, 

KRAS, and PIK3CA found 83%-99% concordance with archived tumor tissue. In 

addition they found an association between outcome ctDNA level, patients with 

ctDNA frequencies above 1% had shorter median survival than those below 

1%.42 Curiously, localized pancreatic cancer does not appear to readily shed 

ctDNA. Despite the fact that approximately 90% of pancreatic ductal 

adenocarcinomas (PDAC) carry activating KRAS muations,43 several studies 

attempting to identify KRAS mutations in ctDNA were unable to reliably do so in 

over half of patients with primary disease,44,45 suggesting PDAC may be 

particularly ill suited for ctDNA analysis. This is especially unfortunate because 
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the extremely high prevalence of KRAS mutations make ctDNA detection a 

potential early detection tool. 

ctDNA in melanoma is particularly well studied. A meta-analysis assessed 

levels of mutant BRAF in the plasma of melanoma patients enrolled in clinical 

trials for BRAF-targeted therapies in four separate studies.46-50 Mutant BRAF 

ctDNA was detected in 76% of patients shown to have mutant BRAF in their 

tumor tissue. It was further demonstrated that there is an increase in BRAF 

ctDNA allele percentage in patients with 3 or more metastatic sites, agreeing with 

other studies demonstrating a positive relationship between tumor burden and 

ctDNA percentage. Finally, patients without detectable mutant BRAF ctDNA were 

shown to have better progression-free and overall survival compared to those 

patients with detectable mutant BRAF ctDNA. This suggests the possibility of 

developing a two-step screening/treatment process in which all melanoma 

patients undergo ctDNA BRAF testing. Those with detectable mutant BRAF 

would be treated with a BRAF-targeted therapy, and those without detectable 

mutant BRAF would receive a subsequent biopsy to confirm the BRAF-negative 

result.  

Liquid biopsies also can provide sensitive detection of mutations that 

confer resistance to targeted therapies such as enzalutamide (targeting the 

androgen receptor in castration-resistance prostate cancer) and aromatase 

inhibitors (depriving the estrogen receptor of its ligand in estrogen-receptor 

positive breast cancer).51-55 Azad and colleagues analyzed plasma from 62 
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metastatic castration-resistant prostate cancer patients, looking specifically for 

alterations to the androgen receptor (AR) which could explain resistance to AR-

targeted therapies.54 They identified AR point mutations and/or AR amplification 

in 65% of their cohort, demonstrating plasma-based resistance detection. Using 

a cohort of 171 advanced breast cancer patients, Schiavon and colleagues 

analyzed plasma samples taken at time of progression looking specifically at 

resistance mutations in the estrogen receptor (ESR1).51 Patients with detectable 

ESR1 mutations in plasma had a significantly reduced progression-free survival 

compared to those without ESR1 mutations. They also showed ESR1 mutations 

appear more commonly during treatment of metastatic disease with androgen 

inhibitors rather than in the adjuvant setting, possibly due to increased genetic 

diversity in metastatic disease. This study highlights that detecting these 

mutations in the ctDNA can both inform patient treatment and provide us with a 

better understanding of how these mutations are selected for in the first place. 

The higher ctDNA levels present in metastatic disease makes analyzing a 

larger portion of the genome feasible. Whole-genome sequencing was 

successfully used to identify tumor-associated copy number changes and 

structural rearrangements.56,57 The same group designed an assay to sensitively 

detect structural rearrangements in ctDNA as an alternative to detecting 

substitutions.58 Several groups also explored using whole-exome sequencing to 

completely characterize the mutations present in advanced metastatic disease. 

In a proof of principle study, Murtaza and colleagues sequenced cfDNA from six 

patients with advanced cancers (breast, ovarian, and NSCLC) finding ctDNA 
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made up between 33-58% of the total cfDNA.59 This high ctDNA burden allowed 

them to identify 93 of 119 mutations (78%) present in a matched metastatic 

biopsy, importantly this included an activating PIK3CA mutation. Interestingly, 26 

additional mutations were identified uniquely in the ctDNA; they hypothesized 

that these were mutations present in unsampled metastatic lesions. Their final 

observation was that there was a positive correlation between the allele 

frequency in the metastatic biopsy and ctDNA, especially for those mutations 

also identified from a previous biopsy of the primary tumor which were also likely 

to be in unsampled metastatic sites. They further investigated this in a follow-up 

study by sampling multiple metastatic lesions from a patient with breast cancer, 

including five samples collected at autopsy.60 They found four groups of 

mutations: 23 stem mutations (present in all metastases and the primary), 26 

metastatic mutations (present in the metastases and not the primary), 108 private 

mutations (present in at least one, but not all metastases), and 11 plasma 

mutations (found in ctDNA but no tumor sample). Their ability to detect mutations 

in the plasma was better in the stem mutations (91%) than the private mutations 

(30%). In addition, they found higher ctDNA allele frequencies in the stem 

mutations than the private ones (20% vs 5%). These two studies demonstrated 

that in advanced disease whole-exome sequencing of ctDNA is a viable 

alternative to biopsy, particularly in cases where sampling multiple metastatic 

lesions is not feasible. 

Tumor Burden and Response to Treatment 
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Determining response to treatment traditionally relies on imaging to see if 

the size of the tumor changes. Quantifying ctDNA in serially collected plasma 

samples has several potential advantages over this. First, ctDNA assays can be 

cheaper than imaging and therefore can be done more frequently, providing 

deeper insight into the treatment response. Second, multiple mutations can be 

tracked simultaneously, allowing for insights into how different clones are 

responding to the treatment and how tumors are adapting to treatment in real-

time. This could inform future treatments by identifying de novo resistance 

mechanisms. For example, sequencing ctDNA of patients who developed 

resistance to aromatase inhibition may have allowed the link between resistance 

and ESR1 mutation to be seen earlier. 

The correlation between ctDNA level and tumor burden was demonstrated 

by Dawson and colleagues who quantified ctDNA in 30 patients with metastatic 

breast cancer.40 Similar correlations have been seen in other cancer types 

including: metastatic melanoma undergoing immune checkpoint blockade,61 

metastatic colorectal cancer,32 and primary gynecological malignancies.62 A 

studying looking at 39 patients representing 10 tumor types undergoing targeted 

therapy found a highly significant relationship between a decrease in ctDNA and 

an increase in time to progression.63 The general consensus of these studies is 

that ctDNA analysis is insufficiently robust to completely replace imaging, but can 

be used in combination to gain additional insight into tumor response. 
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Several studies have tracked multiple mutations to assess whether 

specific mutations, likely derived from distinct tumor clones, are responding 

differently to a given therapy. Through serial whole-exome sequencing of ctDNA 

taken before and after various treatments, Murtaza and colleagues identified 

increases in several mutations including: PIK3CA in Paclitaxel treated breast 

cancer, and EGFR in Gefitinib treated lung cancer.59 This increase potentially 

represents expansion of resistant clones and could be used as a method to 

identify new mutational resistance mechanisms. They took this a step further in 

an additional study by sequencing tissue taken from primary, metastatic, and 

autopsy tissue from a single breast cancer patient. They identified shared and 

lesion-specific variants and compared those variants to serially collected plasma 

samples.60 They identified an ERBB4 mutation as the most prevalent lesion-

specific mutation in the plasma when the patient developed resistance to 

Lapatinib. The lesion carrying this mutation was the main site of disease 

progression. These studies measured the tumor evolving in response to new 

selective pressures, opening the door for numerous follow-on studies 

determining whether these responses are generalizable. 

Early Detection of Recurrence 

There is usually no measurable tumor burden in a patient receiving 

potentially curative treatment. However, many of these individuals will recur, 

often at distant metastatic sites seeded from the primary tumor. These 

metastases will carry many of the mutations that were present in the primary 
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tumor, although they are usually not genetically identical to the primary tumor. 

This presents the possibility of detecting these mutations in ctDNA as an early 

indicator of recurrence. This was first investigated in 2008 by using a BEAMing 

assay to detect individual mutations following curative surgery in colorectal 

cancer.30 All 16 patients with detectable post-surgery ctDNA eventually recurred, 

while the 4 patients with undetectable ctDNA remained disease-free. Two more 

recent studies demonstrated that detectable post-surgery ctDNA serves as an 

early predictor of recurrence in breast cancer.64,65 Garcia-Murillas and colleagues 

identified ctDNA in 12 of 12 patients who eventually recurred, with ctDNA 

detection preceding clinical recurrence by an average of 7.9 months. One ctDNA 

positive patient did not clinically recur in the 12 months of follow-up, but is likely 

at risk to do so. Olsson and colleagues, using a much longer monitoring period, 

identified ctDNA in 13 of 14 patients who recurred, with an average lead time of 

11 months.  

One open question in this area is whether ctDNA detection can do more 

than serve as a prognostic marker, but actually inform treatment. Our own work 

has seen the ctDNA of one breast cancer patient with detectable post-surgery 

ctDNA become undetectable following radiation treatment, potentially 

demonstrating a curative effect of that treatment. However, no study to date has 

analyzed whether giving patients with detectable post-curative ctDNA additional 

therapies reduces or delays recurrence. Patients with undetectable ctDNA may 

be at extremely low recurrence risk and could potentially be spared additional 

treatments in the adjuvant setting. Existing methods for recurrence monitoring 
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are limited by the abundance of ctDNA available for study, arguably, deeply 

multiplexed and patient-specific-assays could overcome this limitation. Post-

surgery ctDNA status could also be used as an enrollment criterion for clinical 

trials as a way to focus on a group of patients likely to recur, thereby reducing the 

number of patients needed to conduct the study saving both time and money.  

Early Detection of Primary Disease 

The most challenging use case for ctDNA analysis is in the detection of 

primary disease; there is very little ctDNA present, and, unlike in recurrence 

detection, the mutations present in the tumor are unknown. To detect ctDNA in 

this early state an assay is needed that is extremely sensitive, surveys scores of 

potential mutations, and remains cost-effective. Newman and colleagues have 

attempted to address this problem by using hybrid-capture panels combined with 

several error-correction techniques (iDES) to accurately sequence recurrently 

mutated sites in various cancers, developing both cancer-specific and pan-caner 

panels.33,66 They demonstrated the ability to design a Non-small-cell lung 

carcinoma panel on the order of 100-300 kb which can detect ctDNA in over 90% 

of patients, including stage 1 disease, detecting ctDNA levels as low as 1 part in 

10k. While they demonstrate an effective use case for tumor genotyping and 

monitoring, this likely is still too high a threshold to serve as a reliable early 

detection method, requiring either additional depth (through more input genomes) 

or breadth (by sequencing a larger portion of the genome), both of which 

significantly increase cost. However, a methodology similar to iDES could be 
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utilized by a company such as the recently spawned Grail, which has set its 

sights on the early detection market, seeking to “Enable the early detection of 

cancer in asymptomatic individuals through a blood screen.”67 Launched by 

Illumina, Grail is uniquely well-positioned to dramatically increase sensitivity in a 

cost-effective manner. While ctDNA-based early cancer detection may not yet be 

ready to enter the clinic, the private sector investment, and potential financial 

upside, will ensure continued pursuit of this goal. 
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Conclusions 

ctDNA analysis has demonstrated varying degrees of clinical utility in 

liquid biopsy, resistance mutation detection, tumor burden monitoring, response 

to therapy, and early detection of recurrence. Additionally, the ability to serially 

monitor changes in the tumor genome over time and in response to specific 

perturbations and selective pressures, allows new scientific insights into the 

evolving tumor genome. It is also worth a more thorough investigation into the 

mechanisms and timing of ctDNA release and clearance. For example, if 

administration of a chemotherapy increases ctDNA release over a defined 

period, could that be used to improve the likelihood of detection in a patient 

undergoing treatment? Would a nearly homeopathic dose administered to a 

patient in remission increase ctDNA release thereby allowing a recurrence to be 

detected sooner? Results from studies answering these types of questions, 

combined with continued improvement and standardization of methods, have the 

potential to decrease the degree of difficulty for many ctDNA assays. The next 

step for the ctDNA field is to demonstrate that patient outcomes improve by 

acting on the information gained from ctDNA identification and quantification; be 

it administration of a new therapy upon seeing a resistance mutation, or giving an 

additional treatment in the adjuvant setting following detection of ctDNA. New 

clinical trials testing ideas such as these will be much anticipated in the ctDNA 

community. 
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Abstract 

The identification of the molecular drivers of cancer by sequencing is the 

backbone of precision medicine and the basis of personalized therapy; however, 

biopsies of primary tumors provide only a snapshot of the disease’s evolution, 

and may miss potential therapeutic targets, especially in the metastatic setting. A 

liquid biopsy, in the form of cfDNA sequencing, has the potential to capture the 

inter- and intra-tumoral heterogeneity present in metastatic disease, and, through 

serial blood draws, track the evolution of the tumor genome. 

In order to determine the clinical utility of cfDNA sequencing we performed 

whole-exome sequencing on cfDNA and tumor DNA from two patients with 

metastatic disease; only minor modifications to our sequencing and analysis 

pipelines were required for sequencing and mutation calling of cfDNA. The first 

patient had metastatic sarcoma and 45 of 46 mutations present in the primary 

tumor were also found in the cfDNA. The second patient had metastatic breast 

cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic 

site, but not in the primary tumor. This likely explains tumor progression on 

Anastrozole. Significant heterogeneity between the primary and metastatic 

tumors, with cfDNA reflecting the metastases, suggested separation from the 

primary lesion early in tumor evolution. This is best illustrated by an activating 

PIK3CA mutation (H1047R) which was clonal in the primary tumor, but 

completely absent from either the metastasis or cfDNA. Here we show that 

cfDNA sequencing supplies clinically actionable information with minimal risks 

compared to metastatic biopsies. This study demonstrates the utility of whole-
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exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA 

sequencing identified an ESR1 mutation, potentially explaining a patient’s 

resistance to aromatase inhibition, and gave insight into how metastatic lesions 

differ from the primary tumor. 
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Introduction 

In 2014 there were over 500,000 cancer related deaths in the United 

States; 90% of these deaths from metastatic disease.68,69 While cancer is 

characterized by clonal progression, metastatic lesions and recurrent disease 

can differ substantially from the primary tumor, harboring unique mutations of 

clinical significance.36 Identifying these differences as they emerge requires serial 

sampling of the tumor genome,70 often from multiple metastatic sites, which may 

have limited feasibility due to technical challenges or financial burden. 

Sequencing from blood plasma, however, has the potential to identify these 

changes without the invasiveness associated with solid tumor biopsies.17,71,72 

Following the detection of mutant forms of KRAS and NRAS in the plasma 

of cancer patients, researchers have pursued cfDNA as a form of “liquid biopsy” 

of an individual’s cancer, using it to identify oncogenic alterations in a variety of 

malignancies.5,12,16,38,41,73,74 Changes in ctDNA over the course of treatment can 

be measured easily through serial sampling due to the minimally invasive nature 

of blood draws.30,40,57,59,75 Previous studies have focused on quantifying ctDNA 

levels to measure disease burden,40,58,75 searched for the emergence of 

resistance mutations to specific therapies,59,76-78 tracked tumor evolution,59 and 

assessed prognosis16,79,80 and recurrence risk.30 The detection of ctDNA requires 

especially sensitive methods due to its dilution by the DNA from non-cancerous 

cells, with variant allele percentages as low as 0.01% in early disease.16,81,82 The 

study of tumors of varying types and stages has found that while ctDNA levels 
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vary significantly between samples, metastatic disease correlates with higher 

levels of cfDNA in the plasma and a higher fraction of ctDNA.17,83 The relative 

abundance of cfDNA and ctDNA makes it well-suited for whole-exome 

sequencing59 which, unlike panels focusing on hotspot or patient-specific 

mutations, has the potential to identify novel mutations, giving it unique value in 

the study of therapeutic resistance and tumor evolution. Whole-exome 

sequencing from plasma has demonstrated high levels of concordance between 

mutations in the tumor tissue and cfDNA in metastatic disease; however, 

previously this has only been shown in samples with exceptionally high ctDNA 

levels (33-65% of cfDNA from tumor origin), greatly limiting its clinical utility.59 

In this study, we investigated the feasibility of whole-exome sequencing 

from the plasma of two patients with metastatic disease. We found that with only 

minor alterations to our experimental and analytical methods we could accurately 

recapitulate the tumor genome from plasma, identify the same clinically relevant 

mutations identified by sequencing tumor biopsies, and gain novel information 

about the evolution of the disease. These methods were sensitive in a sample 

with an average ctDNA variant percentage of 3.5%, indicating approximately 

7.0% of cfDNA was of tumor origin (ctDNA), sufficiently low to identify ctDNA for 

a substantial portion of metastatic patients.16,17,30 We conclude that cfDNA 

sequencing of patients with metastatic cancer lends valuable insight to the study 

and treatment of the disease.  
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Results 

Patient #1. A 52-year-old female was diagnosed with primary intimal 

sarcoma of the pulmonary artery that was unresectable at presentation. The 

patient was initially treated with radiation followed by chemotherapy (Fig 4) and 

at this time her tumor was screened for oncogenic mutations using a multiplexed 

mass spectroscopy-based assay that revealed the presence of PIK3CA R88Q 

and Q546R in the primary tumor.84 As a result, she entered a phase I clinical trial 

of a PI3 kinase inhibitor and had a partial response that lasted 12 months. 

Twenty months after diagnosis the primary tumor DNA was screened again using 

a targeted panel of an Ion Torrent PGM. This confirmed the PIK3CA mutations 

but also revealed KRAS G12R. A blood draw was taken at this time, isolating 1 

ml of buffy coat and 25 mls of plasma (Table 2). At the time of blood collection 

the patient had numerous lesions in the lungs, pulmonary artery, and liver (Table 

2). Due to the high concentration of cfDNA in the plasma (63 ng/ml), whole-

exome sequencing was conducted. Based on the KRAS mutation, the patient 

was then enrolled in a phase Ib clinical trial combining MEK and PI3 kinase 

inhibitors. The treatment was stopped after eight months due to complications 

resulting from treatment, and the patient died 30 months after the initial 

diagnosis.  
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Figure 4. Overview of metastatic sarcoma patient treatment history. Patient 
diagnosed with intimal spindle cell sarcoma of the pulmonary artery. Treatments 
and sample collection indicated in months.  

 

Sample Primary 
Cancer Type 

Volume Plasma 
Collected 

(ml) 

cfDNA 
Concentration 
(ng/ml plasma) 

Total 
cfDNA 

Extracted 
(ng) 

Tumor 
Burden  

Patient #1 Sarcoma 25 63 1,575 >6 chest 
lesions 0.5-
2.6cm, 2 liver 
lesions 1.3 
cm 

Patient #2 Breast Cancer 15 98 980 >5 liver 
lesions 0.6-
4cm, thoracic 
lesion in T11 

Table 2. Plasma collection summary. Volume of plasma collected from single 
blood draw. cfDNA quantified using Quan-iT HS pico green kit. Tumor burden is 
at the time of the plasma collection. 

 

Whole-exome sequencing of the primary formalin-fixed paraffin-embedded 

(FFPE) tumor revealed 46 somatic, exonic mutations (Fig 5A, Tables 3 and 4). 

We conducted whole-exome sequencing of the cfDNA (524X average depth) 

and, with a threshold of 1.5% variant allele percentage, identified 45 of the 46 

somatic mutations present in the primary. At those 46 sites the mean sequencing 

depth in the cfDNA was 565X (181-1,197X). The average variant allele 
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percentage across these 45 mutations was 3.5%, indicating that approximately 

7.40% of the plasma DNA was of tumor origin. Importantly, we identified from 

plasma the activating KRAS G12R mutation and both activating mutations in 

PIK3CA (R88Q and Q546R). Controlling for sequencing depth, number of cfDNA 

mutant reads, or variant allele percentage in the primary tissue did not 

significantly improve the correlation.  
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Table 3. Summary of Patient #1 somatic mutations. List of 46 somatic 
mutations present in primary tumor along with depth and variant allele 
percentage in tumor and cfDNA samples. COSMIC accession numbers listed for 
three mutations present in database. 

Chr Base
Ref 
Base

Mut 
Base Gene

AA 
Change COSMIC

Tumor 
Depth

Tumor Variant 
Allele Percentage

cfDNA Read 
Depth

cfDNA Variant 
Allele Percentage

1 18023841 C T ARHGEF10L T1269I None 166 31.3 593 2.5
1 158046011 C A KIRREL T54N None 55 34.5 662 3.2
2 61436077 C G USP34 R2959T None 34 17.6 622 3.7
2 101869627 G C C2orf29 E67D None 70 28.6 181 2.8
2 149447882 T G EPC2 Y85D None 136 19.1 1081 3.3
2 175432673 G T WIPF1 P420T None 32 21.9 251 3.6
2 179599471 G A TTN V4743V None 98 16.3 887 4.3
2 179599653 G A TTN R4683C None 40 32.5 245 3.7
2 220344840 G A SPEG V1774M None 54 31.5 398 3.3
2 220424127 C A OBSL1 E1016* None 147 33.3 802 3.5
3 19389236 C T KCNH8 P197L None 54 33.3 386 2.1
3 62189116 T C PTPRG A549A None 68 39.7 344 3.8
3 172835203 A C SPATA16 L107V None 137 38.7 943 6.9
3 178916876 G A PIK3CA R88Q COSM746 143 40.6 1113 4.6
3 178936095 A G PIK3CA Q546R COSM12459 42 42.9 391 5.1
5 191699 G C LRRC14B V16L None 155 17.4 497 3.8
5 1244353 T A SLC6A18 L454H None 139 20.9 344 3.2
5 1294421 G A TERT R194* None 192 17.7 368 2.4
5 14601222 C G FAM105A H71Q None 115 19.1 703 3.6
6 27420983 C T ZNF184 E119K None 64 37.5 368 3.0
6 51917924 G A PKHD1 T697M None 50 32.0 480 3.3
6 87971162 G A ZNF292 K2605K None 65 29.2 503 3.0
6 123714772 G T TRDN Q368K None 44 11.4 427 6.3
6 168709623 C A DACT2 V272L None 58 29.3 235 5.1
8 37698931 G A GPR124 T1025T None 76 28.9 279 1.8
8 75227367 G A JPH1 R290C None 398 26.6 1197 4.0
9 32544159 T C TOPORS K122E None 83 44.6 777 4.5
9 130550557 C T CDK9 A166V None 227 35.7 583 2.7

10 8006881 A T TAF3 I470F None 133 33.8 780 3.7
10 50083161 T C WDFY4 S2326P None 62 25.8 316 3.2
11 30915897 C G DCDC5 M288I None 91 22.0 485 4.1
11 65412473 G A SIPA1 Q344Q None 46 39.1 294 4.1
12 25398285 C G KRAS G12R COSM518 162 18.5 355 2.3
12 56845179 C T MIP R226Q None 83 15.7 765 5.2
13 39262777 G A FREM2 K432K None 104 38.5 620 3.5
14 23791401 T A PABPN1 A121A None 31 25.8 750 0.0
14 45716371 G T MIS18BP1 T40N None 82 17.1 501 1.8
14 102792762 G A ZNF839 S127S None 47 27.7 271 3.3
15 85327565 G C ZNF592 E553D None 173 41.0 795 2.6
17 38955860 G A KRT28 R96C None 283 24.7 1085 2.8
17 66042028 C T KPNA2 F496F None 45 33.3 811 3.7
17 67129877 G A ABCA6 S232S None 64 25.0 421 3.3
18 64172273 T A CDH19 I699F None 136 28.7 748 3.1
19 960142 G C ARID3A L248F None 116 10.3 482 1.5
20 20243713 C T C20orf26 N814N None 82 26.8 374 2.9
22 32352755 T C YWHAH D239D None 205 32.2 464 4.7

Average 106 28.2 565 3.5
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Figure 5. Patient #1 mutation calls and validation. A) Using a cutoff of 1.5% 
variant allele percentage, 46 of the 47 mutations present in the tumor were 
identified in the cfDNA. Estimating from the average variant allele percentage of 
3.8%, 7.5% of the cfDNA was derived from the tumor. B) Fifteen additional 
mutations were called in the cfDNA which were not called in the tumor sample. 
Four of these are present in the tumor, but below our calling cutoff of 10% for the 
tumor. Genes highlighted in red text were successfully validated via sequencing 
on the Ion Torrent PGM. Approximately 4,000 genomes of cfDNA were used as 
input to the validations, giving us a lower sensitivity bound of 0.025-0.5% 
depending on the site-specific background error rate. 
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Fifteen additional mutations were identified in the cfDNA. Among these, 11 

were not present in the primary number and four were present in the primary 

tumor (Fig 5B), but at allele frequencies below our 10% threshold for calling them 

in the primary tumor. These mutations were chosen for validation by sequencing 

on the Ion Torrent PGM where six of them were confirmed, eight failed to 

validate, and one did not sequence (Fig 5B). The validation rate of 43% 

highlights the necessity of using orthologous sequencing methods in confirming 

the presence of low frequency mutations in cfDNA. cfDNA variant allele 

percentage correlated poorly with the primary tumor (Fig 6). 

 

Figure 6. Variant allele percentage correlation cfDNA variant allele 
percentage is poorly correlated with Primary tumor variant allele percentage. 
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As a final analysis we determined that ctDNA fragments (identified by the 

presence of a tumor-specific mutation) were on average 8 bp shorter than cfDNA 

fragments which mapped to the same region but did not carry the mutation (Fig 

7A). Due to the fact that these mutations are likely heterozygous, roughly half of 

the ctDNA would not carry the mutation and therefore be misidentified as wild-

type (WT). Despite this confounding factor, the difference was highly significant. 

To ensure this effect was not somehow caused by the presence of the mutant 

base, we compared the fragment lengths of WT and alternate containing reads at 

2,100 dbSNP sites and did not find a significant difference (Fig 7B).  
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Figure 4. Comparison of DNA fragment length A) Fragment length of reads 
containing the WT (blue) or mutant (red) base at the 47 sites with known 
mutations in the primary tumor. B) Fragment length of reads containing the WT 
(blue) or alternate (red) base at 2,100 heterozygous dbSNP sites. 
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Cancer Type Tissue ENA 
Accession 

Number 

Input 
DNA 
(ng) 

Reads 
(Millions) 

Mapped 
Reads 

(%) 

Paired 
Reads 

(%) 

On 
Target 
Reads 

(%) 

PCR 
Duplicate

s 
(%) 

Mean 
Sequencing 

Depth 

Sarcoma Buffy Coat ERS700862 2000 392 
361 

(92.3) 
342 

(87.4) 
210 
(58) 29 226 

Sarcoma 
Primary 
Tumor ERS700863 500 116 

114 
(98.3) 

113 
(96.9) 

93 
(81.6) 31 118 

Sarcoma cfDNA 1 ERS700864 750 250 
243 

(97.1) 
204 

(81.6) 
143 

(58.9) 34 160 

Sarcoma cfDNA 2 ERS700864 110 155 
154.8 
(99.7) 

147 
(94.4) 

124 
(80.4) 12 162 

Sarcoma cfDNA 3 ERS700864 110 186 
185 

(99.7) 
175 

(94.5) 
155 

(84.0) 16 203 

Sarcoma 
Pooled 

cfDNA 1-3 ERS700864 970 591 
583 

(98.62) 
526 

(89.0) 
423 

(72.6) n/a 524 
Breast 
Cancer Buffy Coat ERS700858 412 182 

181 
(99.6) 

180 
(98.8) 

154 
(84.8) 20 201 

Breast 
Cancer 

Primary 
Tumor ERS700859 301 112 

110.8 
(99.2) 

99.1 
(88.8) 

92 
(82.8) 52 118 

Breast 
Cancer Metastasis ERS700860 341 173 

171.8 
(99.5) 

170 
(98.6) 

140 
(81.6) 22 183 

Breast 
Cancer cfDNA ERS700861 155 286 

284.8 
(99.5) 

253 
(88.5) 

239 
(83.8) 37 309 

Sarcoma Buffy Coat ERS700862 2000 392 
361 

(92.3) 
342 

(87.4) 
210 
(58) 29 226 

Sarcoma 
Primary 
Tumor ERS700863 500 116 

114 
(98.3) 

113 
(96.9) 

93 
(81.6) 31 118 

 Table 4. Sequencing statistics. Summary of sequencing information for all ten 
sequencing runs. All reads are listed in millions. Accession numbers for .bam 
files uploaded to European Nucleotide Archive provided, for sarcoma patient all 3 
cfDNA runs were combined in a single .bam file separated by read group. 

 

Patient #2. A 41-year-old female was diagnosed with ER+ HER2+ breast 

cancer, which had spread to the lymph nodes. The patient underwent 

neoadjuvant chemotherapy (TAC) followed by a bilateral mastectomy and 

oophorectomy (Fig 8A). Following surgery, the patient underwent radiation 

therapy and was treated with Trastuzumab for one year and Anastrozole for 33 

months, until the discovery of a 4cm liver lesion and bone metastases at the 11th 

thoracic vertebra (T11). Additional chemotherapy and Herceptin were 

administered but the treatment was stopped following identification of liver 

metastases. At this time we collected a blood draw approximately 30 minutes 
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before a liver biopsy was taken and obtained an archived FFPE sample of the 

primary tumor. The blood draw yielded 15 mls of plasma at an average cfDNA 

concentration of 98 ng/ml (Table 2). Following the first plasma sample the patient 

underwent treatment with the anti-Her2 drug TDM1 but following an initial partial 

response died 62 months after initial diagnosis. 

 

Figure 8. Patient #2 diagnosed with ER+/PR+/HER2+/Node+ breast 
carcinoma. A) Treatments and sample collection indicated in months. B) 48 total 
somatic mutations were called in the primary breast tumor and/or liver 
metastasis. 38 mutations were called in the cfDNA using a variant allele 
percentage cutoff of 1.5%. Genes in red text were successfully validated on the 
Ion Torrent PGM, genes in blue text failed to validate, genes with black text were 
not validated.  
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Whole-exome sequencing of the primary tumor and liver metastasis 

revealed a total of 48 nonsynonymous somatic mutations (Fig 8B, Table 5). 

Sequencing of cfDNA to an average depth of 309X identified 38 of these 

mutations with an average variant allele percentage of 14%, indicating 

approximately 28% of cfDNA was of tumor origin. cfDNA VAP correlated well 

with the VAP in the liver metastasis (Figs 9A and 9B), but correlated poorly with 

the primary tumor (data not shown). Additional deep sequencing confirmed that 

an activating PIK3CA (H1047R) mutation was present only in the primary tumor, 

not in the liver metastasis or cfDNA, indicating that either the mutation emerged 

after metastasis or was not present in the subpopulation that seeded the 

metastasis. Seventeen additional somatic nonsynonymous mutations were called 

from the plasma sample. Closer examination revealed that eight of these (47%) 

were unique to the plasma, potentially originating from metastatic sites not 

sampled (Fig 9C). Two of those mutations were selected for validation via Ion 

Torrent PGM, both of them successfully validated (Fig 9C). 
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Table 5. Summary of Patient #2 somatic mutations. List of 70 somatic 
mutations from Figure 5 detailing depth and variant allele percentage in primary, 
metastasis, and cfDNA samples. COSMIC accession numbers listed for three 
mutations present in database. 

Chr Base
Ref 
Base

Mut 
Base Gene  AA Change COSMIC

Primary 
Depth

Primary 
VAP

Met 
Depth

Met 
VAP

cfDNA 
Depth

cfDNA 
VAP

1 55603253 C T USP24 D1046N None 63 0.0 87 26.4 164 27.4
1 158259864 C A CD1C L4M None 118 0.0 250 0.0 690 3.0
1 211749173 G A SLC30A1 R361* None 109 0.9 136 19.1 234 19.2
1 225339739 A C DNAH14 N1231T None 30 30.0 52 15.4 92 13.0
1 247655216 G A OR2W5 G263S None 190 16.3 381 18.6 676 15.7
2 24086321 C T ATAD2B R470Q None 79 0.0 78 38.5 185 19.5
2 54119965 T C PSME4 K1391E None 22 0.0 20 35.0 49 22.4
2 80529504 C A LRRTM1 A481S None 52 0.0 154 0.0 303 2.6
2 103300761 C A SLC9A2 A464D None 35 0.0 36 13.9 112 4.5
2 121736125 G A GLI2 R495Q None 20 0.0 48 43.8 69 21.7
2 207173222 C T ZDBF2 P1324S None 81 0.0 93 25.8 220 0.0
3 108836849 C T MORC1 A20T None 18 22.2 77 37.7 126 22.2
3 142681704 C T PAQR9 A159T None 77 0.0 199 0.0 333 11.4
3 178952085 A G PIK3CA H1047R COSM775 132 43.9 94 0.0 122 0.0
4 89618811 G A NAP1L5 A32V None 79 0.0 124 25.8 141 12.8
4 104074295 A G CENPE I1049T None 35 0.0 50 20.0 78 11.5
4 104640577 C A TACR3 A86S None 106 0.0 278 0.0 441 1.8
5 24498509 G T CDH10 Q505K None 49 0.0 135 14.8 242 15.3
5 79025196 C T CMYA5 P203L None 113 0.0 193 0.0 257 1.6
5 113698906 G T KCNN2 G145V None 278 0.0 618 16.0 725 3.7
6 18457568 A G RNF144B I172V None 194 27.8 207 0.0 422 10.0
6 96984253 G C KIAA0776 Q263H None 47 29.8 61 59.0 84 20.2
6 144999662 G A UTRN D2534N None 96 0.0 96 31.3 180 0.0
6 152419926 A G ESR1 D538G COSM94250 183 0.0 257 23.3 482 17.0
7 36462337 C T ANLN P799S None 60 3.3 98 1.0 254 3.1
7 98460839 G T TMEM130 S90R None 188 0.5 451 0.0 551 1.6
7 142625227 C T TRPV5 E289K None 163 0.0 312 0.0 297 2.7
8 121238915 C A COL14A1 D638E None 108 0.0 182 17.6 427 4.9
9 4662532 C T PPAPDC2 P53S None 133 21.1 180 0.0 171 0.0
9 106900435 A C SMC2 T1136P None 81 0.0 146 33.6 202 26.2
9 113341504 C T SVEP1 R107H None 101 1.0 204 0.0 305 1.6

10 70056047 C A PBLD A87S None 12 0.0 42 45.2 74 6.8
11 5969386 G T OR56A3 K270N None 195 0.0 376 33.8 630 18.3
11 14515193 G C COPB1 I162M None 99 0.0 181 18.2 264 11.4
11 35496185 G A PAMR1 P145S None 24 0.0 53 3.8 94 8.5
11 35496239 G A PAMR1 Q163* None 8 0.0 24 12.5 41 7.3
11 74953028 G T LOC441617 G213T None 111 20.7 268 26.1 307 17.3
11 95724773 G T MAML2 Q752K None 82 0.0 85 32.9 319 20.7
11 124791236 G A HEPACAM S350L None 11 0.0 45 8.9 37 0.0
12 32860333 C T DNM1L H95Y COSM938812 39 0.0 76 25.0 81 0.0
12 58009707 C T ARHGEF25 R443C None 92 35.9 205 45.4 328 33.2
12 76740663 C T BBS10 V368M None 142 0.0 192 19.8 293 15.0
13 38229329 C T TRPC4 E594K None 11 27.3 17 47.1 36 25.0
14 58943845 G C KIAA0586 E804Q None 39 15.4 43 14.0 135 13.3
15 26026228 C T ATP10A A198T None 38 0.0 91 0.0 156 3.8
15 68118582 G A SKOR1 R139H None 136 19.1 357 27.5 490 19.0
16 56533701 G A BBS2 R506W None 63 6.3 94 0.0 180 0.0
17 4086831 G A ANKFY1 A605V None 39 0.0 103 28.2 125 27.2
17 8131877 C T CTC1 R1153H None 311 0.6 304 0.0 504 2.6
17 39183231 A G KRTAP1-5 S59S None 11 0.0 34 0.0 27 0.0
18 7231403 G T LRRC30 E89D None 88 0.0 207 29.5 491 23.6
18 13884823 C A MC2R W232L None 55 14.5 113 0.0 243 0.0
18 74091429 C T ZNF516 G881S None 257 0.0 393 0.0 566 3.2
19 10600363 G A KEAP1 R498* None 22 0.0 38 26.3 71 18.3
19 15739196 C T CYP4F8 Synonymous None 59 32.2 165 37.0 223 24.2
19 38377433 T C WDR87 E2254G None 550 0.2 506 21.1 830 16.3
19 42863259 C T MEGF8 R1785W None 58 10.3 130 0.0 222 0.0
19 46351042 C T SYMPK R215H None 38 0.0 54 0.0 69 2.9
19 51206806 G A SHANK1 R502* None 200 1.5 541 14.2 881 9.9
19 55995346 C T ZNF628 T925M None 460 1.1 828 0.0 811 1.4
20 23805933 C T CST2 D86N None 59 16.9 132 0.0 199 1.5
20 32199056 G A CBFA2T2 R121H None 426 0.5 638 20.4 819 15.6
21 32526726 C T TIAM1 A1004T None 52 0.0 103 0.0 195 2.1
21 43221400 T A PRDM15 Stop Loss None 96 20.8 227 0.0 302 0.0
X 10085235 T C WWC3 L379P None 154 0.0 339 21.5 404 15.8
X 73961595 A C KIAA2022 Y933D None 250 0.0 446 0.0 727 1.9
X 118724673 C T NKRF G239S None 178 0.0 350 25.4 471 14.9
X 120009175 G A CT47B1 A117V None 38 0.0 71 28.2 87 16.1
X 152158802 T G PNMA5 E447D None 165 0.0 332 24.7 608 13.2
X 153132283 C T L1CAM R751H None 70 25.7 250 42.4 644 39.4

Average 111 6.4 196 17.1 309 11.0
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Figure 9. cfDNA and liver metastasis DNA are well correlated A) cfDNA 
variant allele percentage is correlated with liver metastasis variant allele 
percentage B) Maximum parsimony tree showing relatedness of samples, branch 
length are number of somatic, nonsynonymous mutations C) Seventeen 
additional mutations were identified uniquely in cfDNA, 9 of which have reads 
supporting them in the primary and/or met, but where not called due to 
insufficient sequencing depth or variant allele percentage. Genes in red text were 
successfully validated on the Ion Torrent PGM, genes in blue text failed to 
validate, genes with black text were not validated.  
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By sequencing cfDNA from plasma we are able to get a snapshot of the 

tumor, likely from multiple metastatic sites. The high correlation between the liver 

metastasis and cfDNA indicates that considerable information about the current 

tumor genome could be gained without the need for a biopsy. A mutation in 

ESR1 (D538G), which has been shown to impart resistance to estrogen 

deprivation therapy, was found in both biopsies of the metastases and the 

cfDNA.85,86 This mutation was not present in the initial exome sequence of the 

primary tumor and its absence was confirmed by subsequent validation 

sequencing of ESR1 to a depth of 4,272X (Fig 10A). It is likely that the resistance 

of the tumor to the aromatase inhibitor Anastrozole can be explained by the 

mutant ESR1. This mutation was confirmed in a CLIA laboratory and anti-

Estrogen Receptor treatments were considered between cfDNA sequencing and 

patient death. A total of 15 mutations were selected for validation on the Ion 

Torrent PGM, 13 of which were validated (Figs 8B and 9C). A second plasma 

sample was taken during response to TDM1 treatment (as determined by CT 

scan) and eight mutations present in the pre-treatment cfDNA sample were 

quantified in the during-treatment sample (Fig 10B). The pre-treatment cfDNA 

sample had a mean variant allele percentage of 13% across these eight sites 

while the during-treatment sample had a mean variant allele percentage of only 

0.04% in the four sites containing mutant reads and no detectable mutant reads 

in four of the mutations tested.  
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Figure 10. Patient #2 targeted resequencing. A) The ESR1 mutation was 
sequenced to greater depth on the Ion Torrent PGM. B) Comparison of allele 
frequencies between pre- and during-TDM1 treatment cfDNA samples for eight 
mutations present in the pre-treatment sample. 

 

Due to the relative high ctDNA percentage of 14%, we sought to 

determine if copy number variants (CNVs) could also be identified from the 
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cfDNA (Fig 11). Comparing the metastatic and cfDNA copy number data shows 

they closely correlate with each other. The CN ratios are lower in the cfDNA than 

the metastasis, but largely move in the same direction as would be expected 

from the lower tumor content between ctDNA and the metastasis.

 

Figure 11. Copy number analysis of metastatic tumor and cfDNA. Log2 
Copy number ratios of metastatic tumor (black) and cfDNA (yellow). Red/blue 
colors denote alternating chromosomes.  
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Discussion 

In this study, we have demonstrated that whole-exome sequencing of 

cfDNA from patients with metastatic cancer can accurately identify clinically 

actionable mutations, and requires only minimal alterations to well-established 

sequencing protocols. We were able to sequence and gain valuable data from a 

plasma sample with a mean variant allele percentage of 3.7%, much lower than 

values demonstrated in previous studies and well below the frequencies of a 

substantial portion of metastatic cancer patients.16,30,40,59,75 Adoption of this 

approach has the potential to greatly expand the utility of sequencing versus the 

biopsy-dependent approaches which are currently the standard of care. 

Mutations present in the cfDNA tightly correlated with mutations present in a 

synchronous metastasis sample, indicating that sequencing cfDNA can generate 

a more accurate picture of a patient’s metastatic tumor genome than relying on a 

biopsy of the primary tumor. The cfDNA tightly correlates with tumor tissue taken 

at the time of plasma acquisition and can therefore be used to take “snapshots” 

of the cancer genome. Additionally, mutations unique to cfDNA were found in 

both patients, potentially representing lesions not sampled by biopsy. Validation 

via Ion Torrent sequencing confirmed that these mutations were not from normal 

tissue or the result of sequencing errors and were likely from sites not present in 

the biopsy. The inability to sample all metastatic sites within a cancer patient is a 

severe limitation of current sequencing techniques, and may be resolved with 

minimal modifications to standard sequencing procedures using cfDNA. 
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The finding that mutation-containing ctDNA fragments were significantly 

shorter than those carrying the WT sequence potentially indicates a different 

mechanism in the release of ctDNA compared to cfDNA release from normal 

cells. This finding is worthy of subsequent follow-up as it may provide insights 

into unique mechanisms of ctDNA release and provide potential enrichment 

strategies to preferentially isolate ctDNA from the plasma. 

In addition to somatic mutations, CNVs were also identified from the 

cfDNA of patient #2. While requiring a higher ctDNA percentage than mutation 

identification, CNVs can provide important clinical information identifying potential 

therapeutic targets and representing potential resistance mechanisms. 

Characterizing copy number and somatic mutations can paint an even more 

complete picture of the tumor genome, and should be further explored to 

determine limits of sensitivity and reliability. Several recurrent, focal copy number 

aberrations, such as HER2 amplification in breast cancer or AR amplification in 

prostate cancer can be highly amplified and therefore may be detectable in 

samples with ctDNA allele frequencies too low to completely characterize CNVs.  

The two patients in this study had high levels of cfDNA in their plasma 

(Table 1), which allowed us to use over 100 ng of cfDNA to construct our 

sequencing libraries. However, for many patients a concentration of 10 ng of 

cfDNA per ml of plasma is more typical, indicating that multiple blood draws are 

required to get sufficient material for sequencing. Realizing this, we adopted the 

methods outlined in the Capp-Seq paper from the Diehn lab 75 that allows 
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libraries to be made more efficiently, requiring less initial input DNA. Using these 

methods we successfully produced complex libraries from less than 40 ng of 

cfDNA and successfully sequenced ~25% of the input DNA molecules (opposed 

to the ~1% efficiency achieved in our study). This improvement has allowed us to 

sequence sufficient cfDNA for nearly all our subjects. 

Another advantage of sequencing cfDNA is the ability to sequence 

serially-collected and minimally-invasive plasma samples, allowing for near real-

time monitoring of the tumor genome during treatment. The identification of 

emerging mutations may allow therapies to be started or stopped as soon as the 

tumor environment renders this advantageous. In the case of patient #2, it is 

possible that serial cfDNA sequencing would have identified the emergence of 

the ESR1 mutation and treatment may have been adjusted from estrogen 

deprivation therapy (Anastrozole) to one targeting the estrogen receptor itself 

(e.g. Fulvestrant): this shift, and potentially others, may have delayed the 

progression of disease. In addition to looking for known resistance mechanisms, 

the nature of whole-exome sequencing allows for the identification of novel 

recurrent resistance mechanisms in a cohort of patients undergoing the same 

treatment, which may not be included in a targeted panel. Notably, during the 

response of patient #2 to TDM1 there was a dramatic reduction in the level of 

ctDNA, rendering it nearly undetectable by our sequencing approach. Monitoring 

via exome sequence during such periods would require extremely high 

sequencing depth, which would be prohibitively expensive with current 

sequencing costs. 
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A substantial focus has been placed on the sequencing of primary tumors 

and massive sequencing projects (TCGA et al.) have revealed a considerable 

amount of information about driver mutations in a variety of cancers. However, 

metastatic tumors, which are responsible for most patient deaths, are 

comparatively understudied. By sequencing primary tumors along with serially 

collected plasma samples it is possible to monitor metastatic progression at a 

genomic level. In patient #2 we observed an activating PIK3CA mutation in the 

primary tumor that was not seen in either the liver metastasis or cfDNA. It is likely 

that either the PIK3CA mutation became clonal after the metastatic process or 

that the mutation was not present in the metastatic clone; regardless, treatment 

with a PI3K inhibitor may have been effective in shrinking the primary lesion, but 

would have been ineffective against any of the distant metastasis. In contrast, 

sequencing of patient #1 showed that the cfDNA contained nearly all of the 

mutations identified in the primary tumor. While we were unable to get a sample 

of the metastasis, the low number of mutations unique to the cfDNA means it is 

not unreasonable to infer that there were relatively few differences between the 

metastasis and primary tumor. Sequencing cfDNA from larger cohort of patients 

may help us understand how metastatic progression varies in different tumor 

types and may identify therapeutically relevant patterns. The clinical utility of this 

method will depend largely on the systematic assignment of targeted therapies to 

identified cfDNA mutations. 

Notably, services for cfDNA sequencing are becoming commercially 

available, but are based on panels and therefore have limited utility in a research 
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setting. We demonstrate here that there is significant value of whole-exome 

sequencing from cfDNA. 

Subsequent Metastatic cfDNA Exome Sequencing 

Following the success of our initial attempts at whole-exome sequencing 

of metastatic cfDNA, we received and sequenced an additional metastatic 

sample to screen for any variants of potential clinical interest. For this sample we 

only had the blood draw to work from (no matching tumor). The patient had 

metastatic pancreatic cancer which had an elevated cfDNA level of 22 ng/ml 

plasma. Using an improved set of whole-exome library creation methods, we 

were able to sequence the library at an improved efficiency of 25% (one-quarter 

of input cfDNA molecules were converted to a sequenceable library) and 

sequenced to an average depth of 130X. 80 Mutations were identified which 

passed our filtering, providing an average allele frequency of 16.2%, indicating 

that roughly a third of cfDNA was of tumor origin (Table 6). Of particular interest 

were the TP53 and KRAS mutations, unfortunately this sequencing did not reveal 

a potential therapeutic target. 
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Table 6. Summary of somatic mutations in metastatic pancreatic cancer 
patient. List of 80 somatic mutations detailing depth and variant allele 
percentage in a cfDNA sample. COSMIC accession numbers listed for three 
mutations present in database. 

Chr Base
Ref 
Base

Mut 
Base Gene

 AA 
Change COSMIC

cfDNA 
Depth

cfDNA 
VAP

1 1284358 G C DVL1 L30V None 45 11.1
1 53535777 G A PODN G132S None 75 13.3
1 163044346 C T RGS4 A205V None 146 4.8
1 181727095 G A CACNA1E D1448N None 98 18.4
1 185902934 T G HMCN1 A602A None 233 3.4
1 216144027 C T USH2A W2299* None 130 6.2
1 236332055 G A GPR137B R155Q None 141 19.1
2 1133348 C G SNTG2 L122L None 71 7.0
2 31147091 C T GALNT14 R425Q None 118 16.1
2 97039075 A C NCAPH R738R None 155 6.5
2 103068284 G C IL18RAP L481F None 227 6.2
2 169791907 C T ABCB11 R948H None 170 4.7
2 222321345 T C EPHA4 T531A None 61 13.1
2 230655915 T A TRIP12 K1415* None 166 6.0
3 51690031 G A RAD54L2 R1024H None 148 8.8
3 73440203 T C PDZRN3 D440G None 111 37.8
3 151535228 C G AADAC V71V None 78 24.4
4 126389962 G A FAT4 R4065R None 48 45.8
5 66462218 A G MAST4 E2404G None 70 15.7
5 78573823 G A JMY A375T None 170 10.6
5 100147625 C A ST8SIA4 E336* None 58 20.7
5 128844840 G A ADAMTS19 G267D None 136 17.6
5 132545968 G A FSTL4 P544L None 53 15.1
5 140188796 C T PCDHA4 A675V None 103 9.7
5 140735432 G A PCDHGA4 R222H None 114 9.6
6 37439654 C T CMTR1 R532W None 43 14.0
6 100841692 G A SIM1 T414M None 98 8.2
6 116429541 C T NT5DC1 A67V None 67 14.9
7 98257797 C T NPTX2 R384R None 121 10.7
7 105662776 C T CDHR3 T653I None 211 10.0
7 127254961 C T PAX4 G103G None 63 12.7
8 40011208 A G C8orf4 R53G None 196 11.7
8 72951191 A T TRPA1 I735N None 109 27.5
9 86570334 C G C9orf64 E187Q None 69 20.3
9 116132239 C T BSPRY H342H None 100 13.0
9 120475528 C A TLR4 S374R None 96 10.4

10 18266911 C A SLC39A12 Q278K None 130 21.5
10 29169161 C T C10orf126 A102V None 103 6.8
10 70728776 C T DDX21 P379S None 171 24.6
10 124339154 T G DMBT1 V247G None 40 12.5
10 129906258 G A MKI67 L1282L None 148 6.8
11 36596443 C T RAG1 S530F None 91 8.8
11 116719844 C T SIK3 D1165N None 39 33.3
11 118869790 G A CCDC84 K118K None 76 10.5
11 124794930 G A HEPACAM R41C COSM84121 52 15.4
12 25398285 C G KRAS G12R COSM517 56 33.9
12 39726830 T G KIF21A D856A None 109 24.8
12 56647525 G A ANKRD52 S322S None 56 8.9
12 56722027 G T PAN2 Q190K None 58 29.3
12 56722028 A T PAN2 T189T None 56 28.6
12 109042552 G A CORO1C F378F None 100 8.0
13 25367267 A C RNF17 P341P None 307 12.7
13 107823087 C T FAM155A V379I None 168 26.2
13 111268024 G A CARKD M1I None 82 20.7
14 21559205 C A ZNF219 R553S None 32 15.6
14 74531951 C T ALDH6A1 G446E None 98 48.0
15 48829969 T C FBN1 N192S None 136 25.7
16 3707094 A G DNASE1 Q177Q None 90 41.1
17 1581900 G A PRPF8 T589M None 136 8.8
17 7578212 G A TP53 R213* COSM10654 76 22.4
17 42475941 C T GPATCH8 R1168R None 127 21.3
17 47044532 T C GIP G21G None 120 5.8
17 53392602 G A HLF A156T None 46 8.7
17 74869015 G A MGAT5B G51R None 48 25.0
18 5892009 G C TMEM200C L18L None 98 10.2
18 61305162 C T SERPINB4 G322S None 119 19.3
19 11942503 C T ZNF440 P171L None 212 7.5
19 46443413 G A NOVA2 T396M None 50 10.0
19 46878881 T C PPP5C H128H None 117 5.1
19 58867670 G A ZNF497 C444C None 44 36.4
20 31395614 C T DNMT3B R823C None 116 6.0
20 55209236 G C TFAP2C L278F None 102 6.9
20 62842623 C T MYT1 H452H None 78 35.9
21 31744242 G C KRTAP13-2 S97C None 72 11.1
22 37263465 C T NCF4 I101I None 123 13.0
22 39134215 T A SUN2 D668V None 92 16.3
22 45794997 T G SMC1B D364A None 146 18.5
22 46932046 A C CELSR1 V341G None 109 14.7

X 100079201 G T CSTF2 V219V None 83 8.4
X 144905527 G A SLITRK2 E528E None 86 14.0

Average 106.2 16.2
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Methods 

Patient Enrollment 

Written consent was obtained from two patients with metastatic cancer for 

enrollment in this study. The study and consent procedures were approved by 

the Oregon Health & Science University Institutional Review Board and in 

accordance with federal and institutional guidelines. Up to 40 mls of blood was 

collected in EDTA tubes. Plasma was isolated as described previously 30 and 

stored at -80°C until cfDNA was extracted using the QIAamp Circulating Nucleic 

Acid kit (Qiagen). Buffy coat was isolated from the same blood sample and DNA 

was extracted using the DNA Blood Mini kit (Qiagen). As part of the 

aforementioned study and consent procedure, FFPE tissue from the patient’s 

primary tumors was acquired from archived pathology samples. Patient #1’s 

sample was acquired from the University of Washington Pathology Department in 

Seattle, WA (http://www.pathology.washington.edu/clinical/dermpath/contactinfo). 

Patient #2’s sample was acquired from Compass Oncology in Vancouver, 

Washington (http://compassoncology.com). FFPE tissue was extracted using the 

DNA FFPE Tissue kit (Qiagen). The same patient’s liver metastasis was taken 

from a frozen core biopsy and extracted with the DNeasy Blood & Tissue kit 

(Qiagen). 
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Whole-Exome Sequencing 

A minimum of 100 ng of cfDNA and 0.3-2µg of DNA from buffy coat and 

tumor tissue were used to create sequencing libraries. Agilent SureSelect XT 

reagents and protocol were used to prepare sequencing libraries. DNA from buffy 

coat and tumor tissue was sonicated to an average size of 150 bp using a 

Covaris E220. Plasma DNA samples were not sonicated, as plasma DNA is 

already highly fragmented. Hybrid capture was conducted using Agilent 

SureSelectXT Human All Exon V4+UTRs. 100 bp paired-end sequencing was 

conducted on an Illumina HiSeq 2000. An entire lane was dedicated to 

sequencing plasma DNA samples and all other libraries were sequenced two-to-

a-lane. To maximize sequencing depth and avoid PCR duplicates, the plasma 

sample from the patient with metastatic sarcoma was made into three separate 

libraries, each sequenced on one full lane each, giving an average sequencing 

depth of 1,034X. Only a single library was needed to achieve sufficient coverage 

of cfDNA for patient #2. 

Improved Whole-Exome Methods 

Following publication of the CAPP-seq paper from the Diehn lab we 

adopted their library preparation method.66 In brief, we ordered HPLC-purified, 

indexed sequencing adapters and blocking oligos from IDT (idtdna.com). These 

were used in combination with the Hyper Prep DNA Library Preparation Kit (Kapa 

Biosystems), at a 100:1 adapter:template ratio for cfDNA samples and 20:1 for 

buffy coat DNA. This library was then used as input for the Agilent SureSelect XT 
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hybrid-capture protocol and reagents using the all-human exon v5 set of capture 

baits. These libraries were paired-end 100 bp sequenced using the Illumina 

HiSeq 2000 platform. 

Bioinformatic Analysis 

In order to detect mutations we aligned HiSeq paired-end reads with hg19 

human reference genome using bwa.87 We used bwa aln to find the coordinates 

of input reads and then used bwa mem in order to generate alignments in a sam 

format.87 We converted the sam format to bam (binary) format using Samtools 

import (v 0.1.19).88 After sorting and indexing the reads in the bam formatted file, 

we use Picard Tools89 MarkDuplicates to remove duplicate reads generated 

during the PCR amplification stage: removal is done by finding all reads that 

have identical 5’ coordinates and keeping only the read pair with the highest 

base quality sums. After duplicate removal we realigned reads around SNVs and 

indels using the GATK Software Library.90,91 The three libraries of the sarcoma 

patient were combined after PCR duplicate removal: local positions to target for 

realignment were called using RealignerTargetCreator and the reads were 

realigned using IndelRealigner. Finally, quality scores were recalibrated. This 

was done using GATK BaseRecalibrator and PrintReads, which binned reads 

based on the original quality score, the dinucleotide, and the position within the 

read. Sequencing statistics are summarized in Table 3 and were generated using 

Samtools flagstat, GAKT DepthOfCoverage, and Bedtools pairToBed.92 
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To call mutations we compared the tumor samples with the normal 

samples using muTect v1.1.4 using the buffy coat as a matched normal.93 

Variants were considered somatic mutations if: (a) they were not present in the 

dbSNP database94 (except if the variant was also in the COSMIC database95 eg 

KRAS and PIK3CA mutations), (b) there was ≥30x sequencing depth at that site 

in the tumor/plasma sample and ≥10x sequencing depth in the matched normal 

sample, (c) it had a variant allele percentage of ≥10% for the tumor samples and 

≥1.5% for plasma samples, and (d) there were at least two reads containing the 

variant allele. Mutations in cfDNA were then further filtered out if the matched 

normal had >1 read supporting the mutation or the mutation was only present in 

one strand of the cfDNA. Impact of variants was checked using Mutation 

Assessor v2 (www.mutationassessor.org). 

Fragment Size Analysis 

Fragment size analysis was conducted using only the unsonicated cfDNA 

libraries. Samtools view was run at the mutation or SNP sites of interest, this 

printed out all the reads that mapped to that position, each read was then 

checked for the presence of the WT or mutant base. Average read lengths for 

each set of reads was measured and statistical significance determined using a 

student’s t-test. As a comparison this analysis was also conducted on the 

sonicated cfDNA libraries, which did not show a significant difference between 

WT and mutation containing reads. 

 

http://www.mutationassessor.org/
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Copy-Number Analysis 

Copy number analysis was conducted using a previously published 

method.96 Briefly, read depth across the exome was determined and combined 

into adjacent segments. Average read depth for each segment was then 

compared to the same segment in the matched normal and converted into a log2 

copy number ratio and plotted using the DNAcopy R package. Due to the lower 

quality of the FFPE DNA from the primary tumor, the copy number analysis was 

unsuccessful. For patient #1 ctDNA percentage was too low to be successfully 

analyzed. 

Mutation Validation 

Primers were designed to cover a selection of mutations identified in each 

patient and then used to PCR amplify buffy coat, plasma, and tumor DNA 

samples from both patients. For each sample, amplicons were pooled in 

equimolar amounts and 10-100 ng were used for library creation using the Ion 

Xpress Plus Fragment Library Kit. Sequencing templates were generated using 

emulsion PCR on the Ion OneTouch 2 using the Ion PGM Template OT2 200 kit. 

Up to six barcoded samples were multiplexed on Ion 316 v2 chips. Sequencing 

was performed on a Personal Genome Machine (PGM) sequencer (Ion Torrent) 

using the Ion PGM 200 v2 sequencing kit. Torrent Suite software version 4.0.2 

was employed to align reads to hg19. Reads were visualized using IGV v 2.2.32 

(Broad Institute) and variant allele frequencies were determined for sites 

previously identified via Illumina sequencing.  
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Based ctDNA Detection Method 
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Introduction 

ctDNA is often present in primary and residual disease at allele 

frequencies well below one percent. This makes using standard next-gen 

sequencing methods problematic, as their per-base substitution error rates are 

typically around 0.1%, causing the signal from rare ctDNA mutations to become 

overwhelmed by the noise of sequencing error. A variety of techniques have 

been developed which reduced that error rate, allowing for the detection of rare 

ctDNA molecules. The two most popular methods are droplet-digital PCR 

(ddPCR) and the Safe Sequencing System (SafeSeqS). In ddPCR, DNA is 

separated into 10’s to 100’s of thousands of separate PCR reactions contained 

inside oil droplets each with either 0 or 1 of the DNA molecules of interest. 

Fluorescent, allele-specific probes indicate whether a given droplet contains the 

wild-type or mutant sequence. Then the fluorescent droplets are counted and the 

mutant allele frequency determined. This technique has a reported accuracy of 1 

part in 10k, but suffers from the allele-specific nature of the assay, limiting it to 

analyzing at most 5 alleles simultaneously.28 The lack of multiplexing ability 

severely limits the sensitivity of the assay and the reliance on a limited number of 

mutations is problematic when dealing with heterogeneous tumors as tracking 

only one or two mutations in ctDNA may not be representative of the ctDNA as a 

whole. 

SafeSeqs is a PCR based approach which relies on adding random, 

degenerate sequences to the initial DNA molecules (via an initial 2-5 cycle PCR 
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using template-specific primers containing degenerate barcodes), then copying 

and sequencing those molecules multiple times to create a consensus sequence 

of all reads containing the same degenerate barcode.31  This allows for errors 

introduced either in the PCR amplification of the library or errors made by the 

sequencer to be corrected, lowering the sequencing error rate from 1 in 1k to 

around 1 in 50k. The complex primers required for this assay are able to span up 

to 150 bp allowing for a single assay design to be used to detect multiple types of 

mutations in a given gene. However, there is only a limited ability to combine 

multiple sets of primers into a single assay, creating many of the same limitations 

to the technique as ddPCR. 

In order to overcome the limitations of these techniques, we sought to 

develop a hybrid-capture based approach which would (like SafeSeqS) introduce 

degenerate sequences to our input cfDNA molecules, but then allow for hybrid-

capture of dozens of mutations identified from a patient’s primary tumor. Using a 

larger panel of mutations to identify ctDNA would improve sensitivity, and 

potentially allows us to detect differential changes in allele frequency between 

multiple mutations. The technique we developed is Dual-Indexed Degenerate 

Adapters (DIDA).   
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Results 

Dual-Index Degenerate Adapters 

There are two key aspects of the adapter design: the degenerate barcode 

and the dual-index (Fig 12A). The adapter uses the standard design for Illumina 

sequencing adapters, with the key difference that a portion of the indexing region 

uses a string of 6 degenerate bases, which following ligation to cfDNA (Fig 12B) 

and library amplification (Fig 12C), will create multiple copies of the same 

template molecule with the same degenerate sequence. This degenerate 

barcode is necessary because the standard method of identifying independent 

molecules is to rely on the position of where the reads map to. However, in high 

depth sequencing, multiple independent molecules can map to the exact same 

position, and be incorrectly identified as duplicates. Following sequencing, these 

copies will be grouped by degenerate barcode and mapping position (Fig 12D), 

then collapsed into a Single-Stranded Consensus Sequence (SSCS) (Fig 12E). 

We required at least three of the copies (family members) to create the SSCS. In 

creating the SSCS, only bases which agree in over 90% of the family members 

are called, positions which fail this filter are instead called an “N” for unknown 

base. This approach allows stochastic errors introduced during library 

amplification and sequencing to be filtered out, lowering the substitution error 

rate to approximately 1 in 10-50k. 
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Figure 12. Overview of DIDA adapters, library creation, and consensus 
creation. A) Schematic of T-tailed DIDA adapter, regions in black are standard 
Illumina adapter sequences. B) Following ligation to A-tailed cfDNA (containing a 
point mutation) adapters are ligated to each side, index sequences are identical. 
C) Following library creation and amplification multiple copies of the same 
template molecule are created, a G is introduced through PCR error. Blue 
sequences are the indexes, red are the degenerate barcodes. D) Following 
sequencing and demultiplexing, reads are grouped by degenerate sequence and 
mapping region. Brown and green represent two different genomic regions. E) 
Reads are collapsed into SSCS, stochastic sequencing/PCR errors are replaced 
by N’s. 
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The dual-index is an important protection against cross-contamination and 

misassignment. There are two major sources of this error, contamination of the 

barcodes (during synthesis and/or liquid handling)97 and so-called index jumping, 

a process where PCR amplification creates a chimeric product through PCR-

mediated recombination.98,99 The combined effect of these factors can lead to 

assigning the incorrect index to a read 0.1-0.3% of the time.97,98 This can be quite 

problematic when attempting to identify mutations at low allele frequencies as 

mutant reads from a sample with a higher ctDNA allele frequency could be 

misassigned to a sample with a lower ctDNA allele frequency, confusing cross-

contamination for real signal. To overcome this complication, a dual-indexing 

strategy can be employed where each of the indexes of the Y-arm of the 

sequencing adapter are identical (Fig 12A). For a given read to be misassigned, 

both indexes would have to switch to a different pair of identical indexes. The 

study which proposed this method found it generated a 200-fold reduction in 

misassignment to 1 in 100k.98 Utilizing this approach in our own data we found 

that in a run with 16 multiplexed DIDA libraries (and therefore 240 additional, 

incorrect index combinations), 3.4% of the total reads were assigned to an 

incorrect index combination (Fig 13A). Looking more closely at the incorrect 

indexes we found that the two most common incorrect combinations (1+10 and 

10+3) accounted for roughly 6% of the total misassignments (Fig 13B). Taking 

the worst case scenario of a misassignment to the 10+10 index we estimate that 

only 1 out of 110k reads would receive this misassignment. In this hypothetical 

scenario, sample 1 (index 1+1) would receive a contaminated adapter containing 
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index 1+10, then had an “index jumping” event to create index 10+10. Assuming 

that this misassignment requires two independent steps, the likelihood of 

occurring is simply the product of the misassignment frequencies. Overall, these 

numbers are largely in agreement with the published literature, and gave us 

confidence that misassignment events would be sufficiently rare to minimize their 

impact on mutation detection. 

 

Figure 13. Distribution of dual-index assignment in DIDA run. A) Percentage 
of total reads assigned to each of 16 different multiplexed DIDA libraries, along 
with the 240 different combinations of incorrect index pairs. B) Distribution of 
incorrect read pairs as total reads from sequencing run in A.  
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Hybrid Capture 

The final aspect of the assay is the hybrid capture panel. Hybrid capture 

allows for the enrichment of specific regions of the genome through the use of 

biotinylated oligos. This is necessary as it quickly becomes cost prohibitive to 

sequence a large genomic region to the depth necessary for rare ctDNA 

detection. Typical hybrid capture experiments involve a single round of 

hybridization, capture, and amplification before sequencing. This results in >80% 

of sequenced reads being “on-target” (mapping one of the regions targeted). In 

our assay, much smaller panels are used (~10 kb vs >1 mb), the smaller panel 

size requires two rounds of hybrid capture to ensure efficient on-target 

enrichment (Fig 14).  

 

Figure 14. Benefits of two rounds of hybrid-capture. 27 DIDA libraries were 
sequenced following single and double hybrid-capture. The double capture 
protocol significantly improved on-target percentage (62% vs 20%, paired t-test). 
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Accuracy of DIDA Sequencing Panels 

A 10.2 kb hybrid capture panel was ordered targeting 96 somatic 

mutations previously identified from whole-exome sequencing of 5 primary breast 

tumors. To test the panel’s accuracy, 9 separate DIDA libraries were created 

from a negative control metastatic prostate cfDNA sample chosen both for its 

extremely high cfDNA concentration (738 ng/ml) and the absence of any 

mutations that the panel was designed to detect. 30-300 ng of input cfDNA was 

used to generate the library, allowing for extremely high depth sequencing. After 

pooling the 9 sets of SSCS, the average depth across the panel was 124,000X. 

Of the 96 sites the panel was designed to capture, only 90 were successfully 

captured. With 62 of those 90 sites having an error frequency of less than 1 in 

10k, and 29 sites not showing a single sequencing error (Fig 15A). Looking at the 

entire 10.2 kb capture region, we found similar performance, with 63% of the 

sequenced sites having an error frequency of less than 1 in 10k (Fig 15B). 

Analyzing previously sequenced whole-exome data, we found the error-

prone sites were significantly (p<.0001) more likely to have variant reads present 

in those exomes (red bars Fig 15A). The most likely explanation for this is that 

these represent regions of the genome that are difficult to map. The red bars 

don’t represent actual sequencing errors, but rather mapping errors. Requiring a 

stricter mapping quality filter in the initial exome sequencing used to design the 

panel would have removed 10 of the 12 most error prone sites. This filter was 

utilized in future panel design. 
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Figure 15. Accuracy of 96 site hybrid capture panel. A) Error frequency of 90 
mutations across 9 separate negative control samples sequenced to an average 
pooled depth of 124,000X. Red bars indicate mutations for which variant reads 
were identified in unrelated exome-sequencing experiments. 29 sites showed no 
errors. Error bars +/- SEM. B) Error frequency across entire 10.2kb of panel. 16% 
of the panel showed no errors.  

 



61 
 

We also analyzed the distribution of errors to see whether certain bases 

were more or less error prone (Fig 16A). A significantly higher proportion of sites 

without a single detected error had A’s or T’s as their reference base, with fewer 

perfect G’s, and almost no C’s having perfect reads. Analyzing the frequency of 

specific types of errors, we again saw that A’s and T’s outperformed G’c and C’s 

(Fig 16B). The prevalence of C>T errors was not surprising, as it is the result of 

deamination and had been previously seen in other sequencing error correction 

methods, whereas the C>G and G>C errors were unexpected.100 However, 

despite the high error rate associated with C>G and G>C errors, these errors 

were relatively rare, composing only 1.3% and 3.4% of the total errors at C and G 

sites, respectively. These results were incorporated into subsequent panel 

designs, preferring WT A’s and T’s, and taking specific care to avoid mutations 

which were C>G, C>T, or G>C. This somewhat restricted the number of 

mutations which could be incorporated into a panel, but with 30-50 mutations 

present in a typical breast cancer exome we were still routinely able to identify at 

least 20 mutations of interest. The second 96 site capture panel we designed 

incorporating these rules, along with stricter mapping quality filters of the initial 

exome mutation calls, improved the fraction of the panel performing better than 1 

error in 10k reads from 69% to 80%.  
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Figure 16. Distribution of sequencing errors. A) Comparison of the number of 
sites which are error-free based on the identity of the WT base. All pairwise 
comparisons except A-T are statistically significant (p<0.0001). B) Median error 
frequency for each class of sequencing error. Asterisks indicate that class is 
significantly different from all none asterisk classes. Error bars 95% CI.  

In addition to accuracy, we were concerned about the reproducibility of the 

assay. As the negative control sample was specifically chosen for not sharing 

any mutations the panels were designed for, we relied on heterozygous SNP 

sites adjacent (within 200 bp) to the mutations of interest (Fig 17). The 17 SNPs 
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identified generally showed low variations between samples, with standard 

deviations ranging from 1.4%-6.8% (median of 2.6%). 

 

Figure 17. Reproducibility of variant allele percentages. Box and whisker plot 
depicting variant allele percentages for 17 heterozygous SNPs which were 
captured by the panel. All SNPs were within 200 bp of tumor-specific mutations 
the panel was designed to capture. 

 

Identification and Filtering of Tag Swaps 

We noticed that mapped SSCSs tended to cluster at identical insert 

positions. This is not surprising for high depth sequencing, however, at sites with 

mutations present, identically mapped reads tended to have the exact same 

sequence, which was quite surprising (Fig 18A). In this example there are 4 sets 

of mapping positions all showing a C>G mutation, this position in reality had 

1,200 mapped SSCSs, making it extremely unlikely that the 15 mutant reads only 

mapped to 4 different positions, and no reads mapping at those positions had the 

WT base. Looking more closely at the barcodes (red sequences in Fig 18a), we 

noticed that SSCSs with identical mapping sites also had one half of their 
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barcode match exactly (shown schematically as being on either end of the read). 

This was likely caused by one of the barcodes being replaced during one of the 

amplification steps, similar to the “index jumping” phenomenon mentioned above. 

In the example of the blue reads, we see the right side barcodes having identical 

TAAG sequences, while the left differ by a single base, this is likely a sequencing 

or PCR error which created a new barcode. Looking at the orange reads we see 

the top 3 reads have identical left barcodes, and the bottom 4 reads have 

identical left barcodes. In this example there were likely two separate swaps 

which occurred, linked by the GCTG-ATTT 3rd read, allowing us to collapse these 

6 reads down to 1.  

The presence of these tag swaps could potentially skew the mutant allele 

frequencies we detect, and cause us to overestimate our sequencing depth and 

sensitivity. We set out to filter these reads out by collapsing SSCSs which had 

the entirety of either half of their barcodes match identically, and mapped to the 

exact same start/stop positions (Fig 18B). This filter removed on average 10% of 

the SSCS, with samples in the same sequencing run behaving similarly (Fig 

19A). There are significantly fewer SSCSs filtered from single-captured samples 

vs double-captured ones (Fig 19B). A possible explanation is that the additional 

PCR cycles associated with the double-capture makes tag swapping more likely. 

Despite this additional filtering, depth remains significantly higher in the double-

captured libraries (Fig 19C).  
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Figure 18. Identification and filtering of tag swaps. A) Representation of IGV 
view of SSCS reads mapping to a C>G mutation. All reads of the same color 
have the exact same start and stop sites. 4 red bases on either end of the read 
are representations of the first (left) and second (right) barcode assigned during 
consensus creation. Reads of the same color and with identical barcodes on 
either end are likely tag swaps. B) IGV view following tag swap filtering, orange 
and red reads may be duplicated molecules unable to be filtered out using tag 
swaps. 
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Figure 19. Tag swap filtering. A) Percent of SSCSs filtered out by the tag swap 
filter for each of six separate sequencing runs. Each point represents an 
individual DIDA sample. Error bars +/- SEM. B) Single-captured libraries have 
significantly fewer reads removed by the tag swap filter. Error bars +/- SEM. C) 
Following swap filter, double-captured libraries have significantly higher average 
depth. 

 

Following tag swap filtering, there was still substantial evidence of 

mutations clustering in SSCSs mapping to identical positions, indicating that our 

tag swap filter was not identifying all potential tag swaps (red reads Fig 18b). 

When two or more of these SSCSs mapping to the exact same position 

overlapped with a heterozygous SNP site, both alleles were represented only 

17% of the time (opposed to the 50% that would be expected). This indicates that 



67 
 

the majority of SSCSs which passed the tag swap filter, but still map to the exact 

same position, are likely derived from the same initial cfDNA molecule. In an 

effort to remove these artifacts, we made the decision to collapse SSCS which 

have identical cfDNA sequences and map to the exact same position regardless 

of their barcode sequences.  

To determine whether this issue was unique to our data, or a more 

widespread phenomenon, we analyzed published data from the iDES paper.33 

Their barcoding strategy is similar to ours, using a 4 bp degenerate barcode in 

only one of the indexing regions, and two, 2 bp degenerate sequences on either 

side of the cfDNA insert (Fig 20). For purposes of analysis we combined the two, 

2 bp barcodes into a single 4 bp barcode, allowing us to use our analysis pipeline 

on their data. Following SSCS creation, we determined that 6% of their 

consensus sequences were indeed tag swaps. From our own data we believe 

this is likely an underestimation of the issue, however it is possible their 

barcoding strategy of 2 bp barcodes on either side of the DNA insert may in fact 

be less prone to tag swapping. 

 

Figure 20. Overview of iDES adapter (Adapted from Newman et. al.33) 
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Discussion 

We were successfully able to develop an assay which reliably generates 

low-error SSCSs targeting up to 96 mutations of interest simultaneously. Using 

some relatively simple filtering metrics, we were able to design capture panels 

which could sequence 80% of their mutations of interest with less than 1 error in 

10k reads. A subset of sites showed substantially better error frequencies, and it 

is possible that through more advanced filtering techniques, these extremely 

accurate sites could be enriched for.  

We also identified a systematic source of depth overestimation using 

adapters containing degenerate barcodes. Experimental and bioinformatic 

methods need to be further optimized to minimize and efficiently filter out these 

tag swaps. After aggressive filtering of the tag swaps the overall efficiency of 

DIDA library creation dropped to an average of just under 10%. This is 

considerably less than the 50% efficiency reported in the iDES technique, but 

that number does not take into account any tag swap filtering, meaning they are 

likely overestimating their efficiency. Our 10% efficiency is still sufficient to 

reliably survey 10,000 molecules across a given patient-specific panel, a 

substantial improvement from our attempts using SafeSeqS.  
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Methods 

DIDA Adapters 

DIDA adapters were modified from Illumina TruSeq HT adapters, 

expanding the index region of the adapter to 14 bp, 6 bp of which were ordered 

as degenerate N’s (machine mixed). To ensure minimal cross-contamination of 

indexes, adapters were ordered as HPLC purified, TrueGrade adapters. 

Adapter sequence, X=index N=degenerate barcode: 

i5 Adapter: 

AATGATACGGCGACCACCGAGATCTACACXXXXNNNNNNXXXXACACTCTTT
CCCTACACGACGCTCTTCCGATC*T 

i7 Adapter: 

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXNNNNNNXXX
XATCTCGTATGCCGTCTTCTGCTTG 

 

Hybrid Capture Panels 

Hybrid capture panels were designed using the IDT Target Capture Probe 

Design tool (https://www.idtdna.com/site/order/ngs). 96 sites of interest were 

chosen from previously whole-exome sequenced primary breast tumors. 96, 120 

bp biotinylated oligos were ordered as a 96-well plate at 8 reactions per oligo. 

When choosing which mutations to select, sites with A and T as the WT base 

were preferentially chosen over G or C sites with the exception of those 

mutations which were in the COSMIC database, as these mutations were of 

significant interest. 

https://www.idtdna.com/site/order/ngs
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DIDA Library Creation 

DIDA libraries were created using the Kapa Biosystems Hyper Prep kit 

(https://www.kapabiosystems.com/). At least 30 ng of cfDNA was used as input. 

Ligation occurred using a 200:1 adapter:template ratio for 16 hours at 16°C 

ensure a high efficiency ligation. PCR was conducted to create a 1ug library 

(typically 8-10 cycles). Library concentration and size was determined using the 

Agilent Bioanlyzer 2100 high sensitivity kit. 250 ng of the library was then 

combined with 250 ng from a different sample and input into the duplexed hybrid 

capture, allowing the remaining 750 ng to be used for subsequent hybrid 

captures. Hybrid capture was conducted using the IDT Hybridization and Wash 

kit (https://www.idtdna.com/pages/products/nextgen/target-capture/hybridization-

and-wash-kit). As a cost saving measure, custom blocking oligos were ordered 

from IDT, inosines were placed opposite variable portions of the adapter. 

i5 Blocking Oligo: 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTiiiiiiiiiiiiiiGTGTAGATCTCGG
TGGTCGCCGTATCATT 

i7 Blocking Oligo 

CAAGCAGAAGACGGCATACGAGATiiiiiiiiiiiiiiGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATC 

Following the first 4 hour hybridization and capture, libraries were 

amplified for 12 cycles and purified. The library was hybridized and captured a 

second time, and amplified for an additional 13 cycles. Library size was 

determined using the Agilent Bioanalyzer 2100 high sensitivity kit and 

https://www.kapabiosystems.com/
https://www.idtdna.com/pages/products/nextgen/target-capture/hybridization-and-wash-kit
https://www.idtdna.com/pages/products/nextgen/target-capture/hybridization-and-wash-kit
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concentration was determined using the Kapa Biosystems Library Quantification 

Kit.  

Sequencing 

Samples were sequenced on either the Illumina HiSeq 2500, paired-end 

100 bp plus 14 bp X2 indexing cycles (high capacity, rapid run mode), or Illumina 

NextSeq 500, paired-end 75 bp plus 14 bp X2 indexing cycles (high capacity, 

150 cycle kit).  

DIDA Bioinformatics Analysis Pipeline 

The pipeline for analyzing DIDA data was based on the duplex 

sequencing pipeline developed in the Loeb lab at the University of Washington.34 

Substantial modification was required to allow it to work with our data. In brief, 

indexing reads (containing sample index and degenerate barcode) are 

prepended to each of the paired end reads. Migec checkout was used to 

demultiplex the samples.101 Then a modified version of the duplex sequencing 

pipeline is used which: 

1. Aligns reads using BWA mem 

2. Groups reads by barcode, collapsing into SSCSs (requiring at least 

3 reads and 90% sequence agreement) 

3. SSCSs are then aligned again with bwa mem 

4. SSCSs are locally realigned using GATK 
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5. bases from either end of the reads (containing lower quality 

sequences) are trimmed and replaced with N’s 

6. Overlapping paired end reads are clipped (to prevent double 

couting) using bamUtil clipOverlap 

(http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap)  

7. Duplicates are removed using bamUtil dedup 

(http://genome.sph.umich.edu/wiki/BamUtil:_dedup)  

8. Basecalls are made using Samtools mpileup (version 1.2), and 

variant allele frequencies are calculated using a custom perl script 

9. On target percentages are identified using Picard Tools 

CalculateHsMetrics (https://broadinstitute.github.io/picard/command-line-

overview.html).  

Tag Swap Filter 

The tag swap filter was written as a python script utilizing pysam to identify reads 

mapping to the exact same position, and the Distance 0.1.3 package to identify 

identical barcodes to be filtered. 

  

http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
http://genome.sph.umich.edu/wiki/BamUtil:_dedup
https://broadinstitute.github.io/picard/command-line-overview.html
https://broadinstitute.github.io/picard/command-line-overview.html
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Measuring circulating-tumor DNA Dynamics in 

Neoadjuvantly Treated Breast Cancer 

Timothy M. Butler, Katie Johnson-Camacho, Christopher Boniface, Daira 

Melendez, Shaadi Tabatabaei, Paul T. Spellman 
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Introduction 

Approximately 1 in 8 women will receive a breast cancer diagnosis in their 

lifetime.102 Breast cancer can be divided into three major subtypes defined by the 

overexpression of estrogen receptor (ER+) and human epidermal growth factor 

2-neu (HER2+) or their absence (triple-negative breast cancer, TNBC). These 

subtypes also correlate with gene expression signatures and prognosis: ER+ 

having good prognosis and HER2+ and TNBC having worse prognosis.103,104 

Breast cancer is typically treated with chemotherapy combined with surgery and, 

if appropriate, an agent targeting the estrogen or HER2 receptors. This regimen 

results in 70% of patients remaining disease-free at five years across all 

subtypes.105  

Neoadjuvant (before surgery) chemotherapy has become an increasingly 

common treatment in breast cancer.106 The first study testing this treatment 

approach showed that while patient outcomes were nearly identical, patients 

given neoadjuvant chemo were more likely to receive a less aggressive, breast-

conservation surgery. They were also less likely to have evidence of disease in 

the axillary lymph nodes.107 In addition, patients undergoing neoadjuvant 

treatment could be assessed for pathological complete response (pCR), the 

complete absence of disease following treatment. pCR is an early prognostic 

marker, as those who achieve pCR have significantly increased disease-free and 

overall survival.108 pCR rates are not uniform across subtypes, being both more 

common and having more prognostic value in HER2+ and TNBC 
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disease.104,108,109 Neoadjuvant chemotherapy is typically divided into two 

separate treatments given sequentially: the first treatment referred to as AC, 

which uses the DNA intercalator doxorubicin and the DNA crosslinker 

cyclophosphamide; the second treatment uses the microtubule inhibitor paclitaxel 

(Taxol). These drugs are typically administered every two weeks for 3-6 months. 

Taxol is typically a better tolerated therapy than AC, so in drug trials adding new 

agents to neoadjuvant chemotherapy, the investigative drug is typically combined 

with Taxol and done prior to the AC arm.110,111  

Most patients receiving neoadjuvant chemotherapy have some response 

during the course of their treatment; however, a small subset shows no response 

(6%) or progression (3%).112 These patients could possibly benefit from stopping 

treatment and moving straight to surgery. Studies have demonstrated a positive 

correlation between disease burden and ctDNA level. However, these studies 

have only analyzed this relationship during metastatic disease32,40,59,113 or by 

comparing pre- and post-treatment ctDNA and associating it with treatment 

outcome.58 A potential use case for ctDNA analysis is near real-time monitoring 

of a patient’s response to treatment. This would allow for rapid feedback as to 

whether a given therapy is working, thereby allowing for ineffective therapies to 

be stopped. In addition, tracking multiple mutations of interest through ctDNA 

could allow for an understanding of whether certain mutations are being selected 

for or against during treatment.  
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In this study, we set out to measure ctDNA levels before, during, and after 

neoadjuvant treatment to determine whether early predictors of response could 

be seen. We find that there is a dramatic reduction in ctDNA level during the 

course of treatment in patients with and without pCR, possibly due to the timing 

of our ctDNA analysis. In the one patient who had treatment stopped due to 

progression, we find a consistent increase in ctDNA over the course of treatment, 

which was seen earlier than progression was seen clinically. This same patient 

showed residual ctDNA following treatment and adjuvant chemotherapy, 

preceding clinical detection of recurrence by over 7 months. We therefore 

conclude that our sampling strategy may be insufficient to reliably predict pCR, 

but shows promise in early prediction of progression.  
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Results 

Study Design 

 

Figure 21. Plasma and tissue sampling strategy. Overview of study design 
collecting tumor tissue and plasma samples before, during, and after 
neoadjuvant chemotherapy. On-treatment plasma samples were taken in the 
infusion clinic before administration of drug. 

 

This study is designed to quantify ctDNA taken before, during, and after 

neoadjuvantly treated breast cancer, in an effort to correlate ctDNA dynamics 

with treatment outcomes (Fig 21). To accomplish this, patients slated for 

neoadjuvant chemotherapy were identified and consented as part of an IRB 

approved study which allowed us to obtain samples of their tumor tissue, ability 

to get blood draws, and access to their medical records. A 30 ml blood draw was 

collected before the start of neoadjuvant chemotherapy, prior to the start of each 

infusion appointment, prior to surgery, following surgery, and at approximately six 

month intervals following surgery during routine follow up appointments. Each of 

these blood draws were separated into buffy coat and plasma sample and stored 

for further processing. In addition to blood draws, we also collected sample(s) of 
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the patient’s tumor. Tumor samples were collected as research specific biopsies 

before treatment (7 patients) or sections from archived diagnostic biopsies (1 

patient), for two patients we also collected surgical tissue. The tumor tissue was 

used to conduct whole-exome sequencing to generate a list of tumor-specific 

mutations, 10-20 of which were ordered as part of a hybrid capture panel for 

ctDNA analysis. The serially collected plasma samples was analyzed to quantify 

the ctDNA relying on these tumor-specific mutations using the DIDA high 

accuracy sequencing method. A subset of the samples were also analyzed using 

PCR-based high accuracy sequencing method called SafeSeqS, with which we 

only assayed one mutation at a time. We then compared the ctDNA frequencies 

with the patient’s clinical data to see if there was a correlation with treatment 

outcome. 

As part of this study we consented 18 patients. We were unable to get 

tumor tissue released for 5 of the patients, treatment has not yet been completed 

for 3 patients, and hybrid capture panels had not yet been ordered for 3 of the 

patients. The remaining 7 patients analyzed in detail represented all 3 major 

breast cancer subtypes with 2 patients having achieved pCR (Table 7).  
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Patient 
ID 

Tumor 
Grade 

Path 
CR 

Pre-Treatment 
Dimensions 

Post-Treatment 
Dimensions 

Node 
Positive 

ER-1 3 No 2.2 X 2.0 0.8 X 0.5 No 
ER-2 1 No 2.7 X 2.3 4.5 X 4.0 Yes 
ER+HER2-1 2 No 5.8 X 5.7 4.3 X 2.1 Yes 
ER+HER2-2 3 No 2.2 X 2.0 3.4 X 2.9 Yes 
Her2-1 3 Yes 2.2 X 1.8 0 No 
Triple Neg-1 2 Yes 5.3 X 4.5 0 No 
Triple Neg-2 3 No 2.7 X 2.3 5.0 X 2.5 Yes 

Table 7. Enrolled patient characteristics. Patient ID’s are described by their 
breast cancer subtype. ER+HER2 are patients positive for both ER and HER2. 
Pre- and post-treatment dimensions are the largest two dimensions of the tumor 
by MRI. Node positive refers to presence of lymph node metastases from the 
surgical specimen. 

 

cfDNA Concentration Increases During Treatment 

The enrolled patients were treated using three different regimen: standard 

neoadjuvant regiment of AC followed by Taxol (2), patients that were part of the 

ISPY2-TRIAL which starts with the Taxol treatment combined with and 

investigational drug followed by AC (3), and patients who underwent an anti-

HER2 treatment followed by AC (2). We first sought to determine if there were 

any differences in the cfDNA concentrations under different treatment conditions 

(Fig 22). We found that the cfDNA concentration was significantly elevated in the 

plasma for both AC (average of 4-fold) and Taxol (average of 3-fold) treatments. 

It is possible that the increased concentration is the result of cell death (of both 

normal and tumor cell) resulting from these therapies. This additional cfDNA 

gave us improved yields from our plasma collection. However, if the additional 

cfDNA was primarily from healthy cells, it would make detection of ctDNA more 

difficult by diluting the signal. To overcome some of the difficulties of varying 

cfDNA concentration, we opted to calculated ctDNA detection as mutant 
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genomes per ml of plasma, rather than simply the mutant allele frequency 

detected. This was accomplished by simply correcting the allele frequency by the 

cfDNA concentration. 

 

Figure 22. cfDNA Concentration increases during neoadjuvant 
chemotherapy. Each point represents the average cfDNA concentration for all 
plasma samples from a single patient under a single treatment condition. Each of 
the 8 patients had at least one pre-treatment and one of AC or Taxol as part of 
treatment, 4 had both. Error bars +/- SEM. 

 

Pre-Treatment ctDNA concentration 

Using the patient-specific DIDA panels, pre-treatment ctDNA was 

quantified in each of the patients (Fig 23). ctDNA was detectable in each of the 

samples at average allele percentages between 0.016-0.76%. Our 100% 

detection rate is somewhat higher than the 50% previously reported in localized 

breast cancer, and may highlight the advantages of using a larger panel over 
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tracking a single mutation.17 The comparison between ctDNA allele percentage 

(Fig 23A) and mutant genome per ml (Fig 23B) shows the impact of adjusting the 

allele frequency by cfDNA concentration, creating less variation between the 

samples. Patient ER-1 had only a single mutant read detected of the >6,000 

combined reads across the panel; it is possible this is a false positive. Even if this 

is a true mutation, the extremely low frequency makes detection difficult and 

seeing a dynamic range nearly impossible. In fact, all subsequent plasma 

samples had no detectable ctDNA (data not shown). The remaining 6 patients all 

had multiple mutant reads detected across multiple different tumor-specific 

mutations, ranging from 8-15 detected mutations. Detection of ctDNA in these 

pre-treatment samples was used as a positive control for the mutations in the 

panel, mutations not seen in the pre-treatment sample, or present in a 

subsequent sample, were excluded from analysis. The mutations failing the 

positive control filter are possibly false-positive mutations which were never 

present in the tumor, or belong to tumor clones not readily shedding their DNA 

into the plasma. 
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Figure 23. Average pre-treatment ctDNA levels. Average ctDNA percentage 
(A) or mutant genomes per ml (B) from DIDA sequencing panels. Sample Triple 
Neg-2 had two pre-treatment plasma samples on different days. 

 

ctDNA Dynamics in pCR Patients 

For the first pCR patient, Triple Neg-1, was part of the ISPY-2 TRIAL and 

received Ganiumab in addition to Taxol as the first treatment. We utilized a single 

gene SafeSeqS assay targeting a mutation in RTN2 (serial DIDA results are still 

planned). Unfortunately, this particular mutation was not successfully captured by 

the DIDA panel used on Triple Neg-1’s pre-treatment sample, so a direct 

comparison is not possible. Comparing the two methods, the DIDA panel yielded 

a slightly higher mutant genome measurement than SafeSeqS (4.2 vs 2.3). It is 

possible this difference is due to sampling multiple mutations in the DIDA panel, 

different biases in the techniques, sampling noise, or some combination of all 

three. Tracking the ctDNA measurement over time shows a dramatic decrease in 

ctDNA level at the start of treatment which quickly becomes, and remains, 

undetectable (Fig 24). This is the kind of pattern we expected from a patient with 
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pCR, at some point during treatment the tumor completely disappears and this is 

reflected in the absence of ctDNA. The reduction that occurs at day 20 is just 

above the limit of detection of this assay, so it is not possible to know for sure 

whether ctDNA at subsequent time points is just below the limit of detection or 

completely absent. 

 

Figure 24. Triple Neg-1 ctDNA dynamics. ctDNA as measured by RTN2 
SafeSeqS assay. Following day 20 time point, ctDNA remained undetectable. 
Ganitumab is a monoclonal antibody targeting IGF-1R. 

 

For the second pCR patient, Her2-1, we were able to deploy a 19 gene 

DIDA panel, with the 15 mutations generating less than 1 error in 10k reads 

included in our analysis (Table 8). This patient showed a similar reduction during 

the first therapy arm (targeting HER2), but also had detectable ctDNA during the 

AC treatment (Fig 25). Again, the ctDNA levels were near the limit of detection of 

this assay (10k total depth across the panel). Of note, despite having similar 

ctDNA allele percentages, the day 23 and 109 time points yielded significantly 
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different mutant genome calculations (Fig 5B). This is due to the over 4-fold 

increase in cfDNA concentration which occurred between the first and second 

treatments. In contrast to Triple Neg-1, ctDNA was seen during the second 

treatment, potentially indicating residual tumor which was eventually eliminated 

by the AC treatment.  

From the two pCR patients we saw a ctDNA reduction following start of 

treatment, leading to eventual disappearance. ctDNA remained undetectable 

following surgery, and neither patient has shown any clinical recurrence. The 

presence of ctDNA in the AC arm of Her2-1 may indicate that the AC treatment 

was responsible for the pCR, further exploration of identically treated patients is 

necessary to expand on these results. 
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Figure 25. Her2-1 ctDNA dynamics. A) ctDNA allele percentage across serially 
collected plasma samples, average calculated from 15, high accuracy mutations. 
B) Mutant genomes per ml plasma calculation, correcting percentage 
calculations by the cfDNA concentration at each time point. Pert is abbreviation 
for the anti-Her2 monoclonal antibody Pertuzamab. 
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Chr Position Ref 
Base 

Mut 
Base 

Gene Errors Per 
100k Reads 

4 68606283 G C GNRHR 0.00 
4 68606341 G C GNRHR 0.00 
4 1.64E+08 G C NPY5R 0.00 
5 1.15E+08 G C CCDC112 0.00 

12 1.18E+08 G C NOS1 0.00 
18 10689765 G T FAM38B 0.00 
20 62421387 C G ZBTB46 0.00 
1 2.05E+08 C T CNTN2 2.00 
6 26199793 G A HIST1H2BF 2.75 
7 5541095 C T FBXL18 2.76 

17 34854330 G A MYO19 5.76 
18 58039394 G T MC4R 8.27 
X 70389754 G A NLGN3 8.41 
11 20177994 G A DBX1 9.06 
6 31838426 G A SLC44A4 18.83 

19 50365659 G A PNKP 20.15 
X 1.06E+08 C A RNF128 21.10 
17 7577550 C T TP53 23.90 
19 44792318 T A ZNF235 416.59 

Table 8. Her2-1, 19 gene DIDA panel. Only mutations with less than 10 errors 
per 100k reads were included as part of the analysis. 

 

ctDNA Dynamics in non-pCR Patients 

Patient ER-2 did not achieve pCR, in fact the pre-surgery MRI revealed a 

larger tumor than at the start of treatment, likely indicating progression during 

treatment (Table 7). Utilizing a 22-gene DIDA panel (Table 9) we were able to 

see evidence for this increase reflected in the ctDNA (Fig 26). After an initial 

decrease and disappearance during AC, the ctDNA increases over the course of 

the Taxol time points. This potentially shows that while AC was effective in 

reducing the ctDNA level (and possibly shrinking the tumor), Taxol was 

ineffective and possibly even permitted tumor growth. ctDNA remained 

detectable 11 days following surgery, indicating a potential increased risk of 

recurrence. However, following a 50 Gray chest irradiation, ctDNA was 



87 
 

undetectable and remained undetectable a year later. It is possible that the 

radiation treatment removed any residual tumor cells contributing detectable 

ctDNA. Surprisingly, we saw a dramatic decrease in ctDNA between the first and 

second pre-treatment ctDNA samples. It is unlikely this reflects any change in the 

tumor size, and we do not have enough examples of multiple pre-treatment 

ctDNA time points to know if this kind of variation is typical.  

Chr Position Ref 
Base 

Mut 
Base 

Gene Errors Per 
100k Reads 

1 157494285 G T FCRL5 0.00 
2 202136322 A G CASP8 0.00 

15 77025665 A T SCAPER 0.00 
20 61299857 G A SLCO4A1 0.00 
2 74425738 T A MTHFD2 0.00 
5 95103456 A G RHOBTB3 0.00 
8 29194273 A C DUSP4 0.00 

14 63841230 T C PPP2R5E 0.00 
18 29057302 T C DSG3 0.00 
17 33768040 G A SLFN13 0.72 
12 122702878 T C DIABLO 1.30 
8 98943465 G A MATN2 1.32 
1 228444416 C T OBSCN 1.72 

19 44097516 G A IRGQ 1.73 
11 65161973 T G FRMD8 2.55 
17 71189512 C G COG1 2.64 
18 19154544 C T ESCO1 2.73 
8 52733196 C A PCMTD1 3.48 

14 77242554 C T VASH1 4.25 
17 7577121 G A TP53 5.58 
18 48255582 C T MAPK4 10.45 
1 152282617 G A FLG 33.53 

Table 9.  ER-2, 22 gene DIDA panel. 
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Figure 26. ER-2 ctDNA dynamics. 50 Gray of radiation were administered in 
the post-surgery setting. 

Two additional non-pCR patients, ER+HER2-1 and ER+HER2-2 did not 

show a consistent increase in ctDNA during treatment, but had ctDNA 

stochastically detected throughout treatment (Fig 27). ER+HER2-2 had an initial 

increase in ctDNA level, followed by a decrease to just at the limit of detection of 

the assay. ctDNA was detectable pre-surgery as well as two days following 

surgery (Fig 27A). This post-surgery ctDNA may represent residual tumor cells, 

or simply be leftover ctDNA as has been seen in another study looking at ctDNA 

shortly after surgery.30 The day 484 time point is based on a single mutant read 

and may represent a false positive, or indicate a small amount of residual 

disease. ER+HER2-1 had a relatively poor performing panel, with only 6 

mutations passing our accuracy filter, giving us an average total panel depth of 

only 2,000-4,000X, a 2-5 fold reduction in sensitivity compared to the other 

patients. Despite this, there were three on-treatment time points with detectable 
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ctDNA (Fig 27B). Following surgery, ctDNA was undetectable and remained so. 

Neither ER+HER-1 nor -2 have recurred. 

 

Figure 27. ER+HER2-2 and ER+HER2-1 ctDNA dynamics. A) Patient 
ER+HER2-2. Day 200, post-surgery time point was collected 2 days following 
surgery. Error bars +/- SEM B) Patient ER+HER2-1. *Patient treated with Taxol, 
Herceptin, and MK2206 (AKT inhibitor), MK2206 treatment stopped due to 
toxicity issues. 
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Chr Position Ref 
Base 

Mut 
Base 

Gene Errors Per 
100k Reads 

2 85628387 G C CAPG 0 
10 37425504 G T ANKRD30A 0 
10 127414256 A G C10orf137 0 
22 43924660 C G EFCAB6 0 
22 43926736 C G EFCAB6 0 
17 7577141 C A TP53 4.034698 
16 23716446 G A ERN2 16.99428 

4 72101926 G C SLC4A4 123.8673 
10 46179929 C G IGR 255.102 
12 87475 T C IGR 580.6755 
13 114058885 G T IGR 753.1494 

X 119572319 T A LAMP2 880.8885 
1 121478645 T C IGR 1779.256 
9 39078814 C A CNTNAP3 2329.322 
2 31414288 C A CAPN14 2909.179 

19 56284464 A G RFPL4AL 3548.6 
14 20098038 A G RP11 4919.302 
16 32487123 T C IGR 14611.74 

Table 10. ER+HER2-1, 18 gene DIDA panel 

 

Chr Position Ref 
Base 

Mut 
Base 

Gene Errors Per 
100k Reads 

1 86171847 C G ZNHIT6 0.00 
2 80772064 C A CTNNA2 0.00 
5 16179191 T G MARCH11 0.00 
8 1.01E+08 C T RGS22 0.00 
9 1.37E+08 C G BRD3 0.00 

11 6190651 A G OR52B2 0.00 
11 6977691 T G ZNF215 0.00 
12 1.21E+08 G C CCDC64 0.00 
15 33442736 C G FMN1 0.00 
17 7577114 C T TP53 0.00 
17 8079184 A C TMEM107 0.00 
20 31659933 C T  BPIFB3 3.40 
16 72831707 C T ZFHX3 26.48 
13 1.13E+08 C T SOX1 37.68 
16 15178612 C T RRN3 1566.48 

Table 11. Triple Neg-2, 15 gene DIDA panel.  
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Detection of Minimal Residual Disease 

Our final patient, Triple Neg-2, stopped neoadjuvant treatment early due to 

discovery of metastasis in the lymph nodes, indicating disease progression on 

treatment. Using our 15 gene DIDA panel (Table 11), ctDNA was seen to 

increase throughout the AC treatment, ending up higher than the pre-treatment 

samples (Fig 28). Following surgery, ctDNA was barely detectable (only 2 mutant 

reads seen) and increased slightly following adjuvant Taxol treatment (4 mutant 

reads). The detectable post-treatment ctDNA indicated the patient was at 

increased risk for recurrence, and in fact 7 months later was diagnosed with bone 

metastases. A plasma sample taken at a follow up appointment two weeks prior 

to diagnosis, showed a dramatic increase in ctDNA level as expected with 

metastatic disease. The metastatic ctDNA had 14 of the 15 panel mutations 

present. The high ctDNA allele percentage of 15% makes it possible to conduct 

whole-exome sequencing on this time point to look for any metastasis-specific 

mutations. In contrast to ER-2, the two pre-treatment plasma samples showed 

very similar amounts of ctDNA. 
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Figure 28. Triple Neg-3 ctDNA dynamics. Error bars +/- SEM, time points -10 
and 84 have error bars too small to display.  
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Discussion 

In this study we demonstrated the ability to design patient-specific hybrid 

capture panels to sensitively detect ctDNA before, during, and after neoadjuvant 

chemotherapy. We also demonstrated a significant increase in total cfDNA during 

either Taxol or AC treatment, an observation that may serve as a proxy for 

increased death of normal cells. 

In every patient, except Triple Neg-2, we saw a dramatic decrease in 

ctDNA level at some point during neoadjuvant treatment. This decrease was near 

the limit of sensitivity of the assay and likely meant that several of the 

undetectable time points had ctDNA present below the limit of detection rather 

than not present at all. It also meant that ctDNA detection for many of these time 

points was based on detection of fewer than 5 mutant reads, making estimates of 

ctDNA level quite noisy. Improving library efficiency and therefore sequencing 

depth and/or inputting more cfDNA into the assay may help address some of 

these detection limit issues. 

The two pCR patients appeared to have fewer detectable on-treatment 

ctDNA time points than the non-pCR patients, potentially indicating a relationship 

between pCR and ctDNA. However, the similar ctDNA reduction also seen in ER-

2, and ER+Her2-1 and -2 makes differentiating the ctDNA response between 

pCR and non-pCR difficult, especially based only on the early time points. With 

only two pCR patients it is impossible to know for certain whether ctDNA can 

predict pCR, but these results warrant further study. 
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In two patients, Triple Neg-2 and ER-2, we saw increasing ctDNA levels 

across three consecutive treatment time points, which corresponded to increased 

tumor size. In Triple Neg-2 progression was identified clinically and the treatment 

plan was altered. Taken together these results indicate a role for ctDNA analysis 

in identifying tumor progression and stopping ineffective therapies. It might also 

be possible to track ctDNA in identically treated individuals to see if different 

arms of neoadjuvant therapy are more or less effective with different tumor 

subtypes. In both these patients, we also detected ctDNA following surgery, a 

result which has been shown to indicate a risk of recurrence.65 In Triple Neg-2 

this recurrence occurred 7 months following the ctDNA detection. Detection of 

ctDNA before and after adjuvant Taxol and radiation likely indicated those 

treatments were ineffective. In contrast ER-2 had their post-surgery ctDNA 

disappear following radiation treatment potentially demonstrating its 

effectiveness. This highlights a potential role for post-surgery ctDNA analysis in 

prediction of recurrence and assessment of adjuvant treatment effectiveness. 

One could imagine a scenario of using multiple adjuvant treatments until ctDNA 

became undetectable. Similarly, an adjuvant treatment could be avoided if ctDNA 

was never detected post-surgery. 

The plasma sampling strategy we used collected blood prior to 

chemotherapy infusion. This strategy was chosen for simplicity as the patients 

were already in the clinic. However, it is possible the timing of collection, two 

weeks after the previous drug administration, hurt our ability to detect ctDNA. A 

sampling schedule that collected blood two or three days after infusion might 
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have detected ctDNA from actively dying cells. However, this signal may no 

longer be present after two weeks. Additional studies looking at the timing of 

ctDNA release following drug administration could provide valuable insight into 

how to best detect on-treatment ctDNA, and could measure the kinetics of tumor 

cell death. 

These results highlight the potential of neoadjuvant ctDNA analysis to 

identify pCR, tumor progression, measure adjuvant treatment effectiveness, and 

predict recurrence. Additional work is needed to expand on and replicate these 

findings, and develop standardized methods of assaying ctDNA. It is possible 

that similarly promising results may be found in additional tumor types or 

treatment regimens, opening the door for ctDNA analysis to contribute to patient 

treatment decisions and improving clinical outcomes. 
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Methods 

Patient Enrollment and Sample Collection 

Written consent was obtained from patients as part of two studies 

approved by Oregon Health & Science University’s Institutional Review board: 

Breast Cancer Registry (IRB# 8314) or Tumor in Blood (IRB# 10163). Up to 30 

mls of blood were collected in 5, 6 ml purple-capped EDTA tubes. Plasma was 

isolated by first spinning at 1,000 g for 10 mins, separating the top plasma layer 

into 1 ml aliquots, then spinning those aliquots at 15,000 g for 10 mins, 

transferring the supernatant to cryovials and storing at -80°C. Buffy coat was 

isolated from the intermediate blood layer following the first spin, and also stored 

at -80°C. cfDNA was extracted using the QIAamp Circulating Nucleic Acid kit 

(Qiagen). Buffy coat DNA was extracted using the DNA Blood Mini kit (Qiagen).  

Tumor tissue was obtained from a core needle biopsy of the primary 

tumor, which was placed in OCT and stored at -80°C. Prior to extraction the OCT 

block was sent out for sectioning and path review. DNA was extracted using the 

DNeasy blood and tissue kit (Qiagen). For 1 patient we received 10 um sliced of 

an archived FFPE diagnostic biopsy, DNA was extracted using the QIAamp DNA 

FFPE tissue kit (Qiagen).  

DNA was quantified using the Kapa hgDNA Quantification and QC kit 

(Kapa Biosystems).  
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Whole-Exome Sequencing 

Whole exome sequencing was conducted using HPLC purified, dual-index 

adapters ordered from IDT (idtdna.com). These were used in combination with 

the Hyper Prep DNA Library Preparation Kit (Kapa Biosystems), at a 10:1 

adapter:template ratio. This library was then used as input for the Agilent 

SureSelect XT hybrid-capture protocol and reagents using the all-human exon v5 

set of capture baits. These libraries were either paired-end 100 bp sequenced 

using the Illumina HiSeq 2500 platform, or paired-end 75 bp sequenced using the 

Illumina NextSeq 500 platform. 

DIDA Library Preparation and Sequencing 

30-50 ng of cfDNA were used as input for creating DIDA libraries as 

outlined in the “Development of a high-accuracy hybrid-capture based ctDNA 

detection method” section of this thesis. Double-hybrid capture was conducted 

on 96-oligo hybrid capture panels designed to capture the mutations identified 

from whole exome sequencing. These panels were combinations of 4-5 patient-

specific mutation sets. These libraries were either paired-end 100 bp sequenced 

using the Illumina HiSeq 2500 platform, or paired-end 75 bp sequenced using the 

Illumina NextSeq 500 platform. 

SafeSeqS Library Preparation and Sequencing 

The SafeSeqS library was prepared as described previously.31 Briefly, a 

pair of mutation-specific primers were ordered which in addition to 20 template-
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specific bases, contained 12 degenerate N’s and the first half of the Illumina 

Sequencing adapter. This was subjected to 4 cycles of PCR using Phusion 

Hotstart II polymerase. Following PCR, unused primers were removed using 

RecJf nuclease, and cleaned up using AMPureXP DNA binding beads. A second 

round of 30 PCR cycles was conducted using primers against the Illumina 

sequence and containing an Illumina sample index and the remainder of the 

adapter. This was then purified again with AMPureXP beads, and sequenced 

spiked-in to another library at <1% and sequence don the Illumina NextSeq 500. 

Bioinformatics Analysis 

Whole-exome sequencing data were analyzed as described previously.53 

Mutations were called using Mutect v 1.1.17, filtering to only include reads with a 

mapping quality of 20 or greater.  

DIDA data was analyzed using the pipeline described in the “Development 

of a high-accuracy hybrid-capture based ctDNA detection method” section of this 

thesis. SafeSeqs libraries were analyzed using the same pipeline excepting the 

duplicate removal steps. 
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Summary and Conclusions 

In this work we have demonstrated the ability to improve our 

understanding of a patient’s tumor through the use of ctDNA sequencing. In 

metastatic disease, ctDNA levels above 2% allow for the use of whole-exome 

sequencing to identify the majority of the mutations present in matched tumor 

samples. This allows for the use of ctDNA sequencing as a “liquid biopsy,” 

potentially eliminating the need for surgical biopsy tissue. This sequencing 

identified clinically actionable mutations in genes such as PIK3CA, KRAS, and 

ESR1. Comparison to the primary tumor provided information about the evolution 

of the tumor over time, and identified a potential resistance mechanism to 

aromatase inhibition.  

To study primary disease we developed a high-accuracy, high-sensitivity 

DIDA assay to simultaneously identify dozens of patient-specific mutations. This 

assay consistently achieved accuracy of better than 1 error in 10k reads, allowing 

us to identify rare ctDNA mutations. The dual-indexing approach minimized the 

risk of cross-contamination or incorrect index assignment. In the process of 

analyzing the data we discovered a previously unreported source of error in the 

form of “tag swaps.” Removing this error led to a more accurate estimate of the 

sequencing depth, and therefore sensitivity, of the assay. 

Finally, we demonstrated that ctDNA can be detected and tracked before, 

during, and after neoadjuvantly treated breast cancer. The results suggested that 

tumor growth was reflected in a corresponding increase in the ctDNA, potentially 
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allowing for early detection of disease progression. Conversely, pCR patients 

showed a dramatic decrease in the ctDNA levels. These findings need to be 

expanded upon in follow up studies in order to determine whether neoadjuvant 

ctDNA analysis has the ability to predict treatment response, but these 

preliminary results are promising. In the post-surgery setting, two patients had 

detectable ctDNA, putting them at increased risk of recurrence. In one patient 

radiation treatment eliminated the ctDNA signal and the patient remains disease 

free over a year later. In the second patient, ctDNA remained detectable 

following adjuvant Taxol and radiation, leading to clinical recurrence 7 months 

after surgery. These results indicate a role of ctDNA in the post-surgery setting in 

assessing the effectiveness of adjuvant treatments. 

Overall these studies advanced the ctDNA field by identifying a variety of 

use cases for ctDNA analysis. In the metastatic setting, whole-exome 

sequencing can paint a near complete picture of the tumor genome, identifying 

clinically relevant mutations, and allowing for inferences to be made about tumor 

evolution. In the neoadjuvant setting, ctDNA response may serve as an early 

indicator of response to treatment, allowing for ineffective therapies to be 

stopped. In the minimal residual disease setting, effectiveness of adjuvant 

therapies can be assessed through ctDNA tracking, potentially delaying or 

preventing recurrence by treating until ctDNA disappears. It is this last scenario 

which has the potential to most dramatically impact patient outcomes. However, 

a larger clinical trial is necessary to determine whether making treatment 

decisions based on ctDNA analysis can improve patient outcomes.  
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